Science.gov

Sample records for nitrogen carbon assimilation

  1. Carbon and nitrogen assimilation in deep subseafloor microbial cells

    PubMed Central

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-01-01

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with 13C- and/or 15N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of 13C and/or 15N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10−18 mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds. PMID:21987801

  2. The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning.

    PubMed

    Viktor, A; Cramer, M D

    2005-01-01

    Understanding of the influences of root-zone CO2 concentration on nitrogen (N) metabolism is limited. The influences of root-zone CO2 concentration on growth, N uptake, N metabolism and the partitioning of root assimilated 14C were determined in tomato (Lycopersicon esculentum). Root, but not leaf, nitrate reductase activity was increased in plants supplied with increased root-zone CO2. Root phosphoenolpyruvate carboxylase activity was lower with NO3(-)- than with NH4(+)-nutrition, and in the latter, was also suppressed by increased root-zone CO2. Increased growth rate in NO3(-)-fed plants with elevated root-zone CO2 concentrations was associated with transfer of root-derived organic acids to the shoot and conversion to carbohydrates. With NH4(+)-fed plants, growth and total N were not altered by elevated root-zone CO2 concentrations, although 14C partitioning to amino acid synthesis was increased. Effects of root-zone CO2 concentration on N uptake and metabolism over longer periods (> 1 d) were probably limited by feedback inhibition. Root-derived organic acids contributed to the carbon budget of the leaves through decarboxylation of the organic acids and photosynthetic refixation of released CO2. PMID:15720630

  3. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees

    PubMed Central

    Silva, Lucas C. R.; Salamanca-Jimenez, Alveiro; Doane, Timothy A.; Horwath, William R.

    2015-01-01

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases (13CO2 and 15NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the 13CO2 pulse, assimilation and transport of the 15NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history. PMID:26294035

  4. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees.

    PubMed

    Silva, Lucas C R; Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R

    2015-01-01

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history. PMID:26294035

  5. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees.

    PubMed

    Silva, Lucas C R; Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R

    2015-08-21

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history.

  6. Carbon and nitrogen assimilation activities of deep subseafloor microbes analyzed by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Terada, T.; Inagaki, F.

    2009-12-01

    Deep subseafloor microbes play significant roles on biogeochemical cycles with extremely low metabolic activities. The subseafloor microbial community consists mainly of uncultured components; hence, their growth and metabolic characteristics remain almost completely unknown. Here, we presnet in vitro isotopic evidence that the deep subseafloor microbes actively incooporate multiple carbon and nitrogen compounds into their biomass using NanoSIMS. We incubated methane hydrate-bearing deep marine sediments with small 13C-labeled glucose, acetate, pyruvate, bicarbonate, amino-acids and methane in the presence of 15N-labeled ammonia as a nitrogen source for 2 and 6 monthes under the anaerobic condition. Using NanoSIMS, we observed the cells that incooprated 13C- or 15N-labeled substrates such as 13C-glucose, pyruvate, and 15N-ammonia up to 50% of their cellular carbon or nitrogen mass. Assimilation of 13C- and 15N-labeled amino acids as well as 13C-bicarbonates by autotrophs was also observed while 13C-methane was found to be difficult to be used for the carbon source, regardless of the presence of some additional electron acceptors for the energy respiration. These results indicate that the metabolic activities of deep subseafloor microbes can be stimulated in vitro by adding potential carbon and nitrogen sources, providing new insights into the biogeochemical functioning of the deep subseaflor microbes and its ecosystem.

  7. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation

    PubMed Central

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-01-01

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7–overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement. PMID:27293103

  8. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    PubMed

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-01-01

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement. PMID:27293103

  9. Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta).

    PubMed

    Wang, Hai-Tao; Meng, Ying-Ying; Cao, Xu-Peng; Ai, Jiang-Ning; Zhou, Jian-Nan; Xue, Song; Wang, Wei-liang

    2015-02-01

    The photosynthetic performance, carbon assimilation, and triacylglycerol accumulation of Isochrysis zhangjiangensis under nitrogen-deplete conditions were studied to understand the intrinsic correlations between them. The nitrogen-deplete period was divided into two stages based on the photosynthetic parameters. During the first stage, carbon assimilation was not reduced compared with that under favorable conditions. The marked increase in triacylglycerols and the variation in the fatty acid profile suggested that triacylglycerols were mainly derived from de novo synthesized acyl groups. In the second stage, the triacylglycerol content continued increasing while the carbohydrate content decreased from 44.0% to 26.3%. These results indicated that the intracellular conversion of carbohydrates to triacylglycerols occurred. Thus, we propose that sustainable carbon assimilation and incremental triacylglycerol production can be achieved by supplying appropriate amounts of nitrogen in medium to protect the photosynthetic process from severe damage using the photosynthetic parameters as indicators.

  10. Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation.

    PubMed

    Pinu, Farhana R; Edwards, Patrick J B; Gardner, Richard C; Villas-Boas, Silas G

    2014-12-01

    To investigate the assimilation and production of juice metabolites by Saccharomyces cerevisiae during winemaking, we compared the metabolite profiles of 63 Sauvignon blanc (SB) grape juices collected over five harvesting seasons from different locations of New Zealand before and after fermentation by the commercial wine yeast strain EC1118 at 15 °C. Metabolite profiles were obtained using gas chromatography-mass spectrometry and nuclear magnetic resonance and the oenological parameters were determined by Fourier transform infrared spectroscopy. Our results revealed that the amino acids threonine and serine were the most consumed organic nitrogen sources, while proline and gamma-aminobutyric acid were the least consumed amino acids during SB juice fermentation. Saccharomyces cerevisiae metabolised some uncommon nitrogen sources (e.g. norleucine, norvaline and pyroglutamic acid) and several organic acids, including some fatty acids, most likely after fermenting the main juice sugars (glucose, fructose and mannose). However, consumption showed large variation between juices and in some cases between seasons. Our study clearly shows that preferred nitrogen and carbon sources were consumed by S. cerevisiae EC1118 independent of the juice fine composition, whilst the consumption of other nutrient sources mainly depended on the concentration of other juice metabolites, which explains the uniqueness of each barrel of wine.

  11. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems.

    PubMed

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony W; Song, Xia; Thornton, Peter E; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, P and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg(-1) dry soil, 0.1 mmol N Kg(-1) dry soil, 0.1 mmol P Kg(-1) dry soil, and 0.1 mmol S Kg(-1) dry soil, respectively. These findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.

