Science.gov

Sample records for nitrogen affects cluster

  1. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  2. Environmental factors affecting rates of nitrogen cycling

    SciTech Connect

    Lipschultz, F.

    1984-01-01

    The nitrogen cycle in the eutrophic Delaware river was studied in late summer, 1983 using /sup 15/N tracer additions of NHG/sub 4//sup +/, NO/sub 2//sup -/, and NO/sub 3//sup -/. Rates for nine different transformations were calculated simultaneously with a least-squares minimization analysis. Light was found to stimulate ammonium uptake and to inhibit ammonium oxidation. Rates for nitrification, ammonium uptake by phytoplankton, and photosynthesis were integrated over 24 hours and river depth. High turbidity lifted the effect of light inhibition on nitrification and restricted phytoplankton uptake. Uptake of ammonium contributed over 95% of the inorganic nitrogen ration for phytoplankton, with dark uptake accounting for more than 50%. A mass-conservation, box model of river was used to calculate rate constants required to reproduce observed nutrient concentration changes. The calculated constants correlated well with the measured /sup 15/N and oxygen integrated rates. Water-column nitrification was the major loss term for NH/sub 4//sup +/, while water column regeneration was the primary source. Loss of oxidized nitrogen was insignificant. Oxygen consumption and air-water exchange far exceeded net photosynthetic oxygen production. Nitrification contributed less than 1% to the oxygen demand near Philadelphia but up to 25% further downstream. Production of NO and N/sub 2/O was measured under varying oxygen concentrations in batch cultures of the nitrifying bacteria Nitrosomonas europaea and Nitrosococcus oceanus. Production of both gases increased relative to nitrite production as oxygen levels decreased.

  3. Carbon and nitrogen abundance variations in globular cluster red giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  4. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  5. Effect of nitrogen adsorption on the mid-infrared spectrum of water clusters.

    PubMed

    Hujo, Waldemar; Gaus, Michael; Schultze, Markus; Kubař, Tomáš; Grunenberg, Jörg; Elstner, Marcus; Bauerecker, Sigurd

    2011-06-16

    Experimental Fourier-transform infrared spectra and DFT calculated infrared spectra are compared to investigate the effect of adsorbed nitrogen on the OH-stretch band complex of water clusters. Using a collisional cooling experiment, pure as well as partially and completely N(2)-covered water clusters consisting of 20-200 water molecules have been generated in thermal equilibrium in the aerosol phase within the temperature range of 5-80 K. Computational IR-spectra simulations have been performed for discrete pure and N(2)-covered water clusters including 10, 15, 20, and 30 water molecules. The adsorbed N(2) molecules especially affect the three-coordinated water molecules at the cluster surface which could be observed as a blue shift of the companion O-H band at 2900 cm(-1) and a red shift of the dangling O-H band at 3700 cm(-1) by about 20 cm(-1) in both cases. The most striking effect of the N(2) adsorbate is an intensity increase of the dangling O-H band by a factor of 3-5. Furthermore, the onset temperature of nitrogen adsorption at the water cluster surface was experimentally found to be roughly 30 K for cluster sizes of about 100 water molecules. Experimental and computational results are in good agreement. The presented results are based on and support the work of V. Buch, J. P. Devlin, and co-workers (e.g., J. Phys. Chem. B, 1997; J. Phys. Chem. A, 2003; Int. Rev. Phys. Chem., 2004). PMID:21488644

  6. Nitrogen retention in natural Mediterranean wetlands affected by agricultural runoff

    NASA Astrophysics Data System (ADS)

    García García, V.; Gómez, R.; Vidal-Abarca, M. R.; Suárez, M. L.

    2009-08-01

    Nitrogen retention efficiency in natural Mediterranean wetlands affected by agricultural runoff was quantified and the effect of season and hydrological/chemical loading was examined from March 2007 to June 2008 in two wetland-streams located in Southeast Spain. Nitrate-N (NO3--N), ammonium-N (NH4+-N), total organic nitrogen-N (TON-N) and chloride (Cl-) concentrations were analyzed to calculate nitrogen retention efficiencies. These wetlands consistently reduced water nitrogen concentration throughout the year with higher values for NO3--N (72.3%), even though the mean values of inflow NO3--N concentrations were above 20 mg l-1. Additionally, they usually acted as sinks for TON-N (45.4%), but as sources for NH4+-N. Over the entire study period, the Taray and Parra wetlands were capable of removing a mean value of 1.6 and 0.8 kg NO3--N a day-1, respectively. Retention efficiencies were not affected by temperature variation and did not follow a seasonal pattern. The temporal variability for NO3--N retention efficiency was positively and negatively explained by the net hydrologic retention and the inflow NO3--N concentration (R2adj=0.832, p<0.001), respectively. TON-N retention efficiency was only positively explained by the net hydrologic retention (R2adj=0.1997, p<0.05). No significant regression model was found for NH4+-N. Finally, the conservation of these Mediterranean wetland-streams may act as a tool to not only improves the surface water quality in agricultural catchments, but to also achieve a good ecological status for surface waters, this being the Water Framework Directive's ultimate purpose.

  7. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule.

    PubMed

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of terms is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N2 problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree-Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT

  8. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    NASA Astrophysics Data System (ADS)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.

    2016-03-01

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of terms is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N2 problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree-Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT

  9. Processes Affecting Nitrogen Speciation in a Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Musgrove, M.; Wong, C. I.

    2011-12-01

    Like many karst aquifers, the Barton Springs segment of the Edwards aquifer, in central Texas, is in an area undergoing rapid growth in population, and there is concern as to how increased amounts of wastewater might affect groundwater quality. We measured concentrations and estimated loads of nitrogen (N) species in recharge to and discharge from the Barton Springs segment of the Edwards aquifer, central Texas, to evaluate processes affecting the transport and fate of N species in groundwater. Water samples were collected during 17 months (November 2008-March 2010) from five streams that contribute about 85% of recharge to the aquifer segment and from Barton Springs, the principal point of discharge from the segment. The sampling period spanned a range of climatic conditions from exceptional drought to above-normal rainfall. Samples were analyzed for N species (organic N + ammonia, ammonia, nitrate + nitrite, nitrite); loads of organic N and nitrate were estimated with LOADEST, a regression-based model that uses a time series of streamflow and measured constituent concentrations to estimate constituent loads. Concentrations of organic nitrogen and dissolved oxygen were higher and concentrations of nitrate were lower in surface water than in spring discharge, consistent with conversion of organic nitrogen to nitrate and associated consumption of dissolved oxygen in the aquifer. During the period of the study, the estimated load of organic N in recharge from streams (average daily load [adl] of 39 kg/d) was about 10 times that in Barton Springs discharge (adl of 9.4 kg/d), whereas the estimated load of nitrate in recharge from streams (adl of 123 kg/d) was slightly less than that in Barton Springs discharge (adl of 148 kg/d). The total average N load in recharge from streams and discharge from Barton Springs was not significantly different (adl of 162 and 157 kg/d, respectively), indicating that surface-water recharge can account for all of the N in Barton Springs

  10. Loss in microbial diversity affects nitrogen cycling in soil

    PubMed Central

    Philippot, Laurent; Spor, Aymé; Hénault, Catherine; Bru, David; Bizouard, Florian; Jones, Christopher M; Sarr, Amadou; Maron, Pierre-Alain

    2013-01-01

    Microbial communities have a central role in ecosystem processes by driving the Earth's biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated. PMID:23466702

  11. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  12. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  13. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  14. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  15. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  16. Nitrogen Additions Affect Root Dynamics in a Boreal Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Treseder, K. K.

    2004-12-01

    As with many ecosystems, North American boreal forests are increasingly subjected to anthropogenic nitrogen deposition. To examine potential effects on plant growth, we created nitrogen fertilization plots in three sites along an Alaskan fire chronosequence composed of forests aged 5, 17, and 80 years. Each site had been exposed to two years of nitrogen fertilization, with four control plots and four nitrogen plots per site. General observations indicate that aboveground net primary productivity appears to be nitrogen limited in each site. We hypothesized that nitrogen fertilization would positively influence root dynamics as well, with nitrogen additions resulting in an increase in standing root biomass and length. To test our hypothesis, we used a minirhizotron camera to collect sequential images of roots in the top 10 cm of soil in both nitrogen fertilized and control plots in each site. Images were collected monthly during the growing season, with a total of five sampling times between May 2003 and May 2004. We then analyzed the images with WinRhizotron root measurement software. Nitrogen fertilization had varying effects on root biomass among the three sites, with a significant site by N interaction (P = 0.039). A decrease in root biomass was observed in the 5 and 80 year old sites, dropping from 207 g/m2 to 79 g/m2 and from 230 g/m2 to 129 g/m2 for the youngest and oldest sites, respectively. In contrast, root biomass increased from 52 g/m2 to 107 g/m2 in the 17 year old site. (Values are for the top 10 cm of soil only, and likely underestimate total root stocks.) Patterns in standing root lengths diverged from those of root biomass, with a 2.5-fold overall increase under nitrogen fertilization across all sites (P = 0.004). There were no significant differences among sites in nitrogen response. Standing root biomass and length differed from one another in their responses to nitrogen fertilization because nitrogen additions decreased specific root weight (as g

  17. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  18. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  19. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.

    PubMed

    Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin

    2015-03-01

    Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1)  yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully

  20. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.

    PubMed

    Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin

    2015-03-01

    Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1)  yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully

  1. Climate variability and nitrogen rate interactions affecting corn nitrogen use efficiency in Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fertilization is an important practice to increase yield; however, plant–soil interactions to in-season changes in climatic conditions result on site-specific responses of corn to nitrogen rates. The objective of this study was to evaluate the effect of different climatic conditions and...

  2. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    ERIC Educational Resources Information Center

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  3. Nitrogen dioxide assimilation as affected by light level

    SciTech Connect

    Srivastava, H. ); Ormond, D.; Marie, B. )

    1989-04-01

    The air pollutant NO{sub 2} is absorbed and assimilated by plants to serve as a source of nitrogen but only to a limited extent. The objective of this research was to identify the constraints on NO{sub 2} assimilation. Differential light levels were used to manipulate carbohydrate metabolites available for nitrogen assimilation. Bean plants were grown at four light levels with or without nutrient nitrate and exposed to 0.25 ppm NO{sub 2} for 6h each day. Growth of roots and shoots was inhibited by NO{sub 2} in both the presence and absence of nutrient nitrate. The inhibition was most pronounced at the lowest light level. Light level similarly influenced the effect of nitrate and of NO{sub 2} on soluble protein, nitrate nitrogen and Kjeldahl nitrogen in the root and shoot tissues. Two experiments demonstrated that the injurious effects of NO{sub 2} are more pronounced at low light than at high light and that more NO{sub 2} is assimilated into soluble shoot protein at higher light levels.

  4. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  5. Physics of Galaxy Clusters and How it Affects Cosmological Tests

    NASA Technical Reports Server (NTRS)

    Vikhlinin, Alexey; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    We have worked on the analysis of the Chandra observations of the nearby and distant clusters of galaxies, and on the expansion of the sample of distant X-ray clusters based on the archival ROSAT PSPC data. Some of the scientific results are discussed.

  6. How the Clustering of Phonological Neighbors Affects Visual Word Recognition

    ERIC Educational Resources Information Center

    Yates, Mark

    2013-01-01

    In recent years, a new scientific field known as network science has been emerging. Network science is concerned with understanding the structure and properties of networks. One concept that is commonly used in describing a network is how the nodes in the network cluster together. The current research applied the idea of clustering to the study of…

  7. Cultivar and nitrogen fertilizer rate affect yield and nitrogen use efficiency in irrigated durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimizing nitrogen (N) management and using cultivars with high N use efficiency (NUE) are of great importance for durum wheat (Triticum durum L.) producers in irrigated desert production systems. Field experiments with six durum wheat cultivars (Ocotillo, Orita, Kronos, Havasu, Duraking, and Toppe...

  8. Nitrogen, stover and tillage management affect nitrogen use efficiency in continuous corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving nitrogen use efficiency (NUE) in corn (Zea mays L.) is critical for optimizing yield and reducing environmental impact. Stover removal in continuous corn (CC) for biofuel production, coupled with reduced-tillage systems, could alter NUE and residual soil nitrate-N. Experiments were conduct...

  9. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and function of microbial communities present in the rhizosphere of crops has been linked to edaphic factors and root exudate composition. In this paper, we examined the effect of N fertilizer rate on maize root exudation, the associated rhizosphere community, and nitrogen-use-effici...

  10. Physics of Galaxy Clusters and How it Affects Cosmological Tests

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Vikhlinin, Alexey

    2004-01-01

    The main activities in 2004 were focused on completion of the new 400 square degrees ROSAT PSPC survey for distant galaxy clusters. We observed and reduced optical spectra for all X-ray candidates and now we have complete identification for a statistically complete sample of distant 283 clusters. The papers describing the cluster catalog and first science results are in preparation and will be submitted in early 2005. We also completed a project to measure temperature and density profiles at large radii using Chandra observations of a 11 well exposed low-redshift clusters. We were able to demonstrate that the density, temperature, and total mass profiles are self-similar at large radii. This analysis has led to significant improvements in determination of the cluster baryon fraction as well as cosmologically important scaling relations, such as Mtot-T. The paper describing these results is submitted to ApJ in November, 2004. We continued to study evolution of the cluster scaling relations at high redshifts using Chandra and XMM data. We developed code for image and spectral deconvolution of the XMM observations. This code was used to reconstruct the distribution of baryons and total mass from observations of distant clusters which suffer from the finite size of the XMM PSF. This study allowed us to derive a high-redshift relation between cluster temperature and mass and compare it with the local relation obtained. The paper describing the first results is submitted to the ApJ. However, the project is still on-going as more distant cluster observations enter XMh4 and Chandra public data archives. We continued our work on improving techniques for accurate measurements of the cluster mass function and obtaining cosmological constraints from such observations. We published (ApJ, 601, 610) a study in which we derived the baryon mass function for a complete sample of low-redshift clusters. These papers argued that it was an excellent proxy for the total mass function

  11. Improved performance due to selective passivation of nitrogen clusters in GaInNAs solar cells

    NASA Astrophysics Data System (ADS)

    Fukuda, Miwa; Whiteside, Vincent R.; Al Khalfioui, Mohamed; Leroux, Mathieu; Hossain, Khalid; Sellers, Ian R.

    2015-03-01

    While GaInNAs has the potential to be a fourth-junction in multi-junction solar cells it has proved to be difficult to incorporate due to the low solubility of nitrogen in these materials. Specifically, mid-gap states attributed to nitrogen clusters have proved prohibitive for practical implementation of these systems. Here, we present the selective passivation of nitrogen impurities using a UV-activated hydrogenation process, which enables the removal of defects while retaining substitution nitrogen. Temperature dependent photoluminescence measurements of the intrinsic region of a GaInNAs p-i-n solar cell show a classic ``s-shape'' associated with localization prior to hydrogenation, while after hydrogenation no sign of the ``s-shape'' is evident. This passivation of nitrogen centers is reflected in improved performance of solar cells structures relative to reference, unpassivated devices presenting a potential route to practical implementation of GaInNAs solar cells. The authors acknowledge support through Oklahoma Center for the Advancement of Science and Technology under the Oklahoma Applied Research Support Grant No. AR12.2-040.

  12. Nitrogen and hydrophosphate affects glycolipids composition in microalgae

    PubMed Central

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L−1 hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L−1 d−1. Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  13. Nitrogen and hydrophosphate affects glycolipids composition in microalgae.

    PubMed

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L(-1) hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L(-1) d(-1). Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  14. [Spatial distribution pattern of soil nitrogen in Huanghuadianzi watershed and related affecting factors].

    PubMed

    Li, Long; Yao, Yun-feng; Qin, Fu-cang; Gao, Yu-han; Zhang, Mei-li

    2015-05-01

    This research was conducted in Huanghuadianzi watershed in Aohan, Chifeng, Inner Mongolia. Geostatistic was used to study the spatial distribution of soil nitrogen and their affecting factors. The results showed that the soil nitrogen contents in all layers distributed as an island shape, and the high value areas were mainly distributed in the northwest of the watershed as an obvious fertile island shape, while the low value areas were mainly distributed in the south of the watershed. Nitrogen was mainly concentrated in the surface soil, and its content decreased with the increase of soil depth. The soil nitrogen content at first increased then decreased with the altitude, decreased with the slope, and showed the order of shady slope>semi-shady slope>semi-sunny slope> sunny slope in different aspects. The average soil nitrogen contents in different land use types ranked as cropland >woodland > grassland.

  15. Elevated ozone and nitrogen deposition affect nitrogen pools of subalpine grassland.

    PubMed

    Bassin, Seraina; Käch, David; Valsangiacomo, Alain; Mayer, Jochen; Oberholzer, Hans-Rudolf; Volk, Matthias; Fuhrer, Jürg

    2015-06-01

    In a free-air fumigation experiment with subalpine grassland, we studied long-term effects of elevated ozone (O3) and nitrogen (N) deposition on ecosystem N pools and on the fate of anthropogenic N. At three times during the seventh year of exposure, N pools and recovery of a stable isotope tracer ((15)N) were determined in above- and belowground plant parts, and in the soil. Plants were much better competitors for (15)N than soil microorganisms. Plant N pools increased by 30-40% after N addition, while soil pools remained unaffected, suggesting that most of the extra N was taken up and stored in plant biomass, thus preventing the ecosystem from acquiring characteristics of eutrophication. Elevated O3 caused an increase of N in microbial biomass and in stabilized soil N, probably resulting from increased litter input and lower litter quality. Different from individual effects, the interaction between the pollutants remained partly unexplained.

  16. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  17. Bonding of nitrogen atoms on Cu/001/ surfaces - A cluster approach

    NASA Technical Reports Server (NTRS)

    Yu, H. L.; Whiting, E. E.

    1979-01-01

    A study of the chemisorption of nitrogen atoms on a copper surface has been performed, based on an analysis of the electronic structure of the Cu5N cluster obtained from self-consistent-field X-alpha scattered-wave calculations. Calculations show that the chemisorption of nitrogen on Cu(001) surfaces induces peaks below and above the Cu d-band region in the total density of states curve. The bonding orbitals formed between the N 2p and the Cu valence orbitals are generally found near the bottom of the Cu d-band region, while the antibonding orbitals formed between the N 2p and Cu orbitals are found to lie above the Cu d-band region. These hybridized orbitals involving the N 2p orbital gave a satisfactory interpretation of the adsorbate-induced structure reported in N/Cu(001) ultraviolet photoemission studies.

  18. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries.

    PubMed

    Soubeyrand, Eric; Basteau, Cyril; Hilbert, Ghislaine; van Leeuwen, Cornelis; Delrot, Serge; Gomès, Eric

    2014-07-01

    Accumulation of anthocyanins in grape berries is influenced by environmental factors (such as temperature and light) and supply of nutrients, i.e., fluxes of carbon and nitrogen feeding the berry cells. It is established that low nitrogen supply stimulates anthocyanin production in berry skin cells of red varieties. The present works aims to gain a better understanding of the molecular mechanisms involved in the response of anthocyanin accumulation to nitrogen supply in berries from field grown-plants. To this end, we developed an integrated approach combining monitoring of plant nitrogen status, metabolite measurements and transcript analysis. Grapevines (cv. Cabernet-Sauvignon) were cultivated in a vineyard with three nitrogen fertilization levels (0, 60 and 120 kg ha(-1) of nitrogen applied on the soil). Anthocyanin profiles were analyzed and compared with gene expression levels. Low nitrogen supply caused a significant increase in anthocyanin levels at two ripening stages (26 days post-véraison and maturity). Delphinidin and petunidin derivatives were the most affected compounds. Transcript levels of both structural and regulatory genes involved in anthocyanin synthesis confirmed the stimulation of the phenylpropanoid pathway. Genes encoding phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), flavonoid-3',5'-hydroxylase (F3'5'H), dihydroflavonol-4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX) exhibited higher transcript levels in berries from plant cultivated without nitrogen compared to the ones cultivated with 120 kg ha(-1) nitrogen fertilization. The results indicate that nitrogen controls a coordinated regulation of both positive (MYB transcription factors) and negative (LBD proteins) regulators of the flavonoid pathway in grapevine. PMID:24735825

  19. Nitrogen oxide reaction with six-atom silver clusters supported on LTA zeolite.

    PubMed

    Baldansuren, Amgalanbaatar; Eichel, Rüdiger-A; Roduner, Emil

    2009-08-21

    Silver containing catalysts were prepared by aqueous ion exchange of Ag(+) against Na(+) in an LTA zeolite. A well-defined paramagnetic cluster consisting of six equivalent silver nuclei was obtained after oxidation and hydrogen reduction. Continuous wave EPR demonstrates that the reduced Ag(6)(+) clusters are isolated and all silver atoms are close to equivalent. Upon addition of NO gas at room temperature, the spectrum of the Ag(6)(+) cluster disappears immediately. A new spectrum has the character of adsorbed NO. Its line is split by hyperfine interaction between the unpaired electron with (14)N of the adsorbed NO, and by the nuclear spin of one Ag nucleus to which NO is bound. The experimental isotropic hyperfine coupling a approximately 11.0 G is too large for being observed in the HYSCORE spectrum, but a small (14)N-hyperfine interaction is observed and assigned to a second nitrogen spin in the vicinity of the silver cluster. In the presence of trace oxygen NO transforms slowly into NO(2), but no further activity was observed at room temperature. The NO(2) molecule exhibits dynamics in the temperature range of 30 to 125 K. The rotational diffusion is axially symmetric about the molecular y axis of the adsorbed NO(2). Above 50 K, it becomes rapidly nearly isotropic. Analysis of the correlation time (tau(c)) derived from the EPR lineshapes provides the kinetic parameters, and an Arrhenius representation gives access to the activation energy for the rotational motion.

  20. Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.

    PubMed

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-08-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic ¹⁵N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with ¹⁵NO₃⁻/¹⁴NO₃⁻ from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r² > 0.99). This consisted of a "substrate pool," which received N from current uptake and supplied the growth zone, and a recycling/mobilizing "store," which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.

  1. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  2. Vibronic structure of the cyclopentadienyl radical and its nonrigid van der Waals cluster with nitrogen

    NASA Astrophysics Data System (ADS)

    Sun, S.; Bernstein, E. R.

    1995-09-01

    Fluorescence excitation and two color mass resolved excitation spectroscopy are employed to study the D1(2A2″)←D0(2E1″) vibronic transitions of the cyclopentadienyl radical (cpd) and its van der Waals cluster with nitrogen. The radical is created by photolysis of the cyclopentadiene dimer and cooled by expansion from a supersonic nozzle. The cpd(N2)1 cluster is generated in this cooling process. Mass resolved excitation spectra of cpd are obtained for the first 1200 cm-1 of the D1←D0 transition. The excitation spectrum of cpd(N2)1 shows a complicated structure for the origin transition. With the application of hole burning spectroscopy, we are able to assign all the cluster transitions to a single isomer. The features are assigned to a 55 cm-1 out-of-plane van der Waals mode stretch and contortional (rotational) motions of the N2 molecule with respect to the cpd radical. Empirical potential energy calculations are used to predict the properties of this cluster and yield the following results: (1) the N2 molecular axis is perpendicular to the cpd fivefold axis and parallel to the plane of the cpd ring with the two molecular centers of mass lying on the fivefold ring axis; (2) the binding energy of cpd(N2)1 is 434 cm-1; and (3) the rotational motion of the N2 molecule is essentially unhindered about the cpd fivefold axis. The molecular symmetry group D5h(MS) is applied to the nonrigid cluster, and optical selection rules exclude even↔odd transitions (Δn=0, ±2, ±4,... allowed) between the different contortional levels. Tentative assignments are given to the observed contortional features based on these considerations. The barrier to internal rotation is also small in the excited state. The results for the cpd(N2)1 van der Waals cluster are compared to those for the benzene (N2)1 and benzyl radical (N2)1 clusters.

  3. Modeling uncertainties for tropospheric nitrogen dioxide columns affecting satellite-based inverse modeling of nitrogen oxides emissions

    NASA Astrophysics Data System (ADS)

    Lin, J.-T.; Liu, Z.; Zhang, Q.; Liu, H.; Mao, J.; Zhuang, G.

    2012-12-01

    Errors in chemical transport models (CTMs) interpreting the relation between space-retrieved tropospheric column densities of nitrogen dioxide (NO2) and emissions of nitrogen oxides (NOx) have important consequences on the inverse modeling. They are however difficult to quantify due to lack of adequate in situ measurements, particularly over China and other developing countries. This study proposes an alternate approach for model evaluation over East China, by analyzing the sensitivity of modeled NO2 columns to errors in meteorological and chemical parameters/processes important to the nitrogen abundance. As a demonstration, it evaluates the nested version of GEOS-Chem driven by the GEOS-5 meteorology and the INTEX-B anthropogenic emissions and used with retrievals from the Ozone Monitoring Instrument (OMI) to constrain emissions of NOx. The CTM has been used extensively for such applications. Errors are examined for a comprehensive set of meteorological and chemical parameters using measurements and/or uncertainty analysis based on current knowledge. Results are exploited then for sensitivity simulations perturbing the respective parameters, as the basis of the following post-model linearized and localized first-order modification. It is found that the model meteorology likely contains errors of various magnitudes in cloud optical depth, air temperature, water vapor, boundary layer height and many other parameters. Model errors also exist in gaseous and heterogeneous reactions, aerosol optical properties and emissions of non-nitrogen species affecting the nitrogen chemistry. Modifications accounting for quantified errors in 10 selected parameters increase the NO2 columns in most areas with an average positive impact of 18% in July and 8% in January, the most important factor being modified uptake of the hydroperoxyl radical (HO2) on aerosols. This suggests a possible systematic model bias such that the top-down emissions will be overestimated by the same magnitude

  4. The liquid nitrogen fill level meter for the AGATA triple cluster detector

    NASA Astrophysics Data System (ADS)

    Lersch, Daniel; Pascovici, Gheorghe; Birkenbach, Benedikt; Bruyneel, Bart; Eberth, Jürgen; Hess, Herbert; Reiter, Peter; Wiens, Andreas; Georg Thomas, Heinz; Agata Collaboration

    2011-06-01

    A novel liquid nitrogen fill level meter has been put into operation for the all-position dewar of the triple cluster detector of the Advanced GAmma Tracking Array. The new device is based on a capacitance measurement between a metallic cylindrical tube inside the dewar and the inner wall of the cryostat. The fill level dependent capacitance is converted by a C/ V-transducer into a DC voltage signal. Direct monitoring of the LN 2 level inside the detector dewar has been performed with several AGATA detectors at various inclinations and rotation angles of the detector axis. The time-dependent LN 2 consumption is an additional quantity used to survey the status of the cryostat. Supplementary results are the investigations of the LN 2 consumption and the heat loss of the detector during different modes of operation.

  5. Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves.

    PubMed

    Nemie-Feyissa, Dugassa; Olafsdottir, Solveig Margret; Heidari, Behzad; Lillo, Cathrine

    2014-02-01

    Ternary complexes consisting of a R2R3-MYB, a bHLH and a WD40 protein (MBW complexes) regulate trichome formation and anthocyanin synthesis in plants. Small R3-MYBs interact with the MBW complexes to exert a negative feedback, and thereby participate in regulation of epidermal cell fate, for example trichome numbers and clustering in leaves. In Arabidopsis thaliana, GL3, a bHLH transcription factor, is important in the MBW complex regulating trichome formation as well as in the MBW complex induced by nitrogen depletion and promoting anthocyanin formation. The small R3-MYBs: CPC, TRY, ETC1, ETC2, ETC3/CPL3, TCL1, MYBL2, are all known to interact with GL3. We here investigated these R3-MYBs in leaves of Arabidopsis rosette stage plants under nitrogen depletion to examine if the small MYBs would interfere with anthocyanin accumulation in plants under normal (autotrophic) growth conditions. CPC expression was enhanced two-fold in response to nitrogen depletion, and ETC3/CPL3 expression was enhanced by almost an order of magnitude (9×). Knockout of ETC3/CPL3 did not influence anthocyanin accumulation, but the results establish ETC3/CPL3 as a nitrate regulated gene and a putative candidate for being involved in nitrate status signaling and root development. Other R3-MYBs tested were not significantly influenced by nitrogen depletion. In conclusion, only CPC expression increased and clearly exerted a negative feedback on anthocyanin accumulation during nitrogen starvation in rosette leaves. PMID:24388610

  6. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  7. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    PubMed

    Wang, Liying; Zhang, Lihong; Liu, Zhanzhi; Liu, Zhangzhi; Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70) (σ(A))-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  8. A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

    PubMed Central

    Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. PMID:24146630

  9. The chemistry of nitrogen oxides on small size-selected cobalt clusters, Co{sub n}{sup +}

    SciTech Connect

    Anderson, Marie L.; Lacz, Agnieszka; Drewello, Thomas; Derrick, Peter J.; Woodruff, D. Phil; Mackenzie, Stuart R.

    2009-02-14

    Fourier transform ion cyclotron resonance mass spectrometry has been employed to study the reactions of gas-phase cationic cobalt clusters, Co{sub n}{sup +} (n=4-30), with nitric oxide, NO, and nitrous oxide, N{sub 2}O, under single collision conditions. Isolation of the initial cluster permits detailed investigation of fragmentation channels which characterize the reactions of all but the largest clusters studied. In reaction with N{sub 2}O, most clusters generate the monoxides Co{sub n}O{sup +} without fragmentation, cobalt atom loss accompanying only subsequent reactions. By contrast, chemisorption of even a single NO molecule is accompanied by fragmentation of the cluster. The measured rate coefficients for the Co{sub n}{sup +}+N{sub 2}O reaction as a function of cluster size are significantly smaller than those calculated using the surface charge capture model, while for NO the rates are comparable. The reactions have been studied under high coverage conditions by storing clusters for extended periods to permit multiple reactions to occur. This leads to interesting chemistry on the surface of the cluster resulting in the formation of stable oxide clusters and/or the decomposition of nitric oxide on the cluster with the resulting loss of molecular nitrogen.

  10. CO2, nitrogen, and diversity differentially affect seed production of prairie plants.

    PubMed

    HilleRisLambers, J; Harpole, W S; Schnitzer, S; Tilman, D; Reich, P B

    2009-07-01

    Plant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, U.S.A. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses: We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we

  11. Nitrogen abundances and multiple stellar populations in the globular clusters of the Fornax dSph

    SciTech Connect

    Larsen, Søren S.; Strader, Jay

    2014-12-10

    We use measurements of nitrogen abundances in red giants to search for multiple stellar populations in the four most metal-poor globular clusters (GCs) in the Fornax dwarf spheroidal galaxy (Fornax 1, 2, 3, and 5). New imaging in the F343N filter, obtained with the Wide Field Camera 3 on the Hubble Space Telescope, is combined with archival F555W and F814W observations to determine the strength of the NH band near 3370 Å. After accounting for observational errors, the spread in the F343N-F555W colors of red giants in the Fornax GCs is similar to that in M15 and corresponds to an abundance range of Δ[N/Fe] ∼ 2 dex, as observed also in several Galactic GCs. The spread in F555W-F814W is, instead, fully accounted for by observational errors. The stars with the reddest F343N-F555W colors (indicative of N-enhanced composition) have more centrally concentrated radial distributions in all four clusters, although the difference is not highly statistically significant within any individual cluster. From double-Gaussian fits to the color distributions, we find roughly equal numbers of 'N-normal' and 'N-enhanced' stars (formally ∼40% N-normal stars in Fornax 1, 3, and 5 and ∼60% in Fornax 2). We conclude that GC formation, in particular, regarding the processes responsible for the origin of multiple stellar populations, appears to have operated similarly in the Milky Way and in the Fornax dSph. Combined with the high ratio of metal-poor GCs to field stars in the Fornax dSph, this places an important constraint on scenarios for the origin of multiple stellar populations in GCs.

  12. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  13. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    SciTech Connect

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi; Wada, Kei; Daifuku, Takashi; Yoneda, Yasuko; Fukuyama, Keiichi; Sako, Yoshihiko

    2013-11-08

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys{sup 295} and His{sup 261}. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His{sup 261}, which coordinates one of the Fe atoms with Cys{sup 295}, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys{sup 295}, we constructed CODH-II variants. Ala substitution for the Cys{sup 295} substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys{sup 295} indirectly and His{sup 261} together affect Ni-coordination in the C-cluster.

  14. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  15. Nitrogen retention in natural Mediterranean wetland-streams affected by agricultural runoff

    NASA Astrophysics Data System (ADS)

    García-García, V.; Gómez, R.; Vidal-Abarca, M. R.; Suárez, M. L.

    2009-12-01

    Nitrogen retention efficiency in natural Mediterranean wetland-streams affected by agricultural runoff was quantified and the effect of the temporal variability and hydrological/chemical loading was examined from March 2007 to June 2008 in two wetland-streams located in Southeast Spain. Nitrate-N (NO-3-N), ammonium-N (NH+4-N), total nitrogen-N (TN-N), total organic nitrogen-N (TON-N) and chloride (Cl-) concentrations were analyzed to calculate nitrogen retention efficiencies. These wetland-streams consistently reduced water nitrogen concentration throughout the year with higher values for NO-3-N (72.3%), even though the mean value of inflow NO-3-N concentrations was above 20 mg l-1. Additionally, they usually acted as sinks for TON-N (8.4%), but as sources for NH+4-N. Over the entire study period, the Taray and Parra wetland-streams were capable of removing on average 1.6 and 0.8 kg NO-3-N a day-1, respectively. Retention efficiencies were not affected by temperature variation. NO-3-N retention efficiency followed a seasonal pattern with the highest retention values in summer (June-September). The temporal variability for NO-3-N retention efficiency was positively and negatively explained by the hydrologic retention and the inflow NO-3-N concentration (R2adj=0.815, p<0.01), respectively. No significant regression model was found for TON-N and NH+4-N. Finally, the conservation of these Mediterranean wetland-streams may help to not only improve the surface water quality in agricultural catchments, but to also achieve good ecological status for surface waters, this being the Water Framework Directive's ultimate purpose.

  16. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  17. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  18. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  19. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  20. TOO LITTLE, TOO LATE: HOW THE TIDAL EVOLUTION OF HOT JUPITERS AFFECTS TRANSIT SURVEYS OF CLUSTERS

    SciTech Connect

    Debes, John H.; Jackson, Brian

    2010-11-10

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense Hubble Space Telescope search for transits. We find that in older clusters, one expects to detect fewer transiting planets by a factor of 2 for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of the semimajor axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  1. Investigation of the ArN + 2 ion by dissociative ionization of argon/nitrogen clusters

    NASA Astrophysics Data System (ADS)

    Mähnert, Joachim; Baumgärtel, Helmut; Weitzel, Karl-Michael

    1995-01-01

    The ArN+2 ion has been investigated by means of photoionization of an argon/nitrogen cluster beam in a threshold photoelectron photoion coincidence experiment. Two pathways for the formation of ArN+2 ions have been observed: (i) the nondissociative ionization of ArN2 neutrals and (ii) the dissociative ionization of Ar2N2. The two pathways are distinguished by the kinetic energy released (KER) in the dissociative ionization. The KER for the reaction Ar2N+2→ArN+2+Ar has been measured as a function of the excitation energy. The comparison of the measured KER with the statistically expected KER allows us to extrapolate to the thermochemical threshold of the reaction under investigation. A consistent picture is obtained under two assumptions: (i) the ArN+2 ion is linear and (ii) the ionization potential of ArN2 is 14.486±0.05 eV. The former assumption is confirmed by high level ab initio calculations (QCISD/6-311G*).

  2. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime

    NASA Astrophysics Data System (ADS)

    Caré, Bertrand R.; Soula, Hédi A.

    2013-01-01

    Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.

  3. Elucidating Sources and Factors Affecting Delivery of Nitrogen to Surface Waters of New York State

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Boyer, E. W.; Burns, D. A.; Elliott, E.; Kendall, C.; Butler, T.

    2005-12-01

    Rapid changes in power generation, transportation, and agriculture have appreciably altered nitrogen (N) cycling at regional scales, increasing N inputs to landscapes and surface waters. Numerous studies have linked this surplus N to a host of concerns, including eutrophication and violations in drinking water standards. Inputs of N nation-wide have increased during recent decades, primarily from the production and use of fertilizers, the planting of N-fixing crops, and the combustion of fossil fuels. The role of atmospheric N sources is of particular concern in New York, as rates of atmospheric N deposition in the northeast are among the highest in the nation. Our work aims to quantify nitrogen sources and fate in watersheds throughout the state. Further, we intend to elucidate factors controlling the retention and release of N to surface waters. We quantify nitrogen inputs through both measurement data (e.g., from wet and dry atmospheric deposition, precipitation, streamflow, water quality, and isotopic tracers) and from synoptic spatial databases (e.g., of terrain, land use, and fertilizer inputs). We present preliminary results from large catchments in contrasting spatial settings across the state (different land use configurations and atmospheric deposition gradients), illustrating the contribution of nitrogen sources to each region and factors affecting delivery to surface waters. Further, we present 30 years of temporal data from a large watershed (Fall Creek) in the Finger Lakes region of the state to demonstrate how hydrological and biogeochemical factors, over seasons and under varying hydrological regimes, combine to control N dynamics in surface waters. Our collective work provides information that is necessary to develop sound strategies for understanding and managing nutrients at regional scales.

  4. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories.

    PubMed

    Siddique, Ilyas; Vieira, Ima Célia Guimarães; Schmidt, Susanne; Lamb, David; Carvalho, Cláudio José Reis; Figueiredo, Ricardo de Oliveira; Blomberg, Simon; Davidson, Eric A

    2010-07-01

    Nutrient enrichment is increasingly affecting many tropical ecosystems, but there is no information on how this affects tree biodiversity. To examine dynamics in vegetation structure and tree species biomass and diversity, we annually remeasured tree species before and for six years after repeated additions of nitrogen (N) and phosphorus (P) in permanent plots of abandoned pasture in Amazonia. Nitrogen and, to a lesser extent, phosphorus addition shifted growth among woody species. Nitrogen stimulated growth of two common pioneer tree species and one common tree species adaptable to both high- and low-light environments, while P stimulated growth only of the dominant pioneer tree Rollinia exsucca (Annonaceae). Overall, N or P addition reduced tree assemblage evenness and delayed tree species accrual over time, likely due to competitive monopolization of other resources by the few tree species responding to nutrient enrichment with enhanced establishment and/or growth rates. Absolute tree growth rates were elevated for two years after nutrient addition. However, nutrient-induced shifts in relative tree species growth and reduced assemblage evenness persisted for more than three years after nutrient addition, favoring two nutrient-responsive pioneers and one early-secondary tree species. Surprisingly, N + P effects on tree biomass and species diversity were consistently weaker than N-only and P-only effects, because grass biomass increased dramatically in response to N + P addition. The resulting intensified competition probably prevented an expected positive N + P synergy in the tree assemblage. Thus, N or P enrichment may favor unknown tree functional response types, reduce the diversity of coexisting species, and delay species accrual during structurally and functionally complex tropical rainforest secondary succession. PMID:20715634

  5. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism.

    PubMed

    Hoover, Shelley E R; Ladley, Jenny J; Shchepetkina, Anastasia A; Tisch, Maggie; Gieseg, Steven P; Tylianakis, Jason M

    2012-03-01

    Environmental changes threaten plant-pollinator mutualisms and their critical ecosystem service. Drivers such as land use, invasions and climate change can affect pollinator diversity or species encounter rates. However, nitrogen deposition, climate warming and CO(2) enrichment could interact to disrupt this crucial mutualism by altering plant chemistry in ways that alter floral attractiveness or even nutritional rewards for pollinators. Using a pumpkin model system, we show that these drivers non-additively affect flower morphology, phenology, flower sex ratios and nectar chemistry (sugar and amino acids), thereby altering the attractiveness of nectar to bumble bee pollinators and reducing worker longevity. Alarmingly, bees were attracted to, and consumed more, nectar from a treatment that reduced their survival by 22%. Thus, three of the five major drivers of global environmental change have previously unknown interactive effects on plant-pollinator mutualisms that could not be predicted from studies of individual drivers in isolation.

  6. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  7. NITROGEN DEPOSITION AND ORGANIC MATTER MANIPULATIONS AFFECT GROSS AND NET NITROGEN TRANSFORMATIONS IN TWO TEMPERATE FORESTS SOILS

    EPA Science Inventory

    Soil nitrogen transformations are intricately linked to carbon transformations. We utilized two existing organic matter manipulation sites in western Oregon, USA and Hungary to investigate these linkages. Our questions were: 1) Does the quantity and quality of organic matter af...

  8. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  9. The consequences of depressive affect on functioning in relation to Cluster B personality disorder features.

    PubMed

    Miller, Joshua D; Gaughan, Eric T; Pryor, Lauren R; Kamen, Charles

    2009-05-01

    The authors examined the effects of depressed affect (DA) on functioning measured by behavioral tasks pertaining to abstract reasoning, social functioning, and delay of gratification in relation to Cluster B personality disorder features (PDs) in a clinical sample. Individuals were randomly assigned to either a DA induction or control condition. Consistent with clinical conceptualizations, the authors expected that Cluster B PD symptoms would be related to maladaptive responding (e.g., poorer delay of gratification) when experiencing DA. As hypothesized, many of the relations between the Cluster B PDs and functioning were moderated by DA (e.g., borderline PD was negatively related to abstract reasoning, but only in the DA condition). However, many of the Cluster B PDs symptom counts were related to more adaptive responses in the DA condition (e.g., less aggressive social functioning, better delay of gratification). The authors speculate that individuals with Cluster B PDs may be more likely to respond maladaptively to alternative negative mood states, such as anger and fear.

  10. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  11. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  12. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs.

  13. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    USGS Publications Warehouse

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  14. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  15. The reallocation of carbon in P deficient lupins affects biological nitrogen fixation.

    PubMed

    Kleinert, Aleysia; Venter, Mauritz; Kossmann, Jens; Valentine, Alexander

    2014-11-01

    It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth.

  16. PII Overexpression in Lotus japonicus Affects Nodule Activity in Permissive Low-Nitrogen Conditions and Increases Nodule Numbers in High Nitrogen Treated Plants.

    PubMed

    D'Apuzzo, Enrica; Valkov, Vladimir Totev; Parlati, Aurora; Omrane, Selim; Barbulova, Ani; Sainz, Maria Martha; Lentini, Marco; Esposito, Sergio; Rogato, Alessandra; Chiurazzi, Maurizio

    2015-04-01

    We report here the first characterization of a GLNB1 gene coding for the PII protein in leguminous plants. The main purpose of this work was the investigation of the possible roles played by this multifunctional protein in nodulation pathways. The Lotus japonicus LjGLB1 gene shows a significant transcriptional regulation during the light-dark cycle and different nitrogen availability, conditions that strongly affect nodule formation, development, and functioning. We also report analysis of the spatial profile of expression of LjGLB1 in root and nodule tissues and of the protein's subcellular localization. Transgenic L. japonicus lines overexpressing the PII protein were obtained and tested for the analysis of the symbiotic responses in different conditions. The uncoupling of PII from its native regulation affects nitrogenase activity and nodule polyamine content. Furthermore, our results suggest the involvement of PII in the signaling of the nitrogen nutritional status affecting the legumes' predisposition for nodule formation.

  17. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  18. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...

  19. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  20. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  1. Macronutrient content of a hypoenergy diet affects nitrogen retention and muscle function in weight lifters.

