Science.gov

Sample records for nitrogen affects cluster

  1. Nitrogen affects cluster root formation and expression of putative peptide transporters

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Schenk, Peer M.; Lonhienne, Thierry G. A.; Brackin, Richard; Meier, Stefan; Rentsch, Doris; Schmidt, Susanne

    2009-01-01

    Non-mycorrhizal Hakea actites (Proteaceae) grows in heathland where organic nitrogen (ON) dominates the soil nitrogen (N) pool. Hakea actites uses ON for growth, but the role of cluster roots in ON acquisition is unknown. The aim of the present study was to ascertain how N form and concentration affect cluster root formation and expression of peptide transporters. Hydroponically grown plants produced most biomass with low molecular weight ON>inorganic N>high molecular weight ON, while cluster roots were formed in the order no-N>ON>inorganic N. Intact dipeptide was transported into roots and metabolized, suggesting a role for the peptide transporter (PTR) for uptake and transport of peptides. HaPTR4, a member of subgroup II of the NRT1/PTR transporter family, which contains most characterized di- and tripeptide transporters in plants, facilitated transport of di- and tripeptides when expressed in yeast. No transport activity was demonstrated for HaPTR5 and HaPTR12, most similar to less well characterized transporters in subgroup III. The results provide further evidence that subgroup II of the NRT1/PTR family contains functional di- and tripeptide transporters. Green fluorescent protein fusion proteins of HaPTR4 and HaPTR12 localized to tonoplast, and plasma- and endomembranes, respectively, while HaPTR5 localized to vesicles of unknown identity. Grown in heathland or hydroponic culture with limiting N supply or starved of nutrients, HaPTR genes had the highest expression in cluster roots and non-cluster roots, and leaf expression increased upon re-supply of ON. It is concluded that formation of cluster roots and expression of PTR are regulated in response to N supply. PMID:19380419

  2. Nitrogen ion clusters in Triton's atmosphere

    NASA Technical Reports Server (NTRS)

    Delitsky, Mona L.; Turco, Richard P.; Jacobson, Mark Z.

    1990-01-01

    The nitrogen ion chemistry that controls Triton's ionospheric composition and may be responsible for the hazes detected by the Voyager spacecraft are discussed. In particular, it is shown that nitrogen cluster ion formation should readily occur in Triton's thin cold atmosphere. The very low temperatures of Triton's atmosphere imply that these clustered ions can nucleate into solid nitrogen particles, creating the extended visible hazes. A model based on the chemical kinetics of nitrogen ions predicts a dense ionosphere at 200-400 km, as detected by Voyager radio occultation measurements.

  3. Structural motifs and stability of small argon-nitrogen clusters

    NASA Astrophysics Data System (ADS)

    Hewage, Jinasena W.; Amar, François G.

    2003-11-01

    The molecular dynamics (MD) simulation method is used to study Arm(N2)n clusters. Using realistic pair potentials for the argon-argon, nitrogen-nitrogen, and argon-nitrogen interactions, the structures and thermodynamics of these clusters are investigated. The initial focus of the study is the series of thirteen particle clusters of Arm(N2)13-m (0⩽m⩽13). These icosahedral argon-nitrogen clusters display systematic changes in energetics when argon is substituted by nitrogen in the central position. The relative stability of argon-centered clusters over nitrogen-centered clusters is further investigated by defining and calculating a "species-centric" order parameter which can be monitored during a MD simulation. These results are interpreted in terms of frustration effects due to anisotropy in the N2-N2 and N2-Ar potentials. The consequences of these observations for cluster stability and for dynamical behavior, such as melting and evaporation, are investigated. The dynamical studies of larger clusters reveal that the mixed clusters evolve towards a structure with an argon core coated by a nitrogen shell.

  4. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    SciTech Connect

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-09-15

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  5. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  6. Vicinage Effects for a Nitrogen Molecular Cluster in Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiu; E, Peng; Xia, Wenwen

    2014-07-01

    The vicinage effects are studied for a fast nitrogen diatomic molecular cluster in a high-density plasma target. A variety of plasma parameters are discussed with regard to stopping power ratio, molecular axis deflection and Coulomb explosion. Emphasis is placed on the vicinage effects on Coulomb explosion and stopping power for a nitrogen cluster in plasmas. The results indicate that vicinage effects influence the correlation between ions in the cluster, and the Coulomb explosion will proceed faster with higher projectile speed, lower plasma density and higher plasma temperature. Comparing hydrogen and nitrogen molecular ions for Coulomb explosion and deflection angle under the same set of parameters, one can find that the nitrogen ion has faster Coulomb explosion and stronger deflection of molecular axis due to the contribution of charge. In the initial stage of the Coulomb explosion the stopping power ratio has a higher value due to enhanced vicinage effects while in the later stage the stopping power ratio approaches one, indicating that the vicinage effects disappear and the ions in the cluster simply behave as independent atomic ions in the plasma.

  7. Environmental factors affecting rates of nitrogen cycling

    SciTech Connect

    Lipschultz, F.

    1984-01-01

    The nitrogen cycle in the eutrophic Delaware river was studied in late summer, 1983 using /sup 15/N tracer additions of NHG/sub 4//sup +/, NO/sub 2//sup -/, and NO/sub 3//sup -/. Rates for nine different transformations were calculated simultaneously with a least-squares minimization analysis. Light was found to stimulate ammonium uptake and to inhibit ammonium oxidation. Rates for nitrification, ammonium uptake by phytoplankton, and photosynthesis were integrated over 24 hours and river depth. High turbidity lifted the effect of light inhibition on nitrification and restricted phytoplankton uptake. Uptake of ammonium contributed over 95% of the inorganic nitrogen ration for phytoplankton, with dark uptake accounting for more than 50%. A mass-conservation, box model of river was used to calculate rate constants required to reproduce observed nutrient concentration changes. The calculated constants correlated well with the measured /sup 15/N and oxygen integrated rates. Water-column nitrification was the major loss term for NH/sub 4//sup +/, while water column regeneration was the primary source. Loss of oxidized nitrogen was insignificant. Oxygen consumption and air-water exchange far exceeded net photosynthetic oxygen production. Nitrification contributed less than 1% to the oxygen demand near Philadelphia but up to 25% further downstream. Production of NO and N/sub 2/O was measured under varying oxygen concentrations in batch cultures of the nitrifying bacteria Nitrosomonas europaea and Nitrosococcus oceanus. Production of both gases increased relative to nitrite production as oxygen levels decreased.

  8. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca.

    PubMed

    Temme, Karsten; Zhao, Dehua; Voigt, Christopher A

    2012-05-01

    Bacterial genes associated with a single trait are often grouped in a contiguous unit of the genome known as a gene cluster. It is difficult to genetically manipulate many gene clusters because of complex, redundant, and integrated host regulation. We have developed a systematic approach to completely specify the genetics of a gene cluster by rebuilding it from the bottom up using only synthetic, well-characterized parts. This process removes all native regulation, including that which is undiscovered. First, all noncoding DNA, regulatory proteins, and nonessential genes are removed. The codons of essential genes are changed to create a DNA sequence as divergent as possible from the wild-type (WT) gene. Recoded genes are computationally scanned to eliminate internal regulation. They are organized into operons and placed under the control of synthetic parts (promoters, ribosome binding sites, and terminators) that are functionally separated by spacer parts. Finally, a controller consisting of genetic sensors and circuits regulates the conditions and dynamics of gene expression. We applied this approach to an agriculturally relevant gene cluster from Klebsiella oxytoca encoding the nitrogen fixation pathway for converting atmospheric N(2) to ammonia. The native gene cluster consists of 20 genes in seven operons and is encoded in 23.5 kb of DNA. We constructed a "refactored" gene cluster that shares little DNA sequence identity with WT and for which the function of every genetic part is defined. This work demonstrates the potential for synthetic biology tools to rewrite the genetics encoding complex biological functions to facilitate access, engineering, and transferability.

  9. Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability.

    PubMed

    Li, Shuangshuang; Peng, Chengrong; Wang, Chun; Zheng, Jiaoli; Hu, Yao; Li, Dunhai

    2017-01-01

    Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.

  10. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  11. How the clustering of phonological neighbors affects visual word recognition.

    PubMed

    Yates, Mark

    2013-09-01

    In recent years, a new scientific field known as network science has been emerging. Network science is concerned with understanding the structure and properties of networks. One concept that is commonly used in describing a network is how the nodes in the network cluster together. The current research applied the idea of clustering to the study of how phonological neighbors influence visual word recognition. The results of 2 experiments converge to show that words with neighbors that are highly clustered (i.e., are closely related in terms of sound) are recognized more slowly than are those having neighbors that are less clustered. This result is explained in terms of the principles of interactive activation where the interplay between phoneme and phonological word units is affected by the neighborhood structure of the word. It is argued that neighbors in more clustered neighborhoods become more active and directly compete with the target word, thereby slowing processing.

  12. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    NASA Astrophysics Data System (ADS)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.

    2016-03-01

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of terms is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N2 problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree-Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT

  13. How inhibiting nitrification affects nitrogen cycle and reduces ...

    EPA Pesticide Factsheets

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI along with nitrogen (N) fertilizer increased crop nitrogen use efficiency, crop yield, and altered the pathways and the amount of N loss to environment. NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9% of the total N loss. The cost and benefit analysis showed that the economic benefit of reducing N’s environmental impacts offset the cost of NI. NI application could bring additional revenue of $163.72 ha-1 for a maize farm. Taken together, our findings show that NI application may create a win-win scenario that increases agricultural output, while reducing the negative impact on the environment. Policies that encourage NI application would reduce N’s environmental impacts. A group from Chinese Academy of Sciences, US EPA-ORD and North Carolina examined the net environmental and economic effects of nitrification inhibitors to reduce nitrate leaching associated with farm fertilizers. They conducted a meta-analysis of studies examining nitrification inhibitors, and found that NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9

  14. Processes Affecting Nitrogen Speciation in a Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Musgrove, M.; Wong, C. I.

    2011-12-01

    Like many karst aquifers, the Barton Springs segment of the Edwards aquifer, in central Texas, is in an area undergoing rapid growth in population, and there is concern as to how increased amounts of wastewater might affect groundwater quality. We measured concentrations and estimated loads of nitrogen (N) species in recharge to and discharge from the Barton Springs segment of the Edwards aquifer, central Texas, to evaluate processes affecting the transport and fate of N species in groundwater. Water samples were collected during 17 months (November 2008-March 2010) from five streams that contribute about 85% of recharge to the aquifer segment and from Barton Springs, the principal point of discharge from the segment. The sampling period spanned a range of climatic conditions from exceptional drought to above-normal rainfall. Samples were analyzed for N species (organic N + ammonia, ammonia, nitrate + nitrite, nitrite); loads of organic N and nitrate were estimated with LOADEST, a regression-based model that uses a time series of streamflow and measured constituent concentrations to estimate constituent loads. Concentrations of organic nitrogen and dissolved oxygen were higher and concentrations of nitrate were lower in surface water than in spring discharge, consistent with conversion of organic nitrogen to nitrate and associated consumption of dissolved oxygen in the aquifer. During the period of the study, the estimated load of organic N in recharge from streams (average daily load [adl] of 39 kg/d) was about 10 times that in Barton Springs discharge (adl of 9.4 kg/d), whereas the estimated load of nitrate in recharge from streams (adl of 123 kg/d) was slightly less than that in Barton Springs discharge (adl of 148 kg/d). The total average N load in recharge from streams and discharge from Barton Springs was not significantly different (adl of 162 and 157 kg/d, respectively), indicating that surface-water recharge can account for all of the N in Barton Springs

  15. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency.

    PubMed

    Ogunwande, G A; Osunade, J A; Adekalu, K O; Ogunjimi, L A O

    2008-11-01

    The study was undertaken to investigate the effects of carbon to nitrogen (C:N) ratio and turning frequency (TF) on the loss of total nitrogen (TN) during composting of chicken litter (a mixture of chicken manure, waste feed, feathers and sawdust) with a view to producing good quality compost. Carbon to nitrogen ratios of 20:1, 25:1 and 30:1 and TF of 2, 4 and 6 days were experimented. The initial physico-chemical properties of the litter were determined. During the composting process, moisture level in the piles was periodically replenished to 55% and the temperature, pH and TN of the chicken litter were periodically monitored. Also, the dry matter (DM), total carbon (TC), total phosphorus (P) and total potassium (K) were examined at the end of composting. The results showed that both C:N ratio and TF had significant (p < or = 0.05) effect on pile temperature, pH changes, TN, TC, P and K losses while DM was only affected (p < or = 0.05) by C:N ratio. All treatments reached maturation at about 87 days as indicated by the decline of pile temperatures to near ambient temperature. Losses of TN, which were largely attributed to volatilization of ammonia (NH3), were highest within the first 28 days when the pile temperatures and pH values were above 33 degrees C and 7.7, respectively. Moisture loss increased as C:N ratio and TF increased. In conclusion, the treatment with a combination of 4 days TF and C:N ratio 25:1 (T4R25) had the minimum TN loss (70.73% of the initial TN) and this indicated the most efficient combination.

  16. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  17. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  18. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  19. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  20. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  1. Generation of metal-carbon and metal-nitrogen clusters with a laser induced plasma technique

    NASA Astrophysics Data System (ADS)

    Guo, B. C.; Wei, S.; Chen, Z.; Kerns, K. P.; Purnell, J.; Buzza, S.; Castleman, A. W., Jr.

    1992-10-01

    During the course of investigating dehydrogenation reactions induced by transition metals, we find that using a carrier gas containing hydrocarbons and ammonia instead of pure helium, in conjunction with a laser vaporization device, enables the facile production of metal-carbon and metal-nitrogen clusters in both the neutral and ionic forms. With only a change in the nature of the carrier gas, a variety of new classes of clusters can be produced.

  2. Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition

    PubMed Central

    Chen, Gang; Peng, Yong; Xiao, Yin-long; Hu, Ting-xing; Zhang, Jian; Li, Xian-wei; Liu, Li; Tang, Yi

    2014-01-01

    Background Forest litter decomposition is a major component of the global carbon (C) budget, and is greatly affected by the atmospheric nitrogen (N) deposition observed globally. However, the effects of N addition on forest litter decomposition, in ecosystems receiving increasingly higher levels of ambient N deposition, are poorly understood. Methodology/Principal Findings We conducted a two-year field experiment in five forests along the western edge of the Sichuan Basin in China, where atmospheric N deposition was up to 82–114 kg N ha–1 in the study sites. Four levels of N treatments were applied: (1) control (no N added), (2) low-N (50 kg N ha–1 year–1), (3) medium-N (150 kg N ha–1 year–1), and (4) high-N (300 kg N ha–1 year–1), N additions ranging from 40% to 370% of ambient N deposition. The decomposition processes of ten types of forest litters were then studied. Nitrogen additions significantly decreased the decomposition rates of six types of forest litters. N additions decreased forest litter decomposition, and the mass of residual litter was closely correlated to residual lignin during the decomposition process over the study period. The inhibitory effect of N addition on litter decomposition can be primarily explained by the inhibition of lignin decomposition by exogenous inorganic N. The overall decomposition rate of ten investigated substrates exhibited a significant negative linear relationship with initial tissue C/N and lignin/N, and significant positive relationships with initial tissue K and N concentrations; these relationships exhibited linear and logarithmic curves, respectively. Conclusions/Significance This study suggests that the expected progressive increases in N deposition may have a potential important impact on forest litter decomposition in the study area in the presence of high levels of ambient N deposition. PMID:24551152

  3. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  4. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  5. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.

    PubMed

    Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin

    2015-03-01

    Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1)  yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully

  6. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil

    PubMed Central

    Battenberg, Kai; Wren, Jannah A.; Hillman, Janell; Edwards, Joseph; Huang, Liujing

    2016-01-01

    ABSTRACT The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient

  7. Nitrogen dioxide assimilation as affected by light level

    SciTech Connect

    Srivastava, H. ); Ormond, D.; Marie, B. )

    1989-04-01

    The air pollutant NO{sub 2} is absorbed and assimilated by plants to serve as a source of nitrogen but only to a limited extent. The objective of this research was to identify the constraints on NO{sub 2} assimilation. Differential light levels were used to manipulate carbohydrate metabolites available for nitrogen assimilation. Bean plants were grown at four light levels with or without nutrient nitrate and exposed to 0.25 ppm NO{sub 2} for 6h each day. Growth of roots and shoots was inhibited by NO{sub 2} in both the presence and absence of nutrient nitrate. The inhibition was most pronounced at the lowest light level. Light level similarly influenced the effect of nitrate and of NO{sub 2} on soluble protein, nitrate nitrogen and Kjeldahl nitrogen in the root and shoot tissues. Two experiments demonstrated that the injurious effects of NO{sub 2} are more pronounced at low light than at high light and that more NO{sub 2} is assimilated into soluble shoot protein at higher light levels.

  8. The fate of nitrogen affected by biochar and fertilizer source

    USDA-ARS?s Scientific Manuscript database

    Continuous improvement of nitrogen (N) use efficiency (NUE) and minimizing environmental loss is necessary to address the issues related to N fertilizer use in agronomic systems. The objective of this research was to determine the effectiveness of biochar amendment and fertilizer source on NUE impro...

  9. Does nitrogen and sulfur deposition affect forest productivity?

    Treesearch

    Brittany A. Johnson; Kathryn B. Piatek; Mary Beth Adams; John R. Brooks

    2010-01-01

    We studied the effects of atmospheric nitrogen and sulfur deposition on forest productivity in a 10-year-old, aggrading forest stand at the Fernow Experimental Forest in Tucker County, WV. Forest productivity was expressed as total aboveground wood biomass, which included stem and branch weight of standing live trees. Ten years after stand regeneration and treatment...

  10. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Treesearch

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  11. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil.

    PubMed

    Battenberg, Kai; Wren, Jannah A; Hillman, Janell; Edwards, Joseph; Huang, Liujing; Berry, Alison M

    2017-01-01

    The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere.

  12. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  13. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  14. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    ERIC Educational Resources Information Center

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  15. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    ERIC Educational Resources Information Center

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  16. Cultivar and nitrogen fertilizer rate affect yield and nitrogen use efficiency in irrigated durum wheat

    USDA-ARS?s Scientific Manuscript database

    Optimizing nitrogen (N) management and using cultivars with high N use efficiency (NUE) are of great importance for durum wheat (Triticum durum L.) producers in irrigated desert production systems. Field experiments with six durum wheat cultivars (Ocotillo, Orita, Kronos, Havasu, Duraking, and Toppe...

  17. Nitrogen, stover and tillage management affect nitrogen use efficiency in continuous corn

    USDA-ARS?s Scientific Manuscript database

    Improving nitrogen use efficiency (NUE) in corn (Zea mays L.) is critical for optimizing yield and reducing environmental impact. Stover removal in continuous corn (CC) for biofuel production, coupled with reduced-tillage systems, could alter NUE and residual soil nitrate-N. Experiments were conduct...

  18. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize

    USDA-ARS?s Scientific Manuscript database

    The composition and function of microbial communities present in the rhizosphere of crops has been linked to edaphic factors and root exudate composition. In this paper, we examined the effect of N fertilizer rate on maize root exudation, the associated rhizosphere community, and nitrogen-use-effici...

  19. Carbon and nitrogen abundances in red giant stars in the globular cluster 47 Tucanae

    NASA Technical Reports Server (NTRS)

    Dickens, R. J.; Bell, R. A.; Gustafsson, B.

    1979-01-01

    The effects of changes in temperature, gravity, overall metal abundance, and carbon and nitrogen abundances have been investigated for model stellar spectra and colors representing globular-cluster giants of moderate metal deficiency. The results are presented in the form of spectral atlases and theoretical color-color diagrams. Using these results, approximate abundances of carbon and nitrogen have been derived for some red giant stars in 47 Tuc, from intermediate- and low-dispersion spectra and from intermediate- and narrow-band photometry. In all the normal giants studied, nitrogen is overabundant by up to about a factor of 5 (the precise value depends on the adopted carbon abundance), with different enhancements for different giants. The observational material is not sufficient to distinguish between a normal carbon abundance and a slight carbon depletion for the giant-branch stars, but carbon appears to be somewhat depleted in stars on the asymptotic giant branch. A most probable value of M/H = -0.8 for the overall cluster metal abundance is suggested from analysis of Stromgren photometry of red horizontal-branch stars.

  20. Nitrogen and hydrophosphate affects glycolipids composition in microalgae

    PubMed Central

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L−1 hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L−1 d−1. Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  1. Nitrous oxide emissions affected by biochar and nitrogen stabilizers

    USDA-ARS?s Scientific Manuscript database

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emission...

  2. How the Clustering of Phonological Neighbors Affects Visual Word Recognition

    ERIC Educational Resources Information Center

    Yates, Mark

    2013-01-01

    In recent years, a new scientific field known as network science has been emerging. Network science is concerned with understanding the structure and properties of networks. One concept that is commonly used in describing a network is how the nodes in the network cluster together. The current research applied the idea of clustering to the study of…

  3. How the Clustering of Phonological Neighbors Affects Visual Word Recognition

    ERIC Educational Resources Information Center

    Yates, Mark

    2013-01-01

    In recent years, a new scientific field known as network science has been emerging. Network science is concerned with understanding the structure and properties of networks. One concept that is commonly used in describing a network is how the nodes in the network cluster together. The current research applied the idea of clustering to the study of…

  4. Nitrous Oxide Emissions Affected by Biochar and Nitrogen Stabilizers

    NASA Astrophysics Data System (ADS)

    Gao, S.; Cai, Z.; Xu, M.

    2016-12-01

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emissions and N transformations in soil amended with biochar and N transformation inhibitors. The soil was a sandy loam soil and adjusted to 10% soil water content and incubated at 25oC. Biochar amendment at 1% (w/w), Agrotain® Ultra (urease inhibitor), Agrotain® Plus (urease and nitrification inhibitor), and N-Serve® 24 (nitrification inhibitor) as well as another potential nitrification inhibitor, potassium thiosulfate (KTS), at 0.25-1:1 K2O/N ratios (w/w) were tested. Emissions of N2O, soil mineral N species change, and soil pH were determined for 35 days after fertilizers were applied. Biochar, Agrotain® Ultra or Plus, or N-Serve® 24 all effectively reduced N2O emissions by more than 60% as compared to no amendment control. The KTS, however, was only effective in reducing N2O emissions at a high ratio (1:1 K2O/N, w/w). There was a strong correlation between N2O emission and the concentration of nitrite (NO2-) in soil but not other mineral species. All the amendments showed that their effects on N transformation and N2O emissions were completed within a few weeks after application. Laboratory analysis indicated that biochar affected the N dynamics most likely via adsorption of ammonium (NH4+) and the inhibitors by affecting N transformation rate. This research has gained further understanding on how biochar and N stabilizers affect N2O emissions and the knowledge can assist in developing mitigation strategies.

  5. Elevated ozone and nitrogen deposition affect nitrogen pools of subalpine grassland.

    PubMed

    Bassin, Seraina; Käch, David; Valsangiacomo, Alain; Mayer, Jochen; Oberholzer, Hans-Rudolf; Volk, Matthias; Fuhrer, Jürg

    2015-06-01

    In a free-air fumigation experiment with subalpine grassland, we studied long-term effects of elevated ozone (O3) and nitrogen (N) deposition on ecosystem N pools and on the fate of anthropogenic N. At three times during the seventh year of exposure, N pools and recovery of a stable isotope tracer ((15)N) were determined in above- and belowground plant parts, and in the soil. Plants were much better competitors for (15)N than soil microorganisms. Plant N pools increased by 30-40% after N addition, while soil pools remained unaffected, suggesting that most of the extra N was taken up and stored in plant biomass, thus preventing the ecosystem from acquiring characteristics of eutrophication. Elevated O3 caused an increase of N in microbial biomass and in stabilized soil N, probably resulting from increased litter input and lower litter quality. Different from individual effects, the interaction between the pollutants remained partly unexplained.

  6. Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient.

    PubMed

    Vallano, Dena M; Sparks, Jed P

    2013-05-01

    Foliar nitrogen isotope (δ(15)N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ(15)N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ(15)N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ(15)N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ(15)N, and mycorrhizae on foliar δ(15)N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ(15)N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ(15)N. There was no correlation between foliar δ(13)C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ(15)N in several dominant species occurring in temperate forest ecosystems.

  7. Stable chromosomal integration of the entire nitrogen fixation gene cluster from Klebsiella pneumoniae in yeast.

    PubMed Central

    Zamir, A; Maina, C V; Fink, G R; Szalay, A A

    1981-01-01

    A bacterial plasmid containing the entire nitrogen fixation (nif) gene cluster (consisting of at least 15 genes) from Klebsiella pneumoniae was used in conjunction with an Escherichia coli-yeast shuttle plasmid containing the yeast his4 gene cluster to cotransform a his4- recipient strain of Saccharomyces cerevisiae. Of 87 histidine-independent clones screened, 2 contained nif DNA. Restriction and hybridization analyses showed that two copies of the nif plasmid (46 kilobases each) are integrated in tandem in the recipient chromosome by recombination between homologous regions in the transforming plasmids. Chromosomal integration was also verified by tetrad analysis, showing that the nif DNA behaved in meiosis like a Mendelian element. During mitotic growth, one of the two copies of the nif region is frequently lost. The remaining copy of nif is stable, even after 40 generations in nonselective medium. Images PMID:6267596

  8. Physics of Galaxy Clusters and How it Affects Cosmological Tests

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Vikhlinin, Alexey

    2004-01-01

    The main activities in 2004 were focused on completion of the new 400 square degrees ROSAT PSPC survey for distant galaxy clusters. We observed and reduced optical spectra for all X-ray candidates and now we have complete identification for a statistically complete sample of distant 283 clusters. The papers describing the cluster catalog and first science results are in preparation and will be submitted in early 2005. We also completed a project to measure temperature and density profiles at large radii using Chandra observations of a 11 well exposed low-redshift clusters. We were able to demonstrate that the density, temperature, and total mass profiles are self-similar at large radii. This analysis has led to significant improvements in determination of the cluster baryon fraction as well as cosmologically important scaling relations, such as Mtot-T. The paper describing these results is submitted to ApJ in November, 2004. We continued to study evolution of the cluster scaling relations at high redshifts using Chandra and XMM data. We developed code for image and spectral deconvolution of the XMM observations. This code was used to reconstruct the distribution of baryons and total mass from observations of distant clusters which suffer from the finite size of the XMM PSF. This study allowed us to derive a high-redshift relation between cluster temperature and mass and compare it with the local relation obtained. The paper describing the first results is submitted to the ApJ. However, the project is still on-going as more distant cluster observations enter XMh4 and Chandra public data archives. We continued our work on improving techniques for accurate measurements of the cluster mass function and obtaining cosmological constraints from such observations. We published (ApJ, 601, 610) a study in which we derived the baryon mass function for a complete sample of low-redshift clusters. These papers argued that it was an excellent proxy for the total mass function

  9. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  10. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  11. Glycemic index of starch affects nitrogen retention in grower pigs.

    PubMed

    Drew, M D; Schafer, T C; Zijlstra, R T

    2012-04-01

    Three studies were performed to examine the effect of starch and protein digestion rates on N retention in grower pigs. In Exp. 1, the glycemic index (GI) of corn, a malting barley, and a slow-rumen-degradable barley (SRD-barley) were measured using 6 barrows (BW = 18.0 ± 0.5 kg). The GI of malting barley was greater (P < 0.05) than that of SRD-barley (71.1 vs. 49.4), and the GI of both barley cultivars was less (P < 0.05) than that of corn (104.8). In Exp. 2, the standardized ileal digestibility of AA and DE content of the 3 ingredients were determined using 5 ileal-cannulated barrows (BW = 20.7 ± 2.3). The apparent total-tract energy digestibility values of corn (86.1%) and malting barley (85.7%) were greater (P < 0.05) than that of SRD-barley (82.3%). The standardized ileal digestibility of Lys was 94.0, 92.6, and 92.4% for corn, malting barley, and SRD-barley, respectively, and did not differ among grains. In Exp. 3, 6 diets were formulated to equal DE (3.40 Mcal/kg), standardized ileal digestibility of Lys (8.6 g/kg), starch (424.9 g/kg), and digestible CP (180.0 g/kg) using the values obtained in Exp. 2. Three GI [high (corn), medium (malting barley), and low (SRD-barley)] and 2 rates of protein digestion [rapid (soy protein hydrolysate) and slow (soy protein isolate)] were tested in a 3 × 2 factorial arrangement with 36 barrows (BW = 32.2 ± 2.5 kg). Pigs were fed 3.0 times the maintenance energy requirement daily in 2 meals for 2 wk and were housed in metabolic crates to collect feces and urine separately. At the end of the study, intestinal contents were collected from 4 equal-length segments of the small intestine. The percentage of unabsorbed CP in segment 1 relative to dietary CP was greater (P < 0.05) for the soy protein isolate diet than for the soy protein hydrolysate diet (170.3 vs. 116.5%). The percentages of unabsorbed starch in segments 1 and 2 were greater (P < 0.05) for the SRD-barley diet than for the malting barley or corn diet. Nitrogen

  12. Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletotrichum gloeosporioides.

    PubMed

    Bi, Fangcheng; Ment, Dana; Luria, Neta; Meng, Xiangchun; Prusky, Dov

    2017-02-01

    The GATA transcription factor AreA is a global nitrogen regulator that restricts the utilization of complex and poor nitrogen sources in the presence of good nitrogen sources in microorganisms. In this study, we report the biological function of an AreA homolog (the CgareA gene) in the fruit postharvest pathogen Colletotrichum gloeosporioides. Targeted gene deletion mutants of areA exhibited significant reductions in vegetative growth, increases in conidia production, and slight decreases in conidial germination rates. Quantitative RT-PCR (qRT-PCR) analysis revealed that the expression of AreA was highly induced under nitrogen-limiting conditions. Moreover, compared to wild-type and complemented strains, nitrogen metabolism-related genes were misregulated in ΔareA mutant strains. Pathogenicity assays indicated that the virulence of ΔareA mutant strains were affected by the nitrogen content, but not the carbon content, of fruit hosts. Taken together, our results indicate that CgareA plays a critical role in fungal development, conidia production, regulation of nitrogen metabolism and virulence in Colletotrichum gloeosporioides.

  13. Reforestation and topography affect montane soil properties, nitrogen pools, and nitrogen transformations in Hawaii

    Treesearch

    Paul G. Scowcroft; Janis E. Haraguchi; Nguyen V. Hue

    2004-01-01

    Land use changes, such as deforestation and reforestation, modify not only the organisms inhabiting affected areas, but also above-and belowground environments. Topography further influences local vegetation and environment. Effects of topography and re-establishment of N-fixing koa (Acacia koa A. Gray) trees in +100-yr-old montane grassland on...

  14. Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.

    PubMed

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-08-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic ¹⁵N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with ¹⁵NO₃⁻/¹⁴NO₃⁻ from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r² > 0.99). This consisted of a "substrate pool," which received N from current uptake and supplied the growth zone, and a recycling/mobilizing "store," which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.

  15. Plant water use affects competition for nitrogen: why drought favors invasive species in California.

    PubMed

    Everard, Katherine; Seabloom, Eric W; Harpole, W Stanley; de Mazancourt, Claire

    2010-01-01

    Abstract: Classic resource competition theory typically treats resource supply rates as independent; however, nutrient supplies can be affected by plants indirectly, with important consequences for model predictions. We demonstrate this general phenomenon by using a model in which competition for nitrogen is mediated by soil moisture, with competitive outcomes including coexistence and multiple stable states as well as competitive exclusion. In the model, soil moisture regulates nitrogen availability through soil moisture dependence of microbial processes, leaching, and plant uptake. By affecting water availability, plants also indirectly affect nitrogen availability and may therefore alter the competitive outcome. Exotic annual species from the Mediterranean have displaced much of the native perennial grasses in California. Nitrogen and water have been shown to be potentially limiting in this system. We parameterize the model for a Californian grassland and show that soil moisture-mediated competition for nitrogen can explain the annual species' dominance in drier areas, with coexistence expected in wetter regions. These results are concordant with larger biogeographic patterns of grassland invasion in the Pacific states of the United States, in which annual grasses have invaded most of the hot, dry grasslands in California but perennial grasses dominate the moister prairies of northern California, Oregon, and Washington.

  16. Swithchgrass biomass quality as affected by nitrogen rate, harvest time and storage

    USDA-ARS?s Scientific Manuscript database

    The main purpose of this study was to assess the sustainability of switchgrass biomass quality as affected by storage after harvesting, delaying the harvest time, and applying different rates of nitrogen (N). The present study was conducted at Bristol, South Dakota under switchgrass land previously ...

  17. Vibronic structure of the cyclopentadienyl radical and its nonrigid van der Waals cluster with nitrogen

    NASA Astrophysics Data System (ADS)

    Sun, S.; Bernstein, E. R.

    1995-09-01

    Fluorescence excitation and two color mass resolved excitation spectroscopy are employed to study the D1(2A2″)←D0(2E1″) vibronic transitions of the cyclopentadienyl radical (cpd) and its van der Waals cluster with nitrogen. The radical is created by photolysis of the cyclopentadiene dimer and cooled by expansion from a supersonic nozzle. The cpd(N2)1 cluster is generated in this cooling process. Mass resolved excitation spectra of cpd are obtained for the first 1200 cm-1 of the D1←D0 transition. The excitation spectrum of cpd(N2)1 shows a complicated structure for the origin transition. With the application of hole burning spectroscopy, we are able to assign all the cluster transitions to a single isomer. The features are assigned to a 55 cm-1 out-of-plane van der Waals mode stretch and contortional (rotational) motions of the N2 molecule with respect to the cpd radical. Empirical potential energy calculations are used to predict the properties of this cluster and yield the following results: (1) the N2 molecular axis is perpendicular to the cpd fivefold axis and parallel to the plane of the cpd ring with the two molecular centers of mass lying on the fivefold ring axis; (2) the binding energy of cpd(N2)1 is 434 cm-1; and (3) the rotational motion of the N2 molecule is essentially unhindered about the cpd fivefold axis. The molecular symmetry group D5h(MS) is applied to the nonrigid cluster, and optical selection rules exclude even↔odd transitions (Δn=0, ±2, ±4,... allowed) between the different contortional levels. Tentative assignments are given to the observed contortional features based on these considerations. The barrier to internal rotation is also small in the excited state. The results for the cpd(N2)1 van der Waals cluster are compared to those for the benzene (N2)1 and benzyl radical (N2)1 clusters.

  18. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  19. A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

    PubMed Central

    Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. PMID:24146630

  20. [Vertical transporting risk of nitrogen in purple soil affected by surfactant].

    PubMed

    Chen, Yu-cheng; Yang, Zhi-min; Jiang, Ling; Chen, Qing-hu; Gao, Meng

    2010-07-01

    The simulated leaching experiment was conducted to determine the effects of surfactant of sodium dodecyl benzene sulphonate (SDBS) on vertical transporting of nitrogen in purple soil. SDBS could reduce NH4+ -N loss from soil, and the higher concentration of SDBS, the less loss. SDBS could increase NO3- -N loss from soil, and the order of accumulation loss is SDBS100 > SDBS40 > SDBS0 > SDBS5. Lower concentration SDBS decrease TKN loss, but higher concentration SDBS had a reverse effect, and compared with SDBS0, the accumulation loss TKN of SDBS40, SDBS100 increased by 16.8%, 22.36%, respectively. SDBS could affect vertical transporting of nitrogen in purple soil, that is, the significant down-transporting of nitrogen was observed after leaching with SDBS, and the higher concentration of SDBS, the more obviously transporting trend.

  1. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  2. Greenhouse tomato limited cluster production systems: crop management practices affect yield.

    PubMed

    Logendra, L S; Gianfagna, T J; Specca, D R; Janes, H W

    2001-08-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  3. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  4. The chemistry of nitrogen oxides on small size-selected cobalt clusters, Co{sub n}{sup +}

    SciTech Connect

    Anderson, Marie L.; Lacz, Agnieszka; Drewello, Thomas; Derrick, Peter J.; Woodruff, D. Phil; Mackenzie, Stuart R.

    2009-02-14

    Fourier transform ion cyclotron resonance mass spectrometry has been employed to study the reactions of gas-phase cationic cobalt clusters, Co{sub n}{sup +} (n=4-30), with nitric oxide, NO, and nitrous oxide, N{sub 2}O, under single collision conditions. Isolation of the initial cluster permits detailed investigation of fragmentation channels which characterize the reactions of all but the largest clusters studied. In reaction with N{sub 2}O, most clusters generate the monoxides Co{sub n}O{sup +} without fragmentation, cobalt atom loss accompanying only subsequent reactions. By contrast, chemisorption of even a single NO molecule is accompanied by fragmentation of the cluster. The measured rate coefficients for the Co{sub n}{sup +}+N{sub 2}O reaction as a function of cluster size are significantly smaller than those calculated using the surface charge capture model, while for NO the rates are comparable. The reactions have been studied under high coverage conditions by storing clusters for extended periods to permit multiple reactions to occur. This leads to interesting chemistry on the surface of the cluster resulting in the formation of stable oxide clusters and/or the decomposition of nitric oxide on the cluster with the resulting loss of molecular nitrogen.

  5. Nitrogen abundances and multiple stellar populations in the globular clusters of the Fornax dSph

    SciTech Connect

    Larsen, Søren S.; Strader, Jay

    2014-12-10

    We use measurements of nitrogen abundances in red giants to search for multiple stellar populations in the four most metal-poor globular clusters (GCs) in the Fornax dwarf spheroidal galaxy (Fornax 1, 2, 3, and 5). New imaging in the F343N filter, obtained with the Wide Field Camera 3 on the Hubble Space Telescope, is combined with archival F555W and F814W observations to determine the strength of the NH band near 3370 Å. After accounting for observational errors, the spread in the F343N-F555W colors of red giants in the Fornax GCs is similar to that in M15 and corresponds to an abundance range of Δ[N/Fe] ∼ 2 dex, as observed also in several Galactic GCs. The spread in F555W-F814W is, instead, fully accounted for by observational errors. The stars with the reddest F343N-F555W colors (indicative of N-enhanced composition) have more centrally concentrated radial distributions in all four clusters, although the difference is not highly statistically significant within any individual cluster. From double-Gaussian fits to the color distributions, we find roughly equal numbers of 'N-normal' and 'N-enhanced' stars (formally ∼40% N-normal stars in Fornax 1, 3, and 5 and ∼60% in Fornax 2). We conclude that GC formation, in particular, regarding the processes responsible for the origin of multiple stellar populations, appears to have operated similarly in the Milky Way and in the Fornax dSph. Combined with the high ratio of metal-poor GCs to field stars in the Fornax dSph, this places an important constraint on scenarios for the origin of multiple stellar populations in GCs.

  6. Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings.

    PubMed

    Martínez-Alcántara, Belén; Jover, Sara; Quiñones, Ana; Forner-Giner, María Ángeles; Rodríguez-Gamir, Juan; Legaz, Francisco; Primo-Millo, Eduardo; Iglesias, Domingo J

    2012-08-15

    Soil flooding has been widely reported to affect large areas of the world. In this work, we investigated the effect of waterlogging on citrus carbon and nitrogen pools and partitioning. Influence on their uptake and translocation was also studied through ¹⁵N and ¹³C labeling to provide insight into the physiological mechanisms underlying the responses. The data indicated that flooding severely reduced photosynthetic activity and affected growth and biomass partitioning. Total nitrogen content and concentration in the plant also progressively decreased throughout the course of the experiment. After 36 days of treatment, nitrogen content of flooded plants had decreased more than 2.3-fold compared to control seedlings, and reductions in nitrogen concentration ranged from 21 to 55% (in roots and leaves, respectively). Specific absorption rate and transport were also affected, leading to important changes in the distribution of this element inside the plant. Additionally, experiments involving labeled nitrogen revealed that ¹⁵N uptake rate and accumulation were drastically decreased at the end of the experiment (93% and 54%, respectively). ¹³CO₂ assimilation into the plant was strongly reduced by flooding, with δ¹³C reductions ranging from 22 to 37% in leaves and roots, respectively. After 36 days, the relative distribution of absorbed ¹³C was also altered. Thus, ¹³C recovery in flooded leaves increased compared to controls, whereas roots exhibited the opposite pattern. Interestingly, when carbohydrate partitioning was examined, the data revealed that sucrose concentration was augmented significantly in roots (37-56%), whereas starch was reduced. In leaves, a marked increase in sucrose was detected from the first sampling onwards (36-66%), and the same patter was observed for starch. Taken together, these results indicate that flooding altered carbon and nitrogen pools and partitioning in citrus. On one hand, reduced nitrogen concentration appears to

  7. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  8. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  9. Gephyrin expression and clustering affects the size of glutamatergic synaptic contacts

    PubMed Central

    Yu, Wendou; De Blas, Angel L.

    2009-01-01

    We have recently shown that disrupting the expression and postsynaptic clustering of gephyrin in cultured hippocampal pyramidal cells, by either gephyrin RNAi (RNA interference) or overexpression of a dominant negative gephyrin-EGFP fusion protein, leads to decreased number of postsynaptic gephyrin and GABAA receptor clusters and to reduced GABAergic innervation of these cells. On the other hand, increasing gephyrin expression led to a small increase in the number of gephyrin and GABAA receptor clusters and to little or no effect on GABAergic innervation. We are now reporting that altering gephyrin expression and clustering affects the size but not the density of glutamatergic synaptic contacts. Knocking down gephyrin with gephyrin RNAi, or preventing gephyrin clustering by overexpression of the dominant negative gephyrin-EGFP fusion protein, leads to larger postsynaptic PSD-95 clusters and larger presynaptic glutamatergic terminals. On the other hand, overexpression of gephyrin leads to slightly smaller PSD-95 clusters and presynaptic glutamatergic terminals. The change in size of PSD-95 clusters were accompanied by a parallel change in the size of NR2-NMDA receptor clusters. It is concluded that the levels of expression and clustering of gephyrin, a protein that concentrates at the postsynaptic complex of the inhibitory synapses, not only has homotypic effects on GABAergic synaptic contacts, but also has heterotypic effects on glutamatergic synaptic contacts. We are proposing that gephyrin is a counterpart of the postsynaptic glutamatergic scaffold protein PSD-95 in regulating the number and/or size of the excitatory and inhibitory synaptic contacts. PMID:18199120

  10. [Soil enzyme activities under two forest types as affected by different levels of nitrogen deposition].

    PubMed

    Zhao, Yu-tao; Li, Xue-feng; Han, Shi-jie; Hu, Yan-ling

    2008-12-01

    A simulation test was conducted to study the change trends of soil cellulase, polyphenol oxidase, and sucrase activities under natural broadleaf-Korean pine (Pinus koraiensis) and secondary poplar (Populus davidiana) -birch (Betula platyphylla) mixed forests as affected by 0, 25, and 50 kg x hm(-2) x a(-1) of N deposition. The results showed that the effects of elevated N deposition on test enzyme activities varied with forest type, and short-term nitrogen addition could significantly affect the test enzyme activities. High N deposition decreased soil polyphyneol oxidase activity, and correspondingly, soil cellulase and sucrase activities also had a trend of decrease.

  11. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  12. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests.

    PubMed

    VAN Diepen, Linda T A; Lilleskov, Erik A; Pregitzer, Kurt S

    2011-02-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community structure. We studied the diversity and community structure of AMF in northern hardwood forests after more than 12 years of simulated nitrogen deposition. We performed molecular analyses on maple (Acer spp.) roots targeting the 18S rDNA region using the fungal-specific primers AM1 and NS31. PCR products were cloned and identified using restriction fragment length polymorphism (RFLP) and sequencing. N addition significantly altered the AMF community structure, and Glomus group A dominated the AMF community. Some Glomus operational taxonomic units (OTUs) responded negatively to N inputs, whereas other Glomus OTUs and an Acaulospora OTU responded positively to N inputs. The observed effect on community structure implies that AMF species associated with maples differ in their response to elevated nitrogen. Given that functional diversity exists among AMF species and that N deposition has been shown to select less beneficial fungi in some ecosystems, this change in community structure could have implications for the functioning of this type of ecosystem. Published 2011. This article is a US Government work and is in the public domain in the USA.

  13. Total growth and root-cluster production by legumes and proteas depends on rhizobacterial strain, host species and nitrogen level

    PubMed Central

    Lamont, Byron B.; Pérez-Fernández, María

    2016-01-01

    Background Root clusters are bunches of hairy rootlets produced by >1800 species in nine families. The possible involvement of micro-organisms in root-cluster formation has produced conflicting results over the last 40 years. In addition, any effect of rhizobacteria on overall plant growth of root-cluster-bearing species remains unknown. Aims To evaluate the effect of seven rhizobacteria on total plant size, and relative cluster production, by three species, and relate outcomes to their indole-3-acetic acid (IAA)-producing ability as part explanation of past disparate results. Methods We grew Leucadendron salicifolium (from South Africa), Viminaria juncea (Australia) and Lupinus albus (Europe) in gnotobiotic, hydroponic culture at two nitrogen (N) levels and inoculated them with seven bacterial strains and harvested the plants after 13 weeks. Key Results Following inoculation with all seven bacteria individually, plant growth sometimes greatly exceeded that of the aseptic controls, but, under other conditions, growth was less than the controls. Leucadendron and Lupinus failed to produce root clusters in the –N aseptic controls and Viminaria in the +N controls that was overcome by inoculating them with selected bacteria. Six bacteria were able to induce far more root clusters than those of the aseptic controls, while all bacteria sometimes suppressed cluster production in other treatments. All nine possible combinations of resource (plant size, indirect) and morphogenetic (relative cluster production, direct) effects were represented among the results, especially positive synergism (larger plants with a greater density of clusters). There was no clear relationship with IAA-producing ability of the seven bacteria, but low IAA strains of Pseudomonas putida and Bacillus magetarium were associated with greatest cluster production. Conclusions While root-cluster formation can sometimes be induced by introducing rhizobacteria to aseptic culture, the growth

  14. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  15. Factors affecting energy and nitrogen efficiency of dairy cows: a meta-analysis.

    PubMed

    Phuong, H N; Friggens, N C; de Boer, I J M; Schmidely, P

    2013-01-01

    A meta-analysis was performed to explore the correlation between energy and nitrogen efficiency of dairy cows, and to study nutritional and animal factors that influence these efficiencies, as well as their relationship. Treatment mean values were extracted from 68 peer-reviewed studies, including 306 feeding trials. The main criterion for inclusion of a study in the meta-analysis was that it reported, or permitted calculation of, energy efficiency (Eeff; energy in milk/digestible energy intake) and nitrogen efficiency (Neff; nitrogen in milk/digestible nitrogen intake) at the digestible level (digestible energy or digestible protein). The effect of nutritional and animal variables, including neutral detergent fiber, acid detergent fiber (ADF), digestible energy, digestible protein, proportion of concentrate (PCO), dry matter intake, milk yield, days in milk, and body weight, on Eeff, Neff, and the Neff:Eeff ratio was analyzed using mixed models. The interstudy correlation between Eeff and Neff was 0.62, whereas the intrastudy correlation was 0.30. The higher interstudy correlation was partly due to milk yield and dry matter intake being present in both Eeff and Neff. We, therefore, also explored the Neff:Eeff ratio. Energy efficiency was negatively associated with ADF and PCO, whereas Neff was negatively associated with ADF and digestible energy. The Neff:Eeff ratio was affected by ADF and PCO only. In conclusion, the results indicate a possibility to maximize feed efficiency in terms of both energy and nitrogen at the same time. In other words, an improvement in Eeff would also mean an improvement in Neff. The current study also shows that these types of transverse data are not sufficient to study the effect of animal factors, such as days in milk, on feed efficiency. Longitudinal measurements per animal would probably be more appropriate.