  12. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    DOE PAGESBeta

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony Wayne; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, Pmore » and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg–1 dry soil, 0.1 mmol N Kg–1 dry soil, 0.1 mmol P Kg–1 dry soil, and 0.1 mmol S Kg–1 dry soil, respectively. Lastly, these findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.« less

  13. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    SciTech Connect

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony Wayne; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, P and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg–1 dry soil, 0.1 mmol N Kg–1 dry soil, 0.1 mmol P Kg–1 dry soil, and 0.1 mmol S Kg–1 dry soil, respectively. Lastly, these findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.

  14. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    PubMed Central

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony W.; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-01-01

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, P and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg−1 dry soil, 0.1 mmol N Kg−1 dry soil, 0.1 mmol P Kg−1 dry soil, and 0.1 mmol S Kg−1 dry soil, respectively. These findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models. PMID:26612423

  15. Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS

    NASA Astrophysics Data System (ADS)

    Inness, A.; Blechschmidt, A.-M.; Bouarar, I.; Chabrillat, S.; Crepulja, M.; Engelen, R. J.; Eskes, H.; Flemming, J.; Gaudel, A.; Hendrick, F.; Huijnen, V.; Jones, L.; Kapsomenakis, J.; Katragkou, E.; Keppens, A.; Langerock, B.; de Maziere, M.; Melas, D.; Parrington, M.; Peuch, V. H.; Razinger, M.; Richter, A.; Schultz, M. G.; Suttie, M.; Thouret, V.; Vrekoussis, M.; Wagner, A.; Zerefos, C.

    2015-05-01

    Daily global analyses and 5-day forecasts are generated in the context of the European Monitoring Atmospheric Composition and Climate (MACC) project using an extended version of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The IFS now includes modules for chemistry, deposition and emission of reactive gases, aerosols, and greenhouse gases, and the 4-dimensional variational data assimilation scheme makes use of multiple satellite observations of atmospheric composition in addition to meteorological observations. This paper describes the data assimilation setup of the new Composition-IFS (C-IFS) with respect to reactive gases and validates analysis fields of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2) for the year 2008 against independent observations and a control run without data assimilation. The largest improvement in CO by assimilation of Measurements of Pollution in the Troposphere (MOPITT) CO columns is seen in the lower troposphere of the Northern Hemisphere (NH) extratropics during winter, and during the South African biomass-burning season. The assimilation of several O3 total column and stratospheric profile retrievals greatly improves the total column, stratospheric and upper tropospheric O3 analysis fields relative to the control run. The impact on lower tropospheric ozone, which comes from the residual of the total column and stratospheric profile O3 data, is smaller, but nevertheless there is some improvement particularly in the NH during winter and spring. The impact of the assimilation of tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) is small because of the short lifetime of NO2, suggesting that NO2 observations would be better used to adjust emissions instead of initial conditions. The results further indicate that the quality of the tropospheric analyses and of the stratospheric ozone analysis obtained with the C-IFS system has improved compared to

  16. Regulation by cyanate of the genes involved in carbon and nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942.

    PubMed Central

    Suzuki, I; Sugiyami, T; Omata, T

    1996-01-01

    A mutant (M45) of the cyanobacterium Synechococcus sp. strain PCC 7942, which is defective in active transport of nitrate, was used for the studies of the nitrogen regulation of the genes involved in nitrate and CO2 assimilation. In a medium containing 30 mM nitrate as the nitrogen source, M45 grew under constant stress of nitrogen deficiency and accumulated a five-times-larger amount of the transcript of nirA, the gene for nitrite reductase, compared with nitrate-grown wild-type cells. By contrast, the level of the transcript of rbcL, the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, was 40% of the wild-type level. Addition of ammonium to the culture of M45 abolished the accumulation of the nirA transcript and stimulated the accumulation of the rbcL transcript, showing that ammonium repressed and activated the transcription of nirA and rbcL, respectively. Glutamine, the initial product of ammonium fixation, also showed negative and positive effects on nirA and rbcL, respectively. One of the metabolites of glutamine, carbamoylphosphate, and its decomposition product, cyanate, were found to repress nirA and also to markedly activate rbcL. Cyanate negatively regulated another ammonium-repressible gene, glnA, but had no effect on the psbAI and rps1 genes. The effects of cyanate were not ascribable to the ammonium and CO, resulting from its decomposition. These findings suggested that cyanate may act as a regulator of the ammonium-responsive genes involved in carbon and nitrogen assimilation in the cyanobacterium. PMID:8626339

  17. Carbon: Nitrogen Interaction Regulates Expression of Genes Involved in N-Uptake and Assimilation in Brassica juncea L.

    PubMed Central

    Goel, Parul; Bhuria, Monika; Kaushal, Mamta

    2016-01-01

    In plants, several cellular and metabolic pathways interact with each other to regulate processes that are vital for their growth and development. Carbon (C) and Nitrogen (N) are two main nutrients for plants and coordination of C and N pathways is an important factor for maintaining plant growth and development. In the present work, influence of nitrogen and sucrose (C source) on growth parameters and expression of genes involved in nitrogen transport and assimilatory pathways was studied in B. juncea seedlings. For this, B. juncea seedlings were treated with four combinations of C and N source viz., N source alone (-Suc+N), C source alone (+Suc-N), with N and C source (+Suc+N) or without N and C source (-Suc-N). Cotyledon size and shoot length were found to be increased in seedlings, when nitrogen alone was present in the medium. Distinct expression pattern of genes in both, root and shoot tissues was observed in response to exogenously supplied N and C. The presence or depletion of nitrogen alone in the medium leads to severe up- or down-regulation of key genes involved in N-uptake and transport (BjNRT1.1, BjNRT1.8) in root tissue and genes involved in nitrate reduction (BjNR1 and BjNR2) in shoot tissue. Moreover, expression of several genes, like BjAMT1.2, BjAMT2 and BjPK in root and two genes BjAMT2 and BjGS1.1 in shoot were found to be regulated only when C source was present in the medium. Majority of genes were found to respond in root and shoot tissues, when both C and N source were present in the medium, thus reflecting their importance as a signal in regulating expression of genes involved in N-uptake and assimilation. The present work provides insight into the regulation of genes of N-uptake and assimilatory pathway in B. juncea by interaction of both carbon and nitrogen. PMID:27637072

  18. Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice1[C][W][OPEN

    PubMed Central

    Reguera, Maria; Peleg, Zvi; Abdel-Tawab, Yasser M.; Tumimbang, Ellen B.; Delatorre, Carla A.; Blumwald, Eduardo