    PubMed

    Walberg, J L; Leidy, M K; Sturgill, D J; Hinkle, D E; Ritchey, S J; Sebolt, D R

    1988-08-01

    Weight lifters (WL) attempt to achieve a low body fat while maintaining fat free mass (FFM) and muscle function. Body composition and isometric muscular endurance were tested in 19 experienced male WL at the end of a weight maintenance and exercise routine standardization week. The subjects were assigned to either a control (C), moderate-protein (0.8 g.kg-1.d-1), high-carbohydrate hypoenergy diet (MP/HC), or high-protein (1.6 g.kg-1.d-1), moderate-carbohydrate hypoenergy diet (HP/MC). Both hypoenergy diets provided 75.3 kJ (18 kcal).kg-1.d-1. Apparent nitrogen balance (NBAL) was assessed using nitrogen in the diet, urine, and sweat. Body fat and FFM loss via hydrostatic weighing were not different between the hypoenergy groups. However, lean body mass (LBM) change as assessed by NBAL showed that the MP/HC group had an average negative NBAL of -3.19 g.d-1 while the HP/MC group had a positive NBAL of 4.13 g.d-1. Macronutrient mix did not affect biceps endurance, but quadriceps endurance declined for the HP/MC group during the experimental week. In conclusion, a hypoenergy diet providing twice the RDA for protein was more effective in retaining body protein in WL than a diet with higher carbohydrate but the RDA for protein. However, the lower carbohydrate of this diet contributed to reduced muscular endurance in these athletes. PMID:3182156

  2. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice.

    PubMed

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  3. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  4. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  5. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.

    PubMed

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  6. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. PMID:27380366

  7. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland.

    PubMed

    Lü, Xiao-Tao; Kong, De-Liang; Pan, Qing-Min; Simmons, Matthew E; Han, Xing-Guo

    2012-02-01

    The effects of global change factors on the stoichiometric composition of green and senesced plant tissues are critical determinants of ecosystem feedbacks to anthropogenic-driven global change. So far, little is known about species stoichiometric responses to these changes. We conducted a manipulative field experiment with nitrogen (N; 17.5 g m(-2) year(-1)) and water addition (180 mm per growing season) in a temperate steppe of northern China that is potentially highly vulnerable to global change. A unique and important outcome of our study is that water availability modulated plant nutritional and stoichiometric responses to increased N availability. N addition significantly reduced C:N ratios and increased N:P ratios but only under ambient water conditions. Under increased water supply, N addition had no effect on C:N ratios in green and senesced leaves and N:P ratios in senesced leaves, and significantly decreased C:P ratios in both green and senesced leaves and N:P ratios in green leaves. Stoichiometric ratios varied greatly among species. Our results suggest that N and water addition and species identity can affect stoichiometric ratios of both green and senesced tissues through direct and interactive means. Our findings highlight the importance of water availability in modulating stoichiometric responses of plants to potentially increased N availability in semi-arid grasslands.

  8. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy.

    PubMed

    Bonanno, Giuseppe

    2013-10-01

    Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural.

  9. Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch.

    PubMed

    Lihavainen, Jenna; Ahonen, Viivi; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Oksanen, Elina; Keinänen, Markku

    2016-07-01

    Air humidity indicated as vapour pressure deficit (VPD) is directly related to transpiration and stomatal function of plants. We studied the effects of VPD and nitrogen (N) supply on leaf metabolites, plant growth, and mineral nutrition with young micropropagated silver birches (Betula pendula Roth.) in a growth chamber experiment. Plants that were grown under low VPD for 26 d had higher biomass, larger stem diameter, more leaves, fewer fallen leaves, and larger total leaf area than plants that were grown under high VPD. Initially, low VPD increased height growth rate and stomatal conductance; however, the effect was transient and the differences between low and high VPD plants became smaller with time. Metabolic adjustment to low VPD reflected N deficiency. The concentrations of N, iron, chlorophyll, amino acids, and soluble carbohydrates were lower and the levels of starch, quercetin glycosides, and raffinose were higher in the leaves that had developed under low VPD compared with high VPD. Additional N supply did not fully overcome the negative effect of low VPD on nutrient status but it diminished the effects of low VPD on leaf metabolism. Thus, with high N supply, the glutamine to glutamate ratio and starch production under low VPD became comparable with the levels under high VPD. The present study demonstrates that low VPD affects carbon and nutrient homeostasis and modifies N allocation of plants. PMID:27259554

  10. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    PubMed Central

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  11. Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch.

    PubMed

    Lihavainen, Jenna; Ahonen, Viivi; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Oksanen, Elina; Keinänen, Markku

    2016-07-01

    Air humidity indicated as vapour pressure deficit (VPD) is directly related to transpiration and stomatal function of plants. We studied the effects of VPD and nitrogen (N) supply on leaf metabolites, plant growth, and mineral nutrition with young micropropagated silver birches (Betula pendula Roth.) in a growth chamber experiment. Plants that were grown under low VPD for 26 d had higher biomass, larger stem diameter, more leaves, fewer fallen leaves, and larger total leaf area than plants that were grown under high VPD. Initially, low VPD increased height growth rate and stomatal conductance; however, the effect was transient and the differences between low and high VPD plants became smaller with time. Metabolic adjustment to low VPD reflected N deficiency. The concentrations of N, iron, chlorophyll, amino acids, and soluble carbohydrates were lower and the levels of starch, quercetin glycosides, and raffinose were higher in the leaves that had developed under low VPD compared with high VPD. Additional N supply did not fully overcome the negative effect of low VPD on nutrient status but it diminished the effects of low VPD on leaf metabolism. Thus, with high N supply, the glutamine to glutamate ratio and starch production under low VPD became comparable with the levels under high VPD. The present study demonstrates that low VPD affects carbon and nutrient homeostasis and modifies N allocation of plants.

  12. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants.

  13. Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands.

    PubMed

    Pannek, A; Duprè, C; Gowing, D J G; Stevens, C J; Diekmann, M

    2015-01-01

    Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3(-) or NH4(+), with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3(-) showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands. PMID:25407619

  14. Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands.

    PubMed

    Pannek, A; Duprè, C; Gowing, D J G; Stevens, C J; Diekmann, M

    2015-01-01

    Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3(-) or NH4(+), with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3(-) showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands.

  15. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    PubMed

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p < 0.05) food intake, but retarded (p < 0.05) growth, increased (p < 0.05) liver and muscle lipid contents and abdominal fat accumulation, increased (p < 0.05) blood urea nitrogen levels and mRNA levels of the serine-synthesizing 3-phosphoglycerate dehydrogenase gene, but decreased (p < 0.05) urea cycle arginase gene mRNA levels. In contrast, the 50% lysine restriction did not significantly (p > 0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism. PMID:23441935

  16. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest

  17. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  18. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest

  19. Nitrogen Molecule Adsorption on Cationic Tantalum Clusters and Rhodium Clusters and Desorption from Their Nitride Clusters Studied by Thermal Desorption Spectrometry.

    PubMed

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-06-23

    Adsorption and desorption of N2 molecules onto cationic Ta and Rh clusters in the gas phase were investigated in the temperature range of 300-1000 K by using thermal desorption spectrometry in combination with density functional theory (DFT) calculations. For Ta6(+), the first N2 molecule was found to adsorb dissociatively, and it remained adsorbed when Ta6(+)N2 was heated to 1000 K. In contrast, the second and the subsequent N2 molecules adsorbed weakly as a molecular form and were released into the gas phase when heated to 600 K. The difference can be explained in terms of the activation barrier between the molecular and dissociative forms. On the other hand, when Ta clusters were generated in the presence of N2 gas by the laser ablation of a Ta rod, isomeric clusters, TanNm(+), having heat resistivity were formed. For Rh6(+), N2 adsorbed molecularly at 300 K and desorbed totally at 450 K. These results were consistent with the DFT calculations, indicating that the dissociative adsorption of N2 is endothermic. PMID:27276438

  20. Nitrogen and fungicide applications against Erysiphe cruciferarum affect quality components of oilseed rape.

    PubMed

    Mert-Türk, Figen; Gül, M Kemal; Egesel, Cem O

    2008-01-01

    Oilseed rape (Brassica napus L.) is one of the most important oilseed crops in temperate climates. Erysiphe cruciferarum is an important disease of oilseed rape and causes crop loss in warmer areas of Europe. The research investigated the effect of nitrogen fertilizer and fungicidal treatment against powdery mildew infection caused by E. cruciferarum of oilseed rape on seed components, including protein, oil, oleic acid, linolenic acid and undesirable substances such as sinapic acid esters (SAE) and glucosinolates (GSL), using near infrared spectroscopy (NIRS). Five susceptible oilseed rape varieties were employed in this research using four treatment groups: no nitrogen fertilization and no fungicidal treatment (N(0)-F(0)); no nitrogen fertilization but fungicidal treatment (N(0)-F(1)); and nitrogen fertilization but no fungicidal treatment (N(1)-F(0)); nitrogen fertilization and fungicidal treatment (N(1)-F(1)). Nitrogen fertilization increased the protein, but lowered the oil content, of the seeds. Fungicidal treatments significantly increased oil contents in all varieties tested, however reduced protein levels in fertilized and non-fertilized plots. The level of linolenic acid did not change significantly in any plots of any treatment combinations; a similar result was observed in the level of oleic acid in most of the genotypes. Nitrogen fertilization increased GSL and SAE levels, whereas fungicidal treatment had no effect. Our findings demonstrated that nitrogen fertilization can markedly influence some quality parameters in oilseed rape; however, the application of fungicides reduced side effects of nitrogen fertilizer and resulted a reduction on GSL, SAE and protein contents but an increase on total oil and oleic acid contents.

  1. Nitrogen and fungicide applications against Erysiphe cruciferarum affect quality components of oilseed rape.

    PubMed

    Mert-Türk, Figen; Gül, M Kemal; Egesel, Cem O

    2008-01-01

    Oilseed rape (Brassica napus L.) is one of the most important oilseed crops in temperate climates. Erysiphe cruciferarum is an important disease of oilseed rape and causes crop loss in warmer areas of Europe. The research investigated the effect of nitrogen fertilizer and fungicidal treatment against powdery mildew infection caused by E. cruciferarum of oilseed rape on seed components, including protein, oil, oleic acid, linolenic acid and undesirable substances such as sinapic acid esters (SAE) and glucosinolates (GSL), using near infrared spectroscopy (NIRS). Five susceptible oilseed rape varieties were employed in this research using four treatment groups: no nitrogen fertilization and no fungicidal treatment (N(0)-F(0)); no nitrogen fertilization but fungicidal treatment (N(0)-F(1)); and nitrogen fertilization but no fungicidal treatment (N(1)-F(0)); nitrogen fertilization and fungicidal treatment (N(1)-F(1)). Nitrogen fertilization increased the protein, but lowered the oil content, of the seeds. Fungicidal treatments significantly increased oil contents in all varieties tested, however reduced protein levels in fertilized and non-fertilized plots. The level of linolenic acid did not change significantly in any plots of any treatment combinations; a similar result was observed in the level of oleic acid in most of the genotypes. Nitrogen fertilization increased GSL and SAE levels, whereas fungicidal treatment had no effect. Our findings demonstrated that nitrogen fertilization can markedly influence some quality parameters in oilseed rape; however, the application of fungicides reduced side effects of nitrogen fertilizer and resulted a reduction on GSL, SAE and protein contents but an increase on total oil and oleic acid contents. PMID:17934794

  2. Nitrogen storage dynamics are affected by masting events in Fagus crenata.

    PubMed

    Han, Qingmin; Kabeya, Daisuke; Iio, Atsuhiro; Inagaki, Yoshiyuki; Kakubari, Yoshitaka

    2014-03-01

    It is generally assumed that the production of a large crop of seeds depletes stores of resources and that these take more than 1 year to replenish; this is accepted, theoretically, as the proximate mechanism of mast seeding (resource budget model). However, direct evidence of resource depletion in masting trees is very rare. Here, we trace seasonal and inter-annual variations in nitrogen (N) concentration and estimate the N storage pool of individuals after full masting of Fagus crenata in two stands. In 2005, a full masting year, the amount of N in fruit litter represented half of the N present in mature leaves in an old stand (age 190-260 years), and was about equivalent to the amount of N in mature leaves in a younger stand (age 83-84 years). Due to this additional burden, both tissue N concentration and individual N storage decreased in 2006; this was followed by significant replenishment in 2007, although a substantial N store remained even after full masting. These results indicate that internal storage may be important and that N may be the limiting factor for fruiting. In the 4 years following full masting, the old stand experienced two moderate masting events separated by 2 years, whilst trees in the younger stand did not fruit. This different fruiting behavior may be related to different "costs of reproduction" in the full masting year 2005, thus providing more evidence that N may limit fruiting. Compared to the non-fruiting stand, individuals in the fruiting stand exhibited an additional increase in N concentrations in roots early in the 2007 growing season, suggesting additional N uptake from the soil to supply resource demand. The enhanced uptake may alleviate the N storage depletion observed in the full masting year. This study suggests that masting affects N cycle dynamics in mature Fagus crenata and N may be one factor limiting fruiting. PMID:24221082

  3. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection.

  4. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; Wu, Binbin; Zhang, Lei; Jiang, Hong; Xu, Zongxue

    2014-06-01

    The loss of available nutrients and the effects of soil erodibility on available nutrients losses were rarely researched. Here, laboratory simulation experiments were conducted to determine the soil erodibility effects on the available nitrogen (AN) and phosphorus (AP) losses. The impacts of rainfall intensity and slope on AN and AP losses were also studied. Two contrasting agricultural soils (Burozems and Cinnamon) that occur throughout the northern erosion region of China were selected. Two rainfall intensities (60 and 120 mm h-1) and two slopes (10% and 20%) were studied. Overall, greater runoff, sediment and available nutrient losses occurred from the Cinnamon soil due to its greater soil erodibility, which was approximately 2.8 times greater than that of the Burozems soil. The influence of runoff on sediment was positively linear. The absolute slope of the regression line between runoff rate and sediment yield rate was suitable as a soil erodibility indicator. Runoff-associated AN and AP losses were mainly controlled by runoff rate, and were weakly affected by soil erodibility (p > 0.05). However, soil erodibility significantly influenced the sediment-associated AN and AP losses (p < 0.01), and a positive logarithmic correlation best described their relationships. Since the runoff-associated AN and AP losses dominated the total AN and AP losses for both soils, soil erodibility also exhibited negligible influence on the total AN and AP losses (p > 0.05). Increasing rainfall intensity and slope generally increased the runoff, sediment, and available nutrient losses for both soils, but had no significant influences on their relationships. Our results provide a better understanding of soil and nutrient loss mechanisms.

  5. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. PMID:26150068

  6. Subgroups of physically abusive parents based on cluster analysis of parenting behavior and affect.

    PubMed

    Haskett, Mary E; Scott, Susan Smith; Ward, Caryn Sabourin

    2004-10-01

    Cluster analysis of observed parenting and self-reported discipline was used to categorize 83 abusive parents into subgroups. A 2-cluster solution received support for validity. Cluster 1 parents were relatively warm, positive, sensitive, and engaged during interactions with their children, whereas Cluster 2 parents were relatively negative, disengaged or intrusive, and insensitive. Further, clusters differed in emotional health, parenting stress, perceptions of children, and problem solving. Children of parents in the 2 clusters differed on several indexes of social adjustment. Cluster 1 parents were similar to nonabusive parents (n = 66) on parenting and related constructs, but Cluster 2 parents differed from nonabusive parents on all clustering variables and many validation variables. Results highlight clinically relevant diversity in parenting practices and functioning among abusive parents.

  7. How Subduction Settings can Affect Planetary Nitrogen Cycle: An Experimental Insight

    NASA Astrophysics Data System (ADS)

    Cedeno, D. G.; Conceicao, R. V.; Wilbert de Souza, M. R.; Carniel, L. C.; Schmitz Quinteiro, R. V.

    2015-12-01

    Nitrogen is one of the main building blocks of life on Earth and its elemental cycle is deeply connected with organic matter and the biological system. It is known that nitrogen can be stored in mantellic phases (such as clinopyroxenes) or in metallic alloys under high pressures, meaning that Earth's mantle, and even the core, could be efficient nitrogen reservoirs. Probably, nitrogen is present in these deep Earth systems since the formation of our planet. Nevertheless, it is possible that superficial nitrogen can be reintroduced in the mantle through tectonic processes along Earth history. This is reinforced by d15N values in inclusions in diamonds and other deep mantle phases. We believe that subduction zones are efficient enough to transport nitrogen from surface to mantle. Clay minerals with high charge exchange capacity (CEC) are good candidates to convey nitrogen in subduction zones, especially when we take into account the similarities between K+ and NH4+. To simulate the high-pressure high-temperature conditions found in subduction zones, we performed a series of experiments with montmorillonite clay mineral undergone to high pressure and high temperature produced by a hydraulic press coupled with toroidal chambers, in pressures ranging from 2.5 to 7.7 GPa and temperatures up to 700oC. We used ex situ XRD analysis to accompany the main montmorillonite structural changes and FTIR analysis to determine quantitatively the presence of nitrogen. So far, our results show that the main structural transition in montmorillonite happens at ~350oC at room pressure and ~450oC at 2.5 and 4.0 GPa and consists in the transformation of an open clay structure to a closed mica structure (tobelite). FTIR data show the presence of nitrogen in all the analysed experiments. With the data obtained, we can presume that clay minerals carried in subduction zones can successfully transport nitrogen and other volatiles to the mantle. However, only cold subduction systems have the

  8. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.).

    PubMed

    Ould-Ahmed, Marouf; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Lafrenière, Carole; Drouin, Pascal

    2014-10-15

    Timothy (Phleum pratense L.) is an important grass forage used for pasture, hay, and silage in regions with cool and humid growth seasons. One of the factors affecting the nutritive value of this grass is the concentration of non-structural carbohydrates (NSC), mainly represented by fructans. NSC concentration depends on multiple factors, making it hardly predictable. To provide a better understanding of NSC metabolism in timothy, the effects of maturity stage and nitrogen (N) fertilization level on biomass, NSC and N-compound concentrations were investigated in the tissues used for forage (leaf blades and stems surrounded by leaf sheaths) of hydroponically grown plants. Moreover, activities and relative expression level of enzymes involved in fructan metabolism were measured in the same tissues. Forage biomass was not altered by the fertilization level but was strongly modified by the stage of development. It increased from vegetative to heading stages while leaf-to-stem biomass ratio decreased. Total NSC concentration, which was not altered by N fertilization level, increased between heading and anthesis due to an accumulation of fructans in leaf blades. Fructan metabolizing enzyme activities (fructosyltransferase-FT and fructan exohydrolase-FEH) were not or only slightly altered by both maturity stage and N fertilization level. Conversely, the relative transcript levels of genes coding for enzymes involved in fructan metabolism were modified by N supply (PpFT1 and Pp6-FEH1) or maturity stage (PpFT2). The relative transcript level of PpFT1 was the highest in low N plants while that of Pp6-FEH1 was the highest in high N plants. Morevoer, transcript level of PpFT1 was negatively correlated with nitrate concentration while that of PpFT2 was positively correlated with sucrose concentration. This distinct regulation of the two genes coding for 6-sucrose:fructan fructosyltransferase (6-SFT) may allow a fine adequation of C allocation towards fructan synthesis in

  9. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis.

    PubMed

    Ikeda, Atsuko; Muneoka, Tetsuya; Murakami, Suguru; Hirota, Ayaka; Yabuki, Yukari; Karashima, Takefumi; Nakazono, Kota; Tsuruno, Masahiro; Pichler, Harald; Shirahige, Katsuhiko; Kodama, Yukiko; Shimamoto, Toshi; Mizuta, Keiko; Funato, Kouichi

    2015-07-15

    In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.

  10. Climate change affects key nitrogen-fixing bacterial populations on coral reefs.

    PubMed

    Santos, Henrique F; Carmo, Flávia L; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B; Rosado, Alexandre S; van Elsas, Jan Dirk; Peixoto, Raquel S

    2014-11-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs.

  11. Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea

    PubMed Central

    Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

    2007-01-01

    Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

  12. Nitrogen budget of a typical subterranean river in peak cluster karst area

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Jiang, Guanghui

    2009-10-01

    Karst groundwater is one of the important water resources for people in the world. There is an estimate that by 2028 karst groundwater will supply more than 80% of people in the world. However, several areas in the world are characterized by high nitrate concentrations in karst aquifers. In China, karst groundwater is also threatened by extensive use of fertilizer and pesticides, industry waste, septic systems and poultry, hog or cattle manure. In order to understand the water quality of a subterranean river in south China, especially the dynamic variation of nitrate, nitrogen input and output were determined via auto-monitored apparatus, manual observation and samples from 2004 to 2008 in Guancun subterranean river drainage area. Land use and anthropogenic activities were also investigated frequently. The results showed the range of nitrate variation was 2.56-15.40 mg l-1, with an average value of 6.60 mg l-1. Spatial variation of nitrate concentrations showed nitrate rose where there were villages and agriculture distribution. Long series of nitrate and discharge monitoring revealed there was a nitrate peak in spring just before the beginning of rainy season. Three rainfall events were selected for analysis of relations among hydrological process, water chemistry, and nitrate of the spring. The flood processes of the spring were divided into three or four phases according to change of water level and water chemistry. They were dominated by initial condition of aquifer, piston flow in soil and vadose, piston flow in conduit, diffuse recharge, and bypass recharge. The original condition of aquifer and rainfall pulse controlled recharge flow and changes of nitrate and hydro-chemical graphs of the spring. The quantity of nitrogen input in a year was 66.61 t, and the output was 21.24 t. Nitrogen leaching loss in base flow accounted for 76.11% in a year. Some measures should be taken to protect karst water in the very near future, so that health risks to the local

  13. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  14. Performance of low-input turfgrass species as affected by mowing and nitrogen fertilization in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Minnesota, most lawns and higher cut turfgrass areas consist primarily of species such as Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) that require significant management inputs such as frequent mowing and nitrogen fertility. Several studies have shown that oth...

  15. MINERALIZATION OF NITROGEN FROM BROILER LITTER AS AFFECTED BY SOIL TEXTURE IN THE SOUTHEASTERN COASTAL PLAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

  16. Summer legume 'green' nitrogen crops affect winter wheat forage in continuous rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Costs for inorganic nitrogen (N) fertilizers in the southern Great Plains (SGP) have increased in recent years with the rise in oil prices. In response, producers have become interested in the potential merits of using annual legumes as N sources. This study described the influence of two summer for...

  17. Nitrogen mineralization in soils amended with manure as affected by environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen is the most deficient nutrient in most agricultural production systems; therefore, the economic sustainability of most crops is dependent on adequate supply. Consideration for N availability must be taken into account when incorporating manure into a cropping system’s management practice. S...

  18. Green manures in continuous wheat systems affect grain yield and nitrogen content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous winter wheat (Triticum aestivum L. em Thell.) is the foundation for most U.S. southern Great Plains (SGP) agriculture. Inorganic nitrogen (N) fertilizers are important to wheat production, but increasing N prices have caused farmers to reconsider growing legumes during summer fallow for ‘...

  19. CARBON QUALITY AND QUANTITY AFFECT THE RETENTION AND MICROBIAL PROCESSING OF APPLIED NITROGEN

    EPA Science Inventory

    Excess nitrogen (N) from fertilizer or atmospheric deposition can have harmful effects on the environment and human health. Remediative methods of controlling N leaching and limiting other undesirable effects of excess N need to be explored if N inputs can not be reduced or bett...

  20. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  1. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  2. Two different approaches to the affective profiles model: median splits (variable-oriented) and cluster analysis (person-oriented)

    PubMed Central

    MacDonald, Shane; Archer, Trevor

    2015-01-01

    Background. The notion of the affective system as being composed of two dimensions led Archer and colleagues to the development of the affective profiles model. The model consists of four different profiles based on combinations of individuals’ experience of high/low positive and negative affect: self-fulfilling, low affective, high affective, and self-destructive. During the past 10 years, an increasing number of studies have used this person-centered model as the backdrop for the investigation of between and within individual differences in ill-being and well-being. The most common approach to this profiling is by dividing individuals’ scores of self-reported affect using the median of the population as reference for high/low splits. However, scores just-above and just-below the median might become high and low by arbitrariness, not by reality. Thus, it is plausible to criticize the validity of this variable-oriented approach. Our aim was to compare the median splits approach with a person-oriented approach, namely, cluster analysis. Method. The participants (N = 2, 225) were recruited through Amazons’ Mechanical Turk and asked to self-report affect using the Positive Affect Negative Affect Schedule. We compared the profiles’ homogeneity and Silhouette coefficients to discern differences in homogeneity and heterogeneity between approaches. We also conducted exact cell-wise analyses matching the profiles from both approaches and matching profiles and gender to investigate profiling agreement with respect to affectivity levels and affectivity and gender. All analyses were conducted using the ROPstat software. Results. The cluster approach (weighted average of cluster homogeneity coefficients = 0.62, Silhouette coefficients = 0.68) generated profiles with greater homogeneity and more distinctive from each other compared to the median splits approach (weighted average of cluster homogeneity coefficients = 0.75, Silhouette coefficients = 0.59). Most of the

  3. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China.

    PubMed

    Cao, Wenzhi; Yang, Jingxin; Li, Ying; Liu, Baoli; Wang, Feifei; Chang, Changtang

    2016-09-15

    In this study, basic sediment properties, nutrient flux, and nitrogen cycle (including denitrification, anaerobic ammonium oxidation [anammox], nitrification, and dissimilatory nitrate reduction to ammonium [DNRA]) were investigated at two sampling sites with different tree ages in the mangrove region of the Jiulong River Estuary, China. The results show that sediments at mangrove flat area have relatively strong capability to reduce NO3(-), in which the DNRA rate is relatively high (204.53±48.32μmolNm(-2)h(-1)), which is approximately 75.7-85.9% of the total NO3(-) reduction, while the denitrification and anammox rates are relatively low - only approximately 5.6-9.5% and 8.5-14.8% of the total NO3(-) reduction, respectively. Thus, in the nitrogen-enriched subtropical mangrove system, DNRA is the main pathway to reduce NO3(-), and most of the input nitrogen is conserved as NH4(+) in the system, which assures high productivity of the mangrove system.

  4. Assessing the Ability of Nitrogen Isotopes to Distinguish Ammonia Sources Affecting Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Stratton, J. J.; Ham, J. M.; Williams, C.; Roosendaal, D.; Borch, T.

    2011-12-01

    Extensive evidence has shown that Rocky Mountain National Park (RMNP) has undergone ecosystem changes due to excessive nitrogen (N) deposition. Previously, the Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) study was conducted to identify the species of N that deposit in RMNP. Results from the RoMANS study showed that reduced N contributions from within Colorado were 45% and 36% for the spring and summer, respectively. There is still much uncertainty as to how much each source within Colorado contributes to ammonia deposition in RMNP. The major goal of this study is to determine whether the isotopic signature of nitrogen can be used as a tracer for ammonia released from sources within Colorado into RMNP. Samples were deployed in May of 2011. All samples were collected using passive samplers, Radiellos, deployed for 2 week and/or monthly integrations periods. Samples were collected from, but not limited to, confined animal feeding operations, dairies, wastewater reclamation, mobile sources, RMNP, etc. Sample locations were chosen based on the location in comparison to RMNP and the availability of meteorological data. The collected ammonia was analyzed using Ion Chromatography, and then diffused for isotopic analysis. Results will be discussed in terms of differences among ammonia emitters and in comparison to RMNP. Studies are also being conducted to investigate the isotopic values of ammonia lost from RMNP soils and wet deposition collected in RMNP.

  5. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China.

    PubMed

    Cao, Wenzhi; Yang, Jingxin; Li, Ying; Liu, Baoli; Wang, Feifei; Chang, Changtang

    2016-09-15

    In this study, basic sediment properties, nutrient flux, and nitrogen cycle (including denitrification, anaerobic ammonium oxidation [anammox], nitrification, and dissimilatory nitrate reduction to ammonium [DNRA]) were investigated at two sampling sites with different tree ages in the mangrove region of the Jiulong River Estuary, China. The results show that sediments at mangrove flat area have relatively strong capability to reduce NO3(-), in which the DNRA rate is relatively high (204.53±48.32μmolNm(-2)h(-1)), which is approximately 75.7-85.9% of the total NO3(-) reduction, while the denitrification and anammox rates are relatively low - only approximately 5.6-9.5% and 8.5-14.8% of the total NO3(-) reduction, respectively. Thus, in the nitrogen-enriched subtropical mangrove system, DNRA is the main pathway to reduce NO3(-), and most of the input nitrogen is conserved as NH4(+) in the system, which assures high productivity of the mangrove system. PMID:27368926

  6. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    PubMed Central

    El-Kereamy, Ashraf; Bi, Yong-Mei; Mahmood, Kashif; Ranathunge, Kosala; Yaish, Mahmoud W.; Nambara, Eiji; Rothstein, Steven J.

    2015-01-01

    Glutaredoxins (GRXs) are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX) superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS, and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs), 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1) were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants. PMID:26579177

  7. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration

    SciTech Connect

    Firkins, J.L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.; Mulvaney, R.L.

    1987-11-01

    Four multiple-cannulated steers (340 kg) were used in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Steers were fed a diet of 50% ground hay and 50% concentrate at two intakes (1.4 and 2.1% of BW), with urea and /sup 15/N-enriched ammonium sulfate infused continuously into the rumen at .4 or 1.2% of diet DM. Ratios of purines and diaminopimelic acid-N to N in fluid-associated and particulate-associated bacteria and in protozoa were similar among treatments but were lower for protozoa than for bacteria. Diaminopimelic acid-N:N was higher for fluid-associated vs. particulate-associated bacteria. Enrichment of /sup 15/N was similar between bacteria among treatments and was 30% lower for protozoa. Turnover rates of /sup 15/N in bacteria, NH/sub 3/N, and non-HN/sub 3/N pools were faster for steers infused with 1.2 than those infused with .4% urea, indicating less efficient usage of ammonia with higher urea. A method is described to estimate the proportion of duodenal nitrogen comprising bacterial and protozoal nitrogen.

  8. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis.

    PubMed

    Yoshimura, Kenichi

    2010-05-01

    Because light conditions in the forest understory are highly heterogeneous, photosynthetic acclimation to spatially variable irradiance within a crown is important for crown-level carbon assimilation. The effect of variation in irradiance within the crown on leaf nitrogen content and photosynthetic rate was examined for pinnate compound leaves in saplings of Cedrela sinensis, a pioneer deciduous tree. Five shading treatments, in which 0, 25, 50, 75 and 100% of leaves were shaded, were established by artificial heavy shading using shade screen umbrellas with 25% transmittance. Although the nitrogen content of leaves was constant regardless of shading treatment, ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) content and light-saturated photosynthetic capacity were lower in shade leaves within partially shaded crowns than within fully shaded crowns. Shade leaves within partially shaded crowns contained higher amount of amino acids. Most shade leaves died in partially shaded crowns, whereas more than half of shade leaves survived in totally shaded crowns. Assumptions on photosynthetic acclimation to local light conditions cannot explain why shade leaves have different photosynthetic capacities and survival rates in between partially and totally shaded crowns. Irradiance heterogeneity within the crown causes a distinct variation in photosynthetic activity between sun and shaded leaves within the crown.

  9. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    NASA Astrophysics Data System (ADS)

    Giordano, Michael R.; Chong, Joey; Weise, David R.; Asa-Awuku, Akua A.

    2016-03-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NO x deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NO x deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NO x emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas.

  10. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  11. The reduced [2Fe-2S] clusters in adrenodoxin and Arthrospira platensis ferredoxin share spin density with protein nitrogens, probed using 2D ESEEM†

    PubMed Central

    Dikanov, Sergei A.; Samoilova, Rimma I.; Kappl, Reinhard; Crofts, Antony R.; Hüttermann, Jürgen

    2009-01-01

    Summary We have used X-band ESEEM to study the reduced [2Fe-2S] cluster in adrenodoxin and Arthrospira platensis ferredoxin. By use of a 2D approach (HYSCORE), we have shown that the cluster is involved in weak magnetic interactions with several nitrogens in each protein. Despite substantial difference in the shape and orientational dependence of individual crosspeaks, the major spectral features in both proteins are attributable to two peptide nitrogens (N1 and N2) with similar hyperfine couplings ∼1.1 and ∼0.70 MHz. The couplings determined represent to a small fraction (0.0003–0.0005) of the unpaired spin density of the reduced cluster transferred to these nitrogens over H-bond bridges or the covalent bonds of cysteine ligands. Simulation of the HYSCORE spectra has allowed us to estimate the orientation of the nuclear quadrupole tensors of N1 and N2 in the g-tensor coordinate system. The most likely candidates for the role of N1 and N2 have been identified in the protein environment by comparing magnetic-resonance data with crystallographic structures of the oxidized proteins. A possible influence of redox-linked structural changes on ESEEM data is analyzed using available structures for related proteins in two redox states. PMID:19639155

  12. Model uncertainties affecting satellite-based inverse modeling of nitrogen oxides emissions and implications for surface ozone simulation

    NASA Astrophysics Data System (ADS)

    Lin, J.-T.; Liu, Z.; Zhang, Q.; Liu, H.; Mao, J.; Zhuang, G.

    2012-06-01

    Errors in chemical transport models (CTMs) interpreting the relation between space-retrieved tropospheric column densities of nitrogen dioxide (NO2) and emissions of nitrogen oxides (NOx) have important consequences on the inverse modeling. They are however difficult to quantify due to lack of adequate in situ measurements, particularly over China and other developing countries. This study proposes an alternate approach for model evaluation over East China, by analyzing the sensitivity of modeled NO2 columns to errors in meteorological and chemical parameters/processes important to the nitrogen abundance. As a demonstration, it evaluates the nested version of GEOS-Chem driven by the GEOS-5 meteorology and the INTEX-B anthropogenic emissions and used with retrievals from the Ozone Monitoring Instrument (OMI) to constrain emissions of NOx. The CTM has been used extensively for such applications. Errors are examined for a comprehensive set of meteorological and chemical parameters using measurements and/or uncertainty analysis based on current knowledge. Results are exploited then for sensitivity simulations perturbing the respective parameters, as the basis of the following post-model linearized and localized first-order modification. It is found that the model meteorology likely contains errors of various magnitudes in cloud optical depth, air temperature, water vapor, boundary layer height and many other parameters. Model errors also exist in gaseous and heterogeneous reactions, aerosol optical properties and emissions of non-nitrogen species affecting the nitrogen chemistry. Modifications accounting for quantified errors in 10 selected parameters increase the NO2 columns in most areas with an average positive impact of 22% in July and 10% in January. This suggests a possible systematic model bias such that the top-down emissions will be overestimated by the same magnitudes if the model is used for emission inversion without corrections. The modifications however

  13. Nitrogen Assimilation and Protein Synthesis in Wheat Seedlings as Affected by Mineral Nutrition. II. Micronutrients 1

    PubMed Central

    Harper, James E.; Paulsen, Gary M.

    1969-01-01

    Activity of nitrate reductase from Triticum aestivum L. seedlings was decreased by deficiencies of molybdenum, zinc, and chlorine. Nitrate accumulated in molybdenum-deficient seedlings, declined in zinc-deficient seedlings, and was unaffected by the other micronutrient treatments. Glutamic acid dehydrogenase activity was decreased by deficiency of molybdenum, the only nutrient that affected the enzyme. Glutamine synthetase activity was decreased only by copper deficiency, and glutamic-oxaloacetic transaminase was not affected by any micronutrient deficiencies. Incorporation of 14C-leucine into protein by wheat seedlings was increased by molybdenum deficiency, apparently because of decreased inhibition from endogenous amino acids, and was decreased by copper deficiency. Protein content was not affected significantly by the micronutrient treatments. PMID:16657114

  14. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time.

  15. Increased nitrogen deposition did not affect the composition and turnover of plant and microbial biomarkers in forest soil density fractions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2013-04-01

    Increased atmospheric nitrogen (N) deposition and elevated CO2 concentrations affect many forests and their ecosystem functions, including organic matter cycling in soils, the largest carbon pool of terrestrial ecosystems. However, it is still not clear how, and what the underlying mechanisms are. Specific molecules of plant and microbial origin (biomarkers) might respond differently to N deposition, depending on their internal N content. Microbial cell-wall-constituents with high-N content like amino sugars are reliable biomarkers to distinguish between fungal- and bacterial-derived organic residues. Individual lipids are plant-specific biomarkers that lack N in their molecular structure. Here, we tested the effects of elevated CO2 and increased N deposition on the dynamics of plant and microbial biomarkers by studying their composition and turnover in forest soil density fractions. Furthermore, we tested the hypothesis that these biomarkers respond differently to increased N deposition, depending on their internal N content. We used soil samples from a 4-year elevated CO2 and N deposition experiment in model forest ecosystems (open-top chambers), that were fumigated with ambient and 13C-depleted CO2 and treated with two levels of 15N-labeled fertilizer. Bulk soil was separated into free light fraction, occluded light fraction and heavy fraction by density fractionation and ultrasonic dispersion. The heavy fraction was further particle-size fractionated with 20 μm as a cut-off. We determined carbon and N concentrations and their isotopic compositions (δ13C, δ15N) within bulk soil and density fractions. Therein, we extracted and quantified individual amino sugars and lipids and conducted compound-specific stable-isotope-analysis using GC- and LC-IRMS. Results show that amino sugars were mainly stabilized in association with soil minerals. Especially bacterial amino sugars were preferentially associated with soil minerals, exemplified by a consistent decrease

  16. Provenance, life span, and phylogeny do not affect grass species' responses to nitrogen and phosphorus.

    PubMed

    Seabloom, Eric W; Benfield, Cara D; Borer, Elizabeth T; Stanley, Amanda G; Kaye, Thomas N; Dunwiddie, Peter W

    2011-09-01

    Successful conservation management requires an understanding of how species respond to intervention. Native and exotic species may respond differently to management interventions due to differences arising directly from their origin (i.e., provenance) or indirectly due to biased representations of different life history types (e.g., annual vs. perennial life span) or phylogenetic lineages among provenance (i.e., native or exotic origin) groups. Thus, selection of a successful management regime requires knowledge of the life history and provenance-bias in the local flora and an understanding of the interplay between species characteristics across existing environmental gradients in the landscape. Here we tested whether provenance, phylogeny, and life span interact to determine species distributions along natural gradients of soil chemistry (e.g., soil nitrogen and phosphorus) in 10 upland prairie sites along a 600-km latitudinal transect running from southern Vancouver Island in British Columbia, Canada, to the Willamette Valley in Oregon, USA. We found that soil nitrate, phosphorus, and pH exerted strong control over community composition. However, species distributions along environmental gradients were unrelated to provenance, life span, or phylogenetic groupings. We then used a greenhouse experiment to more precisely measure the response of common grass species to nitrogen and phosphorus supply. As with the field data, species responses to nutrient additions did not vary as a function of provenance, life span, or phylogeny. Native and exotic species differed strongly in the relationship between greenhouse-measured tolerance of low nutrients and field abundance. Native species with the greatest ability to maintain biomass production at low nutrient supply rates were most abundant in field surveys, as predicted by resource competition theory. In contrast, there was no relationship between exotic-species biomass at low nutrient levels and field abundance. The

  17. Provenance, life span, and phylogeny do not affect grass species' responses to nitrogen and phosphorus.

    PubMed

    Seabloom, Eric W; Benfield, Cara D; Borer, Elizabeth T; Stanley, Amanda G; Kaye, Thomas N; Dunwiddie, Peter W

    2011-09-01

    Successful conservation management requires an understanding of how species respond to intervention. Native and exotic species may respond differently to management interventions due to differences arising directly from their origin (i.e., provenance) or indirectly due to biased representations of different life history types (e.g., annual vs. perennial life span) or phylogenetic lineages among provenance (i.e., native or exotic origin) groups. Thus, selection of a successful management regime requires knowledge of the life history and provenance-bias in the local flora and an understanding of the interplay between species characteristics across existing environmental gradients in the landscape. Here we tested whether provenance, phylogeny, and life span interact to determine species distributions along natural gradients of soil chemistry (e.g., soil nitrogen and phosphorus) in 10 upland prairie sites along a 600-km latitudinal transect running from southern Vancouver Island in British Columbia, Canada, to the Willamette Valley in Oregon, USA. We found that soil nitrate, phosphorus, and pH exerted strong control over community composition. However, species distributions along environmental gradients were unrelated to provenance, life span, or phylogenetic groupings. We then used a greenhouse experiment to more precisely measure the response of common grass species to nitrogen and phosphorus supply. As with the field data, species responses to nutrient additions did not vary as a function of provenance, life span, or phylogeny. Native and exotic species differed strongly in the relationship between greenhouse-measured tolerance of low nutrients and field abundance. Native species with the greatest ability to maintain biomass production at low nutrient supply rates were most abundant in field surveys, as predicted by resource competition theory. In contrast, there was no relationship between exotic-species biomass at low nutrient levels and field abundance. The

  18. Fertilizer residence time affects nitrogen uptake efficiency and growth of sweet corn.

    PubMed

    Zotarelli, L; Scholberg, J M; Dukes, M D; Muñoz-Carpena, R

    2008-01-01

    Understanding plant N uptake dynamics is critical for increasing fertilizer N uptake efficiency (FUE) and minimize the risk of N leaching. The objective of this research was to determine the effect of residence time of N fertilizer on N uptake and FUE of sweet corn. Plants were grown in 25 L columns during the fall and spring to mimic short-term N uptake dynamics. Nitrogen was applied either 1, 3, or 7 d before a weekly leaching event, using KNO3 solution (total of 393 kg N ha(-1)). Residence times (tR) were tR-1, tR-3, and tR-7 d before weekly removal of residual soil N. Plant N uptake was calculated by comparing weekly N recovery from planted with non-planted columns. During the fall, N uptake values at 70 d after emergence were 59, 73, and 126 kg N ha(-1). During the spring, corresponding values were 54, 108, and 159 kg N ha(-1). A linear response of plant growth and yield to the tR was observed under cooler conditions, whereas a quadratic response occurred under warmer conditions. There was correlation between root length density and yield. It is concluded that increasing N fertilizer residence time, which is indicative of better irrigation practices, enhanced overall sweet corn growth, yield, N uptake, and FUE, consequently reduced the risk of N being leached below the root zone before complete N uptake. PMID:18453447

  19. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?

    PubMed

    Yoneyama, Kaori; Xie, Xiaonan; Kim, Hyun Il; Kisugi, Takaya; Nomura, Takahito; Sekimoto, Hitoshi; Yokota, Takao; Yoneyama, Koichi

    2012-06-01

    Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated.

  20. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism[W

    PubMed Central

    Schmollinger, Stefan; Mühlhaus, Timo; Boyle, Nanette R.; Blaby, Ian K.; Casero, David; Mettler, Tabea; Moseley, Jeffrey L.; Kropat, Janette; Sommer, Frederik; Strenkert, Daniela; Hemme, Dorothea; Pellegrini, Matteo; Grossman, Arthur R.; Stitt, Mark; Schroda, Michael; Merchant, Sabeeha S.

    2014-01-01

    Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency. PMID:24748044

  1. Fertilizer residence time affects nitrogen uptake efficiency and growth of sweet corn.

    PubMed

    Zotarelli, L; Scholberg, J M; Dukes, M D; Muñoz-Carpena, R

    2008-01-01

    Understanding plant N uptake dynamics is critical for increasing fertilizer N uptake efficiency (FUE) and minimize the risk of N leaching. The objective of this research was to determine the effect of residence time of N fertilizer on N uptake and FUE of sweet corn. Plants were grown in 25 L columns during the fall and spring to mimic short-term N uptake dynamics. Nitrogen was applied either 1, 3, or 7 d before a weekly leaching event, using KNO3 solution (total of 393 kg N ha(-1)). Residence times (tR) were tR-1, tR-3, and tR-7 d before weekly removal of residual soil N. Plant N uptake was calculated by comparing weekly N recovery from planted with non-planted columns. During the fall, N uptake values at 70 d after emergence were 59, 73, and 126 kg N ha(-1). During the spring, corresponding values were 54, 108, and 159 kg N ha(-1). A linear response of plant growth and yield to the tR was observed under cooler conditions, whereas a quadratic response occurred under warmer conditions. There was correlation between root length density and yield. It is concluded that increasing N fertilizer residence time, which is indicative of better irrigation practices, enhanced overall sweet corn growth, yield, N uptake, and FUE, consequently reduced the risk of N being leached below the root zone before complete N uptake.