  16. Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Perner, Henrike; Rohn, Sascha; Riehle, Peer; Hanschen, Franziska S; Schwarz, Dietmar

    2017-09-26

    Mycorrhizal symbiosis is known to be the most prevalent form of fungal symbiosis with plants. Although some studies focus on the importance of mycorrhizal symbiosis for enhanced flavonoids in the host plants, a comprehensive understanding of the relationship still is lacking. Therefore, we studied the effects of mycorrhizal inoculation of onions (Allium cepa L.) regarding flavonol concentration and the genes involved in flavonol biosynthesis when different forms of nitrogen were supplied. We hypothesized that mycorrhizal inoculation can act as a biotic stress and might lead to an increase in flavonols and expression of related genes. The three main quercetin compounds [quercetin-3,4'-di-O-β-D-glucoside (QDG), quercetin-4'-O-β-D-glucoside (QMG), and isorhamnetin-4'-O-β-D-glucoside (IMG)] of onion bulbs were identified and analyzed after inoculating with increasing amounts of mycorrhizal inocula at two time points and supplying either predominantly NO3(-) or NH4(+) nitrogen. We also quantified plant dry mass, nutrient element uptake, chalcone synthase (CHS), flavonol synthase (FLS), and phenyl alanine lyase (PAL) gene expression as key enzymes for flavonol biosynthesis. Inoculation with arbuscular mycorrhizal fungi (highest amount) and colonization at late development stages (bulb growth) increased QDG and QMG concentrations if plants were additionally supplied with predominantly NH4(+). No differences were observed in the IMG content. RNA accumulation of CHS, FLS, and PAL was affected by the stage of the mycorrhizal symbiosis and the nitrogen form. Accumulation of flavonols was not correlated, however, with either the percentage of myorrhization or the abundance of transcripts of flavonoid biosynthesis genes. We found that in plants at late developmental stages, RNA accumulation as a reflection of a current physiological situation does not necessarily correspond with the content of metabolites that accumulate over a long period. Our findings suggest that nitrogen

  17. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  18. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  19. Nitrogen Abundances and Multiple Stellar Populations in the Globular Clusters of the Fornax dSph

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.; Brodie, Jean P.; Grundahl, Frank; Strader, Jay

    2014-12-01

    We use measurements of nitrogen abundances in red giants to search for multiple stellar populations in the four most metal-poor globular clusters (GCs) in the Fornax dwarf spheroidal galaxy (Fornax 1, 2, 3, and 5). New imaging in the F343N filter, obtained with the Wide Field Camera 3 on the Hubble Space Telescope, is combined with archival F555W and F814W observations to determine the strength of the NH band near 3370 Å. After accounting for observational errors, the spread in the F343N-F555W colors of red giants in the Fornax GCs is similar to that in M15 and corresponds to an abundance range of Δ[N/Fe] ~ 2 dex, as observed also in several Galactic GCs. The spread in F555W-F814W is, instead, fully accounted for by observational errors. The stars with the reddest F343N-F555W colors (indicative of N-enhanced composition) have more centrally concentrated radial distributions in all four clusters, although the difference is not highly statistically significant within any individual cluster. From double-Gaussian fits to the color distributions, we find roughly equal numbers of "N-normal" and "N-enhanced" stars (formally ~40% N-normal stars in Fornax 1, 3, and 5 and ~60% in Fornax 2). We conclude that GC formation, in particular, regarding the processes responsible for the origin of multiple stellar populations, appears to have operated similarly in the Milky Way and in the Fornax dSph. Combined with the high ratio of metal-poor GCs to field stars in the Fornax dSph, this places an important constraint on scenarios for the origin of multiple stellar populations in GCs. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13295.

  20. Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis.

    PubMed

    Hidese, Ryota; Mihara, Hisaaki; Kurihara, Tatsuo; Esaki, Nobuyoshi

    2014-03-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-(14)C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-(14)C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.

  1. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    SciTech Connect

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi; Wada, Kei; Daifuku, Takashi; Yoneda, Yasuko; Fukuyama, Keiichi; Sako, Yoshihiko

    2013-11-08

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys{sup 295} and His{sup 261}. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His{sup 261}, which coordinates one of the Fe atoms with Cys{sup 295}, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys{sup 295}, we constructed CODH-II variants. Ala substitution for the Cys{sup 295} substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys{sup 295} indirectly and His{sup 261} together affect Ni-coordination in the C-cluster.

  2. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing.

    PubMed

    Liu, Chao; Abu-Jamous, Basel; Brattico, Elvira; Nandi, Asoke K

    2017-03-01

    In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package "UNCLES" available on http://cran.r-project.org/web/packages/UNCLES/index.html .

  3. The relationship between activating affects, inhibitory affects, and self-compassion in patients with Cluster C personality disorders.

    PubMed

    Schanche, Elisabeth; Stiles, Tore C; McCullough, Leigh; Svartberg, Martin; Nielsen, Geir Høstmark

    2011-09-01

    In the short-term dynamic psychotherapy model termed "Affect Phobia Treatment," it is assumed that increase in patients' defense recognition, decrease in inhibitory affects (e.g., anxiety, shame, guilt), and increase in the experience of activating affects (e.g., sadness, anger, closeness) are related to enhanced self-compassion across therapeutic approaches. The present study aimed to test this assumption on the basis of data from a randomized controlled trial, which compared a 40-session short-term dynamic psychotherapy (N = 25) with 40-session cognitive treatment (N = 25) for outpatients with Cluster C personality disorders. Patients' defense recognition, inhibitory affects, activating affects, and self-compassion were rated with the Achievement of Therapeutic Objectives Scale (McCullough et al., 2003b) in Sessions 6 and 36. Results showed that increase in self-compassion from early to late in therapy significantly predicted pre- to post-decrease in psychiatric symptoms, interpersonal problems, and personality pathology. Decrease in levels of inhibitory affects and increase in levels of activating affects during therapy were significantly associated with higher self-compassion toward the end of treatment. Increased levels of defense recognition did not predict higher self-compassion when changes in inhibitory and activating affects were statistically controlled for. There were no significant interaction effects with type of treatment. These findings support self-compassion as an important goal of psychotherapy and indicate that increase in the experience of activating affects and decrease in inhibitory affects seem to be worthwhile therapeutic targets when working to enhance self-compassion in patients with Cluster C personality disorders.

  4. Elucidating Sources and Factors Affecting Delivery of Nitrogen to Surface Waters of New York State

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Boyer, E. W.; Burns, D. A.; Elliott, E.; Kendall, C.; Butler, T.

    2005-12-01

    Rapid changes in power generation, transportation, and agriculture have appreciably altered nitrogen (N) cycling at regional scales, increasing N inputs to landscapes and surface waters. Numerous studies have linked this surplus N to a host of concerns, including eutrophication and violations in drinking water standards. Inputs of N nation-wide have increased during recent decades, primarily from the production and use of fertilizers, the planting of N-fixing crops, and the combustion of fossil fuels. The role of atmospheric N sources is of particular concern in New York, as rates of atmospheric N deposition in the northeast are among the highest in the nation. Our work aims to quantify nitrogen sources and fate in watersheds throughout the state. Further, we intend to elucidate factors controlling the retention and release of N to surface waters. We quantify nitrogen inputs through both measurement data (e.g., from wet and dry atmospheric deposition, precipitation, streamflow, water quality, and isotopic tracers) and from synoptic spatial databases (e.g., of terrain, land use, and fertilizer inputs). We present preliminary results from large catchments in contrasting spatial settings across the state (different land use configurations and atmospheric deposition gradients), illustrating the contribution of nitrogen sources to each region and factors affecting delivery to surface waters. Further, we present 30 years of temporal data from a large watershed (Fall Creek) in the Finger Lakes region of the state to demonstrate how hydrological and biogeochemical factors, over seasons and under varying hydrological regimes, combine to control N dynamics in surface waters. Our collective work provides information that is necessary to develop sound strategies for understanding and managing nutrients at regional scales.

  5. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  6. NITROGEN DEPOSITION AND ORGANIC MATTER MANIPULATIONS AFFECT GROSS AND NET NITROGEN TRANSFORMATIONS IN TWO TEMPERATE FORESTS SOILS

    EPA Science Inventory

    Soil nitrogen transformations are intricately linked to carbon transformations. We utilized two existing organic matter manipulation sites in western Oregon, USA and Hungary to investigate these linkages. Our questions were: 1) Does the quantity and quality of organic matter af...

  7. NITROGEN DEPOSITION AND ORGANIC MATTER MANIPULATIONS AFFECT GROSS AND NET NITROGEN TRANSFORMATIONS IN TWO TEMPERATE FORESTS SOILS

    EPA Science Inventory

    Soil nitrogen transformations are intricately linked to carbon transformations. We utilized two existing organic matter manipulation sites in western Oregon, USA and Hungary to investigate these linkages. Our questions were: 1) Does the quantity and quality of organic matter af...

  8. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories.

    PubMed

    Siddique, Ilyas; Vieira, Ima Célia Guimarães; Schmidt, Susanne; Lamb, David; Carvalho, Cláudio José Reis; Figueiredo, Ricardo de Oliveira; Blomberg, Simon; Davidson, Eric A

    2010-07-01

    Nutrient enrichment is increasingly affecting many tropical ecosystems, but there is no information on how this affects tree biodiversity. To examine dynamics in vegetation structure and tree species biomass and diversity, we annually remeasured tree species before and for six years after repeated additions of nitrogen (N) and phosphorus (P) in permanent plots of abandoned pasture in Amazonia. Nitrogen and, to a lesser extent, phosphorus addition shifted growth among woody species. Nitrogen stimulated growth of two common pioneer tree species and one common tree species adaptable to both high- and low-light environments, while P stimulated growth only of the dominant pioneer tree Rollinia exsucca (Annonaceae). Overall, N or P addition reduced tree assemblage evenness and delayed tree species accrual over time, likely due to competitive monopolization of other resources by the few tree species responding to nutrient enrichment with enhanced establishment and/or growth rates. Absolute tree growth rates were elevated for two years after nutrient addition. However, nutrient-induced shifts in relative tree species growth and reduced assemblage evenness persisted for more than three years after nutrient addition, favoring two nutrient-responsive pioneers and one early-secondary tree species. Surprisingly, N + P effects on tree biomass and species diversity were consistently weaker than N-only and P-only effects, because grass biomass increased dramatically in response to N + P addition. The resulting intensified competition probably prevented an expected positive N + P synergy in the tree assemblage. Thus, N or P enrichment may favor unknown tree functional response types, reduce the diversity of coexisting species, and delay species accrual during structurally and functionally complex tropical rainforest secondary succession.

  9. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  10. Two novel herbicide candidates affect Arabidopsis thaliana growth by inhibiting nitrogen and phosphate absorption.

    PubMed

    Sun, Chongchong; Jin, Yujian; He, Haifeng; Wang, Wei; He, Hongwu; Fu, Zhengwei; Qian, Haifeng

    2015-09-01

    Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A. thaliana and altered its root structure by inhibiting energy metabolism and lipid or protein biosynthesis. These compounds also significantly affected the absorption of nitrogen and phosphorus by down-regulating the transcripts of nitrate transporter-related genes, ammonium transporter-related genes and phosphorus transporter-related genes.

  11. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  12. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  13. TOO LITTLE, TOO LATE: HOW THE TIDAL EVOLUTION OF HOT JUPITERS AFFECTS TRANSIT SURVEYS OF CLUSTERS

    SciTech Connect

    Debes, John H.; Jackson, Brian

    2010-11-10

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense Hubble Space Telescope search for transits. We find that in older clusters, one expects to detect fewer transiting planets by a factor of 2 for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of the semimajor axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  14. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  15. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  16. Predicting nitrogen loading with land-cover composition: how can watershed size affect model performance?

    PubMed

    Zhang, Tao; Yang, Xiaojun

    2013-01-01

    Watershed-wide land-cover proportions can be used to predict the in-stream non-point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to

  17. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada, 2015.

  18. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya.

    PubMed

    Jacobs, Suzanne R; Breuer, Lutz; Butterbach-Bahl, Klaus; Pelster, David E; Rufino, Mariana C

    2017-12-15

    African tropical montane forests are facing fast and dynamic changes in land use. However, the impacts of these changes on stream water quality are understudied. This paper aims at assessing the effect of land use and physical catchment characteristics on stream water concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) in the Mau Forest, the largest tropical montane forest in Kenya. We conducted five synoptic stream water sampling campaigns at the outlets of 13-16 catchments dominated by either natural forest, smallholder agriculture or commercial tea and tree plantations. Our data show a strong effect of land use on TDN and NO3-N, with highest concentrations in stream water of catchments dominated by tea plantations (1.80±0.50 and 1.62±0.60mgNl(-1), respectively), and lowest values in forested catchments (0.55±0.15 and 0.30±0.08mgNl(-1), respectively). NO3-N concentration increased with stream temperature and specific discharge, but decreased with increasing catchment area. DOC concentrations increased with catchment area and precipitation and decreased with specific discharge, drainage density and topographic wetness index. Precipitation and specific discharge were also strong predictors for DON concentrations, with an additional small positive effect of tree cover. In summary, land use affects TDN and NO3-N concentrations in stream water in the Mau Forest region in Kenya, while DOC and DON were more related to hydrologic regimes and catchment properties. The importance of land use for NO3-N and TDN concentrations emphasizes the risk of increased nitrogen export along hydrological pathways caused by intensified land use and conversion of land to agricultural uses, which might result in deterioration of drinking water quality and eutrophication in surface water in tropical Africa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants

    PubMed Central

    2012-01-01

    Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves. PMID:23057967

  20. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants.

    PubMed

    Borlotti, Andrea; Vigani, Gianpiero; Zocchi, Graziano

    2012-10-11

    Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves.

  1. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  2. Water shortage affects the water and nitrogen balance in Central European beech forests.

    PubMed

    Gessler, A; Keitel, C; Nahm, M; Rennenberg, H

    2004-05-01

    Whilst forest policy promotes cultivation and regeneration of beech dominated forest ecosystems, beech itself is a highly drought sensitive tree species likely to suffer from the climatic conditions prognosticated for the current century. Taking advantage of model ecosystems with cool-moist and warm-dry local climate, the latter assumed to be representative for future climatic conditions, the effects of climate and silvicultural treatment (different thinning regimes) on water status, nitrogen balance and growth parameters of adult beech trees and beech regeneration in the understorey were assessed. In addition, validation experiments with beech seedlings were carried out under controlled conditions, mainly in order to assess the effect of drought on the competitive abilities of beech. As measures of water availability xylem flow, shoot water potential, stomatal conductance as well as delta (13)C and delta (18)O in different tissues (leaves, phloem, wood) were analysed. For the assessment of nitrogen balance we determined the uptake of inorganic nitrogen by the roots as well as total N content and soluble N compounds in different tissues of adult and young trees. Retrospective and current analysis of delta (13)C, growth and meteorological parameters revealed that beech growing under warm-dry climatic conditions were impaired in growth and water balance during periods with low rain-fall. Thinning affected water, N balance and growth mostly of young beech, but in a different way under different local climatic conditions. Under cool, moist conditions, representative for the current climatic and edaphic conditions in beech forests of Central Europe, thinning improves nutrient and water status consistent to published literature and long-term experience of forest practitioners. However, beech regeneration was impaired as a result of thinning at higher temperatures and under reduced water availability, as expected in future climate.

  3. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  4. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    USGS Publications Warehouse

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  5. PII Overexpression in Lotus japonicus Affects Nodule Activity in Permissive Low-Nitrogen Conditions and Increases Nodule Numbers in High Nitrogen Treated Plants.

    PubMed

    D'Apuzzo, Enrica; Valkov, Vladimir Totev; Parlati, Aurora; Omrane, Selim; Barbulova, Ani; Sainz, Maria Martha; Lentini, Marco; Esposito, Sergio; Rogato, Alessandra; Chiurazzi, Maurizio

    2015-04-01

    We report here the first characterization of a GLNB1 gene coding for the PII protein in leguminous plants. The main purpose of this work was the investigation of the possible roles played by this multifunctional protein in nodulation pathways. The Lotus japonicus LjGLB1 gene shows a significant transcriptional regulation during the light-dark cycle and different nitrogen availability, conditions that strongly affect nodule formation, development, and functioning. We also report analysis of the spatial profile of expression of LjGLB1 in root and nodule tissues and of the protein's subcellular localization. Transgenic L. japonicus lines overexpressing the PII protein were obtained and tested for the analysis of the symbiotic responses in different conditions. The uncoupling of PII from its native regulation affects nitrogenase activity and nodule polyamine content. Furthermore, our results suggest the involvement of PII in the signaling of the nitrogen nutritional status affecting the legumes' predisposition for nodule formation.

  6. Identification of multiply charged proteins and amino acid clusters by liquid nitrogen assisted spray ionization mass spectrometry.

    PubMed

    Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen

    2012-08-15

    The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions.

  7. The reallocation of carbon in P deficient lupins affects biological nitrogen fixation.

    PubMed

    Kleinert, Aleysia; Venter, Mauritz; Kossmann, Jens; Valentine, Alexander

    2014-11-01

    It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth.

  8. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence.

    PubMed

    Ormeño, Elena; Olivier, Romain; Mévy, Jean Philippe; Baldy, Virginie; Fernandez, Catherine

    2009-09-01

    The use of composted biosolids as an amendment for forest regeneration in degraded ecosystems is growing since sewage-sludge dumping has been banned in the European Community. Its consequences on plant terpenes are however unknown. Terpene emissions of both Rosmarinus officinalis (a terpene-storing species) and Quercus coccifera (a non-storing species) and terpene content of the former, were studied after a middle-term exposure to compost at intermediate (50tha(-1): D50) and high (100tha(-1): D100) compost rates, in a seven-year-old post-fire shrubland ecosystem. Some chlorophyll fluorescence parameters (Fv/Fm, ETR, Phi(PSII)), soil and plant enrichment in phosphorus (P) and nitrogen (N) were monitored simultaneously in amended and non-amended plots in order to establish what factors were responsible for possible compost effect on terpenes. Compost affected all studied parameters with the exception of Fv/Fm and terpene content. For both species, mono- and sesquiterpene basal emissions were intensified solely under D50 plots. On the contrary leaf P, leaf N levels reached in D50 were partly responsible of terpene changes, suggesting that optimal N conditions occurred therein. N also affected ETR and Phi(PSII) which were, in turn, robustly correlated to terpene emissions. These results imply that emissions of terpene-storing and non-storing species were under nitrogen and chlorophyll fluorescence control, and that a correct management of compost rates applied on soil may modify terpene emission rate of plants, which in turn has consequences in air quality and plant defense mechanisms.

  9. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

    USDA-ARS?s Scientific Manuscript database

    Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...

  10. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    PubMed

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  11. Warming and altered precipitation affect litter decomposition and nitrogen dynamics in a mixed-grass prairie

    NASA Astrophysics Data System (ADS)

    Chen, X.; Luo, Y.; Xu, X.; Li, D.; Niu, S.

    2013-12-01

    Litter decomposition and nitrogen dynamics are important processes in ecosystems and how they respond to climate changes is a global concern. In order to explore the effects of warming and altered precipitation on litter decomposition and nitrogen dynamics, we conducted a field decomposition experiment with warming (+3°C) and altered precipitation (half and double) in a mixed-grass prairie in Oklahoma, USA, using litter bags with dominant C3 and C4 grasses since June, 2012. Litter bags were collected every month in the first six months and subsequently every three month thereafter. Remaining litter biomass as well as element concentration were measured in the lab. Warming significantly decreased the litter decomposition rate (k) by 25.4% for C3 grasses and 25.0% for C4 grasses. Doubled precipitation significantly increased the litter decomposition rate by 23.3% for C3 grasses and 30.1% for C4 grasses while half precipitation showed no significant effects. Soil temperature and soil moisture, controlled by warming and altered precipitation, are found to be the most important factors in regulating litter decomposition rate. Warming also decreased N concentration in C3 grasses while doubled precipitation increased N concentration in C4 grasses after one year of field decomposition. During that time, N concentration showed an average increase of 99.6% in C3 grass while only 68.1% in C4 grass. Other elements such as P and K were not much affected by these treatments although there were significant differences between C3 and C4 grasses. Our results suggest that climate change has significant impact on litter decomposition rate, which could influence the carbon balance of the ecosystem. Nutrient dynamics, especially nitrogen, were shown to be specific to plant types under altered climatic conditions. Our results show that conclusion derived from single-factor climate change experiments should be treated with caution due to interactive effects of warming with altered

  12. Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolism.

    PubMed

    Faure, J D; Jullien, M; Caboche, M

    1994-04-01

    When photomorphogenesis takes place during early plant development, the cotyledons undergo a metabolic transition from heterotrophic sink metabolism to autotrophic source metabolism. A mutant screen was devised for seedlings affected in the regulation of nitrate assimilation during this early sink-source transition in Nicotiana plumbaginifolia. A mutant (EMS 203.6) was isolated for its inability to grow on low nitrate concentration. In contrast to wild-type (WT) plants, the mutant cotyledons remained tightly attached to each other throughout seedling development. It was found that a low carbon/nitrogen ratio (C/N ratio) in the medium was required for mutant growth. The higher the ratio was, the more the growth was inhibited. Mutant EMS 203.6 accumulated all amino acids in permissive conditions (low C/N ratio), and all amino acids and sugars also in selective (high C/N ratio) conditions. In addition, sucrose in the medium repressed light-regulated genes involved in nitrate assimilation and in photosynthesis in the mutant but not in the WT plants. The mutation was mapped to the Zea3 complementation group which confers resistance to zeatin. This zeatin resistance was associated with a hypertrophy of mutant cotyledons in response to cytokinin. Both cytokinin resistance and sensitivity to a high C/N ratio were not observed in etiolated mutant seedlings and were restricted to the jointed-cotyledon developmental stage. Previous physiological studies showed evidence for a role of cytokinins in the expression of nitrate reductase. Here, the first genetic evidence for a link between carbohydrate/nitrogen metabolism and cytokinin action during early development is provided.

  13. Multifrequency electron spin-echo envelope modulation studies of nitrogen ligation to the manganese cluster of photosystem II

    PubMed Central

    Yeagle, Gregory J; Gilchrist, M. Lane; Walker, Lee M; Debus, Richard J; Britt, R. David

    2007-01-01

    The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130 GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35 GHz. Previous lower frequency electron spin-echo envelope modulation (ESEEM) studies indicated that histidine nitrogen is electronically coupled to the Mn cluster in the S2 state of photosystem II (PSII). However, the amplitude and resolution of the spectra were relatively poor at these low frequencies, precluding any in-depth analysis of the electronic structure properties of this closely associated nitrogen nucleus. With the intermediate frequency instruments, we are much closer to the ‘exact cancellation’ limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. Herein, we report the results from ESEEM studies of both 14N- and 15N-labelled PSII at these two frequencies. Spectral simulations were constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral examination of the histidine ligation to the Mn cluster in the S2 state. PMID:17954435

  14. Volatile composition and sensory properties of Shiraz wines as affected by nitrogen supplementation and yeast species: rationalizing nitrogen modulation of wine aroma.

    PubMed

    Ugliano, Maurizio; Travis, Brooke; Francis, I Leigh; Henschke, Paul A

    2010-12-08

    The effects of yeast assimilable nitrogen (YAN) supplementation on Shiraz volatile composition and sensory properties have been investigated. A low YAN Shiraz must (YAN 100 mg/L) was supplemented with nitrogen in the form of diammonium phosphate (DAP) to a final YAN of either 250 or 400 mg/L. Fermentation was carried out with either Saccharomyces cerevisiae or Saccharomyces bayanus , with maceration on skins. For both yeast strains, high DAP additions increased the ratings of positive sensory attributes such as "red fruit" and "dark fruit" and decreased the "yeast/cheese", "vegetal", and "earth/dirty" attributes. For the S. cerevisiae yeast moderate DAP addition resulted in higher "reduced" attribute scores. DAP supplementation had a strong influence on formation of acetates, fatty acid ethyl esters, higher alcohols, hydrogen sulfide, ethyl mercaptan, methyl mercaptan, DMS, and DES. Partial least-squares regression analysis of chemical and sensory data indicated that esters, sulfides, and mercaptans were associated with fruit-related descriptors, whereas hydrogen sulfide was associated with the "reduced" attribute. Nitrogen-related variations in the concentration of other yeast metabolites such as ethanol and 2- and 3-methylbutanoic acids also affected perceived fruitiness. Depending on yeast species DAP supplementation to a low nitrogen must can result in increased reduction off-odor.

  15. Nitrogen addition affects leaf nutrition and photosynthesis in sugar maple in a nutrient-poor northern Vermont forest

    Treesearch

    David S. Ellsworth

    1999-01-01

    Sugar maple-dominated forest ecosystems in the northeastern U.S. have been receiving precipitation nitrogen (N) inputs of 15 -20 kg N ha1 year1 since at least the mid 1980s sustained chronic N inputs of this magnitude into nutrient-poor forest ecosystems may cause eutrophication and affect ecosystem functioning as well as...

  16. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    PubMed Central

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  17. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland.

    PubMed

    Lü, Xiao-Tao; Kong, De-Liang; Pan, Qing-Min; Simmons, Matthew E; Han, Xing-Guo

    2012-02-01

    The effects of global change factors on the stoichiometric composition of green and senesced plant tissues are critical determinants of ecosystem feedbacks to anthropogenic-driven global change. So far, little is known about species stoichiometric responses to these changes. We conducted a manipulative field experiment with nitrogen (N; 17.5 g m(-2) year(-1)) and water addition (180 mm per growing season) in a temperate steppe of northern China that is potentially highly vulnerable to global change. A unique and important outcome of our study is that water availability modulated plant nutritional and stoichiometric responses to increased N availability. N addition significantly reduced C:N ratios and increased N:P ratios but only under ambient water conditions. Under increased water supply, N addition had no effect on C:N ratios in green and senesced leaves and N:P ratios in senesced leaves, and significantly decreased C:P ratios in both green and senesced leaves and N:P ratios in green leaves. Stoichiometric ratios varied greatly among species. Our results suggest that N and water addition and species identity can affect stoichiometric ratios of both green and senesced tissues through direct and interactive means. Our findings highlight the importance of water availability in modulating stoichiometric responses of plants to potentially increased N availability in semi-arid grasslands.

  18. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  19. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco

    PubMed Central

    Gupta, Kapuganti J.; Mur, Luis A. J.

    2013-01-01

    Different forms of nitrogen (N) fertilizer affect disease development; however, this study investigated the effects of N forms on the hypersensitivity response (HR)—a pathogen-elicited cell death linked to resistance. HR-eliciting Pseudomonas syringae pv. phaseolicola was infiltrated into leaves of tobacco fed with either or . The speed of cell death was faster in -fed compared with -fed plants, which correlated, respectively, with increased and decreased resistance. Nitric oxide (NO) can be generated by nitrate reductase (NR) to influence the formation of the HR. NO generation was reduced in -fed plants where N assimilation bypassed the NR step. This was similar to that elicited by the disease-forming P. syringae pv. tabaci strain, further suggesting that resistance was compromised with feeding. PR1a is a biomarker for the defence signal salicylic acid (SA), and expression was reduced in -fed compared with fed plants at 24h after inoculation. This pattern correlated with actual SA measurements. Conversely, total amino acid, cytosolic and apoplastic glucose/fructose and sucrose were elevated in - treated plants. Gas chromatography/mass spectroscopy was used to characterize metabolic events following different N treatments. Following nutrition, polyamine biosynthesis was predominant, whilst after nutrition, flux appeared to be shifted towards the production of 4-aminobutyric acid. The mechanisms whereby feeding enhances SA, NO, and polyamine-mediated HR-linked defence whilst these are compromised with , which also increases the availability of nutrients to pathogens, are discussed. PMID:23230025

  1. Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch

    PubMed Central

    Lihavainen, Jenna; Ahonen, Viivi; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Oksanen, Elina; Keinänen, Markku

    2016-01-01

    Air humidity indicated as vapour pressure deficit (VPD) is directly related to transpiration and stomatal function of plants. We studied the effects of VPD and nitrogen (N) supply on leaf metabolites, plant growth, and mineral nutrition with young micropropagated silver birches (Betula pendula Roth.) in a growth chamber experiment. Plants that were grown under low VPD for 26 d had higher biomass, larger stem diameter, more leaves, fewer fallen leaves, and larger total leaf area than plants that were grown under high VPD. Initially, low VPD increased height growth rate and stomatal conductance; however, the effect was transient and the differences between low and high VPD plants became smaller with time. Metabolic adjustment to low VPD reflected N deficiency. The concentrations of N, iron, chlorophyll, amino acids, and soluble carbohydrates were lower and the levels of starch, quercetin glycosides, and raffinose were higher in the leaves that had developed under low VPD compared with high VPD. Additional N supply did not fully overcome the negative effect of low VPD on nutrient status but it diminished the effects of low VPD on leaf metabolism. Thus, with high N supply, the glutamine to glutamate ratio and starch production under low VPD became comparable with the levels under high VPD. The present study demonstrates that low VPD affects carbon and nutrient homeostasis and modifies N allocation of plants. PMID:27259554

  2. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy.

    PubMed

    Bonanno, Giuseppe

    2013-10-01

    Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural.

  3. Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands.

    PubMed

    Pannek, A; Duprè, C; Gowing, D J G; Stevens, C J; Diekmann, M

    2015-01-01

    Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3(-) or NH4(+), with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3(-) showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands.

  4. Precipitation pattern affects nitrogen acquisition by Stipa grandis and microorganisms in a temperate steppe

    NASA Astrophysics Data System (ADS)

    Wen, Shuhai; Tian, Yuqiang

    2017-04-01

    Growing evidence shows that the precipitation have already become more extreme and will be common in future climate regimes. Extreme precipitation pattern has been suggested to be an important factor to affect grassland ecosystems and could intensely influence productivity and species composition. The extreme precipitation may affect the ecosystem by changing N acquisition of plant and microbes. However, it still remains unclear how they respond to such altered extreme precipitation in nitrogen (N) acquisition over chemical and spatial scales. The simulation of extreme precipitation pattern (the same amount of precipitation but with different frequencies) was performed during a growing season (July, August), and a short-term 15N tracer experiment was conducted after precipitation simulation in a temperate steppe in Inner Mongolia to unravel plant-microbial acquisition of N for different N forms over soil depths. Stipa grandis (dominant species in our study land) acquired more N with increasing frequency of extreme precipitation, while the amount of microbial N uptake showed little changes. Soil microbes outcompeted for N than Stipa grandis. The preference for N forms in Stipa grandis and microbes were different in low frequency of extreme precipitation, while they showed similar preference in high frequency of extreme precipitation. It indicates that the chemical niche between plant and microbes was overlapped and could compete intensively for chemical N niche in high frequency of extreme precipitation in the system. These findings help us to understand the changes in N acquisition by plant and microbes, which provides a physical explanation for altered ecosystem function and composition resulted from extreme precipitation in a temperate steppe in Inner Mongolia.

  5. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis.

    PubMed

    Zhou, Guiyao; Zhou, Xuhui; He, Yanghui; Shao, Junjiong; Hu, Zhenhong; Liu, Ruiqiang; Zhou, Huimin; Hosseinibai, Shahla

    2017-03-01

    Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta-analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta-analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62% and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67% and 25.87%, respectively, in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C : N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate-biosphere feedbacks.

  6. Alteration of soil carbon and nitrogen pools and enzyme activities as affected by increased soil coarseness

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhen; Lü, Linyou; Creamer, Courtney A.; Dijkstra, Feike A.; Liu, Heyong; Feng, Xue; Yu, Guoqing; Han, Xingguo; Jiang, Yong

    2017-04-01

    Soil coarseness decreases ecosystem productivity, ecosystem carbon (C) and nitrogen (N) stocks, and soil nutrient contents in sandy grasslands subjected to desertification. To gain insight into changes in soil C and N pools, microbial biomass, and enzyme activities in response to soil coarseness, a field experiment was conducted by mixing native soil with river sand in different mass proportions: 0, 10, 30, 50, and 70 % sand addition. Four years after establishing plots and 2 years after transplanting, soil organic C and total N concentrations decreased with increased soil coarseness down to 32.2 and 53.7 % of concentrations in control plots, respectively. Soil microbial biomass C (MBC) and N (MBN) declined with soil coarseness down to 44.1 and 51.9 %, respectively, while microbial biomass phosphorus (MBP) increased by as much as 73.9 %. Soil coarseness significantly decreased the enzyme activities of β-glucosidase, N-acetyl-glucosaminidase, and acid phosphomonoesterase by 20.2-57.5 %, 24.5-53.0 %, and 22.2-88.7 %, used for C, N and P cycling, respectively. However, observed values of soil organic C, dissolved organic C, total dissolved N, available P, MBC, MBN, and MBP were often significantly higher than would be predicted from dilution effects caused by the sand addition. Soil coarseness enhanced microbial C and N limitation relative to P, as indicated by the ratios of β-glucosidase and N-acetyl-glucosaminidase to acid phosphomonoesterase (and MBC : MBP and MBN : MBP ratios). Enhanced microbial recycling of P might alleviate plant P limitation in nutrient-poor grassland ecosystems that are affected by soil coarseness. Soil coarseness is a critical parameter affecting soil C and N storage and increases in soil coarseness can enhance microbial C and N limitation relative to P, potentially posing a threat to plant productivity in sandy grasslands suffering from desertification.

  7. Nitrogen fertilization and sex expression affect size variability of fibre hemp (Cannabis sativa L.).

    PubMed

    van der Werf, H M G; van den Berg, W

    1995-09-01

    Mechanical harvesting and industrial processing of fibre hemp (Cannabis sativa L.) require uniformity of stem length and weight. In 1991 and 1992 we carried out field experiments to investigate the effects of soil nitrogen level (80 and 200 kg ha(-1)N) and row width (12.5, 25 and 50 cm) on the variability of weight and height in hemp plants. The crops were sampled 5 times between early June and early September. Row width did not affect size variability. At final harvest coefficients of variation (CV) of both weight and height were about 1.5 times higher at 200 than at 80 kg ha(-1)N. Distributions of dry weight were positively skewed at all sampling dates except the first, with skewness larger at 200 than at 80 kg ha(-1)N. Distributions of height were negatively skewed at all sampling dates except the first at 80 kg ha(-1)N. At 200 kg ha(-1)N they changed from negative skewness during the first part of the growing season to negative kurtosis in the second part of the growing season. More suppressed plants were present at 200 than at 80 kg ha(-1)N. Contrary to most published results, we did not find a reduction of CV of weight nor of CV of height at the onset of self-thinning. Suppressed hemp plants can survive relatively well in the low-light environment under the canopy. Sexual dimorphism contributed to variability of height and weight, but the effects were smaller than those of nitrogen fertilization. The ratio of female to male plants was higher at 200 than at 80 kg ha(-1)N, as a result of a shift in sex-ratio within the population of suppressed plants. As suppressed plants were much more slender than dominating plants, self-thinning eliminated the most slender individuals in a hemp crop. However, the presence of many more heavy individuals of low slenderness at 200 than at 80 kg ha(-1) N was probably the major cause of the difference in slenderness between 200 and 80 kg ha(-1) N.

  8. Nitrogen and Phosphorus Addition Affects Biological N2 Fixation and Sphagnum Moss in an Ombrotrophic Bog

    NASA Astrophysics Data System (ADS)

    Zivkovic, T.; Ardichvili, A.; Moore, T. R.

    2016-12-01

    Most of the 18 Pg nitrogen (N) accumulated in northern nutrient-poor and Sphagnum-dominated peatlands (bogs and fens) can be attributed to N2 fixation by diazotrophs either associated with the live Sphagnum or non-symbiotically in the deeper peat. Where atmospheric N deposition is low (< 0.2 g m-2 y-1), ombrotrophic bogs rely on N2 fixation as the primary source of N that sustains primary production. The industrial revolution and anthropogenic impacts in the last 200 years have resulted in larger atmospheric N deposition as ammonium (NH4) and nitrate (NO3). One effect of increased N deposition in Sphagnum is a switch from N to phosphorus (P) limitation suggested by the increase in tissue N:P>16. It is unclear how Sphagnum hosted diazotrophic activity may be affected by N deposition and thus changes in N:P ratio. We investigated the effects of long-term addition of different sources of nitrogen (0, 1.6, 3.2 and 6.4 g N m-2 y-1 as NH4Cl and NaNO3), and phosphorus (5 g P m-2 y-1 as KH2PO4) on Sphagnum nutrient status (N, P and N:P), net primary productivity (NPP) and Sphagnum-associated N2 fixation at Mer Bleue, a temperate ombrotrophic bog. Our study shows that N concentration in Sphagnum tissue increased with larger rates of N addition, with a stronger effect on Sphagnum from NH4 than NO3. The addition of P created a 3.5 fold increase in Sphagnum P content compared to controls. Sphagnum NPP decreased linearly with the rise in N:P ratio, while linear growth declined exponentially with increase in Sphagnum N content. N2 fixation significantly decreased in response to even the smallest addition of both N species. In contrast, the addition of P increased N2 fixation by up to 100 times compared to N treatments and up to 5-30 times compared to controls. The change in N2 fixation was best modeled by the N:P ratio, across all experimental treatments. Although elevated N deposition substantially decreases N2 fixation, the N:P ratio in Sphagnum may be a good predictor, likely

  9. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest

  10. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  11. Carbon Allocation in Mojave Desert Plant-Soil Systems as Affected by Nitrogen and Water Availability

    NASA Astrophysics Data System (ADS)

    Verburg, P. S.; Kapitzke, S. E.

    2008-12-01

    Changes in atmospheric nitrogen (N) deposition due to increased urbanization and precipitation due to climate change are likely to affect carbon (C) allocation in plants and soils in arid ecosystems in the Southwestern United States where net primary production is often limited by N and water availability. We conducted a greenhouse study to determine the effects of N and water availability on one year old creosote (Larrea tridentata) plants, the dominant shrub in the Mojave Desert. In our greenhouse study we employed two N levels (0 and 40 kg ha-1) and two soil moisture levels (7% and 15%). We grew creosote seedlings in PVC columns filled with topsoil from the Mojave Global Change Facility at the Nevada Test Site. The columns were covered and sealed at the base of the plant to separate the above- from belowground plant compartment. Plants were distributed over two growth chambers receiving ambient light while day/night temperatures were set at 25° C/15° C. In one chamber plants were labeled once a week with 13C-enriched CO2 while a second chamber acted as an unlabeled control. Throughout the six month study we measured soil CO2 concentrations, respired CO2 as well as their isotopic signatures. At the end of the study plants were harvested and we measured plant above- and belowground biomass and isotopic composition of the vegetation. In addition, we measured isotopic composition of soil organic and inorganic C. Increased N availability stimulated stem weight and decreased total C losses through soil respiration. Other plant and soil parameters including isotopic composition were not affected by changes in N availability. Increased soil moisture stimulated plant biomass mainly due to an increase in leaf weight while root biomass tended to decrease. Soil CO2 concentrations increased with increasing water availability despite a reduction in root biomass. The isotopic data showed that net new C uptake increased mostly in leaves, soil organic matter and soil

  12. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  13. Cluster Based Reaction Probabilities for Boron with Oxygen, Hydrogen, Water, Nitrogen, Nitrous Oxide, Carbon Dioxide, Carbon Monoxide, Methane, Tetrafluoromethane, and Silane

    DTIC Science & Technology

    1989-10-28

    measured for reactions of boron cluster ions with the gases in question. We present both total reaction probabilities and also the branching fractions...Water, Nitrogen, Nitrous Oxide, Carbon Dioxide, Carbon Monoxide, Methane, Tetrafluoromethane , and Silane Paul A. Hintz, Stephen A. Ruatta, and Scott...detailed study of boron cluster ion reaction dynamics, we have tried to present our cross section measurements in a form most useful to combustion

  14. Nitrogen fertilization and plant growth promoting rhizobacteria treatments affected amino acid content of cabbage

    NASA Astrophysics Data System (ADS)

    Dursun, Atilla; Yildirim, Ertan; Ekinci, Melek; Turan, Metin; Kul, Raziye; Karagöz, Fazilet P.

    2017-04-01

    This study was designed to determine the influence of a nitrogen fixing plant growth promoting rhizobacteria (PGPR) inoculation (seed coating and seedling dipping) and 6 doses of nitrogen (0, 40, 80, 120, 160, 200 kg ha-1) application on amino acid contents of cabbage. Coating and seedling dipping applications caused a significant increase in values histidine, glycine, thionin, arginine and alanine of cabbage. Highest glutamate, serine, asparagines and glutamine contents were obtained from 160-200 kg ha-1 nitrogen dose applied plants. As a result, the use of bacteria treatments provides means of improving amino acid contents in cabbage.

  15. [Factors affecting formation of THMs during dissolved organic nitrogen acetamide chlorination in drinking water].

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Zhao, Shi-Jia; Li, Qing-Song

    2009-05-15

    Chlorination disinfection greatly reduced bacteria and virus in drinking water. However, there is an unintended consequence of disinfection, the generation of chemical disinfection by-products (DBPs). Dissolved organic nitrogen (DON) as the important precursor of DBPs is of current concern. As acetamide (AcAm) occur in important bimolecular, we studied formation pathways for THMs during chlorination of model AcAm. The experiments are designed by Plackett-Burman and Box-Behnken methods. Factors affecting formation of THMs such as AcAm initial concentration, chlorine dosage, pH, temperature, Br(-) concentration and contact time were investigated. The results indicate that AcAm initial concentration, pH and temperature have little effects on formation of THMs. On the contrary, three other factors have important effects on formation of THMs, especially Br(-) concentration. The capacity of THMs generation varies very little when Br(-) has a constant concentration. Generation amount of THMs attach maximum under the condition that dosage of active chlorine, Br(-) concentration and contact time is 8.77 mg/L, 0.77 mg/L and 6.20 h respectively. Bromine ion plays a catalysis role on THMs formation. Controlling the concentration of bromine ion can reduce total generation amount of THMs via AcAm. Bromine partition coefficient tends to increasing along with contact time lapse. Controlling chlorination reaction time can lower the cancer risk. At last, the pathway is proposed for THMs formation via AcAm, and the catalysis mechanism of Br(-) was addressed.

  16. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; Wu, Binbin; Zhang, Lei; Jiang, Hong; Xu, Zongxue

    2014-06-01

    The loss of available nutrients and the effects of soil erodibility on available nutrients losses were rarely researched. Here, laboratory simulation experiments were conducted to determine the soil erodibility effects on the available nitrogen (AN) and phosphorus (AP) losses. The impacts of rainfall intensity and slope on AN and AP losses were also studied. Two contrasting agricultural soils (Burozems and Cinnamon) that occur throughout the northern erosion region of China were selected. Two rainfall intensities (60 and 120 mm h-1) and two slopes (10% and 20%) were studied. Overall, greater runoff, sediment and available nutrient losses occurred from the Cinnamon soil due to its greater soil erodibility, which was approximately 2.8 times greater than that of the Burozems soil. The influence of runoff on sediment was positively linear. The absolute slope of the regression line between runoff rate and sediment yield rate was suitable as a soil erodibility indicator. Runoff-associated AN and AP losses were mainly controlled by runoff rate, and were weakly affected by soil erodibility (p > 0.05). However, soil erodibility significantly influenced the sediment-associated AN and AP losses (p < 0.01), and a positive logarithmic correlation best described their relationships. Since the runoff-associated AN and AP losses dominated the total AN and AP losses for both soils, soil erodibility also exhibited negligible influence on the total AN and AP losses (p > 0.05). Increasing rainfall intensity and slope generally increased the runoff, sediment, and available nutrient losses for both soils, but had no significant influences on their relationships. Our results provide a better understanding of soil and nutrient loss mechanisms.

  18. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.

    PubMed

    He, Yuejun; Cornelissen, J Hans C; Zhong, Zhangcheng; Dong, Ming; Jiang, Changhong

    2017-04-01

    In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ(15)N was added to the soil in unplanted compartments. Compartments containing the δ(15)N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ(15)N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ(15)N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.

  19. Gas-phase reactions of nickel and nickel-rich oxide cluster anions with nitric oxide. 2: The addition of nitric oxide, oxidation of nickel clusters, and the formation of nitrogen oxide anions

    SciTech Connect

    Vann, W.D.; Wagner, R.L.; Castleman, A.W. Jr.

    1998-11-05

    A fast flow reactor-quadrupole mass spectrometer coupled with a laser vaporization source is used to study the gas-phase reactions of nickel and nickel oxide cluster anions (Ni{sub x}O{sub y}{sup {minus}}, where x = 1--12 and y = 0, 1, or 2) with nitric oxide. The results indicate that three processes are occurring in the presence of the nickel cluster anions. First, nickel and nickel oxide clusters are oxidized by the reaction with nitric oxide. Second, addition products with these oxides are also formed. Third, nitrogen dioxide and nitrogen trioxide are formed on nickel oxide clusters and subsequently released as anions. Rate constants are reported for the initial reaction occurring between the nickel cluster anions and the nitric oxide, and the reaction rates are compared with reaction rates of the same nickel anion clusters with molecular oxygen. Finally, a comparison of the reaction rates for nickel oxides formed both in the flow tube and in the laser vaporization source are reported. These reactions (previously reported on Part 1) to help to provide a better understanding of the formation of free nitrogen oxide anions observed in the current experiments.

  20. How Subduction Settings can Affect Planetary Nitrogen Cycle: An Experimental Insight

    NASA Astrophysics Data System (ADS)

    Cedeno, D. G.; Conceicao, R. V.; Wilbert de Souza, M. R.; Carniel, L. C.; Schmitz Quinteiro, R. V.

    2015-12-01

    Nitrogen is one of the main building blocks of life on Earth and its elemental cycle is deeply connected with organic matter and the biological system. It is known that nitrogen can be stored in mantellic phases (such as clinopyroxenes) or in metallic alloys under high pressures, meaning that Earth's mantle, and even the core, could be efficient nitrogen reservoirs. Probably, nitrogen is present in these deep Earth systems since the formation of our planet. Nevertheless, it is possible that superficial nitrogen can be reintroduced in the mantle through tectonic processes along Earth history. This is reinforced by d15N values in inclusions in diamonds and other deep mantle phases. We believe that subduction zones are efficient enough to transport nitrogen from surface to mantle. Clay minerals with high charge exchange capacity (CEC) are good candidates to convey nitrogen in subduction zones, especially when we take into account the similarities between K+ and NH4+. To simulate the high-pressure high-temperature conditions found in subduction zones, we performed a series of experiments with montmorillonite clay mineral undergone to high pressure and high temperature produced by a hydraulic press coupled with toroidal chambers, in pressures ranging from 2.5 to 7.7 GPa and temperatures up to 700oC. We used ex situ XRD analysis to accompany the main montmorillonite structural changes and FTIR analysis to determine quantitatively the presence of nitrogen. So far, our results show that the main structural transition in montmorillonite happens at ~350oC at room pressure and ~450oC at 2.5 and 4.0 GPa and consists in the transformation of an open clay structure to a closed mica structure (tobelite). FTIR data show the presence of nitrogen in all the analysed experiments. With the data obtained, we can presume that clay minerals carried in subduction zones can successfully transport nitrogen and other volatiles to the mantle. However, only cold subduction systems have the

  1. Nitrogen budget of a typical subterranean river in peak cluster karst area

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Jiang, Guanghui

    2009-10-01

    Karst groundwater is one of the important water resources for people in the world. There is an estimate that by 2028 karst groundwater will supply more than 80% of people in the world. However, several areas in the world are characterized by high nitrate concentrations in karst aquifers. In China, karst groundwater is also threatened by extensive use of fertilizer and pesticides, industry waste, septic systems and poultry, hog or cattle manure. In order to understand the water quality of a subterranean river in south China, especially the dynamic variation of nitrate, nitrogen input and output were determined via auto-monitored apparatus, manual observation and samples from 2004 to 2008 in Guancun subterranean river drainage area. Land use and anthropogenic activities were also investigated frequently. The results showed the range of nitrate variation was 2.56-15.40 mg l-1, with an average value of 6.60 mg l-1. Spatial variation of nitrate concentrations showed nitrate rose where there were villages and agriculture distribution. Long series of nitrate and discharge monitoring revealed there was a nitrate peak in spring just before the beginning of rainy season. Three rainfall events were selected for analysis of relations among hydrological process, water chemistry, and nitrate of the spring. The flood processes of the spring were divided into three or four phases according to change of water level and water chemistry. They were dominated by initial condition of aquifer, piston flow in soil and vadose, piston flow in conduit, diffuse recharge, and bypass recharge. The original condition of aquifer and rainfall pulse controlled recharge flow and changes of nitrate and hydro-chemical graphs of the spring. The quantity of nitrogen input in a year was 66.61 t, and the output was 21.24 t. Nitrogen leaching loss in base flow accounted for 76.11% in a year. Some measures should be taken to protect karst water in the very near future, so that health risks to the local

  2. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.).