    2013-01-01

    The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica ‘Kitaake’) plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of PSARK, a maturation- and stress-induced promoter. While the wild-type plants displayed inhibition of photosynthesis and nitrogen assimilation during water stress, neither carbon nor nitrogen assimilation was affected by stress in the transgenic PSARK::IPT plants. In the transgenic plants, photosynthesis was maintained at control levels during stress and the flag leaf showed increased sucrose (Suc) phosphate synthase activity and reduced Suc synthase and invertase activities, leading to increased Suc contents. The sustained carbon assimilation in the transgenic PSARK::IPT plants was well correlated with enhanced nitrate content, higher nitrate reductase activity, and sustained ammonium contents, indicating that the stress-induced cytokinin synthesis in the transgenic plants played a role in maintaining nitrate acquisition. Protein contents decreased and free amino acids increased in wild-type plants during stress, while protein content was preserved in the transgenic plants. Our results indicate that the stress-induced cytokinin synthesis in the transgenic plants promoted sink strengthening through a cytokinin-dependent coordinated regulation of carbon and nitrogen metabolism that facilitates an enhanced tolerance of the transgenic plants to water deficit. PMID:24101772

  19. Nitrogen mineralization and assimilation at millimeter scales.

    PubMed

    Myrold, David D; Pett-Ridge, Jennifer; Bottomley, Peter J

    2011-01-01

    The assimilation (uptake or immobilization) of inorganic nitrogen (N) and the production of ammonium (NH(4)(+)) from organic N compounds are universal functions of microorganisms, and the balance between these two processes is tightly regulated by the relative demands of microbes for N and carbon (C). In a heterogeneous environment, such as soils, bulk measurements of N mineralization or immobilization do not reflect the variation of these two processes in different microhabitats (1μm-1mm). Our purpose is to review the approaches that can be applied to measure N mineralization and immobilization within soil microhabitats, at scales of millimeter (using adaptations of (15)N isotope pool dilution and IRMS-isotope ratio mass spectrometry) to micrometer (using SIMS-secondary ion mass spectrometry). PMID:21514461

  20. Assimilation of Unusual Carbon Compounds

    NASA Astrophysics Data System (ADS)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  1. Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations

    SciTech Connect

    Wegener, Kimberly M.; Singh, Abhay K.; Jacobs, Jon M.; Elvitigala, Thanura R.; Welsh, Eric A.; Keren, Nir S.; Gritsenko, Marina A.; Ghosh, Bijoy K.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

    2010-12-01

    Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a largescale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1,955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1,198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen. Oxygenic phototrophic prokaryotes, the progenitors of the chloroplast, are crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp. PCC 6803 has historically been a model cyanobacterium for photosynthetic research and is emerging as a promising biofuel platform. Cellular responses are severely modified by environmental

  2. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks

    PubMed Central

    Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Hollinger, D. Y.; Frolking, S. E.; Reich, P. B.; Plourde, L. C.; Katul, G. G.; Munger, J. W.; Oren, R.; Smith, M.-L.; Paw U, K. T.; Bolstad, P. V.; Cook, B. D.; Day, M. C.; Martin, T. A.; Monson, R. K.; Schmid, H. P.

    2008-01-01

    The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models. PMID:19052233

  3. Clonal integration ameliorates the carbon accumulation capacity of a stoloniferous herb, Glechoma longituba, growing in heterogenous light conditions by facilitating nitrogen assimilation in the rhizosphere

    PubMed Central

    Chen, Jin-Song; Li, Jun; Zhang, Yun; Zong, Hao; Lei, Ning-Fei

    2015-01-01

    Background and Aims Enhanced availability of photosynthates increases nitrogen (N) mineralization and nitrification in the rhizosphere via rhizodeposition from plant roots. Under heterogeneous light conditions, photosynthates supplied by exposed ramets may promote N assimilation in the rhizosphere of shaded, connected ramets. This study was conducted to test this hypothesis. Methods Clonal fragments of the stoloniferous herb Glechoma longituba with two successive ramets were selected. Mother ramets were subjected to full sunlight and offspring ramets were subjected to 80 % shading, and the stolon between the two successive ramets was either severed or left intact. Measurements were taken of photosynthetic and growth parameters. The turnover of available soil N was determined together with the compostion of the rhizosphere microbial community. Key Results The microbial community composition in the rhizosphere of shaded offspring ramets was significantly altered by clonal integration. Positive effects of clonal integration were observed on NAGase activity, net soil N mineralization rate and net soil N nitrification rate. Increased leaf N and chlorophyll content as well as leaf N allocation to the photosynthetic machinery improved the photosynthetic capability of shaded offspring ramets when the stolon was left intact. Clonal integration improved the growth performance of shaded, connected offspring ramets and whole clonal fragments without any cost to the exposed mother ramets. Conclusions Considerable differences in microbial community composition caused by clonal integration may facilitate N assimilation in the rhizosphere of shaded offspring ramets. Increased N content in the photosynthetic machinery may allow pre-acclimation to high light conditions for shaded offspring ramets, thus promoting opportunistic light capture. In accordance with the theory of the division of labour, it is suggested that clonal integration may ameliorate the carbon assimilation

  4. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  5. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    2000-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  6. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  7. Transgenic plants that exhibit enhanced nitrogen assimilation

    SciTech Connect

    Coruzzi, G.M.; Brears, T.

    1999-09-21

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed.

  8. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria.

    PubMed

    Matassa, Silvio; Verstraete, Willy; Pikaar, Ilje; Boon, Nico

    2016-09-15

    Domestic used water treatment systems are currently predominantly based on conventional resource inefficient treatment processes. While resource recovery is gaining momentum it lacks high value end-products which can be efficiently marketed. Microbial protein production offers a valid and promising alternative by upgrading low value recovered resources into high quality feed and also food. In the present study, we evaluated the potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under autotrophic growth conditions. The enrichment of a generic microbial community and the implementation of different culture conditions (sequenced batch resp. continuous reactor) revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at high solid retention time), a very diverse microbiome with an important presence of predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high rate selection pressure (i.e. dilution rate D = 0.1 h(-1)) under continuous reactor conditions was dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and C uptake, biomass yield and volumetric productivity was attained. Under continuous culture conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein produced was of high nutritive quality in terms of essential amino acids content and can be a suitable substitute for conventional feed sources such as fishmeal or soybean meal. PMID:27262118

  9. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria.