  2. Stand age affects fertilizer nitrogen response in first-year corn following alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of N that alfalfa (Medicago sativa L.) provides to subsequent first-year corn (Zea mays L.) depends, in part, on the age of alfalfa at termination. Our objective was to determine how alfalfa stand age affects N availability and fertilizer N requirements for first-year corn. Fertilizer N w...

  3. Processes affecting the transport of nitrogen in groundwater and factors related to slope position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...

  4. A systematic review of factors affecting children's right to health in cluster randomized trials in Kenya.

    PubMed

    Oduwo, Elizabeth; Edwards, Sarah J L

    2014-07-16

    Following the South African case, Treatment Action Campaign and Others v Minister of Health and Others, the use of 'pilot' studies to investigate interventions already proven efficacious, offered free of charge to government, but confined by the government to a small part of the population, may violate children's right to health, and the negative duty on governments not to prevent access to treatment. The applicants challenged a government decision to offer Nevirapine in a few pilot sites when evidence showed Nevirapine significantly reduced HIV transmission rates and despite donor offers of a free supply. The government refused to expand access, arguing they needed to collect more information, and citing concerns about long-term hazards, side effects, resistance and inadequate infrastructure. The court ruled this violated children's right to health and asked the government to immediately expand access. Cluster randomized trials involving children are increasingly popular, and are often used to reduce 'contamination': the possibility that members of a cluster adopt behavior of other clusters. However, they raise unique issues insufficiently addressed in literature and ethical guidelines. This case provides additional crucial guidance, based on a common human rights framework, for the Kenyan government and other involved stakeholders. Children possess special rights, often represent a 'captive' group, and so motivate extra consideration. In a systematic review, we therefore investigated whether cluster trial designs are used to prevent or delay children's access to treatment in Kenya or otherwise inconsistently with children's right to health as outlined in the above case. Although we did not find state sponsored cluster trials, most had significant public sector involvement. Core obligations under children's right to health were inadequately addressed across trials. Few cluster trials reported rationale for cluster randomization, offered post- trial access or

  5. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. PMID:27149150

  6. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems

    USGS Publications Warehouse

    Feller, Ilka C.; Lovelock, C.E.; McKee, K.L.

    2007-01-01

    Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL. ?? 2007 Springer Science+Business Media, LLC.

  7. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    PubMed

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  8. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems

    PubMed Central

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  9. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    PubMed

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  10. Phytase supplemented poultry diets affect soluble phosphorus and nitrogen in manure and manure-amended soil.

    PubMed

    Pillai, Usha P P; Manoharan, Veeragathipillai; Lisle, Allan; Li, Xiuhua; Bryden, Wayne

    2009-01-01

    Understanding P and N dynamics in manure-amended soil is essential for estimating the environmental impact of manure utilization in land applications. A laboratory incubation study was conducted to assess, (i) the effect of feeding a standard Australian commercial diet, and diets modified with phytase supplementation and reduced nonphytase phosphorus (NPP), on the concentrations of P and N (total and soluble) in the manure derived from layer hens (Gallus domesticus L.), and (ii) the change in water-soluble phoshorus (P(WSP)) and mineral N (NH(4)-N and NO(3)-N) when used as a soil amendment, applied at rates equivalent to 200 kg ha(-1) (200N) and 400 kg ha(-1) (400N). Phytase supplementation increased %P(WSP) by 8 to 12% in the manures, regardless of the levels of NPP in the diets, and in the manure-amended soils by 27 to 30% at the 200N application rate, and up to 54% at the 400N rate. Phytase significantly (P < 0.05) reduced total nitrogen (TN) content (by 12-31%) of the manures but generally produced greater nitrate accumulation in the manure-amended soils. Net nitrification, which commenced 4 wk after incubation, was accompanied by a simultaneous decrease in soil pH (by one pH unit) and a concomitant decline in %P(WSP). The decline in %P(WSP) was primarily attributed to P retention by the soil as it became more acidic. This study suggests that phytase addition not only reduces manure total N content, and increases water-soluble P, but its effects on manure total phosphorus (TP) and 2 mol L(-1) KCl extractable mineral N is influenced by the NPP level in the diet.

  11. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria

    NASA Astrophysics Data System (ADS)

    Miller, Daniel N.; Smith, Richard L.

    2009-01-01

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O 2 (> 300 µM) and NH 4+ (51-800 µM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O 2, NH 4+, and NO 3- (0-300, 0-500, and 100-200 µM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g - 1 and 33 to 35,000 g - 1 , respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH 4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  12. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria

    USGS Publications Warehouse

    Miller, D.N.; Smith, R.L.

    2009-01-01

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O2 (> 300????M) and NH4+ (51-800????M). The second site was 2.5??km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O2, NH4+, and NO3- (0-300, 0-500, and 100-200????M with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350??g- 1 and 33 to 35,000??g- 1, respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  13. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria.

    PubMed

    Miller, Daniel N; Smith, Richard L

    2009-01-26

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O2 (>300 microM) and NH4+ (51-800 microM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O2, NH4+, and NO3- (0-300, 0-500, and 100-200 microM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g(-1) and 33 to 35,000 g(-1), respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  14. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    SciTech Connect

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  15. Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s.

    PubMed

    Li, Qiquan; Luo, Youlin; Wang, Changquan; Li, Bing; Zhang, Xin; Yuan, Dagang; Gao, Xuesong; Zhang, Hao

    2016-03-15

    Determination of soil nitrogen distributions and the factors affecting them is critical for nitrogen fertilizer management and prevention of nitrogen pollution. In this paper, the spatiotemporal variations of soil nitrogen and the relative importance of their affecting factors were analysed at a county scale in the purple hilly area of the mid-Sichuan Basin in Southwest China based on soil data collected in 1981 and 2012. Statistical results showed that soil total nitrogen (TN) increased from 0.88 g kg(-1) in 1981 to 1.12 g kg(-1) in 2012, whereas available nitrogen (AN) decreased from 84.22 mg kg(-1) to 74.35 mg kg(-1). In particular, AN showed a significant decrease in agricultural ecosystems but remained stable in woodland and grassland. Correspondingly, most of the study area exhibited increased TN content and decreased AN content in space. The nugget/sill ratios of TN and AN increased from 0.419 to 0.608 and from 0.733 to 0.790, whereas spatial correlation distances decreased from 12.00 km to 9.50 km and from 9.50 km to 9.00 km, respectively, suggesting that the spatial dependence of soil nitrogen became weaker and that the extrinsic factors played increasingly important roles in affecting the soil nitrogen distribution. Soil group and land use type were the two dominant factors in 1981, followed by topographic factors, vegetation coverage and parent material, whereas land use type became the most important factor in 2012, and the relative contribution of topographic factors declined markedly. The results suggested that land use related to cultivation management and fertilizer application was the decisive factor for soil nitrogen change. The increase in TN content and the decrease in AN content over the study period also suggested improper use of nitrogen fertilizer, which can result in nitrogen loss through increasing nitrification rates. Thus, effective measures should be taken to increase the uptake rate of nitrogen and prevent nitrogen pollution.

  16. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  17. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance.

    PubMed

    Henry, L T; Raper, C D

    1991-03-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  18. Seizure Clustering during Drug Treatment Affects Seizure Outcome and Mortality of Childhood-Onset Epilepsy

    ERIC Educational Resources Information Center

    Sillanpaa, Matti; Schmidt, Dieter

    2008-01-01

    To provide evidence of whether seizure clustering is associated with drug resistance and increased mortality in childhood-onset epilepsy, a prospective, long-term population-based study was performed. One hundred and twenty patients who had been followed since disease onset (average age 37.0 years, SD 7.1, median 40.0, range 11-42; incident cases)…

  19. Climate Shifts and Plant-Community Transformations Affect Nitrogen Cycling in Semi-Arid Rangelands

    NASA Astrophysics Data System (ADS)

    Huber, D. P.; Hardenbrook, S.; Lohse, K. A.; Germino, M. J.; Reinhardt, K.

    2011-12-01

    Semi-arid rangelands are being impacted by climate shifts and plant-community transformations. However, little is known about how these ecosystems will respond to long-term changes in amount and seasonality of precipitation, or how shifts in vegetation modulate the response of plant-soil processes. Semi-arid rangelands are typically characterized by resource islands (perennial shrubs) and contrasting "interplant" (IP) spaces or patch types which may increase the complexity of ecosystem response to climate change. We used an established long-term ecohydrologic experiment (Est. 1993) located in southeastern Idaho to evaluate ecosystem response to changing precipitation seasonality and magnitude. The experiment consists of 3 replicated blocks of 2 vegetation types (a diverse sagebrush steppe assemblage or monoculture of exotic crested wheatgrass, CWG) and 3 irrigation treatments. We hypothesized that increased precipitation will enhance storage of soil organic matter (SOM) due to greater detrital inputs. Rates of nitrogen (N) mineralization and decomposition were also expected to increase relative to ambient treatments. Additionally, we expected that change from native sagebrush to CWG would reduce N availability due to differences in detrital C:N ratios and biomass partitioning. Preliminary results show increased precipitation enhanced carbon pools in native vegetation plots, with SOM in ambient, fall/spring, and summer precipitation treatments of 2.27, 2.73, and 2.71% respectively, and average plot cover of 29, 48, and 40% respectively. Under shrubs, available N increased with increased precipitation (3.5, 4.6, and 5.6 μg-N g-1 soil) although N-cycling rates remained constant. Conversely, IP patches experienced a steady increase in both net N mineralization and nitrification between ambient, fall/spring, and summer precipitation treatments. The IP patches experienced lower absolute values but similar trends in SOM and available N. Crested wheatgrass plots showed

  20. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance?

    PubMed Central

    Liebel, Heiko T.; Bidartondo, Martin I.; Gebauer, Gerhard

    2015-01-01

    Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant. Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field. Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot. Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source. PMID:25538109

  1. Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees

    PubMed Central

    Liu, Bin; Rennenberg, Heinz; Kreuzwieser, Jürgen

    2015-01-01

    The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns. PMID:26308462

  2. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  3. DMPP-added nitrogen fertilizer affects soil N2O emission and microbial activity in Southern Italy

    NASA Astrophysics Data System (ADS)

    Vitale, Luca; De Marco, Anna; Maglione, Giuseppe; Polimeno, Franca; Di Tommasi, Paul; Magliulo, Vincenzo

    2014-05-01

    Arable sites contributes to global N2O emission due to massive utilization of nitrogen fertilizers. N2O derives from the biological processes such as nitrification and denitrification influenced by soil nitrogen availability. The use of nitrogen fertilizers added with nitrification inhibitors represents one among the proposed strategy to reduce soil N2O emission form arable sites. The aim of this work was to evaluate the effects of 3,4-dimethylphyrazole phosphate (DMPP), a nitrification inhibitor, on N2O emission and microbial activity of a soil cropped to potato in Southern Italy. The experiment was a randomized block design with two treatments applied and three replicates: control (C) and DMPP (Entec®, K+S Nitrogen) plots, both supplied with the same amount of ammonium nitrate. The nitrogen fertilizer was supplied in three events: at 0 Day After Sowing (DAS; 100 kg N ha-1), at 57 DAS (30 kg N ha-1), and at 71 DAS (30 kg N ha-1). Soil N2O emission was monitored by both dynamic and static chambers. Static chambers were located both on hills and furrows whereas dynamic chambers were located on furrows. Air samples were collected from chambers at different times and analysed by a gas chromatograph (SRI 8610C, Gas Chromatograph). Fluxes were estimated as a linear interpolation of N2O changes over a 30 min time. Microbial biomass and basal respiration were determined as CO2 evolution, analysed by means of an IRGA (Li6200, Licor), on 2 g of fresh soil over a 4h incubation time. Microbial biomass was determined by Substrate Induced Respiration method. Data show no statistical differences in N2O fluxes measured with either dynamic chambers between C and DMPP plots in studied period. However, after the first fertilization event, when the fertilizer was applied as 100 kg N ha-1, the average N2O fluxes measured with static chambers were higher in DMPP plots compared to C plots. In the same period, the microbial biomass significantly decreased in DMPP plots as compared to C

  4. NH4+ enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta).

    PubMed

    Xu, Zhiguang; Gao, Kunshan

    2012-01-01

    Solar ultraviolet radiation (UVR, 280-400 nm) is known to inhibit the photosynthesis of macroalgae, whereas nitrogen availability may alter the sensitivity of the algae to UVR. Here, we show that UV-B (280-315 nm) significantly reduced the net photosynthetic rate of Gracilaria lemaneiformis. This inhibition was alleviated by enrichment with ammonia, which also caused a decrease in dark respiration. The presence of both UV-A (315-400 nm) and UV-B stimulated the accumulation of UV-absorbing compounds. However, this stimulation was not affected by enrichment with ammonia. The content of phycoerythrin (PE) was increased by the enrichment of ammonia only in the absence of UVR. Ammonia uptake and the activity of nitrate reductase were repressed by UVR. However, exposure to UVR had an insignificant effect on the rate of nitrate uptake. In conclusion, increased PE content associated with ammonia enrichment played a protective role against UVR in this alga, and UVR differentially affected the uptake of nitrate and ammonia.

  5. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  6. Evaluation of nitrogen and organic matter balance in the feedlot as affected by level and source of dietary fiber.

    PubMed

    Bierman, S; Erickson, G E; Klopfenstein, T J; Stock, R A; Shain, D H

    1999-07-01

    A trial was conducted to determine the effect of level and source of dietary fiber on N and OM excretion by cattle on finishing diets. One hundred twenty steers were stratified by weight and allotted to one of the following treatments: 7.5% roughage (7.5% R), wet corn gluten feed (WCGF; 41.5% of dietary DM), and all-concentrate (All Con) diet. Cattle were fed for 87 d during the summer with 23.7 m2 of pen area per animal. Steers fed the WCGF diet had heavier final weights, greater DMI, and higher ADG (P < .01) than the 7.5% R and All Con treatments. Steers fed All Con had lower (P < .01) DMI than the other two treatments. Nitrogen and OM mass balances in the feedlot were quantified. Main components were nutrient input, retention, and excretion. Nitrogen and OM intake of steers fed WCGF were greater (P < .05) than those of steers fed the other treatments. The WCGF treatment had a greater percentage of fecal N output (P < .05). The All Con treatment had a greater (P < .01) percentage of urinary N than WCGF and 7.5% R diets. Steers fed the WCGF treatment excreted more (P < .01) OM compared with the other treatments, which led to more N and OM being removed in manure at cleaning. The All Con treatment had more (P < .01) N and OM in runoff than the other treatments. Nutrition can change site of fermentation, which affects the composition of excreted material; however, total amount of N excreted may be more important than route of excretion in decreasing N losses to the environment and maximizing recovery in manure.

  7. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  8. Factors that affect self-care behaviour of female high school students with dysmenorrhoea: a cluster sampling study.

    PubMed

    Chang, Shu-Fang; Chuang, Mei-hua

    2012-04-01

    The purpose of this study was to identify factors that affect the self-care behaviour of female high school students with dysmenorrhoea. This cross-sectional study utilized a questionnaire-based survey to understand the self-care behaviour of female high school students dysmenorrhoeal, along with the factors that affect this behaviour. A cluster random sampling method was adopted and questionnaires were used for data collection. Study participants experienced a moderate level of discomfort from dysmenorrhoea, and perceived dysmenorrhoea as serious. This investigation finds that cues to action raised perceived susceptibility to dysmenorrhoea and the perceived effectiveness of self-care behaviour and, therefore, increased the adoption of self-care behaviour. Hence, school nurses should offer female high school students numerous resources to apply correct self-care behaviour.

  9. Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply.

    PubMed

    Li, Shumin; Schonhof, Ilona; Krumbein, Angelika; Li, Long; Stützel, Hartmut; Schreiner, Monika

    2007-10-17

    Three greenhouse pot experiments were conducted with four different nitrogen (N) treatments (80, 160, 240, and 320 kg ha (-1)) in combination with three sulfur (S) treatments (10, 20, and 60 kg ha (-1)) to study the effects of combined N and S supply on glucosinolate concentration and composition in turnip roots. Total glucosinolate concentration varied widely from 9.7 (N 320S 10) to 91.6 (N 160S 60) mg (100 g) (-1) root fresh weight (FW) and individual glucosinolate concentrations were increased with increasing S supply regardless of the N treatment, whereas enhanced N supply (160 - 320 N ha (-1)) at the high S level (60 kg ha (-1)) did not affect total glucosinolate concentration. In contrast, assumingly attributed to the individual glucosinolate biosynthesis concentration of N-containing tryptophan-derived indole glucosinolate was highest with increased N supply, whereas S-containing methionine-derived aromatic and aliphatic glucosinolates decreased with increasing N supply combined at low S level (10-20 kg ha (-1)).

  10. Glucosinolate concentration in turnip (Brassica rapa ssp. rapifera L.) roots as affected by nitrogen and sulfur supply.

    PubMed

    Li, Shumin; Schonhof, Ilona; Krumbein, Angelika; Li, Long; Stützel, Hartmut; Schreiner, Monika

    2007-10-17

    Three greenhouse pot experiments were conducted with four different nitrogen (N) treatments (80, 160, 240, and 320 kg ha (-1)) in combination with three sulfur (S) treatments (10, 20, and 60 kg ha (-1)) to study the effects of combined N and S supply on glucosinolate concentration and composition in turnip roots. Total glucosinolate concentration varied widely from 9.7 (N 320S 10) to 91.6 (N 160S 60) mg (100 g) (-1) root fresh weight (FW) and individual glucosinolate concentrations were increased with increasing S supply regardless of the N treatment, whereas enhanced N supply (160 - 320 N ha (-1)) at the high S level (60 kg ha (-1)) did not affect total glucosinolate concentration. In contrast, assumingly attributed to the individual glucosinolate biosynthesis concentration of N-containing tryptophan-derived indole glucosinolate was highest with increased N supply, whereas S-containing methionine-derived aromatic and aliphatic glucosinolates decreased with increasing N supply combined at low S level (10-20 kg ha (-1)). PMID:17854152

  11. [Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains].

    PubMed

    Zhang, Peng; Zhang, Tao; Chen, Nian-lai

    2009-03-01

    With the shady and sunny northern slopes of Qilian Mountains along an altitude gradient from 2600 m to 3600 m as test objectives, this paper studied the vertical distribution patterns of surface soil (0-20 cm) organic carbon (SOC) and total nitrogen (TN), and their relations to the altitude, landform, and vegetation. The results indicated that SOC and TN contents were significantly higher on shady than on sunny slope, and all increased with increasing altitude. The SOC and TN contents under different vegetation types were in the order of alpine bush > Picea crassifolia forest > alpine meadow > Sabina przewalskii forest, and alpine bush > alpine meadow > P. crassifolia forest > S. przewalskii forest, respectively. SOC had significant positive correlations with altitude, annual precipitation, soil moisture, and soil TN, and significant negative correlations with soil pH and annual temperature. Soil C/N ratio along the gradient was within the range of 6.7-23.3, being favorable to the nutrient release during organic matter decomposition. Among the factors affecting SOC, the annual temperature, precipitation, and soil moisture content constituted the first principal component, and soil C/N ratio constituted the second principal component. These two principal components accounted for 71% of the variance of SOC content, suggesting that climate factors controlled the vertical distribution patterns of SOC and TN along the altitude gradient.

  12. Continuous nitrogen application differentially affects growth, yield,and nitrogen use efficiency of Leymus chinensis in two saline–sodic soils of Northeastern China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leymus chinensis (Trin.) Tzvel. (Poaceae) is a dominant plant in the Western Songnen plain of Northeastern China, Soil salinization and alkalization, nitrogen deficiency and current management practices have resulted in grassland degradation in the region. The objective of this study was to investig...

  13. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants.

    PubMed

    Tan, Qiumin; Zhang, Lizhi; Grant, Jan; Cooper, Pauline; Tegeder, Mechthild

    2010-12-01

    Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set.

  14. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2].

  15. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. PMID:27317970

  16. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    PubMed

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  17. Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa.

    PubMed Central

    Darzins, A; Wang, S K; Vanags, R I; Chakrabarty, A M

    1985-01-01

    A 10-kilobase DNA fragment previously shown to contain the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa was used to construct a pBR325-based hybrid that can be propagated in P. aeruginosa only by the formation of a chromosomal-plasmid cointegrate. This plasmid, designated pAD4008, was inserted into the P. aeruginosa chromosome by recombination at a site of homology between the cloned P. aeruginosa DNA and the chromosome. Mobilization of pAD4008 into P. aeruginosa PAO and 8830 and selection for the stable acquisition of tetracycline resistance resulted in specific and predictable changes in the pattern of endonuclease restriction sites in the phosphomannose isomerase gene region of the chromosomes. Chromosomal DNA from the tetracycline-resistant transformants was used to clone the drug resistance determinant with Bg/II or XbaI, thereby allowing the "walking" of the P. aeruginosa chromosome in the vicinity of the pmi gene. Analysis of overlapping tetracycline-resistant clones indicated the presence of sequences homologous to the DNA insert of plasmid pAD2, a recombinant clone of P. aeruginosa origin previously shown to complement several alginate-negative mutants. Restriction mapping, subcloning, and complementation analysis of a 30-kilobase DNA region demonstrated the tight clustering of several genetic loci involved in alginate biosynthesis. Furthermore, the tetracycline resistance determinant in PAO strain transformed by pAD4008 was mapped on the chromosome by plasmid FP2-mediated conjugation and was found to be located near 45 min. Images PMID:3932325

  18. Does training frequency and supervision affect compliance, performance and muscular health? A cluster randomized controlled trial.

    PubMed

    Dalager, Tina; Bredahl, Thomas G V; Pedersen, Mogens T; Boyle, Eleanor; Andersen, Lars L; Sjøgaard, Gisela

    2015-10-01

    The aim was to determine the effect of one weekly hour of specific strength training within working hours, performed with the same total training volume but with different training frequencies and durations, or with different levels of supervision, on compliance, muscle health and performance, behavior and work performance. In total, 573 office workers were cluster-randomized to: 1 WS: one 60-min supervised session/week, 3 WS: three 20-min supervised sessions/week, 9 WS: nine 7-min supervised sessions/week, 3 MS: three 20-min sessions/week with minimal supervision, or REF: a reference group without training. Outcomes were diary-based compliance, total training volume, muscle performance and questionnaire-based health, behavior and work performance. Comparisons were made among the WS training groups and between 3 WS and 3 MS. If no difference, training groups were collapsed (TG) and compared with REF. Results demonstrated similar degrees of compliance, mean(range) of 39(33-44)%, and total training volume, 13.266(11.977-15.096)kg. Musculoskeletal pain in neck and shoulders were reduced with approx. 50% in TG, which was significant compared with REF. Only the training groups improved significantly their muscle strength 8(4-13)% and endurance 27(12-37)%, both being significant compared with REF. No change in workability, productivity or self-rated health was demonstrated. Secondary analysis showed exercise self-efficacy to be a significant predictor of compliance. Regardless of training schedule and supervision, similar degrees of compliance were shown together with reduced musculoskeletal pain and improved muscle performance. These findings provide evidence that a great degree of flexibility is legitimate for companies in planning future implementation of physical exercise programs at the workplace. ClinicalTrials.gov, number NCT01027390.

  19. [Nitrogen oxide is involved in the regulation of the Fe-S cluster assembly in proteins and the formation of biofilms by Escherichia coli cells].

    PubMed

    Vasil'eva, S V; Streltsova, D A; Starostina, I A; Sanina, N A

    2013-01-01

    The functions of nitrogen oxide (NO) in the regulation of the reversible processes of Fe-S cluster assembly in proteins and the formation of Escherichia coli biofilms have been investigated. S-nitrosoglutathione (GSNO) and crystalline nitrosyl complexes of iron with sulfur-containing aliphatic ligands cisaconite (CisA) and penaconite have been used as NO donors for the first time. Wild-type E. coli cells of the strain MC4100, mutants deltaiscA and deltasufA, and the double paralog mutant deltaiscA/sufA with deletions in the alternative pathways of Fe2+ supply for cluster assembly (all derived from the above-named strain) were used in this study. Plankton growth of bacterial cultures, the mass of mature biofilms, and the expression of the SoxRS[2Fe-2S] regulon have been investigated and shown to depend on strain genotype, the process of Fe-S cluster assembly in iron-sulfur proteins, NO donor structure, and the presence of Fe2+ chelator ferene in the incubation medium. The antibiotic ciprofloxacine (CF) was used as an inhibitor of E. coli biofilm formation in the positive control. NO donors regulating Fe-S cluster assembly in E. coli have been shown to control plankton growth of the cultures and the process of mature biofilm formation; toxic doses of NO caused a dramatic (3- to 4-fold) stimulation of cell entry into biofilms as a response to nitrosative stress; NO donors CisA and GSNO in physiological concentrations suppressed the formation of mature biofilms, and the activity of these compounds was comparable to that of CE Regulation of both Fe-S cluster assembly in iron-sulfur proteins and biofilm formation by NO is indicative of the connection between these processes in E. coli.

  20. Corn silage hybrid type and quality of alfalfa hay affect dietary nitrogen utilization by early lactating dairy cows.

    PubMed

    Holt, M S; Neal, K; Eun, J-S; Young, A J; Hall, J O; Nestor, K E

    2013-10-01

    This experiment was conducted to determine the effects of corn silage (CS) hybrids and quality of alfalfa hay (AH) in high-forage dairy diets on N utilization, ruminal fermentation, and lactational performance by early-lactating dairy cows. Eight multiparous Holstein cows were used in a duplicated 4 × 4 Latin square experiment with a 2 × 2 factorial arrangement of dietary treatments. The 8 cows (average days in milk = 23 ± 11.2) were surgically fitted with ruminal cannula, and the 2 squares were conducted simultaneously. Within square, cows were randomly assigned to a sequence of 4 diets: conventional CS (CCS) or brown midrib CS (BMR) was combined with fair-quality AH [FAH: 46.7% neutral detergent fiber (NDF) and 18.4% crude protein (CP)] or high-quality AH (HAH: 39.2% NDF and 20.7% CP) to form 4 treatments: CCS with FAH, CCS with HAH, BMR with FAH, and BMR with HAH. Diets were isonitrogenous across treatments, averaging 15.9% CP. Each period lasted a total of 21 d, with 14 d for treatment adaptation and 7d for data collection and sampling. Intake of DM and milk yield did not differ in response to CS hybrids or AH quality. Although feeding BMR-based diets decreased urinary N output by 24%, it did not affect fecal N output. Feeding HAH decreased urinary N output by 15% but increased fecal N output by 20%. Nitrogen efficiency [milk N (g/d)/intake N (g/d)] tended to increase for BMR treatments. Ruminal ammonia-N concentration was lower for cows fed BMR-based diets than for those fed CCS-based diets but was not affected by quality of AH. Feeding BMR-based diets or HAH decreased milk urea N concentration by 23 or 15%, respectively, compared with CCS-based diets or FAH. Total volatile fatty acid concentration increased with HAH but was not influenced by CS hybrids. Feeding BMR-based diets decreased urinary N-to-fecal N ratio (UN:FN), and it was further reduced by feeding HAH. Although cows fed the BMR-based diets tended to increase milk N-to-manure N ratio, the

  1. Vertical Chlorophyll Canopy Structure Affects the Remote Sensing Based Predictability of LAI, Chlorophyll and Leaf Nitrogen in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M.; Cellier, P.; Sutton, M.

    2012-12-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing can be used to estimate leaf area index (LAI), chlorophyll content (CHL) and leaf nitrogen (N), but methods are often developed using plot-scale data and not verified over extended regions characterized by variations in environmental boundary conditions (soil, atmosphere) and canopy structures. Estimation of N can be indirect due to its association with CHL, however N is also included in pigments such as carotenoids and anthocyanin which have different spectral signatures than CHL. Photosynthesis optimization theory suggests that plants will distribute their N resources in proportion to the light gradient within the canopy. Such vertical variation in CHL and N complicates the evaluation of remote sensing-based methods. Typically remote sensing studies measure CHL of the upper leaf, which is then multiplied by the green LAI to represent canopy chlorophyll content, or random sampling is used. In this study, field measurements and high spatial resolution (10-20 m) remote sensing images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were used to assess the predictability of LAI, CHL and N in five European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, The Netherlands and Italy . All satellite images were atmospherically using the 6SV1 model with atmospheric inputs estimated by MODIS and AIRS data. Five spectral vegetation indices (SVIs) were calculated (the Normalized Difference Vegetation index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green Chlorophyll Index), and an image-based inverse canopy radiative transfer modelling system, REGFLEC (REGularized canopy reFLECtance) was applied to each of the five European landscapes. While the

  2. Phenotypic instability of Arabidopsis alleles affecting a disease Resistance gene cluster

    PubMed Central

    Yi, Hankuil; Richards, Eric J

    2008-01-01

    Background Three mutations in Arabidopsis thaliana strain Columbia – cpr1, snc1, and bal – map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS) and γ-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal × cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids. Results We found that the cpr1 allele is similar to the bal allele in its unstable behavior after EMS mutagenesis. For both the bal and cpr1 mutants, destabilization of phenotypes was observed in more than 10% of EMS-treated plants in the M1 generation. In addition, exceptions to simple Mendelian inheritance were identified in the M2 generation. Like cpr1 × bal F1 hybrids, cpr1 × snc1 F1 hybrids and bal × snc1 F1 hybrids exhibited dwarf morphology. While only dwarf F2 plants were produced from bal × snc1 F1 hybrids, about 10% wild-type F2 progeny were produced from cpr1 × snc1 F1 hybrids, as well as from cpr1 × bal hybrids. Segregation analysis suggested that the cpr1 allele in cpr1 × snc1 crosses was destabilized during the late F1 generation to early F2 generation. Conclusion With exposure to EMS or different F1 hybrid contexts, phenotypic instability is induced for the bal and cpr1 alleles, but not for the snc1 allele. Our results suggest that the RPP5 locus can adopt different metastable genetic or

  3. The ADH gene cluster SNP rs1789891 and temperamental dimensions in patients with alcohol dependence and affective disorders.

    PubMed

    Oniszczenko, Włodzimierz; Rybakowski, Janusz K; Dragan, Wojciech Ł; Grzywacz, Anna; Samochowiec, Jerzy

    2015-08-01

    This study had three objectives: (1) to assess the relationship between the single nucleotide polymorphism (SNP) rs1789891 in the alcohol dehydrogenase gene cluster and alcohol dependence and affective disorders; (2) to assess the differences in the Regulative Theory of Temperament (RTT) traits between an alcohol dependent group, an affective disorders group, and a healthy group; and (3) to assess the relationship between rs1789891 and temperament traits in a healthy group, taking into account the interaction of genotype and sex. The SNP rs1789891 was genotyped in a group of 194 alcohol dependent men, aged 21 to 71 years; 137 patients with affective disorders, including 51 males and 86 females, aged 19 to 85 years; and a group of 207 healthy individuals, including 89 males and 118 females, aged 18 to 71 years. Temperament traits (briskness, perseveration, sensory sensitivity, emotional reactivity, endurance, and activity) were assessed in all groups using the Formal Characteristics of Behaviour-Temperament Inventory. The comparative analysis of genotypic frequencies showed no significant differences between patients with alcoholism or affective disorders and those in the control group. Alcohol dependent men and the affective disorder group were characterised by higher levels of emotional reactivity (p-value 1.4e-5 and 9.84e-7, respectively) and lower levels of briskness, sensory sensitivity, endurance, and activity (p-value from 3.76e-8 to 0.012) when compared to the healthy group. The rs1789891 polymorphism was associated with briskness (p = 0.02), sensory sensitivity (p = 0.036), and activity (p = 0.049). None of the results were statistically significant after Bonferroni correction.

  4. Nitrogen in Hydroponic Growing Medium of Tomato Affects the Demographic Parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae).

    PubMed

    Hosseini, R S; Madadi, H; Hosseini, M; Delshad, M; Dashti, F

    2015-12-01

    We evaluated the effects of different nitrogen levels (380, 310, 240, and 174 ppm) on the life history parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) on hydroponically cultured tomato plants. Our data show that there is a positive correlation between the nitrogen content and the demographic parameters, as the intrinsic rate of increase of T. vaporariorum was the lowest (0.059 ± 0.007 day(-1)) at 174 ppm and the highest (0.088 ± 0.005 day(-1)) at 380 ppm of nitrogen. The net reproduction rate (R 0), finite rate of increase (λ), and mean developmental time (T) were significantly influenced by the nitrogen levels. The mean longevity of males and females showed a positive relationship with the nitrogen level, ranging from 64.8 ± 3.96 to 76.3 ± 2.44 for males and 61.6 ± 5.35 to 71.2 ± 2.44 for females, observed in the lowest and highest nitrogen levels, respectively. The relationship between nitrogen fertilization and T. vaporariorum management on tomato crops is discussed.

  5. Nitrogen in Hydroponic Growing Medium of Tomato Affects the Demographic Parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae).

    PubMed

    Hosseini, R S; Madadi, H; Hosseini, M; Delshad, M; Dashti, F

    2015-12-01

    We evaluated the effects of different nitrogen levels (380, 310, 240, and 174 ppm) on the life history parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) on hydroponically cultured tomato plants. Our data show that there is a positive correlation between the nitrogen content and the demographic parameters, as the intrinsic rate of increase of T. vaporariorum was the lowest (0.059 ± 0.007 day(-1)) at 174 ppm and the highest (0.088 ± 0.005 day(-1)) at 380 ppm of nitrogen. The net reproduction rate (R 0), finite rate of increase (λ), and mean developmental time (T) were significantly influenced by the nitrogen levels. The mean longevity of males and females showed a positive relationship with the nitrogen level, ranging from 64.8 ± 3.96 to 76.3 ± 2.44 for males and 61.6 ± 5.35 to 71.2 ± 2.44 for females, observed in the lowest and highest nitrogen levels, respectively. The relationship between nitrogen fertilization and T. vaporariorum management on tomato crops is discussed. PMID:26385237

  6. The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters

    PubMed Central

    Black, Michael; Moolhuijzen, Paula; Chapman, Brett; Barrero, Roberto; Howieson, John; Hungria, Mariangela; Bellgard, Matthew

    2012-01-01

    The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome. PMID:24704847

  7. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain.

    PubMed

    Zhao, Xin; Xue, Jian-Fu; Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0-5:30-50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0-5:5-10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0-10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0-10 cm) but was higher under PT for the deeper soil (30-50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality.

  8. Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    PubMed

    Southon, Georgina E; Green, Emma R; Jones, Alan G; Barker, Chris G; Power, Sally A

    2012-09-01

    Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lowland heathland under a wide range of environmental conditions, including the occurrence of prolonged natural drought episodes and a severe summer fire. Our findings indicate that elevated N deposition results in large, persistent effects on Calluna growth, phenology and chemistry, severe suppression of understorey lichen flora and changes in soil biogeochemistry. Growing season rainfall was found to be a strong driver of inter-annual variation in Calluna growth and, although interactions between N and rainfall for shoot growth were not significant until the later phase of the experiment, N addition exacerbated the extent of drought injury to Calluna shoots following naturally occurring droughts in 2003 and 2009. Following a severe wildfire at the experimental site in 2006, heathland regeneration dynamics were significantly affected by N, with a greater abundance of pioneering moss species and suppression of the lichen flora in plots receiving N additions. Significant interactions between climate and N were also apparent post fire, with the characteristic stimulation in Calluna growth in +N plots suppressed during dry years. Carbon (C) and N budgets demonstrate large increases in both above- and below-ground stocks of these elements in N-treated plots prior to the fire, despite higher levels of soil microbial activity and organic matter turnover. Although much of the organic material was removed during the fire, pre-existing treatment differences were still evident following the burn. Post fire accumulation of below-ground C and N stocks was increased rapidly in N-treated plots, highlighting the role of N deposition in ecosystem C sequestration

  9. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain

    PubMed Central

    Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0–5:30–50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0–5:5–10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0–10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0–10 cm) but was higher under PT for the deeper soil (30–50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality. PMID:26075391

  10. Analysis of variables affecting unemployment rate and detecting for cluster in West Java, Central Java, and East Java in 2012

    NASA Astrophysics Data System (ADS)

    Samuel, Putra A.; Widyaningsih, Yekti; Lestari, Dian

    2016-02-01

    The objective of this study is modeling the Unemployment Rate (UR) in West Java, Central Java, and East Java, with rate of disease, infant mortality rate, educational level, population size, proportion of married people, and GDRP as the explanatory variables. Spatial factors are also considered in the modeling since the closer the distance, the higher the correlation. This study uses the secondary data from BPS (Badan Pusat Statistik). The data will be analyzed using Moran I test, to obtain the information about spatial dependence, and using Spatial Autoregressive modeling to obtain the information, which variables are significant affecting UR and how great the influence of the spatial factors. The result is, variables proportion of married people, rate of disease, and population size are related significantly to UR. In all three regions, the Hotspot of unemployed will also be detected districts/cities using Spatial Scan Statistics Method. The results are 22 districts/cities as a regional group with the highest unemployed (Most likely cluster) in the study area; 2 districts/cities as a regional group with the highest unemployed in West Java; 1 district/city as a regional groups with the highest unemployed in Central Java; 15 districts/cities as a regional group with the highest unemployed in East Java.

  11. Measuring human rights violations in a conflict-affected country: results from a nationwide cluster survey in Central African Republic

    PubMed Central

    2011-01-01

    Background Measuring human rights violations is particularly challenging during or after armed conflict. A recent nationwide survey in the Central African Republic produced estimates of rates of grave violations against children and adults affected by armed conflict, using an approach known as the "Neighborhood Method". Methods In June and July, 2009, a random household survey was conducted based on population estimates from the 2003 national census. Clusters were assigned systematically proportional to population size. Respondents in randomly selected households were interviewed regarding incidents of killing, intentional injury, recruitment into armed groups, abduction, sexual abuse and rape between January 1, 2008 and the date of interview, occurring in their homes' and those of their three closest neighbors. Results Sixty of the selected 69 clusters were surveyed. In total, 599 women were interviewed about events in 2,370 households representing 13,669 persons. Estimates of annual rates of each violation occurring per 1000 people in each of two strata are provided for children between the ages of five and 17, adults 18 years of age and older and the entire population five years and older, along with a combined and weighted national rate. The national rates for children age five to 17 were estimated to be 0.98/1000/year (95% CI: 0.18 - 1.78) for recruitment, 2.56/1000/year (95% CI: 1.50 - 3.62) for abduction, 1.13/1000/year (95% CI: 0.33 - 1.93) for intentional injury, 10.72/1000 girls/year (95% CI: 7.40 - 14.04) for rape, and 4.80/1000 girls/year (95% CI: 2.61 - 6.00) for sexual abuse. No reports of any violation against a person under the age of five were recorded and there were no reports of rape or sexual abuse of males. No children were reported to have been killed during the recall period. Rape and abduction were the most frequently reported events. Conclusions The population-based figures greatly augment existing information on human rights violations in

  12. [Spatial variability of soil nitrogen and related affecting factors at a county scale in hilly area of Mid-Sichuan Basin].

    PubMed

    Luo, You-Lin; Li, Qi-Quan; Wang, Chang-Quan; Li, Bin; Zhang, Xin; Feng, Wen-Ying; Weng, Qian; Wu, Mian

    2015-02-01

    Spatial distribution characteristics of soil total nitrogen ( TN ) and available nitrogen ( AN ) were analyzed by using geostatistical methods and the effects of the influencing factors were quantified by regression analysis based on 555 soil samples collected in RenShou county. The results showed that the contents of soil TN ranged from 0.34-2.57 g x kg(-1) with a mean value of 1.12 g x kg(-1), which indicated the TN of the study area was at a medium level, and AN ranged from 25.86-184.17 mg x kg(-1) with a mean value of 74.35 mg x kg(-1), which indicated the AN of the study area was low. The values of the nugget to sill ratio were 0.608 and 0.790 respectively, which suggestd TN had moderate spatial dependence, which was determined by the co-effects of structural and random factors, while AN was mainly affected by random factors. The contents of TN and AN in north area were much higher than those of south area and distribution of Patchy. The soil parent materials were able to explain 6.3% and 1.0% of TN and AN spatial variability. Soil types explained 26.5% - 36.1% of TN variability and 27.7% - 28.7% of AN variability. Topographical factors explained 5.5% of TN variability and 6.1% of AN variability, the structural factors of soil types reflected spatial variability of nitrogen in the study area. The randomness factors of land use types explained 37.7% of TN variability and 40.0% of AN variability that were much larger than the other factors, which suggested land use had the higherst independent explaining capacity for nitrogen spatial variability among those influence factors and land use type was the main factor to accurately predict the spatial distribution of soil nitrogen in the hilly area of Middle Sichuan Basin.

  13. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis

    PubMed Central

    Sarasketa, Asier; González-Moro, M. Begoña; González-Murua, Carmen; Marino, Daniel

    2016-01-01

    Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source (NO3- and NH4+), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to NH4+ accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, NH4+ accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment. PMID:26870054

  14. Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors.

    PubMed

    DiPasquale, Luke T; Poulos, Nicholas G; Hall, Jackson R; Minocha, Aastha; Bui, Tram Anh; Leopold, Michael C

    2015-07-15

    A systematic study of the structure-function relationships critical to understanding the sensing mechanism of 1st generation amperometric glucose biosensors with an embedded nanoparticle (NP) network is presented. Xerogel-based films featuring embedded glucose oxidase enzyme and doped with alkanethiolate-protected gold NPs, known as monolayer protected clusters (MPCs), exhibit significantly enhanced performance compared to analogous systems without NPs including higher sensitivity, faster response time, and extended linear/dynamic ranges. The proposed mechanism involves diffusion of the glucose to glucose oxidase within the xerogel, enzymatic reaction production of H2O2 with subsequent diffusion to the embedded network of MPCs where it is oxidized, an event immediately reported via fast electron transfer (ET) through the MPC system to the working electrode. Various aspects of the film construct and strategy are systematically probed using amperometry, voltammetry, and solid-state electronic conductivity measurements, including the effects of MPC peripheral chain length, MPC functionalization via place-exchange reaction, MPC core size, and the MPC density or concentration within the xerogel composite films. The collective results of these experiments support the proposed mechanism and identify interparticle spacing and the electronic communication through the MPC network is the most significant factor in the sensing scheme with the diffusional aspects of the mechanism that may be affected by film/MPC hydrophobicity and functionality (i.e., glucose and H2O2 diffusion) shown to be less substantial contributors to the overall enhanced performance. Understanding the structure-function relationships of effective sensing schemes allows for the employment of the strategy for future biosensor design toward clinically relevant targets.

  15. Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors.