    PubMed

    Lu, YongEn; Luo, Feng; Yang, Meng; Li, XiangHua; Lian, XingMing

    2011-07-01

    Rice (Oryza sativa) glutamate synthase (GOGAT, EC 1.4.1.14) enzymes have been proposed to have great potential for improving nitrogen use efficiency, but their functions in vivo and their effects on carbon and nitrogen metabolism have not been systematically explored. In this research, we analyzed transcriptional profiles of rice GOGAT genes using a genome-wide microarray database, and investigated the effects of suppression of glutamate synthase genes on carbon and nitrogen metabolism using GOGAT co-suppressed rice plants. Transcriptional profiles showed that rice GOGAT genes were expressed differently in various tissues and organs, which suggested that they have different roles in vivo. Compared with the wild-type, tiller number, total shoot dry weight, and yield of GOGAT co-suppressed plants were significantly decreased. Physiological and biochemical studies showed that the contents of nitrate, several kinds of free amino acids, chlorophyll, sugars, sugar phosphates, and pyridine nucleotides were significantly decreased in leaves of GOGAT co-suppressed plants, but the contents of free ammonium, 2-oxoglutarate, and isocitrate in leaves were increased. We conclude that GOGATs play essential roles in carbon and nitrogen metabolism, and that they are indispensable for efficient nitrogen assimilation in rice.

  3. Cluster Roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) Take Up Glycine Intact: An Adaptive Strategy to Low Mineral Nitrogen in Soils?

    PubMed Central

    HAWKINS, HEIDI-JAYNE; WOLF, GABRIELLE; STOCK, WILLIAM DAVID

    2005-01-01

    • Background and Aims South African soils are not only low in phosphorus (P) but most nitrogen (N) is in organic form, and soil amino acid concentrations can reach 2·6 g kg−1 soil. The Proteaceae (a main component of the South African Fynbos vegetation) and some Fabaceae produce cluster roots in response to low soil phosphorus. The ability of these roots to acquire the amino acid glycine (Gly) was assessed. • Methods Uptake of organic N as 13C–15N-Gly was determined in cluster roots and non-cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) in hydroponic culture, taking account of respiratory loss of 13CO2. • Key Results Both plant species acquired doubly labelled (intact) Gly, and respiratory losses of 13CO2 were small. Lupin (but not leucadendron) acquired more intact Gly when cluster roots were supplied with 13C–15N-Gly than when non-cluster roots were supplied. After treatment with labelled Gly (13C : 15N ratio = 1), lupin cluster roots had a 13C : 15N ratio of about 0·85 compared with 0·59 in labelled non-cluster roots. Rates of uptake of label from Gly did not differ between cluster and non-cluster roots of either species. The ratio of C : N and 13C : 15N in the plant increased in the order: labelled roots < rest of the root < shoot in both species, owing to an increasing proportion of 13C translocation. • Conclusions Cluster roots of lupin specifically acquired more intact Gly than non-cluster roots, whereas Gly uptake by the cluster and non-cluster roots of leucadendron was comparable. The uptake capacities of cluster roots are discussed in relation to spatial and morphological characteristics in the natural environment. PMID:16223736

  4. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.).

    PubMed

    Ould-Ahmed, Marouf; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Lafrenière, Carole; Drouin, Pascal

    2014-10-15

    Timothy (Phleum pratense L.) is an important grass forage used for pasture, hay, and silage in regions with cool and humid growth seasons. One of the factors affecting the nutritive value of this grass is the concentration of non-structural carbohydrates (NSC), mainly represented by fructans. NSC concentration depends on multiple factors, making it hardly predictable. To provide a better understanding of NSC metabolism in timothy, the effects of maturity stage and nitrogen (N) fertilization level on biomass, NSC and N-compound concentrations were investigated in the tissues used for forage (leaf blades and stems surrounded by leaf sheaths) of hydroponically grown plants. Moreover, activities and relative expression level of enzymes involved in fructan metabolism were measured in the same tissues. Forage biomass was not altered by the fertilization level but was strongly modified by the stage of development. It increased from vegetative to heading stages while leaf-to-stem biomass ratio decreased. Total NSC concentration, which was not altered by N fertilization level, increased between heading and anthesis due to an accumulation of fructans in leaf blades. Fructan metabolizing enzyme activities (fructosyltransferase-FT and fructan exohydrolase-FEH) were not or only slightly altered by both maturity stage and N fertilization level. Conversely, the relative transcript levels of genes coding for enzymes involved in fructan metabolism were modified by N supply (PpFT1 and Pp6-FEH1) or maturity stage (PpFT2). The relative transcript level of PpFT1 was the highest in low N plants while that of Pp6-FEH1 was the highest in high N plants. Morevoer, transcript level of PpFT1 was negatively correlated with nitrate concentration while that of PpFT2 was positively correlated with sucrose concentration. This distinct regulation of the two genes coding for 6-sucrose:fructan fructosyltransferase (6-SFT) may allow a fine adequation of C allocation towards fructan synthesis in

  5. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    PubMed Central

    Santos, Henrique F; Carmo, Flávia L; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B; Rosado, Alexandre S; van Elsas, Jan Dirk; Peixoto, Raquel S

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs. PMID:24830827

  6. Climate change affects key nitrogen-fixing bacterial populations on coral reefs.

    PubMed

    Santos, Henrique F; Carmo, Flávia L; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B; Rosado, Alexandre S; van Elsas, Jan Dirk; Peixoto, Raquel S

    2014-11-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs.

  7. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    NASA Astrophysics Data System (ADS)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  8. Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea

    PubMed Central

    Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

    2007-01-01

    Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

  9. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    PubMed

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg(-1) soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg(-1) soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Carbon and nitrogen abundances of stellar populations in the globular cluster M 2

    NASA Astrophysics Data System (ADS)

    Lardo, C.; Pancino, E.; Mucciarelli, A.; Milone, A. P.

    2012-12-01

    We present CH and CN index analysis and C and N abundance calculations based on the low-resolution blue spectra of red giant branch (RGB) stars in the Galactic globular cluster NGC 7089 (M 2). Our main goal is to investigate the C-N anticorrelation for this intermediate metallicity cluster. The data were collected with DOLORES, the multiobject, low-resolution facility at the Telescopio Nazionale Galileo. We first looked for CH and CN band strength variations and bimodalities in a sample of RGB stars with 17.5 ≤ V ≤ 14.5. Thus we derived C and N abundances under LTE assumption by comparing observed spectra with synthetic models from the spectral features at 4300 Å (G-band) and at ~3883 Å (CN). Spectroscopic data were coupled with UV photometry obtained during the spectroscopic run. We found a considerable star-to-star variation in both A(C) and A(N) at all luminosities for our sample of 35 targets. These abundances appear to be anticorrelated, with a hint of bimodality in the C content for stars with luminosities below the RBG bump (V ~ 15.7), while the range of variations in N abundances is very large and spans almost ~2 dex. We find additional C depletion as the stars evolve off the RGB bump, in fairly good agreement with theoretical predictions for metal-poor stars in the course of normal stellar evolution. We isolated two groups with N-rich and N-poor stars and found that N abundance variations correlate with the (U - V) color in the DOLORES color-magnitude diagram (CMD). The V, (U - V) CMD for this cluster shows an additional RGB sequence, located at the red of the main RGB and amounting to a small fraction of the total giant population. We identified two CH stars detected in previous studies in our U,V images. These stars, which are both cluster members, fall on this redder sequence, suggesting that the anomalous RGB should have a peculiar chemical pattern. Unfortunately, no additional spectra were obtained for stars in this previously unknown RGB branch

  11. Six-year growth of Eucalyptus saligna plantings as affected by nitrogen and phosphorous fertilizer

    Treesearch

    Craig D. Whitesell; Dean S. DeBell; Thomas H. Schubert

    1987-01-01

    Growth responses of Eucalyptus saligna to nitrogen (N) and phosphorus (P) fertilizers were assessed in bioenergy plantations on abandoned sugarcane land in Hawaii. Fertilizers were applied three times (0, 6, and 15 months after planting) in a factorial design with four dosages each of N (0, 25, 50, and 75 g urea per tree) and P (0, 30, 60, and 90 g...

  12. CARBON QUALITY AND QUANTITY AFFECT THE RETENTION AND MICROBIAL PROCESSING OF APPLIED NITROGEN

    EPA Science Inventory

    Excess nitrogen (N) from fertilizer or atmospheric deposition can have harmful effects on the environment and human health. Remediative methods of controlling N leaching and limiting other undesirable effects of excess N need to be explored if N inputs can not be reduced or bett...

  13. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    Treesearch

    Michael R Giordano; Joey Chong; David R Weise; Akua A Asa-Awuku

    2016-01-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health.We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosolphase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not...

  14. Green manures in continuous wheat systems affect grain yield and nitrogen content

    USDA-ARS?s Scientific Manuscript database

    Continuous winter wheat (Triticum aestivum L. em Thell.) is the foundation for most U.S. southern Great Plains (SGP) agriculture. Inorganic nitrogen (N) fertilizers are important to wheat production, but increasing N prices have caused farmers to reconsider growing legumes during summer fallow for ‘...

  15. MINERALIZATION OF NITROGEN FROM BROILER LITTER AS AFFECTED BY SOIL TEXTURE IN THE SOUTHEASTERN COASTAL PLAIN

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

  16. CARBON QUALITY AND QUANTITY AFFECT THE RETENTION AND MICROBIAL PROCESSING OF APPLIED NITROGEN

    EPA Science Inventory

    Excess nitrogen (N) from fertilizer or atmospheric deposition can have harmful effects on the environment and human health. Remediative methods of controlling N leaching and limiting other undesirable effects of excess N need to be explored if N inputs can not be reduced or bett...

  17. Performance of low-input turfgrass species as affected by mowing and nitrogen fertilization in Minnesota

    USDA-ARS?s Scientific Manuscript database

    In Minnesota, most lawns and higher cut turfgrass areas consist primarily of species such as Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) that require significant management inputs such as frequent mowing and nitrogen fertility. Several studies have shown that oth...

  18. Maize stover and cob cell wall composition and ethanol potential as affected by nitrogen fertilization

    USDA-ARS?s Scientific Manuscript database

    Maize (Zea mays L.) stover and cobs are potential feedstock sources for cellulosic ethanol production. Nitrogen (N) fertilization is an important management decision that influences cellulosic biomass and grain production, but its effect on cell wall composition and subsequent cellulosic ethanol pro...

  19. Summer legume 'green' nitrogen crops affect winter wheat forage in continuous rotations

    USDA-ARS?s Scientific Manuscript database

    Costs for inorganic nitrogen (N) fertilizers in the southern Great Plains (SGP) have increased in recent years with the rise in oil prices. In response, producers have become interested in the potential merits of using annual legumes as N sources. This study described the influence of two summer for...

  20. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  1. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  2. Transpiration, potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels.

    PubMed

    Lu, Y X; Li, C J; Zhang, F S

    2005-05-01

    Ammonium can result in toxicity symptoms in many plants when it is supplied as the sole source of N. In this work, influences of different nitrogen forms at two levels (2 and 15 mm N) on growth, water relations and uptake and flow of potassium were studied in plants of Nicotiana tabacum 'K 326'. Xylem sap from different leaves was collected from 106-d-old tobacco plants cultured in quartz sand by application of pressure to the root system. Whole-shoot transpiration for each of the treatments was measured on a daily basis by weight determination. Total replacement of NO(3)(-)N by NH(4)(+)-N caused a substantial decrease in dry weight gain, even when plants grew under nutrient deficiency. Increasing nutrient concentration resulted in a greater net dry weight gain when nitrogen was supplied as NO(3)(-) or NH(4)NO(3), but resulted in little change when nitrogen was supplied as NH(4)(+). NH(4)(+)-N as the sole N-source also caused reduction in transpiration rate, changes in plant WUE (which depended on the nutrient levels) and a decrease in potassium uptake. However, the amount of xylem-transported potassium in the plants fed with NH(4)(+) was not reduced: it was 457 % or 596 % of the potassium currently taken up at low or high nutrient level, respectively, indicating a massive export from leaves and cycling of potassium in the phloem. Ammonium reduces leaf stomatal conductance of tobacco plants. The flow and partitioning of potassium in tobacco plants can be changed, depending on the nitrogen forms and nutrient levels.

  3. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis.

    PubMed

    Ikeda, Atsuko; Muneoka, Tetsuya; Murakami, Suguru; Hirota, Ayaka; Yabuki, Yukari; Karashima, Takefumi; Nakazono, Kota; Tsuruno, Masahiro; Pichler, Harald; Shirahige, Katsuhiko; Kodama, Yukiko; Shimamoto, Toshi; Mizuta, Keiko; Funato, Kouichi

    2015-07-15

    In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.

  4. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China.

    PubMed

    Cao, Wenzhi; Yang, Jingxin; Li, Ying; Liu, Baoli; Wang, Feifei; Chang, Changtang

    2016-09-15

    In this study, basic sediment properties, nutrient flux, and nitrogen cycle (including denitrification, anaerobic ammonium oxidation [anammox], nitrification, and dissimilatory nitrate reduction to ammonium [DNRA]) were investigated at two sampling sites with different tree ages in the mangrove region of the Jiulong River Estuary, China. The results show that sediments at mangrove flat area have relatively strong capability to reduce NO3(-), in which the DNRA rate is relatively high (204.53±48.32μmolNm(-2)h(-1)), which is approximately 75.7-85.9% of the total NO3(-) reduction, while the denitrification and anammox rates are relatively low - only approximately 5.6-9.5% and 8.5-14.8% of the total NO3(-) reduction, respectively. Thus, in the nitrogen-enriched subtropical mangrove system, DNRA is the main pathway to reduce NO3(-), and most of the input nitrogen is conserved as NH4(+) in the system, which assures high productivity of the mangrove system.

  5. Altered serum levels of kynurenine metabolites in patients affected by cluster headache.

    PubMed

    Curto, Martina; Lionetto, Luana; Negro, Andrea; Capi, Matilde; Perugino, Francesca; Fazio, Francesco; Giamberardino, Maria Adele; Simmaco, Maurizio; Nicoletti, Ferdinando; Martelletti, Paolo

    2015-01-01

    The reported efficacy of memantine in the treatment of patients with cluster headache (CH) suggests that NMDA receptors are involved in mechanisms of nociceptive sensitization within the trigeminal system associated with CH. NMDA receptors are activated or inhibited by neuroactive compounds generated by tryptophan metabolism through the kynurenine pathway. In the accompanying manuscript, we have found that serum levels of all kynurenine metabolites are altered in patients with chronic migraine. Here, we have extended the study to patients affected by episodic or chronic CH as compared to healthy controls. We assessed serum levels of kynurenine (KYN), kynurenic Acid (KYNA), anthranilic acid (ANA), 3-hydroxy-anthranilic acid (3-HANA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), quinolinic acid (QUINA), tryptophan (Trp) and 5-hydroxyindolacetic acid (5-HIAA) by means of a liquid chromatography/tandem mass spectrometry (LC/MS-MS) method in 21 patients affected by CH (15 with episodic and 6 with chronic CH), and 35 age-matched healthy subjects. Patients with psychiatric co-morbidities, systemic inflammatory, endocrine or neurological disorders, and mental retardation were excluded. LC/MS-MS analysis of kynurenine metabolites showed significant reductions in the levels of KYN (-36 %), KYNA (-34 %), 3-HK (-51 %), 3-HANA (-54 %), XA (-25 %), 5-HIAA (-39 %) and QUINA (-43 %) in the serum of the overall population of patients affected by CH, as compared to healthy controls. Serum levels of Trp and ANA were instead significantly increased in CH patients (+18 % and +54 %, respectively). There was no difference in levels of any metabolite between patients affected by episodic and chronic CH, with the exception of KYN levels, which were higher in patients with chronic CH. The reduced levels of KYNA (an NMDA receptor antagonist) support the hypothesis that NMDA receptors are overactive in CH. A similar reduction in KYNA levels was shown in the accompanying

  6. Gas-phase reactions of nickel and nickel oxide clusters with nitrogen dioxide. 4: Continued kinetic and mechanistic investigation of nickel cluster reactions with NO{sub 2} gases

    SciTech Connect

    Vann, W.D.; Castleman, A.W. Jr.

    1999-02-18

    Results of investigations of the gas-phase reactions of nickel and nickel oxide ions with NO{sub 2} are reported in this final part of a four-part series. A fast flow reactor-quadrupole mass spectrometer system coupled with a laser vaporization source is used to study reactions of nickel and nickel oxide cluster ions with nitrogen dioxide. Pseudo-first-order biomolecular rate constants for the reactions of NO{sub 2} with nickel and nickel oxide cluster cations and anions are reported. The product distributions indicate that several different reaction mechanisms occur between NO{sub 2} and various sizes of nickel and nickel oxide cluster ions. The reaction processes are mainly oxidation of the nickel clusters and NO{sub 2} addition. Finally, a detailed comparison is made between these reactions and previously reported ones with nitric oxide and oxygen.

  7. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    PubMed Central

    El-Kereamy, Ashraf; Bi, Yong-Mei; Mahmood, Kashif; Ranathunge, Kosala; Yaish, Mahmoud W.; Nambara, Eiji; Rothstein, Steven J.

    2015-01-01

    Glutaredoxins (GRXs) are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX) superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS, and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs), 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1) were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants. PMID:26579177

  8. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  9. Hot Ductility Behaviors in the Weld Heat-Affected Zone of Nitrogen-Alloyed Fe-18Cr-10Mn Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk

    2015-04-01

    Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.

  10. Two different approaches to the affective profiles model: median splits (variable-oriented) and cluster analysis (person-oriented).

    PubMed

    Garcia, Danilo; MacDonald, Shane; Archer, Trevor

    2015-01-01

    Background. The notion of the affective system as being composed of two dimensions led Archer and colleagues to the development of the affective profiles model. The model consists of four different profiles based on combinations of individuals' experience of high/low positive and negative affect: self-fulfilling, low affective, high affective, and self-destructive. During the past 10 years, an increasing number of studies have used this person-centered model as the backdrop for the investigation of between and within individual differences in ill-being and well-being. The most common approach to this profiling is by dividing individuals' scores of self-reported affect using the median of the population as reference for high/low splits. However, scores just-above and just-below the median might become high and low by arbitrariness, not by reality. Thus, it is plausible to criticize the validity of this variable-oriented approach. Our aim was to compare the median splits approach with a person-oriented approach, namely, cluster analysis. Method. The participants (N = 2, 225) were recruited through Amazons' Mechanical Turk and asked to self-report affect using the Positive Affect Negative Affect Schedule. We compared the profiles' homogeneity and Silhouette coefficients to discern differences in homogeneity and heterogeneity between approaches. We also conducted exact cell-wise analyses matching the profiles from both approaches and matching profiles and gender to investigate profiling agreement with respect to affectivity levels and affectivity and gender. All analyses were conducted using the ROPstat software. Results. The cluster approach (weighted average of cluster homogeneity coefficients = 0.62, Silhouette coefficients = 0.68) generated profiles with greater homogeneity and more distinctive from each other compared to the median splits approach (weighted average of cluster homogeneity coefficients = 0.75, Silhouette coefficients = 0.59). Most of the

  11. Two different approaches to the affective profiles model: median splits (variable-oriented) and cluster analysis (person-oriented)

    PubMed Central

    MacDonald, Shane; Archer, Trevor

    2015-01-01

    Background. The notion of the affective system as being composed of two dimensions led Archer and colleagues to the development of the affective profiles model. The model consists of four different profiles based on combinations of individuals’ experience of high/low positive and negative affect: self-fulfilling, low affective, high affective, and self-destructive. During the past 10 years, an increasing number of studies have used this person-centered model as the backdrop for the investigation of between and within individual differences in ill-being and well-being. The most common approach to this profiling is by dividing individuals’ scores of self-reported affect using the median of the population as reference for high/low splits. However, scores just-above and just-below the median might become high and low by arbitrariness, not by reality. Thus, it is plausible to criticize the validity of this variable-oriented approach. Our aim was to compare the median splits approach with a person-oriented approach, namely, cluster analysis. Method. The participants (N = 2, 225) were recruited through Amazons’ Mechanical Turk and asked to self-report affect using the Positive Affect Negative Affect Schedule. We compared the profiles’ homogeneity and Silhouette coefficients to discern differences in homogeneity and heterogeneity between approaches. We also conducted exact cell-wise analyses matching the profiles from both approaches and matching profiles and gender to investigate profiling agreement with respect to affectivity levels and affectivity and gender. All analyses were conducted using the ROPstat software. Results. The cluster approach (weighted average of cluster homogeneity coefficients = 0.62, Silhouette coefficients = 0.68) generated profiles with greater homogeneity and more distinctive from each other compared to the median splits approach (weighted average of cluster homogeneity coefficients = 0.75, Silhouette coefficients = 0.59). Most of the

  12. Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen distribution of leaves in Cedrela sinensis.

    PubMed

    Yoshimura, Kenichi

    2010-05-01

    Because light conditions in the forest understory are highly heterogeneous, photosynthetic acclimation to spatially variable irradiance within a crown is important for crown-level carbon assimilation. The effect of variation in irradiance within the crown on leaf nitrogen content and photosynthetic rate was examined for pinnate compound leaves in saplings of Cedrela sinensis, a pioneer deciduous tree. Five shading treatments, in which 0, 25, 50, 75 and 100% of leaves were shaded, were established by artificial heavy shading using shade screen umbrellas with 25% transmittance. Although the nitrogen content of leaves was constant regardless of shading treatment, ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) content and light-saturated photosynthetic capacity were lower in shade leaves within partially shaded crowns than within fully shaded crowns. Shade leaves within partially shaded crowns contained higher amount of amino acids. Most shade leaves died in partially shaded crowns, whereas more than half of shade leaves survived in totally shaded crowns. Assumptions on photosynthetic acclimation to local light conditions cannot explain why shade leaves have different photosynthetic capacities and survival rates in between partially and totally shaded crowns. Irradiance heterogeneity within the crown causes a distinct variation in photosynthetic activity between sun and shaded leaves within the crown.

  13. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration

    SciTech Connect

    Firkins, J.L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.; Mulvaney, R.L.

    1987-11-01

    Four multiple-cannulated steers (340 kg) were used in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Steers were fed a diet of 50% ground hay and 50% concentrate at two intakes (1.4 and 2.1% of BW), with urea and /sup 15/N-enriched ammonium sulfate infused continuously into the rumen at .4 or 1.2% of diet DM. Ratios of purines and diaminopimelic acid-N to N in fluid-associated and particulate-associated bacteria and in protozoa were similar among treatments but were lower for protozoa than for bacteria. Diaminopimelic acid-N:N was higher for fluid-associated vs. particulate-associated bacteria. Enrichment of /sup 15/N was similar between bacteria among treatments and was 30% lower for protozoa. Turnover rates of /sup 15/N in bacteria, NH/sub 3/N, and non-HN/sub 3/N pools were faster for steers infused with 1.2 than those infused with .4% urea, indicating less efficient usage of ammonia with higher urea. A method is described to estimate the proportion of duodenal nitrogen comprising bacterial and protozoal nitrogen.

  14. Intervention effectiveness among war-affected children: a cluster randomized controlled trial on improving mental health.

    PubMed

    Qouta, Samir R; Palosaari, Esa; Diab, Marwan; Punamäki, Raija-Leena

    2012-06-01

    We examined the effectiveness of a psychosocial intervention in reducing mental health symptoms among war-affected children, and the role of peritraumatic dissociation in moderating the intervention impact on posttraumatic stress symptoms (PTSS). School classes were randomized into intervention (n = 242) and waitlist control (n = 240) conditions in Gaza, Palestine. The intervention group participated in 16 extracurriculum sessions of teaching recovery techniques (TRT) and the controls received normal school-provided support. Participants were 10- to 13-year-old Palestinian girls (49.4%) and boys (50.6%). Data on PTSS, depressive symptoms, and psychological distress were collected at baseline (T1), postintervention (T2), and 6-month follow-up (T3). Peritraumatic dissociation was assessed only at baseline. Regression analyses that took regression to the mean and cluster sampling into account were applied. The results on intervention effectiveness were specific to gender and peritraumatic dissociation. At T2, the intervention significantly reduced the proportion of clinical PTSS among boys, and both the symptom level (R(2) = .24), and proportion of clinical PTSS among girls who had a low level of peritraumatic dissociation. The results have implications for risk-specific tailoring of psychosocial interventions in war conditions. Copyright © 2012 International Society for Traumatic Stress Studies.

  15. Small genetic differences between ericoid mycorrhizal fungi affect nitrogen uptake by Vaccinium.

    PubMed

    Grelet, Gwen-Aëlle; Meharg, Andrew A; Duff, Elizabeth I; Anderson, Ian C; Alexander, Ian J

    2009-01-01

    Ericoid mycorrhizal fungi have been shown to differ in their pattern of nitrogen (N) use in pure culture. Here, we investigate whether this functional variation is maintained in symbiosis using three ascomycetes from a clade not previously shown to include ericoid mycorrhizal taxa. Vaccinium macrocarpon and Vaccinium vitis-idaea were inoculated with three fungal strains known to form coils in Vaccinium roots, which differed in their patterns of N use in liquid culture. (15)N was used to trace the uptake of -N, -N and glutamine-N into shoots. (15)N transfer differed among the three fungal strains, including two that had identical internal transcribed spacer (ITS) sequences, and was quantitatively related to fungal growth in liquid culture at low carbon availability. These results demonstrate that functional differences among closely related ericoid mycorrhizal fungi are maintained in symbiosis with their hosts, and suggest that N transfer to plant shoots in ericoid mycorrhizas is under fungal control.

  16. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  17. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    PubMed

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  18. Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis1[W][OA

    PubMed Central

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-01-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mm) or limiting (0.15 mm) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions. PMID:22972706

  19. Increased nitrogen deposition did not affect the composition and turnover of plant and microbial biomarkers in forest soil density fractions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2013-04-01

    Increased atmospheric nitrogen (N) deposition and elevated CO2 concentrations affect many forests and their ecosystem functions, including organic matter cycling in soils, the largest carbon pool of terrestrial ecosystems. However, it is still not clear how, and what the underlying mechanisms are. Specific molecules of plant and microbial origin (biomarkers) might respond differently to N deposition, depending on their internal N content. Microbial cell-wall-constituents with high-N content like amino sugars are reliable biomarkers to distinguish between fungal- and bacterial-derived organic residues. Individual lipids are plant-specific biomarkers that lack N in their molecular structure. Here, we tested the effects of elevated CO2 and increased N deposition on the dynamics of plant and microbial biomarkers by studying their composition and turnover in forest soil density fractions. Furthermore, we tested the hypothesis that these biomarkers respond differently to increased N deposition, depending on their internal N content. We used soil samples from a 4-year elevated CO2 and N deposition experiment in model forest ecosystems (open-top chambers), that were fumigated with ambient and 13C-depleted CO2 and treated with two levels of 15N-labeled fertilizer. Bulk soil was separated into free light fraction, occluded light fraction and heavy fraction by density fractionation and ultrasonic dispersion. The heavy fraction was further particle-size fractionated with 20 μm as a cut-off. We determined carbon and N concentrations and their isotopic compositions (δ13C, δ15N) within bulk soil and density fractions. Therein, we extracted and quantified individual amino sugars and lipids and conducted compound-specific stable-isotope-analysis using GC- and LC-IRMS. Results show that amino sugars were mainly stabilized in association with soil minerals. Especially bacterial amino sugars were preferentially associated with soil minerals, exemplified by a consistent decrease

  20. Does nitrogen deposition affect plant-derived and microbial organic matter compounds differently?

    NASA Astrophysics Data System (ADS)

    Heim, Alexander; Hagedorn, Frank; Schmidt, Michael W. I.

    2010-05-01

    The IPCC report 2007 assesses soil nitrogen availability as a key factor in predicting future carbon sequestration by terrestrial ecosystems. However, various studies reported contrasting N effects on SOM dynamics, but the reasons for this are not well understood. One potential explanation is that decomposition processes of individual organic molecules respond differently to nitrogen. Compound-specific stable isotope analysis (CSIA) of C (and N) can be used to trace isotopically labeled molecules in soil. While such an isotopic label can be relatively easily obtained in arable soils via crop changes from C3 to C4 plants, this option does not exist for forests. Therefore, no data on molecular dynamics of forest soils and their response to changes in environmental conditions (increase in atmospheric CO2 concentrations and in N deposition) exist so far. Nonetheless, labeling of forest ecosystems is possible by fumigation with labeled CO2, although only very few of these experiments are available worldwide. In a new project, we will use archived soil samples from a CO2 enrichment experiment in large open-top chambers. This experiment had been conducted in a factorial design to study interactions between CO2 fumigation and N deposition on model forest ecosystems growing on two contrasting soils. The analysis of 13C signatures in SOM fractions indicated a retarded mineralization of old SOM in fine particle size fractions. In this study, we will apply compound-specific isotope analysis to trace added CO2 into plant and microbial biomarkers in soils. Thus, we will obtain systematic data on molecular dynamics in forest soils based on a 13C labeling approach. In particular, we will test the hypothesis that decomposition of N-containing compounds (such as microbial amino sugars) does not respond to N additions, in contrast to decomposition of N-free compounds, such as lignin. The experimental design also enables us to address potential interactive effects of CO2, N and soil

  1. Provenance, life span, and phylogeny do not affect grass species' responses to nitrogen and phosphorus.

    PubMed

    Seabloom, Eric W; Benfield, Cara D; Borer, Elizabeth T; Stanley, Amanda G; Kaye, Thomas N; Dunwiddie, Peter W

    2011-09-01

    Successful conservation management requires an understanding of how species respond to intervention. Native and exotic species may respond differently to management interventions due to differences arising directly from their origin (i.e., provenance) or indirectly due to biased representations of different life history types (e.g., annual vs. perennial life span) or phylogenetic lineages among provenance (i.e., native or exotic origin) groups. Thus, selection of a successful management regime requires knowledge of the life history and provenance-bias in the local flora and an understanding of the interplay between species characteristics across existing environmental gradients in the landscape. Here we tested whether provenance, phylogeny, and life span interact to determine species distributions along natural gradients of soil chemistry (e.g., soil nitrogen and phosphorus) in 10 upland prairie sites along a 600-km latitudinal transect running from southern Vancouver Island in British Columbia, Canada, to the Willamette Valley in Oregon, USA. We found that soil nitrate, phosphorus, and pH exerted strong control over community composition. However, species distributions along environmental gradients were unrelated to provenance, life span, or phylogenetic groupings. We then used a greenhouse experiment to more precisely measure the response of common grass species to nitrogen and phosphorus supply. As with the field data, species responses to nutrient additions did not vary as a function of provenance, life span, or phylogeny. Native and exotic species differed strongly in the relationship between greenhouse-measured tolerance of low nutrients and field abundance. Native species with the greatest ability to maintain biomass production at low nutrient supply rates were most abundant in field surveys, as predicted by resource competition theory. In contrast, there was no relationship between exotic-species biomass at low nutrient levels and field abundance. The

  2. Nitrogen Assimilation and Protein Synthesis in Wheat Seedlings as Affected by Mineral Nutrition. II. Micronutrients 1

    PubMed Central

    Harper, James E.; Paulsen, Gary M.

    1969-01-01

    Activity of nitrate reductase from Triticum aestivum L. seedlings was decreased by deficiencies of molybdenum, zinc, and chlorine. Nitrate accumulated in molybdenum-deficient seedlings, declined in zinc-deficient seedlings, and was unaffected by the other micronutrient treatments. Glutamic acid dehydrogenase activity was decreased by deficiency of molybdenum, the only nutrient that affected the enzyme. Glutamine synthetase activity was decreased only by copper deficiency, and glutamic-oxaloacetic transaminase was not affected by any micronutrient deficiencies. Incorporation of 14C-leucine into protein by wheat seedlings was increased by molybdenum deficiency, apparently because of decreased inhibition from endogenous amino acids, and was decreased by copper deficiency. Protein content was not affected significantly by the micronutrient treatments. PMID:16657114

  3. Carbon and nitrogen mobilization along thermokarst-affected permafrost coasts and its degradation mechanisms before entering the near shore zone

    NASA Astrophysics Data System (ADS)

    Tanski, G.; Ruttor, S.; Lantuit, H.; Knoblauch, C.; Strauss, J.; Radosavljevic, B.; Ramage, J. L.; Fritz, M.

    2016-12-01

    The Arctic is more than any other region on Earth affected by changing climate conditions. Ice-rich and unlithified permafrost coasts are particularly susceptible for these changes. These coasts erode at a great pace, which is facilitated by thermokarst processes and wave action due to longer open water periods. Organic matter that has been frozen for millennia is mobilized and can be either emitted as greenhouse gases to the atmosphere, redeposited on the land surface, or transported into the nearshore zone of the ocean. However, only little is known about the degradation processes after mobilization from permafrost until entering the aquatic system. It is the aim of this study to capture the degradation dynamics of organic carbon and nitrogen at the land-ocean-interface before entering nearshore zone, where it can potentially affect marine chemistry and ecosystems. In this study we investigated a retrogressive thaw slump, a thermokarst feature that is abundant along the ice-rich permafrost coast of the Canadian Arctic. Samples have been taken systematically along transects in undisturbed, i.e. not affected by thermokarst yet (tundra, permafrost headwall), and disturbed areas (mudpool, slump deposits, thaw stream). Total and dissolved organic carbon (TOC and DOC) as well as total and dissolved nitrogen (TN and DN) were analyzed to estimate the loss from undisturbed to disturbed areas. Stable carbon isotopes, C/N-ratios, inorganic nutrients, and lipid biomarkers have been analyzed to determine potential degradation processes. The results show no substantial changes of stable carbon isotopes and C/N-ratios (for TOC). However, high concentrations of ammonium in the mudpool (fresh thawed material) and low C/N-rations (for DOC) within the thaw stream indicate rapid metabolization of organic material. In conclusion we show that organic carbon and nutrients undergo substantial changes upon thaw and are subject to degradation before entering the nearshore zone.

  4. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria

    USGS Publications Warehouse

    Miller, D.N.; Smith, R.L.

    2009-01-01

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O2 (> 300????M) and NH4+ (51-800????M). The second site was 2.5??km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O2, NH4+, and NO3- (0-300, 0-500, and 100-200????M with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350??g- 1 and 33 to 35,000??g- 1, respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  5. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria

    NASA Astrophysics Data System (ADS)

    Miller, Daniel N.; Smith, Richard L.

    2009-01-01

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O 2 (> 300 µM) and NH 4+ (51-800 µM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O 2, NH 4+, and NO 3- (0-300, 0-500, and 100-200 µM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g - 1 and 33 to 35,000 g - 1 , respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH 4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  6. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time.

  7. A global analysis of fine root production as affected by soil nitrogen and phosphorus

    PubMed Central

    Yuan, Z. Y.; Chen, Han Y. H.

    2012-01-01

    Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg−1. With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO2 emissions. PMID:22764168

  8. Growth-promoting nitrogen nutrition affects flavonoid biosynthesis in young apple (Malus domestica Borkh.) leaves.

    PubMed

    Strissel, T; Halbwirth, H; Hoyer, U; Zistler, C; Stich, K; Treutter, D

    2005-11-01

    Enhanced shoot growth and a decrease in flavonoid concentration in apple trees grown under high nitrogen (N) supply was observed in previous studies, along with increasing scab susceptibility of cultivar "Golden Delicious" after high N nutrition. Several hypotheses have suggested that there is a trade-off between primary and secondary metabolism because of competition for common substrates, but nothing is known about regulation at the enzyme level. In this study, a set of experiments was performed to elucidate the effect of N nutrition on the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase [PAL], chalcone synthase/chalcone isomerase [CHS/CHI}, flavanone 3-hydroxylase [FHT], flavonol synthase [FLS], dihydroflavonol 4-reductase [DFR]) and the accumulation of different groups of phenylpropanoids. The inhibition of flavonoid accumulation by high N nutrition could be confirmed, but the influence of N supply on the flavonoid enzymes CHS/CHI, FHT, DFR, and FLS was not evident. However, PAL activity seems to be downregulated, thus forming a bottleneck resulting in a generally decreased flavonoid accumulation. Furthermore, the response of the scab-resistant cultivar "Rewena" to high N nutrition was not as strong as that of the susceptible cultivar "Golden Delicious".

  9. Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants.

    PubMed

    Gaind, Sunita; Pandey, Alok Kumar; Lata

    2005-01-01

    The comparative decomposition of chickpea residue, and chopped and unchopped wheat straw was investigated in pits for 120 days. Microbial biomass, humus, C/N ratio, pH, Electrical conductivity (EC), dehydrogenase, alkaline phosphatase, cellulase, xylanase, total phenol and soluble protein were determined to assess their response to the addition of inorganic nitrogen and mixed fungal inoculum of Aspergillus nidulans, Phanerochaete chrysosporium and Trichoderma viride. The evaluation of physico-chemical parameters (organic matter, organic carbon, N, C/N, pH, EC, microbial biomass) revealed that by supplementing unchopped wheat straw with 1% urea and mixed fungal inoculum, a lowest C/N ratio of 10.7, lowest biomass of 9.54 and highest humus content of 13% can be achieved within 3 months. Germination of Lepidium sativum (cress seeds) showed a germination index >60%, in this treatment. The enzyme assay for dehydrogenase indicated highest microbial activity in uninoculated treatments compared to fungal inoculated counterparts, in the second month sampling (active phase of composting). However, cellulase and xylanase activity showed an upward trend during curing phase of composting. Chickpea residue compost, though resulted in a C/N ratio of 17.3, but its germination index was less than 60%. The rapid quality tests conducted for H2S, NH3, NO3 and starch confirmed the stability and maturity of finished compost prepared from wheat straw through microbial inoculants.

  10. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism[W

    PubMed Central

    Schmollinger, Stefan; Mühlhaus, Timo; Boyle, Nanette R.; Blaby, Ian K.; Casero, David; Mettler, Tabea; Moseley, Jeffrey L.; Kropat, Janette; Sommer, Frederik; Strenkert, Daniela; Hemme, Dorothea; Pellegrini, Matteo; Grossman, Arthur R.; Stitt, Mark; Schroda, Michael; Merchant, Sabeeha S.

    2014-01-01

    Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency. PMID:24748044

  11. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism.

    PubMed

    Schmollinger, Stefan; Mühlhaus, Timo; Boyle, Nanette R; Blaby, Ian K; Casero, David; Mettler, Tabea; Moseley, Jeffrey L; Kropat, Janette; Sommer, Frederik; Strenkert, Daniela; Hemme, Dorothea; Pellegrini, Matteo; Grossman, Arthur R; Stitt, Mark; Schroda, Michael; Merchant, Sabeeha S

    2014-04-01

    Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency.

  12. A global analysis of fine root production as affected by soil nitrogen and phosphorus.

    PubMed

    Yuan, Z Y; Chen, Han Y H

    2012-09-22

    Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg(-1). With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.

  13. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products.

  14. Stand age affects fertilizer nitrogen response in first-year corn following alfalfa

    USDA-ARS?s Scientific Manuscript database

    The amount of N that alfalfa (Medicago sativa L.) provides to subsequent first-year corn (Zea mays L.) depends, in part, on the age of alfalfa at termination. Our objective was to determine how alfalfa stand age affects N availability and fertilizer N requirements for first-year corn. Fertilizer N w...

  15. Processes affecting the transport of nitrogen in groundwater and factors related to slope position

    USDA-ARS?s Scientific Manuscript database

    Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...

  16. Land-use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry

    Treesearch

    Kai Nils Nitzsche; Thomas Kalettka; Katrin Premke; Gunnar Lischeid; Arthur Gessler; Zachary Eric Kayler

    2017-01-01

    Kettle holes are glaciofluvially created depressional wetlands that collect organic matter (OM) and nutrients from their surrounding catchment. Kettle holes mostly undergo pronounced wet-dry cycles. Fluctuations in water table, land-use, andmanagement can affect sediment biogeochemical transformations and perhaps threaten the carbon stocks of these unique ecosystems....

  17. Orienting patient to affect, sense of self, and the activation of affect over the course of psychotherapy with cluster C patients.

    PubMed

    Ulvenes, Pål Gunnar; Berggraf, Lene; Wampold, Bruce E; Hoffart, Asle; Stiles, Tore; McCullough, Leigh

    2014-07-01

    This article investigates whether patients' sense of self and therapists' interventions aimed at orienting patients toward affect produce an affective activation in the patient. Both the independent contribution of sense of self and therapist intervention, as well as sense of self's moderating effect on therapist interventions, were investigated. Fifty cluster C patients were analyzed using 2 psychotherapy process measures and multilevel modeling. The results indicate that patients' affect experience increases over time. Both the therapist orienting the patient toward affect and the patient's sense of self predicted affect activation for the within-person effect (i.e., the patient's or therapist's standing in any given session relative to his or her baseline), but only sense of self was significant for the between-person effect (i.e., the patient's standing relative to all other patients). The relationship between a therapist orienting the patient toward affect and the patient's affective response was moderated by the patient's sense of self. The results have implications for therapists who want their patients to experience affect in a session. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Cyanobacterial extracts containing microcystins affect the growth, nodulation process and nitrogen uptake of faba bean (Vicia faba L., Fabaceae).

    PubMed

    Lahrouni, Majida; Oufdou, Khalid; Faghire, Mustapha; Peix, Alvaro; El Khalloufi, Fatima; Vasconcelos, Vitor; Oudra, Brahim

    2012-04-01

    The use of irrigation water containing cyanobacterial toxins may generate a negative impact in both yield and quality of agricultural crops causing significant economic losses. We evaluated the effects of microcystins (MC) on the growth, nodulation process and nitrogen uptake of a Faba bean cultivar (Vicia faba L., Fabaceae), particularly the effect of MC on rhizobia-V. faba symbiosis. Three rhizobial strains (RhOF4, RhOF6 and RhOF21), isolated from nodules of local V. faba were tested. The exposure of rhizobia to MC showed that the toxins had a negative effect on the rhizobial growth especially at the highest concentrations of 50 and 100 μg/l. The germination of faba bean seeds was also affected by cyanotoxins. We registered germination rates of 75 and 68.75% at the toxin levels of 50 and 100 μg/l as compared to the control (100%). The obtained results also showed there was a negative effect of MC on plants shoot, root (dry weight) and total number of nodules per plant. Cyanotoxins exposure induced a significant effect on nitrogen assimilation by faba bean seedlings inoculated with selected rhizobial strains RhOF6 and RhOF21, while the effect was not significant on beans seedling inoculated with RhOF4. This behavior of tolerant rhizobia-legumes symbioses may constitute a very important pathway to increase soil fertility and quality and can represent a friendly biotechnological way to remediate cyanotoxins contamination in agriculture.

  19. Critical factors affecting field-scale losses of nitrogen and phosphorus in spring snowmelt runoff in the canadian prairies.

    PubMed

    Liu, Kui; Elliott, Jane A; Lobb, David A; Flaten, Don N; Yarotski, Jim

    2013-01-01

    A long-term, field-scale study in southern Manitoba, Canada, was used to identify the critical factors controlling yearly transport of nitrogen (N) and phosphorus (P) by snowmelt runoff. Flow monitoring and water sampling for total and dissolved N and P were performed at the edge of field. The flow-weighted mean concentrations and loads of N and P for the early (the first half of yearly total volume of snowmelt runoff), late (the second half of yearly total volume of snowmelt runoff), and yearly snowmelt runoff were calculated as response variables. A data set of management practices, weather variables, and hydrologic variables was generated and used as predictor variables. Partial least squares regression analysis indicated that critical factors affecting the water chemistry of snowmelt runoff depended on the water quality variable and stage of runoff. Management practices within each year, such as nitrogen application rate, number of tillage passes, and residue burial ratio, were critical factors for flow-weighted mean concentration of N, but not for P concentration or nutrient loads. However, the most important factors controlling nutrient concentrations and loads were those related to the volume of runoff, including snow water equivalent, flow rate, and runoff duration. The critical factors identified for field-scale yearly snowmelt losses provide the basis for modeling of nutrient losses in southern Manitoba and potentially throughout areas with similar climate in the northern Great Plains region, and will aid in the design of effective practices to reduce agricultural nonpoint nutrient pollution in downstream waters.

  20. Dwarf alleles differentially affect barley root traits influencing nitrogen acquisition under low nutrient supply

    PubMed Central

    Karley, A. J.; Valentine, T. A.; Squire, G. R.

    2011-01-01

    Sustainable food production depends critically on the development of crop genotypes that exhibit high yield under reduced nutrient inputs. Rooting traits have been widely advocated as being able to influence optimal plant performance, while breeding-based improvements in yield of spring barley suggest that this species is a good model crop. To date, however, molecular genetics knowledge has not delivered realistic plant ideotypes, while agronomic trials have been unable to identify superior traits. This study explores an intermediate experimental system in which root traits and their effect on plant performance can be quantified. As a test case, four modern semi-dwarf barley varieties, which possess either the ari-e.GP or the sdw1 dwarf allele, were compared with the long-stemmed old variety Kenia under two levels of nutrient supply. The two semi-dwarf types differed from Kenia, exhibiting smaller stem mass and total plant nitrogen (N), and improved partitioning of mass and N to grain. Amongst the semi-dwarfs, the two ari-e.GP genotypes performed better than the two sdw1 genotypes under standard and reduced nutrient supply, particularly in root mass, root investment efficiency, N acquisition, and remobilization of N and mass to grain. However, lack of between-genotype variation in yield and N use efficiency indicated limited potential for exploiting genetic variation in existing varieties to improve barley performance under reduced nutrient inputs. Experimental approaches to test the expression of desirable root and shoot traits are scrutinized, and the potential evaluated for developing a spring barley ideotype for low nutrient conditions. PMID:21464160

  1. Dwarf alleles differentially affect barley root traits influencing nitrogen acquisition under low nutrient supply.

    PubMed

    Karley, A J; Valentine, T A; Squire, G R

    2011-07-01

    Sustainable food production depends critically on the development of crop genotypes that exhibit high yield under reduced nutrient inputs. Rooting traits have been widely advocated as being able to influence optimal plant performance, while breeding-based improvements in yield of spring barley suggest that this species is a good model crop. To date, however, molecular genetics knowledge has not delivered realistic plant ideotypes, while agronomic trials have been unable to identify superior traits. This study explores an intermediate experimental system in which root traits and their effect on plant performance can be quantified. As a test case, four modern semi-dwarf barley varieties, which possess either the ari-e.GP or the sdw1 dwarf allele, were compared with the long-stemmed old variety Kenia under two levels of nutrient supply. The two semi-dwarf types differed from Kenia, exhibiting smaller stem mass and total plant nitrogen (N), and improved partitioning of mass and N to grain. Amongst the semi-dwarfs, the two ari-e.GP genotypes performed better than the two sdw1 genotypes under standard and reduced nutrient supply, particularly in root mass, root investment efficiency, N acquisition, and remobilization of N and mass to grain. However, lack of between-genotype variation in yield and N use efficiency indicated limited potential for exploiting genetic variation in existing varieties to improve barley performance under reduced nutrient inputs. Experimental approaches to test the expression of desirable root and shoot traits are scrutinized, and the potential evaluated for developing a spring barley ideotype for low nutrient conditions.

  2. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems

    USGS Publications Warehouse

    Feller, Ilka C.; Lovelock, C.E.; McKee, K.L.

    2007-01-01

    Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL. ?? 2007 Springer Science+Business Media, LLC.