    PubMed

    Matassa, Silvio; Verstraete, Willy; Pikaar, Ilje; Boon, Nico

    2016-09-15

    Domestic used water treatment systems are currently predominantly based on conventional resource inefficient treatment processes. While resource recovery is gaining momentum it lacks high value end-products which can be efficiently marketed. Microbial protein production offers a valid and promising alternative by upgrading low value recovered resources into high quality feed and also food. In the present study, we evaluated the potential of hydrogen-oxidizing bacteria to upgrade ammonium and carbon dioxide under autotrophic growth conditions. The enrichment of a generic microbial community and the implementation of different culture conditions (sequenced batch resp. continuous reactor) revealed surprising features. At low selection pressure (i.e. under sequenced batch culture at high solid retention time), a very diverse microbiome with an important presence of predatory Bdellovibrio spp. was observed. The microbial culture which evolved under high rate selection pressure (i.e. dilution rate D = 0.1 h(-1)) under continuous reactor conditions was dominated by Sulfuricurvum spp. and a highly stable and efficient process in terms of N and C uptake, biomass yield and volumetric productivity was attained. Under continuous culture conditions the maximum yield obtained was 0.29 g cell dry weight per gram chemical oxygen demand equivalent of hydrogen, whereas the maximum volumetric loading rate peaked 0.41 g cell dry weight per litre per hour at a protein content of 71%. Finally, the microbial protein produced was of high nutritive quality in terms of essential amino acids content and can be a suitable substitute for conventional feed sources such as fishmeal or soybean meal.

  10. Nitrogen (N) assimilation and regeneration in hypoxic water column of Jinhae Bay, South Korea

    NASA Astrophysics Data System (ADS)

    Park, S.; An, S.; Lee, J.; Park, S.; Kim, Y.; Ryu, J.; Choe, S.

    2015-12-01

    Nitrogen generally controls the phytoplankton productivity in marine environment and detailed information regarding N cycling is necessary to understand extreme ecological processes such as hypoxic condition. Generally, primary production was measured using oxygen evolution or stable 13C isotope tracer experiment and nitrogen assimilation rate were estimated assuming certain carbon to nitrogen ratio. The regeneration of N is also estimated from the respiration rates although direct measurement method was applied in some experiments. We measured both photosynthetic and respiration rate using carbon and oxygen based methods, and at the same time, independent experiments for nitrogen assimilation and regeneration process measurement were conducted using stable isotope tracers. The differences of N assimilation and regeneration results between each method were analyzed in the context of hypoxic condition development.

  11. Plant nitrogen budget under elevated carbon dioxide level: Regulation by nitrogen absorption and assimilation. Progress report, October 1, 1995--July 31, 1996

    SciTech Connect

    BassiriRad, H.; Gutschick, V.

    1998-09-01

    The overall objective is to assess root physiological and morphological characteristics that may alter plant N acquisition capacity in response to rising atmospheric CO{sub 2} concentration. There is increasing evidence that plant and ecosystem responses to elevated levels of CO{sub 2} will ultimately depend on availability and acquisition rate of other resources such as N. Therefore, knowledge of any changes in root capacity to acquire N is crucial in predicting plant and ecosystem responses to high CO{sub 2}. Here the authors are testing two major hypotheses: (1) elevated CO{sub 2} will enhance root N uptake kinetics and (2) CO{sub 2} enrichment will increase root preference for NO{sub 3}{sup {minus}} as opposed to NH{sub 4}{sup +}. High CO{sub 2} enhances root energy status which should in turn favor energy-intensive processes such as NO{sub 3}{sup {minus}} uptake and assimilation. The above hypotheses are being tested on a range of species from native and agricultural ecosystems using a combination of field, lab and growth chamber studies. The authors have demonstrated a considerable interspecies variation in root N uptake responses to CO{sub 2} enrichment and attempts are now underway to evaluate if such variations are correlated with different functional groups. A comprehensive growth model, using physiological and allocation parameters, has been largely completed and will be used to analyze the completed experimental data.

  12. Nitrogen Mineralization and Assimilation at Millimeter Scales

    SciTech Connect

    Cliff, John B.; Bottomley, Peter J.; Gaspar, Dan J.; Myrold, David D.

    2006-11-15

    This study used inoculated, artificial soil microcosms containing sand, clay, cellulose, and localized hotspots of highly labile, organic-N containing dead bacteria to study N mineralization and assimilation at submillimeter and centimeter scales. Labeling with 15NH4+ along with measurement of label assimilated into microbial biomass at the bulk scale allowed estimation of gross rates of ammonification and N assimilation using isotope dilution. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses of transects of organic-15N across Si wafers in contact with the microcosms indicated strong gradients of 15NH4+ assimilation as a function of proximity to the hotspots that were not apparent using bulk analyses. This combination of bulk and ToF-SIMS analyses represents a powerful approach to explore the physical and biochemical factors that affect N process heterogeneities in soils.

  13. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions

    PubMed Central

    Yanagisawa, Shuichi; Akiyama, Ai; Kisaka, Hiroaki; Uchimiya, Hirofumi; Miwa, Tetuya

    2004-01-01

    Utilization of transcription factors might be a powerful approach to modification of metabolism for a generation of crops having superior characteristics because a single transcription factor frequently regulates coordinated expression of a set of key genes for respective pathways. Here, we apply the plant-specific Dof1 transcription factor to improve nitrogen assimilation, the essential metabolism including the primary assimilation of ammonia to carbon skeletons to biosynthesize amino acids and other organic compounds involving nitrogen in plants. Expressing Dof1 induced the up-regulation of genes encoding enzymes for carbon skeleton production, a marked increase of amino acid contents, and a reduction of the glucose level in transgenic Arabidopsis. The results suggest cooperative modification of carbon and nitrogen metabolisms on the basis of their intimate link. Furthermore, elementary analysis revealed that the nitrogen content increased in the Dof1 transgenic plants (≈30%), indicating promotion of net nitrogen assimilation. Most significantly, the Dof1 transgenic plants exhibit improved growth under low-nitrogen conditions, an agronomically important trait. These results highlight the great utility of transcription factors in engineering metabolism in plants. PMID:15136740

  14. Global isotope metabolomics reveals adaptive strategies for nitrogen assimilation

    DOE PAGESBeta

    Kurczy, Michael E.; Forsberg, Erica M.; Thorgersen, Michael P.; Poole, Farris L.; Benton, H. Paul; Ivanisevic, Julijana; Tran, Minerva L.; Wall, Judy D.; Elias, Dwayne A.; Adams, Michael W. W.; et al

    2016-04-05

    Nitrogen cycling is a microbial metabolic process essential for global ecological/agricultural balance. To investigate the link between the well-established ammonium and the alternative nitrate assimilation metabolic pathways, global isotope metabolomics was employed to examine three nitrate reducing bacteria using 15NO3 as a nitrogen source. In contrast to a control (Pseudomonas stutzeri RCH2), the results show that two of the isolates from Oak Ridge, Tennessee (Pseudomonas N2A2 and N2E2) utilize nitrate and ammonia for assimilation concurrently with differential labeling observed across multiple classes of metabolites including amino acids and nucleotides. The data reveal that the N2A2 and N2E2 strains conserve nitrogen-containingmore » metabolites, indicating that the nitrate assimilation pathway is a conservation mechanism for the assimilation of nitrogen. Co-utilization of nitrate and ammonia is likely an adaption to manage higher levels of nitrite since the denitrification pathways utilized by the N2A2 and N2E2 strains from the Oak Ridge site are predisposed to the accumulation of the toxic nitrite. In conclusion, the use of global isotope metabolomics allowed for this adaptive strategy to be investigated, which would otherwise not have been possible to decipher.« less