    PubMed

    DiPasquale, Luke T; Poulos, Nicholas G; Hall, Jackson R; Minocha, Aastha; Bui, Tram Anh; Leopold, Michael C

    2015-07-15

    A systematic study of the structure-function relationships critical to understanding the sensing mechanism of 1st generation amperometric glucose biosensors with an embedded nanoparticle (NP) network is presented. Xerogel-based films featuring embedded glucose oxidase enzyme and doped with alkanethiolate-protected gold NPs, known as monolayer protected clusters (MPCs), exhibit significantly enhanced performance compared to analogous systems without NPs including higher sensitivity, faster response time, and extended linear/dynamic ranges. The proposed mechanism involves diffusion of the glucose to glucose oxidase within the xerogel, enzymatic reaction production of H2O2 with subsequent diffusion to the embedded network of MPCs where it is oxidized, an event immediately reported via fast electron transfer (ET) through the MPC system to the working electrode. Various aspects of the film construct and strategy are systematically probed using amperometry, voltammetry, and solid-state electronic conductivity measurements, including the effects of MPC peripheral chain length, MPC functionalization via place-exchange reaction, MPC core size, and the MPC density or concentration within the xerogel composite films. The collective results of these experiments support the proposed mechanism and identify interparticle spacing and the electronic communication through the MPC network is the most significant factor in the sensing scheme with the diffusional aspects of the mechanism that may be affected by film/MPC hydrophobicity and functionality (i.e., glucose and H2O2 diffusion) shown to be less substantial contributors to the overall enhanced performance. Understanding the structure-function relationships of effective sensing schemes allows for the employment of the strategy for future biosensor design toward clinically relevant targets. PMID:25819004

  16. School-based mental health intervention for children in war-affected Burundi: a cluster randomized trial

    PubMed Central

    2014-01-01

    Background Armed conflicts are associated with a wide range of impacts on the mental health of children and adolescents. We evaluated the effectiveness of a school-based intervention aimed at reducing symptoms of posttraumatic stress disorder, depression, and anxiety (treatment aim); and improving a sense of hope and functioning (preventive aim). Methods We conducted a cluster randomized trial with 329 children in war-affected Burundi (aged 8 to 17 (mean 12.29 years, standard deviation 1.61); 48% girls). One group of children (n = 153) participated in a 15-session school-based intervention implemented by para-professionals, and the remaining 176 children formed a waitlist control condition. Outcomes were measured before, one week after, and three months after the intervention. Results No main effects of the intervention were identified. However, longitudinal growth curve analyses showed six favorable and two unfavorable differences in trajectories between study conditions in interaction with several moderators. Children in the intervention condition living in larger households showed decreases on depressive symptoms and function impairment, and those living with both parents showed decreases on posttraumatic stress disorder and depressive symptoms. The groups of children in the waitlist condition showed increases in depressive symptoms. In addition, younger children and those with low levels of exposure to traumatic events in the intervention condition showed improvements on hope. Children in the waitlist condition who lived on their original or newly bought land showed improvements in hope and function impairment, whereas children in the intervention condition showed deterioration on these outcomes. Conclusions Given inconsistent effects across studies, findings do not support this school-based intervention as a treatment for posttraumatic stress disorder and depressive symptoms in conflict-affected children. The intervention appears to have more consistent

  17. Carbon dioxide concentration and nitrogen input affect the C and N storage pools in Amanita muscaria-Picea abies mycorrhizae.

    PubMed

    Turnau, K; Berger, A; Loewe, A; Einig, W; Hampp, R; Chalot, M; Dizengremel, P; Kottke, I

    2001-02-01

    We studied the influence of elevated atmospheric CO2 concentration ([CO2]) on the vacuolar storage pool of nitrogen-containing compounds and on the glycogen pool in the hyphal sheath of Amanita muscaria (L. ex Fr.) Hooker-Picea abies L. Karst. mycorrhizae grown with two concentrations of ammonium in the substrate. Mycorrhizal seedlings were grown in petri dishes on agar containing 5.3 or 53 mg N l(-1) and exposed to 350 or 700 microl CO2 l(-1) for 5 or 7 weeks, respectively. Numbers and area of nitrogen-containing bodies in the vacuoles of the mycorrhizal fungus were determined by light microscopy linked to an image analysis system. The relative concentration of nitrogen in the vacuolar bodies was measured by electron energy loss spectroscopy (EELS). Glycogen stored in the cytosol was determined at the ultrastructural level by image analysis after staining the sections (PATAg test). Shoot dry weight, net photosynthesis and relative amounts of N in vacuolar bodies were greater at the higher N and CO2 concentrations. The numbers and areas of vacuolar N-containing bodies were significantly greater at the higher N concentration only at ambient [CO2]. In the same treatment the percentage of hyphae containing glycogen declined to nearly zero. We conclude that, in the high N/low [CO2] treatment, the mycorrhizal fungus had an insufficient carbohydrate supply, partly because of increased amino acid synthesis by the non-mycorrhizal rootlets. When [CO2] was increased, the equilibrium between storage of glycogen and N-containing compounds was reestablished.

  18. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta.

    PubMed

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-02-16

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4(+)-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period.

  19. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    NASA Astrophysics Data System (ADS)

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-02-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period.

  20. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    PubMed Central

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-01-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30–40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period. PMID:26879008

  1. Change in Uptake, Transport and Accumulation of Ions in Nerium oleander (Rosebay) as Affected by Different Nitrogen Sources and Salinity

    PubMed Central

    Abdolzadeh, Ahmad; Shima, Kazuto; Lambers, Hans; Chiba, Kyozo

    2008-01-01

    Background and Aims The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants. Methods Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined. Key Results Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1·8, 1·9 and 2·7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1·5 times higher than that in ammonium-fed plants. Similarly, Cl− transport via the xylem to the shoot and its retranslocation via the phloem (Cl− cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants. Conclusions The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl− in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl− in shoots probably caused harmful effects and reduced growth of plants. PMID:18772147

  2. Feed intake, growth, digestibility of dry matter and nitrogen in young pigs as affected by dietary cation-anion difference and supplementation of xylanase.

    PubMed

    Dersjant-Li, Y; Schulze, H; Schrama, J W; Verreth, J A; Verstegen, M W

    2001-04-01

    An experiment was conducted to test the effect of dietary cation-anion difference (CAD, Na(+) + K(+)-Cl(-), mEq/kg diet) and xylanase addition on feed consumption, digestibility of nutrients, plasma electrolyte balance and growth performance in young pigs. A 2 x 3 factorial arrangement with three dietary CAD levels (-100, 200, and 500 mEq/kg) and two levels of xylanase supplementation (0 and 0.1% xylanase derived from Trichoderma longibrachiatum) was used. Thirty-six individually housed, castrated pigs (5 weeks old) with an initial body weight of 9.34 +/- 0.28 kg (mean +/- SEM) were randomly assigned to the six treatments. Diets were provided to pigs as cold pellets. Pigs had ad libitum access to feed and water. Venous plasma Cl(-) concentration was higher (p < 0.0001) in dietary CAD of - 100 mEq/kg group compared with the other two CAD groups. Dietary CAD did not affect Na(+) and K(+) concentrations in the venous plasma. Growth rates were higher (p < 0.05) in pigs receiving dietary CAD of 200 mEq/kg (657 g/pig.day) and dietary CAD of 500 mEq/kg (603 g/pig.day) than in pigs receiving dietary CAD of -100 mEq/kg (484 g/pig.day). Faecal dry matter and nitrogen decreased with increasing dietary CAD. Faecal apparent digestibility of dry matter and nitrogen was higher (p < 0.05) in the dietary CAD of 500 mEq/kg compared to the two lower level CAD groups. Supplementation of xylanase did not affect the performance of pigs. Xylanase addition in the diet significantly increased apparent faecal digestibility of dry matter and tended to increase apparent digestibility of nitrogen. No interaction between dietary CAD and xylanase was found. In conclusion, dietary CAD influenced the performance and digestibility of nutrients of pigs. Xylanase supplementation improved digestibility of dry matter.

  3. Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: A case study in Central China

    NASA Astrophysics Data System (ADS)

    Lin, Shan; Iqbal, Javed; Hu, Ronggui; Wu, Jinshui; Zhao, Jinsong; Ruan, Leilei; Malghani, Saadatullah

    2011-03-01

    Agricultural soils are one of the major sources of atmospheric nitrous oxide (N 2O) emission. Red soil, one of the typical agricultural soils in sub-tropical China, plays an important role in the global N 2O flux emissions. To determine its N mineralization potential, a field study was conducted to assess the effect of application of nitrogen (N) fertilizer in a rape field under red soil at the experimental station of Heshengqiao at Xianning, Hubei, China. To estimate N-induced N 2O flux, we examined N 2O flux during the growth stages of the rape field including four treatments: fertilizer PK (N0), fertilizer NPK (60 kg N ha -1) (N1), fertilizer NPK (120 kg N ha -1) (N2), fertilizer NPK (240 kg N ha -1) (N3). There were distinct variations in soil N 2O fluxes (from 0.16 to 0.90 kg N ha -1), with higher values being observed during the spring and autumn while low values were observed during winter season. Among different treatments, N fertilization significantly increased the N 2O fluxes, with highest fluxes from N3 while lowest values being observed from N0 treatment. This suggested increased microbial activity in response to increased N fertilizer application. It was interesting to note that fertilizer-induced emissions decreased as the applied fertilizer amount was increased. During the whole growing season, N 2O flux did not correlate with soil temperature, but it significantly correlated to other environmental variables; water-filled pore space (WFPS), soil NO 3--N and NH 4+-N contents, which suggests the need for efficient water use and low inorganic nitrogen fertilizer management practices.

  4. Nitrogen and Phosphorus Loads in an Agricultural Watershed Affected by Poultry Litter Application and Wastewater Effluent, Northeastern Oklahoma and Northwestern Arkansas, 2002-2009

    NASA Astrophysics Data System (ADS)

    Esralew, R.; Tortorelli, R. L.

    2010-12-01

    The Eucha-Spavinaw Basin in Northeastern Oklahoma and Northwestern Arkansas is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the city of Tulsa, Oklahoma. Lake Eucha and Spavinaw Lakes have experienced deteriorating water quality largely due to growth of algae, notably cyanobacteria, from the excess input of nutrients. As a result, the city of Tulsa has spent millions of dollars to eliminate taste and odor problems resulting from production of algal and bacterial byproducts. To evaluate changes in nutrient loading resulting from a reduction in land application of poultry litter, installation of best management practices, and reductions in the phosphorus concentrations in wastewater effluent, the U.S. Geological Survey investigated nitrogen and phosphorus concentrations from samples collected during baseflow and runoff and used regression models to estimate nitrogen and phosphorus loads, yields, and flow-weighted concentrations in two major tributaries to Lake Eucha, Spavinaw and Beaty Creeks, for the period 2002-2009. Estimated mean flow-weighted total unfiltered nitrogen and phosphorus concentrations in the basin were about 5 to 10 times greater than the 75th percentile of flow-weighted nutrient concentrations in other mostly undeveloped basins of the United States. Spavinaw and Beaty Creeks contributed an estimated mean annual total load of about 762,500 kilograms of nitrogen and 49,200 kilograms of phosphorus per year, 76 to 91 percent of which was transported to Lake Eucha by runoff. Thirty-four percent of the nitrogen load and 48 percent of the phosphorus load to Lake Eucha occurred during the year 2008 which was the wettest year on record for the Eucha-Spavinaw Basin. The results of this analysis indicate that although efforts were made to control nutrient loading, nutrient concentrations, especially phosphorus, were substantially augmented by non-point sources and that most loading occurs during runoff events

  5. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate.

    PubMed

    Brix, Hans; Dyhr-Jensen, Kirsten; Lorenzen, Bent

    2002-12-01

    The NH(4)(+) and NO(3)(-) uptake kinetics by Typha latifolia L. were studied after prolonged hydroponics growth at constant pH 3.5, 5.0, 6.5 or 7.0 and with NH(4)(+) or NO(3)(-) as the sole N-source. In addition, the effects of pH and N source on H(+) extrusion and adenine nucleotide content were examined. Typha latifolia was able to grow with both N sources at near neutral pH levels, but the plants had higher relative growth rates, higher tissue concentrations of the major nutrients, higher contents of adenine nucleotides, and higher affinity for uptake of inorganic nitrogen when grown on NH(4)(+). Growth almost completely stopped at pH 3.5, irrespective of N source, probably as a consequence of pH effects on plasma membrane integrity and H(+) influx into the root cells. Tissue concentrations of the major nutrients and adenine nucleotides were severely reduced at low pH, and the uptake capacity for inorganic nitrogen was low, and more so for NO(3)(-)-fed than for NH(4)(+)-fed plants. The maximum uptake rate, V(max), was highest for NH(4)(+) at pH 6.5 (30.9 micro mol h(-1) g(-1) root dry weight) and for NO(3)(-) at pH 5.0 (31.7 micro mol h(-1) g(-1) root dry weight), and less than 10% of these values at pH 3.5. The affinity for uptake as estimated by the half saturation constant, K((1/2)), was lowest at low pH for NH(4)(+) and at high pH for NO(3)(-). The changes in V(max) and K((1/2)) were thus consistent with the theory of increasing competition between cations and H(+) at low pH and between anions and OH(-) at high pH. C(min) was independent of pH, but slightly higher for NO(3)(-) than for NH(4)(+) (C(min)(NH(4)(+)) approximately 0.8 mmol m(-3); C(min)(NO(3)(-)) approximately 2.8 mmol m(-3)). The growth inhibition at low pH was probably due to a reduced nutrient uptake and a consequential limitation of growth by nutrient stress. Typha latifolia seems to be well adapted to growth in wetland soils where NH(4)(+) is the prevailing nitrogen compound, but very low p

  6. A systematic review of factors affecting children’s right to health in cluster randomized trials in Kenya

    PubMed Central

    2014-01-01

    Following the South African case, Treatment Action Campaign and Others v Minister of Health and Others, the use of 'pilot’ studies to investigate interventions already proven efficacious, offered free of charge to government, but confined by the government to a small part of the population, may violate children’s right to health, and the negative duty on governments not to prevent access to treatment. The applicants challenged a government decision to offer Nevirapine in a few pilot sites when evidence showed Nevirapine significantly reduced HIV transmission rates and despite donor offers of a free supply. The government refused to expand access, arguing they needed to collect more information, and citing concerns about long-term hazards, side effects, resistance and inadequate infrastructure. The court ruled this violated children’s right to health and asked the government to immediately expand access. Cluster randomized trials involving children are increasingly popular, and are often used to reduce 'contamination’: the possibility that members of a cluster adopt behavior of other clusters. However, they raise unique issues insufficiently addressed in literature and ethical guidelines. This case provides additional crucial guidance, based on a common human rights framework, for the Kenyan government and other involved stakeholders. Children possess special rights, often represent a 'captive’ group, and so motivate extra consideration. In a systematic review, we therefore investigated whether cluster trial designs are used to prevent or delay children’s access to treatment in Kenya or otherwise inconsistently with children’s right to health as outlined in the above case. Although we did not find state sponsored cluster trials, most had significant public sector involvement. Core obligations under children’s right to health were inadequately addressed across trials. Few cluster trials reported rationale for cluster randomization, offered post- trial

  7. Inclusion of sainfoin (Onobrychis viciifolia) silage in dairy cow rations affects nutrient digestibility, nitrogen utilization, energy balance, and methane emissions.

    PubMed

    Huyen, N T; Desrues, O; Alferink, S J J; Zandstra, T; Verstegen, M W A; Hendriks, W H; Pellikaan, W F

    2016-05-01

    Sainfoin (Onobrychis viciifolia) is a tanniniferous legume forage that has potential nutritional and health benefits preventing bloating, reducing nematode larval establishment, improving N utilization, and reducing greenhouse gas emissions. However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still relatively unknown. The objective of this study was to evaluate the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization, and CH4 production. Six rumen-cannulated, lactating dairy cows with a metabolic body weight (BW(0.75)) of 132.5±3.6kg were randomly assigned to either a control (CON) or a sainfoin (SAIN)-based diet over 2 experimental periods of 25 d each in a crossover design. The CON diet was a mixture of grass silage, corn silage, concentrate, and linseed. In the SAIN diet, 50% of grass silage dry matter (DM) of the CON diet was exchanged for sainfoin silage. The cows were adapted to 95% of ad libitum feed intake for a 21-d period before being housed in climate-controlled respiration chambers for 4 d, during which time feed intake, apparent total-tract digestibility, N and energy balance, and CH4 production was determined. Data were analyzed using a mixed model procedure. Total daily DM, organic matter, and neutral detergent fiber intake did not differ between the 2 diets. The apparent digestibility of DM, organic matter, neutral detergent fiber, and acid detergent fiber were, respectively, 5.7, 4.0, 15.7, and 14.8% lower for the SAIN diet. Methane production per kilogram of DM intake was lowest for the SAIN diet, CH4 production as a percentage of gross energy intake tended to be lower, and milk yield was greater for the SAIN diet. Nitrogen intake, N retention, and energy retained in body protein were greater for the SAIN than for the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results suggest that inclusion of sainfoin

  8. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    SciTech Connect

    Moon, Joonoh Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasing δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.

  9. Short communication: radio frequency dielectric heating of nonfat dry milk affects solubility and whey protein nitrogen index.

    PubMed

    Chen, C; Michael, M; Phebus, R K; Thippareddi, H; Subbiah, J; Birla, S L; Schmidt, K A

    2013-03-01

    The US infant formula market is estimated at over $3.5 billion, of which 75% are dairy-based formulas. Dried dairy powders pose a significant food safety risk, with Cronobacter sakazakii and Salmonella spp. being pathogens of particular concern. Radio frequency dielectric heating (RFDH) can provide rapid, uniform heat treatment of dry powders; thus, it potentially may be used as a postprocess lethality treatment for nonfat dry milk (NDM) or powdered infant formula. Because RFDH is a heat treatment, the functionality of the NDM may be altered and should be evaluated. High heat- and low heat-NDM were RFDH processed at temperatures ranging from 75 to 90°C for 5 to 125 min. Products were then assessed for whey protein nitrogen index (WPNI), solubility, and color. In low heat-NDM, RFDH decreased WPNI and solubility if the process was done at ≥ 80°C; however, in high heat-NDM, RFDH had a greater effect on solubility than WPNI and some color properties were altered. Further investigation of RFDH is merited to validate its application as a pathogen control process for NDM across processing parameters that result in acceptable functional properties for infant formula and other food products containing NDM.

  10. Comparison of organic matter composition in agricultural versus forest affected headwaters with special emphasis on organic nitrogen.

    PubMed

    Heinz, Marlen; Graeber, Daniel; Zak, Dominik; Zwirnmann, Elke; Gelbrecht, Joerg; Pusch, Martin T

    2015-02-17

    Agricultural management practices promote organic matter (OM) turnover and thus alter both the processing of dissolved organic matter (DOM) in soils and presumably also the export of DOM to headwater streams, which intimately connect the terrestrial with the aquatic environment. Size-exclusion chromatography, in combination with absorbance and emission matrix fluorometry, was applied to assess how agricultural land use alters the amount and composition of DOM, as well as dissolved organic nitrogen (DON) forms in headwater streams, including temporal variations, in a temperate region of NE Germany. By comparing six agriculturally and six forest-impacted headwater streams, we demonstrated that agriculture promotes increased DOC and DON concentrations, entailing an even more pronounced effect on DON. The major part of DOC and DON in agricultural and forest reference streams is exported in the form of humic-like material with high molecular weight, which indicates terrestrial, i.e., allochthonous sources. As an obvious difference in agricultural streams, the contribution of DOC and particularly DON occurring in the form of nonhumic high-molecular-weight, presumably proteinous material is clearly elevated. Altogether, DOM in agricultural headwaters is mainly complex-soil-derived and aromatic material with a low C:N ratio, which is more microbial processed than its counterpart from forest reference catchments. Our results emphasize the importance of agricultural land use on DOM loss from soils and identify agricultural soils as important DOC and particularly DON sources to headwater streams. PMID:25594834

  11. Nitrogen regulation of fungal secondary metabolism in fungi

    PubMed Central

    Tudzynski, Bettina

    2014-01-01

    Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability. PMID:25506342

  12. Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of eastern Tibet Plateau.

    PubMed

    Wu, Qiqian; Wu, Fuzhong; Yang, Wanqin; Zhao, Yeyi; He, Wei; Tan, Bo

    2014-01-01

    There is increasing attention on the effects of seasonal snowpack on wintertime litter decomposition, as well as the processes following it, in cold biomes. However, little information is available on how litter nitrogen (N) dynamics vary with snowpack variations created by tree crown canopies in alpine forests. Therefore, to understand the effects of seasonal snowpack on litter N dynamics during different critical stages, litterbags with fir (Abies faxoniana), birch (Betula albo-sinensis), larch (Larix mastersiana) and cypress (Sabina saltuaria) foliar litter were placed on the forest floor beneath snowpack created by forest gaps in the eastern Tibet Plateau. The litterbags were sampled at the onset of freezing, deep freezing, thawing and growing stages from October 2010 to October 2012. Mass loss and N concentrations in litter were measured. Over two years of decomposition, N release occurred mainly during the first year, especially during the first winter. Litter N release rates (both in the first year and during the entire two-year decomposition study period) were higher in the center of canopy gaps than under closed canopy, regardless of species. Litter N release rates in winter were also highest in the center of canopy gaps and lowest under closed canopy, regardless of species, however the reverse was found during the growing season. Compared with broadleaf litter, needle litter N release comparisons of gap center to closed canopy showed much stronger responses to the changes in snow cover in winter and availability of sunshine during the growing season. As the decomposition proceeded, decomposing litter quality, microbial biomass and environmental temperature were important factors related to litter N release rate. This suggests that if winter warm with climate change, reduced snow cover in winter might slow down litter N release in alpine forest. PMID:24820771

  13. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest.

    PubMed

    See, Craig R; Yanai, Ruth D; Fisk, Melany C; Vadeboncoeur, Matthew A; Quintero, Brauuo A; Fahey, Timothy J

    2015-09-01

    Previous studies have attempted to link foliar resorption of nitrogen and phosphorus to their. respective availabilities in soil, with mixed results. Based on resource optimization theory, we hypothesized that the foliar resorption of one element could be driven by the availability of another element. We tested various measures of soil N and P as predictors of N and P resorption in six tree species in 18 plots across six stands at the Bartlett Experimental Forest, New Hampshire, USA. Phosphorus resorption efficiency (P < 0.01) and proficiency (P = 0.01) increased with soil N content. to 30 cm depth, suggesting that trees conserve P based on the availability of soil N. Phosphorus resorption also increased with soil P content, which is difficult to explain basdd on single-element limitation, butfollows from the correlation between soil N and soil P. The expected single-element relationships were evident only in the 0 horizon: P resorption was high where resin-available P was low in the Oe (P < 0.01 for efficiency, P < 0.001 for proficiency) and N resorption was high where potential N mineralization in the Oa was low (P < 0.01 for efficiency and 0.11 for proficiency). Since leaf litter is a principal source of N and P to the 0 horizon, low nutrient availability there could be a result rather than a cause of high resorption. The striking effect of soil N content on foliar P resorption is the first evidence of multiple-element control on nutrient resorption to be reported from an unmanipulated ecosystem.

  14. Foliar Litter Nitrogen Dynamics as Affected by Forest Gap in the Alpine Forest of Eastern Tibet Plateau

    PubMed Central

    Wu, Qiqian; Wu, Fuzhong; Yang, Wanqin; Zhao, Yeyi; He, Wei; Tan, Bo

    2014-01-01

    There is increasing attention on the effects of seasonal snowpack on wintertime litter decomposition, as well as the processes following it, in cold biomes. However, little information is available on how litter nitrogen (N) dynamics vary with snowpack variations created by tree crown canopies in alpine forests. Therefore, to understand the effects of seasonal snowpack on litter N dynamics during different critical stages, litterbags with fir (Abies faxoniana), birch (Betula albo-sinensis), larch (Larix mastersiana) and cypress (Sabina saltuaria) foliar litter were placed on the forest floor beneath snowpack created by forest gaps in the eastern Tibet Plateau. The litterbags were sampled at the onset of freezing, deep freezing, thawing and growing stages from October 2010 to October 2012. Mass loss and N concentrations in litter were measured. Over two years of decomposition, N release occurred mainly during the first year, especially during the first winter. Litter N release rates (both in the first year and during the entire two-year decomposition study period) were higher in the center of canopy gaps than under closed canopy, regardless of species. Litter N release rates in winter were also highest in the center of canopy gaps and lowest under closed canopy, regardless of species, however the reverse was found during the growing season. Compared with broadleaf litter, needle litter N release comparisons of gap center to closed canopy showed much stronger responses to the changes in snow cover in winter and availability of sunshine during the growing season. As the decomposition proceeded, decomposing litter quality, microbial biomass and environmental temperature were important factors related to litter N release rate. This suggests that if winter warm with climate change, reduced snow cover in winter might slow down litter N release in alpine forest. PMID:24820771

  15. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  16. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Stevens, William B

    2008-01-01

    Management practices can influence soil CO(2) emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO(2) flux, temperature, water, and C content at the 0- to 20-cm depth from May to November 2005 at two sites in the northern Great Plains. Treatments were two irrigation systems (irrigated vs. non-irrigated) and six management practices that contained tilled and no-tilled malt barley (Hordeum vulgaris L.) with 0 to 134 kg N ha(-1), no-tilled pea (Pisum sativum L.), and a conservation reserve program (CRP) planting applied in Lihen sandy loam (sandy, mixed, frigid, Entic Haplustolls) in western North Dakota. In eastern Montana, treatments were no-tilled malt barley with 78 kg N ha(-1), no-tilled rye (Secale cereale L.), no-tilled Austrian winter pea, no-tilled fallow, and tilled fallow applied in dryland Williams loam (fine-loamy, mixed Typic Argiborolls). Irrigation increased CO(2) flux by 13% compared with non-irrigation by increasing soil water content in North Dakota. Tillage increased CO(2) flux by 62 to 118% compared with no-tillage at both places. The flux was 1.5- to 2.5-fold greater with tilled than with non-tilled treatments following heavy rain or irrigation in North Dakota and 1.5- to 2.0-fold greater with crops than with fallow following substantial rain in Montana. Nitrogen fertilization increased CO(2) flux by 14% compared with no N fertilization in North Dakota and cropping increased the flux by 79% compared with fallow in no-till and 0 kg N ha(-1) in Montana. The CO(2) flux in undisturbed CRP was similar to that in no-tilled crops. Although soil C content was not altered, management practices influenced CO(2) flux within a short period due to changes in soil temperature, water, and nutrient contents. Regardless of irrigation, CO(2) flux can be reduced from croplands to a level similar to that in CRP planting using no

  17. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water.

    PubMed

    Jia, Aiyin; Wu, Chunde; Duan, Yan

    2016-05-01

    This study investigated the precursors and factors affecting formation of haloacetonitriles (HANs) and chloropicrin (TCNM) during chlorination/chloramination of eight amino acids in the effluent water of V-type clarifying filtration from a drinking water treatment plant. The yields of trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN) and TCNM were higher during chlorination than during chloramination. Tyrosine and tryptophan produced the greatest amount of DCAN and also generated a small amount of TCAN during chlorination process. Besides, the yields of DCAN were higher than TCNM during chlorination/chloramination. Contact time, Cl2:org-N molar ratios, pH, temperature and bromide ion affected nitrogenous disinfection by-products (N-DBPs) formation during chlorination of tryptophan in different degrees. TCAN, DCAN and TCNM formation showed the increasing and then decreasing with prolonged contact time. Higher Cl2:org-N molar ratios improved N-DBPs formation within a certain range. The pH affected N-DBPs formation differently. HANs increased with increasing pH from 5 to 6 and decreased with increasing pH from 6 to 9, while TCNM increased with increasing pH from 5 to 9. Higher temperatures enhanced TCNM formation, but reduced the formation of TCAN and DCAN. The presence of bromide ions improved the yields of HANs and TCNM and shifted N-DBPs to more brominated ones.

  18. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  19. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  20. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  1. Preferential flow, nitrogen transformations and 15N balance under urine-affected areas of irrigated and non-irrigated clover-based pastures

    NASA Astrophysics Data System (ADS)

    Pakro, Naser; Dillon, Peter

    1995-12-01

    Urine-affected areas can lead to considerable losses of N by leaching, ammonia volatilisation and denitrification from dairy pastures in the southeast of South Australia. Potable groundwater supplies are considered to have become contaminated by nitrate as a result of leaching from these leguminous pastures. Dairy cow urine, labelled with 15N urea, was applied to micro-plots and mini-lysimeters installed in two adjacent irrigated (white clover-rye grass) and non-irrigated (subterranean clover-annual grasses) paddocks of a dairy farm on four occasions representing different seasonal conditions. These experiments allowed measurement of nitrogen transformations, recovery of 15N in the pasture and soil, and leaching below various depths. Gaseous losses were calculated from the nitrogen balance. The results of the four experiments showed that within a day of urine application up to 40% of the applied urinary-N was leached below a depth of 150 mm as a result of macropore flow in the irrigated paddock, and up to 24% in the non-irrigated one. After application to the irrigated paddock 17% of the urinary-N moved immediately below 300 mm but only 2% below the 450-mm depth. The urinary-N remaining in the soil was converted from urea to ammonium within a day regardless of season. Within the first 7 days of application six times more nitrate was produced in summer than in winter. This has obvious implications for leaching potential. Leaching of 15N from the top 150 mm of soil, following urine applications in all seasons, was between 41% and 62% of the applied 15N in the irrigated paddock and 25-51% in the non-irrigated paddock. However, leaching losses measured at depths of 300 or 450 mm were smaller by a factor of 2-4. The leaching loss of 15N applied in spring in both paddocks was 41% below 150 mm and 12% below 450 mm. Recovery of 15N from the soil-plant system in the 450-nm deep lysimeters was ˜60% of that applied. Estimated ammonia was ˜9% of applied 15N with no paddock

  2. Evaluation of a Classroom-Based Psychosocial Intervention in Conflict-Affected Nepal: A Cluster Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Jordans, Mark J. D.; Komproe, Ivan H.; Tol, Wietse A.; Kohrt, Brandon A.; Luitel, Nagendra P.; Macy, Robert D.; de Jong, Joop T. V. M.

    2010-01-01

    Background: In situations of ongoing violence, childhood psychosocial and mental health problems require care. However, resources and evidence for adequate interventions are scarce for children in low- and middle-income countries. This study evaluated a school-based psychosocial intervention in conflict-affected, rural Nepal. Methods: A cluster…

  3. Hydrogeochemical variables regionalization--applying cluster analysis for a seasonal evolution model from an estuarine system affected by AMD.

    PubMed

    Grande, J A; Carro, B; Borrego, J; de la Torre, M L; Valente, T; Santisteban, M

    2013-04-15

    This study describes the spatial evolution of the hydrogeochemical parameters which characterise a strongly affected estuary by Acid Mine Drainage (AMD). The studied estuarine system receives AMD from the Iberian Pyrite Belt (SW Spain) and, simultaneously, is affected by the presence of an industrial chemical complex. Water sampling was performed in the year of 2008, comprising four sampling campaigns, in order to represent seasonality. The results show how the estuary can be divided into three areas of different behaviour in response to hydrogeochemical variables concentrations that define each sampling stations: on one hand, an area dominated by tidal influence; in the opposite end there is a second area including the points located in the two rivers headwaters that are not influenced by seawater; finally there is the area that can be defined as mixing zone. These areas are moved along the hydrological year due to seasonal chemical variations. PMID:23453814

  4. Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata.

    PubMed

    Barker, D H; Vanier, C; Naumburg, E; Charlet, T N; Nielsen, K M; Newingham, B A; Smith, S D

    2006-01-01

    Leaf-level CO2 assimilation (A(area)) can largely be predicted from stomatal conductance (g(s)), leaf morphology (SLA) and nitrogen (N) content (N(area)) in species across biomes and functional groups. The effects of simulated global change scenarios, increased summer monsoon rain (+H2O), N deposition (+N) and the combination (+H2O +N), were hypothesized to affect leaf trait-photosynthesis relationships differently in the short- and long-term for the desert shrub Larrea tridentata. During the spring, +H2O and +H2O +N plants had lower A(area) and g(s), but similar shoot water potential (Psi(shoot)) compared with control and +N plants; differences in A(area) were attributed to lower leaf N(area) and g(s). During the summer, +H2O and +H2O +N plants displayed higher A(area) than control and +N plants, which was attributed to higher Psi(shoot), g(s) and SLA. Throughout the year, A(area) was strongly correlated with g(s) but weakly correlated with leaf N(area) and SLA. We concluded that increased summer monsoon had a stronger effect on the performance of Larrea than increased N deposition. In the short term, the +H2O and +H2O +N treatments were associated with increasing A(area) in summer, but also with low leaf N(area) and lower A(area) in the long term the following spring.

  5. Effects of pre-treatment on the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input.

    PubMed

    Caceres, M Larry Lopez; Mizota, Chitoshi; Yamanaka, Toshiro; Nobori, Yoshihiro

    2011-11-15

    Temporal changes in the acquisition of nitrogen (N) are recorded in tree-rings together with unique N isotopic values. Some debate continues regarding the importance of wood pre-treatment in isotope analysis and, thus, this study focuses on the removal of labile components to determine the intrinsic nature of N in tree-rings. The total concentration and stable isotopic value of N in annual tree-rings were determined for two cores from Japanese black pine (Pinus thunbergii) from areas colonized by black cormorant (Phalacrocorax carbo). One core sample was also collected from a control site, without cormorants. Sharp increases in tree-ring δ(15)N values associated with migration of the cormorant population indicate positive incorporation of N from soils, whereas a less pronounced trend was observed for ring samples for periods without or substantially less migration, and for those obtained from the control site. All labile N components were removed by repeated extraction with toluene/ethanol (1:1) solution. Radial translocation of labile N is limited in tree-rings from Japanese black pine, providing intrinsic records on N acquisition. The difference in N isotopic values (up to 7.0‰) following pre-treatment was statistically significant for trees affected by the avian colony, whereas the pre-treatment of the control samples did not influence N values. The implication is that in agreement with previous studies pre-treatment is not necessary when trees are exposed to natural N concentrations in the soil but the removal of enriched δ(15)N labile components is necessary when woody plants are exposed to unusually high inputs of N into soils. However, the temporal trend in tree-ring δ(15)N series of the avian N affected trees did not change. Thus, if the priority is not the value but the trend then pre-treatment is not necessary. PMID:22006393

  6. Formation of aluminium, aluminium nitride and nitrogen clusters via laser ablation of nano aluminium nitride. Laser Desorption Ionisation and Matrix-Assisted Laser Desorption Ionisation Time-of-Flight Mass Spectrometry.

    PubMed

    Panyala, Nagender Reddy; Prysiazhnyi, Vadym; Slavíček, Pavel; Černák, Mirko; Havel, Josef

    2011-06-30

    Laser Desorption Ionisation (LDI) and Matrix-Assisted Laser Desorption Ionisation (MALDI) Time-of-Flight Mass Spectrometry (TOFMS) were used to study the pulsed laser ablation of aluminium nitride (AlN) nano powder. The formation of Al(m)(+) (m=1-3), N(n)(+) (n=4, 5), AlN(n)(+) (n=1-5, 19, 21), Al(m)N(+) (m=2-3), Al(3)N(2)(+), Al(9)N(n)(+) (n=5, 7, 9, 11 and 15), Al(11)N(n)(+) (n=4, 6, 10, 12, 19, 21, 23, and 25), and Al(13)N(n)(+) (n=25, 31, 32, 33, 34, 35, and 36) clusters was detected in positive ion mode. Similarly, Al(m)(-) (m=1-3), AlN(n)(-) (n=1-3, 5), Al(m)N(-) (n=2, 3), Al(2)N(n)(-) (n=2-4, 28, 30), N(n)(-) (n=2, 3), Al(4)N(7)(-) Al(8)N(n)(-) (n=1-6), and Al(13)N(n)(-) (n=9, 18, 20, 22, 24, 26, 28, 33, 35, 37, 39, 41 and 43) clusters were observed in negative ion mode. The formation of the stoichiometric Al(10) N(10) cluster was shown to be of low abundance. On the contrary, the laser ablation of nano-AlN led mainly to the formation of nitrogen-rich Al(m)N(n) clusters in both negative and positive ion mode. The stoichiometry of the Al(m)N(n) clusters was determined via isotopic envelope analysis and computer modelling. PMID:21598328

  7. Formation of aluminium, aluminium nitride and nitrogen clusters via laser ablation of nano aluminium nitride. Laser Desorption Ionisation and Matrix-Assisted Laser Desorption Ionisation Time-of-Flight Mass Spectrometry.

    PubMed

    Panyala, Nagender Reddy; Prysiazhnyi, Vadym; Slavíček, Pavel; Černák, Mirko; Havel, Josef

    2011-06-30

    Laser Desorption Ionisation (LDI) and Matrix-Assisted Laser Desorption Ionisation (MALDI) Time-of-Flight Mass Spectrometry (TOFMS) were used to study the pulsed laser ablation of aluminium nitride (AlN) nano powder. The formation of Al(m)(+) (m=1-3), N(n)(+) (n=4, 5), AlN(n)(+) (n=1-5, 19, 21), Al(m)N(+) (m=2-3), Al(3)N(2)(+), Al(9)N(n)(+) (n=5, 7, 9, 11 and 15), Al(11)N(n)(+) (n=4, 6, 10, 12, 19, 21, 23, and 25), and Al(13)N(n)(+) (n=25, 31, 32, 33, 34, 35, and 36) clusters was detected in positive ion mode. Similarly, Al(m)(-) (m=1-3), AlN(n)(-) (n=1-3, 5), Al(m)N(-) (n=2, 3), Al(2)N(n)(-) (n=2-4, 28, 30), N(n)(-) (n=2, 3), Al(4)N(7)(-) Al(8)N(n)(-) (n=1-6), and Al(13)N(n)(-) (n=9, 18, 20, 22, 24, 26, 28, 33, 35, 37, 39, 41 and 43) clusters were observed in negative ion mode. The formation of the stoichiometric Al(10) N(10) cluster was shown to be of low abundance. On the contrary, the laser ablation of nano-AlN led mainly to the formation of nitrogen-rich Al(m)N(n) clusters in both negative and positive ion mode. The stoichiometry of the Al(m)N(n) clusters was determined via isotopic envelope analysis and computer modelling.

  8. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    PubMed

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass.

  9. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.

    PubMed

    Jespersen, David; Huang, Bingru

    2015-02-01

    Heat stress causes premature leaf senescence in cool-season grass species. The objective of this study was to identify proteins regulated by nitrogen, cytokinins, and ethylene inhibitor in relation to heat-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Plants (cv. Penncross) were foliar sprayed with 18 mM carbonyldiamide (N source), 25 μM aminoethoxyvinylglycine (AVG, ethylene inhibitor), 25 μM zeatin riboside (ZR, cytokinin), or a water control, and then exposed to 20/15°C (day/night) or 35/30°C (heat stress) in growth chambers. All treatments suppressed heat-induced leaf senescence, as shown by higher turf quality and chlorophyll content, and lower electrolyte leakage in treated plants compared to the untreated control. A total of 49 proteins were responsive to N, AVG, or ZR under heat stress. The abundance of proteins in photosynthesis increased, with ribulose-1,5-bisphosphate carboxylase/oxygenase affected by all three treatments, chlorophyll a/b-binding protein by AVG and N or Rubisco activase by AVG. Proteins for amino acid metabolism were upregulated, including alanine aminotransferase by three treatments and ferredoxin-dependent glutamate synthase by AVG and N. Upregulated proteins also included catalase by AVG and N and heat shock protein by ZR. Exogenous applications of AVG, ZR, or N downregulated proteins in respiration (enolase, glyceraldehyde 3-phosphate dehydrogenase, and succinate dehygrogenase) under heat stress. Alleviation of heat-induced senescence by N, AVG, or ZR was associated with enhanced protein abundance in photosynthesis and amino acid metabolism and stress defense systems (heat shock protection and antioxidants), as well as suppression of those imparting respiration metabolism.

  10. Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen- and niobium-doped TiO2 and ZrO2.

    PubMed

    Schlexer, Philomena; Ruiz Puigdollers, Antonio; Pacchioni, Gianfranco

    2015-09-14

    The charge state of Ag and Au atoms and clusters (Ag4 and Au4, Ag5 and Au5) adsorbed on defective TiO2 anatase(101) and tetragonal ZrO2(101) has been systematically investigated as a function of oxide doping and defectivity using a DFT+U approach. As intrinsic defects, we have considered the presence of oxygen vacancies. As extrinsic defects, substitutional nitrogen- and niobium-doping have been investigated, respectively. Both surface and sub-surface defects and dopants have been considered. Whereas on surfaces with oxygen vacancies or Nb-doping, atoms and clusters may become negatively charged, N-doping always leads to the formation of positively charged adsorbates, independently of the supporting material (TiO2 or ZrO2). This suggests the possibility to tune the electronic properties of supported metal clusters by selective doping of the oxide support, an effect that may result in complete changes in chemical reactivity.

  11. Status of groundwater arsenic contamination and human suffering in a Gram Panchayet (cluster of villages) in Murshidabad, one of the nine arsenic affected districts in West Bengal, India.

    PubMed

    Rahman, Mohammad Mahmudur; Sengupta, Mrinal Kumar; Ahamed, Sad; Chowdhury, Uttam Kumar; Lodh, Dilip; Hossain, M Amir; Das, Bhaskar; Saha, Kshitish Chandra; Kaies, Imrul; Barua, Ajoy Kishore; Chakraborti, Dipankar

    2005-09-01

    A detailed study was carried out in a cluster of villages known as Sagarpara Gram Panchayet (GP), covering an area of 20 km2 and population of 24,419 to determine the status of groundwater arsenic contamination and related health effects. The arsenic analysis of all hand tubewells (n = 565) in working condition showed, 86.2% and 58.8% of them had arsenic above 10, and 50 microgl(-1), respectively. The groundwater samples from all 21 villages in Sagarpara GP contained arsenic above 50 microgl(-1). In our preliminary clinical survey across the 21 villages, 3,302 villagers were examined and 679 among them (20.6%) were registered with arsenical skin lesions. A total of 850 biological samples (hair, nail and urine) were analysed from the affected villages and, on average, 85% of them contained arsenic above the normal level. Thus, many people of Sagarpara might be sub-clinically affected. Our data was compared with the international one to estimate population in Sagarpara GP at risk from arsenical skin lesions and cancer. Proper watershed management and economical utilization of available surface water resources along with the villagers' participation is urgently required to combat the present arsenic crisis.

  12. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others

    PubMed Central

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J.; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  13. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

    PubMed

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  14. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

    PubMed

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  15. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data.

    PubMed

    Jain, Atul K; Meiyappan, Prasanth; Song, Yang; House, Joanna I

    2013-09-01

    The high uncertainty in land-based CO2 fluxes estimates is thought to be mainly due to uncertainty in not only quantifying historical changes among forests, croplands, and grassland, but also due to different processes included in calculation methods. Inclusion of a nitrogen (N) cycle in models is fairly recent and strongly affects carbon (C) fluxes. In this study, for the first time, we use a model with C and N dynamics with three distinct historical reconstructions of land-use and land-use change (LULUC) to quantify LULUC emissions and uncertainty that includes the integrated effects of not only climate and CO2 but also N. The modeled global average emissions including N dynamics for the 1980s, 1990s, and 2000-2005 were 1.8 ± 0.2, 1.7 ± 0.2, and 1.4 ± 0.2 GtC yr(-1) , respectively, (mean and range across LULUC data sets). The emissions from tropics were 0.8 ± 0.2, 0.8 ± 0.2, and 0.7 ± 0.3 GtC yr(-1) , and the non tropics were 1.1 ± 0.5, 0.9 ± 0.2, and 0.7 ± 0.1 GtC yr(-1) . Compared to previous studies that did not include N dynamics, modeled net LULUC emissions were higher, particularly in the non tropics. In the model, N limitation reduces regrowth rates of vegetation in temperate areas resulting in higher net emissions. Our results indicate that exclusion of N dynamics leads to an underestimation of LULUC emissions by around 70% in the non tropics, 10% in the tropics, and 40% globally in the 1990s. The differences due to inclusion/exclusion of the N cycle of 0.1 GtC yr(-1) in the tropics, 0.6 GtC yr(-1) in the non tropics, and 0.7 GtC yr(-1) globally (mean across land-cover data sets) in the 1990s were greater than differences due to the land-cover data in the non tropics and globally (0.2 GtC yr(-1) ). While land-cover information is improving with satellite and inventory data, this study indicates the importance of accounting for different processes, in particular the N cycle.