  3. Swine effluent application timing and rate affect nitrogen use efficiency in common bermudagrass.

    PubMed

    Read, J J; Brink, G E; Adeli, A; McGowen, S L

    2008-01-01

    Bermudagrass [Cynodon dactylon (L.) Pers.] hay production is integral to manure management on southeastern swine farms. But swine effluent timing must be synchronized with crop nitrogen (N) demands to decrease the potential for soil N accumulation and nitrate (NO(3)) leaching. Field studies were conducted on a Prentiss sandy loam (coarse-loamy, siliceous, semiactive, thermic Glossic Fragiudult) to determine N-use efficiency (NUE) and residual soil NO(3)-N. Two rates of 10 and 20 cm yr(- 1) ( approximately 260 and 480 kg ha(-1) N, respectively) were applied in four timing treatments: April to September (full season), April to May, June to July, and August to September. Plots were harvested every 7 to 9 wk beginning in June, and soil was sampled in fall after a killing frost and the following spring. Annual uptake of N and P were least in the August to September timing treatment. Doubling the effluent rate increased N uptake 112% in 2000 (from 130 to 276 kg ha(-1)) and 53% in 2001 (from 190 to 290 kg ha(-1)), suggesting 10-cm did not meet crop N demands. Due to low rainfall and decreased forage yield in 2000, doubling the effluent rate led to increased soil NO(3)-N to 30-cm depth in fall 2000 and spring 2001. Averaged across timing treatments, soil NO(3)-N at 5-cm depth ranged from 8.5 mg kg(-1) in non-irrigated controls to 39.6 mg kg(-1) with 20-cm effluent. Results indicate low NUE in the order of 30 to 38% for applications in August to September increase the risk to surface and ground water quality from excess N remaining in soil.

  4. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    PubMed

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  5. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems

    PubMed Central

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  6. Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s.

    PubMed

    Li, Qiquan; Luo, Youlin; Wang, Changquan; Li, Bing; Zhang, Xin; Yuan, Dagang; Gao, Xuesong; Zhang, Hao

    2016-03-15

    Determination of soil nitrogen distributions and the factors affecting them is critical for nitrogen fertilizer management and prevention of nitrogen pollution. In this paper, the spatiotemporal variations of soil nitrogen and the relative importance of their affecting factors were analysed at a county scale in the purple hilly area of the mid-Sichuan Basin in Southwest China based on soil data collected in 1981 and 2012. Statistical results showed that soil total nitrogen (TN) increased from 0.88 g kg(-1) in 1981 to 1.12 g kg(-1) in 2012, whereas available nitrogen (AN) decreased from 84.22 mg kg(-1) to 74.35 mg kg(-1). In particular, AN showed a significant decrease in agricultural ecosystems but remained stable in woodland and grassland. Correspondingly, most of the study area exhibited increased TN content and decreased AN content in space. The nugget/sill ratios of TN and AN increased from 0.419 to 0.608 and from 0.733 to 0.790, whereas spatial correlation distances decreased from 12.00 km to 9.50 km and from 9.50 km to 9.00 km, respectively, suggesting that the spatial dependence of soil nitrogen became weaker and that the extrinsic factors played increasingly important roles in affecting the soil nitrogen distribution. Soil group and land use type were the two dominant factors in 1981, followed by topographic factors, vegetation coverage and parent material, whereas land use type became the most important factor in 2012, and the relative contribution of topographic factors declined markedly. The results suggested that land use related to cultivation management and fertilizer application was the decisive factor for soil nitrogen change. The increase in TN content and the decrease in AN content over the study period also suggested improper use of nitrogen fertilizer, which can result in nitrogen loss through increasing nitrification rates. Thus, effective measures should be taken to increase the uptake rate of nitrogen and prevent nitrogen pollution.

  7. Core-to-Rydberg band shift and broadening of hydrogen bonded ammonia clusters studied with nitrogen K-edge excitation spectroscopy

    SciTech Connect

    Yamanaka, Takeshi; Takahashi, Osamu; Tabayashi, Kiyohiko; Namatame, Hirofumi; Taniguchi, Masaki; Tanaka, Kenichiro

    2012-01-07

    Nitrogen 1s (N ls) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragment-mass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, ''cluster'' specific excitation spectra could be recorded. Comparison of the ''cluster'' band with ''monomer'' band revealed that the first resonance bands of clusters corresponding to N 1s{yields} 3sa{sub 1}/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions {Delta}FWHM (N 1s{yields} 3sa{sub 1}/3pe) ={approx}0.20/{approx}0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H{sub 3}N{center_dot}{center_dot}{center_dot}H-NH{sub 2}) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H-N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the n-{sigma}* orbital correlation, destabilizing H-N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H-N donor configuration strongly possesses the Rydberg component of anti-bonding {sigma}* (N-H) character. Contributions of other cyclic H-bonded clusters (AM){sub n} with n{>=} 3 to the spectral changes of the N 1s{yields} 3sa{sub 1}/3pe bands are also examined.

  8. Phosphine passivated gold clusters: how charge transfer affects electronic structure and stability.

    PubMed

    Mollenhauer, Doreen; Gaston, Nicola

    2016-11-02

    A systematic evaluation of small phosphine ligand-protected gold clusters with six to nine gold atoms using density functional theory with dispersion correction has been performed in order to understand the major factors determining stability, including its size, shape, and charge dependence. We show that the charge per atom of the cluster is much more important for the interaction between the ligand shell and gold cluster than the system size. Thus, strong charge transfer effects determine the binding strength between the ligand shell and cluster. The clusters in this series are all non-spherical and exhibit large HOMO-LUMO gaps (above 2.7 eV). Analysis of the delocalized nature of the electronic states at the centre of the clusters demonstrates the presence of nascent superatomic states. However the number of delocalized electrons in these systems is significantly influenced by the charge transfer from the phosphine ligands, contrary to the usual accounting rule for superatom complex systems. Thus, not only electron withdrawing but also charge transfer effects should be considered to influence the superatomic structure of charged ligand surrounded clusters. In consequence in the phosphine gold cluster series under consideration the systems Au7(PPh3)7(+) and Au8(PPh3)8(2+) exhibit nearly fully filled S and P states and the HOMO-LUMO gap increases by 0.2 eV and 0.9 eV, respectively. The interpretation for the stability of the gold phosphine systems is in agreement with experimental results and demonstrates the importance of the superatomic concept.

  9. The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds.

    PubMed

    Jiménez-Martí, Elena; Aranda, Agustín; Mendes-Ferreira, Alexandra; Mendes-Faia, Arlete; del Olmo, Marcel Lí

    2007-07-01

    Nitrogen starvation may lead to stuck and sluggish fermentations. These undesirable situations result in wines with high residual sugar, longer vinification times, and risks of microbial contamination. The typical oenological method to prevent these problems is the early addition of ammonium salts to the grape juice, although excessive levels of these compounds may lead to negative consequences for the final product. This addition reduces the overall fermentation time, regardless of the time of addition, but the effect is more significant when nitrogen is added during the yeast exponential phase. In this work we analysed the effect of adding different nitrogen sources (ammonia, amino acids or a combination of both) under nitrogen depletion in order to understand yeast metabolic changes that lead to the adaptation to the new conditions. These studies were carried out in a synthetic must that mimics the composition of the natural must. Furthermore, we studied how this addition affects fermentative behaviour, the levels of several yeast volatile compounds in the final product, arginase activity, and the expression of several genes involved in stress response and nitrogen metabolism during vinification. We found that the nature of the nitrogen source added during yeast late exponential growth phase introduces changes to the volatile compounds profile and to the gene expression. On the other hand, arginase activity and the expression of the stress response gene ACA1 are useful to monitor nitrogen depletion/addition during growth of the wine yeast considered under our vinification conditions.

  10. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  11. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  12. Microbial Characterization of Nitrification in a Shallow, Nitrogen-Contaminated Aquifer, Cape Cod, Massachusetts and Detection of a Novel Cluster Associated with Nitrifying Betaproteobacteria

    USDA-ARS?s Scientific Manuscript database

    : Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a sewage-contaminated groundwater plume were examined for microbial and molecular evidence of nitrification processes. The first, located beneath a sewage effl...

  13. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    PubMed Central

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  14. Short-term alteration of nitrogen supply prior to harvest affects quality in hydroponic-cultivated spinach (Spinacia oleracea).

    PubMed

    Lin, Xian Yong; Liu, Xiao Xia; Zhang, Ying Peng; Zhou, Yuan Qing; Hu, Yan; Chen, Qiu Hui; Zhang, Yong Song; Jin, Chong Wei

    2014-03-30

    Quality-associated problems, such as excessive in planta accumulation of oxalate, often arise in soillessly cultivated spinach (Spinacia oleracea). Maintaining a higher level of ammonium (NH₄⁺) compared to nitrate (NO₃⁻) during the growth period can effectively decrease the oxalate content in hydroponically cultivated vegetables. However, long-term exposure to high concentrations of NH₄⁺ induces toxicity in plants, and thus decreases the biomass production. Short-term application of NH₄⁺ before harvesting in soilless cultivation may provide an alternative strategy to decrease oxalate accumulation in spinach, and minimise the yield reduction caused by NH₄⁺ toxicity. The plants were pre-cultured in 8 mmol L⁻¹ NO₃⁻ nutrient solution. Next, 6 days before harvest, the plants were transferred to a nutrient solution containing 4 mmol L⁻¹ NO₃⁻ and 4 mmol L⁻¹ NH₄⁺. This new mix clearly reduced oxalate accumulation, increased levels of several antioxidant compounds, and enhanced antioxidant capacity in the edible parts of spinach plants, but it did not affect biomass production. However, when the 8 mmol L⁻¹ NO₃⁻ was shifted to either nitrogen-free, 4 mmol L⁻¹ NH₄⁺ or 8 mmol L⁻¹ NH₄⁺ treatments, although some of the quality indexes were improved, yields were significantly reduced. Short-term alteration of nitrogen supply prior to harvest significantly affects quality and biomass of spinach plants, and we strongly recommend to simultaneously use NO₃⁻ and NH₄⁺ in hydroponic cultivation, which improves vegetable quality without decreasing biomass production. © 2013 Society of Chemical Industry.

  15. [Annual dynamics of CO2, CH4, N2O emissions from freshwater marshes and affected by nitrogen fertilization].

    PubMed

    Song, Chang-chun; Zhang, Li-hua; Wang, Yi-yong; Zhao, Zhi-chun

    2006-12-01

    Annual dynamics of CO2, CH4, N2O emissions from freshwater marshes and affected by nitrogen fertilization were studied in situ in Sanjiang Plain of Northeast China from June 2002 to December 2004, using the static opaque chamber-GC techniques. The results showed that there was significant seasonal and annual variation in the CO2, CH4 and N2O emissions. The ecosystem emission of CO2 reached a maximum of 779.33- 965.40 mg x (mxh)(-1) in July and August, CH4 reached a maximum of 19.19-30.52 mg x (mxh)(-1) in August, N2O reached a maximum of 0.072-0.15 mgx (mxh)(-1) in May and September, respectively. While the minimum of the CO2, CH4, N2O emission was 2.36-18.73 mg x (mxh)(-1), - 0.35 - 0.59 mg x (mxh)(-1), - 0.032- 0.009 mg (mxh)(-1), respectively, which occurs in winter. The freshwater marsh was the sink of N2O in winter. Temperature was a primary factor, controlling greenhouse gas seasonal emissions in freshwater marshes; while the precipitation and floodwater depth were the dominating influencing factors, affecting the greenhouse gas annual variations. Especially, the influence of precipitation on CH4 emissions was more obvious, comparing with the CO2 and N20 emissions. And the summer higher CH4 emission was mainly induced by the ice and snow thawing water in winter. Respiration of the ecosystem and CH4 emission were exponentially dependent on soil temperature of 5cm depth, while the N2O emission was not related to the soil temperature and water depth. The greenhouse gas (CO2, CH4, N2O) emissions were significantly influenced by nitrogen fertilization in Sanjiang Plain. The CO2, CH4, N2O flux of fertilization increased 34% , 145% , 110% , respectively, comparing to the control treatment.

  16. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH.

    PubMed

    Godinot, Claire; Houlbrèque, Fanny; Grover, Renaud; Ferrier-Pagès, Christine

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO(2) on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pH(T) conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pH(T) (8.1), and iii) at three pH(T) conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pH(T) 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pH(T) (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pH(T) = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.

  17. Senescence-related changes in nitrogen in fine roots: mass loss affects estimation.

    PubMed

    Kunkle, Justin M; Walters, Michael B; Kobe, Richard K

    2009-05-01

    The fate of nitrogen (N) in senescing fine roots has broad implications for whole-plant N economies and ecosystem N cycling. Studies to date have generally shown negligible changes in fine root N per unit root mass during senescence. However, unmeasured loss of mobile non-N constituents during senescence could lead to underestimates of fine root N loss. For N fertilized and unfertilized potted seedlings of Populus tremuloides Michx., Acer rubrum L., Acer saccharum Marsh. and Betula alleghaniensis Britton, we predicted that the fine roots would lose mass and N during senescence. We estimated mass loss as the product of changes in root mass per length and root length between live and recently dead fine roots. Changes in root N were compared among treatments on uncorrected mass, length (which is independent of changes in mass per length), calcium (Ca) and corrected mass bases and by evaluating the relationships of dead root N as a function of live root N, species and fertilization treatments. Across species, from live to dead roots, mass decreased 28-40%, N uncorrected for mass loss increased 10-35%, N per length decreased 5-16%, N per Ca declined 14-48% and N corrected for mass declined 12-28%. Given the magnitude of senescence-related root mass loss and uncertainties about Ca dynamics in senescing roots, N loss corrected for mass loss is likely the most reliable estimate of N loss. We re-evaluated the published estimates of N changes during root senescence based on our values of mass loss and found an average of 28% lower N in dead roots than in fine roots. Despite uncertainty about the contributions of resorption, leaching and microbial immobilization to the net loss of N during root senescence, live root N was a strong and proportional predictor of dead root N across species and fertilization treatments, suggesting that live root N alone could be used to predict the contributions of senescing fine roots to whole-plant N economies and N cycling.

  18. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  19. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  20. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance?

    PubMed Central

    Liebel, Heiko T.; Bidartondo, Martin I.; Gebauer, Gerhard

    2015-01-01

    Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant. Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field. Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot. Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source. PMID:25538109

  1. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance?

    PubMed

    Liebel, Heiko T; Bidartondo, Martin I; Gebauer, Gerhard

    2015-02-01

    The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant. The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field. Leaf δ(13)C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot. The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a (13)C- and (15)N-enriched fungal source. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Carbon and nitrogen inputs affect soil microbial community structure and function

    NASA Astrophysics Data System (ADS)

    Liu, X. J. A.; Mau, R. L.; Hayer, M.; Finley, B. K.; Schwartz, E.; Dijkstra, P.; Hungate, B. A.

    2016-12-01

    Climate change has been projected to increase energy and nutrient inputs to soils, affecting soil organic matter (SOM) decomposition (priming effect) and microbial communities. However, many important questions remain: how do labile C and/or N inputs affect priming and microbial communities? What is the relationship between them? To address these questions, we applied N (NH4NO3 ; 100 µg N g-1 wk-1), C (13C glucose; 1000 µg C g-1 wk-1), C+N to four different soils for five weeks. We found: 1) N showed no effect, whereas C induced the greatest priming, and C+N had significantly lower priming than C. 2) C and C+N additions increased the relative abundance of actinobacteria, proteobacteria, and firmicutes, but reduced relative abundance of acidobacteria, chloroflexi, verrucomicrobia, planctomycetes, and gemmatimonadetes. 3) Actinobacteria and proteobacteria increased relative abundance over time, but most others decreased over time. 4) substrate additions (N, C, C+N) significantly reduced microbial alpha diversity, which also decreased over time. 5) For beta diversity, C and C+N formed significantly different communities compare to the control and N treatments. Overtime, microbial community structure significantly altered. Four soils have drastically different community structures. These results indicate amounts of substrate C were determinant factors in modulating the rate of SOM decomposition and microbial communities. Variable responses of different microbial communities to labile C and N inputs indicate that complex relationships between priming and microbial functions. In general, we demonstrate that energy inputs can quickly accelerate SOM decomposition whereas extra N input can slow this process, though both had similar microbial community responses.

  3. A systematic review of factors affecting children's right to health in cluster randomized trials in Kenya.

    PubMed

    Oduwo, Elizabeth; Edwards, Sarah J L

    2014-07-16

    Following the South African case, Treatment Action Campaign and Others v Minister of Health and Others, the use of 'pilot' studies to investigate interventions already proven efficacious, offered free of charge to government, but confined by the government to a small part of the population, may violate children's right to health, and the negative duty on governments not to prevent access to treatment. The applicants challenged a government decision to offer Nevirapine in a few pilot sites when evidence showed Nevirapine significantly reduced HIV transmission rates and despite donor offers of a free supply. The government refused to expand access, arguing they needed to collect more information, and citing concerns about long-term hazards, side effects, resistance and inadequate infrastructure. The court ruled this violated children's right to health and asked the government to immediately expand access. Cluster randomized trials involving children are increasingly popular, and are often used to reduce 'contamination': the possibility that members of a cluster adopt behavior of other clusters. However, they raise unique issues insufficiently addressed in literature and ethical guidelines. This case provides additional crucial guidance, based on a common human rights framework, for the Kenyan government and other involved stakeholders. Children possess special rights, often represent a 'captive' group, and so motivate extra consideration. In a systematic review, we therefore investigated whether cluster trial designs are used to prevent or delay children's access to treatment in Kenya or otherwise inconsistently with children's right to health as outlined in the above case. Although we did not find state sponsored cluster trials, most had significant public sector involvement. Core obligations under children's right to health were inadequately addressed across trials. Few cluster trials reported rationale for cluster randomization, offered post- trial access or

  4. DMPP-added nitrogen fertilizer affects soil N2O emission and microbial activity in Southern Italy

    NASA Astrophysics Data System (ADS)

    Vitale, Luca; De Marco, Anna; Maglione, Giuseppe; Polimeno, Franca; Di Tommasi, Paul; Magliulo, Vincenzo

    2014-05-01

    Arable sites contributes to global N2O emission due to massive utilization of nitrogen fertilizers. N2O derives from the biological processes such as nitrification and denitrification influenced by soil nitrogen availability. The use of nitrogen fertilizers added with nitrification inhibitors represents one among the proposed strategy to reduce soil N2O emission form arable sites. The aim of this work was to evaluate the effects of 3,4-dimethylphyrazole phosphate (DMPP), a nitrification inhibitor, on N2O emission and microbial activity of a soil cropped to potato in Southern Italy. The experiment was a randomized block design with two treatments applied and three replicates: control (C) and DMPP (Entec®, K+S Nitrogen) plots, both supplied with the same amount of ammonium nitrate. The nitrogen fertilizer was supplied in three events: at 0 Day After Sowing (DAS; 100 kg N ha-1), at 57 DAS (30 kg N ha-1), and at 71 DAS (30 kg N ha-1). Soil N2O emission was monitored by both dynamic and static chambers. Static chambers were located both on hills and furrows whereas dynamic chambers were located on furrows. Air samples were collected from chambers at different times and analysed by a gas chromatograph (SRI 8610C, Gas Chromatograph). Fluxes were estimated as a linear interpolation of N2O changes over a 30 min time. Microbial biomass and basal respiration were determined as CO2 evolution, analysed by means of an IRGA (Li6200, Licor), on 2 g of fresh soil over a 4h incubation time. Microbial biomass was determined by Substrate Induced Respiration method. Data show no statistical differences in N2O fluxes measured with either dynamic chambers between C and DMPP plots in studied period. However, after the first fertilization event, when the fertilizer was applied as 100 kg N ha-1, the average N2O fluxes measured with static chambers were higher in DMPP plots compared to C plots. In the same period, the microbial biomass significantly decreased in DMPP plots as compared to C

  5. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  6. Friedel-Crafts-type allylation of nitrogen-containing aromatic compounds with allylic alcohols catalyzed by a [Mo3S4Pd(η3-allyl)] cluster.

    PubMed

    Tao, Yinsong; Wang, Baomin; Zhao, Jinfeng; Song, Yuming; Qu, Lihong; Qu, Jingping

    2012-03-16

    With the direct use of allylic alcohols as allylating agents, the Friedel-Crafts-type allylic alkylation of nitrogen-containing aromatic compounds catalyzed by a [Mo(3)S(4)Pd(η(3)-allyl)] cluster is achieved. With a 3 mol % catalyst loading in acetonitrile at reflux or 60 °C, a variety of N,N-dialkylanilines and indoles reacted smoothly with allylic alcohols to afford the Friedel-Crafts-type allylation products in good to excellent yields with high levels of regioselectivity.

  7. Electronic properties of [core+exo]-type gold clusters: factors affecting the unique optical transitions.

    PubMed

    Shichibu, Yukatsu; Konishi, Katsuaki

    2013-06-03

    Unusual visible absorption properties of [core+exo]-type Au6 (1), Au8 (2), and Au11 (3) clusters were studied from experimental and theoretical aspects, based on previously determined crystal structures. Unlike conventional core-only clusters having no exo gold atoms, these nonspherical clusters all showed an isolated visible absorption band in solution. Density functional theory (DFT) studies on corresponding nonphenyl models (1'-3') revealed that they had similar electronic structures with discrete highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) bands. The theoretical spectra generated by time-dependent DFT (TD-DFT) calculations agreed well with the experimentally measured properties of 1-3, allowing assignment of the characteristic visible bands to HOMO-LUMO transitions. The calculated HOMO-LUMO transition energies increased in the order Au11 < Au6 < Au8, as was found experimentally. Frontier orbital analyses indicated that the HOMO and LUMO were both found in proximity to the terminal Au3 triangles containing the exo gold atom, with the HOMO → LUMO transition occurring in the core → exo direction. The HOMO/LUMO distribution patterns of 1' and 3' were similar to each other but were markedly different from that of 2', which has longer core-to-exo distances. These findings showed that not only nuclearity (size) but also geometric structures have profound effects on electronic properties and optical transitions of the [core+exo]-type clusters.

  8. Natural clusterings of Fc receptors on human neutrophils--not affected by the cytoskeletal reagents.

    PubMed Central

    An, T; Hymes, A J; O'Neal, C H

    1981-01-01

    By using sucrose density gradient ultracentrifugation and immunodiffusion, we confirmed the monovalency of the electron microscopic ligand for the receptor for the Fc portion of IgG (FcR) on human neutrophils, which was composed of one ferritin (Fer) molecule and one IgG anti-Fer molecule. Pre-treatment of neutrophils at 37 degrees for 30 min with cytochalasin B, colchicine, both of the reagents, concanavalin A, and tetracaine did not alter the clustering of FcR on the surface, which was demonstrated by the ligand at 0 degrees. The effectiveness of these employed cytoskeletal reagents was determined ultrastructurally by observing the changes of morphology and cytoskeletal structures of treated neutrophils; a novel and unique cellular change of cytochalasin B-treated neutrophils was described which we called arachnocytosis. Under our experimental conditions the cytoplasmic surface of the membrane under the receptor patches did not show any specialized density resembling coated membrane regions. These data verify our previous finding that FeR is naturally clustered on human neutrophils, and suggest strongly that the FcR natural clustering is not primarily mediated by the cytoskeletons consisting of microfilaments (actin) and microtubules, and the coated membrane region. The exact mechanism for FcR clustering on human neutrophils is not clear and remains to be elucidated. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:7251061

  9. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2014-12-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  10. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2015-04-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  11. Land-use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry.

    PubMed

    Nitzsche, Kai Nils; Kalettka, Thomas; Premke, Katrin; Lischeid, Gunnar; Gessler, Arthur; Kayler, Zachary Eric

    2017-01-01

    Kettle holes are glaciofluvially created depressional wetlands that collect organic matter (OM) and nutrients from their surrounding catchment. Kettle holes mostly undergo pronounced wet-dry cycles. Fluctuations in water table, land-use, and management can affect sediment biogeochemical transformations and perhaps threaten the carbon stocks of these unique ecosystems. We investigated sediment and water of 51 kettle holes in NE Germany that differ in hydroperiod (i.e. the duration of the wet period of a kettle hole) and land-use. Our objectives were 1) to test if hydroperiod and land management were imprinted on the isotopic values (δ(13)C, δ(15)N) and C:N ratios of the sediment OM, and 2) to characterize water loss dynamics and kettle hole-groundwater connectivity by measuring the stable δ(18)O and δD isotope values of kettle hole water over several years. We found the uppermost sediment layer reflected recent OM inputs and short-term processes in the catchment, including land-use and management effects. Deeper sediments recorded the degree to which OM is processed within the kettle hole related to the hydroperiod. We see clear indications for the effects of wet-dry cycles for all kettle holes, which can lead to the encroachment of terrestrial plants. We found that the magnitude of evaporation depended on the year, season, and land-use type, that kettle holes are temporarily coupled to shallow ground water, and, as such, kettle holes are described best as partially-closed to open systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover.

    PubMed

    Coetsee, Corli; Bond, William J; February, Edmund C

    2010-04-01

    When tropical and sub-tropical ecosystems burn, considerable amounts of N present in the biomass fuel may be released. This ultimately results in a loss of fixed N to the atmosphere. It is often assumed that this volatilization loss of N with frequent fire will result in a reduction of plant-available N and total system N. By changing the amount of woody biomass fire may, however, also have indirect effects on N and C dynamics. Here we consider the effects of 50 years of frequent fire on total soil N and soil organic C (SOC) and total soil N in a mesic savanna in the Kruger National Park, South Africa. We also determine how changes in woody biomass may affect total soil N and SOC. We measured soil and fine root N and C concentrations as well as total soil N and SOC pools in four burning treatments, including fire exclusion, of a long-term fire experiment. Our results show that regardless of soil depth, fire treatment had no significant effect on total soil N and SOC. Our results also show that under trees total soil N and SOC concentrations of the surface soil increase, and pools of N and SOC increase to a depth of 7 cm. However, the extent to which soil N and C dynamics differed under canopies and away from canopies was dependent on fire treatment. Our results show that the effect of fire on soil N and C is mediated both through the indirect effect of changes in woody cover and the direct effects of fire (volatilization losses of nutrients). We suggest that woody thickening in this mesic savanna will have pronounced effects on long-term N and C dynamics.

  13. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    SciTech Connect

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  14. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment.

    PubMed

    Li, X Z; Zhao, Q L

    2001-07-01

    Leachate samples with a high strength of ammonium-nitrogen (NH4+-N) were collected from a local landfill site in Hong Kong. Two experiments were carried out to study (1) the inhibition of microbial activity of activated sludge by NH4+-N and (2) the chemical precipitation of NH4+-N from leachate as a preliminary treatment prior to the activated sludge process. The experimental results demonstrated that the efficiency of COD removal decreased from 97.7% to 78.1%, and the dehydrogenase activity of activated sludge decreased from 9.29 to 4.93 microg TF/mg MLSS, respectively, when the NH4+-N concentration increased from 53 to 800 mg/l. The experiment also demonstrated that the NH4+-N in the leachate can be quickly precipitated as MgNH4PO4 x 6H2O after addition of MgCl2 x 6H2O + Na2HPO4 x 12H2O. The NH4+-N concentration was reduced from 5618 to 112 mg/l within 15 min when a molar ratio of Mg2+:NH+:PO4(3-) = 1:1:1 was used. The optimum pH to reach the minimum solubility of MgNH4PO4 x 6H2O was found to be in the range of 8.5-9.0. Attention should be given to the high salinity formed in the treated leachate by using MgCl2 x 6H2O + Na2HPO4 x 12H2O, which may affect microbial activity in the following biological treatment processes. Using two other combinations of chemicals [MgO + 85%H3PO4 and Ca(H2PO4)2 x H2O + MgSO4 x 7H2O] could minimise salinity generation after precipitation, while they were less efficient for NH4+-N removal.

  15. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  16. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  17. Characterizing the Interaction of Pt and PtRu Clusters with Boron-Doped, Nitrogen-Doped, and Activated Carbon: Density Functional Theory Calculations and Parameterization

    SciTech Connect

    Acharya, Chethan K.; Sullivan, Daniel I.; Turner, C. H.

    2008-09-04

    Previous density functional theory calculations of Pt and PtRu clusters on carbon supports have shown that the adsorption energies of these metal clusters increase substantially with substitutional boron defects in the carbon lattice. Here, the stability of metal clusters is further probed with substitutional nitrogen defects and surface functional groups. Also, the dynamics of Pt and Ru atoms on pure and boron-doped carbon are studied as a function of temperature using ab initio molecular dynamics (AIMD) simulations. Although the time scale accessible is limited, the AIMD simulations show reduced mobility on the boron-doped surface. In order to calculate additional dynamic properties of the systems, such as diffusion coefficients, the motion of the metal clusters should be studied for much longer periods of time, which can be accomplished by performing classical molecular dynamics (MD) simulations. Thus, we have parametrized our electronic structure calculations to an analytical Lennard-Jones (LJ) potential function, which will enable much longer time and length scales to be simulated in future investigations.

  18. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  19. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?

    PubMed

    Xia, Longlong; Lam, Shu Kee; Yan, Xiaoyuan; Chen, Deli

    2017-07-05

    Recycling of livestock manure in agroecosystems to partially substitute synthetic fertilizer nitrogen (N) input is recommended to alleviate the environmental degradation associated with synthetic N fertilization, which may also affect food security and soil greenhouse gas (GHG) emissions. However, how substituting livestock manure for synthetic N fertilizer affects crop productivity (crop yield; crop N uptake; N use efficiency), reactive N (Nr) losses (ammonia (NH3) emission, N leaching and runoff), GHG (methane, CH4; and nitrous oxide, N2O; carbon dioxide) emissions and soil organic carbon (SOC) sequestration in agroecosystems is not well understood. We conducted a global meta-analysis of 141 studies and found that substituting livestock manure for synthetic N fertilizer (with equivalent N rate) significantly increased crop yield by 4.4% and significantly decreased Nr losses via NH3 emission by 26.8%, N leaching by 28.9% and N runoff by 26.2%. Moreover, annual SOC sequestration was significantly increased by 699.6 and 401.4 kg C ha(-1) yr(-1) in upland and paddy fields, respectively; CH4 emission from paddy field was significantly increased by 41.2%, but no significant change of that was observed from upland field; N2O emission was not significantly affected by manure substitution in upland or paddy fields. In terms of net soil carbon balance, substituting manure for fertilizer increased carbon sink in upland field, but increased carbon source in paddy field. These results suggest that recycling of livestock manure in agroecosystems improves crop productivity, reduces Nr pollution and increases SOC storage. To attenuate the enhanced carbon source in paddy field, appropriate livestock manure management practices should be adopted.

  20. Grief and attitudes toward suicide in peers affected by a cluster of suicides as adolescents.

    PubMed

    Abbott, Caroline H; Zakriski, Audrey L

    2014-12-01

    Eighty-five young adults exposed to a cluster of peer suicides as adolescents completed measures of attitudes toward suicide, grief, and social support. Closeness to the peers lost to suicide was positively correlated with grief and the belief that suicide is not preventable, with grief further elevated in close individuals with high social support from friends. Overall, social support was related to healthy attitudes about suicide including preventability, yet it was also related to some stigmatizing beliefs. Compared with 67 young adults who had not been exposed to a suicide cluster, the exposed sample was more likely to think that suicide is normal but more likely to think of it as incomprehensible. © 2014 The American Association of Suicidology.

  1. Seizure Clustering during Drug Treatment Affects Seizure Outcome and Mortality of Childhood-Onset Epilepsy

    ERIC Educational Resources Information Center

    Sillanpaa, Matti; Schmidt, Dieter

    2008-01-01

    To provide evidence of whether seizure clustering is associated with drug resistance and increased mortality in childhood-onset epilepsy, a prospective, long-term population-based study was performed. One hundred and twenty patients who had been followed since disease onset (average age 37.0 years, SD 7.1, median 40.0, range 11-42; incident cases)…

  2. Seizure Clustering during Drug Treatment Affects Seizure Outcome and Mortality of Childhood-Onset Epilepsy

    ERIC Educational Resources Information Center

    Sillanpaa, Matti; Schmidt, Dieter

    2008-01-01

    To provide evidence of whether seizure clustering is associated with drug resistance and increased mortality in childhood-onset epilepsy, a prospective, long-term population-based study was performed. One hundred and twenty patients who had been followed since disease onset (average age 37.0 years, SD 7.1, median 40.0, range 11-42; incident cases)…

  3. Does the MgO(100)-support facilitate the reaction of nitrogen and hydrogen molecules catalyzed by Zr2Pd2 clusters? A computational study.

    PubMed

    Kuznetsov, Aleksey E; Musaev, Djamaladdin G

    2010-03-01

    Reactions of the "naked" and MgO(100) supported Zr(2)Pd(2) cluster with nitrogen and four hydrogen molecules were studied at the density functional level using the periodic slab approach (VASP). It was shown that adsorption of the Zr(2)Pd(2) cluster on the MgO(100) surface does not change its gas-phase geometry and electronic structure significantly. In spite of this the N(2) coordination to the MgO(100)-supported Zr(2)Pd(2) cluster, I/MgO, is found to be almost 30 kcal/mol less favorable than for the "naked" one. The addition of the first H(2) molecule to the resulting II/MgO, that is, II/MgO + H(2) --> IV/MgO reaction, proceeds with a relatively small, 9.0 kcal/mol, barrier and is exothermic by 8.3 kcal/mol. The same reaction for the "naked" Zr(2)Pd(2) cluster requires a slightly larger barrier (10.1 kcal/mol) and is highly exothermic (by 23.3 kcal/mol). The interaction of the H(2) molecule with the intermediate IV/MgO (i.e., the second H(2) molecule addition to II/MgO) requires larger energy barrier, 23.3 kcal/mol vs 8.8 kcal/mol for the "naked" cluster, and is exothermic by 20.5 kcal/mol (vs 18.2 kcal/mol reported for the "naked" Zr(2)Pd(2) cluster). The addition of the H(2) molecule to VI/MgO and VI (i.e., the third H(2) molecule addition to II/MgO and II, respectively) requires similar barriers, 12.0 versus 16.8 kcal/mol, respectively, but is highly exothermic for the supported cluster compared to the "naked" one, 13.6 versus 0.1 kcal/mol. The addition of the fourth H(2) molecule occurs with almost twice larger barrier for the "naked" cluster compared to the adsorbed species, 30.7 versus 15.9 kcal/mol. Furthermore, this reaction step is endothermic (by 11.4 kcal/mol) for the gas-phase cluster but exothermic by 7.8 kcal/mol for the adsorbed cluster. Dissociation of the formed hydrazine molecule from the on-surface complex X/MgO and the "naked" complex X requires 19.1 and 26.3 kcal/mol, respectively. Thus, the Zr(2)Pd(2) adsorption on the MgO(100) surface

  4. Continuous nitrogen application differentially affects growth, yield,and nitrogen use efficiency of Leymus chinensis in two saline–sodic soils of Northeastern China

    USDA-ARS?s Scientific Manuscript database

    Leymus chinensis (Trin.) Tzvel. (Poaceae) is a dominant plant in the Western Songnen plain of Northeastern China, Soil salinization and alkalization, nitrogen deficiency and current management practices have resulted in grassland degradation in the region. The objective of this study was to investig...

  5. [Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains].

    PubMed

    Zhang, Peng; Zhang, Tao; Chen, Nian-lai

    2009-03-01

    With the shady and sunny northern slopes of Qilian Mountains along an altitude gradient from 2600 m to 3600 m as test objectives, this paper studied the vertical distribution patterns of surface soil (0-20 cm) organic carbon (SOC) and total nitrogen (TN), and their relations to the altitude, landform, and vegetation. The results indicated that SOC and TN contents were significantly higher on shady than on sunny slope, and all increased with increasing altitude. The SOC and TN contents under different vegetation types were in the order of alpine bush > Picea crassifolia forest > alpine meadow > Sabina przewalskii forest, and alpine bush > alpine meadow > P. crassifolia forest > S. przewalskii forest, respectively. SOC had significant positive correlations with altitude, annual precipitation, soil moisture, and soil TN, and significant negative correlations with soil pH and annual temperature. Soil C/N ratio along the gradient was within the range of 6.7-23.3, being favorable to the nutrient release during organic matter decomposition. Among the factors affecting SOC, the annual temperature, precipitation, and soil moisture content constituted the first principal component, and soil C/N ratio constituted the second principal component. These two principal components accounted for 71% of the variance of SOC content, suggesting that climate factors controlled the vertical distribution patterns of SOC and TN along the altitude gradient.

  6. Gas-phase reactions of nickel and nickel oxide clusters with nitrogen oxides. 3. Reactions of cations with nitric oxide

    SciTech Connect

    Vann, W.D.; Bell, R.C.; Castleman, A.W. Jr.

    1999-12-16

    A fast flow reactor-quadrupole mass spectrometer system coupled with a laser vaporization source is used to study the gas-phase reactions of nickel and nickel oxide cluster cations with nitric oxide. Pseudo-first-order bimolecular rate constants are reported for the reactions of NO with nickel and nickel oxide cluster cations and O{sub 2} reactions with nickel cluster cations. The product distributions indicate that several different reaction mechanisms occur between NO and NI{sub x}{sup +} and Ni{sub x}O{sub y}{sup +}. Competing processes such as oxidation, NO addition, and replacement of oxygen with nitric oxide are observed to occur. Also, the presence of magic peaks in the distributions indicates unusually stable product cluster species.

  7. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    PubMed Central

    Nivelle, Elodie; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates

  9. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    PubMed

    Nivelle, Elodie; Verzeaux, Julien; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates

  10. [Nitrogen oxide is involved in the regulation of the Fe-S cluster assembly in proteins and the formation of biofilms by Escherichia coli cells].

    PubMed

    Vasil'eva, S V; Streltsova, D A; Starostina, I A; Sanina, N A

    2013-01-01

    The functions of nitrogen oxide (NO) in the regulation of the reversible processes of Fe-S cluster assembly in proteins and the formation of Escherichia coli biofilms have been investigated. S-nitrosoglutathione (GSNO) and crystalline nitrosyl complexes of iron with sulfur-containing aliphatic ligands cisaconite (CisA) and penaconite have been used as NO donors for the first time. Wild-type E. coli cells of the strain MC4100, mutants deltaiscA and deltasufA, and the double paralog mutant deltaiscA/sufA with deletions in the alternative pathways of Fe2+ supply for cluster assembly (all derived from the above-named strain) were used in this study. Plankton growth of bacterial cultures, the mass of mature biofilms, and the expression of the SoxRS[2Fe-2S] regulon have been investigated and shown to depend on strain genotype, the process of Fe-S cluster assembly in iron-sulfur proteins, NO donor structure, and the presence of Fe2+ chelator ferene in the incubation medium. The antibiotic ciprofloxacine (CF) was used as an inhibitor of E. coli biofilm formation in the positive control. NO donors regulating Fe-S cluster assembly in E. coli have been shown to control plankton growth of the cultures and the process of mature biofilm formation; toxic doses of NO caused a dramatic (3- to 4-fold) stimulation of cell entry into biofilms as a response to nitrosative stress; NO donors CisA and GSNO in physiological concentrations suppressed the formation of mature biofilms, and the activity of these compounds was comparable to that of CE Regulation of both Fe-S cluster assembly in iron-sulfur proteins and biofilm formation by NO is indicative of the connection between these processes in E. coli.

  11. Synthesis of a high-valent, four-coordinate manganese cubane cluster with a pendant Mn atom: photosystem II-inspired manganese-nitrogen clusters.

    PubMed

    Vaddypally, Shivaiah; Kondaveeti, Sandeep K; Zdilla, Michael J

    2012-04-02

    High-valent, four-coordinate manganese imido- and nitrido-bridged heterodicubane clusters have been prepared and characterized by single-crystal X-ray diffraction and spectroscopic techniques. The title compound, a corner-nitride-fused dicubane with the chemical formula [Mn(5)Li(3)(μ(6)-N)(N)(μ(3)-N(t)Bu)(6)(μ-N(t)Bu)(3)(N(t)Bu)] (1), has been prepared as an adduct with a nearly isostructural tetramanganese cluster with one Mn atom replaced by Li. An important feature of the reported chemistry is the formation of nitride from tert-butylamide, indicative of N-C bond cleavage facilitated by manganese.

  12. Ivermectin sensitivity is an ancient trait affecting all ecdysozoa but shows phylogenetic clustering among sepsid flies

    PubMed Central

    Puniamoorthy, Nalini; Schäfer, Martin A; Römbke, Jörg; Meier, Rudolf; Blanckenhorn, Wolf U

    2014-01-01

    Avermectins are potent and popular veterinary pharmaceuticals used globally to fight parasites of livestock and humans. By disturbing ion channel transport through the membrane, avermectins are effective against endo- and ectoparasitic round and horsehair worms (Nematoida), insects, or ticks (Arthropoda), but not against Plathelminthes, including flatworms (Trematoda) and tapeworms (Cestoda), or segmented worms (Annelida). Unfortunately, excreted avermectins have strong nontarget effects on beneficial arthropods such as the insect community decomposing livestock dung, ultimately impeding this important ecosystem function to the extent that regulators mandate standardized eco-toxicological tests of dung organisms worldwide. We show that the ancient phylogenetic pattern and qualitative mechanism of avermectin sensitivity is conserved and compatible with most recent phylogenomic hypotheses grouping the Nematoida with the Arthropoda as Ecdysozoa (molting animals). At the species level, we demonstrate phylogenetic clustering in ivermectin sensitivities of 23 species of sepsid dung flies (Diptera: Sepsidae). This clustered 500-fold quantitative variation in sensitivity may indicate recent lineage-specific responses to selection, but more likely reflects pre-existing genetic variation with pleiotropic effects on eco-toxicological responses to pollutants. Regardless, our results question the common practice in eco-toxicology of choosing single test species to infer detrimental effects on entire species communities, which should ideally assess a representative taxonomic sample. PMID:24944568

  13. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) is one of the most critical chemical elements for plant and animal growth. Development and oviposition of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) was studied in relation to varying nitrogen levels in cotton, Gossypium hirsutum L. The development of S. exig...

  14. Vertical Chlorophyll Canopy Structure Affects the Remote Sensing Based Predictability of LAI, Chlorophyll and Leaf Nitrogen in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M.; Cellier, P.; Sutton, M.

    2012-12-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing can be used to estimate leaf area index (LAI), chlorophyll content (CHL) and leaf nitrogen (N), but methods are often developed using plot-scale data and not verified over extended regions characterized by variations in environmental boundary conditions (soil, atmosphere) and canopy structures. Estimation of N can be indirect due to its association with CHL, however N is also included in pigments such as carotenoids and anthocyanin which have different spectral signatures than CHL. Photosynthesis optimization theory suggests that plants will distribute their N resources in proportion to the light gradient within the canopy. Such vertical variation in CHL and N complicates the evaluation of remote sensing-based methods. Typically remote sensing studies measure CHL of the upper leaf, which is then multiplied by the green LAI to represent canopy chlorophyll content, or random sampling is used. In this study, field measurements and high spatial resolution (10-20 m) remote sensing images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were used to assess the predictability of LAI, CHL and N in five European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, The Netherlands and Italy . All satellite images were atmospherically using the 6SV1 model with atmospheric inputs estimated by MODIS and AIRS data. Five spectral vegetation indices (SVIs) were calculated (the Normalized Difference Vegetation index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green Chlorophyll Index), and an image-based inverse canopy radiative transfer modelling system, REGFLEC (REGularized canopy reFLECtance) was applied to each of the five European landscapes. While the

  15. Corn silage hybrid type and quality of alfalfa hay affect dietary nitrogen utilization by early lactating dairy cows.

    PubMed

    Holt, M S; Neal, K; Eun, J-S; Young, A J; Hall, J O; Nestor, K E

    2013-10-01

    This experiment was conducted to determine the effects of corn silage (CS) hybrids and quality of alfalfa hay (AH) in high-forage dairy diets on N utilization, ruminal fermentation, and lactational performance by early-lactating dairy cows. Eight multiparous Holstein cows were used in a duplicated 4 × 4 Latin square experiment with a 2 × 2 factorial arrangement of dietary treatments. The 8 cows (average days in milk = 23 ± 11.2) were surgically fitted with ruminal cannula, and the 2 squares were conducted simultaneously. Within square, cows were randomly assigned to a sequence of 4 diets: conventional CS (CCS) or brown midrib CS (BMR) was combined with fair-quality AH [FAH: 46.7% neutral detergent fiber (NDF) and 18.4% crude protein (CP)] or high-quality AH (HAH: 39.2% NDF and 20.7% CP) to form 4 treatments: CCS with FAH, CCS with HAH, BMR with FAH, and BMR with HAH. Diets were isonitrogenous across treatments, averaging 15.9% CP. Each period lasted a total of 21 d, with 14 d for treatment adaptation and 7d for data collection and sampling. Intake of DM and milk yield did not differ in response to CS hybrids or AH quality. Although feeding BMR-based diets decreased urinary N output by 24%, it did not affect fecal N output. Feeding HAH decreased urinary N output by 15% but increased fecal N output by 20%. Nitrogen efficiency [milk N (g/d)/intake N (g/d)] tended to increase for BMR treatments. Ruminal ammonia-N concentration was lower for cows fed BMR-based diets than for those fed CCS-based diets but was not affected by quality of AH. Feeding BMR-based diets or HAH decreased milk urea N concentration by 23 or 15%, respectively, compared with CCS-based diets or FAH. Total volatile fatty acid concentration increased with HAH but was not influenced by CS hybrids. Feeding BMR-based diets decreased urinary N-to-fecal N ratio (UN:FN), and it was further reduced by feeding HAH. Although cows fed the BMR-based diets tended to increase milk N-to-manure N ratio, the

  16. A dictionary of behavioral motifs reveals clusters of genes affecting C. elegans locomotion

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Yemini, Eviatar; Grundy, Laura; Jucikas, Tadas; Schafer, William

    2013-03-01

    Visible phenotypes based on locomotion and posture have played a critical role in understanding the molecular basis of behavior and development in C. elegans and other model organisms. However, it is not known whether these human-defined features capture the most important aspects of behavior for phenotypic comparison nor whether they are sufficient to discover new behaviors. Here we show that four basic shapes, or eigenworms, previously described for wild type worms also capture mutant shapes, and that this representation can be used to build a dictionary of repetitive behavioral motifs in an unbiased way. By measuring the distance between each individual's behavior and the elements in the motif dictionary, we create a fingerprint that can be used to compare mutants to wild type and to each other. This analysis has revealed previously undescribed phenotypes and has allowed clustering of mutants into related groups. Behavioral motifs provide a compact and intuitive representation of behavioral phenotypes.

  17. How the extinction of extragalactic background light affects surface photometry of galaxies, groups and clusters

    NASA Astrophysics Data System (ADS)

    Zackrisson, E.; Micheva, G.; Östlin, G.

    2009-08-01

    The faint regions of galaxies, groups and clusters hold important clues about how these objects formed, and surface photometry at optical and near-infrared wavelengths represents a powerful tool for studying such structures. Here, we identify a hitherto unrecognized problem with this technique, related to how the night sky flux is typically measured and subtracted from astronomical images. While most of the sky flux comes from regions between the observer and the target object, a small fraction - the extragalactic background light (EBL) - comes from behind. We argue that since this part of the sky flux can be subjected to extinction by dust present in the galaxy/group/cluster studied, standard reduction procedures may lead to a systematic oversubtraction of the EBL. Even very small amounts of extinction can lead to spurious features in radial surface brightness profiles and colour maps of extended objects. We assess the likely impact of this effect on a number of topics in extragalactic astronomy where very deep surface photometry is currently attempted, including studies of stellar haloes, starburst host galaxies, disc truncations and diffuse intragroup/intracluster light. We argue that EBL extinction may provide at least a partial explanation for the anomalously red colours reported for the haloes of disc galaxies and for the hosts of local starburst galaxies. EBL extinction effects also mimic truncations in discs with unusually high dust opacities, but are unlikely to be the cause of such features in general. Failure to account for EBL extinction can also give rise to a non-negligible underestimate of intragroup and intracluster light at the faintest surface brightness levels currently probed. Finally, we discuss how EBL extinction effects may be exploited to provide an independent constraint on the surface brightness of the EBL, using a combination of surface photometry and direct star counts.