  15. Nitrogen dioxide assimilation as affected by light level

    SciTech Connect

    Srivastava, H. ); Ormond, D.; Marie, B. )

    1989-04-01

    The air pollutant NO{sub 2} is absorbed and assimilated by plants to serve as a source of nitrogen but only to a limited extent. The objective of this research was to identify the constraints on NO{sub 2} assimilation. Differential light levels were used to manipulate carbohydrate metabolites available for nitrogen assimilation. Bean plants were grown at four light levels with or without nutrient nitrate and exposed to 0.25 ppm NO{sub 2} for 6h each day. Growth of roots and shoots was inhibited by NO{sub 2} in both the presence and absence of nutrient nitrate. The inhibition was most pronounced at the lowest light level. Light level similarly influenced the effect of nitrate and of NO{sub 2} on soluble protein, nitrate nitrogen and Kjeldahl nitrogen in the root and shoot tissues. Two experiments demonstrated that the injurious effects of NO{sub 2} are more pronounced at low light than at high light and that more NO{sub 2} is assimilated into soluble shoot protein at higher light levels.

  16. Nitrogen assimilation from amorphous detritus by two coastal consumers

    NASA Astrophysics Data System (ADS)

    D'Avanzo, Charlene; Alber, Merryl; Valiela, Ivan

    1991-08-01

    The food value of recognizable pieces of dead vegetation, morphous detritus, has been the focus of many studies in coastal systems. In contrast, the nutritional quality and formation process of amorphous detritus, aggregates of dissolved organic matter (DOM), is poorly studied. We created 15N-labelled aggregates from the leachate of four macrophytes, a marsh grass and three macroalgae common in New England coastal waters. We fed the labelled aggregates to two coastal consumers, the grass shrimp Palaemonetes pugio and the sheepshead minnow Cyprinodon variegatus. Fish and shrimp fed each of the labelled aggregates became labelled with 15N. This study provides direct evidence for nitrogen assimilation from amorphous detritus by marine consumers. In addition, fish fed amorphous marsh grass detritus assimilated 10-40 times more nitrogen from this detritus than from morphous grass detritus. Therefore, amorphous aggregates may be higher-quality food than morphous detrital fragments for coastal consumers.

  17. Improving carbon model phenology using data assimilation

    NASA Astrophysics Data System (ADS)

    Exrayat, Jean-François; Smallman, T. Luke; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Carbon cycle dynamics is significantly impacted by ecosystem phenology, leading to substantial seasonal and inter-annual variation in the global carbon balance. Representing inter-annual variability is key for predicting the response of the terrestrial ecosystem to climate change and disturbance. Existing terrestrial ecosystem models (TEMs) often struggle to accurately simulate observed inter-annual variability. TEMs often use different phenological models based on plant functional type (PFT) assumptions. Moreover, due to a high level of computational overhead in TEMs they are unable to take advantage of globally available datasets to calibrate their models. Here we describe the novel CARbon DAta MOdel fraMework (CARDAMOM) for data assimilation. CARDAMOM is used to calibrate the Data Assimilation Linked Ecosystem Carbon version 2 (DALEC2) model using Bayes' Theorem within a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC). CARDAMOM provides a framework which combines knowledge from observations, such as remotely sensed LAI, and heuristic information in the form of Ecological and Dynamical Constraints (EDCs). The EDCs are representative of real world processes and constrain parameter interdependencies and constrain carbon dynamics. We used CARDAMOM to bring together globally spanning datasets of LAI and the DALEC2 and DALEC2-GSI models. These analyses allow us to investigate the sensitivity ecosystem processes to the representation of phenology. DALEC2 uses an analytically solved model of phenology which is invariant between years. In contrast DALEC2-GSI uses a growing season index (GSI) calculated as a function of temperature, vapour pressure deficit (VPD) and photoperiod to calculate bud-burst and leaf senescence, allowing the model to simulate inter-annual variability in response to climate. Neither model makes any PFT assumptions about the phenological controls of a given ecosystem, allowing the data alone to determine the impact of the meteorological

  18. Diversity of nitrogen assimilation pathways among microbial photosynthetic eukaryotes.

    PubMed

    Terrado, Ramon; Monier, Adam; Edgar, Robyn; Lovejoy, Connie

    2015-06-01

    In an effort to better understand the diversity of genes coding for nitrogen (N) uptake and assimilation pathways among microalgae, we analyzed the transcriptomes of five phylogenetically diverse single celled algae originally isolated from the same high arctic marine region. The five photosynthetic flagellates (a pelagophyte, dictyochophyte, chrysoph-yte, cryptophyte and haptophyte) were grown on standard media and media with only urea or nitrate as a nitrogen source; cells were harvested during late exponential growth. Based on homolog protein sequences, transcriptomes of each alga were interrogated to retrieve genes potentially associated with nitrogen uptake and utilization pathways. We further investigated the phylogeny of poorly characterized genes and gene families that were identified. While the phylogeny of the active urea transporter (DUR3) was taxonomically coherent, those for the urea transporter superfamily, putative nitrilases and amidases indicated complex evolutionary histories, and preliminary evidence for horizontal gene transfers. All five algae expressed genes for ammonium assimilation and all but the chrysophyte expressed genes involved in nitrate utilization and the urea cycle. Among the four algae with nitrate transporter transcripts, we detected lower expression levels in three of these (the dictyochophyte, pelagophyte, and cryptophyte) grown in the urea only medium compared with cultures from the nitrate only media. The diversity of N pathway genes in the five algae, and their ability to grow using urea as a nitrogen source, suggest that these flagellates are able to use a variety of organic nitrogen sources, which would be an advantage in an inorganic nitrogen - limited environment, such as the Arctic Ocean. PMID:26986665

  19. Remote sensing of leaf N to improve carbon assimilation prediction

    NASA Astrophysics Data System (ADS)

    Loozen, Yasmina; Rebel, Karin; Karssenberg, Derek; de Jong, Steven; Wassen, Martin