  16. Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees.

    PubMed

    Weigt, R B; Häberle, K H; Millard, P; Metzger, U; Ritter, W; Blaschke, H; Göttlein, A; Matyssek, R

    2012-10-01

    Impacts of elevated ground-level ozone (O(3)) on nitrogen (N) uptake and allocation were studied on mature European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.) in a forest stand, hypothesizing that: (i) chronically elevated O(3) limits nutrient uptake, and (ii) beech responds more sensitively to elevated O(3) than spruce, as previously found for juvenile trees. Tree canopies were exposed to twice-ambient O(3) concentrations (2 × O(3)) by a free-air fumigation system, with trees under ambient O(3) serving as control. After 5 years of O(3) fumigation, (15)NH(4)(15)NO(3) was applied to soil, and concentrations of newly acquired N (N(labelled)) and total N (N(total)) in plant compartments and soil measured. Under 2 × O(3), N(labelled) and N(total) were increased in the bulk soil and tended to be lower in fine and coarse roots of both species across the soil horizons, supporting hypothesis (i). N(labelled) was reduced in beech foliage by up to 60%, and by up to 50% in buds under 2 × O(3). Similarly, N(labelled) in stem bark and phloem was reduced. No such reduction was observed in spruce, reflecting a stronger effect on N acquisition in beech in accordance with hypothesis (ii). In spruce, 2 × O(3) tended to favour allocation of new N to foliage. N(labelled) in beech foliage correlated with cumulative seasonal transpiration, indicating impaired N acquisition was probably caused by reduced stomatal conductance and, hence, water transport under elevated O(3). Stimulated fine root growth under 2 × O(3) with a possible increase of below-ground N sink strength may also have accounted for lowered N allocation to above-ground organs. Reduced N uptake and altered allocation may enhance the use of stored N for growth, possibly affecting long-term stand nutrition.

  17. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, Phil-Goo; Mitchell, Myron J.; McHale, Patrick J.; Driscoll, Charles T.; Inamdar, Shreeram; Park, Ji-Hyung

    2016-05-01

    Lakes nested in forested watersheds play an important role in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC) and dissolved organic (DON) and inorganic nitrogen (DIN) in aquatic ecosystems of the Arbutus Lake watershed to evaluate how a lake nested in a forested watershed affects the sources (e.g., production) and sinks (e.g., retention) of DOC and DON in the Adirondack Mountains of New York, USA. We observed no significant long-term changes of DOC and DON in the lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass balances between inlet and outlet for the period from 2000 to 2009 suggested that the lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 µmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: + 87 µmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low percent retention ((influx-outflux)/influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different

  18. The overexpression of the pine transcription factor PpDof5 in Arabidopsis leads to increased lignin content and affects carbon and nitrogen metabolism.

    PubMed

    Rueda-López, Marina; Cañas, Rafael A; Canales, Javier; Cánovas, Francisco M; Ávila, Concepción

    2015-12-01

    PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees. PMID:26333592

  19. Transcriptional Profiling Identifies a Role for BrlA in the Response to Nitrogen Depletion and for StuA in the Regulation of Secondary Metabolite Clusters in Aspergillus fumigatus▿ ‡

    PubMed Central

    Twumasi-Boateng, Kwame; Yu, Yan; Chen, Dan; Gravelat, Fabrice N.; Nierman, William C.; Sheppard, Donald C.

    2009-01-01

    Conidiation (asexual sporulation) is a key developmental process in filamentous fungi. We examined the gene regulatory roles of the Aspergillus fumigatus developmental transcription factors StuAp and BrlAp during conidiation. Conidiation was completely abrogated in an A. fumigatus ΔbrlA mutant and was severely impaired in a ΔstuA mutant. We determined the full genome conidiation transcriptomes of wild-type and ΔbrlA and ΔstuA mutant A. fumigatus and found that BrlAp and StuAp governed overlapping but distinct transcriptional programs. Six secondary metabolite biosynthetic clusters were found to be regulated by StuAp, while only one cluster exhibited BrlAp-dependent expression. The ΔbrlA mutant, but not the ΔstuA mutant, had impaired downregulation of genes encoding ribosomal proteins under nitrogen-limiting, but not carbon-limiting, conditions. Interestingly, inhibition of the target of rapamycin (TOR) pathway also caused downregulation of ribosomal protein genes in both the wild-type strain and the ΔbrlA mutant. Downregulation of these genes by TOR inhibition was associated with conidiation in the wild-type strain but not in the ΔbrlA mutant. Therefore, BrlAp-mediated repression of ribosomal protein gene expression is not downstream of the TOR pathway. Furthermore, inhibition of ribosomal protein gene expression is not sufficient to induce conidiation in the absence of BrlAp. PMID:19028996

  20. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance.

    PubMed

    Yang, Yanjuan; Lu, Xiaomin; Yan, Bei; Li, Bin; Sun, Jin; Guo, Shirong; Tezuka, Takafumi

    2013-05-01

    The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100mM NaCl for 3d. The biomass and NO3(-) uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3(-) uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway

  1. Adsorption of nitrogen oxide molecules to the surface of nanosized nickel clusters formed on the (111) surface of a magnesium oxide film

    NASA Astrophysics Data System (ADS)

    Remar, D. F.; Turiev, A. M.; Tsidaeva, N. I.; Magkoev, T. T.

    2010-10-01

    The properties of the systems formed on deposition of Ni atoms on the (111) surface of a MgO film of thickness equal to six monomolecular layers grown on a Mo(110) crystal face and the adsorption of NO nitrogen oxide molecules to the system surface have been studied by methods of electron spectroscopy (AES, XPES, LEED, LEIBSS) and reflective infrared absorption spectroscopy. On deposition of Ni atoms on the surface of MgO at a substrate temperature of 600 K, three-dimensional islands of Ni are formed. The subsequent adsorption of NO results in molecule dissociation even at 110 K. The efficiency of this process depends on the morphology of the Ni layer.

  2. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway.

    PubMed Central

    Vander Wauven, C; Piérard, A; Kley-Raymann, M; Haas, D

    1984-01-01

    Pseudomonas aeruginosa PAO was able to grow in the absence of exogenous terminal electron acceptors, provided that the medium contained 30 to 40 mM L-arginine and 0.4% yeast extract. Under strictly anaerobic conditions (O2 at less than 1 ppm), growth could be measured as an increase in protein and proceeded in a non-exponential way; arginine was largely converted to ornithine but not entirely consumed at the end of growth. In the GasPak anaerobic jar (Becton Dickinson and Co.), the wild-type strain PAO1 grew on arginine-yeast extract medium in 3 to 5 days; mutants could be isolated that were unable to grow under these conditions. All mutants (except one) were defective in at least one of the three enzymes of the arginine deiminase pathway (arcA, arcB, and arcC mutants) or in a novel function that might be involved in anaerobic arginine uptake (arcD mutants). The mutations arcA (arginine deiminase), arcB (catabolic ornithine carbamoyltransferase), arcC (carbamate kinase), and arcD were highly cotransducible and mapped in the 17-min chromosome region. Some mutations in the arc cluster led to low, noninducible levels of all three arginine deiminase pathway enzymes and thus may affect control elements required for induction of the postulated arc operon. Two fluorescent pseudomonads (P. putida and P. fluorescens) and P. mendocina, as well as one PAO mutant, possessed an inducible arginine deiminase pathway and yet were unable to grow fermentatively on arginine. The ability to use arginine-derived ATP for growth may provide P. aeruginosa with a selective advantage when oxygen and nitrate are scarce. PMID:6438064

  3. Outcomes and moderators of a preventive school-based mental health intervention for children affected by war in Sri Lanka: a cluster randomized trial

    PubMed Central

    TOL, WIETSE A.; KOMPROE, IVAN H.; JORDANS, MARK J.D.; VALLIPURAM, ANAVARATHAN; SIPSMA, HEATHER; SIVAYOKAN, SAMBASIVAMOORTHY; MACY, ROBERT D.; DE JONG, JOOP T.

    2012-01-01

    We aimed to examine outcomes, moderators and mediators of a preventive school-based mental health intervention implemented by paraprofessionals in a war-affected setting in northern Sri Lanka. A cluster randomized trial was employed. Subsequent to screening 1,370 children in randomly selected schools, 399 children were assigned to an intervention (n=199) or waitlist control condition (n=200). The intervention consisted of 15 manualized sessions over 5 weeks of cognitive behavioral techniques and creative expressive elements. Assessments took place before, 1 week after, and 3 months after the intervention. Primary outcomes included post-traumatic stress disorder (PTSD), depressive, and anxiety symptoms. No main effects on primary outcomes were identified. A main effect in favor of intervention for conduct problems was observed. This effect was stronger for younger children. Furthermore, we found intervention benefits for specific subgroups. Stronger effects were found for boys with regard to PTSD and anxiety symptoms, and for younger children on pro-social behavior. Moreover, we found stronger intervention effects on PTSD, anxiety, and function impairment for children experiencing lower levels of current war-related stressors. Girls in the intervention condition showed smaller reductions on PTSD symptoms than waitlisted girls. We conclude that preventive school-based psychosocial interventions in volatile areas characterized by ongoing war-related stressors may effectively improve indicators of psychological wellbeing and posttraumatic stress-related symptoms in some children. However, they may undermine natural recovery for others. Further research is necessary to examine how gender, age and current war-related experiences contribute to differential intervention effects. PMID:22654944

  4. Sequences of nifX, nifW, nifZ, nifB and two ORF in the Frankia nitrogen fixation gene cluster.

    PubMed

    Harriott, O T; Hosted, T J; Benson, D R

    1995-08-01

    The actinomycete Frankia alni fixes N2 in root nodules of several non-leguminous plants. It is one of the few known N2-fixing members of the high-GC Gram+ lineage of prokaryotes. Thus, we have undertaken a study of its nitrogen fixation gene (nif) organization to compare with that of the more extensively characterized proteobacteria. A cosmid (pFN1) containing the nif region of Fa CpI1 was isolated from a cosmid library using the nifHDK genes of Fa CpI1 as a probe. A 4.5-kb BamHI fragment that mapped downstream from the previously characterized nifHDK genes was cloned and sequenced. Based on nt and aa sequence similarities to nif from other N2-fixing bacteria, eight ORF were identified and designated nifX, orf3, orf1, nifW, nifZ, nifB, orf2 and nifU. A region that hybridized to Rhizobium meliloti and Klebsiella pneumoniae nifA did not appear to contain a nifA-like gene. We have revised the map of the Fa nif region to reflect current information. PMID:7642138

  5. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China.

    PubMed

    Lin, Shan; Iqbal, Javed; Hu, Ronggui; Shaaban, Muhammad; Cai, Jianbo; Chen, Xi

    2013-08-01

    To investigate the influence of crop residues decomposition on nitrous oxide (N2O) emission, a field study was performed with application of crop residues with different C:N ratios in a bare yellow brown soil at the experimental station of Zhangjiachong at Zigui, China. We set up six experimental treatments: no crop residue (CK), rapeseed cake (RC), potato stalk (PS), rice straw (RS), wheat straw (WS), and corn straw (CS). The carbon (C) to nitrogen (N) ratios of these crop residues were 7.5, 32.9, 40.4, 65.7, and 90.9, respectively. Nitrous oxide fluxes were measured using a static closed chamber method. N2O emissions were significantly enhanced by incorporation of crop residues. Cumulative N2O emissions negatively correlated with C:N ratio (R (2) = 0.9821) of the crop residue, but they were positively correlated with average concentrations of dissolved organic carbon and microbial biomass carbon. Nitrogen emission fraction, calculated as N2O-N emissions originated from the crop residues N, positively correlated with C:N ratio of the residues (P < 0.05). Soil temperature did, whereas soil moisture did not, control the residue's induced N2O emissions because a significant correlation (P < 0.01) existed between soil temperature and N2O emissions in all treatments except the control. In contrast, a significant relationship between soil moisture and N2O emissions was found in the control only. Furthermore, N2O emission significantly correlated (P < 0.05) with NO3 (-)-N, and NH4 (+)-N contents from all residue treatments. These results indicate that (1) crop residues with distinct carbon and nitrogen contents can significantly alter soil N2O flux rates; and (2) soil biotic as well as abiotic variables are critical in determining soil-atmospheric N2O emissions after crop residue incorporation into soil.

  6. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce.

    PubMed

    Dao, Madjelia C E; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008-2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected. PMID:26617610

  7. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  8. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce.

    PubMed

    Dao, Madjelia C E; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008-2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected.

  9. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce

    PubMed Central

    Dao, Madjelia C. E.; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008–2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected. PMID:26617610

  10. Risk for self-reported anorexia or bulimia nervosa based on drive for thinness and negative affect clusters/dimensions during adolescence: A three-year prospective study of the TChAD cohort

    PubMed Central

    Peñas-Lledó, Eva; Bulik, Cynthia M.; Lichtenstein, Paul; Larsson, Henrik; Baker, Jessica H.

    2015-01-01

    Objective The present study explored the cross-sectional and predictive effect of drive for thinness and/or negative affect scores on the development of self-reported anorexia nervosa (AN) and bulimia nervosa (BN). Method K-means were used to cluster the Eating Disorder Inventory-Drive for Thinness (DT) and Child Behavior Checklist Anxious/Depressed (A/D) scores from 615 unrelated female twins at age 16–17. Logistic regressions were used to assess the effect of these clusters on self-reported eating disorder diagnosis at ages 16–17 (n=565) and 19–20 (n=451). Results DT and A/D scores were grouped into four clusters: Mild (scores lower than 90th percentile on both scales), DT (higher scores only on DT), A/D (higher scores only on A/D), and DT-A/D (higher scores on both the DT and A/D scales). DT and DT-A/D clusters at age 16–17 were associated cross-sectionally with AN and both cross-sectionally and longitudinally with BN. The DT-A/D cluster had the highest prevalence of AN at follow-up compared with all other clusters. Similarly, an interaction was observed between DT and A/D that predicted risk for AN. Discussion Having elevated DT and A/D scores may increase risk for eating disorder symptomatology above and beyond a high score on either alone. Findings suggest that cluster modeling based on DT and A/D may be useful to inform novel and useful intervention strategies for AN and BN in adolescents. PMID:26013185

  11. Star cluster dynamics.

    PubMed

    Vesperini, Enrico

    2010-02-28

    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.

  12. Influence on growth conditions on the value of crisphead lettuce. 2. Weight losses during storage as affected by nitrogen, plant age and cooling system.

    PubMed

    Poulsen, N; Sørensen, J N; Johansen, A S

    1994-07-01

    Storage of crisphead lettuce was carried out at 1 degrees C in an ordinary cold storage room and in an ice bank cooling system. The plants were grown at three plantings at 50, 100, 150 and 200 kg total nitrogen supply per hectare and harvested at two or three different plant ages. The cultivars used were 'Marius' and 'Saladin'. The aim of the experiment was to prolong the storage and to reduce the losses. After 14 days of storage the greatest total weight losses were found at the mid-season planting whereas the least total weight loss was found at the late planting. Ice bank cooling at all plantings reduced the total weight loss in comparison to the cold storage. The effect of nitrogen and cultivar was low. The total weight loss defined as loss due to transpiration and trimming was neither related to the head weight nor the surface area of the heads. A reduced loss with increasing plant age was not a question of increased transpiration due to surface to volume ratio changes, but may be related to other factors. A lower average total weight loss was found in the ice bank cooling system compared to the cold storage. The explanation of this might be the existence of a high relative humidity in the ice bank storage. To reduce the total weight loss harvest must take place at the right plant age. No definite growth stage was defined here, but the plants must have reached marketable quality as the young plants are more susceptible to weight loss during storage. It seems likely that some unknown internal factors in the plant were involved in reduction of the total weight loss. PMID:7971782

  13. Symbolic clustering

    SciTech Connect

    Reinke, R.E.

    1991-01-01

    Clustering is the problem of finding a good organization for data. Because there are many kinds of clustering problems, and because there are many possible clusterings for any data set, clustering programs use knowledge and assumptions about individual problems to make clustering tractable. Cluster-analysis techniques allow knowledge to be expressed in the choice of a pairwise distance measure and in the choice of clustering algorithm. Conceptual clustering adds knowledge and preferences about cluster descriptions. In this study the author describes symbolic clustering, which adds representation choice to the set of ways a data analyst can use problem-specific knowledge. He develops an informal model for symbolic clustering, and uses it to suggest where and how knowledge can be expressed in clustering. A language for creating symbolic clusters, based on the model, was developed and tested on three real clustering problems. The study concludes with a discussion of the implications of the model and the results for clustering in general.

  14. Molybdenum Trafficking for Nitrogen Fixation†

    PubMed Central

    Hernandez, Jose A.; George, Simon J.; Rubio, Luis M.

    2009-01-01

    The molybdenum nitrogenase is responsible for most biological nitrogen fixation, a prokaryotic metabolic process that determines the global biogeochemical cycles of nitrogen and carbon. Here we describe the trafficking of molybdenum for nitrogen fixation in the model diazotrophic bacterium Azotobacter vinelandii. The genes and proteins involved in molybdenum uptake, homeostasis, storage, regulation, and nitrogenase cofactor biosynthesis are reviewed. Molybdenum biochemistry in A. vinelandii reveals unexpected mechanisms and a new role for iron-sulfur clusters in the sequestration and delivery of molybdenum. PMID:19772354

  15. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  16. Food web of a confined and anthropogenically affected coastal basin (the Mar Piccolo of Taranto) revealed by carbon and nitrogen stable isotopes analyses.

    PubMed

    Bongiorni, Lucia; Fiorentino, Federica; Auriemma, Rocco; Aubry, Fabrizio Bernardi; Camatti, Elisa; Camin, Federica; Nasi, Federica; Pansera, Marco; Ziller, Luca; Grall, Jacques

    2016-07-01

    Carbon and nitrogen stable isotope analysis was used to examine the food web of the Mar Piccolo of Taranto, a coastal basin experiencing several anthropogenic impacts. Main food sources (algal detritus, seaweeds, particulate organic matter (POM) and sediment organic matter (SOM)) and benthic and pelagic consumers were collected during two contrasting seasons (June and April), at four sites distributed over two inlets, and characterized by different level of confinements, anthropogenic inputs and the presence of mussels farming. δ(13)C values of organic sources revealed an important contribution of POM to both planktonic and benthic pathways, as well as the influence of terrigenous inputs within both inlets, probably due to high seasonal land runoff. Although δ(13)C of both sources and consumers varied little between sampling sites and dates, δ(15)N spatial variability was higher and clearly reflected the organic enrichment in the second inlet as well as the uptake of anthropogenically derived material by benthic consumers. On the other hand, within the first inlet, the isotopic composition of consumers did not change in response to chemical contamination. However, the impact of polluted sediments near the Navy Arsenal in the first inlet was detectable at the level of the macrobenthic trophic structure, showing high dominance of motile, upper level consumers capable to face transient conditions and the reduction of the more resident deposit feeders. We therefore underline the great potential of matching stable isotope analysis with quantitative studies of community structure to assess the effects of multiple anthropogenic stressors.

  17. Food web of a confined and anthropogenically affected coastal basin (the Mar Piccolo of Taranto) revealed by carbon and nitrogen stable isotopes analyses.

    PubMed

    Bongiorni, Lucia; Fiorentino, Federica; Auriemma, Rocco; Aubry, Fabrizio Bernardi; Camatti, Elisa; Camin, Federica; Nasi, Federica; Pansera, Marco; Ziller, Luca; Grall, Jacques

    2016-07-01

    Carbon and nitrogen stable isotope analysis was used to examine the food web of the Mar Piccolo of Taranto, a coastal basin experiencing several anthropogenic impacts. Main food sources (algal detritus, seaweeds, particulate organic matter (POM) and sediment organic matter (SOM)) and benthic and pelagic consumers were collected during two contrasting seasons (June and April), at four sites distributed over two inlets, and characterized by different level of confinements, anthropogenic inputs and the presence of mussels farming. δ(13)C values of organic sources revealed an important contribution of POM to both planktonic and benthic pathways, as well as the influence of terrigenous inputs within both inlets, probably due to high seasonal land runoff. Although δ(13)C of both sources and consumers varied little between sampling sites and dates, δ(15)N spatial variability was higher and clearly reflected the organic enrichment in the second inlet as well as the uptake of anthropogenically derived material by benthic consumers. On the other hand, within the first inlet, the isotopic composition of consumers did not change in response to chemical contamination. However, the impact of polluted sediments near the Navy Arsenal in the first inlet was detectable at the level of the macrobenthic trophic structure, showing high dominance of motile, upper level consumers capable to face transient conditions and the reduction of the more resident deposit feeders. We therefore underline the great potential of matching stable isotope analysis with quantitative studies of community structure to assess the effects of multiple anthropogenic stressors. PMID:26381790

  18. [Nitrogen balance in dairy farm: research progress].

    PubMed

    Lü, Chao; Qin, Wen-Xiao; Gao, Teng-Yun; Wang, Xiao-Xiao; Han, Zhi-Guo; Li, Jia

    2013-01-01

    Large dairy farm with intensive management has high stocking density, but generally does not have enough space and normative feces disposal system, resulting in the discharged nitrogen surpassed the environmental carrying capacity of unit area land. Dairy farm is one of the major emission sources of nitrogen discharges in agriculture, where the nitrogen balance has being aroused attention by the experts abroad. The research on the nitrogen flow and nitrogen balance in dairy farm is the basis of the dairy farm nitrogen cycling and management study, as well as the basis for the construction of environmental laws, regulations and policies. The most reliable indicators to evaluate the nitrogen flow and nitrogen balance in dairy farm are nitrogen surplus and nitrogen use efficiency. This paper introduced the concept of nitrogen balance on farm-scale and the nitrogen flow within farm, compared the application scope of nitrogen surplus and nitrogen use efficiency, analyzed the factors affecting the nitrogen balance in dairy farm, and summarized the effective strategies to reduce the nitrogen discharges from dairy farm, aimed to provide references for the nitrogen management of dairy farm in China.

  19. Seasonal variation in nitrogen net uptake and root plasma membrane H+-ATPase activity of Scots pine seedlings as affected by nutrient availability.

    PubMed

    Iivonen, Sari; Vapaavuori, Elina

    2002-01-01

    We examined changes in nitrogen (N) net uptake and activity and amount of plasma membrane H+-ATPase (PM-ATPase) in roots of hydroponically cultured Scots pine (Pinus sylvestris L.) seedlings throughout a simulated second growing season. Seedlings were grown with low (0.25 mM N) or high (2.5 mM N) nutrient availability to determine whether root PM-ATPase is dependent on an external nutrient supply. Climatic conditions in the growth chamber simulated the mean growing season from May to mid-October in southern Finland. Root PM-ATPase activity varied considerably during the growing season and was higher in current-year roots than in previous-year roots. Total PM-ATPase activity of current-year roots was highest at the end of the growing season, whereas PM-ATPase activity per unit fresh mass of current-year roots and specific absorption rate of N were highest in mid-July and decreased at the end of the growing season. This indicates that the decrease in PM-ATPase activity per unit fresh mass of the roots at the end of the growing season was compensated by the increased size of the root system. Seasonal variation in PM-ATPase activity had no clear dependence on root zone temperature. The response of PM-ATPase to root zone temperature was dependent on the developmental stage of the seedling. High nutrient availability resulted in increased root PM-ATPase activity and an extended period of root growth in autumn. PMID:11772550

  20. The upside-down river: Reservoirs, algal blooms, and tributaries affect temporal and spatial patterns in nitrogen and phosphorus in the Klamath River, USA

    NASA Astrophysics Data System (ADS)

    Oliver, Allison A.; Dahlgren, Randy A.; Deas, Michael L.

    2014-11-01

    The Klamath River, located in Oregon/California of the Northwestern U.S., is highly impounded and also experiences large seasonal algal blooms and impaired water quality. We investigated nitrogen (N) and phosphorus (P) constituents for one year (2010-2011) across 193 km of the Klamath River at sites above and below reservoirs and major tributaries to determine the influence of these features on longitudinal and temporal trends in concentrations, loads, and N:P ratios. In general, the headwater lake (Upper Klamath Lake) and reservoirs appeared to be the dominant influence on water quality and nutrient dynamics in the upper river, whereas tributaries appeared to exert stronger influence in the lower river. Overall, high nutrients and poor water quality at upstream sites were ameliorated downstream, however the downstream reductions in N were much greater relative to P. Seasonality appeared to play a major role in the overall appearance and magnitude of longitudinal trends. The greatest upstream-downstream differences occurred during periods of time following large algal blooms in the upper portion of the river. Overall, the amount and composition of N appeared to be strongly driven by algal blooms and biogeochemical conditions such as low oxygen, high pH and warm temperatures in the upper portion of the river, whereas P was more strongly driven by seasonal hydrology. The spatiotemporal influence of reservoirs and tributaries on nutrient flux and nutrient ratios may have significant implications for aquatic communities and ecosystem health. Nutrient objectives should be considered when designing restoration, management, and monitoring objectives for projects involving habitat suitability for anadromous fish and potential dam removal.

  1. Cluster ion beam profiling of organics by secondary ion mass spectrometry--does sodium affect the molecular ion intensity at interfaces?

    PubMed

    Green, Felicia M; Gilmore, Ian S; Seah, Martin P

    2008-12-01

    The use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on "Sputtering and Ion Emission by Cluster Ion Beams", recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield. An alternative hypothesis was postulated in the workshop discussion which may be paraphrased as: "under primary ion bombardment of an organic layer, mobile ions such as sodium may migrate to the interface with the inorganic substrate and this enhancement of the sodium concentration increases the ionisation probability, so increasing the molecular ion yield observed at the interface". It is important to understand if measurement artefacts occur at interfaces for quantification as these are of great technological relevance - for example, the concentration of drug in a drug delivery system. Here, we evaluate the above hypothesis using a sample that exhibits regions of high and low sodium concentration at both the organic surface and the interface with the silicon wafer substrate. There is no evidence to support the hypothesis that the probability of molecular secondary ion ionisation is related to the sodium concentration at these levels. PMID:19039819

  2. The pH sensitivity of murine heat shock protein 47 (HSP47) binding to collagen is affected by mutations in the breach histidine cluster.

    PubMed

    Abdul-Wahab, Mohd Firdaus; Homma, Takayuki; Wright, Michael; Olerenshaw, Dee; Dafforn, Timothy R; Nagata, Kazuhiro; Miller, Andrew D

    2013-02-01

    Heat shock protein 47 (HSP47) is a single-substrate molecular chaperone crucial for collagen biosynthesis. Although its function is well established, the molecular mechanisms that govern binding to procollagen peptides and triple helices in the endoplasmic reticulum (followed by controlled release in the Golgi) are unclear. HSP47 binds procollagen at a neutral pH but releases at a pH similar to the pK(a) of the imidazole side chain of histidine residues. It thus seems likely that these residues are involved in this pH-dependent mechanism. Murine HSP47 has 14 histidine residues grouped into three clusters, known as the breach, gate, and shutter. Here, we report the use of histidine mutagenesis to demonstrate the relative contribution of these three clusters to HSP47 structure and the "pH switch." Many of the tested mutants are silent; however, breach mutants H197A and H198A show binding but no apparent pH switch and are unable to control release. Another breach mutant, H191A, shows perturbed collagen release characteristics, consistent with observed perturbations in pH-driven trans-conformational changes. Thus, His-198, His-197 and His-191 are important (if not central) to HSP47 mechanism of binding/release to collagen. This is consistent with the breach cluster residues being well conserved across the HSP47 family.

  3. ELEVATED CO{sub 2} IN A PROTOTYPE FREE-AIR CO{sub 2} ENRICHMENT FACILITY AFFECTS PHOTOSYNTHETIC NITROGEN RELATIONS IN A MATURING PINE FOREST

    SciTech Connect

    ELLSWORTH,D.S.; LA ROCHE,J.; HENDREY,G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric [CO{sub 2}] {approx} 550 {micro}mol mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Their findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. While carboxylation efficiency per unit N apparently decreased under elevated CO{sub 2}, photosynthetic rates in trees at elevated CO{sub 2} concentrations {approx} 550 pmol mol{sub {minus}1} are still

  4. Elevated CO{sub 2} in a prototype free-air CO{sub 2} enrichment facility affects photosynthetic nitrogen relations in a maturing pine forest

    SciTech Connect

    Ellsworth, D.S.; LaRoche, J.; Hendrey, G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric CO{sub 2} {approx} 550 {micro}mol/mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. Findings suggest a need for continued examination of internal feedbacks at the whole-tree and ecosystem level in forests that may influence long-term photosynthetic responses to elevated CO{sub 2}.

  5. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  6. Processing of soybean meal and 00-rapeseed meal reduces protein digestibility and pig growth performance but does not affect nitrogen solubilization along the small intestine.

    PubMed

    Hulshof, T G; van der Poel, A F B; Hendriks, W H; Bikker, P

    2016-06-01

    An experiment was conducted to determine the effects of processing of soybean meal (SBM) and 00-rapeseed meal (RSM) on N solubilization in chyme, CP digestibility along the small intestine, metabolic load as determined by organ weight, body composition, and growth performance in growing pigs. The SBM and RSM were processed by secondary toasting (at 95°C for 30 min) in the presence of lignosulfonate, resulting in processed SBM (pSBM) and processed RSM (pRSM) as a model for overprocessed protein sources. Fifty-four growing pigs were each fed 1 of the 6 experimental diets. Four of the diets contained SBM, pSBM, RSM, or pRSM as the sole protein source. The remaining 2 experimental diets contained pSBM or pRSM and were supplemented with crystalline AA to the same standardized ileal digestible AA levels as the SBM or RSM diet. Pigs were slaughtered at 40 kg, and organ weights were recorded. The organs plus blood and empty carcass were analyzed for CP content. The small intestine was divided into 3 segments, and chyme samples were taken from the last meter of each segment. Chyme of the SBM, pSBM, RSM, and pRSM diets was centrifuged to separate the soluble and insoluble fractions, and N content was determined in the latter. The amount of insoluble N as a fraction of N in chyme at each small intestinal segment was not affected by processing. Diet type, comprising effects of processing and supplementing crystalline AA, affected ( < 0.05) the G:F and standardized ileal digestibility (SID) of CP. Processing reduced G:F from 0.56 to 0.38 for SBM and 0.49 to 0.40 for RSM, whereas supplementing crystalline AA increased G:F to the level of the SBM and RSM diets. Processing reduced the SID of CP from 87.2% to 69.2% for SBM and 71.0% to 52.2% for RSM. Diet type affected ( < 0.05) the CP content in the empty body, with processing reducing this content from 170 to 144 g/kg empty BW for SBM and 157 to 149 g/kg empty BW for RSM and supplementing crystalline AA restoring this content

  7. Nitrogen Uptake in Spinach

    NASA Astrophysics Data System (ADS)

    Ramirez, J.; VanBenthem, P.

    2013-12-01

    A plant's absorption of nitrogen can be encouraged by a variety of environmental factors, especially the application of fertilizers. As a common limiting factor in plant growth, not up taking enough nitrogen can be a result of an unhealthy plant. Moreover, as farmers seek out methods to increase growth of plants, fertilizers are used as a solution to the issue of nitrogen deficiency to incorporate additional nitrogen from chemical or organic sources, by not using the right fertilizer can greatly affect the plats. The point of this research project is to determine the effect of various fertilizers on the plant growth, and to correlate the measured nitrogen, water and chlorophyll content in spinach leaves. Spinach leaves were used because they are known to quickly uptake chemicals in the environment. The spinach plants were exposed to four different growing parameters, which are referred to as control, ammonium nitrate, MiracleGro , and organic. The spinach was originally placed in nitrogen deficient soil with only 2.2x10 4 weight percent (wt. %) nitrogen. The leaves in the control group were grown in this nitrogen deficient soil without any fertilizer added. Ammomium nitrate and MiracleGro were added to the spinach in the A and MG groups, respectively, and organic chicken stool was used for the O group. By using a spectral imaging system and flame combustion techniques, the chlorophyll content can be related to the nitrogen content in the spinach leaves. In these spinach leaves, nitrogen and chlorophyll content were measured, chlorophyll is a green pigment that plays a crucial role in producing nutrients for green plants. The lack of chlorophyll will allow the plant to become susceptible to diseases, so it is extremely important that the plants have a high content of chlorophyll. The role of nitrogen in chlorophyll is very important and helps in the creation of chlorophyll; therefore it is necessary that an appropriate amount of nitrogen is added for optimal growth

  8. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons.

    PubMed

    Wang, Qian-fei; Liu, Xin; O'Connell, Jeff; Peng, Ze; Krauss, Ronald M; Rainwater, David L; VandeBerg, John L; Rubin, Edward M; Cheng, Jan-Fang; Pennacchio, Len A

    2004-05-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well-established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well-characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL-cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human quantitative trait loci genes in a highly controlled non-human primate model.

  9. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    SciTech Connect

    Wang, Qian-fei; Liu, Xin; O'Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  10. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production.

    PubMed

    Brown, Daren W; Butchko, Robert A E; Busman, Mark; Proctor, Robert H

    2007-07-01

    Fumonisins are mycotoxins produced by some Fusarium species and can contaminate maize or maize products. Ingestion of fumonisins is associated with diseases, including cancer and neural tube defects, in humans and animals. In fungi, genes involved in the synthesis of mycotoxins and other secondary metabolites are often located adjacent to each other in gene clusters. Such genes can encode structural enzymes, regulatory proteins, and/or proteins that provide self-protection. The fumonisin biosynthetic gene cluster includes 16 genes, none of which appear to play a role in regulation. In this study, we identified a previously undescribed gene (FUM21) located adjacent to the fumonisin polyketide synthase gene, FUM1. The presence of a Zn(II)2Cys6 DNA-binding domain in the predicted protein suggested that FUM21 was involved in transcriptional regulation. FUM21 deletion (Deltafum21) mutants produce little to no fumonisin in cracked maize cultures but some FUM1 and FUM8 transcripts in a liquid GYAM medium. Complementation of a Deltafum21 mutant with a wild-type copy of the gene restored fumonisin production. Analysis of FUM21 cDNAs identified four alternative splice forms (ASFs), and microarray analysis indicated the ASFs were differentially expressed. Based on these data, we present a model for how FUM21 ASFs may regulate fumonisin biosynthesis.

  11. Variations in the natural ¹⁵N abundance of Brassica chinensis grown in uncultivated soil affected by different nitrogen fertilizers.

    PubMed

    Yuan, Yuwei; Hu, Guixian; Zhao, Ming; Chen, Tianjin; Zhang, Yongzhi; Zhu, Jiahong; Wang, Qiang

    2014-11-26

    To further investigate the method of using δ(15)N as a marker for organic vegetable discrimination, the effects of different fertilizers on the δ(15)N in different growing stages of Brassica chinensis (B. chinensis) grown in uncultivated soil were investigated with a pot experiment. B. chinensis was planted with uncultivated soil and different fertilizer treatments and then harvested three times in three seasons consecutively. For the spring experiments in the years of 2011 and 2012, the δ(15)N value of B. chinensis, which increased due to organic manure application and decreased due to chemical fertilizer application, was significantly different (p < 0.05) with manure treatment and chemical treatment. The δ(15)N value of vegetables varied among three growing stages and ranged from +8.6‰ to +11.5‰ for the control, from +8.6‰ to +12.8‰ for the compost chicken manure treatment, from +2.8‰ to +7.7‰ for the chemical fertilizer urea treatment, and from +7.7‰ to +10.9‰ for the compost-chemical fertilizer treatment. However, the δ(15)N values observed in the autumn experiment of 2011 without any fertilizer application increased ranging from +13.4‰ to +15.4‰, + 11.2‰ to +17.7‰, +10.7‰ to +17.1‰, and +10.6‰ to +19.1‰, respectively, for the same treatments mentioned above. This result was not significantly different between manure treatment and chemical treatment. The δ(15)N values of soil obtained in the spring of 2011 during three growing stages were slightly affected by fertilizers and varied in the range of +1.6‰ to +2.5‰ for CK, +4.7‰ to +6.5‰ for compost treatment, +2.1‰ to +2.4‰ for chemical treatment, and +2.7‰ to +4.6‰ for chemical-compost treatment, respectively. High δ(15)N values of B. chinensis were observed in these experiments, which would be useful to supplement a δ(15)N database for discriminating organic vegetables. Although there was a significant difference between manure treatment and chemical

  12. Nitrogen in plasmas and steel weld metal

    NASA Astrophysics Data System (ADS)

    Palmer, Todd Allen

    Nitrogen concentrations, well above those predicted by Sieverts' Law, are observed during the arc welding of iron and steel. Several models, which take into account the absorption of monatomic nitrogen and a competition between nitrogen absorption and desorption, have been developed. None, though, provides a means for accurately calculating the nitrogen concentration in a steel weldment, as a function of the welding variables. The aim of this work is therefore to develop a comprehensive model to accurately predict the nitrogen concentration in the weld pool and validate the model with experimental data. Transport phenomena, plasma physics, and thermodynamic calculations have been combined to produce realistic calculations of the nitrogen concentration in the weld metal. The computed residual nitrogen concentrations are affected by complex factors, including the amount of nitrogen in the feed gas, the electron temperature distribution above the weld pool, and the nature of the fluid flow in the weld pool. Each of these factors has been taken into consideration here. Of primary importance in the calculation of the nitrogen concentration is the effect of desorption of dissolved nitrogen from the weld pool via bubble formation. Based on a comparison of modeling and experimental results, it is found that a supersaturation of nitrogen in the liquid metal 50 to 100% greater than the equilibrium nitrogen solubility with one atmosphere of diatomic nitrogen at the weld pool surface is required for bubbles to nucleate. These calculated values have been compared with residual nitrogen concentrations measured for various welding conditions. Experimental nitrogen concentrations fall between 400 and 650 ppm, and the manner in which the nitrogen concentration changes with the nitrogen partial pressure in the feed gas is affected by the changes in the welding speed. Model calculations compare favorably with these experimental results. In total, therefore, this work represents the

  13. [Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field].

    PubMed

    Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei

    2015-03-01

    A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.

  14. Nitrogen species

    NASA Technical Reports Server (NTRS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; Mccormick, M. P.; Noxon, J.; Owens, A. J.

    1985-01-01

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  15. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  16. Demonstration of a Coherent Electronic Spin Cluster in Diamond.

    PubMed

    Knowles, Helena S; Kara, Dhiren M; Atatüre, Mete

    2016-09-01

    An obstacle for spin-based quantum sensors is magnetic noise due to proximal spins. However, a cluster of such spins can become an asset, if it can be controlled. Here, we polarize and readout a cluster of three nitrogen electron spins coupled to a single nitrogen-vacancy spin in diamond. We further achieve sub-nm localization of the cluster spins. Finally, we demonstrate coherent spin exchange between the species by simultaneous dressing of the nitrogen-vacancy and the nitrogen states. These results establish the feasibility of environment-assisted sensing and quantum simulations with diamond spins. PMID:27636464

  17. Demonstration of a Coherent Electronic Spin Cluster in Diamond

    NASA Astrophysics Data System (ADS)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2016-09-01

    An obstacle for spin-based quantum sensors is magnetic noise due to proximal spins. However, a cluster of such spins can become an asset, if it can be controlled. Here, we polarize and readout a cluster of three nitrogen electron spins coupled to a single nitrogen-vacancy spin in diamond. We further achieve sub-nm localization of the cluster spins. Finally, we demonstrate coherent spin exchange between the species by simultaneous dressing of the nitrogen-vacancy and the nitrogen states. These results establish the feasibility of environment-assisted sensing and quantum simulations with diamond spins.

  18. Demonstration of a Coherent Electronic Spin Cluster in Diamond.

    PubMed

    Knowles, Helena S; Kara, Dhiren M; Atatüre, Mete

    2016-09-01

    An obstacle for spin-based quantum sensors is magnetic noise due to proximal spins. However, a cluster of such spins can become an asset, if it can be controlled. Here, we polarize and readout a cluster of three nitrogen electron spins coupled to a single nitrogen-vacancy spin in diamond. We further achieve sub-nm localization of the cluster spins. Finally, we demonstrate coherent spin exchange between the species by simultaneous dressing of the nitrogen-vacancy and the nitrogen states. These results establish the feasibility of environment-assisted sensing and quantum simulations with diamond spins.

  19. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  20. Cluster headache

    MedlinePlus

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... be related to the body's sudden release of histamine (chemical in the body released during an allergic ...

  1. Methods of affecting nitrogen assimilation in plants

    DOEpatents

    Coruzzi, Gloria; Gutierrez, Rodrigo A.; Nero, Damion C.

    2016-10-11

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  2. Meaningful Clusters

    SciTech Connect

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  3. Abell Clusters

    NASA Astrophysics Data System (ADS)

    Katgert, P.; Murdin, P.

    2000-11-01

    Abell clusters are the most conspicuous groupings of galaxies identified by George Abell on the plates of the first photographic survey made with the SCHMIDT TELESCOPE at Mount Palomar in the 1950s. Sometimes, the term Abell clusters is used as a synonym of nearby, optically selected galaxy clusters....

  4. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  5. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.

    PubMed

    Tate, Jennifer J; Rai, Rajendra; Cooper, Terrance G

    2015-02-01

    A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This

  6. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  7. Nitrogen Mineralization Response to Tillage Practices on Low and High Nitrogen Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In strip tillage, crop residue is left on soil surface, decreasing the contact between soil and the residue, and therefore reducing decomposition rates compared to conventional tillage methods. Decomposition rates directly affect carbon and nitrogen ratios, which can affect nitrogen mineralization r...

  8. Human influences on nitrogen removal in lakes.

    PubMed

    Finlay, Jacques C; Small, Gaston E; Sterner, Robert W

    2013-10-11

    Human activities have increased the availability of reactive nitrogen in many ecosystems, leading to negative impacts on human health, biodiversity, and water quality. Freshwater ecosystems, including lakes, streams, and wetlands, are a large global sink for reactive nitrogen, but factors that determine the efficacy of freshwater nitrogen removal rates are poorly known. Using a global lake data set, we show that the availability of phosphorus, a limiting nutrient, affects both annual nitrogen removal rate and efficiency. This result indicates that increased phosphorus inputs from human activities have stimulated nitrogen removal processes in many lakes. Recent management-driven reductions in phosphorus availability promote water column accumulation and export of nitrogen from large lakes, an unintended consequence of single-element management that argues for greater control of nitrogen as well as phosphorus sources.