  18. Nitrogen in Hydroponic Growing Medium of Tomato Affects the Demographic Parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae).

    PubMed

    Hosseini, R S; Madadi, H; Hosseini, M; Delshad, M; Dashti, F

    2015-12-01

    We evaluated the effects of different nitrogen levels (380, 310, 240, and 174 ppm) on the life history parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) on hydroponically cultured tomato plants. Our data show that there is a positive correlation between the nitrogen content and the demographic parameters, as the intrinsic rate of increase of T. vaporariorum was the lowest (0.059 ± 0.007 day(-1)) at 174 ppm and the highest (0.088 ± 0.005 day(-1)) at 380 ppm of nitrogen. The net reproduction rate (R 0), finite rate of increase (λ), and mean developmental time (T) were significantly influenced by the nitrogen levels. The mean longevity of males and females showed a positive relationship with the nitrogen level, ranging from 64.8 ± 3.96 to 76.3 ± 2.44 for males and 61.6 ± 5.35 to 71.2 ± 2.44 for females, observed in the lowest and highest nitrogen levels, respectively. The relationship between nitrogen fertilization and T. vaporariorum management on tomato crops is discussed.

  19. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle

    PubMed Central

    Fey, Vidal; Törmäkangas, Timo; Ronkainen, Paula H. A.; Taaffe, Dennis R.; Takala, Timo; Koskinen, Satu; Cheng, Sulin; Puolakka, Jukka; Kujala, Urho M.; Suominen, Harri; Sipilä, Sarianna; Kovanen, Vuokko

    2010-01-01

    At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50–57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in “response to contraction”—category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria. Electronic supplementary material The online version of this

  20. [Soil nutrient accumulation and its affecting factors during vegetation succession in karst peak-cluster depressions of South China].

    PubMed

    Zhang, Wei; Wang, Ke-Lin; Liu, Su-Juan; Ye, Ying-Ying; Pan, Fu-Jing; He, Xu-Yang

    2013-07-01

    Taking the typical karst peak-cluster depressions in Huanjiang County of northwest Guangxi as the objects, and by using the method of replacing time with space, an analysis was made on the dynamic changes of top soil (0-15 cm) nutrients and their dominant controlling factors during the process of vegetation succession. With the positive succession of vegetation (herb-shrub-secondary forest-primary forest), the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) contents increased significantly, with the soil SOC, TN, and TP increased from 29.1 g x kg(-1), 2.48 g x kg(-1), and 0.72 g x kg(-1) in herb community to 73.9 g x kg(-1), 8.10 g x kg(-1), and 1.6 g x kg(-1) in primary forest, respectively, which indicated that the positive succession of vegetation was helpful to the soil nutrient accumulation. The soil cation exchange capacity (CEC) had close relationships with the soil SOC and TN, being the primary controlling factor for the accumulation of the soil C and N. The litter P content, C/P ratio, and N/P ratio were the major factors controlling the P accumulation in the topsoil. The litters higher P content and N/P ratio and smaller C/P ratio were helpful for the P accumulation. Topographic indices (slope, aspect, and rock exposure ratio) had little effects on the soil nutrients.

  1. Stimulation of nitrogen turnover due to nutrients release from aggregates affected by freeze-thaw in wetland soils

    NASA Astrophysics Data System (ADS)

    Song, Yang; Zou, Yuanchun; Wang, Guoping; Yu, Xiaofei

    2017-02-01

    The freeze-thaw phenomenon will occur more frequently in mid-high latitude ecosystems under climate change which has a remarkable effect on biogeochemical processes in wetland soils. Here, we used a wet sieving procedure and a barometric process separation (BaPS) technique to examine the responses of wetland soil aggregates and related carbon and nitrogen turnover affected by the freeze-thaw treatment. Wetland soil samples were divided into a treatment group and a control group. The treatment group was incubated at temperatures fluctuating from 10 °C to -10 °C, whereas the control group was incubated at the constant temperature of 10 °C. A 24 h process was set as the total freeze-thaw cycle, and the experiment had 20 continuous freeze-thaw cycles. In our results, the freeze-thaw process caused great destruction to the >2 mm water-stable aggregates (WSA) fraction and increased the <0.053 mm WSA fraction. The dissolved organic carbon (DOC) content was stimulated during the initial freeze-thaw cycles followed by a rapid decline, and then still increased during subsequent freeze-thaw cycles, which was mainly determined by the soil organic carbon (SOC). The NH4+ and NO3- content, respiration rate and gross nitrification rate were all significantly improved by the freeze-thaw effect. Because the amount of NH4+ and NO3- expressed prominent negative responses to the content of >2 mm WSA fraction and the gross nitrification rate can be stimulated at the initial freeze-thaw cycles, nutrients and substrates may play a leading role in the freeze-thaw treatment regardless of the minimal influences on microbial biomass pools.

  2. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain.

    PubMed

    Zhao, Xin; Xue, Jian-Fu; Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0-5:30-50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0-5:5-10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0-10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0-10 cm) but was higher under PT for the deeper soil (30-50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality.

  3. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain

    PubMed Central

    Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0–5:30–50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0–5:5–10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0–10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0–10 cm) but was higher under PT for the deeper soil (30–50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality. PMID:26075391

  4. Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    PubMed

    Southon, Georgina E; Green, Emma R; Jones, Alan G; Barker, Chris G; Power, Sally A

    2012-09-01

    Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lowland heathland under a wide range of environmental conditions, including the occurrence of prolonged natural drought episodes and a severe summer fire. Our findings indicate that elevated N deposition results in large, persistent effects on Calluna growth, phenology and chemistry, severe suppression of understorey lichen flora and changes in soil biogeochemistry. Growing season rainfall was found to be a strong driver of inter-annual variation in Calluna growth and, although interactions between N and rainfall for shoot growth were not significant until the later phase of the experiment, N addition exacerbated the extent of drought injury to Calluna shoots following naturally occurring droughts in 2003 and 2009. Following a severe wildfire at the experimental site in 2006, heathland regeneration dynamics were significantly affected by N, with a greater abundance of pioneering moss species and suppression of the lichen flora in plots receiving N additions. Significant interactions between climate and N were also apparent post fire, with the characteristic stimulation in Calluna growth in +N plots suppressed during dry years. Carbon (C) and N budgets demonstrate large increases in both above- and below-ground stocks of these elements in N-treated plots prior to the fire, despite higher levels of soil microbial activity and organic matter turnover. Although much of the organic material was removed during the fire, pre-existing treatment differences were still evident following the burn. Post fire accumulation of below-ground C and N stocks was increased rapidly in N-treated plots, highlighting the role of N deposition in ecosystem C sequestration.

  5. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland.

    PubMed

    Wang, Hao; Yu, Lingfei; Zhang, Zhenhua; Liu, Wei; Chen, Litong; Cao, Guangmin; Yue, Haowei; Zhou, Jizhong; Yang, Yunfeng; Tang, Yanhong; He, Jin-Sheng

    2017-02-01

    Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (-20 cm relative to control) and N deposition (30 kg N ha(-1)  yr(-1) ) on carbon dioxide (CO2 ), methane (CH4 ) and nitrous oxide (N2 O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH4 emissions by 57.4% averaged over three growing seasons compared with no-WTL plots, but had no significant effect on net CO2 uptake or N2 O flux. N deposition increased net CO2 uptake by 25.2% in comparison with no-N deposition plots and turned the mesocosms from N2 O sinks to N2 O sources, but had little influence on CH4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100-year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to -480.1 g CO2 -eq m(-2) mostly because of decreased CH4 emissions, while N deposition reduced GWP from 21.0 to -163.8 g CO2 -eq m(-2) , mainly owing to increased net CO2 uptake. GeoChip analysis revealed that decreased CH4 production potential, rather than increased CH4 oxidation potential, may lead to the reduction in net CH4 emissions, and decreased nitrification potential and increased denitrification potential affected N2 O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem-scale GHG responses to environmental changes.

  6. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    PubMed

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  7. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  8. Does training frequency and supervision affect compliance, performance and muscular health? A cluster randomized controlled trial.

    PubMed

    Dalager, Tina; Bredahl, Thomas G V; Pedersen, Mogens T; Boyle, Eleanor; Andersen, Lars L; Sjøgaard, Gisela

    2015-10-01

    The aim was to determine the effect of one weekly hour of specific strength training within working hours, performed with the same total training volume but with different training frequencies and durations, or with different levels of supervision, on compliance, muscle health and performance, behavior and work performance. In total, 573 office workers were cluster-randomized to: 1 WS: one 60-min supervised session/week, 3 WS: three 20-min supervised sessions/week, 9 WS: nine 7-min supervised sessions/week, 3 MS: three 20-min sessions/week with minimal supervision, or REF: a reference group without training. Outcomes were diary-based compliance, total training volume, muscle performance and questionnaire-based health, behavior and work performance. Comparisons were made among the WS training groups and between 3 WS and 3 MS. If no difference, training groups were collapsed (TG) and compared with REF. Results demonstrated similar degrees of compliance, mean(range) of 39(33-44)%, and total training volume, 13.266(11.977-15.096)kg. Musculoskeletal pain in neck and shoulders were reduced with approx. 50% in TG, which was significant compared with REF. Only the training groups improved significantly their muscle strength 8(4-13)% and endurance 27(12-37)%, both being significant compared with REF. No change in workability, productivity or self-rated health was demonstrated. Secondary analysis showed exercise self-efficacy to be a significant predictor of compliance. Regardless of training schedule and supervision, similar degrees of compliance were shown together with reduced musculoskeletal pain and improved muscle performance. These findings provide evidence that a great degree of flexibility is legitimate for companies in planning future implementation of physical exercise programs at the workplace. ClinicalTrials.gov, number NCT01027390. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Unique clustering genes in the bacterial chromosome affecting the type-III secretion of enterohaemorrhagic Escherichia coli.

    PubMed

    Lin, I-Ting; Chiou, Yi-Ming; Liang, Yen-Chia; Lin, Ching-Nan; Sun, Wei-Sheng W; Li, Shiaowen; Chang, Chuan-Hsiung; Syu, Wan-Jr; Chen, Jenn-Wei

    2016-10-01

    Bioinformatics analysis was used to search for unknown genes that might influence the phenotypic presentations of enterohaemorrhagic Escherichia coli (EHEC). By so doing and using the known genomic data from EHEC O157  : H7 and K-12, it has been deduced that genes Z4863 to Z4866 of EHEC do not exist in K-12 strains. These four gene sequences have low degrees of homology (18-40 % amino acid identities) to a set of genes in K-12, which have been known to encode fatty acid biosynthesis enzymes. We referred these four consecutive genes as a fasyn cluster and found that deletion of fasyn from EHEC resulted in a defective type-III secretion (T3S). This deletion apparently did not decrease the amounts of the T3S proteins ectopically expressed from plasmids. Examination of the corresponding mRNAs by real-time PCR revealed that the mRNAs readily decreased in the fasyn-deleted mutant and this suppressive effect on the mRNA levels appeared to spread across all lee operons. Complementation with fasyn reverted the T3S-deficient phenotype. Furthermore, this reversion was also seen when the mutant was supplemented with locus of enterocyte effacement activators (Ler or GrlA). Thus, these unique clustering genes located apart from locus of enterocyte effacement on the bacterial chromosome also play a role in affecting T3S of EHEC.

  10. Clustered granules present in the hippocampus of aged mice result from a degenerative process affecting astrocytes and their surrounding neuropil.

    PubMed

    Manich, Gemma; Cabezón, Itsaso; Camins, Antoni; Pallàs, Mercè; Liberski, Pawel P; Vilaplana, Jordi; Pelegrí, Carme

    2014-01-01

    Clusters of pathological granular structures appear and progressively increase in number with age in the hippocampus of several mice strains, markedly in the senescence-accelerated mouse prone 8 mice. In the present work, we performed an ultrastructural study of these granules paying special attention to the first stages of their formation, which have not been previously explored. The analysis of the immature granules allowed concluding that granules are not simple accumulations of molecular waste but the result of a degenerative process involving principally astrocytic processes, although nearby neuronal structures can be also affected. The granule generation includes the instability of the plasmatic membranes and the appearance of abnormal membranous structures that form intracellular bubbles or blebs of variable sizes and irregular shapes. These structures and some organelles degenerate producing some membranous fragments, and an assembly process of the resulting fragments generates the dense-core nucleus of the mature granule. Moreover, we found out that the neo-epitope recently described in the mature granules and localised abundantly in the membranous fragments of their dense-core nucleus emerges in the first stages of the granule formation. On the other hand, with this study, we increase the evidences that each cluster of granules is formed by the granules comprised in one astrocyte. A better knowledge of the causes of the granule formation and the function of the neo-epitope will help in both the interpretation of the physiological significance of the granules and their contribution to the degenerating processes in aging brain.

  11. Nitrogen- and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light.

    PubMed

    Druege, U; Zerche, S; Kadner, R

    2004-12-01

    The aim of this study was to determine the role of nitrogen- and storage-affected carbohydrate availability in rooting of pelargonium cuttings, focusing on the environmental conditions of stock plant cultivation at low latitudes, transport of cuttings, and rooting under the low light that prevails during the winter rooting period in Central European greenhouses. Carbohydrate partitioning in high-light-adapted cuttings of the cultivar 'Isabell' was studied in relation to survival and adventitious root formation under low light. Effects of a graduated supply of mineral nitrogen to stock plants and of cutting storage were examined. Nitrogen deficiency raised starch levels in excised cuttings, whereas the concentrations of glucose and total sugars in leaves and the basal stem were positively correlated with internal total nitrogen (Nt). Storage reduced starch to trace levels in all leaves, but sugar levels were only reduced in tissues of non-nitrogen deficient cuttings. Sugars accumulated in the leaf lamina of stored cuttings during the rooting period, whereas carbohydrates were simultaneously exhausted in all other cutting parts including the petioles, thereby promoting leaf senescence. The positive correlation between initial Nt and root number disappeared after storage. Irrespectively of storage, higher pre-rooting leaf glucose promoted subsequent sugar accumulation in the basal stem and final root number. The positive relationships between initial sugar levels in the stems with cutting survival and in leaves with root formation under low light were confirmed in a sample survey with 21 cultivars provided from different sources at low latitudes. The results indicate that adventitious rooting of pelargonium cuttings can be limited by the initial amount of nitrogen reserves. However, this relationship reveals only small plasticity and is superimposed by a predominant effect of carbohydrate availability that depends on the initial leaf sugar levels, when high

  12. Nitrogen- and Storage-affected Carbohydrate Partitioning in High-light-adapted Pelargonium Cuttings in Relation to Survival and Adventitious Root Formation under Low Light

    PubMed Central

    DRUEGE, U.; ZERCHE, S.; KADNER, R.

    2004-01-01

    • Background and Aims The aim of this study was to determine the role of nitrogen- and storage-affected carbohydrate availability in rooting of pelargonium cuttings, focusing on the environmental conditions of stock plant cultivation at low latitudes, transport of cuttings, and rooting under the low light that prevails during the winter rooting period in Central European greenhouses. • Methods Carbohydrate partitioning in high-light-adapted cuttings of the cultivar ‘Isabell’ was studied in relation to survival and adventitious root formation under low light. Effects of a graduated supply of mineral nitrogen to stock plants and of cutting storage were examined. • Key Results Nitrogen deficiency raised starch levels in excised cuttings, whereas the concentrations of glucose and total sugars in leaves and the basal stem were positively correlated with internal total nitrogen (Nt). Storage reduced starch to trace levels in all leaves, but sugar levels were only reduced in tissues of non-nitrogen deficient cuttings. Sugars accumulated in the leaf lamina of stored cuttings during the rooting period, whereas carbohydrates were simultaneously exhausted in all other cutting parts including the petioles, thereby promoting leaf senescence. The positive correlation between initial Nt and root number disappeared after storage. Irrespectively of storage, higher pre-rooting leaf glucose promoted subsequent sugar accumulation in the basal stem and final root number. The positive relationships between initial sugar levels in the stems with cutting survival and in leaves with root formation under low light were confirmed in a sample survey with 21 cultivars provided from different sources at low latitudes. • Conclusions The results indicate that adventitious rooting of pelargonium cuttings can be limited by the initial amount of nitrogen reserves. However, this relationship reveals only small plasticity and is superimposed by a predominant effect of carbohydrate

  13. Denitrification nitrogen gas formation and gene expression in alpine grassland soil as affected by climate change conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Wang, Changhui; Gschwendtner, Silvia; Schloter, Michael; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2013-04-01

    Due to methodological problems, reliable data on soil dinitrogen (N2) emission by denitrification are extremely scarce, and the impacts of climate change on nitrogen (N) gas formation by denitrification and N gas product ratios as well as the underlying microbial drivers remain unclear. We combined the helium-gas-flow-soil-core technique for simultaneously quantification of nitrous oxide (N2O) and N2 emission with the reverse transcript qPCR technology. Our goals were to characterize denitrification dynamics and N gas product ratios in alpine grassland soil as affected by climate change conditions and to evaluate relationships between denitrification gene expression and N gas emission. We used soils from the pre-alpine grassland Terrestrial Environmental Observatory (TERENO), exposed to ambient temperature and precipitation (control treatment), or three years of simulated climate change conditions (increased temperature, reduction of summer precipitation and reduced snow cover). Soils were amended with glucose and nitrate and incubated subsequently at 1) 5°C and 20% oxygen; 2) 5°C and 0% oxygen; 3) 20°C and 0% oxygen until stabilization of N gas emissions in each incubation step. After switching incubation conditions to 0% oxygen and 20°C, N2O emission peaked immediately and declined again, followed by a delayed peak in N2 emission. The dynamics of cnorB gene expression, encoding the reduction of nitric oxide (NO) to N2O, followed the N2O emission pattern, while nosZ gene expression, encoding N2O reduction to N2 followed the course of N2 emission. The mean N2O:N2 ratios were 1.31 + 0.10 and 1.56 + 0.16 for control and climate change treatment respectively, but the denitrification potential was overall lower in climate change treatment. Hence, simulated climate change promoted N2O but lessened N2 emission. This stimulation of N2O was in accordance with increased cnorB gene expression in soil of the climate change treatment. N mass balance calculations revealed

  14. Nitrogen levels, top pruning, and lifting date affect nursery development and early field performance of loblolly pine seedlings

    Treesearch

    Paul P. Kormanik; Taryn L. Kormanik; Shi-Jean S. Sung; Stanley L Zarnoch

    1999-01-01

    Loblolly pine seedling nursery development and 3-year field performance were contrasted between two nitrogen (N) application regimes and comparable top pruning regimes. Other initial soil nutritional elements were comparable, but high N seedlings received 150 lb/acre N (as NH4NO3) and low N seedlings received half this...

  15. Intensive straw harvesting, fertilization, and fertilizer source affect nitrogen mineralization and soil labile carbon of a loblolly pine plantation

    Treesearch

    K. Ellum; H.O. Liechty; M.A. Blazier

    2013-01-01

    Straw harvesting can supplement traditional revenues generated by loblolly pine (Pinus taeda L.) plantation management. However, repeated raking may alter soil properties and nutrition. In northcentral Louisiana, a study was conducted to evaluate the long-term effects of intensive straw raking and fertilizer source (inorganic or organic) on nitrogen...

  16. Effects of inorganic nitrogen sources on the production of PP-V [(10Z)-12-carboxyl-monascorubramine] and the Expression of the nitrate assimilation gene cluster by Penicillium sp. AZ.

    PubMed

    Arai, Teppei; Umemura, Sara; Ota, Tamaki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2012-01-01

    A fungal strain, Penicillium sp. AZ, produced the azaphilone Monascus pigment homolog when cultured in a medium composed of soluble starch, ammonium nitrate, yeast extract, and citrate buffer, pH 5.0. One of the typical features of violet pigment PP-V [(10Z)-12-carboxyl-monascorubramine] is that pyranoid oxygen is replaced with nitrogen. In this study, we found that ammonia and nitrate nitrogen are available for PP-V biosynthesis, and that ammonia nitrogen was much more effective than nitrate nitrogen. Further, we isolated nitrate assimilation gene cluster, niaD, niiA, and crnA, and analyzed the expression of these genes. The expression levels of all these genes increased with sodium nitrate addition to the culture medium. The results obtained here strongly suggest that Penicillium sp. AZ produced PP-V using nitrate in the form of ammonium reduced from nitrate through a bioprocess assimilatory reaction.

  17. Nitrogen Stress Affects the Turnover and Size of Nitrogen Pools Supplying Leaf Growth in a Grass1[C][W][OPEN

    PubMed Central

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-01-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic 15N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with 15NO3−/14NO3− from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r2 > 0.99). This consisted of a “substrate pool,” which received N from current uptake and supplied the growth zone, and a recycling/mobilizing “store,” which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks. PMID:23757403

  18. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    PubMed

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (gbs), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C4 photosynthesis to estimate gbs. The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between gbs and leaf nitrogen content (LNC) while old leaves had lower gbs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (Sb) correlated well with gbs although they were not significantly affected by LNC. As a result, the increase of gbs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on Sb was responsible for differences in gbs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions.

    PubMed

    Ali, Vahab; Shigeta, Yasuo; Tokumoto, Umechiyo; Takahashi, Yasuhiro; Nozaki, Tomoyoshi

    2004-04-16

    We have characterized the iron-sulfur (Fe-S) cluster formation in an anaerobic amitochondrial protozoan parasite, Entamoeba histolytica, in which Fe-S proteins play an important role in energy metabolism and electron transfer. A genomewide search showed that E. histolytica apparently possesses a simplified and non-redundant NIF (nitrogen fixation)-like system for the Fe-S cluster formation, composed of only a catalytic component, NifS, and a scaffold component, NifU. Amino acid alignment and phylogenetic analyses revealed that both amebic NifS and NifU (EhNifS and EhNifU, respectively) showed a close kinship to orthologs from epsilon-proteobacteria, suggesting that both of these genes were likely transferred by lateral gene transfer from an ancestor of epsilon-proteobacteria to E. histolytica. The EhNifS protein expressed in E. coli was present as a homodimer, showing cysteine desulfurase activity with a very basic optimum pH compared with NifS from other organisms. Eh-NifU protein existed as a tetramer and contained one stable [2Fe-2S]2+ cluster per monomer, revealed by spectroscopic and iron analyses. Fractionation of the whole parasite lysate by anion exchange chromatography revealed three major cysteine desulfurase activities, one of which corresponded to the EhNifS protein, verified by immunoblot analysis using the specific EhNifS antibody; the other two peaks corresponded to methionine gamma-lyase and cysteine synthase. Finally, ectopic expression of the EhNifS and EhNifU genes successfully complemented, under anaerobic but not aerobic conditions, the growth defect of an Escherichia coli strain, in which both the isc and suf operons were deleted, suggesting that EhNifS and EhNifU are necessary and sufficient for Fe-S clusters of non-nitrogenase Fe-S proteins to form under anaerobic conditions. This is the first demonstration of the presence and biological significance of the NIF-like system in eukaryotes.

  20. Regulation of nitrogen metabolism, starch utilisation and the beta-hbd-adh1 gene cluster in Clostridium acetobutylicum.

    PubMed

    Woods, D R; Reid, S J

    1995-10-01

    The successful genetic manipulation of Clostridium acetobutylicum for the increased production of solvents will depend on an understanding of gene structure and regulation in the bacterium. The glutamine synthetase (glnA) gene is regulated by antisense RNA, transcribed from a downstream promoter, in the opposite direction to the glnA gene. An open reading frame (ORF) was detected downstream of the glnA gene, which has sequence homology to response regulators with anti-termination activity and may be involved in sensing nitrogen conditions. The expression of the linked beta-hbd, adh1 and fixB genes was investigated throughout the bacterial growth cycle by RNA hybridisation techniques. The adh1 gene was independently expressed as a 2.4-kb transcript which peaked at 12 h, immediately prior to the solventogenic phase. The beta-hbd and fixB genes were transcribed throughout the acidogenic and solventogenic phases. A regulator gene, regA, which complements a Bacillus subtilis ccpA mutant, has been identified and sequenced from C. acetobutylicum P262. The regA gene repressed the degradation of starch by an uncharacterised C. acetobutylicum gene, and may therefore play a role in the utilisation of carbohydrate substrates in this organism.

  1. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep.

    PubMed

    Min, B R; Attwood, G T; Reilly, K; Sun, W; Peters, J S; Barry, T N; McNabb, W C

    2002-10-01

    Condensed tannins in forage legumes improve the nutrition of sheep by reducing ruminal degradation of plant protein and increasing crude protein flow to the intestine. However, the effects of condensed tannins in forage legumes on rumen bacterial populations in vivo are poorly understood. The aim of this study was to investigate the specific effects of condensed tannins from Lotus corniculatus on four proteolytic rumen bacteria in sheep during and after transition from a ryegrass (Lolium perenne)-white clover (Trifolium repens) diet (i.e., low condensed tannins) to a Lotus corniculatus diet (i.e., higher condensed tannins). The bacterial populations were quantified using a competitive polymerase chain reaction. Lotus corniculatus was fed with or without ruminal infusions of polyethylene glycol (PEG), which binds to and inactivates condensed tannins, enabling the effect of condensed tannins on bacterial populations to be examined. When sheep fed on ryegrass-white clover, populations of Clostridium proteoclasticum B316T, Butyrivibrio fibrisolvens C211a, Eubacterium sp. C12b, and Streptococcus bovis B315 were 1.5 x 10(8), 1.1 x 10(6), 4.6 x 10(8), and 7.1 x 10(6) mL(-1), respectively. When the diet was changed to Lotus corniculatus, the average populations (after 8-120 h) of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis decreased (P < 0.001) to 2.4 x 10(7), 1.1 x 10(5), 1.1 x 10(8), and 2.5 x 10(5) mL(-1), respectively. When PEG was infused into the rumen of sheep fed Lotus corniculatus, the populations of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis were higher (P < 0.01-0.001) than in sheep fed Lotus corniculatus without the PEG infusion, with average populations (after 8-120 h) of 4.9 x 10(7), 3.8 x 10(5), 1.9 x 10(8), and 1.0 x 10(6), respectively. Sheep fed the Lotus corniculatus diet had lower rumen proteinase activity, ammonia, and soluble nitrogen (P < 0.05-0.001) than sheep that were fed Lotus corniculatus plus PEG

  2. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis

    PubMed Central

    Sarasketa, Asier; González-Moro, M. Begoña; González-Murua, Carmen; Marino, Daniel

    2016-01-01

    Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source (NO3- and NH4+), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to NH4+ accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, NH4+ accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment. PMID:26870054

  3. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis.

    PubMed

    Sarasketa, Asier; González-Moro, M Begoña; González-Murua, Carmen; Marino, Daniel

    2016-01-01

    Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source ([Formula: see text] and [Formula: see text]), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to [Formula: see text] accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, [Formula: see text] accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment.

  4. Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system.

    PubMed

    Gao, Li; Liu, Xingzhong

    2010-12-01

    The development of fungal biopesticides requires the efficient production of large numbers spores or other propagules. The current study used published information concerning carbon concentrations and C:N ratios to evaluate the effects of carbon and nitrogen sources on sporulation of Paecilomyces lilacinus (IPC-P and M-14) and Metarhizium anisopliae (SQZ-1-21 and RS-4-1) in a two-stage cultivation system. For P. lilacinus IPCP, the optimal sporulation medium contained urea as the nitrogen source, dextrin as the carbon source at 1 g/L, a C:N ratio of 5:1, with ZnSO(4)·7H(2)O at 10 mg/L and CaCl(2) at 3 g/L. The optimal sporulation medium for P. lilacinus M-14 contained soy peptone as the nitrogen source and maltose as the carbon source at 2 g/L, a C:N ratio of 10:1, with ZnSO(4)·7H(2)O at 250 mg/L, CuSO(4)·5H(2)O at 10 mg/L, H(3)BO(4) at 5 mg/L, and Na(2)MoO(4)·2H(2)O at 5 mg/L. The optimum sporulation medium for M. anisopliae SQZ-1-21 contained urea as the nitrogen source, sucrose as the carbon source at 16 g/ L, a C:N ratio of 80:1, with ZnSO(4)·7H(2)O at 50 mg/L, CuSO(4)·5H(2)O at 50 mg/L, H(3)BO(4) at 5 mg/L, and MnSO(4)·H(2)O at 10 mg/L. The optimum sporulation medium for M. anisopliae RS-4-1 contained soy peptone as the nitrogen source, sucrose as the carbon source at 4 g/L, a C:N ratio of 5:1, with ZnSO(4)·7H(2)O at 50 mg/L and H(3)BO(4) at 50 mg/L. All sporulation media contained 17 g/L agar. While these results were empirically derived, they provide a first step toward low-cost mass production of these biocontrol agents.

  5. The Form in Which Nitrogen Is Supplied Affects the Polyamines, Amino Acids, and Mineral Composition of Sweet Pepper Fruit under an Elevated CO2 Concentration.

    PubMed

    Piñero, Maria C; Otálora, Ginés; Porras, Manuel E; Sánchez-Guerrero, Mari C; Lorenzo, Pilar; Medrano, Evangelina; Del Amor, Francisco M

    2017-02-01

    We investigated the effect of supplying nitrogen, as NO3(-) or as NO3(-)/NH4(+), on the composition of fruits of sweet pepper (Capsicum annuum L. cv. Melchor) plants grown with different CO2 concentrations ([CO2]): ambient or elevated (800 μmol mol(-1)). The results show that the application of NH4(+) and high [CO2] affected the chroma related to the concentrations of chlorophylls. The concentrations of Ca, Cu, Mg, P, and Zn were significantly reduced in the fruits of plants nourished with NH4(+), the loss of Fe being more dramatic at increased [CO2], which was also the case with the protein concentration. The concentration of total phenolics was increased by NH4(+), being unaffected by [CO2]. Globally, the NH4(+) was the main factor that affected fruit free amino acid concentrations. Polyamines were affected differently: putrescine was increased by elevated [CO2], while the response of cadaverine depended on the form of N supplied.

  6. Subcellular clustering of a putative c-di-GMP-dependent exopolysaccharide machinery affecting macro colony architecture in Bacillus subtilis.

    PubMed

    Bedrunka, Patricia; Graumann, Peter L

    2016-11-29

    The structure of bacterial biofilms is predominantly established through the secretion of extracellular polymeric substances (EPS). They show that Bacillus subtilis contains an operon (ydaJ-N) whose induction leads to increased Congo Red staining of biofilms and strongly altered biofilm architecture, suggesting that it mediates the production of an unknown exopolysaccharide. Supporting this idea, overproduction of YdaJKLMN leads to cell clumping during exponential growth in liquid culture, and also causes colony morphology alterations in wild type cells, as well as in a mutant background lacking the major exopolysaccharide of B. subtilis. The first gene product of the operon, YdaJ, appears to modify the overproduction effects, but is not essential for cell clumping or altered colony morphology, while the presence of the c-di-GMP receptor YdaK is required, suggesting an involvement of second messenger c-di-GMP. YdaM, YdaN and YdaK colocalize to clusters predominantly at the cell poles and are statically positioned at this subcellular site, similar to other exopolysaccharide machinery components in other bacteria. Their analysis reveals that B. subtilis contains a static subcellular assembly of an EPS machinery that affects cell aggregation and biofilm formation.

  7. Analysis of variables affecting unemployment rate and detecting for cluster in West Java, Central Java, and East Java in 2012

    NASA Astrophysics Data System (ADS)

    Samuel, Putra A.; Widyaningsih, Yekti; Lestari, Dian

    2016-02-01

    The objective of this study is modeling the Unemployment Rate (UR) in West Java, Central Java, and East Java, with rate of disease, infant mortality rate, educational level, population size, proportion of married people, and GDRP as the explanatory variables. Spatial factors are also considered in the modeling since the closer the distance, the higher the correlation. This study uses the secondary data from BPS (Badan Pusat Statistik). The data will be analyzed using Moran I test, to obtain the information about spatial dependence, and using Spatial Autoregressive modeling to obtain the information, which variables are significant affecting UR and how great the influence of the spatial factors. The result is, variables proportion of married people, rate of disease, and population size are related significantly to UR. In all three regions, the Hotspot of unemployed will also be detected districts/cities using Spatial Scan Statistics Method. The results are 22 districts/cities as a regional group with the highest unemployed (Most likely cluster) in the study area; 2 districts/cities as a regional group with the highest unemployed in West Java; 1 district/city as a regional groups with the highest unemployed in Central Java; 15 districts/cities as a regional group with the highest unemployed in East Java.

  8. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    NASA Astrophysics Data System (ADS)

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-02-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period.

  9. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    PubMed Central

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-01-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30–40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period. PMID:26879008

  10. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta.

    PubMed

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-02-16

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4(+)-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period.

  11. Carbon dioxide concentration and nitrogen input affect the C and N storage pools in Amanita muscaria-Picea abies mycorrhizae.

    PubMed

    Turnau, K; Berger, A; Loewe, A; Einig, W; Hampp, R; Chalot, M; Dizengremel, P; Kottke, I

    2001-02-01

    We studied the influence of elevated atmospheric CO2 concentration ([CO2]) on the vacuolar storage pool of nitrogen-containing compounds and on the glycogen pool in the hyphal sheath of Amanita muscaria (L. ex Fr.) Hooker-Picea abies L. Karst. mycorrhizae grown with two concentrations of ammonium in the substrate. Mycorrhizal seedlings were grown in petri dishes on agar containing 5.3 or 53 mg N l(-1) and exposed to 350 or 700 microl CO2 l(-1) for 5 or 7 weeks, respectively. Numbers and area of nitrogen-containing bodies in the vacuoles of the mycorrhizal fungus were determined by light microscopy linked to an image analysis system. The relative concentration of nitrogen in the vacuolar bodies was measured by electron energy loss spectroscopy (EELS). Glycogen stored in the cytosol was determined at the ultrastructural level by image analysis after staining the sections (PATAg test). Shoot dry weight, net photosynthesis and relative amounts of N in vacuolar bodies were greater at the higher N and CO2 concentrations. The numbers and areas of vacuolar N-containing bodies were significantly greater at the higher N concentration only at ambient [CO2]. In the same treatment the percentage of hyphae containing glycogen declined to nearly zero. We conclude that, in the high N/low [CO2] treatment, the mycorrhizal fungus had an insufficient carbohydrate supply, partly because of increased amino acid synthesis by the non-mycorrhizal rootlets. When [CO2] was increased, the equilibrium between storage of glycogen and N-containing compounds was reestablished.

  12. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Wu, Huarui

    2017-03-01

    Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pdn (n = 1-6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH3 adsorption on PNG. The adsorption ability of Hg on Pdn decorated PNG is found to be related to the d-band center (εd) of the Pdn, in which the closer εd of Pdn to the Fermi level, the higher adsorption strength for Hg on Pdn decorated PNG. Moreover, the charge transfer between Pdn and arsenic may constitute arsenic adsorption on Pdn decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring εd of adsorbed metals.

  13. Early and late season warming affects nitrogen dynamics in a polygonal tundra landscape: Analyses using ecosys and NGEE-Arctic observations in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Grant, R. F.; Bouskill, N.; Dafflon, B.; Graham, D. E.; Mekonnen, Z. A.; Moon, J. W.; Tang, J.; Wainwright, H. M.

    2016-12-01

    Several recent observational and modeling studies have highlighted the importance of enhanced nitrogen losses from permafrost ecosystems following earlier spring thaw and later fall freeze, conditions expected over the next several decades as the arctic continues to warm. These studies highlight the potential importance and interacting effects of leaching losses, microbial immobilization during the fall, and N gaseous losses. Enhanced nitrogen losses could result in lower plant productivity and a net reduction in the amount of carbon stored in these systems over time. We analyzed coupled carbon, nitrogen, and energy dynamics from the Next Generation Ecosystem Experiment (NGEE) Arctic project in Barrow, AK using a mechanistic ecosystem model (ecosys) that has previously been applied in a variety of high-latitude ecosystems. Our NGEE-Arctic site is dominated by polygonal tundra, and a wide range of measurements has been taken over the past several years in low-centered, high-centered, and transitional polygons. For the modeling analyses, we developed a three-dimensional coupled representation of a polygon and initialized simulations with site observed soil and vegetation properties. Ecosys accurately captured observed diurnal and seasonal cycles of net ecosystem carbon exchange, surface energy and water fluxes, thaw depth and soil temperatures, plant biomass, LAI, and soil moisture. Sensitivity analyses highlighted the importance of the moss layer in insulating the soil during the summer, and thereby affecting the thaw depth. We then impose a longer growing season in the model by enhancing spring and fall air temperatures with realistic trajectories from the RCP8.5 scenario and analyze the microbial, plant, and soil nitrogen states and fluxes and the resulting loss pathways at monthly to decadal time scales. Implications for long-term ecosystem responses and needed mechanistic treatments in Earth System Model land models are discussed.

  14. Cold Stress and Nitrogen Deficiency Affected Protein Expression of Psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1

    PubMed Central

    Suyal, Deep C.; Kumar, Saurabh; Yadav, Amit; Shouche, Yogesh; Goel, Reeta

    2017-01-01

    Nitrogen (N) deficiency and low temperature conditions are the prominent facet of Western Himalayan agro-ecosystems. A slight change in the environment alters the protein expression of the microorganisms. Therefore, proteomes of the two psychrotrophs Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1 were analyzed using two dimensional electrophoresis and MALDI–TOF–MS, to determine the physiological response of altitudinally different but indigenous microorganisms in response to cold stress under N depleting conditions. Functional assessment of 150 differentially expressed proteins from both the psychrotrophs revealed several mechanisms might be involved in cold stress adaptation, protein synthesis/modifications, energy metabolism, cell growth/maintenance, etc. In both the proteomes, abundance of the proteins related to energy production and stress were significantly increased while, proteins related to biosynthesis and energy consuming processes decreased. ATP synthase subunit alpha, beta, ATP-dependent Clp protease, Enolase, groL HtpG and N(2)-fixation sustaining protein CowN proteins were found to be expressed in both B2 and MP1, similarly to previously studied diazotrophs under low temperature N2 fixing conditions and therefore, can be considered as a biomarker for monitoring the nitrogen fixation in cold niches. Nevertheless, in both the diazotrophs, a good fraction of the proteins were related to hypothetical proteins which are still uncharacterized, thereby, suggesting the need for in-depth studies on cold adapted diazotrophs and their adaptive mechanisms. PMID:28352263

  15. Cold Stress and Nitrogen Deficiency Affected Protein Expression of Psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1.

    PubMed

    Suyal, Deep C; Kumar, Saurabh; Yadav, Amit; Shouche, Yogesh; Goel, Reeta

    2017-01-01

    Nitrogen (N) deficiency and low temperature conditions are the prominent facet of Western Himalayan agro-ecosystems. A slight change in the environment alters the protein expression of the microorganisms. Therefore, proteomes of the two psychrotrophs Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1 were analyzed using two dimensional electrophoresis and MALDI-TOF-MS, to determine the physiological response of altitudinally different but indigenous microorganisms in response to cold stress under N depleting conditions. Functional assessment of 150 differentially expressed proteins from both the psychrotrophs revealed several mechanisms might be involved in cold stress adaptation, protein synthesis/modifications, energy metabolism, cell growth/maintenance, etc. In both the proteomes, abundance of the proteins related to energy production and stress were significantly increased while, proteins related to biosynthesis and energy consuming processes decreased. ATP synthase subunit alpha, beta, ATP-dependent Clp protease, Enolase, groL HtpG and N(2)-fixation sustaining protein CowN proteins were found to be expressed in both B2 and MP1, similarly to previously studied diazotrophs under low temperature N2 fixing conditions and therefore, can be considered as a biomarker for monitoring the nitrogen fixation in cold niches. Nevertheless, in both the diazotrophs, a good fraction of the proteins were related to hypothetical proteins which are still uncharacterized, thereby, suggesting the need for in-depth studies on cold adapted diazotrophs and their adaptive mechanisms.

  16. Measuring human rights violations in a conflict-affected country: results from a nationwide cluster survey in Central African Republic.

    PubMed

    Potts, Alina; Myer, Kathleen; Roberts, Les

    2011-03-07

    Measuring human rights violations is particularly challenging during or after armed conflict. A recent nationwide survey in the Central African Republic produced estimates of rates of grave violations against children and adults affected by armed conflict, using an approach known as the "Neighborhood Method". In June and July, 2009, a random household survey was conducted based on population estimates from the 2003 national census. Clusters were assigned systematically proportional to population size. Respondents in randomly selected households were interviewed regarding incidents of killing, intentional injury, recruitment into armed groups, abduction, sexual abuse and rape between January 1, 2008 and the date of interview, occurring in their homes' and those of their three closest neighbors. Sixty of the selected 69 clusters were surveyed. In total, 599 women were interviewed about events in 2,370 households representing 13,669 persons. Estimates of annual rates of each violation occurring per 1000 people in each of two strata are provided for children between the ages of five and 17, adults 18 years of age and older and the entire population five years and older, along with a combined and weighted national rate. The national rates for children age five to 17 were estimated to be 0.98/1000/year (95% CI: 0.18 - 1.78) for recruitment, 2.56/1000/year (95% CI: 1.50 - 3.62) for abduction, 1.13/1000/year (95% CI: 0.33 - 1.93) for intentional injury, 10.72/1000 girls/year (95% CI: 7.40 - 14.04) for rape, and 4.80/1000 girls/year (95% CI: 2.61 - 6.00) for sexual abuse. No reports of any violation against a person under the age of five were recorded and there were no reports of rape or sexual abuse of males. No children were reported to have been killed during the recall period. Rape and abduction were the most frequently reported events. The population-based figures greatly augment existing information on human rights violations in CAR, and represent a step forward in

  17. Measuring human rights violations in a conflict-affected country: results from a nationwide cluster survey in Central African Republic

    PubMed Central

    2011-01-01

    Background Measuring human rights violations is particularly challenging during or after armed conflict. A recent nationwide survey in the Central African Republic produced estimates of rates of grave violations against children and adults affected by armed conflict, using an approach known as the "Neighborhood Method". Methods In June and July, 2009, a random household survey was conducted based on population estimates from the 2003 national census. Clusters were assigned systematically proportional to population size. Respondents in randomly selected households were interviewed regarding incidents of killing, intentional injury, recruitment into armed groups, abduction, sexual abuse and rape between January 1, 2008 and the date of interview, occurring in their homes' and those of their three closest neighbors. Results Sixty of the selected 69 clusters were surveyed. In total, 599 women were interviewed about events in 2,370 households representing 13,669 persons. Estimates of annual rates of each violation occurring per 1000 people in each of two strata are provided for children between the ages of five and 17, adults 18 years of age and older and the entire population five years and older, along with a combined and weighted national rate. The national rates for children age five to 17 were estimated to be 0.98/1000/year (95% CI: 0.18 - 1.78) for recruitment, 2.56/1000/year (95% CI: 1.50 - 3.62) for abduction, 1.13/1000/year (95% CI: 0.33 - 1.93) for intentional injury, 10.72/1000 girls/year (95% CI: 7.40 - 14.04) for rape, and 4.80/1000 girls/year (95% CI: 2.61 - 6.00) for sexual abuse. No reports of any violation against a person under the age of five were recorded and there were no reports of rape or sexual abuse of males. No children were reported to have been killed during the recall period. Rape and abduction were the most frequently reported events. Conclusions The population-based figures greatly augment existing information on human rights violations in

  18. Nitrogen regulation of fungal secondary metabolism in fungi

    PubMed Central

    Tudzynski, Bettina

    2014-01-01

    Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability. PMID:25506342

  19. Change in Uptake, Transport and Accumulation of Ions in Nerium oleander (Rosebay) as Affected by Different Nitrogen Sources and Salinity

    PubMed Central

    Abdolzadeh, Ahmad; Shima, Kazuto; Lambers, Hans; Chiba, Kyozo

    2008-01-01

    Background and Aims The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants. Methods Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined. Key Results Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1·8, 1·9 and 2·7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1·5 times higher than that in ammonium-fed plants. Similarly, Cl− transport via the xylem to the shoot and its retranslocation via the phloem (Cl− cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants. Conclusions The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl− in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl− in shoots probably caused harmful effects and reduced growth of plants. PMID:18772147

  20. Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: A case study in Central China

    NASA Astrophysics Data System (ADS)

    Lin, Shan; Iqbal, Javed; Hu, Ronggui; Wu, Jinshui; Zhao, Jinsong; Ruan, Leilei; Malghani, Saadatullah

    2011-03-01

    Agricultural soils are one of the major sources of atmospheric nitrous oxide (N 2O) emission. Red soil, one of the typical agricultural soils in sub-tropical China, plays an important role in the global N 2O flux emissions. To determine its N mineralization potential, a field study was conducted to assess the effect of application of nitrogen (N) fertilizer in a rape field under red soil at the experimental station of Heshengqiao at Xianning, Hubei, China. To estimate N-induced N 2O flux, we examined N 2O flux during the growth stages of the rape field including four treatments: fertilizer PK (N0), fertilizer NPK (60 kg N ha -1) (N1), fertilizer NPK (120 kg N ha -1) (N2), fertilizer NPK (240 kg N ha -1) (N3). There were distinct variations in soil N 2O fluxes (from 0.16 to 0.90 kg N ha -1), with higher values being observed during the spring and autumn while low values were observed during winter season. Among different treatments, N fertilization significantly increased the N 2O fluxes, with highest fluxes from N3 while lowest values being observed from N0 treatment. This suggested increased microbial activity in response to increased N fertilizer application. It was interesting to note that fertilizer-induced emissions decreased as the applied fertilizer amount was increased. During the whole growing season, N 2O flux did not correlate with soil temperature, but it significantly correlated to other environmental variables; water-filled pore space (WFPS), soil NO 3--N and NH 4+-N contents, which suggests the need for efficient water use and low inorganic nitrogen fertilizer management practices.

  1. Cropping System and Type of Pig Manure Affect Nitrate-Nitrogen Leaching in a Sandy Loam Soil.

    PubMed

    Karimi, Rezvan; Akinremi, Wole; Flaten, Don

    2017-07-01

    The application of livestock manure can result in the loss of nitrate-nitrogen (NO-N) and degrade surface and groundwater. A 3-yr lysimeter study was set up to compare the effect of cropping system and nitrogen (N)- and phosphorus (P)-based pig manure application rates on the loss of water and NO-N below the root zone. The experiment was a split-plot design with annual and perennial cropping systems as the main factor. Five nutrient management treatments were the subplots: N-based liquid pig manure application; P-based liquid pig manure application, N-based solid pig manure application, P-based solid pig manure application, and a control without amendment. The results showed that 40 to 60 kg NO-N ha was lost from the annual plots in 2010 and 23 to 60 kg NO-N ha in 2011, whereas a negligible amount of NO-N was lost from the perennial (<1 kg ha) plots in both years. The application of solid pig manure on a P basis followed by urea in subsequent years reduced the risk of NO-N leaching over the course of the rotation, likely due to immobilization of N by the straw in the solid pig manure. Our study showed that a perennial cropping system consisting of a mixture of grasses has the capacity to receive and utilize significant amounts of nutrients with negligible amount of nutrient leakages to the adjacent environment. The inclusion of grasses in a crop rotation and their use to take up excess nutrients are sustainable practices that will benefit the environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Auxin distribution is differentially affected by nitrate in roots of two rice cultivars differing in responsiveness to nitrogen

    PubMed Central

    Song, Wenjing; Sun, Huwei; Li, Jiao; Gong, Xianpo; Huang, Shuangjie; Zhu, Xudong; Zhang, Yali; Xu, Guohua

    2013-01-01

    Background and Aims Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3−) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3− nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3− availability are not known. Methods Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3−, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants. Key Results Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3− compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’. Conclusions The results indicate that higher NO3− responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’. PMID:24095838

  3. Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors.