    2016-04-01

    Predicting and understanding carbon assimilation by terrestrial vegetation remains fundamental in the context of climate change. Carbon and nitrogen cycles are linked as nitrogen is an essential nutrient for plant growth. In this respect the N cycle is integrated into vegetation models predicting vegetation carbon uptake. However plant traits within the N cycle, such as leaf nitrogen, are lacking at large scales, which complicates the calibration and optimization of the N cycling modelling modules. Remote sensing techniques could offer the possibility to detect leaf N concentration at continental scales. In fact, it has already been used to sense leaf N at local, e.g. in agricultural oriented applications, as well as at regional scales. The objective of this study is to enhance the availability of leaf N estimates in forested ecosystems at European scale using remote sensing products. European forest leaf N data were obtained from the TRY database. The MERIS Terrestrial chlorophyll Index (MTCI) Level 3 product as well as two reflectance bands in the NIR region (band centers at 865 and 885nm) both from MERIS aboard ENVISAT (ESA) were used to study statistical relationship with leaf N data. In a first step, we analyzed 1892 Catalonian (NE Spain) forest plots using a linear regression method. The regressions results between leaf N and either MTCI or NIR bands were significant (p< 0.001). The R-square for the regression between leaf N and MTCI was equal to 0.13. The method performed better for broadleaves deciduous plots (R-square = 0.11) than for needleleaves or broadleaves evergreen plots. The relationship between leaf N and MTCI was also higher for the plots sampled during summer (R-square = 0.28 in July) than for the plots sampled during the rest of the year. In a second step the method will be applied on and will include more diverse forest types at the European level.

  20. Global change accelerates carbon assimilation by a wetland ecosystem engineer

    NASA Astrophysics Data System (ADS)

    Caplan, Joshua S.; Hager, Rachel N.; Megonigal, J. Patrick; Mozdzer, Thomas J.

    2015-11-01

    The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will affect coastal wetland productivity, we quantified growing-season carbon assimilation (≈gross primary productivity, or GPP) and carbon retained in living plant biomass (≈net primary productivity, or NPP) of North American mid-Atlantic saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two levels of CO2 (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m-2 yr-1). For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation model, using empirical data from an open-top chamber field study. Under ambient CO2 and low N loading (i.e., the Control), we determined GPP to be 1.66 ± 0.05 kg C m-2 yr-1 at a typical Phragmites stand density. Individually, elevated CO2 and N enrichment increased GPP by 44 and 60%, respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early and late in the growing season, while changes from CO2 came from stimulation during the early and mid-growing season. In combination, elevated CO2 and N enrichment increased GPP by 95% over the Control, yielding 3.24 ± 0.08 kg C m-2 yr-1. We used biomass data to calculate NPP, and determined that it represented 44%-60% of GPP, with global change conditions decreasing carbon retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied saltmarshes are driven, in part, by extended phenology yielding 3.1× greater NPP than native marsh. Further, we can expect elevated CO2 to amplify Phragmites productivity throughout the growing season, with potential implications including accelerated spread

  1. Nitrogen assimilation by single cells in hot springs

    NASA Astrophysics Data System (ADS)

    Poret-peterson, A. T.; Romaniello, S. J.; Bose, M.; Williams, P.; Elser, J. J.; Shock, E.; Anbar, A. D.; Hartnett, H. E.

    2012-12-01

    Microorganisms drive biogeochemical cycles and require nutrients, such as ammonium and nitrate, to function. As a result, following nutrient flows provides opportunities to study how microbial activity influences ecosystem-level processes. Most past measurements of microbial nutrient uptake rely on bulk measurements, which are informative but provide little information about heterogeneity among community members involved in elemental transformations, nor about possible effects of physiological state or taxonomic identity. Since microbial communities tend to be phylogenetically and physiologically diverse, it is reasonable to expect that community members will respond differently to nutrient addition. Here, we examine nitrogen assimilation (via addition of 15N-labeled ammonium or nitrate) in Yellowstone hot spring microbial communities. Using the NanoSIMS, we imaged cells at a very high spatial resolution (nanometer scale) necessary to determine 15N enrichments in single micron-sized cells. We compare the N isotopic enrichments observed in single cells to that determined in bulk sediments by standard isotope ratio mass spectrometry. NanoSIMS imaging of 56 individual cells from sediments of an acidic hot spring (pH 4.7, T=67oC) incubated with 15N-ammonium shows that about two-thirds of the cells (38) exhibited 15N-enrichment. Most cells had 15N enrichments from 0.39 to 0.91 atom %, while some cells were much more significantly enriched. Bulk analyses of sediments show that ammonium assimilation and nitrate assimilation readily occurred at this spring. These findings show that microbes in this hot spring may differentially take up ammonium, which may arise from a number of factors including differences in cellular N requirements, growth rates, and the ability to transport ammonium. This work represents some of the first single-cell isotopic measurements from an extreme environment. Efforts are underway to image sediment samples from other hot springs and to pair Nano

  2. Nitrogen doping in carbon nanotubes.

    PubMed

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  3. Impacts of data assimilation on the global ocean carbonate system

    NASA Astrophysics Data System (ADS)

    Visinelli, L.; Masina, S.; Vichi, M.; Storto, A.; Lovato, T.

    2016-06-01

    In an ocean reanalysis, historical observations are combined with ocean and biogeochemical general circulation models to produce a reconstruction of the oceanic properties in past decades. This is one possible method to better constrain the role of the ocean carbon cycle in the determination of the air-sea CO2 flux. In this work, we investigate how the assimilation of physical variables and subsequently the combined assimilation of physical data and inorganic carbon variables - namely dissolved inorganic carbon (DIC) and alkalinity - affect the modelling of the marine carbonate system and the related air-sea CO2 fluxes. The performance of the two assimilation exercises are quantitatively assessed against the assimilated DIC and alkalinity data and the independent ocean surface pCO2 observations from global datasets. We obtain that the assimilation of physical observations has contrasting effects in different ocean basins when compared with the DIC and alkalinity data: it reduces the root-mean square error against the observed pCO2 in the Atlantic and Southern oceans, while increases the model error in the North Pacific and Indian Oceans. In both cases the corrected evaporation rates are the major factor determining the changes in concentrations. The assimilation of inorganic carbon variables on top of the physical data gives a generalized improvement in the model error of inorganic carbon variables, also improving the annual mean and spatial distribution of air-sea fluxes in agreement with other published estimates. These results indicate that data assimilation of physical and inorganic carbon data does not guarantee the improvement of the simulated pCO2 in all the oceanic regions; nevertheless, errors in pCO2 are reduced by a factor corresponding to those associated with the air-sea flux formulations.

  4. Effects of nutritional history on nitrogen assimilation in congeneric temperate and tropical scleractinian corals

    USGS Publications Warehouse

    Piniak, G.A.; Lipschultz, F.