  9. Tailoring and Scaling Energetic Aluminum Clusters into Cluster Assembled Materials

    NASA Astrophysics Data System (ADS)

    Smith, Jordan Cesar

    As matter decreases in size the importance of a single atom increases exponentially. The properties of clusters, molecules with less than 100 atoms, will change drastically with the addition or removal of a single atom. Clusters have been shown to have properties that mimic other elements and properties that are completely unique. Cluster assemblies could enable the tailoring of precise properties in materials, providing cheap replacements for expensive elements, or novel materials for new applications. Aluminum clusters show great potential use in many applications including energy and catalysis. This work is focused on gaining a better understanding of how geometry and electronic structure affect aluminum cluster reactivity and how useful clusters might be successfully assembled into materials. The effects of doping aluminum cluster ions with boron atoms are reported and show that the addition of a single boron atom usually stabilizes the cluster while adding more boron atoms results in a breaking of symmetry and destabilization. A new analytical technique, matrix isolation cavity ring-down spectroscopy (MICRDS) was developed to help bridge the gap between gas phase cluster studies and condensed phase cluster materials. Molecules are trapped in an inert matrix and studied using cavity ring-down spectroscopy. MICRDS has the potential to also combine clusters into small stable units that would maintain their advantageous gas phase properties.

  10. Quintuplet Cluster

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Penetrating 25,000 light-years of obscuring dust and myriad stars, NASA's Hubble Space Telescope has provided the clearest view yet of one of the largest young clusters of stars inside our Milky Way galaxy, located less than 100 light-years from the very center of the Galaxy. Having the equivalent mass greater than 10,000 stars like our sun, the monster cluster is ten times larger than typical young star clusters scattered throughout our Milky Way. It is destined to be ripped apart in just a few million years by gravitational tidal forces in the galaxy's core. But in its brief lifetime it shines more brightly than any other star cluster in the Galaxy. Quintuplet Cluster is 4 million years old. It has stars on the verge of blowing up as supernovae. It is the home of the brightest star seen in the galaxy, called the Pistol star. This image was taken in infrared light by Hubble's NICMOS camera in September 1997. The false colors correspond to infrared wavelengths. The galactic center stars are white, the red stars are enshrouded in dust or behind dust, and the blue stars are foreground stars between us and the Milky Way's center. The cluster is hidden from direct view behind black dust clouds in the constellation Sagittarius. If the cluster could be seen from earth it would appear to the naked eye as a 3rd magnitude star, 1/6th of a full moon's diameter apart.

  11. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  12. Occupational Clusters.

    ERIC Educational Resources Information Center

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  13. Cluster generator

    DOEpatents

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  14. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  15. Total nitrogen content of deep sea basalts

    NASA Technical Reports Server (NTRS)

    Norris, T. L.; Schaeffer, O. A.

    1982-01-01

    An estimate of the total nitrogen content of the earth's mantle, aimed at furnishing a further constraint for earth atmosphere origin and evolution models, was attempted through thermal neutron activation analysis via N-14(n,p)C-14 for the case of deep sea basalt glasses from the East Pacific Rise, the Mid-Atlantic Rift, and the Juan de Fuca Ridge. The increased nitrogen abundance of matrix material from the same samples as the glasses may be due to the incorporation of chemically-bound nitrogen from sea water, rather than dissolved molecular nitrogen. A discussion is presented of factors affecting observed basalt nitrogen content and its interpretation in terms of mantle nitrogen abundance. A 2 ppm N lower limit is estimated for the mantle.

  16. Clustering in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Figueroa, Bernardo; Zenit, Roberto

    2004-11-01

    We are conducting experiments to determine the amount of clustering that occurs when small gas bubbles ascend in clean water. In particular, we are interested in flows for which the liquid motion around the bubbles can be described, with a certain degree of accuracy, using potential flow theory. This model is applicable for the case of bubbly liquids in which the Reynolds number is large and the Weber number is small. To clearly observe the formation of bubble clusters we propose the use of a Hele-Shaw-type channel. In this thin channel the bubbles cannot overlap in the depth direction, therefore the identification of bubble clusters cannot be misinterpreted. Direct video image analysis is performed to calculate the velocity and size of the bubbles, as well as the formation of clusters. Although the walls do affect the motion of the bubbles, the clustering phenomena does occur and has the same qualitative behavior as in fully three-dimensional flows. A series of preliminary measurements are presented. A brief discussion of our plans to perform PIV measurements to obtain the liquid velocity fields is also presented.

  17. Nitrogen narcosis and alcohol consumption--a scuba diving fatality.

    PubMed

    Michalodimitrakis, E; Patsalis, A

    1987-07-01

    Nitrogen narcosis can cause death among experienced scuba divers. Nitrogen under pressure affects the brain by acting as an anesthetic agent. Furthermore, the consumption of ethanol along with diving will cause the symptoms of nitrogen narcosis to occur at depths less than 30 m. Our case deals with an experienced diver who drank alcoholic beverages before diving and developed symptoms of nitrogen narcosis at a shallow depth. These two conditions contributed to his death by drowning.

  18. The galactic globular cluster system

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Meylan, G.

    1994-01-01

    We explore correlations between various properties of Galactic globular clusters, using a database on 143 objects. Our goal is identify correlations and trends which can be used to test and constrain theoretical models of cluster formation and evolution. We use a set of 13 cluster parameters, 9 of which are independently measured. Several arguments suggest that the number of clusters still missing in the obscured regions of the Galaxy is of the order of 10, and thus the selection effects are probably not severe for our sample. Known clusters follow a power-law density distribution with a slope approximately -3.5 to -4, and an apparent core with a core radius approximately 1 kpc. Clusters show a large dynamical range in many of their properties, more so for the core parameters (which are presumably more affected by dynamical evolution) than for the half-light parameters. There are no good correlations with luminosity, although more luminous clusters tend to be more concentrated. When data are binned in luminosity, several trends emerge: more luminous clusters tend to have smaller and denser cores. We interpret this as a differential survival effect, with more massive clusters surviving longer and reaching more evolved dynamical states. Cluster core parameters and concentrations also correlate with the position in the Galaxy, with clusters closer to the Galactic center or plane being more concentrated and having smaller and denser cores. These trends are more pronounced for the fainter (less massive) clusters. This is in agreement with a picture where tidal shocks form disk or bulge passages accelerate dynamical evolution of clusters. Cluster metallicities do not correlate with any other parameter, including luminosity and velocity dispersion; the only detectable trend is with the position in the Galaxy, probably reflecting Zinn's disk-halo dichotomy. This suggests that globular clusters were not self-enriched systems. Velocity dispersions show excellent correlations

  19. Influence of reactive gas admixture on transition metal cluster nucleation in a gas aggregation cluster source

    NASA Astrophysics Data System (ADS)

    Peter, Tilo; Polonskyi, Oleksandr; Gojdka, Björn; Mohammad Ahadi, Amir; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2012-12-01

    We quantitatively assessed the influence of reactive gases on the formation processes of transition metal clusters in a gas aggregation cluster source. A cluster source based on a 2 in. magnetron is used to study the production rate of titanium and cobalt clusters. Argon served as working gas for the DC magnetron discharge, and a small amount of reactive gas (oxygen and nitrogen) is added to promote reactive cluster formation. We found that the cluster production rate depends strongly on the reactive gas concentration for very small amounts of reactive gas (less than 0.1% of total working gas), and no cluster formation takes place in the absence of reactive species. The influence of discharge power, reactive gas concentration, and working gas pressure are investigated using a quartz micro balance in a time resolved manner. The strong influence of reactive gas is explained by a more efficient formation of nucleation seeds for metal-oxide or nitride than for pure metal.

  20. Argon clusters embedded in helium nanodroplets.

    PubMed

    da Silva, Filipe Ferreira; Bartl, Peter; Denifl, Stephan; Echt, Olof; Märk, Tilmann D; Scheier, Paul

    2009-11-14

    Electron impact ionization of argon clusters embedded in helium droplets is investigated. Superior mass resolution makes it possible to distinguish between nominally isobaric cluster ions. An abundance maximum for ArHe(12)(+) is unambiguously confirmed; the spectra also prove the formation of Ar(2)He(n)(+) complexes that had been claimed to fragment into pure Ar(2)(+). Distributions of larger argon cluster ions containing up to 60 atoms closely resemble distributions observed upon electron impact or photoionization of bare argon clusters; caging and evaporative cooling provided by the helium matrix do not suffice to quench fragmentation of the nascent argon cluster ions. Intriguing abundance anomalies are observed in distributions of argon cluster ions that contain water, nitrogen or oxygen impurities. The strong abundance of Ar(55)H(2)O(+), Ar(54)O(2)(+) and Ar(54)N(2)(+) contrasts with the virtual absence of slightly larger cluster ions containing the corresponding impurities. The features are probably related to enhanced cluster ion stability upon closure of the second icosahedral shell but the difference in magic numbers (54 versus 55) and the well-known reactivity of charged argon-nitrogen complexes suggest structural differences. PMID:19851558

  1. Soil carbon storage and N{sub 2}O emissions from wheat agroecosystems as affected by free-air CO{sub 2} enrichment (FACE) and nitrogen treatments. Final Report - February 12, 1999

    SciTech Connect

    S. W. Leavitt; A. D. Matthias; T. L. Thompson; R. A. Rauschkolb

    1999-02-17

    Rising atmospheric CO{sub 2} concentrations have prompted concern about response of plants and crops to future elevated CO{sub 2} levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO{sub 2} concentrations. Free-air CO{sub 2} enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO{sub 2} and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grain yield, phenology, length of growing season, water-use efficiency ecosystem production, below ground processes (eg, root and microbial activity, carbon and nitrogen cycling), etc.

  2. Sulfur and nitrogen uptake by loblolly pine seedlings as influenced by nitrogen and sulfur addition

    SciTech Connect

    Kelly, J.M.; Johnson, D.W.

    1982-12-01

    The influence of increasing levels of nitrogen addition at several levels of sulfur input on nitrogen and sulfur uptake by loblolly pine seedlings was evaluated in a greenhouse study. All possible combinations on nitrogen and sulfur were incorporated into soil collected from the A horizon of a southeastern forest soil at rates of 0, 200, 500, and 1,000 ..mu..g/g of N, and 0, 14, 35, and 70 ..mu..g/g of S. Soil samples collected at the end of the study indicated that a similar amount of soil SO/sub 4/-S had been mineralized in all treatment combinations, compared to a general pattern of increasing soil nitrogen mineralization with increasing nitrogen input. Most mineralized sulfate appeared to come from nonprotein organic compounds as there was not a significant concomitant release of nitrogen. Both shoot and root biomass responded significantly to nitrogen addition, but there was no sulfur or nitrogen-sulfur interaction response. Nitrogen treatment generally increased shoot nitrogen concentration compared to a general decrease in shoot total-, sulfate-, and organically bound-sulfur. Organically bound-sulfur concentrations were 26 to 60 percent below sulfur values calculated from an S/N ratio of 0.03 on a gram atom basis. The results show that increased nitrogen addition affected both growth and sulfur status of loblolly pine seedlings, but not entirely in the manner predicted by theoretical considerations.

  3. Sulfur and nitrogen uptake by loblolly pine seedlings as influenced by nitrogen and sulfur addition

    SciTech Connect

    Kelly, J.M.; Johnson, D.W.

    1982-12-01

    The influence of increasing levels of nitrogen addition at several levels of sulfur input on nitrogen and sulfur uptake by loblolly pine seedlings was evaluated in a greenhouse study. All possible combinations of nitrogen and sulfur were incorporated into soil collected from the A horizon of a southeastern forest soil at rates of 0, 200, 500, and 1,000 ..mu..g/g of N, and 0, 14, 35, and 70 ..mu..g/g of S. Soil samples collected at the end of the study indicated that a similar amount of soil SO/sub 4/-S had been mineralized in all treatment combinations, compared to a general pattern of increasing soil nitrogen mineralization with increasing nitrogen input. Most mineralized sulfate appeared to come from nonprotein organic compounds as there was not a significant concomitant release of nitrogen. Both shoot and root biomass responded significantly to nitrogen addition, but there was no sulfur or nitrogen-sulfur interaction response. Nitrogen treatment generally increased shoot nitrogen concentration compared to a general decrease in shoot total-, sulfate-, and organically bound-sulfur. Organically bound-sulfur concentrations were 26 to 60 percent below sulfur values calculated from an S/N ratio of 0.03 on a gram atom basis. The results show that increased nitrogen addition affected both growth and sulfur status of loblolly pine seedlings, but not entirely in the manner predicted by theoretical considerations.

  4. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    PubMed

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  5. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance. PMID:22294028

  6. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance.

  7. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  8. Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage.

    PubMed

    Kim, Seong-Heon; Cho, Ju-Sik; Park, Jong-Hwan; Heo, Jong-Soo; Ok, Yong-Sik; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    To investigate the long-term nitrogen treatment efficiency in vertical-flow (VF)-horizontal-flow (HF) hybrid constructed wetlands (CWs), the nitrogen removal efficiency under different seasons, N loads, and three operating stages (representing age of the wetland) were evaluated over a 12-year period. The average total nitrogen (TN) removal efficiencies in the effluent during the operation period were in the following order: summer (75.2%) > spring (73.4%) ≒ autumn (72.6%) > winter (66.4%). The removal efficiencies of TN in summer, autumn, and spring were generally higher than those in winter. At different stages of operation (years), the average TN removal rates in the effluent were in the following order: middle stage (73.4%; years 2006-2009) > last stage (72.0%; years 2010-2013) > beginning stage (70.1%; years 2002-2005). In VF-HF CWs, the amount of average TN removal (mg N m(-2) day(-1)) over the 12-year period was in the order of summer (5.5) ≒ autumn (5.1) > spring (4.3) ≒ winter (4.2) for the VF bed and in the order of summer (3.5) ≒ spring (3.5) ≒ autumn (3.3) > winter (2.7) for the HF bed, showing that the amount of TN removal per unit area (m(2)) in summer was slightly greater than that in other seasons. The amount of TN removal in the VF bed was slightly greater than that in the HF bed. Using three-dimensional simulation graphs, the maximum TN removal rate was at inflow N loads below 2.7 g m(-2) day(-1) in the summer season, whereas the minimum TN removal rate was at inflow N loads below 1.4 g m(-2) day(-1) in the winter season. Consequently, the TN removal efficiency was very stable over the 12 years of operation in VF-HF hybrid CWs. Results demonstrate that the VF-HF hybrid CWs possess good buffer capacity for treating TN from domestic sewage for extended periods of time.

  9. Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage.

    PubMed

    Kim, Seong-Heon; Cho, Ju-Sik; Park, Jong-Hwan; Heo, Jong-Soo; Ok, Yong-Sik; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    To investigate the long-term nitrogen treatment efficiency in vertical-flow (VF)-horizontal-flow (HF) hybrid constructed wetlands (CWs), the nitrogen removal efficiency under different seasons, N loads, and three operating stages (representing age of the wetland) were evaluated over a 12-year period. The average total nitrogen (TN) removal efficiencies in the effluent during the operation period were in the following order: summer (75.2%) > spring (73.4%) ≒ autumn (72.6%) > winter (66.4%). The removal efficiencies of TN in summer, autumn, and spring were generally higher than those in winter. At different stages of operation (years), the average TN removal rates in the effluent were in the following order: middle stage (73.4%; years 2006-2009) > last stage (72.0%; years 2010-2013) > beginning stage (70.1%; years 2002-2005). In VF-HF CWs, the amount of average TN removal (mg N m(-2) day(-1)) over the 12-year period was in the order of summer (5.5) ≒ autumn (5.1) > spring (4.3) ≒ winter (4.2) for the VF bed and in the order of summer (3.5) ≒ spring (3.5) ≒ autumn (3.3) > winter (2.7) for the HF bed, showing that the amount of TN removal per unit area (m(2)) in summer was slightly greater than that in other seasons. The amount of TN removal in the VF bed was slightly greater than that in the HF bed. Using three-dimensional simulation graphs, the maximum TN removal rate was at inflow N loads below 2.7 g m(-2) day(-1) in the summer season, whereas the minimum TN removal rate was at inflow N loads below 1.4 g m(-2) day(-1) in the winter season. Consequently, the TN removal efficiency was very stable over the 12 years of operation in VF-HF hybrid CWs. Results demonstrate that the VF-HF hybrid CWs possess good buffer capacity for treating TN from domestic sewage for extended periods of time. PMID:26298340

  10. Cluster headache

    PubMed Central

    2010-01-01

    Introduction The revised International Headache Society (IHS) criteria for cluster headache are: attacks of severe or very severe, strictly unilateral pain, which is orbital, supraorbital, or temporal pain, lasting 15 to 180 minutes and occurring from once every other day to eight times daily. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions to abort cluster headache? What are the effects of interventions to prevent cluster headache? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations, such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 23 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: baclofen (oral); botulinum toxin (intramuscular); capsaicin (intranasal); chlorpromazine; civamide (intranasal); clonidine (transdermal); corticosteroids; ergotamine and dihydroergotamine (oral or intranasal); gabapentin (oral); greater occipital nerve injections (betamethasone plus xylocaine); high-dose and high-flow-rate oxygen; hyperbaric oxygen; leuprolide; lidocaine (intranasal); lithium (oral); melatonin; methysergide (oral); octreotide (subcutaneous); pizotifen (oral); sodium valproate (oral); sumatriptan (oral, subcutaneous, and intranasal); topiramate (oral); tricyclic antidepressants (TCAs); verapamil; and zolmitriptan (oral and intranasal). PMID:21718584

  11. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  12. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  13. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  14. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  15. Scale and space dependencies of Nitrogen variability

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Castellanos, M. T.; Cartagena, M. C.; Ribas, F.; Cabello, M. J.; Arce, A.; Bird, N. R. A.

    2012-04-01

    In this study we use the relative entropy (E(δ)) to investigate residual effects on wheat and grain, biomass and nitrogen content, of fertigation treatments applied to a previous crop. The wheat crop covered nine subplots from a previous experiment on melon response to fertigation. Each subplot had previously received a different level of applied nitrogen and plants from the previous melon crop had already taken up the applied nitrogen. Many factors affect these variables, causing it to vary at different scales creating a non uniform distribution. E(δ), and their increments between scales, were used to identify the scale at which the variable had a maximum structure and compare with the scaling behavior of the nitrogen applied. The E(δ)is particularly appropriate for this because of does not require any prior assumptions to the structure of the data and it is easy to calculate. The results showed that the applied nitrogen through fertirrigation dominated the wheat and grain biomass response as well as nitrogen content of the whole plant; surprisingly grain nitrogen content didn't show the same structure than the applied nitrogen. At the same time, there was a noticeable structure variation in the biomass and nitrogen content at the smaller scales that correspond to the melon cropping due to uptake of the applied nitrogen by the previous crop. The E(δ) and the increments in E(δ) help us to detect changes in the scaling behavior of all the variables studied, showing at which scale there is a maximum structure. These results are in agreement with previous studies.

  16. Luminescence Solvato- and Vapochromism of Alkynyl-Phosphine Copper Clusters.

    PubMed

    Krytchankou, Ilya S; Koshevoy, Igor O; Gurzhiy, Vladislav V; Pomogaev, Vladimir A; Tunik, Sergey P

    2015-09-01

    The reaction of [Cu(NCMe)4][PF6] with aromatic acetylenes HC2R and triphosphine 1,1,1-tris(diphenylphosphino)methane in the presence of NEt3 results in the formation of hexanuclear Cu(I) clusters with the general formula [Cu6(C2R)4{(PPh2)3CH}2][PF6]2 (R = 4-X-C6H4 (1-5) and C5H4N (6); X = NMe2 (1), OMe (2), H (3), Ph (4), CF3 (5)). The structural motif of the complexes studied consists of a Cu6 metal core supported by two phosphine ligands and stabilized by σ- and π-coordination of the alkynyl fragments (together with coordination of pyridine nitrogen atoms in cluster 6). The solid state structures of complexes 2-6 were determined by single crystal XRD analysis. The structures of the complexes in solution were elucidated by (1)H, (31)P, (1)H-(1)H COSY NMR spectroscopy, and ESI mass spectrometry. Clusters 1-6 exhibit moderately strong phosphorescence in the solid state with quantum yields up to 17%. Complexes 1-5 were found to form solvates (acetone, acetonitrile) in the solid state. The coordination of loosely bound solvent molecules strongly affects emission characteristics and leads to solvato- and vapochromic behavior of the clusters. Thus, solvent-free and acetonitrile solvated forms of 3 demonstrate contrasting emission in orange (615 nm) and blue (475 nm) regions, respectively. The computational studies show that alkynyl-centered IL transitions mixed with those of MLCT between the Cu6 metal core and the ligand environment play a dominant role in the formation of excited states and can be considerably modulated by weakly coordinating solvent molecules leading to luminescence vapochromism. PMID:26262819

  17. Nitrogen control of chloroplast differentiation

    SciTech Connect

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  18. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  19. Flameless nitrogen skid unit

    SciTech Connect

    Loesch, S.B.; John, J.C.; Mints, D.K.

    1984-03-27

    A flameless nitrogen vaporizing unit includes a first internal combustion engine driving a nitrogen pump through a transmission. A second internal combustion engine drives three hydraulic oil pumps against a variable back pressure so that a variable load may be imposed upon the second engine. Liquid nitrogen is pumped from the nitrogen pump driven by the first engine into a first heat exchanger where heat is transferred from exhaust gases from the first and second internal combustion engines to the liquid nitrogen to cause the nitrogen to be transformed into a gaseous state. The gaseous nitrogen then flows into a second heat exchanger where it is superheated by an engine coolant fluid to heat the gaseous nitrogen to essentially an ambient temperature. The superheated nitrogen is then injected into the well. The engine coolant fluid flows in a coolant circulation system. Heat is transferred to the coolant fluid directly from the internal combustion engine. Heat is also provided to the coolant fluid from lubrication oil pumped by the three pumps attached to the second internal combustion engine. The coolant fluid circulating system includes a comingling chamber for comingling warmer coolant fluid flowing from the internal combustion engines to the second heat exchanger with cooler coolant fluids flowing from the second heat exchanger to the internal combustion engines. Methods of vaporizing nitrogen are also disclosed.

  20. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  1. The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network

    PubMed Central

    Fareh, M; Turchi, L; Virolle, V; Debruyne, D; Almairac, F; de-la-Forest Divonne, S; Paquis, P; Preynat-Seauve, O; Krause, K-H; Chneiweiss, H; Virolle, T

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of primary brain tumor in adults, often characterized by poor survival. Glioma-initiating cells (GiCs) are defined by their extensive self-renewal, differentiation, and tumor initiation properties. GiCs are known to be involved in tumor growth and recurrence, and in resistance to conventional treatments. One strategy to efficiently target GiCs in GBM consists in suppressing their stemness and consequently their tumorigenic properties. In this study, we show that the miR-302-367 cluster is strongly induced during serum-mediated stemness suppression. Stable miR-302-367 cluster expression is sufficient to suppress the stemness signature, self-renewal, and cell infiltration within a host brain tissue, through inhibition of the CXCR4 pathway. Furthermore, inhibition of CXCR4 leads to the disruption of the sonic hedgehog (SHH)-GLI-NANOG network, which is involved in self-renewal and expression of the embryonic stem cell-like signature. In conclusion, we demonstrated that the miR-302-367 cluster is able to efficiently trigger a cascade of inhibitory events leading to the disruption of GiCs stem-like and tumorigenic properties. PMID:21720384

  2. The size of star clusters accreted by the Milky Way

    NASA Astrophysics Data System (ADS)

    Miholics, Meghan; Webb, Jeremy J.; Sills, Alison

    2014-12-01

    We perform N-body simulations of a cluster that forms in a dwarf galaxy and is then accreted by the Milky Way to investigate how a cluster's structure is affected by a galaxy merger. We find that the cluster's half-mass radius will respond quickly to this change in potential. When the cluster is placed on an orbit in the Milky Way with a stronger tidal field the cluster experiences a sharp decrease in size in response to increased tidal forces. Conversely, when placed on an orbit with a weaker tidal field, the cluster expands since tidal forces decrease and no longer limit the expansion due to internal effects. In all cases, we find that the cluster's half-mass radius will eventually be indistinguishable from a cluster that has always lived in the Milky Way on that orbit. These adjustments occur within 1-2 half-mass relaxation times of the cluster in the dwarf galaxy. We also find this effect to be qualitatively independent of the time that the cluster is taken from the dwarf galaxy. In contrast to the half-mass radius, we show the core radius of the cluster is not affected by the potential the cluster lives in. Our work suggests that structural properties of accreted clusters are not distinct from clusters born in the Milky Way. Other cluster properties, such as metallicity and horizontal branch morphology, may be the only way to identify accreted star clusters in the Milky Way.

  3. [Vertical Distribution Characteristics of Typical Forest Soil Organic Nitrogen in Dawei Mountain].

    PubMed

    Ding, Xian-qing; Ma, Hui-jing; Zhu, Xiao-long; Chen, Shan; Hou, Hong-bo; Peng, Pei-qin

    2015-10-01

    To clarify altitudinal gradient of subtropical forest soil total nitrogen and organic nitrogen, soil samples were collected per 10 cm on soil profile (0-100 cm) in Dawei Mountain, researched the variation of soil organic nitrogen and correlation with soil physical and chemical properties. The results showed that: (1) Total nitrogen, acid hydrolysable organic nitrogen and soluble organic nitrogen decreased with the increase of depth, content of each component in mountain granite yellow-brown soils was much higher affected by altitude; (2) The average percentage of soil organic nitrogen to total nitrogen was 97.39% ± 1.17%, and soil acid hydrolysable organic nitrogen was 64.38% ± 10.68%, each component decreased with the increase of soil depth; (3) Soil soluble organic nitrogen content was 9.92- 23.45 mg x kg(-1), free amino acids (1.62 - 12.02 mg x kg(-1)) accounted for about 27.36% ± 9.95% of soluble organic nitrogen; (4) Soil acid hydrolysable organic nitrogen and soluble organic nitrogen were significantly positively correlated with total nitrogen, total soluble nitrogen and inorganic nitrogen (P < 0.05), were highly significantly correlated with soil bulk density, organic carbon, and total phosphorus (P < 0.01). Organic nitrogen was the main body of soil nitrogen in typical subtropical forest, each component showed a downward trend increase with soil depth affected by altitude and soil physical and chemical properties. There was a close conversion relationship between soil organic nitrogen and other nitrogen forms, the characteristics of soil organic nitrogen will have profound impact on nitrogen cycling of forest ecological system. PMID:26841616

  4. [Vertical Distribution Characteristics of Typical Forest Soil Organic Nitrogen in Dawei Mountain].

    PubMed

    Ding, Xian-qing; Ma, Hui-jing; Zhu, Xiao-long; Chen, Shan; Hou, Hong-bo; Peng, Pei-qin

    2015-10-01

    To clarify altitudinal gradient of subtropical forest soil total nitrogen and organic nitrogen, soil samples were collected per 10 cm on soil profile (0-100 cm) in Dawei Mountain, researched the variation of soil organic nitrogen and correlation with soil physical and chemical properties. The results showed that: (1) Total nitrogen, acid hydrolysable organic nitrogen and soluble organic nitrogen decreased with the increase of depth, content of each component in mountain granite yellow-brown soils was much higher affected by altitude; (2) The average percentage of soil organic nitrogen to total nitrogen was 97.39% ± 1.17%, and soil acid hydrolysable organic nitrogen was 64.38% ± 10.68%, each component decreased with the increase of soil depth; (3) Soil soluble organic nitrogen content was 9.92- 23.45 mg x kg(-1), free amino acids (1.62 - 12.02 mg x kg(-1)) accounted for about 27.36% ± 9.95% of soluble organic nitrogen; (4) Soil acid hydrolysable organic nitrogen and soluble organic nitrogen were significantly positively correlated with total nitrogen, total soluble nitrogen and inorganic nitrogen (P < 0.05), were highly significantly correlated with soil bulk density, organic carbon, and total phosphorus (P < 0.01). Organic nitrogen was the main body of soil nitrogen in typical subtropical forest, each component showed a downward trend increase with soil depth affected by altitude and soil physical and chemical properties. There was a close conversion relationship between soil organic nitrogen and other nitrogen forms, the characteristics of soil organic nitrogen will have profound impact on nitrogen cycling of forest ecological system.

  5. Albert Behnke: nitrogen narcosis.

    PubMed

    Grover, Casey A; Grover, David H

    2014-02-01

    As early as 1826, divers diving to great depths noted that descent often resulted in a phenomenon of intoxication and euphoria. In 1935, Albert Behnke discovered nitrogen as the cause of this clinical syndrome, a condition now known as nitrogen narcosis. Nitrogen narcosis consists of the development of euphoria, a false sense of security, and impaired judgment upon underwater descent using compressed air below 3-4 atmospheres (99 to 132 feet). At greater depths, symptoms can progress to loss of consciousness. The syndrome remains relatively unchanged in modern diving when compressed air is used. Behnke's use of non-nitrogen-containing gas mixtures subsequent to his discovery during the 1939 rescue of the wrecked submarine USS Squalus pioneered the use of non-nitrogen-containing gas mixtures, which are used by modern divers when working at great depth to avoid the effects of nitrogen narcosis.

  6. Mapping quantitative trait loci for nitrogen uptake and utilization efficiency in rice (Oryza sativa L.) at different nitrogen fertilizer levels.

    PubMed

    Dai, G J; Cheng, S H; Hua, Z T; Zhang, M L; Jiang, H B; Feng, Y; Shen, X H; Su, Y A; He, N; Ma, Z B; Ma, X Q; Hou, S G; Wang, Y R

    2015-01-01

    Genetic improvement is the fundamental basis for improving nitrogen-use efficiency. A better understanding of genetic factors controlling nitrogen uptake and utilization is required for crop genetic improvement. In this study, we identified the quantitative trait loci (QTLs) associated with traits of nitrogen uptake and utilization by using the single-sequence repeat marker method and a recombinant inbred line (RIL) population derived from a super hybrid Xieyou9308. All the traits investigated were inherited quantitatively by continuous variation and showed normal distribution in phenotype with transgressive segregation in the RIL population. Most of the traits were significantly correlated with each other except for nitrogen absorption ability (NAA) with nitrogen harvest index (NHI) and NHI with agricultural nitrogen-absorption efficiency (ANAE). At logarithmic odds value of 2.3, total 13 candidate QTLs, including 4 for NAA, 2 for NHI, 2 for physiological nitrogen-use efficiency, 1 for agricultural nitrogen-use efficiency (ANUE), and 4 for ANAE, were detected and mapped on chromosomes 2, 3, 4, 5, 8, 9, 10, and 12. Significant pleiotropic effect or neighboring expression of QTLs was observed among traits. At position 64.8 cM on chromosome 4 near the marker RM5757, there was a QTL cluster of NAA, ANUE, and ANAE, and at chromosome 5 near the marker RM5968, there was a QTL cluster of NAA and ANUE. The QTL clusters might provide partial explanation and genetic mechanism for the observed correlations between nitrogen uptake and utilization efficiency traits and might form a basis for future breeding programs. PMID:26400271

  7. Mapping quantitative trait loci for nitrogen uptake and utilization efficiency in rice (Oryza sativa L.) at different nitrogen fertilizer levels.

    PubMed

    Dai, G J; Cheng, S H; Hua, Z T; Zhang, M L; Jiang, H B; Feng, Y; Shen, X H; Su, Y A; He, N; Ma, Z B; Ma, X Q; Hou, S G; Wang, Y R

    2015-09-08

    Genetic improvement is the fundamental basis for improving nitrogen-use efficiency. A better understanding of genetic factors controlling nitrogen uptake and utilization is required for crop genetic improvement. In this study, we identified the quantitative trait loci (QTLs) associated with traits of nitrogen uptake and utilization by using the single-sequence repeat marker method and a recombinant inbred line (RIL) population derived from a super hybrid Xieyou9308. All the traits investigated were inherited quantitatively by continuous variation and showed normal distribution in phenotype with transgressive segregation in the RIL population. Most of the traits were significantly correlated with each other except for nitrogen absorption ability (NAA) with nitrogen harvest index (NHI) and NHI with agricultural nitrogen-absorption efficiency (ANAE). At logarithmic odds value of 2.3, total 13 candidate QTLs, including 4 for NAA, 2 for NHI, 2 for physiological nitrogen-use efficiency, 1 for agricultural nitrogen-use efficiency (ANUE), and 4 for ANAE, were detected and mapped on chromosomes 2, 3, 4, 5, 8, 9, 10, and 12. Significant pleiotropic effect or neighboring expression of QTLs was observed among traits. At position 64.8 cM on chromosome 4 near the marker RM5757, there was a QTL cluster of NAA, ANUE, and ANAE, and at chromosome 5 near the marker RM5968, there was a QTL cluster of NAA and ANUE. The QTL clusters might provide partial explanation and genetic mechanism for the observed correlations between nitrogen uptake and utilization efficiency traits and might form a basis for future breeding programs.

  8. Nitrogen In Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D. J.; Reisenfeld, D.; Shappirio, M. D.; Baragiola, R.; Michael, M.; Shematovich, V. I.; Crary, F.; Young, D. T.

    2004-12-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions in the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to our models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and CAPS Cassini instrument team programs.

  9. Dynamical evolution of globular-cluster systems in clusters of galaxies

    SciTech Connect

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  10. The CORE study protocol: a stepped wedge cluster randomised controlled trial to test a co-design technique to optimise psychosocial recovery outcomes for people affected by mental illness in the community mental health setting

    PubMed Central

    Palmer, Victoria J; Chondros, Patty; Piper, Donella; Callander, Rosemary; Weavell, Wayne; Godbee, Kali; Potiriadis, Maria; Richard, Lauralie; Densely, Konstancja; Herrman, Helen; Furler, John; Pierce, David; Schuster, Tibor; Iedema, Rick; Gunn, Jane

    2015-01-01

    Introduction User engagement in mental health service design is heralded as integral to health systems quality and performance, but does engagement improve health outcomes? This article describes the CORE study protocol, a novel stepped wedge cluster randomised controlled trial (SWCRCT) to improve psychosocial recovery outcomes for people with severe mental illness. Methods An SWCRCT with a nested process evaluation will be conducted over nearly 4 years in Victoria, Australia. 11 teams from four mental health service providers will be randomly allocated to one of three dates 9 months apart to start the intervention. The intervention, a modified version of Mental Health Experience Co-Design (MH ECO), will be delivered to 30 service users, 30 carers and 10 staff in each cluster. Outcome data will be collected at baseline (6 months) and at completion of each intervention wave. The primary outcome is improvement in recovery score using the 24-item Revised Recovery Assessment Scale for service users. Secondary outcomes are improvements to user and carer mental health and well-being using the shortened 8-item version of the WHOQOL Quality of Life scale (EUROHIS), changes to staff attitudes using the 19-item Staff Attitudes to Recovery Scale and recovery orientation of services using the 36-item Recovery Self Assessment Scale (provider version). Intervention and usual care periods will be compared using a linear mixed effects model for continuous outcomes and a generalised linear mixed effects model for binary outcomes. Participants will be analysed in the group that the cluster was assigned to at each time point. Ethics and dissemination The University of Melbourne, Human Research Ethics Committee (1340299.3) and the Federal and State Departments of Health Committees (Project 20/2014) granted ethics approval. Baseline data results will be reported in 2015 and outcomes data in 2017. Trial registration number Australian and New Zealand Clinical Trials Registry ACTRN

  11. Detonation of Meta-stable Clusters

    SciTech Connect

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  12. Cultivar effects on nitrogen fixation in peas and lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing nitrogen fixation in legume crops could increase cropping productivity and reduce nitrogen fertilizer use. Studies have found that crop genotype, rhizobial strain, and occasionally genotype-specific interactions affect N fixation, but this knowledge has not yet been used to evaluate or br...

  13. Initial Influence of Fertilizer Nitrogen Types on Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using different sources of nitrogen as fertilizer in nursery ponds may affect water quality and plankton responses. We evaluated water quality variables and plankton population responses when using different nitrogen sources for catfish nursery pond fertilization. We compared calcium nitrate (12% ...

  14. Nitrogen trading tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  15. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  16. The Fixation of Nitrogen.

    ERIC Educational Resources Information Center

    Andrew, S. P. S.

    1978-01-01

    Discusses the fixation of atmospheric nitrogen in the form of ammonia as one of the foundations of modern chemical industry. The article describes ammonia production and synthesis, purifying the hydrogen-nitrogen mix, nitric acid production, and its commericial plant. (HM)

  17. Update: Biological Nitrogen Fixation.

    ERIC Educational Resources Information Center

    Wiseman, Alan; And Others

    1985-01-01

    Updates knowledge on nitrogen fixation, indicating that investigation of free-living nitrogen-fixing organisms is proving useful in understanding bacterial partners and is expected to lead to development of more effective symbioses. Specific areas considered include biochemistry/genetics, synthesis control, proteins and enzymes, symbiotic systems,…

  18. NEO-FFI personality clusters in trichotillomania.

    PubMed

    Keuthen, Nancy J; Tung, Esther S; Tung, Matthew G; Curley, Erin E; Flessner, Christopher A

    2016-05-30

    The purpose of this study was to determine whether personality prototypes exist among hair pullers and if these groups differ in hair pulling (HP) characteristics, clinical correlates, and quality of life. 164 adult hair pullers completed the NEO-Five Factor Inventory (NEO-FFI; Costa and McCrae, 1992) and self-report measures of HP severity, HP style, affective state, and quality of life. A latent class cluster analysis using NEO-FFI scores was performed to separate participants into clusters. Bonferroni-corrected t-tests were used to compare clusters on HP, affective, and quality of life variables. Multiple regression was used to determine which variables significantly predicted quality of life. Two distinct personality prototypes were identified. Cluster 1 (n=96) had higher neuroticism and lower extraversion, agreeableness, and conscientiousness when compared to cluster 2 (n=68). No significant differences in demographics were reported for the two personality clusters. The clusters differed on extent of focused HP, severity of depression, anxiety, and stress, as well as quality of life. Those in cluster 1 endorsed greater depression, anxiety, and stress, and worse quality of life. Additionally, only depression and cluster membership (based on NEO scores) significantly predicted quality of life. PMID:27016621

  19. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  20. The microbial nitrogen cycle.

    PubMed

    Jetten, Mike S M

    2008-11-01

    This special issue highlights several recent discoveries in the microbial nitrogen cycle including the diversity of nitrogen-fixing bacteria in special habitats, distribution and contribution of aerobic ammonium oxidation by bacteria and crenarchaea in various aquatic and terrestrial ecosystems, regulation of metabolism in nitrifying bacteria, the molecular diversity of denitrifying microorganisms and their enzymes, the functional diversity of freshwater and marine anammox bacteria, the physiology of nitrite-dependent anaerobic methane oxidation and the degradation of recalcitrant organic nitrogen compounds. Simultaneously the articles in this issue show that many questions still need to be addressed, and that the microbes involved in catalyzing the nitrogen conversions still harbour many secrets that need to be disclosed to fully understand the biogeochemical nitrogen cycle, and make future predictions and global modelling possible.

  1. Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Bica, E.; Ortolani, S.; Barbuy, B.

    2016-06-01

    A view of the Galactic bulge by means of their globular clusters is fundamental for a deep understanding of its formation and evolution. Connections between the globular cluster and field star properties in terms of kinematics, orbits, chemical abundances, and ages should shed light on different stellar population components. Based on spatial distribution and metallicity, we define a probable best list of bulge clusters, containing 43 entries. Future work on newly discovered objects, mostly from the VVV survey, is suggested. These candidates might alleviate the issue of missing clusters on the far side of the bulge. We discuss the reddening law affecting the cluster distances towards the centre of the Galaxy, and conclude that the most suitable total-to-selective absorption value appears to be R V=3.2, in agreement with recent analyses. An update of elemental abundances for bulge clusters is provided.

  2. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  3. Molecular Biology of Nitrogen Fixation

    ERIC Educational Resources Information Center

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  4. The Application of Enrichment Clusters to Teachers' Classroom Practices.

    ERIC Educational Resources Information Center

    Reis, Sally M.; Gentry, Marcia; Maxfield, Lori R.

    1998-01-01

    A study investigated the effects of providing one type of gifted-education pedagogy, enrichment clusters, to the entire population of two urban elementary schools. The teaching practices of classroom teachers who participated as cluster facilitators were positively affected both in the enrichment clusters and in regular classrooms. (Author/CR)

  5. Hydrogen and nitrogen control in ladle and casting operations

    SciTech Connect

    Fruehan, R. J.; Misra, Siddhartha

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly.

  6. Bioturbation: impact on the marine nitrogen cycle.

    PubMed

    Laverock, Bonnie; Gilbert, Jack A; Tait, Karen; Osborn, A Mark; Widdicombe, Steve

    2011-01-01

    Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significantly affect these microbial processes by altering the physicochemical properties of the sediment. For example, the building and irrigation of burrows by bioturbators introduces fresh oxygenated water into deeper sediment layers and allows the exchange of solutes between the sediment and water column. Burrows can effectively extend the oxic/anoxic interface into deeper sediment layers, thus providing a unique environment for nitrogen-cycling microbial communities. Recent studies have shown that the abundance and diversity of micro-organisms can be far greater in burrow wall sediment than in the surrounding surface or subsurface sediment; meanwhile, bioturbated sediment supports higher rates of coupled nitrification-denitrification reactions and increased fluxes of ammonium to the water column. In the present paper we discuss the potential for bioturbation to significantly affect marine nitrogen cycling, as well as the molecular techniques used to study microbial nitrogen cycling communities and directions for future study.

  7. Cluster Dynamics Largely Shapes Protoplanetary Disk Sizes

    NASA Astrophysics Data System (ADS)

    Vincke, Kirsten; Pfalzner, Susanne

    2016-09-01

    To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the disk size. We concentrate on massive clusters (M cl ≥ 103-6 ∗ 104 M Sun), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.

  8. The nitrogen cycle.

    PubMed

    Stein, Lisa Y; Klotz, Martin G

    2016-02-01

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation.

  9. Nitrogen control in bacteria.

    PubMed

    Merrick, M J; Edwards, R A

    1995-12-01

    Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn. PMID:8531888

  10. The nitrogen cycle.

    PubMed

    Stein, Lisa Y; Klotz, Martin G

    2016-02-01

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. PMID:26859274

  11. Nitrogen control in bacteria.

    PubMed Central

    Merrick, M J; Edwards, R A

    1995-01-01

    Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn. PMID:8531888

  12. The social costs of nitrogen

    PubMed Central

    Keeler, Bonnie L.; Gourevitch, Jesse D.; Polasky, Stephen; Isbell, Forest; Tessum, Chris W.; Hill, Jason D.; Marshall, Julian D.

    2016-01-01

    Despite growing recognition of the negative externalities associated with reactive nitrogen (N), the damage costs of N to air, water, and climate remain largely unquantified. We propose a comprehensive approach for estimating the social cost of nitrogen (SCN), defined as the present value of the monetary damages caused by an incremental increase in N. This framework advances N accounting by considering how each form of N causes damages at specific locations as it cascades through the environment. We apply the approach to an empirical example that estimates the SCN for N applied as fertilizer. We track impacts of N through its transformation into atmospheric and aquatic pools and estimate the distribution of associated costs to affected populations. Our results confirm that there is no uniform SCN. Instead, changes in N management will result in different N-related costs depending on where N moves and the location, vulnerability, and preferences of populations affected by N. For example, we found that the SCN per kilogram of N fertilizer applied in Minnesota ranges over several orders of magnitude, from less than $0.001/kg N to greater than $10/kg N, illustrating the importance of considering the site, the form of N, and end points of interest rather than assuming a uniform cost for damages. Our approach for estimating the SCN demonstrates the potential of integrated biophysical and economic models to illuminate the costs and benefits of N and inform more strategic and efficient N management. PMID:27713926

  13. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters.