    PubMed

    DiPasquale, Luke T; Poulos, Nicholas G; Hall, Jackson R; Minocha, Aastha; Bui, Tram Anh; Leopold, Michael C

    2015-07-15

    A systematic study of the structure-function relationships critical to understanding the sensing mechanism of 1st generation amperometric glucose biosensors with an embedded nanoparticle (NP) network is presented. Xerogel-based films featuring embedded glucose oxidase enzyme and doped with alkanethiolate-protected gold NPs, known as monolayer protected clusters (MPCs), exhibit significantly enhanced performance compared to analogous systems without NPs including higher sensitivity, faster response time, and extended linear/dynamic ranges. The proposed mechanism involves diffusion of the glucose to glucose oxidase within the xerogel, enzymatic reaction production of H2O2 with subsequent diffusion to the embedded network of MPCs where it is oxidized, an event immediately reported via fast electron transfer (ET) through the MPC system to the working electrode. Various aspects of the film construct and strategy are systematically probed using amperometry, voltammetry, and solid-state electronic conductivity measurements, including the effects of MPC peripheral chain length, MPC functionalization via place-exchange reaction, MPC core size, and the MPC density or concentration within the xerogel composite films. The collective results of these experiments support the proposed mechanism and identify interparticle spacing and the electronic communication through the MPC network is the most significant factor in the sensing scheme with the diffusional aspects of the mechanism that may be affected by film/MPC hydrophobicity and functionality (i.e., glucose and H2O2 diffusion) shown to be less substantial contributors to the overall enhanced performance. Understanding the structure-function relationships of effective sensing schemes allows for the employment of the strategy for future biosensor design toward clinically relevant targets.

  4. School-based mental health intervention for children in war-affected Burundi: a cluster randomized trial

    PubMed Central

    2014-01-01

    Background Armed conflicts are associated with a wide range of impacts on the mental health of children and adolescents. We evaluated the effectiveness of a school-based intervention aimed at reducing symptoms of posttraumatic stress disorder, depression, and anxiety (treatment aim); and improving a sense of hope and functioning (preventive aim). Methods We conducted a cluster randomized trial with 329 children in war-affected Burundi (aged 8 to 17 (mean 12.29 years, standard deviation 1.61); 48% girls). One group of children (n = 153) participated in a 15-session school-based intervention implemented by para-professionals, and the remaining 176 children formed a waitlist control condition. Outcomes were measured before, one week after, and three months after the intervention. Results No main effects of the intervention were identified. However, longitudinal growth curve analyses showed six favorable and two unfavorable differences in trajectories between study conditions in interaction with several moderators. Children in the intervention condition living in larger households showed decreases on depressive symptoms and function impairment, and those living with both parents showed decreases on posttraumatic stress disorder and depressive symptoms. The groups of children in the waitlist condition showed increases in depressive symptoms. In addition, younger children and those with low levels of exposure to traumatic events in the intervention condition showed improvements on hope. Children in the waitlist condition who lived on their original or newly bought land showed improvements in hope and function impairment, whereas children in the intervention condition showed deterioration on these outcomes. Conclusions Given inconsistent effects across studies, findings do not support this school-based intervention as a treatment for posttraumatic stress disorder and depressive symptoms in conflict-affected children. The intervention appears to have more consistent

  5. Nitrogen and Phosphorus Loads in an Agricultural Watershed Affected by Poultry Litter Application and Wastewater Effluent, Northeastern Oklahoma and Northwestern Arkansas, 2002-2009

    NASA Astrophysics Data System (ADS)

    Esralew, R.; Tortorelli, R. L.

    2010-12-01

    The Eucha-Spavinaw Basin in Northeastern Oklahoma and Northwestern Arkansas is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the city of Tulsa, Oklahoma. Lake Eucha and Spavinaw Lakes have experienced deteriorating water quality largely due to growth of algae, notably cyanobacteria, from the excess input of nutrients. As a result, the city of Tulsa has spent millions of dollars to eliminate taste and odor problems resulting from production of algal and bacterial byproducts. To evaluate changes in nutrient loading resulting from a reduction in land application of poultry litter, installation of best management practices, and reductions in the phosphorus concentrations in wastewater effluent, the U.S. Geological Survey investigated nitrogen and phosphorus concentrations from samples collected during baseflow and runoff and used regression models to estimate nitrogen and phosphorus loads, yields, and flow-weighted concentrations in two major tributaries to Lake Eucha, Spavinaw and Beaty Creeks, for the period 2002-2009. Estimated mean flow-weighted total unfiltered nitrogen and phosphorus concentrations in the basin were about 5 to 10 times greater than the 75th percentile of flow-weighted nutrient concentrations in other mostly undeveloped basins of the United States. Spavinaw and Beaty Creeks contributed an estimated mean annual total load of about 762,500 kilograms of nitrogen and 49,200 kilograms of phosphorus per year, 76 to 91 percent of which was transported to Lake Eucha by runoff. Thirty-four percent of the nitrogen load and 48 percent of the phosphorus load to Lake Eucha occurred during the year 2008 which was the wettest year on record for the Eucha-Spavinaw Basin. The results of this analysis indicate that although efforts were made to control nutrient loading, nutrient concentrations, especially phosphorus, were substantially augmented by non-point sources and that most loading occurs during runoff events

  6. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    SciTech Connect

    Moon, Joonoh Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasing δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.

  7. Successive chlorothalonil applications inhibit soil nitrification and discrepantly affect abundances of functional genes in soil nitrogen cycling.

    PubMed

    Teng, Ying; Zhang, Manyun; Yang, Guangmei; Wang, Jun; Christie, Peter; Luo, Yongming

    2017-02-01

    Broad-spectrum fungicide chlorothalonil (CTN) is successively applied into intensive agriculture soil. However, the impacts of successive CTN applications on soil nitrification and related microorganisms remain poorly understood. A microcosm study was conducted to reveal the effects of successive CTN applications on soil nitrification and functional genes involved in soil nitrogen (N) cycling. The CTN at the dosages of 5 mg kg(-1) dry soil (RD) and 25 mg kg(-1) dry soil (5RD) was successively applied into the test soil at 7-day intervals which resulted in the accumulations of CTN residues. After 28 days of incubation, CTN residues in the RD and 5RD treatments were 3.14 and 69.7 mg kg(-1) dry soil respectively. Net nitrification rates in the RD and 5RD treatments were lower than that obtained from the blank control (CK). Real-time PCR analysis revealed that AOA and AOB amoA gene abundances were significantly decreased by CTN applications. Moreover, CTN applications also discrepantly decreased the abundances of functional genes involved in soil denitrification, with the exception of nosZ gene. Principal component analysis further supported the observation that successive CTN applications could result in enhanced ecological toxicity.

  8. Comparison of organic matter composition in agricultural versus forest affected headwaters with special emphasis on organic nitrogen.

    PubMed

    Heinz, Marlen; Graeber, Daniel; Zak, Dominik; Zwirnmann, Elke; Gelbrecht, Joerg; Pusch, Martin T

    2015-02-17

    Agricultural management practices promote organic matter (OM) turnover and thus alter both the processing of dissolved organic matter (DOM) in soils and presumably also the export of DOM to headwater streams, which intimately connect the terrestrial with the aquatic environment. Size-exclusion chromatography, in combination with absorbance and emission matrix fluorometry, was applied to assess how agricultural land use alters the amount and composition of DOM, as well as dissolved organic nitrogen (DON) forms in headwater streams, including temporal variations, in a temperate region of NE Germany. By comparing six agriculturally and six forest-impacted headwater streams, we demonstrated that agriculture promotes increased DOC and DON concentrations, entailing an even more pronounced effect on DON. The major part of DOC and DON in agricultural and forest reference streams is exported in the form of humic-like material with high molecular weight, which indicates terrestrial, i.e., allochthonous sources. As an obvious difference in agricultural streams, the contribution of DOC and particularly DON occurring in the form of nonhumic high-molecular-weight, presumably proteinous material is clearly elevated. Altogether, DOM in agricultural headwaters is mainly complex-soil-derived and aromatic material with a low C:N ratio, which is more microbial processed than its counterpart from forest reference catchments. Our results emphasize the importance of agricultural land use on DOM loss from soils and identify agricultural soils as important DOC and particularly DON sources to headwater streams.

  9. Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics.

    PubMed

    Fang, Bing; Jiang, Ying; Nüsslein, Klaus; Rotello, Vincent M; Santore, Maria M

    2015-01-01

    This work examines how the antimicrobial (killing) activity of net-negative surfaces depends on the presentation of antimicrobial cationic functionality: distributed versus clustered, and flat clusters versus raised clusters. Specifically, the ability to kill Staphylococcus aureus by sparsely distributed 10 nm cationic nanoparticles, immobilized on a negative surface and backfilled with a PEG (polyethylene glycol) brush, was compared with that for a dense layer of the same immobilized nanoparticles. Additionally, sparsely distributed 10 nm poly-L-lysine (PLL) coils, adsorbed to a surface to produce flat cationic "patches" and backfilled with a PEG brush were compared to a saturated adsorbed layer of PLL. The latter resembled classical uniformly cationic antimicrobial surfaces. The protrusion of the cationic clusters substantially influenced killing but the surface concentration of the clusters had minor impact, as long as bacteria adhered. When surfaces were functionalized at the minimum nanoparticle and patch densities needed for bacterial adhesion, killing activity was substantial within 30 min and nearly complete within 2 h. Essentially identical killing was observed on more densely functionalized surfaces. Surfaces containing protruding (by about 8 nm) nanoparticles accomplished rapid killing (at 30 min) compared with surfaces containing similarly cationic but flat features (PLL patches). Importantly, the overall surface density of cationic functionality within the clusters was lower than reported thresholds for antimicrobial action. Also surprising, the nanoparticles were far more deadly when surface-immobilized compared with free in solution. These findings support a killing mechanism involving interfacial stress.

  10. Partial shading of lateral branches affects growth, and foliage nitrogen- and water-use efficiencies in the conifer Cunninghamia lanceolata growing in a warm monsoon climate.

    PubMed

    Dong, Tingfa; Li, Junyu; Zhang, Yuanbin; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-06-01

    The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment(0), Treatment(50%), Treatment(75%) and Treatment(90%), and Shaded(0), Shaded(50%), Shaded(75%) and Shaded(90%) for the shaded branches and Sunlit(0), Sunlit(50%), Sunlit(75%) and Sunlit(90%) for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies. © The Author 2015. Published by Oxford

  11. How climatic conditions, site, and soil characteristics affect tree growth and critical loads of nitrogen for northeastern tree species

    Treesearch

    Molly J. Robin-Abbott; Linda H. Pardo

    2017-01-01

    Forest health is affected by multiple factors, including topography, climate, and soil characteristics, as well as pests, pathogens, competitive interactions, and anthropogenic deposition. Species within a stand may respond differently to site factors depending on their physiological requirements for growth, survival, and regeneration. We determined optimal ranges of...

  12. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.

    PubMed

    Correia, Carlos M; Coutinho, João F; Bacelar, Eunice A; Gonçalves, Berta M; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  13. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger.

    PubMed Central

    Kudla, B; Caddick, M X; Langdon, T; Martinez-Rossi, N M; Bennett, C F; Sibley, S; Davies, R W; Arst, H N

    1990-01-01

    The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans has been sequenced and its transcript mapped and orientated. A single ORF can encode a protein of 719 amino acids. A 52 amino acid region including a putative 'zinc finger' strongly resembles putative DNA binding regions of the major regulatory protein of erythroid cells. The derived protein sequence also contains a highly acidic region possibly involved in gene activation and 22 copies of the motif S(T)PXX, abundant in DNA binding proteins. Analysis of chromosomal rearrangements and transformation with deletion clones identified 342 N-terminal and 124 C-terminal residues as inessential and localized a C-terminal region required for nitrogen metabolite repressibility. A -1 frameshift eliminating the inessential 122 C-terminal amino acids is a surprising loss-of-function mutation. Extraordinary basicity of the replacement C terminus might explain its phenotype. Mutant sequencing also identified a polypeptide chain termination and several missense mutations, but most interesting are sequence changes associated with specificity mutations. A mutation elevating expression of some structural genes under areA control whilst reducing or not affecting expression of others is a leucine to valine change in the zinc finger loop. It reverts to a partly reciprocal phenotype by replacing the mutant valine by methionine. Images Fig.2 Fig.4 Fig.5 Fig. 8. Fig. 9. PMID:1970293

  14. Productivity and quality of sugar beet as affecting by sowing methods, weed control treatments and nitrogen fertilizer levels.

    PubMed

    Seadh, S E; Attia, A N; Said, E M; El-Maghraby, Samia S; Ibrahim, M E M

    2013-08-01

    Two field experiments were carried out at Kafr El-Hamam Research Station, Zagazig district, Sharkia Governorate, Agricultural Research Center, Egypt, during 2008/2009 and 2009/2010 seasons to study the effect of sowing methods (manual and mechanical), weed control treatments (one hoeing, Goltix 70 WG (metamitron), Goltix+one hoeing and two hoeing) and nitrogen fertilizer levels (60, 80 and 100 kg N/fed) on yield, its components and quality of sugar beet cv. Hanrike. The obtained results could be summarized as follows; Mechanical sowing method of sugar beet significantly surpassed the traditional sowing method in root and foliage fresh weights/plant, root/top ratio, root length and diameter, root, top and sugar yields/fed in both seasons. Sowing methods showed significant effect on TSS, sucrose and purity percentages in both seasons, except purity% in the second season. Controlling weeds by two hand hoeings significantly recorded the highest values of root, top and sugar yields/fed and its components and purity percentage in both seasons. However, the highest percentages of TSS and sucrose were achieved from controlling weed by one hand hoeing in both seasons. Fertilizing sugar beet plants with 100 kg N/fed significantly increased yields and its components and markedly recorded the highest values in both seasons. From the obtained, it can be concluded that sowing sugar beet using mechanical sowing method (planter machine), controlling weeds by hand hoeing and mineral fertilizing with 100 kg N/fed could be recommended in order to maximize its productivity and quality under the environmental conditions of Sharkia Governorate, Egypt.

  15. Factors affecting the formation of nitrogenous disinfection by-products during chlorination of aspartic acid in drinking water.

    PubMed

    Chen, Wei; Liu, Zhigang; Tao, Hui; Xu, Hang; Gu, Yanmei; Chen, Zhaolin; Yu, Jingjing

    2017-01-01

    The formation of emerging nitrogenous disinfection by-products (N-DBPs) from the chlorination of aspartic acid (Asp) was investigated. The yield of dichloroacetonitrile (DCAN) was higher than other N-DBPs, such as dichloroacetamide(DCAcAm) and chloropicrin (TCNM) during the chlorination of Asp. The formation of DCAN, DCAcAm, and TCNM all showed a trend of first increasing and then decreasing during the chlorination of Asp with increasing contact time. The dosage of chlorine had an impact on the formation of DCAN, DCAcAm, and TCNM. The highest yields of DCAN and DCAcAm appeared when the Cl2/Asp molar ratio was about 20, the yield of TCNM increased with increasing the Cl2/Asp molar ratio from 5 to 30 and TCNM was not produced when the ratio was less than 5. Cyanogen chloride (CNCl) was detected when the Cl2/Asp molar ratio was lower than 5. N-DBPs formation was influenced by pH. DCAN formation increased with increasing pH from 5 to 6 and then decreased with increasing pH from 6 to 9, but DCAcAm and TCNM increased with increasing pH from 5 to 8 and then decreased. Higher temperatures reduced the formation of DCAN and DCAcAm, but increased TCNM formation. DCAN and DCAcAm formation decreased, and relatively stable TCNM formation increased, with increasing free chlorine contact time during chloramination. N-nitrosodimethylamine (NDMA) was produced during chloramination of Asp and increased with prolonged chloramination contact time. The presence of bromide ions enhanced the yields of haloacetonitriles and shifted N-DBPs to more brominated species.

  16. Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of eastern Tibet Plateau.

    PubMed

    Wu, Qiqian; Wu, Fuzhong; Yang, Wanqin; Zhao, Yeyi; He, Wei; Tan, Bo

    2014-01-01

    There is increasing attention on the effects of seasonal snowpack on wintertime litter decomposition, as well as the processes following it, in cold biomes. However, little information is available on how litter nitrogen (N) dynamics vary with snowpack variations created by tree crown canopies in alpine forests. Therefore, to understand the effects of seasonal snowpack on litter N dynamics during different critical stages, litterbags with fir (Abies faxoniana), birch (Betula albo-sinensis), larch (Larix mastersiana) and cypress (Sabina saltuaria) foliar litter were placed on the forest floor beneath snowpack created by forest gaps in the eastern Tibet Plateau. The litterbags were sampled at the onset of freezing, deep freezing, thawing and growing stages from October 2010 to October 2012. Mass loss and N concentrations in litter were measured. Over two years of decomposition, N release occurred mainly during the first year, especially during the first winter. Litter N release rates (both in the first year and during the entire two-year decomposition study period) were higher in the center of canopy gaps than under closed canopy, regardless of species. Litter N release rates in winter were also highest in the center of canopy gaps and lowest under closed canopy, regardless of species, however the reverse was found during the growing season. Compared with broadleaf litter, needle litter N release comparisons of gap center to closed canopy showed much stronger responses to the changes in snow cover in winter and availability of sunshine during the growing season. As the decomposition proceeded, decomposing litter quality, microbial biomass and environmental temperature were important factors related to litter N release rate. This suggests that if winter warm with climate change, reduced snow cover in winter might slow down litter N release in alpine forest.

  17. Stream-aquifer and in-stream processes affecting nitrogen along a major river and contributing tributary.

    PubMed

    Huizenga, Alexander; Bailey, Ryan T; Gates, Timothy K

    2017-04-01

    This study assesses the spatio-temporal patterns of water and nutrient mass exchange in a stream-riparian system of a major river and a contributing tributary in an irrigated semi-arid region. Field monitoring is performed along reaches of the Arkansas River (4.7km) and Timpas Creek (2.0km) in southeastern Colorado during the 2014 growing season, with water quantity and water quality data collected using a network of in-stream sampling sites and groundwater monitoring wells. Mass balance approaches were used to identify temporal and spatial trends in flow, nitrogen (N), and salinity in stream-aquifer exchange. In the Arkansas River, percent decrease of N concentration along the study reach averaged 36% over the period, with results from a stochastic mass balance simulation indicating a 90% probability that 44% to 50% of NO3-N mass in the study reach (109-124kg/day/km) was removed by in-stream processes between 1 September and 8 November. Results suggest that contact with organic-rich river bed sediments has a strong impact on N removal. A greater decrease in concentrations of NO3-N along the reach during the low flow period suggests the effect of both in-stream processes and dilution by inflowing groundwater that undergoes denitrification as it flows through the riparian and hyporheic zones into the river. In contrast, N concentration decreases in the smaller Timpas Creek were negligible. Results for the Arkansas River also are in contrast with other large agriculturally-influenced rivers, which have not exhibited capacity to remove N at significant rates. Results provide important insights across spatial and temporal scales and point to the need for investigating nutrient dynamics in large streams draining agriculturally-dominated watersheds.

  18. Stream-aquifer and in-stream processes affecting nitrogen along a major river and contributing tributary

    NASA Astrophysics Data System (ADS)

    Huizenga, Alexander; Bailey, Ryan T.; Gates, Timothy K.

    2017-04-01

    This study assesses the spatio-temporal patterns of water and nutrient mass exchange in a stream-riparian system of a major river and a contributing tributary in an irrigated semi-arid region. Field monitoring is performed along reaches of the Arkansas River (4.7 km) and Timpas Creek (2.0 km) in southeastern Colorado during the 2014 growing season, with water quantity and water quality data collected using a network of in-stream sampling sites and groundwater monitoring wells. Mass balance approaches were used to identify temporal and spatial trends in flow, nitrogen (N), and salinity in stream-aquifer exchange. In the Arkansas River, percent decrease of N concentration along the study reach averaged 36% over the period, with results from a stochastic mass balance simulation indicating a 90% probability that 44% to 50% of NO3-N mass in the study reach (109-124 kg/day/km) was removed by in-stream processes between 1 September and 8 November. Results suggest that contact with organic-rich river bed sediments has a strong impact on N removal. A greater decrease in concentrations of NO3-N along the reach during the low flow period suggests the effect of both in-stream processes and dilution by inflowing groundwater that undergoes denitrification as it flows through the riparian and hyporheic zones into the river. In contrast, N concentration decreases in the smaller Timpas Creek were negligible. Results for the Arkansas River also are in contrast with other large agriculturally-influenced rivers, which have not exhibited capacity to remove N at significant rates. Results provide important insights across spatial and temporal scales and point to the need for investigating nutrient dynamics in large streams draining agriculturally-dominated watersheds.

  19. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  20. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control.

    PubMed

    Rideout, J W; Raper, C D

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  1. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  2. Experimental Air Warming of a Stylosanthes capitata, Vogel Dominated Tropical Pasture Affects Soil Respiration and Nitrogen Dynamics

    PubMed Central

    Gonzalez-Meler, Miquel A.; Silva, Lais B. C.; Dias-De-Oliveira, Eduardo; Flower, Charles E.; Martinez, Carlos A.

    2017-01-01

    Warming due to global climate change is predicted to reach 2°C in tropical latitudes. There is an alarming paucity of information regarding the effects of air temperature on tropical agroecosystems, including foraging pastures. Here, we investigated the effects of a 2°C increase in air temperature over ambient for 30 days on an established tropical pasture (Ribeirão Preto, São Paulo, Brazil) dominated by the legume Stylosanthes capitata Vogel, using a T-FACE (temperature free-air controlled enhancement) system. We tested the effects of air warming on soil properties [carbon (C), nitrogen (N), and their stable isotopic levels (δ13C and δ15N), as well as soil respiration and soil enzymatic activity] and aboveground characteristics (foliar C, N, δ13C, δ15N, leaf area index, and aboveground biomass) under field conditions. Results show that experimental air warming moderately increased soil respiration rates compared to ambient temperature. Soil respiration was positively correlated with soil temperature and moisture during mid-day (when soil respiration was at its highest) but not at dusk. Foliar δ13C were not different between control and elevated temperature treatments, indicating that plants grown in warmed plots did not show the obvious signs of water stress often seen in warming experiments. The 15N isotopic composition of leaves from plants grown at elevated temperature was lower than in ambient plants, suggesting perhaps a higher proportion of N-fixation contributing to tissue N in warmed plants when compared to ambient ones. Soil microbial enzymatic activity decreased in response to the air warming treatment, suggesting a slower decomposition of organic matter under elevated air temperature conditions. Decreased soil enzyme capacity and increases in soil respiration and plant biomass in plots exposed to high temperature suggest that increased root activity may have caused the increase seen in soil respiration in this tropical pasture. This response

  3. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs.

    PubMed

    Jha, R; Leterme, P

    2012-04-01

    To study the fermentation characteristics of different non-conventional dietary fibre (DF) sources with varying levels of indigestible CP content and their effects on the production of fermentation metabolites and on faecal nitrogen (N) excretion, an experiment was conducted with 40 growing pigs (initial BW 23 kg) using wheat bran (WB), pea hulls (PH), pea inner fibres (PIF), sugar beet pulp (SBP) or corn distillers dried grains with solubles (DDGS). The diets also contained soya protein isolate, pea starch and sucrose, and were supplemented with vitamin-mineral premix. Faecal samples were collected for 3 consecutive days from day 10, fed with added indigestible marker (chromic oxide) for 3 days from day 13 and pigs were slaughtered on day 16 from the beginning of the experiment. Digesta from the ileum and colon were collected and analysed for short-chain fatty acids (SCFA) and ammonia (NH3) content. The apparent total tract N digestibility was the lowest (P < 0.001) in diets based on DDGS (74%), medium in diets with WB and SBP (76% each) and highest in those with PIF and PH (79% and 81%, respectively). Expressed per kg fermented non-starch polysaccharides (NSP), faecal N excretion was higher with DDGS and WB diets (130 and 113 g/kg NSP fermented, respectively) and lower with PIF, PH and SBP diets (42, 52 and 55 g/kg NSP fermented, respectively). The PH-based diets had the highest (P < 0.05) SCFA concentrations, both in the ileum and the colon (27 and 122 mMol/kg digesta, respectively). The highest NH3 concentration was also found in the colon of pigs fed with PH (132 mMol/kg digesta). Loading plot of principle component analysis revealed that the CP : NSP ratio was positively related with faecal N excretion and NH3 concentration in colon contents, whereas negatively related with SCFA concentration in colon contents. In conclusion, pea fibres and SBP increased SCFA and reduced NH3 concentration in the pig's intestine and reduced faecal N excretion, which makes pea

  4. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Stevens, William B

    2008-01-01

    Management practices can influence soil CO(2) emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO(2) flux, temperature, water, and C content at the 0- to 20-cm depth from May to November 2005 at two sites in the northern Great Plains. Treatments were two irrigation systems (irrigated vs. non-irrigated) and six management practices that contained tilled and no-tilled malt barley (Hordeum vulgaris L.) with 0 to 134 kg N ha(-1), no-tilled pea (Pisum sativum L.), and a conservation reserve program (CRP) planting applied in Lihen sandy loam (sandy, mixed, frigid, Entic Haplustolls) in western North Dakota. In eastern Montana, treatments were no-tilled malt barley with 78 kg N ha(-1), no-tilled rye (Secale cereale L.), no-tilled Austrian winter pea, no-tilled fallow, and tilled fallow applied in dryland Williams loam (fine-loamy, mixed Typic Argiborolls). Irrigation increased CO(2) flux by 13% compared with non-irrigation by increasing soil water content in North Dakota. Tillage increased CO(2) flux by 62 to 118% compared with no-tillage at both places. The flux was 1.5- to 2.5-fold greater with tilled than with non-tilled treatments following heavy rain or irrigation in North Dakota and 1.5- to 2.0-fold greater with crops than with fallow following substantial rain in Montana. Nitrogen fertilization increased CO(2) flux by 14% compared with no N fertilization in North Dakota and cropping increased the flux by 79% compared with fallow in no-till and 0 kg N ha(-1) in Montana. The CO(2) flux in undisturbed CRP was similar to that in no-tilled crops. Although soil C content was not altered, management practices influenced CO(2) flux within a short period due to changes in soil temperature, water, and nutrient contents. Regardless of irrigation, CO(2) flux can be reduced from croplands to a level similar to that in CRP planting using no

  5. A gene cluster required for coordinated biosynthesis of lipopolysaccharide and extracellular polysaccharide also affects virulence of Pseudomonas solanacearum.

    PubMed Central

    Kao, C C; Sequeira, L

    1991-01-01

    Bacterial cell surface components can be important determinants of virulence. At least three gene clusters important for extracellular polysaccharide (EPS) biosynthesis have been previously identified in the plant pathogen Pseudomonas solanacearum. We have found that one of these gene clusters, named ops, is also required for lipopolysaccharide (LPS) biosynthesis. Mutations in any complementation unit of this cluster decreased EPS production, prevented the binding of an LPS-specific phage, and altered the mobility of purified LPS in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, restoration of LPS biosynthesis alone was not sufficient to restore virulence to the wild-type level, suggesting that EPS is important for pathogenesis. Images FIG. 2 FIG. 3 PMID:1744040

  6. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water.

    PubMed

    Jia, Aiyin; Wu, Chunde; Duan, Yan

    2016-05-05

    This study investigated the precursors and factors affecting formation of haloacetonitriles (HANs) and chloropicrin (TCNM) during chlorination/chloramination of eight amino acids in the effluent water of V-type clarifying filtration from a drinking water treatment plant. The yields of trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN) and TCNM were higher during chlorination than during chloramination. Tyrosine and tryptophan produced the greatest amount of DCAN and also generated a small amount of TCAN during chlorination process. Besides, the yields of DCAN were higher than TCNM during chlorination/chloramination. Contact time, Cl2:org-N molar ratios, pH, temperature and bromide ion affected nitrogenous disinfection by-products (N-DBPs) formation during chlorination of tryptophan in different degrees. TCAN, DCAN and TCNM formation showed the increasing and then decreasing with prolonged contact time. Higher Cl2:org-N molar ratios improved N-DBPs formation within a certain range. The pH affected N-DBPs formation differently. HANs increased with increasing pH from 5 to 6 and decreased with increasing pH from 6 to 9, while TCNM increased with increasing pH from 5 to 9. Higher temperatures enhanced TCNM formation, but reduced the formation of TCAN and DCAN. The presence of bromide ions improved the yields of HANs and TCNM and shifted N-DBPs to more brominated ones.

  7. A systematic review of factors affecting children’s right to health in cluster randomized trials in Kenya

    PubMed Central

    2014-01-01

    Following the South African case, Treatment Action Campaign and Others v Minister of Health and Others, the use of 'pilot’ studies to investigate interventions already proven efficacious, offered free of charge to government, but confined by the government to a small part of the population, may violate children’s right to health, and the negative duty on governments not to prevent access to treatment. The applicants challenged a government decision to offer Nevirapine in a few pilot sites when evidence showed Nevirapine significantly reduced HIV transmission rates and despite donor offers of a free supply. The government refused to expand access, arguing they needed to collect more information, and citing concerns about long-term hazards, side effects, resistance and inadequate infrastructure. The court ruled this violated children’s right to health and asked the government to immediately expand access. Cluster randomized trials involving children are increasingly popular, and are often used to reduce 'contamination’: the possibility that members of a cluster adopt behavior of other clusters. However, they raise unique issues insufficiently addressed in literature and ethical guidelines. This case provides additional crucial guidance, based on a common human rights framework, for the Kenyan government and other involved stakeholders. Children possess special rights, often represent a 'captive’ group, and so motivate extra consideration. In a systematic review, we therefore investigated whether cluster trial designs are used to prevent or delay children’s access to treatment in Kenya or otherwise inconsistently with children’s right to health as outlined in the above case. Although we did not find state sponsored cluster trials, most had significant public sector involvement. Core obligations under children’s right to health were inadequately addressed across trials. Few cluster trials reported rationale for cluster randomization, offered post- trial

  8. Tn5-induced mutants of Azotobacter vinelandii affected in nitrogen fixation under Mo-deficient and Mo-sufficient conditions

    SciTech Connect

    Joerger, R.D.; Premakumar, R.; Bishop, P.E.

    1986-11-01

    Mutants of Azotobacter vinelandii affected in N/sub 2/ fixation in the presence of 1 ..mu..M Na/sub 2/MoO/sub 4/ (conventional system), 50 nM V/sub 2/O/sub 5/, or under Mo deficiency (alternative system) have been isolated after Tn5 mutagenesis with the suicide plasmid pSUP1011. These mutants are grouped into four broad phenotypic classes. Mutants in the first class are Nif/sup -/ under Mo sufficiency but Nif/sup +/ under Mo deficiency or in the presence of V/sub 2/O/sub 5/. Mutants in the second class are Nif/sup -/ under all conditions. An FeMo-cofactor-negative mutant (NifB/sup -/) belongs to this class. The third mutant class consists of mutants incapable of N/sub 2/-dependent growth under Mo deficiency. Most of the mutants of this class are also affected in N/sub 2/ fixation in the presence of 1 ..mu..M Na/sub 2/MoO/sub 4/, with acetylene reduction rates ranging from 28 to 51% of the rates of the wild type. Strains constructed by genetic transfer of the Kan/sup r/ marker of mutants from this class into nifHDK or nifK deletion mutants showed N/sub 2/-dependent growth only in the presence of V/sup 2/O/sub 5/. The only mutant in the fourth class shows wild-type nitrogenase activity under Mo sufficiency, but only 10% of the acetylene reduction activity of the wild type in the presence of 50 nM V/sub 2/O/sub 5/. The acetylene reduction rates of whole cells of this mutant are identical in Mo-deficient medium and in medium containing V/sub 2/O/sub 5/. The conventional nitrogenase subunits are expressed in this mutant even under Mo deficiency or in the presence of V/sub 2/O/sub 5/; however, the NH/sub 4//sup +/-and Mo-repressible proteins normally seen under these conditions could not be detected on two-dimensional gels.

  9. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  10. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  11. Preferential flow, nitrogen transformations and 15N balance under urine-affected areas of irrigated and non-irrigated clover-based pastures

    NASA Astrophysics Data System (ADS)

    Pakro, Naser; Dillon, Peter

    1995-12-01

    Urine-affected areas can lead to considerable losses of N by leaching, ammonia volatilisation and denitrification from dairy pastures in the southeast of South Australia. Potable groundwater supplies are considered to have become contaminated by nitrate as a result of leaching from these leguminous pastures. Dairy cow urine, labelled with 15N urea, was applied to micro-plots and mini-lysimeters installed in two adjacent irrigated (white clover-rye grass) and non-irrigated (subterranean clover-annual grasses) paddocks of a dairy farm on four occasions representing different seasonal conditions. These experiments allowed measurement of nitrogen transformations, recovery of 15N in the pasture and soil, and leaching below various depths. Gaseous losses were calculated from the nitrogen balance. The results of the four experiments showed that within a day of urine application up to 40% of the applied urinary-N was leached below a depth of 150 mm as a result of macropore flow in the irrigated paddock, and up to 24% in the non-irrigated one. After application to the irrigated paddock 17% of the urinary-N moved immediately below 300 mm but only 2% below the 450-mm depth. The urinary-N remaining in the soil was converted from urea to ammonium within a day regardless of season. Within the first 7 days of application six times more nitrate was produced in summer than in winter. This has obvious implications for leaching potential. Leaching of 15N from the top 150 mm of soil, following urine applications in all seasons, was between 41% and 62% of the applied 15N in the irrigated paddock and 25-51% in the non-irrigated paddock. However, leaching losses measured at depths of 300 or 450 mm were smaller by a factor of 2-4. The leaching loss of 15N applied in spring in both paddocks was 41% below 150 mm and 12% below 450 mm. Recovery of 15N from the soil-plant system in the 450-nm deep lysimeters was ˜60% of that applied. Estimated ammonia was ˜9% of applied 15N with no paddock

  12. Cropping systems affect paddy soil organic carbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China.

    PubMed

    Zhang, Tao; Chen, Anqiang; Liu, Jian; Liu, Hongbin; Lei, Baokun; Zhai, Limei; Zhang, Dan; Wang, Hongyuan

    2017-12-31

    The accumulation of soil organic carbon (SOC) in agricultural soils is critical to food security and climate change. However, there is still limited information on the dynamic trend of SOC sequestration following changes in cropping systems. Paddy soils, typical of temperate region of southern China, have a large potential for carbon (C) sequestration and nitrogen (N) fixation. It is of great importance to study the impacts of changes in cropping systems on stocks of SOC and total nitrogen (TN) in paddy soils. A six-year field experiment was conducted to clarify the dynamics of SOC and TN stocks in the paddy topsoil (0-20cm) when crop rotation of rice (Oryza sativa L.) -garlic (Allium sativum) (RG) was changed to rice-fava (Vicia faba L.) (RF), and to examine how the dynamics were affected by two N management strategies. The results showed that SOC stocks increased by 24.9% in the no N (control) treatment and by 18.9% in the treatment applied with conventional rate of N (CON), when RG was changed to RF. Correspondingly, TN stocks increased by 8.5% in the control but decreased by 2.6% in the CON. Compared with RG, RF was more conducive to increase the contents of soil microbial biomass C and N. Moreover, changing the cropping system from RG to RF increased the year-round N use efficiency from 21.6% to 34.4% and reduced soil N surplus in the CON treatment from 547kg/ha to 93kg/ha. In conclusion, changes in the cropping system from RG to RF could markedly increase SOC stocks, improve N utilization, reduce soil N surplus, and thus reduce the risk of N loss in the paddy soil. Overall, this study showed the potential of paddy agro-ecological systems to store C and maintain N stocks in the temperate regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling.

    PubMed

    Berthrong, Sean T; Buckley, Daniel H; Drinkwater, Laurie E

    2013-07-01

    We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ((13)C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 (-) as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.

  14. Induced lung inflammation and dietary protein supply affect nitrogen retention and amino acid metabolism in growing pigs.

    PubMed

    Kampman-van de Hoek, Esther; Sakkas, Panagiotis; Gerrits, Walter J J; van den Borne, Joost J G C; van der Peet-Schwering, Carola M C; Jansman, Alfons J M

    2015-02-14

    It is hypothesised that during immune system activation, there is a competition for amino acids (AA) between body protein deposition and immune system functioning. The aim of the present study was to quantify the effect of immune system activation on N retention and AA metabolism in growing pigs, depending on dietary protein supply. A total of sixteen barrows received an adequate (Ad) or restricted (Res) amount of dietary protein, and were challenged at day 0 with intravenous complete Freund's adjuvant (CFA). At days - 5, 3 and 8, an irreversible loss rate (ILR) of eight AA was determined. CFA successfully activated the immune system, as indicated by a 2- to 4-fold increase in serum concentrations of acute-phase proteins (APP). Pre-challenge C-reactive protein concentrations were lower (P< 0·05) and pre- and post-challenge albumin tended to be lower in Res-pigs. These findings indicate that a restricted protein supply can limit the acute-phase response. CFA increased urinary N losses (P= 0·04) and tended to reduce N retention in Ad-pigs, but not in Res-pigs (P= 0·07). The ILR for Val was lower (P= 0·05) at day 8 than at day 3 in the post-challenge period. The ILR of most AA, except for Trp, were strongly affected by dietary protein supply and positively correlated with N retention. The correlations between the ILR and APP indices were absent or negative, indicating that changes in AA utilisation for APP synthesis were either not substantial or more likely outweighed by a decrease in muscle protein synthesis during immune system activation in growing pigs.

  15. Formation of Metal Clusters or Nitrogen-Bridged Adducts by Reaction of a Bis(amino)stannylene with Halides of Two-Valent Transition Metals.

    PubMed

    Veith, Michael; Müller, Alice; Stahl, Lothar; Nötzel, Martin; Jarczyk, Maria; Huch, Volker

    1996-06-19

    When the cyclic bis(amino)stannylene Me(2)Si(NtBu)(2)Sn is allowed to react with metal halides MX(2) (M = Cr, Fe, Co, Zn; X = Cl, Br [Zn]) adducts of the general formula [Me(2)Si(NtBu)(2)Sn.MX(2)](n) are obtained. The compounds are generally dimeric (n = 2) except the ZnBr(2) adduct, which is monomeric in benzene. The crystal structures of [Me(2)Si(NtBu)(2)Sn.CoCl(2)](2) (triclinic, space group &Pmacr;1; a = 8.620(9) Å, b = 9.160(9) Å, c = 12.280(9) Å, alpha = 101.2(1) degrees, beta = 97.6(1) degrees, gamma = 105.9(1) degrees, Z = 1) and of [Me(2)Si(NtBu)(2)Sn.ZnCl(2)](2) (monoclinic, space group P2(1)/c; a = 8.156(9) Å, b = 16.835(12) Å, c = 13.206(9) Å, beta = 94.27(6) degrees, Z = 2) were determined by X-ray diffraction techniques. The two compounds form similar polycyclic, centrosymmetrical assemblies of metal atoms bridged by chlorine or nitrogen atoms. While in the case of the cobalt compound Co is pentacoordinated by three chlorine and two nitrogen atoms, in the zinc derivative Zn is almost tetrahedrally coordinated by three chlorine atoms and one nitrogen atom. The iron derivative [Me(2)Si(NtBu)(2)Sn.FeCl(2)](2) seems to be isostructural with the cobalt compound as can be deduced from the crystal data (triclinic, a = 8.622(7) Å, b = 9.158(8) Å, c = 12.353(8) Å, alpha = 101.8(1) degrees, beta = 96.9(1) degrees, gamma = 105.9(1) degrees, Z = 1). If NiBr(2), PdCl(2), or PtCl(2) is combined with the stannylene, the reaction product is totally different: 4 equiv of the stannylene are coordinating per metal halide, forming the molecular compound [Me(2)Si(NtBu)(2)Sn](4)MX(2), which crystallizes with half a mole of benzene per molecular formula. The crystal structures of [Me(2)Si(NtBu)(2)Sn](4).NiBr(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.86(4) Å, c = 14.32(2) Å, Z = 16) and [Me(2)Si(NtBu)(2)Sn](4).PdCl(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.99(4) Å, c = 14.318(14) Å, Z = 16) reveal the two compounds to

  16. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling.

    PubMed

    Fouillet, Hélène; Mariotti, François; Gaudichon, Claire; Bos, Cécile; Tomé, Daniel

    2002-01-01

    We used a previously developed compartmental model to assess the postprandial distribution and metabolism of dietary nitrogen (N) in the splanchnic and peripheral areas after the ingestion of a single mixed meal containing either (15)N-labeled milk or soy purified protein. Although the lower whole-body retention of dietary N from soy protein was measured experimentally, the splanchnic retention of dietary N was predicted by the model not to be affected by the protein source, and its incorporation into splanchnic proteins was predicted to reach approximately 35% of ingested N at 8 h after both meals. However, dietary N intestinal absorption and its appearance in splanchnic free amino acids were predicted to be more rapid from soy protein and were associated with a higher deamination, concomitant with a higher efficiency of incorporation of dietary N into proteins in the splanchnic bed. In contrast, soy protein was predicted to cause a reduction in peripheral dietary N uptake, as a consequence of both similar splanchnic retention and increased oxidation compared with milk protein. In addition, protein synthesis efficiency was reduced in the peripheral area after soy protein intake, leading to dietary N incorporation in peripheral proteins that fell from 26 to 19% of ingested N 8 h after milk and soy protein ingestion, respectively. Such a model thus enables a description of the processes involved in the differential metabolic utilization of dietary proteins and constitutes a valuable tool for further definition of the notion of protein quality during the period of protein gain.

  17. Increased Phloem Transport of S-Methylmethionine Positively Affects Sulfur and Nitrogen Metabolism and Seed Development in Pea Plants1[W][OA

    PubMed Central

    Tan, Qiumin; Zhang, Lizhi; Grant, Jan; Cooper, Pauline; Tegeder, Mechthild

    2010-01-01

    Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set. PMID:20923886

  18. Effects of pre-treatment on the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input.

    PubMed

    Caceres, M Larry Lopez; Mizota, Chitoshi; Yamanaka, Toshiro; Nobori, Yoshihiro

    2011-11-15

    Temporal changes in the acquisition of nitrogen (N) are recorded in tree-rings together with unique N isotopic values. Some debate continues regarding the importance of wood pre-treatment in isotope analysis and, thus, this study focuses on the removal of labile components to determine the intrinsic nature of N in tree-rings. The total concentration and stable isotopic value of N in annual tree-rings were determined for two cores from Japanese black pine (Pinus thunbergii) from areas colonized by black cormorant (Phalacrocorax carbo). One core sample was also collected from a control site, without cormorants. Sharp increases in tree-ring δ(15)N values associated with migration of the cormorant population indicate positive incorporation of N from soils, whereas a less pronounced trend was observed for ring samples for periods without or substantially less migration, and for those obtained from the control site. All labile N components were removed by repeated extraction with toluene/ethanol (1:1) solution. Radial translocation of labile N is limited in tree-rings from Japanese black pine, providing intrinsic records on N acquisition. The difference in N isotopic values (up to 7.0‰) following pre-treatment was statistically significant for trees affected by the avian colony, whereas the pre-treatment of the control samples did not influence N values. The implication is that in agreement with previous studies pre-treatment is not necessary when trees are exposed to natural N concentrations in the soil but the removal of enriched δ(15)N labile components is necessary when woody plants are exposed to unusually high inputs of N into soils. However, the temporal trend in tree-ring δ(15)N series of the avian N affected trees did not change. Thus, if the priority is not the value but the trend then pre-treatment is not necessary.

  19. Differentially expressed microRNAs and affected biological pathways revealed by modulated modularity clustering (MMC) analysis of human preeclamptic and IUGR placentas

    PubMed Central

    Guo, Ling; Tsai, Shengdar; Harding, Nicholas; James, Andra; Motsinger-Reif, Alison; Thames, Betty; Stone, Eric; Deng, Changyan

    2013-01-01

    Introduction This study focuses on the implementation of modulated modularity clustering (MMC) a new cluster algorithm for the identification of molecular signatures of preeclampsia and intrauterine growth restriction (IUGR), and the identification of affected microRNAs Methods Eighty-six human placentas from normal (40), growth-restricted (27), and preeclamptic (19) term pregnancies were profiled using Illumina Human-6 Beadarrays. MMC was utilized to generate modules based on similarities in placental transcriptome. Gene Set Enrichment Analysis (GSEA) was used to predict affected microRNAs. Expression levels of these candidate microRNAs were investigated in seventy-one human term placentas as follows: control (29); IUGR (26); and preeclampsia (16). Results MMC identified two modules, one representing IUGR placentas and one representing preeclamptic placentas. 326 differentially expressed genes in the module representing IUGR and 889 differentially expressed genes in a module representing preeclampsia were identified. Functional analysis of molecular signatures associated with IUGR identified P13K/AKT, mTOR, p70S6K, apoptosis and IGF-1 signaling as being affected. Analysis of variance of GSEA-predicted microRNAs indicated that miR-194 was significantly down-regulated both in preeclampsia (p=0.0001) and IUGR (p=0.0304), and miR-149 was significantly down-regulated in preeclampsia (p=0.0168). Discussion Implementation of MMC, allowed identification of genes disregulated in IUGR and preeclampsia. The reliability of MMC was validated by comparing to previous linear modeling analysis of preeclamptic placentas. Conclusion MMC allowed the elucidation of a molecular signature associated with preeclampsia and a subset of IUGR samples. This allowed the identification of genes, pathways, and microRNAs affected in these diseases. PMID:23639576

  20. Hydrogeochemical variables regionalization--applying cluster analysis for a seasonal evolution model from an estuarine system affected by AMD.

    PubMed

    Grande, J A; Carro, B; Borrego, J; de la Torre, M L; Valente, T; Santisteban, M

    2013-04-15

    This study describes the spatial evolution of the hydrogeochemical parameters which characterise a strongly affected estuary by Acid Mine Drainage (AMD). The studied estuarine system receives AMD from the Iberian Pyrite Belt (SW Spain) and, simultaneously, is affected by the presence of an industrial chemical complex. Water sampling was performed in the year of 2008, comprising four sampling campaigns, in order to represent seasonality. The results show how the estuary can be divided into three areas of different behaviour in response to hydrogeochemical variables concentrations that define each sampling stations: on one hand, an area dominated by tidal influence; in the opposite end there is a second area including the points located in the two rivers headwaters that are not influenced by seawater; finally there is the area that can be defined as mixing zone. These areas are moved along the hydrological year due to seasonal chemical variations.

  1. Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen- and niobium-doped TiO2 and ZrO2.

    PubMed

    Schlexer, Philomena; Ruiz Puigdollers, Antonio; Pacchioni, Gianfranco

    2015-09-14

    The charge state of Ag and Au atoms and clusters (Ag4 and Au4, Ag5 and Au5) adsorbed on defective TiO2 anatase(101) and tetragonal ZrO2(101) has been systematically investigated as a function of oxide doping and defectivity using a DFT+U approach. As intrinsic defects, we have considered the presence of oxygen vacancies. As extrinsic defects, substitutional nitrogen- and niobium-doping have been investigated, respectively. Both surface and sub-surface defects and dopants have been considered. Whereas on surfaces with oxygen vacancies or Nb-doping, atoms and clusters may become negatively charged, N-doping always leads to the formation of positively charged adsorbates, independently of the supporting material (TiO2 or ZrO2). This suggests the possibility to tune the electronic properties of supported metal clusters by selective doping of the oxide support, an effect that may result in complete changes in chemical reactivity.