    2004-01-01

    The nutritional history of corals is known to affect metabolic processes such as inorganic nutrient uptake and photosynthesis, but little is known about how it affects assimilation efficiency of ingested prey items or the partitioning of prey nitrogen between the host and symbiont. The temperate scleractinian coral Oculina arbuscula and its tropical congener Oculina diffusa were acclimated to three nutritional regimes (fed twice weekly, starved, starved with an inorganic nutrient supplement), then fed Artemia nauplii labeled with the stable isotope tracer 15N. Fed corals of both species had the lowest assimilation efficiencies (36-51% for O. arbuscula, 38-57% for O. diffusa), but were not statistically different from the other nutritional regimes. Fed and starved corals also had similar NU4+ excretion rates. This is inconsistent with decreased nitrogen excretion and reduced amino acid catabolism predicted by both the nitrogen recycling and conservation paradigms. In coral host tissue, ???90% of the ingested 15N was in the TCA-insoluble (protein and nucleic acids) and ethanol-soluble (amino acids/low molecular weight compounds) within 4 h of feeding. The TCA-insoluble pool was also the dominant repository of the label in zooxanthellae of both species (40-53% in O. arbuscula, 50-60% in O. diffusa). However, nutritional history had no effect on the distribution of prey 15N within the biochemical pools of the host or the zooxanthellae for either species. This result is consistent with the nitrogen conservation hypothesis, as preferential carbon metabolism would minimize the effects of starvation on nitrogen-containing biochemical pools. ?? Springer-Verlag 2004.

  5. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway

    PubMed Central

    Frungillo, Lucas; Skelly, Michael J.; Loake, Gary J.; Spoel, Steven H.; Salgado, Ione

    2014-01-01

    Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, i.e. covalent attachment of NO to cysteines to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine-tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity. PMID:25384398

  6. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids.

    PubMed

    Taipale, Sami J; Brett, Michael T; Hahn, Martin W; Martin-Creuzburg, Dominik; Yeung, Sean; Hiltunen, Minna; Strandberg, Ursula; Kankaala, Paula

    2014-02-01

    There is considerable interest in the pathways by which carbon and growth-limiting elemental and biochemical nutrients are supplied to upper trophic levels. Fatty acids and sterols are among the most important molecules transferred across the plant-animal interface of food webs. In lake ecosystems, in addition to phytoplankton, bacteria and terrestrial organic matter are potential trophic resources for zooplankton, especially in those receiving high terrestrial organic matter inputs. We therefore tested carbon, nitrogen, and fatty acid assimilation by the crustacean Daphnia magna when consuming these resources. We fed Daphnia with monospecific diets of high-quality (Cryptomonas marssonii) and intermediate-quality (Chlamydomonas sp. and Scenedesmus gracilis) phytoplankton species, two heterotrophic bacterial strains, and particles from the globally dispersed riparian grass, Phragmites australis, representing terrestrial particulate organic carbon (t-POC). We also fed Daphnia with various mixed diets, and compared Daphnia fatty acid, carbon, and nitrogen assimilation across treatments. Our results suggest that bacteria were nutritionally inadequate diets because they lacked sterols and polyunsaturated omega-3 and omega-6 (omega-3 and omega-6) fatty acids (PUFAs). However, Daphnia were able to effectively use carbon and nitrogen from Actinobacteria, if their basal needs for essential fatty acids and sterols were met by phytoplankton. In contrast to bacteria, t-POC contained sterols and omega-6 and omega-3 fatty acids, but only at 22%, 1.4%, and 0.2% of phytoplankton levels, respectively, which indicated that t-POC food quality was especially restricted with regard to omega-3 PUFAs. Our results also showed higher assimilation of carbon than fatty acids from t-POC and bacteria into Daphnia, based on stable-isotope and fatty acids analysis, respectively. A relatively high (>20%) assimilation of carbon and fatty acids from t-POC was observed only when the proportion of t

  7. Carbon and nitrogen metabolism in Rhizobium.

    PubMed

    Poole, P; Allaway, D

    2000-01-01

    One of the paradigms of symbiotic nitrogen fixation has been that bacteroids reduce N2 to ammonium and secrete it without assimilation into amino acids. This has recently been challenged by work with soybeans showing that only alanine is excreted in 15N2 labelling experiments. Work with peas shows that the bacteroid nitrogen secretion products during in vitro experiments depend on the experimental conditions. There is a mixed secretion of both ammonium and alanine depending critically on the concentration of bacteroids and ammonium concentration. The pathway of alanine synthesis has been shown to be via alanine dehydrogenase, and mutation of this enzyme indicates that in planta there is likely to be mixed secretion of ammonium and alanine. Alanine synthesis directly links carbon catabolism and nitrogen assimilation in the bacteroid. There is now overwhelming evidence that the principal carbon sources of bacteroids are the C4-dicarboxylic acids. This is based on labelling and bacteroid respiration data, and mutation of both the dicarboxylic acid transport system (dct) and malic enzyme. L-malate is at a key bifurcation point in bacteroid metabolism, being oxidized to oxaloacetate and oxidatively decarboxylated to pyruvate. Pyruvate can be aminated to alanine or converted to acetyl-CoA where it either enters the TCA cycle by condensation with oxaloacetate or forms polyhydroxybutyrate (PHB). Thus regulation of carbon and nitrogen metabolism are strongly connected. Efficient catabolism of C4-dicarboxylates requires the balanced input and removal of intermediates from the TCA cycle. The TCA cycle in bacteroids may be limited by the redox state of NADH/NAD+ at the 2-ketoglutarate dehydrogenase complex, and a number of pathways may be involved in bypassing this block. These pathways include PHB synthesis, glutamate synthesis, glycogen synthesis, GABA shunt and glutamine cycling. Their operation may be critical in maintaining the optimum redox poise and carbon balance of

  8. A Lagrangian Assimilation System for North American Carbon Flux Estimates

    NASA Astrophysics Data System (ADS)

    Chen, H.; He, W., Sr.; Peters, W.; Andrews, A. E.; Jacobson, A. R.; Sweeney, C.; Baker, I. T.; van der Laan-Luijkx, I. T.; van der Velde, I.; Tans, P. P.