    PubMed

    Aubert, Tangi; Burel, Agnès; Esnault, Marie-Andrée; Cordier, Stéphane; Grasset, Fabien; Cabello-Hurtado, Francisco

    2012-06-15

    Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs(2)Mo(6)Br(14) as cluster precursor. [Mo(6)Br(14)](2-) cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  14. Coral: an integrated suite of visualizations for comparing clusterings

    PubMed Central

    2012-01-01

    Background Clustering has become a standard analysis for many types of biological data (e.g interaction networks, gene expression, metagenomic abundance). In practice, it is possible to obtain a large number of contradictory clusterings by varying which clustering algorithm is used, which data attributes are considered, how algorithmic parameters are set, and which near-optimal clusterings are chosen. It is a difficult task to sift though such a large collection of varied clusterings to determine which clustering features are affected by parameter settings or are artifacts of particular algorithms and which represent meaningful patterns. Knowing which items are often clustered together helps to improve our understanding of the underlying data and to increase our confidence about generated modules. Results We present Coral, an application for interactive exploration of large ensembles of clusterings. Coral makes all-to-all clustering comparison easy, supports exploration of individual clusterings, allows tracking modules across clusterings, and supports identification of core and peripheral items in modules. We discuss how each visual component in Coral tackles a specific question related to clustering comparison and provide examples of their use. We also show how Coral could be used to visually and quantitatively compare clusterings with a ground truth clustering. Conclusion As a case study, we compare clusterings of a recently published protein interaction network of Arabidopsis thaliana. We use several popular algorithms to generate the network’s clusterings. We find that the clusterings vary significantly and that few proteins are consistently co-clustered in all clusterings. This is evidence that several clusterings should typically be considered when evaluating modules of genes, proteins, or sequences, and Coral can be used to perform a comprehensive analysis of these clustering ensembles. PMID:23102108

  15. Evolution of photosynthesis and biospheric oxygenation contingent upon nitrogen fixation?

    NASA Astrophysics Data System (ADS)

    Grula, John W.

    2005-10-01

    How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a greater need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not been preceded by the evolution of nitrogen fixation, and if these organisms had not also acquired the ability to fix nitrogen at the beginning of or very early in their history. The evolution of nitrogen fixation also appears to have been a precondition for the evolution of (bacterio)chlorophyll-based photosynthesis. Given that some form of chlorophyll is obligatory for true photosynthesis, and its light absorption and chemical properties make it a ‘universal pigment’, it may be predicted that the evolution of nitrogen fixation and photosynthesis are also closely linked on other Earth-like planets.

  16. Food, Feed and Fuel: a Story About Nitrogen

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.; Burke, M. B.; Mooney, H. A.; Steinfeld, H.

    2008-12-01

    Humans obtain metabolic energy by eating food. Nitrogen is required to grow food, but natural supplies of N for human purposes have been inadequate since the beginning of the twentieth century. The Haber-Bosch process now provides a virtually inexhaustible supply of nitrogen, limited primarily by the cost of energy. However, most nitrogen used in food production is lost to the environment, where it cascades through environmental reservoirs contributing to many of the major environmental issues of the day. Furthermore, growing international trade in nitrogen-containing commodities is increasingly replacing wind and water as an important international transporter of nitrogen around the globe. Finally, the rapid growth in crop-based biofuels, and its attendant effects on the global production and trade of all agricultural commodities, could greatly affect global patterns of N use and loss. In the light of the findings above, this paper examines the role of nitrogen in food, feed and fuel production. It describes the beneficial consequences for food production and the negative consequences associated with the commodity nitrogen cascade and the environmental nitrogen cascade. The paper reviews estimates of future projections of nitrogen demands for food and fuel, including the impact of changing diets in the developing world. The paper concludes by presenting the potential interactions among global change, agricultural production and the nitrogen and carbon cycles.

  17. Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland

    PubMed Central

    Lü, Xiao-Tao; Dijkstra, Feike A.; Kong, De-Liang; Wang, Zheng-Wen; Han, Xing-Guo

    2014-01-01

    Increased atmospheric nitrogen (N) deposition and altered precipitation regimes have profound impacts on ecosystem functioning in semiarid grasslands. The interactions between those two factors remain largely unknown. A field experiment with N and water additions was conducted in a semiarid grassland in northern China. We examined the responses of aboveground net primary production (ANPP) and plant N use during two contrasting hydrological growing seasons. Nitrogen addition had no impact on ANPP, which may be accounted for by the offset between enhanced plant N uptake and decreased plant nitrogen use efficiency (NUE). Water addition significantly enhanced ANPP, which was largely due to enhanced plant aboveground N uptake. Nitrogen and water additions significantly interacted to affect ANPP, plant N uptake and N concentrations at the community level. Our observations highlight the important role of plant N uptake and use in mediating the effects of N and water addition on ANPP. PMID:24769508

  18. Mineral commodity profiles: nitrogen

    USGS Publications Warehouse

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  19. [Seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization in subalpine forests along an elevational gradient in western Sichuan, China].

    PubMed

    Yin, Rui; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Xiong, Li; Xiao, Sa; Ma, Zhi-Liang; Li, Zhi-Ping

    2013-12-01

    The seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization of three subalpine forests along an elevation gradient (3600, 3300 and 3000 m), western Sichuan, China were examined. Obvious seasonal dynamics were found in soil labile nitrogen pools (ammonium, nitrate, microbial biomass nitrogen and dissolved organic nitrogen) and net nitrogen mineralization rate, but the seasonality varied with the measured nitrogen pools. The concentrations of soil nitrate (8.38-89.60 mg x kg(-1)) were significantly higher than those of ammonium (0.44-8.43 mg x kg(-1)) in four sampling periods (non-growing season, early, middle and late growing season). Regardless of the elevation, the rate of soil net nitrogen mineralization was negative (-0.77 to -0.56 mg x kg(-1) x d(-1)) early in the growing season, but positive in the other three periods. Except for nitrate, the contents of ammonium, microbial biomass nitrogen and dissolved organic nitrogen varied significantly with elevation and the altitude effects on those pools were dependent on seasons. In summary, soil nitrification was the major process of net soil nitrogen mineralization and soil nitrogen mineralization was not affected by elevational gradient. Soil nitrogen mineralization (0.42-0.99 mg x kg(-1) x d(-1)) in winter was considerable in this area. Relatively high inorganic nitrogen in early spring might be favorable for vegetation growth, but might also be lost from soil ecosystem through leaching. PMID:24697050

  20. [Seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization in subalpine forests along an elevational gradient in western Sichuan, China].

    PubMed

    Yin, Rui; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Xiong, Li; Xiao, Sa; Ma, Zhi-Liang; Li, Zhi-Ping

    2013-12-01

    The seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization of three subalpine forests along an elevation gradient (3600, 3300 and 3000 m), western Sichuan, China were examined. Obvious seasonal dynamics were found in soil labile nitrogen pools (ammonium, nitrate, microbial biomass nitrogen and dissolved organic nitrogen) and net nitrogen mineralization rate, but the seasonality varied with the measured nitrogen pools. The concentrations of soil nitrate (8.38-89.60 mg x kg(-1)) were significantly higher than those of ammonium (0.44-8.43 mg x kg(-1)) in four sampling periods (non-growing season, early, middle and late growing season). Regardless of the elevation, the rate of soil net nitrogen mineralization was negative (-0.77 to -0.56 mg x kg(-1) x d(-1)) early in the growing season, but positive in the other three periods. Except for nitrate, the contents of ammonium, microbial biomass nitrogen and dissolved organic nitrogen varied significantly with elevation and the altitude effects on those pools were dependent on seasons. In summary, soil nitrification was the major process of net soil nitrogen mineralization and soil nitrogen mineralization was not affected by elevational gradient. Soil nitrogen mineralization (0.42-0.99 mg x kg(-1) x d(-1)) in winter was considerable in this area. Relatively high inorganic nitrogen in early spring might be favorable for vegetation growth, but might also be lost from soil ecosystem through leaching.

  1. PREFACE: Nuclear Cluster Conference; Cluster'07

    NASA Astrophysics Data System (ADS)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  2. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  3. Electrochemical formation of Au clusters in polyaniline

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.; Baer, D.R.

    1999-10-01

    The reduction of chloroaurate and the incorporation of Au clusters in polyaniline, PANI, films have been investigated. The chloroaurate complex is generated at the electrode surface during Cl{sup {minus}} doping of Au/PANI. FTIE and UV/vis data indicate that chloroaurate interacts with PANI and that its reduction to metallic Au occurs preferentially at the nitrogen linkages. The voltammetric and XPS results show that the uptake of both protons and anions is suppressed by the formation of Au clusters due to this interaction. The ability to reduce chloroaurate in PANI films is also demonstrated for Pt electrodes coated with PANI in solutions containing KAuCl{sub 4}. The preliminary results indicate that Au cluster size distribution remains fairly constant regardless of the method used.

  4. Delta nitrogen tetroxide fueling operations

    NASA Technical Reports Server (NTRS)

    Grigsby, R. B.; Cross, T. M.; Rucci, T. D.

    1978-01-01

    The development of the Delta second stage nitrogen tetroxide fueling system is briefly summarized. The nitrogen tetroxide fueling system and the equipment used to protect the spacecraft environment from the toxic nitrogen tetroxide fumes are described. Topics covered include: the nitrogen tetroxide transfer system; loading operations; safety precautions; and chemical treatment of all toxic vapors.

  5. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  6. Tritrophic interactions between parasitoids and cereal aphids are mediated by nitrogen fertilizer.

    PubMed

    Aqueel, Muhammad A; Raza, Abu-bakar M; Balal, Rashad M; Shahid, Muhammad A; Mustafa, Irfan; Javaid, Muhammad M; Leather, Simon R

    2015-12-01

    Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid-parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are completely dependent for their development upon their hosts) and assess the bottom up forces operating at different concentrations of nitrogen applications. The effects of varying nitrogen fertilizer on the performance of Aphidius colemani (V.) reared on Sitobion avenae (F.) and Aphidius rhopalosiphi (D.) reared on Rhopalosiphum padi (L.) were measured. Parasitism and percent emergence of parasitoids were positively affected by nitrogen fertilizer treatments while developmental duration (egg, larval, and pupal stages) was not affected by increasing nitrogen inputs. In males and females of both parasitoid species, adult longevity increased with the increasing nitrogen fertilizer. Hind tibia length and mummy weight of both parasitoid species increased with nitrogen fertilizer concentrations, as a result of larger aphids. This study showed that nitrogen application to the soil can have important consequences for aboveground multitrophic interactions.

  7. Survey on granularity clustering.

    PubMed

    Ding, Shifei; Du, Mingjing; Zhu, Hong

    2015-12-01

    With the rapid development of uncertain artificial intelligent and the arrival of big data era, conventional clustering analysis and granular computing fail to satisfy the requirements of intelligent information processing in this new case. There is the essential relationship between granular computing and clustering analysis, so some researchers try to combine granular computing with clustering analysis. In the idea of granularity, the researchers expand the researches in clustering analysis and look for the best clustering results with the help of the basic theories and methods of granular computing. Granularity clustering method which is proposed and studied has attracted more and more attention. This paper firstly summarizes the background of granularity clustering and the intrinsic connection between granular computing and clustering analysis, and then mainly reviews the research status and various methods of granularity clustering. Finally, we analyze existing problem and propose further research.

  8. Cluster automorphism groups of cluster algebras with coefficients

    NASA Astrophysics Data System (ADS)

    Chang, Wen; Zhu, Bin

    2016-10-01

    We study the cluster automorphism group of a skew-symmetric cluster algebra with geometric coefficients. For this, we introduce the notion of gluing free cluster algebra, and show that under a weak condition the cluster automorphism group of a gluing free cluster algebra is a subgroup of the cluster automorphism group of its principal part cluster algebra (i.e. the corresponding cluster algebra without coefficients). We show that several classes of cluster algebras with coefficients are gluing free, for example, cluster algebras with principal coefficients, cluster algebras with universal geometric coefficients, and cluster algebras from surfaces (except a 4-gon) with coefficients from boundaries. Moreover, except four kinds of surfaces, the cluster automorphism group of a cluster algebra from a surface with coefficients from boundaries is isomorphic to the cluster automorphism group of its principal part cluster algebra; for a cluster algebra with principal coefficients, its cluster automorphism group is isomorphic to the automorphism group of its initial quiver.

  9. Ammonium-related metabolic changes affect somatic embryogenesis in pumpkin (Cucurbita pepo L.).

    PubMed

    Mihaljević, Snježana; Radić, Sandra; Bauer, Nataša; Garić, Rade; Mihaljević, Branka; Horvat, Gordana; Leljak-Levanić, Dunja; Jelaska, Sibila

    2011-11-01

    Somatic embryogenesis in pumpkin can be induced on auxin-containing medium and also on hormone-free medium containing 1mM ammonium (NH(4)(+)) as the sole source of nitrogen. Growth of NH(4)(+)-induced embryogenic tissue was slow and caused considerable acidification of the culture medium. Small spherical cells with dense cytoplasma formed proembryogenic cell clusters that could not develop into late stage embryos. Buffering of NH(4)(+) medium with 25mM 2-(N-morpholino)-ethane-sulfonic acid enhanced tissue proliferation, but no further differentiation was observed. Later stage embryos developed only after re-supply of nitrogen in form of nitrate or l-glutamine. Effects of nitrogen status and pH of culture media on ammonium assimilation were analyzed by following the activity of glutamine synthetase (GS) in relation to phenylalanine ammonia-lyase (PAL). Increased activity of GS and PAL in NH(4)(+) induced tissue coincided with significantly higher activity of stress-related enzymes superoxide dismutase (SOD) and soluble peroxidase (POD), indicating oxidative stress response of embryogenic tissue to NH(4)(+) as the sole source of nitrogen. In addition, considerable increase was observed in callose accumulation and esterase activity, the early markers of somatic embryogenesis. Activity of stress-related enzymes decreased after the re-supply of nitrate (20mM) or Gln (10mM) in combination with NH(4)(+) (1mM), which subsequently triggered globular embryo development. Together, these results suggest that stress responses, as affected by nitrogen supply, contribute to the regulation of embryogenic competence in pumpkin.

  10. Nitrogen-neutrality: a step towards sustainability

    NASA Astrophysics Data System (ADS)

    Leip, Adrian; Leach, Allison; Musinguzi, Patrick; Tumwesigye, Trust; Olupot, Giregon; Tenywa, John Stephen; Mudiope, Joseph; Hutton, Olivia; Cordovil, Claudia M. d. S.; Bekunda, Mateete; Galloway, James

    2014-11-01

    We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, N-neutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US 3050 was collected from the participants and used to offset the conference’s N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates.

  11. [Modelling nitrogen and phosphorus transfer in Potamogeton malaianus Miq. decompostion].

    PubMed

    Han, Hong-Juan; Zhai, Shui-Jing; Hu, Wei-Ping

    2010-06-01

    Potamogeton malaianus Miq. is one of the dominant species of submerged aquatic vegetations in Lake Taihu, China. The decomposition of its debris and metabolic detritus is an important part of nutrients cycling in the lake water. Nitrogen and phosphorus transfer model in P. malaianus Miq. decomposition has been set up based on an indoor P. malaianus Miq. decomposition experiment to quantitatively characterize the decomposition process. It mainly focuses on the dissolving process of inorganic nitrogen and phosphorus in P. malaianus Miq., the degradation process of its organic nitrogen and phosphorus, and the boundary's adsorbing process of nitrogen and phosphorus in water. There are eight state variables in the model, including inorganic and organic nitrogen in P. malaianus Miq., inorganic and organic phosphorus in P. malaianus Miq., total nitrogen and total phosphorus in water, and nitrogen and phosphorus adsorbed on container boundary. The model calibration showed a good accordance with the observed results of P. malaianus Miq. decomposition experiment. The dissolve rates of inorganic nitrogen and phosphorus in P. malaianus Miq. are 0.04 d(-1) and 0.06 d(-1) respectively. And the decompose rates of these two state variables are 0.005 25 d(-1) and 0.010 44 d(-1) respectively. Model outputs show that 6.7% nitrogen and 35.8% phosphorus can release from P. malaianus Miq. in the former 5 days. Phosphorus release is prior to nitrogen due to the bigger inorganic/organic ratio of phosphorus than that of nitrogen in P. malaianus Miq., Decomposition of P. malaianus Miq. could be affected by water temperature, and the affection is slight when water temperature is lower according to the model. The model also showed that P. malaianus Miq. decomposition process has influences on water quality in the former days, which can be eliminated by adsorbing process later. PMID:20698260

  12. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  13. A 2.5-Kilobase Deletion Containing a Cluster of Nine MicroRNAs in the Latency-Associated-Transcript Locus of the Pseudorabies Virus Affects the Host Response of Porcine Trigeminal Ganglia during Established Latency

    PubMed Central

    Mahjoub, Nada; Dhorne-Pollet, Sophie; Fuchs, Walter; Endale Ahanda, Marie-Laure; Lange, Elke; Klupp, Barbara; Arya, Anoop; Loveland, Jane E.; Lefevre, François; Mettenleiter, Thomas C.

    2014-01-01

    ABSTRACT The alphaherpesvirus pseudorabies virus (PrV) establishes latency primarily in neurons of trigeminal ganglia when only the transcription of the latency-associated transcript (LAT) locus is detected. Eleven microRNAs (miRNAs) cluster within the LAT, suggesting a role in establishment and/or maintenance of latency. We generated a mutant (M) PrV deleted of nine miRNA genes which displayed properties that were almost identical to those of the parental PrV wild type (WT) during propagation in vitro. Fifteen pigs were experimentally infected with either WT or M virus or were mock infected. Similar levels of virus excretion and host antibody response were observed in all infected animals. At 62 days postinfection, trigeminal ganglia were excised and profiled by deep sequencing and quantitative RT-PCR. Latency was established in all infected animals without evidence of viral reactivation, demonstrating that miRNAs are not essential for this process. Lower levels of the large latency transcript (LLT) were found in ganglia infected by M PrV than in those infected by WT PrV. All PrV miRNAs were expressed, with highest expression observed for prv-miR-LLT1, prv-miR-LLT2 (in WT ganglia), and prv-miR-LLT10 (in both WT and M ganglia). No evidence of differentially expressed porcine miRNAs was found. Fifty-four porcine genes were differentially expressed between WT, M, and control ganglia. Both viruses triggered a strong host immune response, but in M ganglia gene upregulation was prevalent. Pathway analyses indicated that several biofunctions, including those related to cell-mediated immune response and the migration of dendritic cells, were impaired in M ganglia. These findings are consistent with a function of the LAT locus in the modulation of host response for maintaining a latent state. IMPORTANCE This study provides a thorough reference on the establishment of latency by PrV in its natural host, the pig. Our results corroborate the evidence obtained from the study

  14. Nitrogen management in bioreactor landfills

    SciTech Connect

    Price, G. Alexander; Barlaz, Morton A.; Hater, Gary R

    2003-07-01

    One scenario for long-term nitrogen management in landfills is ex situ nitrification followed by denitrification in the landfill. The objective of this research was to measure the denitrification potential of actively decomposing and well decomposed refuse. A series of 10-l reactors that were actively producing methane were fed 400 mg NO{sub 3}-N /l every 48 h for periods of 19-59 days. Up to 29 nitrate additions were either completely or largely depleted within 48 h of addition and the denitrification reactions did not adversely affect the leachate pH. Nitrate did inhibit methane production, but the reactors recovered their methane-producing activity with the termination of nitrate addition. In well decomposed refuse, the nitrate consumption rate was reduced but was easily stimulated by the addition of either acetate or an overlayer of fresh refuse. Addition of acetate at five times the amount required to reduce nitrate did not lead to the production of NH{sub 4}{sup +} by dissimilatory nitrate reduction. The most probable number of denitrifying bacteria decreased by about five orders of magnitude during refuse decomposition in a reactor that did not receive nitrate. However, rapid denitrification commenced immediately with nitrate addition. This study shows that the use of a landfill as a bioreactor for the conversion of nitrate to a harmless byproduct, nitrogen gas, is technically viable.

  15. Matlab Cluster Ensemble Toolbox

    SciTech Connect

    Sapio, Vincent De; Kegelmeyer, Philip

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.

  16. The nitrogen cycle: Atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  17. Nitrogen tetroxide scrubber data analysis

    NASA Technical Reports Server (NTRS)

    Simon, E. D.

    1978-01-01

    A major difficulty in the analysis of scrubber data is that of separating the physical effects, such as mass transfer, from the physico-chemical effects, such as reaction rates. This is especially true for the absorbtion of nitrogen tetroxide in the various liquids that were tested in the NASA-Kennedy Space Center Hypergolic Toxic Scrubber Program. A fruitful approach to correlating the data for outlet concentrations was to treat the overall absorbtion as a pseudo first-order absorbtion equation. This approach provided a method for normalizing the data to constant inlet concentration, constant sump liquor condition, and constant scrubbing time, and permitted evaluation of the test and fluid parameters that affected both absorbtion rate and scrubbing time. The analysis indicated that scrubber performance may be improved by optimizing liquor concentrations and liquor flowrate distributions.

  18. Nitrogen fertilization affects corn cellulosic biomass and ethanol yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research results on the effects of N management on corn (Zea mays L.) grain production in high-yielding cropping systems are widely available, but information on its effects on cellulosic ethanol potential from corn stover and cobs is limited. Stover and cob biomass and respective ethanol yields all...

  19. Thermodynamics of confined gallium clusters

    NASA Astrophysics Data System (ADS)

    Chandrachud, Prachi

    2015-11-01

    We report the results of ab initio molecular dynamics simulations of Ga13 and Ga17 clusters confined inside carbon nanotubes with different diameters. The cluster-tube interaction is simulated by the Lennard-Jones (LJ) potential. We discuss the geometries, the nature of the bonding and the thermodynamics under confinement. The geometries as well as the isomer spectra of both the clusters are significantly affected. The degree of confinement decides the dimensionality of the clusters. We observe that a number of low-energy isomers appear under moderate confinement while some isomers seen in the free space disappear. Our finite-temperature simulations bring out interesting aspects, namely that the heat capacity curve is flat, even though the ground state is symmetric. Such a flat nature indicates that the phase change is continuous. This effect is due to the restricted phase space available to the system. These observations are supported by the mean square displacement of individual atoms, which are significantly smaller than in free space. The nature of the bonding is found to be approximately jellium-like. Finally we note the relevance of the work to the problem of single file diffusion for the case of the highest confinement.

  20. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.

    PubMed

    Holaday, A Scott; Schwilk, Dylan W; Waring, Elizabeth F; Guvvala, Hasitha; Griffin, Chelsea M; Lewis, O Milo

    2015-04-01

    Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high.

  1. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.

    PubMed

    Holaday, A Scott; Schwilk, Dylan W; Waring, Elizabeth F; Guvvala, Hasitha; Griffin, Chelsea M; Lewis, O Milo

    2015-04-01

    Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high. PMID:25659333

  2. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profiles to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.

  3. Nitrogen Mineralization in a Semiarid Silt Loam Soil in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mineralization of nitrogen from soil organic matter or plant residues can provide a substantial amount of nitrogen for crop growth. Microbial activity in a soil may be adversely affected by either very high or low soil water content. A field study was conducted to determine the affect of three...

  4. Impacts of Human Alteration of the Nitrogen Cycle in the U.S. on Radiative Forcing

    EPA Science Inventory

    Nitrogen cycling processes affect radiative forcing directly through emissions of nitrous oxide (N2O) and indirectly because emissions of nitrogen oxide (NO x ) and ammonia (NH3) affect atmospheric concentrations of methane (CH4), carbon dioxide (CO2), water vapor (H2O), ozone (O...

  5. Affective Learning.

    ERIC Educational Resources Information Center

    Brown, Charles T.

    This paper addresses itself to the question, "What does feeling have to do with knowing?" Two movements in affective education are discussed which have come into focus in recent years and which attempt to define the relationship between knowing and feeling. The first, a conscious application of the role of arousal in learning, emphasizes arousal…

  6. Spatial variation in atmospheric nitrogen deposition on low canopy vegetation.

    PubMed

    Verhagen, Rene; van Diggelen, Rudy

    2006-12-01

    Current knowledge about the spatial variation of atmospheric nitrogen deposition on a local scale is limited, especially for vegetation with a low canopy. We measured nitrogen deposition on artificial vegetation at variable distances of local nitrogen emitting sources in three nature reserves in the Netherlands, differing in the intensity of agricultural practices in the surroundings. In the nature reserve located in the most intensive agricultural region nitrogen deposition decreased with increasing distance to the local farms, until at a distance of 1500 m from the local nitrogen emitting sources the background level of 15 kg N ha(-1) yr(-1) was reached. No such trend was observed in the other two reserves. Interception was considerably lower than in woodlands and hence affected areas were larger. The results are discussed in relation to the prospects for the conservation or restoration of endangered vegetation types of nutrient-poor soil conditions.

  7. A new clustering strategy

    NASA Astrophysics Data System (ADS)

    Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing

    2007-04-01

    On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.

  8. Nitrogen Adsorption on Graphite: Defying Physisorption

    NASA Astrophysics Data System (ADS)

    Tkatchenko, Alexandre; Scheffler, Matthias

    2010-03-01

    The adsorption of a nitrogen molecule at the graphite surface can be considered a paradigm of molecular physisorption [1]. The binding of N2 can be phenomenologically described in terms of a competition between quadrupole--quadrupole and van der Waals dispersion energies. Of particular interest is the relative stability of the so-called ``in-plane'', ``out-of-plane'' and ``pin-wheel'' monolayer structures, in which the nitrogen molecules alternate between parallel and perpendicular configurations on the surface. By combining state-of-the-art electronic structure methods, such as dispersion-corrected density-functional theory and Møller-Plesset second-order perturbation theory along with high-level coupled cluster [CCSD(T)] calculations, we are able to gain quantitative insight into the adsorption mechanism of N2@graphite and achieve very good agreement with experimental desorption enthalpy. We challenge the commonly held view of a closed-shell adsorbed N2 molecule, finding a noticeable charge-density polarization for nitrogen in a perpendicular configuration on the surface. We map out the N2@graphite potential energy surface as a function of sliding and orientation and discuss the influence of quantum zero-point energy for different adsorption sites. [1] D. Marx and H. Wiechert, Adv. Chem. Phys. 95, 213 (1996).

  9. Unconventional methods for clustering

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2016-06-01

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. The topic of this paper is one of the modern methods of clustering namely SOM (Self Organising Map). The paper describes the theory needed to understand the principle of clustering and descriptions of algorithm used with clustering in our experiments.

  10. Nitrogen Trading Tool (NTT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Natural Resources Conservation Service (NRCS) recently developed a prototype web-based nitrogen trading tool to facilitate water quality credit trading. The development team has worked closely with the Agriculture Research Service Soil Plant Nutrient Research Unit (ARS-SPNR) and the Environmenta...

  11. Nitrogen catch crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High costs of nitrogen (N) fertilizer and the potential for N losses to ground and surface water have resulted in increased interest in using catch crops to recover this N. Research on potatoes has shown that the amount of N lost to leaching can be as much as the amount of N removed from the field ...

  12. Nitrogen recommendation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilization for corn production is complicated by soil and weather variability, yet has far-reaching economic and environmental implications. To address this challenge, alternative N management strategies have been explored extensively in recent years by both public and private groups for...

  13. ODD NITROGEN PROCESSES

    SciTech Connect

    Johnston, Harold S.

    1980-01-01

    This chapter is in three parts. The first concerns interpretations that can be made from atmospheric observations regarding nitrogen compounds and ozone, the second reviews some predictions made by atmospheric models, and the third compares between certain model results and atmospheric measurements with an emphasis on detecting evidence of significant disagreements.

  14. Ruminant nitrogen usage

    SciTech Connect

    Not Available

    1985-01-01

    This book brings together the latest research on protein absorption by ruminants and takes a look at the calculation of optimum nutrient requirements, including bacterial digestion, in the calculations. It also describes the parameters of nitrogen conversion in the ruminant and examines the different kinds of protein found in animal feedstuffs.

  15. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  16. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  17. Release of fuel-bound nitrogen during biomass gasification

    SciTech Connect

    Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

    2000-03-01

    Gasification of four biomass feedstocks (leucaena, sawdust, bagasse, and banagrass) with significantly different fuel-bound nitrogen (FBN) content was investigated to determine the effects of operational parameters and nitrogen content of biomass on the partitioning of FBN among nitrogenous gas species. Experiments were performed using a bench-scale, indirectly heated, fluidized-bed gasifier. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components in the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Important findings of this research include the following: (1) NH{sub 3} and N{sub 2} are the dominant species evolved from fuel nitrogen during biomass gasification; >90% of FBN in feedstock is converted to NH{sub 3} and N{sub 2}; (2) relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions in the gasifier; these reactions are affected strongly by temperature; (3) N{sub 2} appears to be primarily produced through the conversion of NH{sub 3} in the gas phase; (4) the structural formula and content of fuel nitrogen in biomass feedstock significantly affect the formation and evolution of nitrogen species during biomass gasification.

  18. Changes in North Atlantic nitrogen fixation controlled by ocean circulation.

    PubMed

    Straub, Marietta; Sigman, Daniel M; Ren, Haojia; Martínez-García, Alfredo; Meckler, A Nele; Hain, Mathis P; Haug, Gerald H

    2013-09-12

    In the ocean, the chemical forms of nitrogen that are readily available for biological use (known collectively as 'fixed' nitrogen) fuel the global phytoplankton productivity that exports carbon to the deep ocean. Accordingly, variation in the oceanic fixed nitrogen reservoir has been proposed as a cause of glacial-interglacial changes in atmospheric carbon dioxide concentration. Marine nitrogen fixation, which produces most of the ocean's fixed nitrogen, is thought to be affected by multiple factors, including ocean temperature and the availability of iron and phosphorus. Here we reconstruct changes in North Atlantic nitrogen fixation over the past 160,000 years from the shell-bound nitrogen isotope ratio ((15)N/(14)N) of planktonic foraminifera in Caribbean Sea sediments. The observed changes cannot be explained by reconstructed changes in temperature, the supply of (iron-bearing) dust or water column denitrification. We identify a strong, roughly 23,000-year cycle in nitrogen fixation and suggest that it is a response to orbitally driven changes in equatorial Atlantic upwelling, which imports 'excess' phosphorus (phosphorus in stoichiometric excess of fixed nitrogen) into the tropical North Atlantic surface. In addition, we find that nitrogen fixation was reduced during glacial stages 6 and 4, when North Atlantic Deep Water had shoaled to become glacial North Atlantic intermediate water, which isolated the Atlantic thermocline from excess phosphorus-rich mid-depth waters that today enter from the Southern Ocean. Although modern studies have yielded diverse views of the controls on nitrogen fixation, our palaeobiogeochemical data suggest that excess phosphorus is the master variable in the North Atlantic Ocean and indicate that the variations in its supply over the most recent glacial cycle were dominated by the response of regional ocean circulation to the orbital cycles.

  19. Aqueous phase removal of nitrogen from nitrogen compounds

    DOEpatents

    Fassbender, Alex G.

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  20. Bacteria and the Nitrogen Economy.

    ERIC Educational Resources Information Center

    Ayanaba, A.

    1982-01-01

    Biological nitrogen fixation accounts for almost 70 percent of nitrogen for plant growth. If food is to keep abreast of population growth, even more nitrogen must be fixed. For this international research institutes continue the search for natural variants in the bacterial population while also pursuing novel genetic engineering methods. (Author)

  1. The nitrogen and sulphur cycles

    SciTech Connect

    Cole, J.A.; Ferguson, S.J.

    1988-01-01

    This book contains 17 selections. Some of the titles are: Genetic regulation of nitrogen fixation; On the analysis of symbiotic genes of Rhizobium; Regulation of nitrogen assimilation by bacteria; Alternative and conventional nitrogenases; and The role of oxygen and hydrogen in nitrogen fixation.

  2. ASteCA: Automated Stellar Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Perren, G. I.; Vázquez, R. A.; Piatti, A. E.

    2015-04-01

    We present the Automated Stellar Cluster Analysis package (ASteCA), a suit of tools designed to fully automate the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster's center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster's metallicity, age, extinction and distance values along with its uncertainties. To validate the code we applied it on a large set of over 400 synthetic MASSCLEAN clusters with varying degrees of field star contamination as well as a smaller set of 20 observed Milky Way open clusters (Berkeley 7, Bochum 11, Czernik 26, Czernik 30, Haffner 11, Haffner 19, NGC 133, NGC 2236, NGC 2264, NGC 2324, NGC 2421, NGC 2627, NGC 6231, NGC 6383, NGC 6705, Ruprecht 1, Tombaugh 1, Trumpler 1, Trumpler 5 and Trumpler 14) studied in the literature. The results show that ASteCA is able to recover cluster parameters with an acceptable precision even for those clusters affected by substantial field star contamination. ASteCA is written in Python and is made available as an open source code which can be downloaded ready to be used from its official site.

  3. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems.

    PubMed

    Aber, J D

    1992-07-01

    The last decade has seen a dramatic shift in the focus of nitrogen cycling research in forest ecosystems. Concerns over nitrogen deficiencies and effects of removal in harvest have given way to concerns over excess nitrogen availability and the potential for forest decline and surface water pollution. Driving this paradigm shift is the increase in atmospheric deposition of nitrogen to forests due to industrial and agricultural activity. At the core of the new paradigm is the concept of 'nitrogen saturation' of forest ecosystems. The purpose of this review is to synthesize recent advances in research relating to nitrogen deposition effects on temperate zone forest ecosystems, and the further effects of nitrogen saturation on environmental quality. PMID:21236013

  4. Solar nitrogen - Evidence for a secular increase in the ratio of nitrogen-15 to nitrogen-14

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1975-01-01

    Solar wind nitrogen, implanted in lunar soil samples, exhibits isotopic variations that are related to the time, although not to the duration, of implantation, with earlier samples characterized by lower ratios of nitrogen-15 to nitrogen-14. An increase in the solar nitrogen-15 content during the lifetime of the lunar regolith is probably caused by spallation of oxygen-16 in the surface regions of the sun.-

  5. Information-based clustering

    PubMed Central

    Slonim, Noam; Atwal, Gurinder Singh; Tkačik, Gašper; Bialek, William

    2005-01-01

    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here, we reformulate the clustering problem from an information theoretic perspective that avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster “prototype,” does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures nonlinear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures. PMID:16352721

  6. Convex Discriminative Multitask Clustering.

    PubMed

    Zhang, Xiao-Lei

    2015-01-01

    Multitask clustering tries to improve the clustering performance of multiple tasks simultaneously by taking their relationship into account. Most existing multitask clustering algorithms fall into the type of generative clustering, and none are formulated as convex optimization problems. In this paper, we propose two convex Discriminative Multitask Clustering (DMTC) objectives to address the problems. The first one aims to learn a shared feature representation, which can be seen as a technical combination of the convex multitask feature learning and the convex Multiclass Maximum Margin Clustering (M3C). The second one aims to learn the task relationship, which can be seen as a combination of the convex multitask relationship learning and M3C. The objectives of the two algorithms are solved in a uniform procedure by the efficient cutting-plane algorithm and further unified in the Bayesian framework. Experimental results on a toy problem and two benchmark data sets demonstrate the effectiveness of the proposed algorithms. PMID:26353206

  7. Clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A. A.; Kravtsov, A. V.; Markevich, M. L.; Sunyaev, R. A.; Churazov, E. M.

    2014-04-01

    Galaxy clusters are formed via nonlinear growth of primordial density fluctuations and are the most massive gravitationally bound objects in the present Universe. Their number density at different epochs and their properties depend strongly on the properties of dark matter and dark energy, making clusters a powerful tool for observational cosmology. Observations of the hot gas filling the gravitational potential well of a cluster allows studying gasdynamic and plasma effects and the effect of supermassive black holes on the heating and cooling of gas on cluster scales. The work of Yakov Borisovich Zeldovich has had a profound impact on virtually all cosmological and astrophysical studies of galaxy clusters, introducing concepts such as the Harrison-Zeldovich spectrum, the Zeldovich approximation, baryon acoustic peaks, and the Sunyaev-Zeldovich effect. Here, we review the most basic properties of clusters and their role in modern astrophysics and cosmology.

  8. The HI Content of the Antlia Cluster: The Fate of Gas in Cluster Assembly

    NASA Astrophysics Data System (ADS)

    Wilcots, Eric; Hess, Kelley; Nielsen, Danielle

    2013-10-01

    We propose to use the ATCA to carry out a mosaic of the Antlia galaxy cluster and its immediate environment to probe the impact of the environment on the distribution and kinematics of the neutral hydrogen content of galaxies in and around this dynamically young cluster. Antlia is a rich, nearby, and dynamically young cluster; unlike Fornax and Virgo it lacks a central X-ray emitting halo, hosts a large number of S0 galaxies, and is known to have significant substructure. As a result, Antlia is has more in common with clusters at intermediate redshifts that are now being analyzed in some detail. Because of the unique properties ofAntlia, these observations will allow us to see how the growth of galaxy clusters affects the neutral gas content of the resident and nearby galaxies.

  9. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  10. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  11. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  12. An Alternative Path for the Evolution of Biological Nitrogen Fixation

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Peters, John W.

    2011-01-01

    Nitrogenase catalyzed nitrogen fixation is the process by which life converts dinitrogen gas into fixed nitrogen in the form of bioavailable ammonia. The most common form of nitrogenase today requires a complex metal cluster containing molybdenum (Mo), although alternative forms exist which contain vanadium (V) or only iron (Fe). It has been suggested that Mo-independent forms of nitrogenase (V and Fe) were responsible for N2 fixation on early Earth because oceans were Mo-depleted and Fe-rich. Phylogenetic- and structure-based examinations of multiple nitrogenase proteins suggest that such an evolutionary path is unlikely. Rather, our results indicate an evolutionary path whereby Mo-dependent nitrogenase emerged within the methanogenic archaea and then gave rise to the alternative forms suggesting that they arose later, perhaps in response to local Mo limitation. Structural inferences of nitrogenase proteins and related paralogs suggest that the ancestor of all nitrogenases had an open cavity capable of binding metal clusters which conferred reactivity. The evolution of the nitrogenase ancestor and its associated bound metal cluster was controlled by the availability of fixed nitrogen in combination with local environmental factors that influenced metal availability until a point in Earth’s geologic history where the most desirable metal, Mo, became sufficiently bioavailable to bring about and refine the solution (Mo-nitrogenase) we see perpetuated in extant biology. PMID:22065963

  13. Mini-clusters

    NASA Technical Reports Server (NTRS)

    Chinellato, J. A.; Dobrigkeit, C.; Bellandifilho, J.; Lattes, C. M. G.; Menon, M. J.; Navia, C. E.; Pamilaju, A.; Sawayanagi, K.; Shibuya, E. H.; Turtelli, A., Jr.

    1985-01-01

    Experimental results of mini-clusters observed in Chacaltaya emulsion chamber no.19 are summarized. The study was made on 54 single core shower upper and 91 shower clusters of E(gamma) 10 TeV from 30 families which are visible energy greater than 80 TeV and penetrate through both upper and lower detectors of the two-story chamber. The association of hadrons in mini-cluster is made clear from their penetrative nature and microscopic observation of shower continuation in lower chamber. Small P sub t (gamma) of hadrons in mini-clusters remained in puzzle.

  14. Reactions of intermetallic clusters

    NASA Astrophysics Data System (ADS)

    Farley, R. W.; Castleman, A. W., Jr.

    1990-02-01

    Reaction of bismuth-alkali clusters with closed-shell HX acids provides insight into the structures, formation, and stabilities of these intermetallic species. HC1 and HI are observed to quantitatively strip BixNay and BixKy, respectively, of their alkali component, leaving bare bismuth clusters as the only bismuth-containing species detected. Product bismuth clusters exhibit the same distribution observed when pure bismuth is evaporated in the source. Though evaporated simultaneously from the same crucible, this suggests alkali atoms condense onto existing bismuth clusters and have negligible effect on their formation and consequent distribution. The indistinguishibility of reacted and pure bismuth cluster distributions further argues against the simple replacement of alkali atoms with hydrogen in these reactions. This is considered further evidence that the alkali atoms are external to the stable bismuth Zintl anionic structures. Reactivities of BixNay clusters with HC1 are estimated to lie between 3×10-13 for Bi4Na, to greater than 4×10-11 for clusters possessing large numbers of alkali atoms. Bare bismuth clusters are observed in separate experiments to react significantly more slowly with rates of 1-9×10-14 and exhibit little variation of reactivity with size. The bismuth clusters may thus be considered a relatively inert substrate upon which the alkali overlayer reacts.

  15. Management of cluster headache.

    PubMed

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-07-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment and prophylactic treatment. In ECH and CCH the attacks can be treated with oxygen (12 L/min) or subcutaneous sumatriptan 6 mg. For both oxygen and sumatriptan there are two randomized, placebo-controlled trials demonstrating efficacy. In both ECH and CCH, verapamil is the prophylactic drug of choice. Verapamil 360 mg/day was found to be superior to placebo in one clinical trial. In clinical practice, daily doses of 480-720 mg are mostly used. Thus, the dose of verapamil used in cluster headache treatment may be double the dose used in cardiology, and with the higher doses the PR interval should be checked with an ECG. At the start of a cluster, transitional preventive treatment such as corticosteroids or greater occipital nerve blockade can be given. In CCH and in long-standing clusters of ECH, lithium, methysergide, topiramate, valproic acid and ergotamine tartrate can be used as add-on prophylactic treatment. In drug-resistant CCH, neuromodulation with either occipital nerve stimulation or deep brain stimulation of the hypothalamus is an alternative treatment strategy

  16. The youngest globular clusters

    NASA Astrophysics Data System (ADS)

    Beck, Sara

    2015-11-01

    It is likely that all stars are born in clusters, but most clusters are not bound and disperse. None of the many protoclusters in our Galaxy are likely to develop into long-lived bound clusters. The super star clusters (SSCs) seen in starburst galaxies are more massive and compact and have better chances of survival. The birth and early development of SSCs takes place deep in molecular clouds, and during this crucial stage the embedded clusters are invisible to optical or UV observations but are studied via the radio-infrared supernebulae (RISN) they excite. We review observations of embedded clusters and identify RISN within 10 Mpc whose exciting clusters have ≈ 106 M⊙ or more in volumes of a few pc3 and which are likely to not only survive as bound clusters, but to evolve into objects as massive and compact as Galactic globulars. These clusters are distinguished by very high star formation efficiency η, at least a factor of 10 higher than the few percent seen in the Galaxy, probably due to the violent disturbances their host galaxies have undergone. We review recent observations of the kinematics of the ionized gas in RISN showing outflows through low-density channels in the ambient molecular cloud; this may protect the cloud from feedback by the embedded H II region.

  17. Nitrogen metabolism in haloarchaea

    PubMed Central

    Bonete, María José; Martínez-Espinosa, Rosa María; Pire, Carmen; Zafrilla, Basilio; Richardson, David J

    2008-01-01

    The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments. The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3-, NO2- or NH4+ as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils. PMID:18593475

  18. Ice sheets and nitrogen.

    PubMed

    Wolff, Eric W

    2013-07-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas.