  2. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    PubMed

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Smoak, Joseph M.; Li, Wangping; Shi, Wei; Sheng, Yu; Zhao, Lin; Ding, Yongjian

    2017-07-01

    Many investigations of the preservation of soil organic carbon (SOC) in permafrost regions have examined roles of geomorphology, pedogenesis, vegetation cover, and permafrost within particular regions. However, it is difficult to disentangle the effects of multiple factors on the SOC in permafrost regions due to the heterogeneity in environmental conditions. Based on data from 73 soil study sites in permafrost regions of the eastern Qinghai-Tibetan Plateau, we developed a simple conceptual model, which relates SOC to topography, vegetation, and pedogenesis. We summarized the dominant factors and their controls on SOC using 31 measured soil physiochemical variables. Soil texture explains approximately 60% of the variations in the SOC stocks for the upper 0-2 m soil. Soil particle size closely correlates to soil moisture, which is an important determinant of SOC. Soil salinity and cations are important factors as well and can explain about 10% of the variations in SOC. The SOC and total nitrogen (TN) stocks for the 1-2 m depths have larger uncertainties than those of upper 1 m soil layer. The vegetation, pH, and bulk density mainly affects SOC and TN stocks for the upper 1 m soil layers, while the active layer thickness and soil particle size have greater influence on SOC and TN stocks for the 1-2 m soils. Our results suggest that the soil particle size is the most important controller of SOC pools, and the stocks of SOC and TN are strongly effected by soil development processes in the permafrost regions of the eastern Qinghai-Tibetan Plateau.

  4. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.

    PubMed

    Jespersen, David; Huang, Bingru

    2015-02-01

    Heat stress causes premature leaf senescence in cool-season grass species. The objective of this study was to identify proteins regulated by nitrogen, cytokinins, and ethylene inhibitor in relation to heat-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Plants (cv. Penncross) were foliar sprayed with 18 mM carbonyldiamide (N source), 25 μM aminoethoxyvinylglycine (AVG, ethylene inhibitor), 25 μM zeatin riboside (ZR, cytokinin), or a water control, and then exposed to 20/15°C (day/night) or 35/30°C (heat stress) in growth chambers. All treatments suppressed heat-induced leaf senescence, as shown by higher turf quality and chlorophyll content, and lower electrolyte leakage in treated plants compared to the untreated control. A total of 49 proteins were responsive to N, AVG, or ZR under heat stress. The abundance of proteins in photosynthesis increased, with ribulose-1,5-bisphosphate carboxylase/oxygenase affected by all three treatments, chlorophyll a/b-binding protein by AVG and N or Rubisco activase by AVG. Proteins for amino acid metabolism were upregulated, including alanine aminotransferase by three treatments and ferredoxin-dependent glutamate synthase by AVG and N. Upregulated proteins also included catalase by AVG and N and heat shock protein by ZR. Exogenous applications of AVG, ZR, or N downregulated proteins in respiration (enolase, glyceraldehyde 3-phosphate dehydrogenase, and succinate dehygrogenase) under heat stress. Alleviation of heat-induced senescence by N, AVG, or ZR was associated with enhanced protein abundance in photosynthesis and amino acid metabolism and stress defense systems (heat shock protection and antioxidants), as well as suppression of those imparting respiration metabolism.

  5. Water and nitrogen conditions affect the relationships of Delta13C and Delta18O to gas exchange and growth in durum wheat.

    PubMed

    Cabrera-Bosquet, Llorenç; Molero, Gemma; Nogués, Salvador; Araus, José Luis

    2009-01-01

    Whereas the effects of water and nitrogen (N) on plant Delta(13)C have been reported previously, these factors have scarcely been studied for Delta(18)O. Here the combined effect of different water and N regimes on Delta(13)C, Delta(18)O, gas exchange, water-use efficiency (WUE), and growth of four genotypes of durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] cultured in pots was studied. Water and N supply significantly increased plant growth. However, a reduction in water supply did not lead to a significant decrease in gas exchange parameters, and consequently Delta(13)C was only slightly modified by water input. Conversely, N fertilizer significantly decreased Delta(13)C. On the other hand, water supply decreased Delta(18)O values, whereas N did not affect this parameter. Delta(18)O variation was mainly determined by the amount of transpired water throughout plant growth (T(cum)), whereas Delta(13)C variation was explained in part by a combination of leaf N and stomatal conductance (g(s)). Even though the four genotypes showed significant differences in cumulative transpiration rates and biomass, this was not translated into significant differences in Delta(18)O(s). However, genotypic differences in Delta(13)C were observed. Moreover, approximately 80% of the variation in biomass across growing conditions and genotypes was explained by a combination of both isotopes, with Delta(18)O alone accounting for approximately 50%. This illustrates the usefulness of combining Delta(18)O and Delta(13)C in order to assess differences in plant growth and total transpiration, and also to provide a time-integrated record of the photosynthetic and evaporative performance of the plant during the course of crop growth.

  6. Timing of cluster light environment manipulation during grape development affects C13 norisoprenoid and carotenoid concentrations in Riesling.

    PubMed

    Kwasniewski, Misha T; Vanden Heuvel, Justine E; Pan, Bruce S; Sacks, Gavin L

    2010-06-09

    Sunlight exposure of winegrape clusters is frequently reported to increase C(13)-norisoprenoids in resulting wines, but the timing and mechanism of this influence is not well understood. Fruit zone leaf removal was applied to Vitis vinifera cv. Riesling at three timings: 2, 33 and 68 days past berry set (PBS), and compared to an untreated control. Free and total 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), vitispirane and beta-damascenone were measured in juice and wines, and carotenoid profiles were determined in grapes at midseason and maturity. Significantly higher total TDN was observed in grapes from the 33-day PBS treatment compared to the control and other treatments (195 microg/L vs 54-87 microg/L). Total vitispirane in juice was also significantly increased in the 33-day PBS treatment, while total beta-damascenone was reduced in the 68-day PBS treatment compared to the control. Existing HPLC protocols were modified to allow for quantification of zeaxanthin in V. vinifera berries, and zeaxanthin was determined to be significantly higher in the 33-day PBS treatment than the control or other treatments (p < 0.05). Total TDN in juice correlated with free TDN in wine, with 11.0% +/- 2.5% of total juice TDN converted to free TDN in wine. In contrast, total vitispirane increased significantly during fermentation, and was not correlated with vitispirane in juice. In summary, leaf removal at 33 days PBS significantly increased zeaxanthin in Riesling grapes midseason, total TDN and vitispirane in the juice of mature Riesling grapes, and free and total TDN in finished wine, while earlier or later leaf removal had no effect.

  7. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others

    PubMed Central

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J.; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  8. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

    PubMed

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  9. Thermochemistry and Dynamics of Reactive Species: Nitrogen-rich Compounds, Metals and SiC Clusters in Free and Solvated Environment

    DTIC Science & Technology

    2005-10-31

    measurement with methanethiol (CH 3SH). Acidities for pyrazole and imidazole were determined with 2-methyl-2- propanethiol (tBuSH) while formic acid (HCOOH...induced dissociation (CID) experiments were conducted for deprotonated anions of pyrrole, pyrazole , imidazole, 1,2,3-triazole, 1,2,4-triazole, and...descriptions fail to provide an accurate characterization of the spectrum. Moving one imidazole nitrogen adjacent to the other yields pyrazole , and

  10. Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation.

    PubMed

    Jiménez-Martí, Elena; del Olmo, Marcel Lí

    2008-03-01

    Yeast cells require nitrogen and are capable of selectively using good nitrogen sources in preference to poor ones by means of the regulatory mechanism known as nitrogen catabolite repression (NCR). Herein, the effect of ammonia or amino acid addition to nitrogen-depleted medium on global yeast expression patterns in yeast cells was studied using alcoholic fermentation as a system. The results indicate that there is a differential reprogramming of the gene expression depending on the nitrogen source added. Ammonia addition resulted in a higher expression of genes involved in amino acids biosynthesis while amino acid addition prepares the cells for protein biosynthesis. Therefore, a high percentage of the genes regulated by the transcription factors involved in the regulation of amino acid biosynthesis are more expressed during the first hours after ammonia addition compared with amino acid addition. The opposite occurs for those genes regulated by the transcription factor Sfp1p, related to ribosome biosynthesis. Although both additions include rich nitrogen sources, most NCR-regulated genes are more expressed after adding ammonia than amino acids. One of the differentially expressed genes, YBR174W, is required for optimal growth in synthetic medium.

  11. Reduced oxide sites and surface corrugation affecting the reactivity, thermal stability, and selectivity of supported Au-Pd bimetallic clusters on SiO2/Si(100).

    PubMed

    Gross, Elad; Sorek, Elishama; Murugadoss, Arumugam; Asscher, Micha

    2013-05-21

    The morphology and surface elemental composition of Au-Pd bimetallic nanoclusters are reported to be sensitive to and affected by reduced silicon defect sites and structural corrugation on SiO2/Si(100), generated by argon ion sputtering under ultrahigh vacuum (UHV) conditions. Metastable structures of the bimetallic clusters, where Au atoms are depleted from the top surface upon annealing, are stabilized by the interaction with the reduced silica sites, as indicated from CO temperature programmed desorption (TPD) titration measurements. Acetylene conversion to ethylene and benzene has been studied as a probe reaction, revealing the modification of selectivity and reactivity enhancement in addition to improved thermal stability on substrates rich in reduced-silica sites. These observations suggest that these unique sites play an important role in anchoring thermodynamically metastable conformations of supported Au-Pd bimetallic catalysts and dictate their high-temperature activity.

  12. The overexpression of the pine transcription factor PpDof5 in Arabidopsis leads to increased lignin content and affects carbon and nitrogen metabolism.

    PubMed

    Rueda-López, Marina; Cañas, Rafael A; Canales, Javier; Cánovas, Francisco M; Ávila, Concepción

    2015-12-01

    PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees.

  13. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data.

    PubMed

    Jain, Atul K; Meiyappan, Prasanth; Song, Yang; House, Joanna I

    2013-09-01

    The high uncertainty in land-based CO2 fluxes estimates is thought to be mainly due to uncertainty in not only quantifying historical changes among forests, croplands, and grassland, but also due to different processes included in calculation methods. Inclusion of a nitrogen (N) cycle in models is fairly recent and strongly affects carbon (C) fluxes. In this study, for the first time, we use a model with C and N dynamics with three distinct historical reconstructions of land-use and land-use change (LULUC) to quantify LULUC emissions and uncertainty that includes the integrated effects of not only climate and CO2 but also N. The modeled global average emissions including N dynamics for the 1980s, 1990s, and 2000-2005 were 1.8 ± 0.2, 1.7 ± 0.2, and 1.4 ± 0.2 GtC yr(-1) , respectively, (mean and range across LULUC data sets). The emissions from tropics were 0.8 ± 0.2, 0.8 ± 0.2, and 0.7 ± 0.3 GtC yr(-1) , and the non tropics were 1.1 ± 0.5, 0.9 ± 0.2, and 0.7 ± 0.1 GtC yr(-1) . Compared to previous studies that did not include N dynamics, modeled net LULUC emissions were higher, particularly in the non tropics. In the model, N limitation reduces regrowth rates of vegetation in temperate areas resulting in higher net emissions. Our results indicate that exclusion of N dynamics leads to an underestimation of LULUC emissions by around 70% in the non tropics, 10% in the tropics, and 40% globally in the 1990s. The differences due to inclusion/exclusion of the N cycle of 0.1 GtC yr(-1) in the tropics, 0.6 GtC yr(-1) in the non tropics, and 0.7 GtC yr(-1) globally (mean across land-cover data sets) in the 1990s were greater than differences due to the land-cover data in the non tropics and globally (0.2 GtC yr(-1) ). While land-cover information is improving with satellite and inventory data, this study indicates the importance of accounting for different processes, in particular the N cycle.

  14. Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees.

    PubMed

    Weigt, R B; Häberle, K H; Millard, P; Metzger, U; Ritter, W; Blaschke, H; Göttlein, A; Matyssek, R

    2012-10-01

    Impacts of elevated ground-level ozone (O(3)) on nitrogen (N) uptake and allocation were studied on mature European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.) in a forest stand, hypothesizing that: (i) chronically elevated O(3) limits nutrient uptake, and (ii) beech responds more sensitively to elevated O(3) than spruce, as previously found for juvenile trees. Tree canopies were exposed to twice-ambient O(3) concentrations (2 × O(3)) by a free-air fumigation system, with trees under ambient O(3) serving as control. After 5 years of O(3) fumigation, (15)NH(4)(15)NO(3) was applied to soil, and concentrations of newly acquired N (N(labelled)) and total N (N(total)) in plant compartments and soil measured. Under 2 × O(3), N(labelled) and N(total) were increased in the bulk soil and tended to be lower in fine and coarse roots of both species across the soil horizons, supporting hypothesis (i). N(labelled) was reduced in beech foliage by up to 60%, and by up to 50% in buds under 2 × O(3). Similarly, N(labelled) in stem bark and phloem was reduced. No such reduction was observed in spruce, reflecting a stronger effect on N acquisition in beech in accordance with hypothesis (ii). In spruce, 2 × O(3) tended to favour allocation of new N to foliage. N(labelled) in beech foliage correlated with cumulative seasonal transpiration, indicating impaired N acquisition was probably caused by reduced stomatal conductance and, hence, water transport under elevated O(3). Stimulated fine root growth under 2 × O(3) with a possible increase of below-ground N sink strength may also have accounted for lowered N allocation to above-ground organs. Reduced N uptake and altered allocation may enhance the use of stored N for growth, possibly affecting long-term stand nutrition.

  15. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, Phil-Goo; Mitchell, Myron J.; McHale, Patrick J.; Driscoll, Charles T.; Inamdar, Shreeram; Park, Ji-Hyung

    2016-05-01

    Lakes nested in forested watersheds play an important role in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC) and dissolved organic (DON) and inorganic nitrogen (DIN) in aquatic ecosystems of the Arbutus Lake watershed to evaluate how a lake nested in a forested watershed affects the sources (e.g., production) and sinks (e.g., retention) of DOC and DON in the Adirondack Mountains of New York, USA. We observed no significant long-term changes of DOC and DON in the lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass balances between inlet and outlet for the period from 2000 to 2009 suggested that the lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 µmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: + 87 µmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low percent retention ((influx-outflux)/influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different

  16. Indicators: Nitrogen

    EPA Pesticide Factsheets

    Nitrogen, like phosphorus, is a critical nutrient required for all life. Nitrogen can occur in rivers and streams, lakes, and coastal waters in several forms including ammonia (NH3), nitrates (NO3), and nitrites (NO2).

  17. Spatio-temporal dynamics of nitrogen in river-alluvial aquifer systems affected by diffuse pollution from agricultural sources: Implications for the implementation of the Nitrates Directive

    NASA Astrophysics Data System (ADS)

    Arauzo, M.; Valladolid, M.; Martínez-Bastida, J. J.

    2011-12-01

    SummaryReducing nitrate pollution from diffuse agricultural sources is the major environmental challenge in the two adjacent catchments of the Oja-Tirón and Zamaca rivers (La Rioja and Castilla y León, northern Spain). For this reason, part of their territory was designated a Nitrate Vulnerable Zone (NVZ) according to the Nitrates Directive. The Oja Alluvial Aquifer, the Tirón Alluvial Aquifer and their associated rivers are particularly vulnerable to nitrogen pollution due to the shallow water table, the high permeability of alluvial deposits, interconnections between the alluvial aquifers and surface waters and pressures from agriculture. To this end, nine sampling campaigns, organised on a semi-annual basis and focused on the rivers and alluvial aquifers of the two catchments, were carried out from April 2005 to April 2009. The main objectives of the study were: (1) to investigate the chemical forms of nitrogen in river-alluvial aquifer systems of the Oja-Tirón and Zamaca catchments, (2) to improve our understanding of the spatio-temporal patterns of nitrogen distribution in the alluvial aquifers and associated rivers by integrating hydrochemical data and hydrogeological and environmental parameters, (3) to estimate the amount of nitrogen exported from the rivers and alluvial aquifers to the River Ebro, and (4) to evaluate the suitability of the current method of designating NVZs in the area. High groundwater flow velocities in the upper alluvial zones favoured the advective transport of nitrate and generated a dilution effect. In these areas, inter-annual variations in nitrate concentrations were observed related to precipitation and N-input from agriculture. However, low flow velocities favoured processes of accumulation in the lower alluvial zones. Our results demonstrated that the entire alluvial surface was highly vulnerable, according to dynamics of the nitrogen in the river-alluvial aquifer systems being studied. The amount of nitrogen exported from

  18. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance.

    PubMed

    Yang, Yanjuan; Lu, Xiaomin; Yan, Bei; Li, Bin; Sun, Jin; Guo, Shirong; Tezuka, Takafumi

    2013-05-01

    The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100mM NaCl for 3d. The biomass and NO3(-) uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3(-) uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway

  19. Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows.

    PubMed

    Tacoma, R; Fields, J; Ebenstein, D B; Lam, Y-W; Greenwood, S L

    2017-09-01

    Little is known about the bovine milk proteome or whether it can be affected by diet. The objective of this study was to determine if the dietary rumen degradable protein (RDP):rumen undegradable protein (RUP) ratio could alter the bovine milk proteome. Six Holstein cows (parity: 2.5 ± 0.8) in mid lactation were blocked by days in milk (80 ± 43 d in milk) and milk yield (57.5 ± 6.0 kg) and randomly assigned to treatment groups. The experiment was conducted as a double-crossover design consisting of three 21-d periods. Within each period, treatment groups received diets with either (1) a high RDP:RUP ratio (RDP treatment: 62.4:37.6% of crude protein) or (2) a low RDP:RUP ratio (RUP treatment: 51.3:48.7% of crude protein). Both diets were isonitrogenous and isoenergetic (crude protein: 18.5%, net energy for lactation: 1.8 Mcal/kg of dry matter). To confirm N and energy status of cows, dry matter intake was determined daily, rumen fluid samples were collected for volatile fatty acid analysis, blood samples were collected for plasma glucose, β-hydroxybutyrate, urea nitrogen, and fatty acid analysis, and total 24-h urine and fecal samples were collected for N analysis. Milk samples were collected to determine the general milk composition and the protein profile. Milk samples collected for high-abundance protein analysis were subjected to HPLC analysis to determine the content of α-casein, β-casein, and κ-casein, as well as α-lactalbumin and β-lactoglobulin. Samples collected for low-abundance protein analysis were fractionated, enriched using ProteoMiner treatment, and separated using sodium dodecyl sulfate-PAGE. After excision and digestion, the peptides were analyzed using liquid chromatography (LC) tandem mass spectrometry (MS/MS). The LC-MS/MS data were analyzed using PROC GLIMMIX of SAS (version 9.4, SAS Institute Inc., Cary, NC) and adjusted using the MULTTEST procedure. All other parameters were analyzed using PROC MIXED of SAS. No treatment differences

  20. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO(2), temperature and nitrogen.

    PubMed

    King, J S; Thomas, R B; Strain, B R

    1996-07-01

    It has been hypothesized that increasing atmospheric CO(2) concentration enhances accumulation of carbon in fine roots, thereby altering soil carbon dynamics and nutrient cycling. To evaluate possible changes to belowground pools of carbon and nitrogen in response to elevated CO(2), an early and a late successional species of pine (Pinus taeda L. and Pinus ponderosa Dougl. ex Laws, respectively) were grown from seed for 160 days in a 35 or 70 Pa CO(2) partial pressure at low or high temperature (30-year weekly mean and 30-year weekly mean + 5 degrees C) and a soil solution nitrogen concentration of 1 or 5 mM NH(4)NO(3) at the Duke University Phytotron. Seedlings were harvested at monthly intervals and growth parameters of the primary root, secondary root and tap root fractions evaluated. Total root biomass of P. ponderosa showed a positive CO(2) response (105% increase) (P = 0.0001) as a result of significant increases in all root fractions in the elevated CO(2) treatment, but all other main effects and interactions were insignificant. In P. taeda, there were significant interactions between CO(2) and temperature (P = 0.04) and CO(2) and nitrogen (P = 0.04) for total root biomass. An allometric analysis indicated that modulation of the secondary root fraction was the main response of the trees to altered environmental conditions. In P. ponderosa, there was an increase in the secondary root fraction relative to the primary and tap root fractions under conditions of low temperature. In P. taeda, there was a shift in carbon accumulation to the secondary roots relative to the primary roots under low temperature and low nitrogen. Neither species exhibited shifts in carbon accumulation in response to elevated CO(2). We conclude that both species have the potential to increase belowground biomass substantially in response to rising atmospheric CO(2) concentration, and this response is sensitive to temperature and nitrogen in P. taeda. Both species displayed small shifts

  1. Age and sex affect protein metabolism at protein intakes that span the range of adequacy: comparison of leucine kinetics and nitrogen balance data☆

    PubMed Central

    Conley, Travis B.; McCabe, George P.; Lim, Eunjung; Yarasheski, Kevin E.; Johnson, Craig A.; Campbell, Wayne W.

    2012-01-01

    Research suggests that changes in leucine oxidation (leuox) with feeding may reflect adult protein requirements. We evaluated this possibility by assessing the effects of age, sex, and different protein intakes on whole-body leucine kinetics and nitrogen balance. Thirty-four young (n = 18, 22–46 years) and old (n= 16, 63–81 years) men and women completed three 18-day trials with protein intakes of 0.50, 0.75 and 1.00 g protein·kg body weight−1·d−1. Fasting and fed-state leucine kinetics were quantified on day 12 of each trial using a primed, constant infusion of L-[1-13C]leucine. Protein requirement was estimated using classical nitrogen balance measurements and calculations. Leucine kinetics parameters were influenced by age and sex across all protein intakes. With feeding, leuox increased more in old vs. young adults. Independent of age, fasting and fed-state leuox were lower, and net leucine balance (fasting+fed-state) was higher in women vs. men. Among all subjects and protein intakes, nitrogen balance was correlated with fed-state leuox (r=0.39), fed-state leucine balance (r=0.60), net leucine balance (r=0.49) and the change in leuox from the fasting to fed state (r=0.49) (P<.05 for all results). At the highest protein intake, the change in leuox with feeding was inversely correlated with protein requirement (r=−0.39). These findings indicate that leucine kinetics, especially leuox, reflect nitrogen balance-based estimates of the need for dietary protein and generally support the view that protein requirement is comparable between young and old adults. PMID:22841544

  2. Working with men to prevent intimate partner violence in a conflict-affected setting: a pilot cluster randomized controlled trial in rural Côte d’Ivoire

    PubMed Central

    2014-01-01

    Background Evidence from armed conflict settings points to high levels of intimate partner violence (IPV) against women. Current knowledge on how to prevent IPV is limited—especially within war-affected settings. To inform prevention programming on gender-based violence in settings affected by conflict, we evaluated the impact of adding a targeted men’s intervention to a community-based prevention programme in Côte d’Ivoire. Methods We conducted a two-armed, non-blinded cluster randomized trial in Côte d’Ivoire among 12 pair-matched communities spanning government-controlled, UN buffer, and rebel–controlled zones. The intervention communities received a 16-week IPV prevention intervention using a men’s discussion group format. All communities received community-based prevention programmes. Baseline data were collected from couples in September 2010 (pre-intervention) and follow-up in March 2012 (one year post-intervention). The primary trial outcome was women’s reported experiences of physical and/or sexual IPV in the last 12 months. We also assessed men’s reported intention to use physical IPV, attitudes towards sexual IPV, use of hostility and conflict management skills, and participation in gendered household tasks. An adjusted cluster-level intention to treat analysis was used to compare outcomes between intervention and control communities at follow-up. Results At follow-up, reported levels of physical and/or sexual IPV in the intervention arm had decreased compared to the control arm (ARR 0.52, 95% CI 0.18-1.51, not significant). Men participating in the intervention reported decreased intentions to use physical IPV (ARR 0.83, 95% CI 0.66-1.06) and improved attitudes toward sexual IPV (ARR 1.21, 95% CI 0.77-1.91). Significant differences were found between men in the intervention and control arms’ reported ability to control their hostility and manage conflict (ARR 1.3, 95% CI 1.06-1.58), and participation in gendered household tasks (ARR

  3. Endogenous amino nitrogen collected from pigs with end-to-end ileorectal anastomosis is affected by the method of estimation and altered by dietary fiber.

    PubMed

    Mariscal-Landín, G; Sève, B; Colléaux, Y; Lebreton, Y

    1995-01-01

    Endogenous protein loss at the end of the small intestine was determined in two experiments using 10 pigs surgically prepared with end-to-end ileo-rectal anastomosis to allow total collection of ileal digesta. In the first experiment pigs were fed graded protein levels of 0 (protein-free), 55, 110 or 165 g/kg diet. Optimal durations for the adaptation and collection periods were found to be 4 and 3 d, respectively (combination 4:3), as shown by the higher correlation coefficient (r2 = 0.95) between excreted and ingested nitrogen compared with the other combinations tested (5:2, 5:3, 9:3, 9:5). The estimated amounts of endogenous N and amino acids were less accurate and tended to be smaller (P < 0.20) when obtained by extrapolation to zero nitrogen intake than when measured in pigs fed the protein-free diet. The endogenous protein was rich in proline, glutamic acid, glycine, aspartic acid, serine and threonine. In comparison to other amino acid patterns, this composition suggested a low bacterial contamination of the digesta. In the second experiment three levels of dietary fiber from wheat straw, corn cobs and wood cellulose were studied in pigs fed protein-free diets. Between 17 and 34 g crude fiber/kg diet, fiber increased the endogenous losses of nitrogen and amino acids per kilogram of dry matter intake (P < 0.05), but the excretion reached a plateau at higher dietary fiber concentration (102 g/kg). In contrast, glucosamine and galactosamine excretion increased continuously and linearly (P < 0.05) with fiber intake. We conclude that endogenous amino acid loss may be considered constant at usual and high levels of the fibrous mixture under study.

  4. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.

  5. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China.

    PubMed

    Lin, Shan; Iqbal, Javed; Hu, Ronggui; Shaaban, Muhammad; Cai, Jianbo; Chen, Xi

    2013-08-01

    To investigate the influence of crop residues decomposition on nitrous oxide (N2O) emission, a field study was performed with application of crop residues with different C:N ratios in a bare yellow brown soil at the experimental station of Zhangjiachong at Zigui, China. We set up six experimental treatments: no crop residue (CK), rapeseed cake (RC), potato stalk (PS), rice straw (RS), wheat straw (WS), and corn straw (CS). The carbon (C) to nitrogen (N) ratios of these crop residues were 7.5, 32.9, 40.4, 65.7, and 90.9, respectively. Nitrous oxide fluxes were measured using a static closed chamber method. N2O emissions were significantly enhanced by incorporation of crop residues. Cumulative N2O emissions negatively correlated with C:N ratio (R (2) = 0.9821) of the crop residue, but they were positively correlated with average concentrations of dissolved organic carbon and microbial biomass carbon. Nitrogen emission fraction, calculated as N2O-N emissions originated from the crop residues N, positively correlated with C:N ratio of the residues (P < 0.05). Soil temperature did, whereas soil moisture did not, control the residue's induced N2O emissions because a significant correlation (P < 0.01) existed between soil temperature and N2O emissions in all treatments except the control. In contrast, a significant relationship between soil moisture and N2O emissions was found in the control only. Furthermore, N2O emission significantly correlated (P < 0.05) with NO3 (-)-N, and NH4 (+)-N contents from all residue treatments. These results indicate that (1) crop residues with distinct carbon and nitrogen contents can significantly alter soil N2O flux rates; and (2) soil biotic as well as abiotic variables are critical in determining soil-atmospheric N2O emissions after crop residue incorporation into soil.

  6. Molybdenum Trafficking for Nitrogen Fixation†

    PubMed Central

    Hernandez, Jose A.; George, Simon J.; Rubio, Luis M.

    2009-01-01

    The molybdenum nitrogenase is responsible for most biological nitrogen fixation, a prokaryotic metabolic process that determines the global biogeochemical cycles of nitrogen and carbon. Here we describe the trafficking of molybdenum for nitrogen fixation in the model diazotrophic bacterium Azotobacter vinelandii. The genes and proteins involved in molybdenum uptake, homeostasis, storage, regulation, and nitrogenase cofactor biosynthesis are reviewed. Molybdenum biochemistry in A. vinelandii reveals unexpected mechanisms and a new role for iron-sulfur clusters in the sequestration and delivery of molybdenum. PMID:19772354

  7. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management

    PubMed Central

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-01-01

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38–60 kg N ha−1 from conventional N managements, but declined by 32–71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system. PMID:28176865

  8. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-01

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38–60 kg N ha‑1 from conventional N managements, but declined by 32–71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  9. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management.

    PubMed

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-08

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha(-1) from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  10. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  11. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce

    PubMed Central

    Dao, Madjelia C. E.; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008–2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected. PMID:26617610

  12. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce.

    PubMed

    Dao, Madjelia C E; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008-2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected.

  13. The Efficacy of a Group Cognitive Behavioral Therapy for War-Affected Young Migrants Living in Australia: A Cluster Randomized Controlled Trial

    PubMed Central

    Ooi, Chew S.; Rooney, Rosanna M.; Roberts, Clare; Kane, Robert T.; Wright, Bernadette; Chatzisarantis, Nikos

    2016-01-01

    Background: Preventative and treatment programs for people at risk of developing psychological problems after exposure to war trauma have mushroomed in the last decade. However, there is still much contention about evidence-based and culturally sensitive interventions for children. The aim of this study was to examine the efficacy of the Teaching Recovery Techniques in improving the emotional and behavioral outcomes of war-affected children resettled in Australia. Methods and Findings: A cluster randomized controlled trial with pre-test, post-test, and 3-month follow-up design was employed. A total of 82 participants (aged 10–17 years) were randomized by school into the 8-week intervention (n = 45) or the waiting list (WL) control condition (n = 37). Study outcomes included symptoms of post-traumatic stress disorder, depression, internalizing and externalizing problems, as well as psychosocial functioning. A medium intervention effect was found for depression symptoms. Participants in the intervention condition experienced a greater symptom reduction than participants in the WL control condition, F(1, 155) = 5.20, p = 0.024, partial η2 = 0.07. This improvement was maintained at the 3-month follow-up, F(2, 122) = 7.24, p = 0.001, partial η2 = 0.20. Conclusions: These findings suggest the potential benefit of the school and group-based intervention on depression symptoms but not on other outcomes, when compared to a waiting list control group. Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN12611000 948998. PMID:27843435

  14. Outcomes and moderators of a preventive school-based mental health intervention for children affected by war in Sri Lanka: a cluster randomized trial.

    PubMed

    Tol, Wietse A; Komproe, Ivan H; Jordans, Mark J D; Vallipuram, Anavarathan; Sipsma, Heather; Sivayokan, Sambasivamoorthy; Macy, Robert D; DE Jong, Joop T

    2012-06-01

    We aimed to examine outcomes, moderators and mediators of a preventive school-based mental health intervention implemented by paraprofessionals in a war-affected setting in northern Sri Lanka. A cluster randomized trial was employed. Subsequent to screening 1,370 children in randomly selected schools, 399 children were assigned to an intervention (n=199) or waitlist control condition (n=200). The intervention consisted of 15 manualized sessions over 5 weeks of cognitive behavioral techniques and creative expressive elements. Assessments took place before, 1 week after, and 3 months after the intervention. Primary outcomes included post-traumatic stress disorder (PTSD), depressive, and anxiety symptoms. No main effects on primary outcomes were identified. A main effect in favor of intervention for conduct problems was observed. This effect was stronger for younger children. Furthermore, we found intervention benefits for specific subgroups. Stronger effects were found for boys with regard to PTSD and anxiety symptoms, and for younger children on pro-social behavior. Moreover, we found stronger intervention effects on PTSD, anxiety, and function impairment for children experiencing lower levels of current war-related stressors. Girls in the intervention condition showed smaller reductions on PTSD symptoms than waitlisted girls. We conclude that preventive school-based psychosocial interventions in volatile areas characterized by ongoing war-related stressors may effectively improve indicators of psychological wellbeing and posttraumatic stress-related symptoms in some children. However, they may undermine natural recovery for others. Further research is necessary to examine how gender, age and current war-related experiences contribute to differential intervention effects.

  15. Nitrogen Index

    USDA-ARS?s Scientific Manuscript database

    There is a need to improve the management of nitrogen inputs to agricultural systems because they increase the potential for losses of reactive nitrogen to the environment, resulting in negative impacts to water and air resources. There is a need to reduce nitrate leaching, emissions of N2O from agr...

  16. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani.

    PubMed

    Mittelstrass, K; Treutter, D; Plessl, M; Heller, W; Elstner, E F; Heiser, I

    2006-09-01

    Potato plants ( SOLANUM TUBEROSUM L. cv. Indira) were grown at two levels of N supply in the greenhouse. Plants supplied with 0.8 g N per plant (high N variant) showed significantly increased biomass as compared to plants without additional N fertilisation (low N variant). C/N ratio was lower and protein content was higher in leaves of the high N variant. The concentration of chlorogenic acids and flavonols was significantly lower in leaves from the high N variant. Whereas resistance to ALTERNARIA SOLANI increased when plants were supplied with additional nitrogen, these plants were more susceptible to PHYTOPHTHORA INFESTANS. After infection with both pathogens, we found a strong induction of p-coumaroylnoradrenaline and p-coumaroyloctopamine, which are identified for the first time in potato leaves and are discussed as resistance factors of other solanaceous plants.

  17. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  18. Cancer Clusters

    MedlinePlus

    ... Genetics Services Directory Cancer Prevention Overview Research Cancer Clusters On This Page What is a cancer cluster? ... the number of cancer cases in the suspected cluster Many reported clusters include too few cancer cases ...

  19. Star cluster dynamics.

    PubMed

    Vesperini, Enrico

    2010-02-28

    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.

  20. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management

    NASA Astrophysics Data System (ADS)

    Huang, T.; Gao, B.; Christie, P.; Ju, X.

    2013-12-01

    The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat-summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, as well as changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero N (control), optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. SN0, SNopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon), with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha-1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40-1.44 Mg C ha-1 yr-1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat-summer maize double-cropping system.

  1. Net global warming potential and greenhouse gas intensity in a double cropping cereal rotation as affected by nitrogen and straw management

    NASA Astrophysics Data System (ADS)

    Huang, T.; Gao, B.; Christie, P.; Ju, X.

    2013-08-01

    The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat-summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, and changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero-N control, optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. N0, Nopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon) with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha-1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40-1.44 Mg C ha-1 yr-1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat-summer maize double-cropping system.

  2. Risk for self-reported anorexia or bulimia nervosa based on drive for thinness and negative affect clusters/dimensions during adolescence: A three-year prospective study of the TChAD cohort

    PubMed Central

    Peñas-Lledó, Eva; Bulik, Cynthia M.; Lichtenstein, Paul; Larsson, Henrik; Baker, Jessica H.

    2015-01-01

    Objective The present study explored the cross-sectional and predictive effect of drive for thinness and/or negative affect scores on the development of self-reported anorexia nervosa (AN) and bulimia nervosa (BN). Method K-means were used to cluster the Eating Disorder Inventory-Drive for Thinness (DT) and Child Behavior Checklist Anxious/Depressed (A/D) scores from 615 unrelated female twins at age 16–17. Logistic regressions were used to assess the effect of these clusters on self-reported eating disorder diagnosis at ages 16–17 (n=565) and 19–20 (n=451). Results DT and A/D scores were grouped into four clusters: Mild (scores lower than 90th percentile on both scales), DT (higher scores only on DT), A/D (higher scores only on A/D), and DT-A/D (higher scores on both the DT and A/D scales). DT and DT-A/D clusters at age 16–17 were associated cross-sectionally with AN and both cross-sectionally and longitudinally with BN. The DT-A/D cluster had the highest prevalence of AN at follow-up compared with all other clusters. Similarly, an interaction was observed between DT and A/D that predicted risk for AN. Discussion Having elevated DT and A/D scores may increase risk for eating disorder symptomatology above and beyond a high score on either alone. Findings suggest that cluster modeling based on DT and A/D may be useful to inform novel and useful intervention strategies for AN and BN in adolescents. PMID:26013185

  3. Risk for self-reported anorexia or bulimia nervosa based on drive for thinness and negative affect clusters/dimensions during adolescence: A three-year prospective study of the TChAD cohort.

    PubMed

    Peñas-Lledó, Eva; Bulik, Cynthia M; Lichtenstein, Paul; Larsson, Henrik; Baker, Jessica H

    2015-09-01

    This study explored the cross-sectional and predictive effect of drive for thinness and/or negative affect scores on the development of self-reported anorexia nervosa (AN) and bulimia nervosa (BN). K-means were used to cluster the Eating Disorder Inventory-Drive for Thinness (DT) and Child Behavior Checklist Anxious/Depressed (A/D) scores from 615 unrelated female twins at age 16-17. Logistic regressions were used to assess the effect of these clusters on self-reported eating disorder diagnosis at ages 16-17 (n = 565) and 19-20 (n = 451). DT and A/D scores were grouped into four clusters: Mild (scores lower than 90th percentile on both scales), DT (higher scores only on DT), A/D (higher scores only on A/D), and DT-A/D (higher scores on both the DT and A/D scales). DT and DT-A/D clusters at age 16-17 were associated cross-sectionally with AN and both cross-sectionally and longitudinally with BN. The DT-A/D cluster had the highest prevalence of AN at follow-up compared with all other clusters. Similarly, an interaction was observed between DT and A/D that predicted risk for AN. Having elevated DT and A/D scores may increase risk for eating disorder symptomatology above and beyond a high score on either alone. Findings suggest that cluster modeling based on DT and A/D may be useful to inform novel and useful intervention strategies for AN and BN in adolescents. © 2015 Wiley Periodicals, Inc.

  4. Alternative splicing of a viral mirtron differentially affects the expression of other microRNAs from its cluster and of the host transcript.

    PubMed

    Rasschaert, Perrine; Figueroa, Thomas; Dambrine, Ginette; Rasschaert, Denis; Laurent, Sylvie

    2016-12-01

    Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organized into clusters. We used a viral model - the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron - to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3' splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5'-tailed mirtron. We have thus identified the first 5'-tailed mirtron within a cluster of miRNAs for which alternative splicing is directly associated with differential expression of the other miRNAs of the cluster, with an increase in intronic mdv1-miR-M8 expression and a decrease in expression of the exonic mdv1-miR-M7, and indirectly associated with regulation of the host transcript. According to the alternative 3SS used for the host intron splicing, the mdv1-miR-M6 is processed as a mirtron by the spliceosome, dispatching the other miRNAs of the cluster into intron and exon, or as a canonical miRNA by the Microprocessor complex. The viral mdv1-miR-M6 mirtron is the first mirtron described that can also follow the canonical pathway.

  5. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages

    PubMed Central

    Yu, Chunxiao; Li, Dongpo; Gong, Ping; Xue, Yan; Song, Yuchao; Cui, Yalan; Doane, Timothy A.; Wu, Zhijie

    2017-01-01

    This study investigated the influence of nitrogen (N) fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK), N fertilizer (NF) and N fertilizer plus rice straw (NS). We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment) increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed. PMID:28045989

  6. Mineral-nitrogen leaching and ammonia volatilization from a rice-rapeseed system as affected by 3,4-dimethylpyrazole phosphate.

    PubMed

    Li, Hua; Chen, Yingxu; Liang, Xinqiang; Lian, Yanfeng; Li, Wenhong

    2009-01-01

    3,4-Dimethylpyrazole phosphate (DMPP) was validated as an effective nitrification inhibitor to reduce nitrate leaching. Its effects on ammonia (NH(3)) volatilization were not clear, especially on farmland scale with crop rotations. In this study, on-farm experiments at the Jiaxing (JX) and Yuhang (YH) sites in Taihu Lake Basin, China were conducted to evaluate the effect of DMPP application on mineral nitrogen (N) (NH(4)-N and NO(3)-N) leaching and NH(3) volatilization losses in a rice-rapeseed cropping system. Treatments included urea alone (UA), urea + 1% DMPP (UD), and no fertilizer (CK). The results show that DMPP reduced NO(3)-N leaching fluxes by 44.9 to 59.9% and increased NH(4)-N leaching fluxes by 13.0 to 33.3% at two sites during rice and rape seasons compared with urea alone. Reductions in mineral-N leaching fluxes by DMPP in two seasons at the JX and YH sites were 9.5 and 14.3 kg N ha(-1), respectively, compared with UA treatment. The application of DMPP had no significant effects on NH(3) volatilization loss fluxes at either site. The rice and rapeseed yields were 5.3 to 7.4% higher in UD plots than in UA plots at two sites. These results that indicate DMPP could reduce leaching losses of mineral-N from crop fields and promote grain yields by conserving more applied N in soil in rice-rapeseed rotation systems.

  7. Food web of a confined and anthropogenically affected coastal basin (the Mar Piccolo of Taranto) revealed by carbon and nitrogen stable isotopes analyses.

    PubMed

    Bongiorni, Lucia; Fiorentino, Federica; Auriemma, Rocco; Aubry, Fabrizio Bernardi; Camatti, Elisa; Camin, Federica; Nasi, Federica; Pansera, Marco; Ziller, Luca; Grall, Jacques

    2016-07-01

    Carbon and nitrogen stable isotope analysis was used to examine the food web of the Mar Piccolo of Taranto, a coastal basin experiencing several anthropogenic impacts. Main food sources (algal detritus, seaweeds, particulate organic matter (POM) and sediment organic matter (SOM)) and benthic and pelagic consumers were collected during two contrasting seasons (June and April), at four sites distributed over two inlets, and characterized by different level of confinements, anthropogenic inputs and the presence of mussels farming. δ(13)C values of organic sources revealed an important contribution of POM to both planktonic and benthic pathways, as well as the influence of terrigenous inputs within both inlets, probably due to high seasonal land runoff. Although δ(13)C of both sources and consumers varied little between sampling sites and dates, δ(15)N spatial variability was higher and clearly reflected the organic enrichment in the second inlet as well as the uptake of anthropogenically derived material by benthic consumers. On the other hand, within the first inlet, the isotopic composition of consumers did not change in response to chemical contamination. However, the impact of polluted sediments near the Navy Arsenal in the first inlet was detectable at the level of the macrobenthic trophic structure, showing high dominance of motile, upper level consumers capable to face transient conditions and the reduction of the more resident deposit feeders. We therefore underline the great potential of matching stable isotope analysis with quantitative studies of community structure to assess the effects of multiple anthropogenic stressors.

  8. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    PubMed

    Yang, Lijie; Zhang, Lili; Yu, Chunxiao; Li, Dongpo; Gong, Ping; Xue, Yan; Song, Yuchao; Cui, Yalan; Doane, Timothy A; Wu, Zhijie

    2017-01-01

    This study investigated the influence of nitrogen (N) fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK), N fertilizer (NF) and N fertilizer plus rice straw (NS). We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment) increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  9. Soil organic carbon and total nitrogen as affected by land use types in karst and non-karst areas of northwest Guangxi, China.

    PubMed

    Chen, Hongsong; Zhang, Wei; Wang, Kelin; Hou, Ya

    2012-03-30

    Human migration from the karst area to the non-karst area is an important approach for the restoration of degraded karst ecosystems. However, the effects of human-induced land-use change on soil properties are still unclear. The objective of this study was to investigate the effects of land use and parent material on soil organic carbon (SOC) and total nitrogen (TN) at a depth of 0-15 cm in karst and non-karst areas in southwest China. In the karst area, SOC and TN under different land uses decreased significantly in the order of secondary forestland > scrubland and abandoned farmland > farmland, commercial forestland and forage grassland. In the non-karst area, SOC and TN were the highest in scrubland and grassland, and were significantly higher than those in farmland and commercial forestland. Because of differences in parent material, SOC and TN were significantly higher in the karst area than those in the non-karst area. Abandoned farmland had the potential to increase SOC and TN significantly but land reclamation and cultivation had the opposite effect. SOC and TN were higher but cultivation-induced losses occurred more rapidly in calcareous soils than in red soils, indicating that more attention is needed for soil productivity and land use management in the karst area. Copyright © 2011 Society of Chemical Industry.

  10. Rumen microbial protein synthesis and nitrogen efficiency as affected by tanniferous and non-tanniferous forage legumes incubated individually or together in Rumen Simulation Technique.

    PubMed

    Brinkhaus, Anja Grosse; Bee, Giuseppe; Schwarm, Angela; Kreuzer, Michael; Dohme-Meier, Frigga; Zeitz, Johanna O

    2017-08-29

    A limited availability of microbial protein can impair productivity in ruminants. Ruminal nitrogen efficiency might be optimised by combining high-quality forage legumes such as red clover (RC), which have unfavourable great ruminal protein degradability, with tanniferous legumes like sainfoin (SF) and birdsfoot trefoil (BT). Silages from SF and from BT cultivars [Bull (BB) and Polom (BP)] were incubated singly or in combination with RC using the rumen simulation technique (n=6). The tanniferous legumes, when compared to RC, changed the total short-chain fatty acid profile by increasing propionate proportions at the expense of butyrate. Silage from SF contained the most condensed tannins (CTs) (136 g CT kg(-1) dry matter) and clearly differed in various traits from the BT and RC silages. The apparent nutrient degradability (small with SF), microbial protein synthesis, and calculated content of potentially utilizable crude protein (large with SF) indicated that SF had the greatest efficiency in ruminal protein synthesis. The effects of combining SF with RC were mostly linear. The potential of sainfoin to improve protein supply, demonstrated either individually or in combination with a high-performance forage legume, indicates its potential usefulness in complementing protein-deficient ruminant diets and high-quality forages rich in rumen-degradable protein. This article is protected by copyright. All rights reserved.

  11. Nitrogen Uptake in Spinach

    NASA Astrophysics Data System (ADS)

    Ramirez, J.; VanBenthem, P.

    2013-12-01

    A plant's absorption of nitrogen can be encouraged by a variety of environmental factors, especially the application of fertilizers. As a common limiting factor in plant growth, not up taking enough nitrogen can be a result of an unhealthy plant. Moreover, as farmers seek out methods to increase growth of plants, fertilizers are used as a solution to the issue of nitrogen deficiency to incorporate additional nitrogen from chemical or organic sources, by not using the right fertilizer can greatly affect the plats. The point of this research project is to determine the effect of various fertilizers on the plant growth, and to correlate the measured nitrogen, water and chlorophyll content in spinach leaves. Spinach leaves were used because they are known to quickly uptake chemicals in the environment. The spinach plants were exposed to four different growing parameters, which are referred to as control, ammonium nitrate, MiracleGro , and organic. The spinach was originally placed in nitrogen deficient soil with only 2.2x10 4 weight percent (wt. %) nitrogen. The leaves in the control group were grown in this nitrogen deficient soil without any fertilizer added. Ammomium nitrate and MiracleGro were added to the spinach in the A and MG groups, respectively, and organic chicken stool was used for the O group. By using a spectral imaging system and flame combustion techniques, the chlorophyll content can be related to the nitrogen content in the spinach leaves. In these spinach leaves, nitrogen and chlorophyll content were measured, chlorophyll is a green pigment that plays a crucial role in producing nutrients for green plants. The lack of chlorophyll will allow the plant to become susceptible to diseases, so it is extremely important that the plants have a high content of chlorophyll. The role of nitrogen in chlorophyll is very important and helps in the creation of chlorophyll; therefore it is necessary that an appropriate amount of nitrogen is added for optimal growth

  12. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment

    PubMed Central

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot–1 (equivalent to the recommended field rate of 150 kg ha–1) to 0.44 g pot–1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk. PMID:27880837

  13. Aging might augment reactive oxygen species (ROS) formation and affect reactive nitrogen species (RNS) level after myocardial ischemia/reperfusion in both humans and rats.

    PubMed

    Fan, Qian; Chen, Mulei; Fang, Xiangyang; Lau, Wayne Bond; Xue, Lei; Zhao, Lina; Zhang, Hui; Liang, Yan-Hong; Bai, Xi; Niu, Hong-Yu; Ye, Jing; Chen, Qing; Yang, Xinchun; Liu, Miaobing

    2013-08-01

    Previous studies indicate aging results in significantly decreased cardiac function and increased myocardial apoptosis after myocardial ischemia/reperfusion (MI/R) in humans or rats. The underlying mechanisms of aging-exacerbated effects remain unknown. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are known to play vital roles in aging-related MI/R injury. Heretofore, the effects of aging upon ROS and RNS formation were not investigated in humans, which is the focus of the current study. Due to experimental limitations with clinical trials, an additional animal experiment was performed. All enrolled acute myocardial infarction (AMI) patients received percutaneous coronary intervention (PCI) therapy. AMI patients were assigned into two groups: adult (age <65, n = 34) and elderly (age ≥65, n = 45) AMI patients. Blood samples were obtained from all study participants at 24 h and 3 days post-PCI. Plasma/white blood cell (WBC) ROS and RNS markers (malondialdehyde (MDA), myeloperoxidase (MPO), reduced glutathione (GSH), inducible nitric oxide synthase (iNOS) activity, NOx, and nitrotyrosine) were determined. The same markers were determined in rat cardiac tissue after 24 h MI/R. Compared to the adult group, elderly patients manifested increased plasma MDA and MPO and decreased plasma GSH concentrations. No significant differences in plasma NOx or nitrotyrosine concentration existed between adult and elderly patients. Furthermore, WBC iNOS activity in elderly patients was significantly decreased compared to the adult group. The measurement of ROS markers in the rat experiments was consistent and supported human study data. Surprisingly, RNS markers (NOx and nitrotyrosine) in blood and heart tissue increased from young to middle-aged rats but decreased from middle age to old age. Aging augments ROS, which might exacerbate MI/R injury. Additionally, our data support aging-induced changes of RNS levels in humans and rats in vivo.

  14. Nitrification from the Pacific Ocean to the Sacramento River: Do Distinct Microbial Communities Affect Biogeochemical Nitrogen Cycling in the Waters of a Large Urban Estuary?

    NASA Astrophysics Data System (ADS)

    Damashek, J.; Challenor, T.; Casciotti, K. L.; Francis, C.

    2016-02-01

    Nitrification provides the only path between reduced and oxidized nitrogen. Ammonia-oxidizing microorganisms catalyze the rate-limiting step of ammonia oxidation and thus are key players in estuarine nutrient cycling. Few studies, however, have measured nitrification rates in tandem with ammonia oxidizer expression, abundance, and diversity in estuary waters. We present data on the microbial ecology and biogeochemistry of nitrification in the San Francisco Bay-Delta collected along the salinity gradient from summer 2013 to spring 2014. Microbial communities were assessed using functional gene-based PCR assays to determine the diversity, abundance, and mRNA expression of ammonia oxidizers, and nitrification rates were measuring using stable isotope tracer incubations. Ammonia-oxidizing archaea (AOA) typically outnumbered ammonia-oxidizing bacteria (AOB) throughout the sampled gradient, though the relative abundance of AOB was often greater in brackish regions and following periods of higher freshwater flow. mRNA expression of amoA appeared to largely track DNA abundance, but suggested only a fraction of the community was typically active. Average nitrification rates were highest in the lower Sacramento River, which was mostly dominated by AOA, suggesting the AOA communities here are responsible for a constant nitrification hotspot. Additionally, depth profiles suggested high biogeochemical activity near the sediment-water interface in samples with high turbidity, particularly in shallow lateral bays. These embayments appear to be transient nitrification hotspots during periods of sediment resuspension. Marine regions and the oligotrophic upper river were also dominated by AOA but had low nitrification rates. Overall, nitrification rates and microbial communities appear to respond to changes in freshwater flow and suspended sediment dynamics. This work increases our knowledge of the ecology of ammonia oxidizers in anthropogenically-impacted estuaries and rivers.

  15. The upside-down river: Reservoirs, algal blooms, and tributaries affect temporal and spatial patterns in nitrogen and phosphorus in the Klamath River, USA

    NASA Astrophysics Data System (ADS)

    Oliver, Allison A.; Dahlgren, Randy A.; Deas, Michael L.

    2014-11-01

    The Klamath River, located in Oregon/California of the Northwestern U.S., is highly impounded and also experiences large seasonal algal blooms and impaired water quality. We investigated nitrogen (N) and phosphorus (P) constituents for one year (2010-2011) across 193 km of the Klamath River at sites above and below reservoirs and major tributaries to determine the influence of these features on longitudinal and temporal trends in concentrations, loads, and N:P ratios. In general, the headwater lake (Upper Klamath Lake) and reservoirs appeared to be the dominant influence on water quality and nutrient dynamics in the upper river, whereas tributaries appeared to exert stronger influence in the lower river. Overall, high nutrients and poor water quality at upstream sites were ameliorated downstream, however the downstream reductions in N were much greater relative to P. Seasonality appeared to play a major role in the overall appearance and magnitude of longitudinal trends. The greatest upstream-downstream differences occurred during periods of time following large algal blooms in the upper portion of the river. Overall, the amount and composition of N appeared to be strongly driven by algal blooms and biogeochemical conditions such as low oxygen, high pH and warm temperatures in the upper portion of the river, whereas P was more strongly driven by seasonal hydrology. The spatiotemporal influence of reservoirs and tributaries on nutrient flux and nutrient ratios may have significant implications for aquatic communities and ecosystem health. Nutrient objectives should be considered when designing restoration, management, and monitoring objectives for projects involving habitat suitability for anadromous fish and potential dam removal.

  16. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment.

    PubMed

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot-1 (equivalent to the recommended field rate of 150 kg ha-1) to 0.44 g pot-1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk.

  17. Elevated CO{sub 2} in a prototype free-air CO{sub 2} enrichment facility affects photosynthetic nitrogen relations in a maturing pine forest

    SciTech Connect

    Ellsworth, D.S.; LaRoche, J.; Hendrey, G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric CO{sub 2} {approx} 550 {micro}mol/mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. Findings suggest a need for continued examination of internal feedbacks at the whole-tree and ecosystem level in forests that may influence long-term photosynthetic responses to elevated CO{sub 2}.

  18. ELEVATED CO{sub 2} IN A PROTOTYPE FREE-AIR CO{sub 2} ENRICHMENT FACILITY AFFECTS PHOTOSYNTHETIC NITROGEN RELATIONS IN A MATURING PINE FOREST

    SciTech Connect

    ELLSWORTH,D.S.; LA ROCHE,J.; HENDREY,G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric [CO{sub 2}] {approx} 550 {micro}mol mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Their findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. While carboxylation efficiency per unit N apparently decreased under elevated CO{sub 2}, photosynthetic rates in trees at elevated CO{sub 2} concentrations {approx} 550 pmol mol{sub {minus}1} are still

  19. Stochastic Coupled Cluster Theory

    NASA Astrophysics Data System (ADS)

    Thom, Alex J. W.

    2010-12-01

    We describe a stochastic coupled cluster theory which represents excitation amplitudes as discrete excitors in the space of excitation amplitudes. Reexpressing the coupled cluster (CC) equations as the dynamics of excitors in this space, we show that a simple set of rules suffices to evolve a distribution of excitors to sample the CC solution and correctly evaluate the CC energy. These rules are not truncation specific and this method can calculate CC solutions to an arbitrary level of truncation. We present results of calculation on the neon atom, and nitrogen and water molecules showing the ability to recover both truncated and full CC results.

  20. Processing of soybean meal and 00-rapeseed meal reduces protein digestibility and pig growth performance but does not affect nitrogen solubilization along the small intestine.

    PubMed

    Hulshof, T G; van der Poel, A F B; Hendriks, W H; Bikker, P

    2016-06-01

    An experiment was conducted to determine the effects of processing of soybean meal (SBM) and 00-rapeseed meal (RSM) on N solubilization in chyme, CP digestibility along the small intestine, metabolic load as determined by organ weight, body composition, and growth performance in growing pigs. The SBM and RSM were processed by secondary toasting (at 95°C for 30 min) in the presence of lignosulfonate, resulting in processed SBM (pSBM) and processed RSM (pRSM) as a model for overprocessed protein sources. Fifty-four growing pigs were each fed 1 of the 6 experimental diets. Four of the diets contained SBM, pSBM, RSM, or pRSM as the sole protein source. The remaining 2 experimental diets contained pSBM or pRSM and were supplemented with crystalline AA to the same standardized ileal digestible AA levels as the SBM or RSM diet. Pigs were slaughtered at 40 kg, and organ weights were recorded. The organs plus blood and empty carcass were analyzed for CP content. The small intestine was divided into 3 segments, and chyme samples were taken from the last meter of each segment. Chyme of the SBM, pSBM, RSM, and pRSM diets was centrifuged to separate the soluble and insoluble fractions, and N content was determined in the latter. The amount of insoluble N as a fraction of N in chyme at each small intestinal segment was not affected by processing. Diet type, comprising effects of processing and supplementing crystalline AA, affected ( < 0.05) the G:F and standardized ileal digestibility (SID) of CP. Processing reduced G:F from 0.56 to 0.38 for SBM and 0.49 to 0.40 for RSM, whereas supplementing crystalline AA increased G:F to the level of the SBM and RSM diets. Processing reduced the SID of CP from 87.2% to 69.2% for SBM and 71.0% to 52.2% for RSM. Diet type affected ( < 0.05) the CP content in the empty body, with processing reducing this content from 170 to 144 g/kg empty BW for SBM and 157 to 149 g/kg empty BW for RSM and supplementing crystalline AA restoring this content

  1. Cluster headache

    MedlinePlus

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  2. How do Elevated CO2 and Nitrogen Addition Affect Functional Microbial Community Involved in Greenhouse Gas Flux in Salt Marsh System.

    PubMed

    Lee, Seung-Hoon; Megonigal, Patrick J; Kang, Hojeong

    2017-03-22

    Salt marshes are unique ecosystem of which a microbial community is expected to be affected by global climate change. In this study, by using T-RFLP analysis, quantitative PCR, and pyrosequencing, we comprehensively analyzed the microbial community structure responding to elevated CO2 (eCO2) and N addition in a salt marsh ecosystem subjected to CO2 manipulation and N addition for about 3 years. We focused on the genes of microbes relevant to N-cycling (denitrification and nitrification), CH4-flux (methanogens and methanotrophs), and S-cycling (sulfate reduction) considering that they are key functional groups involved in the nutrient cycle of salt marsh system. Overall, this study suggests that (1) eCO2 and N addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Specifically, the denitrification process may be facilitated, while the methanogenesis may be impeded due to the outcompeting of sulfate reduction by eCO2 and N. This implies that future global change may cause a probable change in GHGs flux and positive feedback to global climate change in salt marsh; (2) the effect of eCO2 and N on functional group seems specific and to contrast with each other, but the effect of single factor would not be compromised but complemented by combination of two factors. (3) The response of functional groups to eCO2 and/or N may be directly or indirectly related to the plant community and its response to eCO2 and/or N. This study provides new insights into our understanding of functional microbial community responses to eCO2 and/or N addition in a C3/C4 plant mixed salt marsh system.

  3. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  4. Seawater pH, and not inorganic nitrogen source, affects pH at the blade surface of Macrocystis pyrifera: implications for responses of the giant kelp to future oceanic conditions.

    PubMed

    Fernández, Pamela A; Roleda, Michael Y; Leal, Pablo P; Hurd, Catriona L

    2017-01-01

    Ocean acidification (OA), the ongoing decline in seawater pH, is predicted to have wide-ranging effects on marine organisms and ecosystems. For seaweeds, the pH at the thallus surface, within the diffusion boundary layer (DBL), is one of the factors controlling their response to OA. Surface pH is controlled by both the pH of the bulk seawater and by the seaweeds' metabolism: photosynthesis and respiration increase and decrease pH within the DBL (pHDBL ), respectively. However, other metabolic processes, especially the uptake of inorganic nitrogen (Ni ; NO3(-) and NH4(+) ) may also affect the pHDBL . Using Macrocystis pyrifera, we hypothesized that (1) NO3(-) uptake will increase the pHDBL , whereas NH4(+) uptake will decrease it, (2) if NO3(-) is cotransported with H(+) , increases in pHDBL would be greater under an OA treatment (pH = 7.65) than under an ambient treatment (pH = 8.00), and (3) decreases in pHDBL will be smaller at pH 7.65 than at pH 8.00, as higher external [H(+) ] might affect the strength of the diffusion gradient. Overall, Ni source did not affect the pHDBL . However, increases in pHDBL were greater at pH 7.65 than at pH 8.00. CO2 uptake was higher at pH 7.65 than at pH 8.00, whereas HCO3(-) uptake was unaffected by pH. Photosynthesis and respiration control pHDBL rather than Ni uptake. We suggest that under future OA, Macrocystis pyrifera will metabolically modify its surface microenvironment such that the physiological processes of photosynthesis and Ni uptake will not be affected by a reduced pH. © 2016 Scandinavian Plant Physiology Society.

  5. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  6. Variations in the natural ¹⁵N abundance of Brassica chinensis grown in uncultivated soil affected by different nitrogen fertilizers.

    PubMed

    Yuan, Yuwei; Hu, Guixian; Zhao, Ming; Chen, Tianjin; Zhang, Yongzhi; Zhu, Jiahong; Wang, Qiang

    2014-11-26

    To further investigate the method of using δ(15)N as a marker for organic vegetable discrimination, the effects of different fertilizers on the δ(15)N in different growing stages of Brassica chinensis (B. chinensis) grown in uncultivated soil were investigated with a pot experiment. B. chinensis was planted with uncultivated soil and different fertilizer treatments and then harvested three times in three seasons consecutively. For the spring experiments in the years of 2011 and 2012, the δ(15)N value of B. chinensis, which increased due to organic manure application and decreased due to chemical fertilizer application, was significantly different (p < 0.05) with manure treatment and chemical treatment. The δ(15)N value of vegetables varied among three growing stages and ranged from +8.6‰ to +11.5‰ for the control, from +8.6‰ to +12.8‰ for the compost chicken manure treatment, from +2.8‰ to +7.7‰ for the chemical fertilizer urea treatment, and from +7.7‰ to +10.9‰ for the compost-chemical fertilizer treatment. However, the δ(15)N values observed in the autumn experiment of 2011 without any fertilizer application increased ranging from +13.4‰ to +15.4‰, + 11.2‰ to +17.7‰, +10.7‰ to +17.1‰, and +10.6‰ to +19.1‰, respectively, for the same treatments mentioned above. This result was not significantly different between manure treatment and chemical treatment. The δ(15)N values of soil obtained in the spring of 2011 during three growing stages were slightly affected by fertilizers and varied in the range of +1.6‰ to +2.5‰ for CK, +4.7‰ to +6.5‰ for compost treatment, +2.1‰ to +2.4‰ for chemical treatment, and +2.7‰ to +4.6‰ for chemical-compost treatment, respectively. High δ(15)N values of B. chinensis were observed in these experiments, which would be useful to supplement a δ(15)N database for discriminating organic vegetables. Although there was a significant difference between manure treatment and chemical

  7. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    SciTech Connect

    Wang, Qian-fei; Liu, Xin; O'Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  8. The Fusarium verticillioides FUM Gene Cluster Encodes a Zn(II)2Cys6 Protein That Affects FUM Gene Expression and Fumonisin Production▿

    PubMed Central

    Brown, Daren W.; Butchko, Robert A. E.; Busman, Mark; Proctor, Robert H.

    2007-01-01

    Fumonisins are mycotoxins produced by some Fusarium species and can contaminate maize or maize products. Ingestion of fumonisins is associated with diseases, including cancer and neural tube defects, in humans and animals. In fungi, genes involved in the synthesis of mycotoxins and other secondary metabolites are often located adjacent to each other in gene clusters. Such genes can encode structural enzymes, regulatory proteins, and/or proteins that provide self-protection. The fumonisin biosynthetic gene cluster includes 16 genes, none of which appear to play a role in regulation. In this study, we identified a previously undescribed gene (FUM21) located adjacent to the fumonisin polyketide synthase gene, FUM1. The presence of a Zn(II)2Cys6 DNA-binding domain in the predicted protein suggested that FUM21 was involved in transcriptional regulation. FUM21 deletion (Δfum21) mutants produce little to no fumonisin in cracked maize cultures but some FUM1 and FUM8 transcripts in a liquid GYAM medium. Complementation of a Δfum21 mutant with a wild-type copy of the gene restored fumonisin production. Analysis of FUM21 cDNAs identified four alternative splice forms (ASFs), and microarray analysis indicated the ASFs were differentially expressed. Based on these data, we present a model for how FUM21 ASFs may regulate fumonisin biosynthesis. PMID:17483290

  9. Inhibition of retinoic acid-induced activation of 3' human HOXB genes by antisense oligonucleotides affects sequential activation of genes located upstream in the four HOX clusters.

    PubMed Central

    Faiella, A; Zappavigna, V; Mavilio, F; Boncinelli, E

    1994-01-01

    Most homeobox genes belonging to the Hox family are sequentially activated in embryonal carcinoma cells upon treatment with retinoic acid. Genes located at the 3' end of each one of the four Hox clusters are activated first, whereas upstream Hox genes are activated progressively later. This activation has been extensively studied for human HOX genes in the NT2/D1 cell line and shown to take place at the transcriptional level. To understand the molecular mechanisms of sequential HOX gene activation in these cells, we tried to modulate the expression of 3' HOX genes through the use of antisense oligonucleotides added to the culture medium. We chose the HOXB locus. A 5- to 15-fold reduction of the expression of HOXB1 and HOXB3 was sufficient to produce a significant inhibition of the activation of the upstream HOXB genes, as well as of their paralogs in the HOXA, HOXC, and HOXD clusters. Conversely, no effect was detectable on downstream HOX genes. The extent of this inhibition increased for progressively more-5' genes. The stability of the corresponding mRNAs appeared to be unaffected, supporting the idea that the observed effect might be mediated at the transcriptional level. These data suggest a cascade model of progressive activation of Hox genes, with a 3'-to-5' polarity. Images PMID:7911240

  10. Demonstration of a Coherent Electronic Spin Cluster in Diamond

    NASA Astrophysics Data System (ADS)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2016-09-01

    An obstacle for spin-based quantum sensors is magnetic noise due to proximal spins. However, a cluster of such spins can become an asset, if it can be controlled. Here, we polarize and readout a cluster of three nitrogen electron spins coupled to a single nitrogen-vacancy spin in diamond. We further achieve sub-nm localization of the cluster spins. Finally, we demonstrate coherent spin exchange between the species by simultaneous dressing of the nitrogen-vacancy and the nitrogen states. These results establish the feasibility of environment-assisted sensing and quantum simulations with diamond spins.

  11. Prenatal Lipid-Based Nutrient Supplements Do Not Affect Pregnancy or Childbirth Complications or Cesarean Delivery in Bangladesh: A Cluster-Randomized Controlled Effectiveness Trial.

    PubMed

    Mridha, Malay K; Matias, Susana L; Paul, Rina Rani; Hussain, Sohrab; Sarker, Mostofa; Hossain, Mokbul; Peerson, Janet M; Vosti, Stephen A; Dewey, Kathryn G

    2017-09-01

    Background: Pregnancy and childbirth complications and cesarean delivery are common in Bangladesh.Objective: We evaluated the effect of lipid-based nutrient supplements for pregnant and lactating women (LNS-PL) on pregnancy and childbirth complications and cesarean delivery.Methods: We conducted the Rang-Din Nutrition Study, a cluster-randomized controlled effectiveness trial within a community health program in rural Bangladesh. We enrolled 4011 pregnant women in early pregnancy. Women in 48 clusters received iron and folic acid (IFA; 60 mg Fe + 400 μg folic acid/d) and women in 16 clusters received LNS-PL (20 g/d, 118 kcal) containing essential fatty acids and 22 vitamins and minerals. Pregnancy and childbirth complications and the cesarean delivery rate were secondary outcomes of the study.Results: Women in the LNS-PL group did not differ significantly from the IFA group with respect to mean systolic blood pressure at 36 wk gestation (113 and 112 mm Hg; P = 0.17), diastolic blood pressure at 36 wk gestation (68.9 and 68.7 mmHg; P = 0.88), or mean total number of pregnancy and childbirth complications (0.32 and 0.31; P = 0.86). They also did not differ significantly with respect to the prevalence of high blood pressure at 36 wk (1.74% and 2.03%; P = 0.62), antepartum hemorrhage (0.83% and 1.39%; P = 0.21), prolonged labor (8.34% and 8.79%; P = 0.68), early rupture of membranes (9.30% and 8.45%; P = 0.43), convulsions (1.57% and 1.08%; P = 0.24), high blood pressure in labor (1.54% and 1.19%; P = 0.46), obstructed labor (2.83% and 2.91%; P = 0.90), any complications during pregnancy or childbirth (35.9% and 37.1%; P = 0.64), episiotomy (6.31% and 6.44%; P = 0.90), or cesarean delivery (15.6% and 14.2%; P = 0.48).Conclusion: Compared with IFA, antenatal LNS-PL did not increase or decrease pregnancy and childbirth complications or cesarean delivery among women in rural Bangladesh. This trial was registered at clinicaltrials.gov as NCT01715038. © 2017 American

  12. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees.

    PubMed

    Greer, Dennis H; Wünsche, Jens N; Norling, Cara L; Wiggins, Harry N

    2006-01-01

    We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.

  13. Methods of affecting nitrogen assimilation in plants

    SciTech Connect

    Coruzzi, Gloria; Gutierrez, Rodrigo A.; Nero, Damion C.

    2016-10-11

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  14. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    between the nozzle and detector in molecular beam apparatus with three cooling mechanisms, adiabatic expansion, photon emission and cluster decay. The adiabatic expansion and the photon emission do not affect mass abundances of clusters. Our studies show that cluster decay cooling produces a shift in the mass spectra. The shift is dependent on the temperature of the beam and increases as the temperature increases. (Abstract shortened by UMI.).

  15. The Cluster of miR-143 and miR-145 Affects the Risk for Esophageal Squamous Cell Carcinoma through Co-Regulating Fascin Homolog 1

    PubMed Central

    Liu, Ran; Liao, Juan; Yang, Miao; Sheng, Jingyi; Yang, Hao; Wang, Yi; Pan, Enchun; Guo, Wei; Pu, Yuepu; Kim, Sun Jung; Yin, Lihong

    2012-01-01

    MicroRNAs (miRNAs), 18–24 nt non-coding RNAs, are thought to play important roles in cell proliferation, differentiation, apoptosis, and development. Recent studies suggest that some of the known microRNAs map to a single genomic locale within a single polycistronic transcript. But the roles of the cluster remain to be known. In order to understand the role and mechanism of a cluster of miR-143 and miR-145 in esophageal squamous cell carcinoma (ESCC), the association of mature miR-143 and miR-145 expression with the risk for esophageal cancer was evaluated in ESCC patients with a case-control study, and target protein regulated by mature miRNA was analyzed in ESCC cell lines with 3′UTR luciferase reporter assay. The expression levels of miR-143 and miR-145 were determined in 110 pairs of esophageal cancer tissues and adjacent normal tissues using real-time reverse transcription PCR. The relative expression of miR-143 and miR-145 were statistically different between cancer tissues and matched controls. The combined expression of miR-143 and miR-145 was significantly associated with the risk for esophageal cancer. Meanwhile, the reduced expression of two miRNAs in tumor patient was supposed to have a trend of lymph node metastases. The co-expression pattern of miR-143 and miR-145 was analyzed with Pearson correlation. It showed a significant correlation between these two miRNAs expression both in tissues and tumor cell lines. 3′UTR luciferase reporter assay indicated that Fascin Homolog 1 (FSCN1) could be co-regulated by miR-143 and miR-145. The protein level of FSCN1 showed no significant linear correlation with miR-143 and miR-145 expression in ESCC cell lines with Western blotting analysis. In conclusion, since miR-143 and miR-145 could regulate oncogenic FSCN1 and take part in the modulation of metastases, the result suggested the combination variable of miR-143 and miR-145 as a potential biomarker for earlier diagnosis and prognosis of esophageal cancer

  16. Meaningful Clusters

    SciTech Connect

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  17. Modeling Clustered Data with Very Few Clusters.

    PubMed

    McNeish, Daniel; Stapleton, Laura M

    2016-01-01

    Small-sample inference with clustered data has received increased attention recently in the methodological literature, with several simulation studies being presented on the small-sample behavior of many methods. However, nearly all previous studies focus on a single class of methods (e.g., only multilevel models, only corrections to sandwich estimators), and the differential performance of various methods that can be implemented to accommodate clustered data with very few clusters is largely unknown, potentially due to the rigid disciplinary preferences. Furthermore, a majority of these studies focus on scenarios with 15 or more clusters and feature unrealistically simple data-generation models with very few predictors. This article, motivated by an applied educational psychology cluster randomized trial, presents a simulation study that simultaneously addresses the extreme small sample and differential performance (estimation bias, Type I error rates, and relative power) of 12 methods to account for clustered data with a model that features a more realistic number of predictors. The motivating data are then modeled with each method, and results are compared. Results show that generalized estimating equations perform poorly; the choice of Bayesian prior distributions affects performance; and fixed effect models perform quite well. Limitations and implications for applications are also discussed.

  18. Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNACUG in Saccharomyces cerevisiae

    PubMed Central

    Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.

    2015-01-01

    A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors

  19. About the Clusters Program

    EPA Pesticide Factsheets

    The Environmental Technology Innovation Clusters Program advises cluster organizations, encourages collaboration between clusters, tracks U.S. environmental technology clusters, and connects EPA programs to cluster needs.

  20. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways.

    PubMed

    Chen-Plotkin, Alice S; Unger, Travis L; Gallagher, Michael D; Bill, Emily; Kwong, Linda K; Volpicelli-Daley, Laura; Busch, Johanna I; Akle, Sebastian; Grossman, Murray; Van Deerlin, Vivianna; Trojanowski, John Q; Lee, Virginia M-Y

    2012-08-15

    Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a fatal neurodegenerative disease with no available treatments. Mutations in the progranulin gene (GRN) causing impaired production or secretion of progranulin are a common Mendelian cause of FTLD-TDP; additionally, common variants at chromosome 7p21 in the uncharacterized gene TMEM106B were recently linked by genome-wide association to FTLD-TDP with and without GRN mutations. Here we show that TMEM106B is neuronally expressed in postmortem human brain tissue, and that expression levels are increased in FTLD-TDP brain. Furthermore, using an unbiased, microarray-based screen of >800 microRNAs (miRs), we identify microRNA-132 as the top microRNA differentiating FTLD-TDP and control brains, with <50% normal expression levels of three members of the microRNA-132 cluster (microRNA-132, microRNA-132*, and microRNA-212) in disease. Computational analyses, corroborated empirically, demonstrate that the top mRNA target of both microRNA-132 and microRNA-212 is TMEM106B; both microRNAs repress TMEM106B expression through shared microRNA-132/212 binding sites in the TMEM106B 3'UTR. Increasing TMEM106B expression to model disease results in enlargement and poor acidification of endo-lysosomes, as well as impairment of mannose-6-phosphate-receptor trafficking. Finally, endogenous neuronal TMEM106B colocalizes with progranulin in late endo-lysosomes, and TMEM106B overexpression increases intracellular levels of progranulin. Thus, TMEM106B is an FTLD-TDP risk gene, with microRNA-132/212 depression as an event which can lead to aberrant overexpression of TMEM106B, which in turn alters progranulin pathways. Evidence for this pathogenic cascade includes the striking convergence of two independent, genomic-scale screens on a microRNA:mRNA regulatory pair. Our findings open novel directions for elucidating miR-based therapies in FTLD-TDP.

  1. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the miRNA-132/212 cluster and affects progranulin pathways

    PubMed Central

    Chen-Plotkin, Alice S.; Unger, Travis L.; Gallagher, Michael D.; Bill, Emily; Kwong, Linda K.; Volpicelli-Daley, Laura; Busch, Johanna I.; Akle, Sebastian; Grossman, Murray; Van Deerlin, Vivianna; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2012-01-01

    Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a fatal neurodegenerative disease with no available treatments. Mutations in the progranulin gene (GRN) causing impaired production or secretion of progranulin are a common Mendelian cause of FTLD-TDP; additionally, common variants at chromosome 7p21 in the uncharacterized gene TMEM106B were recently linked by genome-wide association to FTLD-TDP with and without GRN mutations. Here we show that TMEM106B is neuronally expressed in postmortem human brain tissue, and that expression levels are increased in FTLD-TDP brain. Furthermore, using an unbiased, microarray-based screen of over 800 microRNAs, we identify microRNA-132 as the top microRNA differentiating FTLD-TDP and control brains, with <50% normal expression levels of three members of the microRNA-132 cluster (microRNA-132, microRNA-132*, and microRNA-212) in disease. Computational analyses, corroborated empirically, demonstrate that the top mRNA target of both microRNA-132 and microRNA-212 is TMEM106B; both microRNAs repress TMEM106B expression through shared microRNA-132/212 binding sites in the TMEM106B 3’UTR. Increasing TMEM106B expression to model disease results in enlargement and poor acidification of endo-lysosomes, as well as impairment of mannose-6-phosphate-receptor trafficking. Finally, endogenous neuronal TMEM106B co-localizes with progranulin in late endo-lysosomes, and TMEM106B over-expression increases intracellular levels of progranulin. Thus, TMEM106B is an FTLD-TDP risk gene, with microRNA-132/212 depression as an event which can lead to aberrant over-expression of TMEM106B, which in turn alters progranulin pathways. Evidence for this pathogenic cascade includes the striking convergence of two independent, genomic-scale screens on a microRNA:mRNA regulatory pair. Our findings open novel directions for elucidating miRNA-based therapies in FTLD-TDP. PMID:22895706

  2. Sybr Green- and TaqMan-Based Quantitative PCR Approaches Allow Assessment of the Abundance and Relative Distribution of Frankia Clusters in Soils

    PubMed Central

    Ben Tekaya, Seifeddine; Ganesan, Abirama Sundari; Guerra, Trina; Dawson, Jeffrey O.; Forstner, Michael R. J.

    2016-01-01

    ABSTRACT The nodule-forming actinobacterial genus Frankia can generally be divided into 4 taxonomic clusters, with clusters 1, 2, and 3 representing nitrogen-fixing strains of different host infection groups and cluster 4 representing atypical, generally non-nitrogen-fixing strains. Recently, quantitative PCR (qPCR)-based quantification methods have been developed for frankiae of clusters 1 and 3; however, similar approaches for clusters 2 and 4 were missing. We amended a database of partial 23S rRNA gene sequences of Frankia strains belonging to clusters 1 and 3 with sequences of frankiae representing clusters 2 and 4. The alignment allowed us to design primers and probes for the specific detection and quantification of these Frankia clusters by either Sybr Green- or TaqMan-based qPCR. Analyses of frankiae in different soils, all obtained from the same region in Illinois, USA, provided similar results, independent of the qPCR method applied, with abundance estimates of 10 × 105 to 15 × 105 cells (g soil)−1 depending on the soil. Diversity was higher in prairie soils (native, restored, and cultivated), with frankiae of all 4 clusters detected and those of cluster 4 dominating, while diversity in soils under Alnus glutinosa, a host plant for cluster 1 frankiae, or Betula nigra, a related nonhost plant, was restricted to cluster 1 and 3 frankiae and generally members of subgroup 1b were dominating. These results indicate that vegetation affects the basic composition of frankiae in soils, with higher diversity in prairie soils compared to much more restricted diversity under some host and nonhost trees. IMPORTANCE Root nodule formation by the actinobacterium Frankia is host plant specific and largely, but not exclusively, correlates with assignments of strains to specific clusters within the genus. Due to the lack of adequate detection and quantification tools, studies on Frankia have been limited to clusters 1 and 3 and generally excluded clusters 2 and 4. We

  3. Sybr Green- and TaqMan-Based Quantitative PCR Approaches Allow Assessment of the Abundance and Relative Distribution of Frankia Clusters in Soils.

    PubMed

    Ben Tekaya, Seifeddine; Ganesan, Abirama Sundari; Guerra, Trina; Dawson, Jeffrey O; Forstner, Michael R J; Hahn, Dittmar

    2017-03-01

    The nodule-forming actinobacterial genus Frankia can generally be divided into 4 taxonomic clusters, with clusters 1, 2, and 3 representing nitrogen-fixing strains of different host infection groups and cluster 4 representing atypical, generally non-nitrogen-fixing strains. Recently, quantitative PCR (qPCR)-based quantification methods have been developed for frankiae of clusters 1 and 3; however, similar approaches for clusters 2 and 4 were missing. We amended a database of partial 23S rRNA gene sequences of Frankia strains belonging to clusters 1 and 3 with sequences of frankiae representing clusters 2 and 4. The alignment allowed us to design primers and probes for the specific detection and quantification of these Frankia clusters by either Sybr Green- or TaqMan-based qPCR. Analyses of frankiae in different soils, all obtained from the same region in Illinois, USA, provided similar results, independent of the qPCR method applied, with abundance estimates of 10 × 10(5) to 15 × 10(5) cells (g soil)(-1) depending on the soil. Diversity was higher in prairie soils (native, restored, and cultivated), with frankiae of all 4 clusters detected and those of cluster 4 dominating, while diversity in soils under Alnus glutinosa, a host plant for cluster 1 frankiae, or Betula nigra, a related nonhost plant, was restricted to cluster 1 and 3 frankiae and generally members of subgroup 1b were dominating. These results indicate that vegetation affects the basic composition of frankiae in soils, with higher diversity in prairie soils compared to much more restricted diversity under some host and nonhost trees.IMPORTANCE Root nodule formation by the actinobacterium Frankia is host plant specific and largely, but not exclusively, correlates with assignments of strains to specific clusters within the genus. Due to the lack of adequate detection and quantification tools, studies on Frankia have been limited to clusters 1 and 3 and generally excluded clusters 2 and 4. We have

  4. Factors affecting compliance in faecal occult blood testing: a cluster randomized study of the faecal immunochemical test versus the guaiac faecal occult test.

    PubMed

    Birkenfeld, Shlomo; Belfer, Rachel Gingold; Chared, Miri; Vilkin, Alex; Barchana, Micha; Lifshitz, Irena; Fruchter, Dana; Aronski, Dina; Balicer, Ran; Niv, Yaron; Levi, Zohar

    2011-01-01

    To compare the uptake of faecal immunochemical occult blood test (FIT) with guaiac faecal occult blood test (gFOBT) in a screening programme, with specific attention to the demographic and socioeconomic factors that might affect test uptake. The Clalit Health Service screening programme, Israel. Average-risk individuals aged 50-75 years were randomized into a FIT arm or gFOBT arm using a programme based on the socioeconomic status (SES) of their primary care clinics. G-FOBT was performed with Hemoccult SENSA™ (3 evacuations) and FIT with the OC- MICRO(TM) (3 evacuations, refrigerating mandated). The GLIMMIX model was used. There were 5,464 and 10,668 eligible participants in the FIT and gFOBT arms respectively. Compliance in taking the kits was better (but not statistically significantly better) with gFOBT (37.8% vs. 29.3%; odds ratio [OR] 1.43 [95% CI 0.73-2.80]; P = 0.227). Kit return was higher in the FIT arm (65.0% vs. 78.9%; OR 0.45 [95% CI 0.24-0.83], P = 0.021). Overall test uptake was affected by age, gender, being immigrant and SES (determined by whether or not the participant paid national insurance tax, and the SES of the primary care clinic). The overall uptake of gFOBT and FIT was comparable (OR 0.996 [95% CI 0.46-2.17], P = 0.99). Overall compliance for test uptake was comparable between the two methods despite the more demanding procedure in the FIT arm. Sociodemographic parameters were the major determinants of compliance. An educational programme, with emphasis on the sociodemographic characteristics of the target population, should be instigated.

  5. Nitrogen and nitrogen-vacancy complexes and their formation in diamond

    NASA Astrophysics Data System (ADS)

    Mainwood, Alison

    1994-03-01

    Using a semiempirical molecular-orbital technique, incorporating Car-Parrinello molecular dynamics, the structure and properties of the common aggregates of nitrogen atoms in diamond have been investigated. Nitrogen-vacancy complexes have been examined in the same way, showing that, as is observed, it is energetically favorable for the nitrogen to form aggregates and for the vacancies to be trapped at the nitrogen, whatever its state of aggregation. The activation energy for migration of the vacancy was found to be 2.4 eV, in close agreement with experiment, and the processes by which the nitrogen complexes trap vacancies were modeled. The mechanisms involved in the migration of the single nitrogen atom and its aggregation to form pairs are explored. It is found that a vacancy-assisted mechanism has an activation energy of 4.5 eV, and a direct atomic exchange of the nitrogen with its carbon neighbor has an energy of 6.3 eV. These values straddle the experimental estimate of 5 eV and would indicate why radiation damage enhances the nitrogen aggregation. The mechanisms involved in the further aggregation of nitrogen pairs to form well-defined clusters of four nitrogen atoms were also modeled, and an activation energy of 7-8 eV found.

  6. Robust clustering by pruning outliers.

    PubMed

    Zhang, Jiang-She; Leung, Yiu-Wing

    2003-01-01

    In many applications of C-means clustering, the given data set often contains noisy points. These noisy points will affect the resulting clusters, especially if they are far away from the data points. In this paper, we develop a pruning approach for robust C-means clustering. This approach identifies and prunes the outliers based on the sizes and shapes of the clusters so that the resulting clusters are least affected by the outliers. The pruning approach is general, and it can improve the robustness of many existing C-means clustering methods. In particular, we apply the pruning approach to improve the robustness of hard C-means clustering, fuzzy C-means clustering, and deterministic-annealing C-means clustering. As a result, we obtain three clustering algorithms that are the robust versions of the existing ones. In addition, we integrate the pruning approach with the fuzzy approach and the possibilistic approach to design two new algorithms for robust C-means clustering. The numerical results demonstrate that the pruning approach can achieve good robustness.

  7. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  8. Total nitrogen content of deep sea basalts

    NASA Technical Reports Server (NTRS)

    Norris, T. L.; Schaeffer, O. A.

    1982-01-01

    An estimate of the total nitrogen content of the earth's mantle, aimed at furnishing a further constraint for earth atmosphere origin and evolution models, was attempted through thermal neutron activation analysis via N-14(n,p)C-14 for the case of deep sea basalt glasses from the East Pacific Rise, the Mid-Atlantic Rift, and the Juan de Fuca Ridge. The increased nitrogen abundance of matrix material from the same samples as the glasses may be due to the incorporation of chemically-bound nitrogen from sea water, rather than dissolved molecular nitrogen. A discussion is presented of factors affecting observed basalt nitrogen content and its interpretation in terms of mantle nitrogen abundance. A 2 ppm N lower limit is estimated for the mantle.

  9. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  10. Total nitrogen content of deep sea basalts

    NASA Technical Reports Server (NTRS)

    Norris, T. L.; Schaeffer, O. A.

    1982-01-01

    An estimate of the total nitrogen content of the earth's mantle, aimed at furnishing a further constraint for earth atmosphere origin and evolution models, was attempted through thermal neutron activation analysis via N-14(n,p)C-14 for the case of deep sea basalt glasses from the East Pacific Rise, the Mid-Atlantic Rift, and the Juan de Fuca Ridge. The increased nitrogen abundance of matrix material from the same samples as the glasses may be due to the incorporation of chemically-bound nitrogen from sea water, rather than dissolved molecular nitrogen. A discussion is presented of factors affecting observed basalt nitrogen content and its interpretation in terms of mantle nitrogen abundance. A 2 ppm N lower limit is estimated for the mantle.

  11. Cluster headache

    PubMed Central

    Leroux, Elizabeth; Ducros, Anne

    2008-01-01

    Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke) and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms) has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments) and to reduce the number of daily attacks (prophylactic treatments). Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the hypothalamus and

  12. Acid clusters

    SciTech Connect

    Keesee, R.G.; Castleman, A.W. Jr.

    1986-04-01

    Molecular clusters can be considered to be the smallest size range of an aerosol particle size distribution. Nucleation from the gas phase to particles or droplets involves the formation of clusters in the initial stages. Consequently, knowledge of the properties and formation of clusters containing acids contribute to an understanding of acid rain. This paper presents an overview of results obtained in the laboratory on the formation and stability of both neutral and ionized acid clusters. With free jet expansion techniques, the authors have produced clusters of aqueous nitric acid, aqueous hydrochloric acid, aqueous sulfuric acid, acetic acid and aqueous sulfur dioxide. For analogy to buffering, the formation of clusters containing ammonia have also been examined. These have included ammonia with aqueous nitric acid, hydrogen sulfide and sulfur dioxide. The basic experiment involves expansion of vapor through a nozzle, collimation of the jet with a skimmer to form a well-directed molecular beam, and detection of clusters via electron impact ionization and mass spectrometry. Some variations include the introduction of a reactive gas into vacuum near the expansion as described elsewhere and the implementation of an electrostatic quadrupolar field to examine the polarity of the neutral clusters.

  13. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    PubMed

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  14. Quintuplet Cluster

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Penetrating 25,000 light-years of obscuring dust and myriad stars, NASA's Hubble Space Telescope has provided the clearest view yet of one of the largest young clusters of stars inside our Milky Way galaxy, located less than 100 light-years from the very center of the Galaxy. Having the equivalent mass greater than 10,000 stars like our sun, the monster cluster is ten times larger than typical young star clusters scattered throughout our Milky Way. It is destined to be ripped apart in just a few million years by gravitational tidal forces in the galaxy's core. But in its brief lifetime it shines more brightly than any other star cluster in the Galaxy. Quintuplet Cluster is 4 million years old. It has stars on the verge of blowing up as supernovae. It is the home of the brightest star seen in the galaxy, called the Pistol star. This image was taken in infrared light by Hubble's NICMOS camera in September 1997. The false colors correspond to infrared wavelengths. The galactic center stars are white, the red stars are enshrouded in dust or behind dust, and the blue stars are foreground stars between us and the Milky Way's center. The cluster is hidden from direct view behind black dust clouds in the constellation Sagittarius. If the cluster could be seen from earth it would appear to the naked eye as a 3rd magnitude star, 1/6th of a full moon's diameter apart.

  15. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2

    Treesearch

    Haley F. Wicklein; Scott V. Ollinger; Mary E. Martin; David Y. Hollinger; Lucie C. Lepine; Michelle C. Day; Megan K. Bartlett; Andrew D. Richardson; Richard J. Norby

    2012-01-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen-albedo relationship have not been established, and it is unknown whether factors affecting...

  16. Spitzer Clusters

    NASA Astrophysics Data System (ADS)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  17. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  18. Star clusters

    NASA Astrophysics Data System (ADS)

    Labhardt, Lukas; Binggeli, Bruno

    Star clusters are at the heart of astronomy, being key objects for our understanding of stellar evolution and galactic structure. Observations with the Hubble Space Telescope and other modern equipment have revealed fascinating new facts about these galactic building blocks. This book provides two comprehensive and up-to-date, pedagogically designed reviews on star clusters by two well-known experts in the field. Bruce Carney presents our current knowledge of the relative and absolute ages of globular clusters and the chemical history of our Galaxy. Bill Harris addresses globular clusters in external galaxies and their use as tracers of galaxy formation and cosmic distance indicators. The book is written for graduate students as well as professionals in astronomy and astrophysics.

  19. Occupational Clusters.

    ERIC Educational Resources Information Center

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  20. Cluster generator

    DOEpatents

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  1. Hausdorff clustering

    NASA Astrophysics Data System (ADS)

    Basalto, Nicolas; Bellotti, Roberto; de Carlo, Francesco; Facchi, Paolo; Pantaleo, Ester; Pascazio, Saverio

    2008-10-01

    A clustering algorithm based on the Hausdorff distance is analyzed and compared to the single, complete, and average linkage algorithms. The four clustering procedures are applied to a toy example and to the time series of financial data. The dendrograms are scrutinized and their features compared. The Hausdorff linkage relies on firm mathematical grounds and turns out to be very effective when one has to discriminate among complex structures.

  2. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance.

  3. The simulation model of the computer cluster

    NASA Astrophysics Data System (ADS)

    Sokolova, V. V.; Zamyatina, O. M.

    2017-01-01

    Simulation is often used in cases when it is impossible to carry out experiments with real complex objects. The article represents the description of the computer cluster simulation model. Parameters, which affect the cluster performance, were selected, a simulation model was designed, and experiments were conducted. The obtained model allowed finding the optimal variant of the cluster performance, which consists of five computers.

  4. Experimental and theoretical investigation of three-dimensional nitrogen-doped aluminum clusters AI8N- and AI8N

    SciTech Connect

    Wang, Leiming; Huang, Wei; Wang, Lai S.; Averkiev, Boris B.; Boldyrev, Alexander I.

    2009-04-01

    The structure and electronic properties of the Al8N- and Al8N clusters were investigated by combined photoelectron spectroscopy and ab initio studies. Congested photoelectron spectra were observed and experimental evidence was obtained for the presence of multiple isomers for Al8N- Global minimum searches revealed several structures for Al8N- with close energies. The calculated vertical detachment energies of the two lowest-lying isomers, which are of C2v and Cs symmetry, respectively, were shown to agree well with the experimental data. Unlike the three-dimensional structures of Al6N- and Al7N-, in which the dopant N atom has a high coordination number of 6,the dopant N atom in the two low-lying isomers of Al8N- has a lower coordination number of 4 and 5, respectively. The competition between the Al–Al and Al–N interactions are shown to determine the global minimum structures of the doped aluminum clusters and results in the structural diversity for both Al8N- and Al8N. © 2009 American Institute of Physics

  5. Two photon photoemission of deposited silver clusters

    NASA Astrophysics Data System (ADS)

    Busolt, U.; Cottancin, E.; Röhr, H.; Socaciu, L.; Leisner, T.; Wöste, L.

    We use time resolved two photon photoemission to study the stability of size selected silver clusters deposited onto highly oriented pyrolytic graphite (HOPG) substrates. Size-selected Agn+ clusters (n=2-9) are deposited at low coverage onto HOPG surfaces at liquid nitrogen temperatures. After deposition, the samples are irradiated by a series of ultrashort laser pulse pairs. Photoelectrons created by two photon photoemission are collected in a magnetic bottle type time-of-flight photoelectron spectrometer. Their kinetic energy distribution is recorded as a function of the delay time between subsequent light pulses. With the exception of Ag3 the size dependence of the photoelectron spectra reveals a pronounced odd/even effect, which is well known for gas phase silver clusters. This indicates that the deposited clusters retain their size and identity on the sample. The lifetime of the photoexcitation rises with cluster size. This is attributed to an increasing electronic density of states for larger clusters.

  6. Soil carbon storage and N{sub 2}O emissions from wheat agroecosystems as affected by free-air CO{sub 2} enrichment (FACE) and nitrogen treatments. Final Report - February 12, 1999

    SciTech Connect

    S. W. Leavitt; A. D. Matthias; T. L. Thompson; R. A. Rauschkolb

    1999-02-17

    Rising atmospheric CO{sub 2} concentrations have prompted concern about response of plants and crops to future elevated CO{sub 2} levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO{sub 2} concentrations. Free-air CO{sub 2} enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO{sub 2} and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grain yield, phenology, length of growing season, water-use efficiency ecosystem production, below ground processes (eg, root and microbial activity, carbon and nitrogen cycling), etc.

  7. Nitrogen control of chloroplast differentiation

    SciTech Connect

    Schmidt, G.W.

    1994-11-01

    This project was directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins that function in energy transduction and carbon metabolism. The availability of this nutrient most pervasively limits plant growth and agricultural productivity but the molecular and physiological consequences of nitrogen-deficiency are poorly understood. The model system for our studies of nitrogen-dependent regulation of chloroplast differentiation is the unicellular green alga Chlamydomonas reinhardtii which is grown phototrophically in a continuous culture system. When 150 {mu}M nitrogen is provided at a dilution rate of 0.25 volumes of the growth medium per day, the cultures are sustained at a density of less than 10{sup 5} cells/ml and chlorophyll deficiency, the classical symptom of nitrogen-deficiency, becomes quite pronounced. We found that there is a concomitant loss of light-harvesting complexes and reduced levels of Photosystem II reaction center complexes while ATP synthetase and Photosystem I reaction centers are maintained at high levels. Moreover, reduced rates of chloroplast protein synthesis are due to differential effects on mRNA translation. In contrast, the deficiency of light-harvesting genes is due to marked reductions of the nuclear-encoded cab mRNAs. Although there is no significant reduction of the amounts of RuBPCase, we also detected substantial changes in the mRNA abundance of the alga`s two small subunit genes. All of the effects of nitrogen-limitation are readily reversible: greening