  19. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  20. Homogeneous nucleation of nitrogen

    NASA Astrophysics Data System (ADS)

    Iland, Kristina; Wedekind, Jan; Wölk, Judith; Strey, Reinhard

    2009-03-01

    We investigated the homogeneous nucleation of nitrogen in a cryogenic expansion chamber [A. Fladerer and R. Strey, J. Chem. Phys. 124, 164710 (2006)]. Gas mixtures of nitrogen and helium as carrier gas were adiabatically expanded and cooled down from an initial temperature of 83 K until nucleation occurred. This onset was detected by constant angle light scattering at nitrogen vapor pressures of 1.3-14.2 kPa and temperatures of 42-54 K. An analytical fit function well describes the experimental onset pressures with an error of ±15%. We estimate the size of the critical nucleus with the Gibbs-Thomson equation yielding critical sizes of about 50 molecules at the lowest and 70 molecules at the highest temperature. In addition, we estimate the nucleation rate and compare it with nucleation theories. The predictions of classical nucleation theory (CNT) are 9 to 19 orders of magnitude below the experimental results and show a stronger temperature dependence. The Reguera-Reiss theory [Phys. Rev. Lett. 93, 165701 (2004)] predicts the correct temperature dependence at low temperatures and decreases the absolute deviation to 7-13 orders of magnitude. We present an empirical correction function to CNT describing our experimental results. These correction parameters are remarkably close to the ones of argon [Iland et al., J. Chem. Phys. 127, 154506 (2007)] and even those of water [J. Wölk and R. Strey, J. Phys. Chem. B 105, 11683 (2001)].

  1. Spectroscopic Factors and Barrier Penetrabilities in Cluster Radioactivity

    SciTech Connect

    Kuklin, S.N.; Adamian, G.G.; Antonenko, N.V.

    2005-09-01

    The cold cluster decay model is presented in the framework of a dinuclear system concept. Spectroscopic factors are extracted from barrier penetrabilities and measured half-lives. The deformation of the light cluster and residual nucleus is shown to affect the nucleus-nucleus potential and decay characteristics. Half-lives are predicted for neutron-deficient actinides and intermediate-mass nuclei. The connection between spontaneous fission and cluster radioactivity is discussed.

  2. Clustering versus non-clustering phase synchronizations

    SciTech Connect

    Liu, Shuai; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  3. [Affective dependency].

    PubMed

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy.

  4. [Affective dependency].

    PubMed

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy. PMID:23888587

  5. Managing Nitrogen in the anthropocene: integrating social and ecological science

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Mauzerall, D. L.; Davidson, E. A.; Kanter, D.; Cai, R.; Searchinger, T.

    2014-12-01

    Human alteration of the global nitrogen cycle by agricultural activities has provided nutritious food to society, but also poses increasing threats to human and ecosystem health through unintended pollution. Managing nitrogen more efficiently in crop production is critical for addressing both food security and environmental challenges. Technologies and management practices have been developed to increase the uptake of applied nitrogen by crops. However, nitrogen use efficiency (NUE, yield per unit nitrogen input) is also affected by social and economic factors. For example, to maximize profit, farmers may change crop choice or their nitrogen application rate, both of which lead to a change in NUE. To evaluate such impacts, we use both theoretical and empirical approaches on micro (farm) and macro (national) scales: 1) We developed a bio-economic model (NUE3) on a farm scale to investigate how market signals (e.g. fertilizer and crop prices), government policies, and nitrogen-efficient technologies affect NUE. We demonstrate that if factors that influence nitrogen inputs (e.g. fertilizer-to-crop price ratios) are not considered, NUE projections will be poorly constrained. The impact of nitrogen-efficient technologies on NUE not only depends on how technology changes the production function, but also relies on the prices of the technologies, fertilizers, and crops. 2) We constructed a database of the nitrogen budget in crop production for major crops and major crop producing countries from 1961 to 2010. Using this database, we investigate historical trends of NUE and its relationship to agronomic, economic, social, and policy factors. We find that NUE in most developed countries follows a "U-shape" relationship with income level, consistent with the Environmental Kuznets Curve theory. According to the dynamics revealed in the NUE3 model, we propose three major pathways by which economic development affects NUE, namely consumption, technology, and public policy

  6. A Clustering Classification of Spare Parts for Improving Inventory Policies

    NASA Astrophysics Data System (ADS)

    Meri Lumban Raja, Anton; Ai, The Jin; Diar Astanti, Ririn

    2016-02-01

    Inventory policies in a company may consist of storage, control, and replenishment policy. Since the result of common ABC inventory classification can only affect the replenishment policy, we are proposing a clustering based classification technique as a basis for developing inventory policy especially for storage and control policy. Hierarchical clustering procedure is used after clustering variables are defined. Since hierarchical clustering procedure requires metric variables only, therefore a step to convert non-metric variables to metric variables is performed. The clusters resulted from the clustering techniques are analyzed in order to define each cluster characteristics. Then, the inventory policies are determined for each group according to its characteristics. A real data, which consists of 612 items from a local manufacturer's spare part warehouse, are used in the research of this paper to show the applicability of the proposed methodology.

  7. Spiking synchronization of ion channel clusters on an axon

    NASA Astrophysics Data System (ADS)

    Zeng, Shangyou; Tang, Yi; Jung, Peter

    2007-07-01

    Ion channels are distributed in clusters in squid giant axons, rat retinal nerve fiber layers, pyramidal cell dendrites of Apteronotus, etc. Ion channel clusters along the unmyelinated axon generate spontaneous spiking due to ion channel noise. Ion channel clusters are coupled by the axonal cable, and spontaneous spiking of each ion channel cluster can be synchronized. This paper considers the spiking synchronization of two ion channel clusters coupled by an axon. It is shown that axonal parameters affect the spiking synchronization exponentially and ion channel clusters have maximal spiking synchronization when they have the same size. It is further shown that there is an optimal length of the ion channel clusters with maximal spiking synchronization and the optimal length accords with the length of the node of Ranvier in the myelinated axon.

  8. A comparison of models for estimating the riverine export of nitrogen from large watersheds

    USGS Publications Warehouse

    Alexander, R.B.; Johnes, P.J.; Boyer, E.W.; Smith, R.A.

    2002-01-01

    We evaluated the accuracy of six watershed models of nitrogen export in streams (kg km2 yr-1) developed for use in large watersheds and representing various empirical and quasi-empirical approaches described in the literature. These models differ in their methods of calibration and have varying levels of spatial resolution and process complexity, which potentially affect the accuracy (bias and precision) of the model predictions of nitrogen export and source contributions to export. Using stream monitoring data and detailed estimates of the natural and cultural sources of nitrogen for 16 watersheds in the northeastern United States (drainage sizes = 475 to 70,000 km2), we assessed the accuracy of the model predictions of total nitrogen and nitrate-nitrogen export. The model validation included the use of an error modeling technique to identify biases caused by model deficiencies in quantifying nitrogen sources and biogeochemical processes affecting the transport of nitrogen in watersheds. Most models predicted stream nitrogen export to within 50% of the measured export in a majority of the watersheds. Prediction errors were negatively correlated with cultivated land area, indicating that the watershed models tended to over predict export in less agricultural and more forested watersheds and under predict in more agricultural basins. The magnitude of these biases differed appreciably among the models. Those models having more detailed descriptions of nitrogen sources, land and water attenuation of nitrogen, and water flow paths were found to have considerably lower bias and higher precision in their predictions of nitrogen export.

  9. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  10. Nutritional Performance of Cattle Grazing during Rainy Season with Nitrogen and Starch Supplementation

    PubMed Central

    Lazzarini, Ísis; Detmann, Edenio; de Campos Valadares Filho, Sebastião; Paulino, Mário Fonseca; Batista, Erick Darlisson; de Almeida Rufino, Luana Marta; dos Reis, William Lima Santiago; de Oliveira Franco, Marcia

    2016-01-01

    The objective of this work was to evaluate the effects of supplementation with nitrogen and starch on the nutritional performance of grazing cattle during the rainy season. Five rumen cannulated Nellore steers, averaging 211 kg of body weight (BW), were used. Animals grazed on five signal grass paddocks. Five treatments were evaluated: control (forage only), ruminal supplementation with nitrogen at 1 g of crude protein (CP)/kg BW, ruminal supplementation with starch at 2.5 g/kg BW, supplementation with nitrogen (1 g CP/kg BW) and starch (2.5 g/kg BW), and supplementation with nitrogen (1 g CP/kg BW) and a mixture of corn starch and nitrogenous compounds (2.5 g/kg BW), thereby resulting in an energy part of the supplement with 150 g CP/kg of dry matter (DM). This last treatment was considered an additional treatment. The experiment was carried out according to a 5 ×5 Latin square design following a 2×2+1 factorial arrangement (with or without nitrogen, with or without starch, and the additional treatment). Nitrogen supplementation did not affect (p>0.10) forage intake. Starch supplementation increased (p<0.10) total intake but did not affect (p<0.10) forage intake. There was an interaction between nitrogen and starch (p<0.10) for organic matter digestibility. Organic matter digestibility was increased only by supplying starch and nitrogen together. Nitrogen balance (NB) was increased (p<0.10) by the nitrogen supplementation as well as by starch supplementation. Despite this, even though a significant interaction was not observed (p>0.10), NB obtained with nitrogen plus starch supplementation was greater than NB obtained with either nitrogen or starch exclusive supplementation. Supplementation with starch and nitrogen to beef cattle grazing during the rainy season can possibly improve digestion and nitrogen retention in the animal.. PMID:26954147

  11. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  12. Robustness of a partially interdependent network formed of clustered networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Clustering, or transitivity, a behavior observed in real-world networks, affects network structure and function. This property has been studied extensively, but most of this research has been limited to clustering in single networks. The effect of clustering on the robustness of coupled networks, on the other hand, has received much less attention. Only the case of a pair of fully coupled networks with clustering has recently received study. Here we generalize the study of clustering of a fully coupled pair of networks and apply it to a partially interdependent network of networks with clustering within the network components. We show, both analytically and numerically, how clustering within networks affects the percolation properties of interdependent networks, including the percolation threshold, the size of the giant component, and the critical coupling point at which the first-order phase transition changes to a second-order phase transition as the coupling between the networks is reduced. We study two types of clustering, one proposed by Newman [Phys. Rev. Lett. 103, 058701 (2009), 10.1103/PhysRevLett.103.058701] in which the average degree is kept constant while the clustering is changed, and the other by Hackett et al. [Phys. Rev. E 83, 056107 (2011), 10.1103/PhysRevE.83.056107] in which the degree distribution is kept constant. The first type of clustering is studied both analytically and numerically, and the second is studied numerically.

  13. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    PubMed

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  14. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  15. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    PubMed

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status. PMID:26747521

  16. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  17. Cluster Interest Inventory.

    ERIC Educational Resources Information Center

    Herzog, Douglas

    The Cluster Interest Inventory is designed to familiarize students with representative occupations in 13 career clusters: (1) agribusiness and natural resources, (2) business marketing, and office occupations, (3) communications and media, (4) consumer and homemaker, (5) fine arts and humanities, (6) health, (7) manufacturing and processing, (8)…

  18. Matlab Cluster Ensemble Toolbox

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. Withmore » regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.« less

  19. [Cluster headache differential diagnosis].

    PubMed

    Guégan-Massardier, Evelyne; Laubier, Cécile

    2015-11-01

    Cluster headache is characterized by disabling stereotyped headache. Early diagnosis allows appropriate treatment, unfortunately diagnostic errors are frequent. The main differential diagnoses are other primary or essential headaches. Migraine, more frequent and whose diagnosis is carried by excess, trigeminal neuralgia or other trigemino-autonomic cephalgia. Vascular or tumoral underlying condition can mimic cluster headache, neck and brain imaging is recommended, ideally MRI.

  20. Blue emitting undecaplatinum clusters

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indranath; Bhuin, Radha Gobinda; Bhat, Shridevi; Pradeep, T.

    2014-07-01

    A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents.A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents. Electronic supplementary information (ESI) available: Details of experimental procedures, instrumentation, chromatogram of the crude cluster; SEM/EDAX, DLS, PXRD, TEM, FT-IR, and XPS of the isolated Pt11 cluster; UV/Vis, MALDI MS and SEM/EDAX of isolated 2 and 3; and 195Pt NMR of the K2PtCl6 standard. See DOI: 10.1039/c4nr02778g

  1. Muster: Massively Scalable Clustering

    2010-05-20

    Muster is a framework for scalable cluster analysis. It includes implementations of classic K-Medoids partitioning algorithms, as well as infrastructure for making these algorithms run scalably on very large systems. In particular, Muster contains algorithms such as CAPEK (described in reference 1) that are capable of clustering highly distributed data sets in-place on a hundred thousand or more processes.

  2. Illinois' Career Cluster Model

    ERIC Educational Resources Information Center

    Jankowski, Natasha A.; Kirby, Catherine L.; Bragg, Debra D.; Taylor, Jason L.; Oertle, Kathleen M.

    2009-01-01

    This booklet provides information to multiple stakeholders on the implementation of career clusters in Illinois. The booklet is an extension of the previous edition titled "An Introduction to Illinois CTE Programs of Study" (2008), and provides a resource for partners to understand Illinois' Career Cluster Model as its own adaptation of the…

  3. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  4. Marketing Occupations. Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This cluster guide, which is designed to show teachers what specific knowledge and skills qualify high school students for entry-level employment (or postsecondary training) in marketing occupations, is organized into three sections: (1) cluster organization and implementation, (2) instructional emphasis areas, and (3) assessment. The first…

  5. Probability and Cancer Clusters

    ERIC Educational Resources Information Center

    Hamilton-Keene, Rachael; Lenard, Christoper T.; Mills, Terry M.

    2009-01-01

    Recently there have been several news items about possible cancer clusters in the Australian media. The term "cancer cluster" is used when an unusually large number of people in one geographic area, often a workplace, are diagnosed with cancer in a short space of time. In this paper the authors explore this important health issue using probability…

  6. Behaviour during a cluster headache.

    PubMed

    Blau, J N

    1993-09-18

    Because cluster headache is short-lasting and tends to occur during the early morning hours, physicians rarely witness an attack. Accurate diagnosis is important because effective treatments are available. The diagnosis is made from the history of temporal pattern, reddening and tearing of the affected eye, and ipsilateral nasal congestion. An additional diagnostic aid is to invite patients to demonstrate how they respond to attacks. The pain, one of the worst known, causes extreme restlessness. 50 patients showed how they walk around, sit (or kneel) and rock, and clutch the affected side of the head. Diagnostic value apart, the patient will often be relieved to learn that bizarre behavioural responses are not a mark of insanity.

  7. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen (amino-nitrogen) test system....

  8. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen (amino-nitrogen) test system....

  9. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen (amino-nitrogen) test system....

  10. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen (amino-nitrogen) test system....

  11. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen (amino-nitrogen) test system....

  12. Cosmology with galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sartoris, Barbara

    2015-08-01

    Clusters of galaxies are powerful probes to constrain parameters that describe the cosmological models and to distinguish among different models. Since, the evolution of the cluster mass function and large-scale clustering contain the informations about the linear growth rate of perturbations and the expansion history of the Universe, clusters have played an important role in establishing the current cosmological paradigm. It is crucial to know how to determine the cluster mass from observational quantities when using clusters as cosmological tools. For this, numerical simulations are helpful to define and study robust cluster mass proxies that have minimal and well understood scatter across the mass and redshift ranges of interest. Additionally, the bias in cluster mass determination can be constrained via observations of the strong and weak lensing effect, X-ray emission, the Sunyaev- Zel’dovic effect, and the dynamics of galaxies.A major advantage of X-ray surveys is that the observable-mass relation is tight. Moreover, clusters can be easily identified in X-ray as continuous, extended sources. As of today, interesting cosmological constraints have been obtained from relatively small cluster samples (~102), X-ray selected by the ROSAT satellite over a wide redshift range (0clusters, the ROSAT All-Sky Survey.The next generation of X-ray telescopes will enhance the statistics of detected clusters and enlarge their redshift coverage. In particular, eROSITA will produce a catalog of >105 clusters with photometric redshifts from multi-band optical surveys (e.g. PanSTARRS, DES, and LSST). This will vastly improve upon current cosmological constraints, especially by the synergy with other cluster surveys that

  13. Bacterial iron-sulfur cluster sensors in mammalian pathogens

    PubMed Central

    Miller, Halie K.; Auerbuch, Victoria

    2015-01-01

    Iron-sulfur clusters act as important cofactors for a number of transcriptional regulators in bacteria, including many mammalian pathogens. The sensitivity of iron-sulfur clusters to iron availability, oxygen tension, and reactive oxygen and nitrogen species enables bacteria to use such regulators to adapt their gene expression profiles rapidly in response to changing environmental conditions. In this review, we discuss how the [4Fe-4S] or [2Fe-2S] cluster-containing regulators FNR, Wbl, aconitase, IscR, NsrR, SoxR, and AirSR contribute to bacterial pathogenesis through control of both metabolism and classical virulence factors. In addition, we briefly review mammalian iron homeostasis as well as oxidative/nitrosative stress to provide context for understanding the function of bacterial iron-sulfur cluster sensors in different niches within the host. PMID:25738802

  14. Bacterial iron-sulfur cluster sensors in mammalian pathogens.

    PubMed

    Miller, Halie K; Auerbuch, Victoria

    2015-06-01

    Iron-sulfur clusters act as important cofactors for a number of transcriptional regulators in bacteria, including many mammalian pathogens. The sensitivity of iron-sulfur clusters to iron availability, oxygen tension, and reactive oxygen and nitrogen species enables bacteria to use such regulators to adapt their gene expression profiles rapidly in response to changing environmental conditions. In this review, we discuss how the [4Fe-4S] or [2Fe-2S] cluster-containing regulators FNR, Wbl, aconitase, IscR, NsrR, SoxR, and AirSR contribute to bacterial pathogenesis through control of both metabolism and classical virulence factors. In addition, we briefly review mammalian iron homeostasis as well as oxidative/nitrosative stress to provide context for understanding the function of bacterial iron-sulfur cluster sensors in different niches within the host.

  15. Cool Cluster Correctly Correlated

    SciTech Connect

    Varganov, Sergey Aleksandrovich

    2005-01-01

    Atomic clusters are unique objects, which occupy an intermediate position between atoms and condensed matter systems. For a long time it was thought that physical and chemical properties of atomic dusters monotonically change with increasing size of the cluster from a single atom to a condensed matter system. However, recently it has become clear that many properties of atomic clusters can change drastically with the size of the clusters. Because physical and chemical properties of clusters can be adjusted simply by changing the cluster's size, different applications of atomic clusters were proposed. One example is the catalytic activity of clusters of specific sizes in different chemical reactions. Another example is a potential application of atomic clusters in microelectronics, where their band gaps can be adjusted by simply changing cluster sizes. In recent years significant advances in experimental techniques allow one to synthesize and study atomic clusters of specified sizes. However, the interpretation of the results is often difficult. The theoretical methods are frequently used to help in interpretation of complex experimental data. Most of the theoretical approaches have been based on empirical or semiempirical methods. These methods allow one to study large and small dusters using the same approximations. However, since empirical and semiempirical methods rely on simple models with many parameters, it is often difficult to estimate the quantitative and even qualitative accuracy of the results. On the other hand, because of significant advances in quantum chemical methods and computer capabilities, it is now possible to do high quality ab-initio calculations not only on systems of few atoms but on clusters of practical interest as well. In addition to accurate results for specific clusters, such methods can be used for benchmarking of different empirical and semiempirical approaches. The atomic clusters studied in this work contain from a few atoms to

  16. Hyporheic nitrogen dynamics in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2009-04-01

    Streams often suffer of excessive nitrogen inputs from agricultural and urban areas. These inputs are the major responsible of streamś eutrophication and may be a source of nitrous oxide an important greenhouse gas formed during same hyporheic processes. Consequently, hyporheic exchange, which mixes surface and pore waters, affects both fluvial and terrestrial ecosystems and its inclusion in nutrients and contaminant transport model is necessary. In general, in-stream water continuously exchange between stream and sediment through the ¨p umping¨m echanism, which stems primarily from near-bed pressure gradients. Alternate zones of high (downwelling) and low (upwelling) pressure induce a complex flow pattern within the hyporheic zone with in-stream and pore waters entering the stream and the sediment, respectively. In the present work, we focus on the export of ammonium (NH4+), nitrate (NO3-) and their fate within the streambed of gravel bed rivers with alternate bars. We model hyporheic exchange with analytical solutions of the intra-gravel flows induced by streambed morphology and the fate of the inorganic compounds of nitrogen with a set of transport equations coupled with first order kinetics. Transport is solved by particle tracking, assuming negligible local dispersion and temperature dependant reaction rate coefficients. Through a Lagrangian approach we present the transport equation in term of hyporheic residence time, which is the controlling parameter of both retention and nitrification-denitrificaton processes. We investigate the important factors controlling the export of ammonium, nitrate, and production of nitrogen gases by the hyporheic zone. Our results show that the hyporheic zone acts as a sink of ammonium to an extent that depends on the nitrification rate but it may act as a source or a sink of nitrate. Additionally, it can influence the emission of nitrogen gases (N2 and N2O), depending on the ratio between ammonium and nitrate concentrations

  17. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    SciTech Connect

    Xiao, Shengmu; Xue, Kai; He, Zhili; VanNostrand, Joy D.; Liu, Jianshe; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNA from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.

  18. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    SciTech Connect

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico; Portegies Zwart, Simon

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noise introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.

  19. Nitrogen fixation and nitrogen transformations in marine symbioses.

    PubMed

    Fiore, Cara L; Jarett, Jessica K; Olson, Nathan D; Lesser, Michael P

    2010-10-01

    Many marine organisms have coevolved symbiotic relationships with nitrogen-fixing bacteria in nitrogen limited environments such as coral reefs. In addition, some of these organisms also harbor microbes that carry out nitrification and denitrification. Prokaryotes involved in nitrogen fixation and other nitrogen transformations are symbionts in a range of eukaryotic hosts in the marine environment including shipworms, diatoms, corals and sponges. Molecular genetic approaches, and other analytical techniques, have provided exciting new insights into symbiont diversity and the relationship between host and symbiont. We review the current state of knowledge of these symbioses and highlight important avenues for future studies.

  20. Nitrogen fixation and nitrogen transformations in marine symbioses.

    PubMed

    Fiore, Cara L; Jarett, Jessica K; Olson, Nathan D; Lesser, Michael P

    2010-10-01

    Many marine organisms have coevolved symbiotic relationships with nitrogen-fixing bacteria in nitrogen limited environments such as coral reefs. In addition, some of these organisms also harbor microbes that carry out nitrification and denitrification. Prokaryotes involved in nitrogen fixation and other nitrogen transformations are symbionts in a range of eukaryotic hosts in the marine environment including shipworms, diatoms, corals and sponges. Molecular genetic approaches, and other analytical techniques, have provided exciting new insights into symbiont diversity and the relationship between host and symbiont. We review the current state of knowledge of these symbioses and highlight important avenues for future studies. PMID:20674366

  1. Chemical footprints of anthropogenic nitrogen deposition on recent soil C : N ratios in Europe

    NASA Astrophysics Data System (ADS)

    Mulder, C.; Hettelingh, J.-P.; Montanarella, L.; Pasimeni, M. R.; Posch, M.; Voigt, W.; Zurlini, G.

    2015-07-01

    Long-term human interactions with the natural landscape have produced a plethora of trends and patterns of environmental disturbances across time and space. Nitrogen deposition, closely tracking energy and land use, is known to be among the main drivers of pollution, affecting both freshwater and terrestrial ecosystems. We present a statistical approach for investigating the historical and geographical distribution of nitrogen deposition and the impacts of accumulation on recent soil carbon-to-nitrogen ratios in Europe. After the second Industrial Revolution, large swaths of land emerged characterized by different atmospheric deposition patterns caused by industrial activities or intensive agriculture. Nitrogen deposition affects soil C : N ratios in a still recognizable way despite the abatement of oxidized and reduced nitrogen emissions during the last 2 decades. Given a seemingly disparate land-use history, we focused on ~ 10 000 unmanaged ecosystems, providing statistical evidence for a rapid response of nature to the chronic nitrogen supply through atmospheric deposition.

  2. Chemical footprints of anthropogenic nitrogen deposition on recent soil C : N ratios in Europe

    NASA Astrophysics Data System (ADS)

    Mulder, C.; Hettelingh, J.-P.; Montanarella, L.; Pasimeni, M. R.; Posch, M.; Voigt, W.; Zurlini, G.

    2015-03-01

    Long-term human interactions with landscape and nature produced a plethora of trends and patterns of environmental disturbances in time and space. Nitrogen deposition, closely tracking energy and land use, is known to be among the main pollution drivers, affecting both freshwater as terrestrial ecosystems. We investigated the geographical distribution of nitrogen deposition and the impacts of accumulation on recent soil carbon to nitrogen ratios over Europe. After the Second Industrial Revolution (1880-2010), large landscape stretches characterized by different atmospheric deposition caused either by industrialized areas or by intensive agriculture emerged. Nitrogen deposition affects in a still recognizable way recent soil C : N ratios despite the emission abatement of oxidized and reduced nitrogen during the last two decades. Given the seemingly disparate land-use history, we focused on ~ 10 000 unmanaged ecosystems, providing evidence for a rapid response of nature to chronic nitrogen supply by atmospheric deposition.

  3. Understanding Nitrogen Fixation

    SciTech Connect

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  4. Nitrogen fixation apparatus

    DOEpatents

    Chen, Hao-Lin

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  5. [Effects of seasonal snow cover on soil nitrogen transformation in alpine ecosystem: a review].

    PubMed

    Liu, Lin; Wu, Yan; He, Yi-xin; Wu, Ning; Sun, Geng; Zhang, Lin; Xu, Jun-jun

    2011-08-01

    Seasonal snow cover has pronounced effects on the soil nitrogen concentration and transformation in alpine ecosystem. Snowfall is an important form of nitrogen deposition, which directly affects the content of soil available nitrogen. Different depths and different duration of snow cover caused by snowfall may lead the heterogeneity of abiotic factors (soil temperature and moisture) and biotic factors (soil microbes, alpine plants, and alpine animals), and further, produce complicated effects on the mineralization and immobilization of soil nitrogen. This paper introduced in emphasis the inherent mechanisms of soil nitrogen mineralization and leaching under the effects of frequent freeze-thaw events during the durative melting of snow cover, and summarized the main research results of field in situ experiments about the effects of seasonal snow cover on soil nitrogen in alpine ecosystem based on the possible changes in snow cover in the future. Some suggestions with regard to the effects of seasonal snow cover on soil nitrogen were put forward.

  6. [Effects of seasonal snow cover on soil nitrogen transformation in alpine ecosystem: a review].

    PubMed

    Liu, Lin; Wu, Yan; He, Yi-xin; Wu, Ning; Sun, Geng; Zhang, Lin; Xu, Jun-jun

    2011-08-01

    Seasonal snow cover has pronounced effects on the soil nitrogen concentration and transformation in alpine ecosystem. Snowfall is an important form of nitrogen deposition, which directly affects the content of soil available nitrogen. Different depths and different duration of snow cover caused by snowfall may lead the heterogeneity of abiotic factors (soil temperature and moisture) and biotic factors (soil microbes, alpine plants, and alpine animals), and further, produce complicated effects on the mineralization and immobilization of soil nitrogen. This paper introduced in emphasis the inherent mechanisms of soil nitrogen mineralization and leaching under the effects of frequent freeze-thaw events during the durative melting of snow cover, and summarized the main research results of field in situ experiments about the effects of seasonal snow cover on soil nitrogen in alpine ecosystem based on the possible changes in snow cover in the future. Some suggestions with regard to the effects of seasonal snow cover on soil nitrogen were put forward. PMID:22097387

  7. Nitrogen doping in carbon nanotubes.

    PubMed

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  8. Nitrogen abundance in Comet Halley

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Tegler, Stephen C.; Engel, Lisa

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion.

  9. Pathways of the eye's response to topical nitrogen mustard.

    PubMed

    Jampol, L M; Axelrod, A; Tessler, H

    1976-06-01

    We studied the effect of prior corneal herpes simplex infection with its resultant corneal hypesthesia on the irritative response of the rabbit eye to topical nitrogen mustard. Both the miosis and the breakdown of the blood-aqueous barrier that follow the application of topical nitrogen mustard were diminished in eyes infected three weeks previously with herpes simplex virus. Nonspecific corneal scarring did not affect the response. This suggests again that an axon reflex requiring intact sensory innervation mediates the response to nitrogen mustard. Pretreatment of normal (noninfected) rabbits with systemic H1 and H2 antihistamines, topical scopolamine hydrobromide, or topical and systemic corticosteroids was ineffective in blocking the miosis or increased protein in the aqueous humor following topical nitrogen mustard. PMID:6401

  10. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    DOEpatents

    Sanfilippo, Antonio; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  11. The transformation of organic amines by transition metal cluster compounds. Progress report, 1992--1993

    SciTech Connect

    Adams, R.D.

    1993-01-01

    The paper reports results on the following five studies: (1) The activation of tertiary amines by osmium cluster complexes; (2) Nucleophilic ring opening of thietane ligand in metal carbonyl cluster complexes; (3) Ring opening of a nitrogen containing strained ring heterocycle by an osmium cluster complex; (4) Insertion of an alkynes into a metal-metal bond -- evidence for an intramolecular insertion with a trans-stereochemistry; and (5) Cyclobutyne -- the ligand. Plans for future research are also briefly discussed. Two studies are planned: (1) studies of the synthesis and reactivity of strained ring ligands in metal cluster compounds; and (2) studies of the reactivity of dimetallic complexes with alkynes.

  12. Nitrogen In Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D.; Reisenfeld, D.; Shappirio, M.; Michael, M.; Shematovich, V. I.; Baragiola, R. A.; Crary, F.; Young, D.

    2004-11-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions to the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to the models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and the CAPS Cassini instrument team programs.

  13. Using monatomic nitrogen induced by a pulsed arc to remove nitrogen oxides from a gas stream

    SciTech Connect

    Ng, H.K.; Novick, V.J.; Sekar, R.R.

    1995-12-01

    The effectiveness of monatomic nitrogen, induced by a pulsed electric arc, in reducing nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) was studied. The goal for this research is the reduction of nitrogen oxides (NO{sub x}) from automobile emissions by this alternative technique, which can be cost-effective (to be demonstrated in the near future) and has the potential to reduce NO{sub x} in exhaust containing up to 10% oxygen. The initial tests with 100, 500, and 1,000 ppm NO in pure nitrogen have shown that a greater than 50% reduction of NO/NO{sub x} is readily achievable. Different flow rates of the monatomic nitrogen and the gas stream were tested. The flow rate of the monatomic nitrogen did not have a significant effect on the reduction efficiency, unlike the flow rate of the gas stream. The cross-sectional flow area of the gas stream was varied in order to assess whether the proximity of the gas stream to the arc would affect NO/NO{sub x} reduction. Results of the tests revealed that the smallest cross-sectional area gave the best reduction, but it also had the greatest chance of contacting the arc. The composition of the gas stream was also varied to elucidate the effects of NO{sub 2} and O{sub 2} on the NO/NO{sub x} reduction efficiency. When NO{sub 2} and O{sub 2} are present in the gas stream, both gases lower the reduction efficiency significantly by creating more NO or NO{sub 2}. Experiments are continuing to improve the reduction efficiency. The electrical power, a function of pulse frequency, voltage, and current, was treated as a key parameter in the investigation. The power consumption of the high-voltage pulser apparatus for a 100-kW engine was estimated to be 3 kW.

  14. Studies in clustering theory

    NASA Astrophysics Data System (ADS)

    Stell, George

    In recent years the properties of percolation models have been studied intensively. The purpose of our project was to develop a general theory of percolation and clustering between particles of arbitrary size and shape, with arbitrary correlations between them. The goal of such a theory includes the treatment of continuum percolation as well as a novel treatment of lattice percolation. We made substantial progress toward this goal. The quantities basic to a description of clustering, the mean cluster size, mean number of clusters, etc., were developed. Concise formulas were given for the terms in such series, and proved, at least for sufficiently low densities, that the series are absolutely convergent. These series can now be used to construct Pade approximants that will allow one to probe the percolation transition. A scaled-particle theory of percolation was developed which gives analytic approximants for the mean number of clusters in a large class of two and three dimensional percolation models. Although this quantity is essential in many applications, e.g., explaining colligative properties, and interpreting low-angle light-scattering data, no systematic studies of it have been done before this work. Recently carried out detailed computer simulations show that the mean number of clusters is given to high accuracy by several of there approximations. Extensions of this work will allow calculation of the complete cluster size distribution.

  15. Nitrogen fixation and nifH diversity in human gut microbiota.

    PubMed

    Igai, Katsura; Itakura, Manabu; Nishijima, Suguru; Tsurumaru, Hirohito; Suda, Wataru; Tsutaya, Takumi; Tomitsuka, Eriko; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Natsuhara, Kazumi; Morita, Ayako; Yoneda, Minoru; Greenhill, Andrew R; Horwood, Paul F; Inoue, Jun-Ichi; Ohkuma, Moriya; Hongoh, Yuichi; Yamamoto, Taro; Siba, Peter M; Hattori, Masahira; Minamisawa, Kiwamu; Umezaki, Masahiro

    2016-01-01

    It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A (15)N2 incorporation assay showed significant enrichment of (15)N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance. PMID:27554344

  16. Nitrogen fixation and nifH diversity in human gut microbiota.

    PubMed

    Igai, Katsura; Itakura, Manabu; Nishijima, Suguru; Tsurumaru, Hirohito; Suda, Wataru; Tsutaya, Takumi; Tomitsuka, Eriko; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Natsuhara, Kazumi; Morita, Ayako; Yoneda, Minoru; Greenhill, Andrew R; Horwood, Paul F; Inoue, Jun-Ichi; Ohkuma, Moriya; Hongoh, Yuichi; Yamamoto, Taro; Siba, Peter M; Hattori, Masahira; Minamisawa, Kiwamu; Umezaki, Masahiro

    2016-08-24

    It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A (15)N2 incorporation assay showed significant enrichment of (15)N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance.

  17. Nitrogen fixation and nifH diversity in human gut microbiota

    PubMed Central

    Igai, Katsura; Itakura, Manabu; Nishijima, Suguru; Tsurumaru, Hirohito; Suda, Wataru; Tsutaya, Takumi; Tomitsuka, Eriko; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Natsuhara, Kazumi; Morita, Ayako; Yoneda, Minoru; Greenhill, Andrew R.; Horwood, Paul F.; Inoue, Jun-ichi; Ohkuma, Moriya; Hongoh, Yuichi; Yamamoto, Taro; Siba, Peter M.; Hattori, Masahira; Minamisawa, Kiwamu; Umezaki, Masahiro

    2016-01-01

    It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A 15N2 incorporation assay showed significant enrichment of 15N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance. PMID:27554344

  18. Extending Beowulf Clusters

    USGS Publications Warehouse

    Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Hamer, George

    2003-01-01

    Beowulf clusters can provide a cost-effective way to compute numerical models and process large amounts of remote sensing image data. Usually a Beowulf cluster is designed to accomplish a specific set of processing goals, and processing is very efficient when the problem remains inside the constraints of the original design. There are cases, however, when one might wish to compute a problem that is beyond the capacity of the local Beowulf system. In these cases, spreading the problem to multiple clusters or to other machines on the network may provide a cost-effective solution.

  19. Partially supervised speaker clustering.

    PubMed

    Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S

    2012-05-01

    Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical

  20. H-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, X. Y.; Gao, C. Y.; Xu, R. X.

    2013-06-01

    The study of dense matter at ultrahigh density has a very long history, which is meaningful for us to understand not only cosmic events in extreme circumstances but also fundamental laws of physics. It is well known that the state of cold matter at supranuclear density depends on the non-perturbative nature of quantum chromodynamics (QCD) and is essential for modelling pulsars. A so-called H-cluster matter is proposed in this paper as the nature of dense matter in reality. In compact stars at only a few nuclear densities but low temperature, quarks could be interacting strongly with each other there. That might render quarks grouped in clusters, although the hypothetical quark clusters in cold dense matter have not been confirmed due to the lack of both theoretical and experimental evidence. Motivated by recent lattice QCD simulations of the H-dibaryons (with structure uuddss), we therefore consider here a possible kind of quark clusters, H-clusters, that could emerge inside compact stars during their initial cooling as the dominant components inside (the degree of freedom could then be H-clusters there). Taking into account the in-medium stiffening effect, we find that at baryon densities of compact stars H-cluster matter could be more stable than nuclear matter. We also find that for the H-cluster matter with lattice structure, the equation of state could be so stiff that it would seem to be `superluminal' in the most dense region. However, the real sound speed for H-cluster matter is in fact difficult to calculate, so at this stage we do not put constraints on our model from the usual requirement of causality. We study the stars composed of H-clusters, i.e. H-cluster stars, and derive the dependence of their maximum mass on the in-medium stiffening effect, showing that the maximum mass could be well above 2 M⊙ as observed and that the resultant mass-radius relation fits the measurement of the rapid burster under reasonable parameters. Besides a general

  1. Nitrogen fixation and respiratory electron transport in the cyanobacterium Cyanothece under different light/dark cycles.

    PubMed

    Rabouille, Sophie; Van de Waal, Dedmer B; Matthijs, Hans C P; Huisman, Jef

    2014-03-01

    Incompatibility of nitrogen fixation and oxygen production compels unicellular diazotrophic cyanobacteria to perform photosynthesis during daytime and restrict nitrogen fixation to nighttime. The marine diazotroph Cyanothece BG 043511 was grown in continuous culture under three light/dark regimes (16L : 8D, 12L : 12D, and 8L : 16D h); we monitored nitrogen fixation and potential photosynthetic efficiency simultaneously online to reveal how their temporal separation is affected by different LD regimes. An increase in nitrogen fixation rate at night coincided with a rise in pulse-amplitude modulated fluorescence, indicating that the enhanced respiratory electron transport to fuel diazotrophy affects the oxidation state of the plastoquinone pool. This may offer an alternative approach to assess instantaneous nitrogen fixation activity. Regardless of photoperiod, the maximum rate of nitrogen fixation was conserved at about 20 h after the onset of the light. Consequently, nitrogen fixation rates peaked at different moments in the dark: relatively early in the 16L : 8D cycle, at midnight in 12L : 12D, and relatively late in 8L : 16D. Under 16L : 8D, nitrogen fixation extended into the light, demonstrating the functional plasticity of nitrogen fixation in Cyanothece. Highest daily amounts of nitrogen fixed were obtained in 12L : 12D, which is consistent with the natural LD cycle of subtropical latitudes in which Cyanothece thrives.

  2. Metformin Improves Diabetic Bone Health by Re-Balancing Catabolism and Nitrogen Disposal

    PubMed Central

    Li, Xiyan; Guo, Yuqi; Yan, Wenbo; Snyder, Michael P.; Li, Xin

    2015-01-01

    Objective Metformin, a leading drug used to treat diabetic patients, is reported to benefit bone homeostasis under hyperglycemia in animal models. However, both the molecular targets and the biological pathways affected by metformin in bone are not well identified or characterized. The objective of this study is to investigate the bioengergeric pathways affected by metformin in bone marrow cells of mice. Materials and Methods Metabolite levels were examined in bone marrow samples extracted from metformin or PBS -treated healthy (Wild type) and hyperglycemic (diabetic) mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. We applied an untargeted high performance LC-MS approach which combined multimode chromatography (ion exchange, reversed phase and hydrophilic interaction (HILIC)) and Orbitrap-based ultra-high accuracy mass spectrometry to achieve a wide coverage. A multivariate clustering was applied to reveal the global trends and major metabolite players. Results A total of 346 unique metabolites were identified, and they are grouped into distinctive clusters that reflected general and diabetes-specific responses to metformin. As evidenced by changes in the TCA and urea cycles, increased catabolism and nitrogen waste that are commonly associated with diabetes were rebalanced upon treatment with metformin. In particular, we found glutamate and succinate whose levels were drastically elevated in diabetic animals were brought back to normal levels by metformin. These two metabolites were further validated as the major targets of metformin in bone marrow stromal cells. Conclusion Overall using limited sample size, our study revealed the metabolic pathways modulated by metformin in bones which have broad implication in our understanding of bone remodeling under hyperglycemia and in finding therapeutic interventions in mammals. PMID:26716870

  3. Clustering aspects in nuclear structure functions

    SciTech Connect

    Hirai, M.; Saito, K.; Watanabe, T.; Kumano, S.

    2011-03-15

    For understanding an anomalous nuclear effect experimentally observed for the beryllium-9 nucleus at the Thomas Jefferson National Accelerator Facility, clustering aspects are studied in structure functions of deep inelastic lepton-nucleus scattering by using momentum distributions calculated in antisymmetrized (or fermionic) molecular dynamics (AMD) and also in a simple shell model for comparison. According to AMD, the {sup 9}Be nucleus consists of two {alpha}-like clusters with a surrounding neutron. The clustering produces high-momentum components in nuclear wave functions, which affects nuclear modifications of the structure functions. We investigated whether clustering features could appear in the structure function F{sub 2} of {sup 9}Be along with studies for other light nuclei. We found that nuclear modifications of F{sub 2} are similar in both AMD and shell models within our simple convolution description although there are slight differences in {sup 9}Be. It indicates that the anomalous {sup 9}Be result should be explained by a different mechanism from the nuclear binding and Fermi motion. If nuclear-modification slopes d(F{sub 2}{sup A}/F{sub 2}{sup D})/dx are shown by the maximum local densities, the {sup 9}Be anomaly can be explained by the AMD picture, namely by the clustering structure, whereas it certainly cannot be described in the simple shell model. This fact suggests that the large nuclear modification in {sup 9}Be should be explained by large densities in the clusters. For example, internal nucleon structure could be modified in the high-density clusters. The clustering aspect of nuclear structure functions is an unexplored topic which is interesting for future investigations.

  4. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.).

    PubMed

    Nguyen, Phuong M; Niemeyer, Emily D

    2008-09-24

    Many herbs and spices have been shown to contain high levels of polyphenolic compounds with potent antioxidant properties. In the present study, we explore how nutrient availability, specifically nitrogen fertilization, affects the production of polyphenolic compounds in three cultivars (Dark Opal, Genovese, and Sweet Thai) of the culinary herb, basil ( Ocimum basilicum L.). Nitrogen fertilization was found to have a significant effect on total phenolic levels in Dark Opal ( p < 0.001) and Genovese ( p < 0.001) basil with statistically higher phenolic contents observed when nutrient availability was limited at the lowest (0.1 mM) applied nitrogen treatment. Similarly, basil treated at the lowest nitrogen fertilization level generally contained significantly higher rosmarinic ( p = 0.001) and caffeic ( p = 0.001) acid concentrations than basil treated at other nitrogen levels. Nitrogen fertilization also affected antioxidant activity ( p = 0.002) with basil treated at the highest applied nitrogen level, 5.0 mM, exhibiting lower antioxidant activity than all other nitrogen treatments. The anthocyanin content of Dark Opal basil was not affected by applied nitrogen level, but anthocyanin concentrations were significantly impacted by growing season ( p = 0.001). Basil cultivar was also determined to have a statistically significant effect on total phenolic levels, rosmarinic and caffeic acid concentrations, and antioxidant activities.

  5. Combining cluster number counts and galaxy clustering

    NASA Astrophysics Data System (ADS)

    Lacasa, Fabien; Rosenfeld, Rogerio

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  6. Orchard nitrogen management: Which nitrogen source is best?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suboptimal management of nitrogen fertility in pecan orchards leads to a loss of nutmeat yield and quality, but also a waste of natural resources and money. This article reviews several basic guiding principles useful to orchard managers when developing nitrogen management strategies, and determini...

  7. Statistical properties of convex clustering

    PubMed Central

    Tan, Kean Ming; Witten, Daniela

    2016-01-01

    In this manuscript, we study the statistical properties of convex clustering. We establish that convex clustering is closely related to single linkage hierarchical clustering and k-means clustering. In addition, we derive the range of the tuning parameter for convex clustering that yields a non-trivial solution. We also provide an unbiased estimator of the degrees of freedom, and provide a finite sample bound for the prediction error for convex clustering. We compare convex clustering to some traditional clustering methods in simulation studies.

  8. Nitrogen release during coal combustion

    SciTech Connect

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase signifi