    2015-12-01

    Understanding biospheric CO2 fluxes is paramount for climate studies to be able to analyze the responses of terrestrial ecosystems to climate change. To improve North American carbon flux estimates, we have built a new data assimilation system that couples the contemporary global carbon cycle model CarbonTracker with the Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model (referred as CarbonTracker-WRF-STILT). The current CarbonTracker-WRF-STILT system assimilates atmospheric observations of CO2 mole fractions at eight tower sites in North America and optimizes the a priori carbon fluxes from the simple biosphere (SiB) model. The system employs a two-lag Ensemble Kalman smoother to optimize scaling factors for both biospheric fluxes and the boundary conditions every 10 days. We will present the optimized carbon fluxes for North America for 2010, and compare them with the results from the CT2013B and CTE2014. To estimate the transport uncertainties, we also plan to test an alternative Lagrangian transport model Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) driven by the NAM12 meteorological fields. In the following step, the CarbonTracker-WRF-STILT system will be adapted to assimilate multiple tracers, e.g. CO2 and carbonyl sulfide (COS) to simultaneously optimize photosynthesis (Gross Primary Production, GPP) and respiration.

  9. The carbon-assimilation experiment - The Viking Mars Lander.

    NASA Technical Reports Server (NTRS)

    Horowitz, N. H.; Hubbard, J. S.; Hobby, G. L.

    1972-01-01

    The carbon-assimilation experiment detects life in soils by measuring the incorporation of carbon from carbon-14 monoxide and carbon-14 dioxide into organic matter. It is based on the premise that Martian life, if it exists, is carbonaceous and exchanges carbon with the atmosphere, as do all terrestrial organisms. It is especially sensitive for photosynthesizing cells, but it detects heterotrophs also. The experiment has the particular advantage that it can be carried out under essentially Martian conditions of temperature, pressure, atmospheric composition, and water abundance.

  10. Consistent assimilation of multiple data streams in a carbon cycle data assimilation system

    NASA Astrophysics Data System (ADS)

    MacBean, Natasha; Peylin, Philippe; Chevallier, Frédéric; Scholze, Marko; Schürmann, Gregor

    2016-10-01

    Data assimilation methods provide a rigorous statistical framework for constraining parametric uncertainty in land surface models (LSMs), which in turn helps to improve their predictive capability and to identify areas in which the representation of physical processes is inadequate. The increase in the number of available datasets in recent years allows us to address different aspects of the model at a variety of spatial and temporal scales. However, combining data streams in a DA system is not a trivial task. In this study we highlight some of the challenges surrounding multiple data stream assimilation for the carbon cycle component of LSMs. We give particular consideration to the assumptions associated with the type of inversion algorithm that are typically used when optimising global LSMs - namely, Gaussian error distributions and linearity in the model dynamics. We explore the effect of biases and inconsistencies between the observations and the model (resulting in non-Gaussian error distributions), and we examine the difference between a simultaneous assimilation (in which all data streams are included in one optimisation) and a step-wise approach (in which each data stream is assimilated sequentially) in the presence of non-linear model dynamics. In addition, we perform a preliminary investigation into the impact of correlated errors between two data streams for two cases, both when the correlated observation errors are included in the prior observation error covariance matrix, and when the correlated errors are ignored. We demonstrate these challenges by assimilating synthetic observations into two simple models: the first a simplified version of the carbon cycle processes represented in many LSMs and the second a non-linear toy model. Finally, we provide some perspectives and advice to other land surface modellers wishing to use multiple data streams to constrain their model parameters.

  11. Online estimation of assimilable nitrogen by electrical conductivity measurement during alcoholic fermentation in enological conditions.

    PubMed

    Colombié, Sophie; Latrille, Eric; Sablayrolles, Jean-Marie

    2007-03-01

    The monitoring of alcoholic fermentation under enological conditions is currently poor due to the lack of sensors for online measurements. Such monitoring is currently limited to the measurement of CO(2) production or changes in density. In this study, we determined the potential value of measuring electrical conductivity. We showed that this measurement is related to the assimilation of nitrogen, which is typically the limiting nutrient, and directly correlated to ammoniacal nitrogen assimilation at any percentage of ammoniacal nitrogen in the medium. We also used electrical conductivity for the very precise monitoring of the kinetics of nitrogen assimilation after the addition of a pulse of diammonium hydrogen phosphate (DAP) during fermentation. The impact of initial conditions (e.g., must composition, grape variety, pH) remains unclear, but the robustness, precision and low price of the sensor used justify further studies of the potential value of measuring electrical conductivity on the pilot and industrial scales. PMID:17434425

  12. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  13. Thermal responses of Symbiodinium photosynthetic carbon assimilation

    NASA Astrophysics Data System (ADS)

    Oakley, Clinton A.; Schmidt, Gregory W.; Hopkinson, Brian M.

    2014-06-01

    The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration ( K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.

  14. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level.

    PubMed

    Takahashi, Misa; Higaki, Asa; Nohno, Masako; Kamada, Mitsunori; Okamura, Yukio; Matsui, Kunio; Kitani, Shigekazu; Morikawa, Hiromichi

    2005-11-01

    In order to screen for the best species for mitigating nitrogen dioxide (NO2) by plants at urban levels, we investigated assimilation of nitrogen dioxide by 70 taxa of woody plants that are mostly utilized as roadside trees. They were fumigated with 15N-labeled NO2 at 0.1 microl l(-1) for 8h, and the amount of reduced nitrogen derived from NO2 (in mg Ng(-1) dry weight) in the leaves (designated NO2 assimilation capability hereafter) were determined. Data were analyzed in the comparison with the previously reported ones obtained at 4 microl l(-1) NO2. Among the 70 taxa, the value of NO2 assimilation capability differed by a factor of 122 between the highest (Prunus yedoensis; 0.061) and the lowest (Cryptomeria japonica; 0.0005). Based on the analysis of NO2 assimilation capability values at 0.1 and 4 micro l(-1) NO2, the 70 taxa of woody plants appeared to be classified into four types; those of high NO2 assimilation and high NO2 resistance, those of high NO2 assimilation but low NO2 resistance, those of low NO2 assimilation and low NO2 resistance, and those of low NO2 assimilation but high NO2 resistance. The first, second, third and fourth types include 13, 11, 35 and 11 taxa, respectively. The broad-leaf deciduous trees may have advantages of high biomass and fast growth as compared with woody plants of other habits. Thus, four broad-leaf deciduous species, Robinia pseudo-acacia, Sophora japonica, Populus nigra and Prunus lannesiana, were concluded here to be the best phytoremediators for the urban air. PMID:16219499

  15. Assimilation of inorganic nitrogen by marine invertebrates and their chemoautotrophic and methanotrophic symbionts.

    PubMed

    Lee, R W; Childress, J J

    1994-06-01

    Symbioses between marine invertebrates and their chemoautotrophic and methanotrophic symbionts are now known to exist in a variety of habitats where reduced chemical species are present. The utilization of chemical energy and reliance on C(1) compounds by these symbioses are well documented. Much less is known about their metabolism of nitrogen. Earlier work has shown that the tissues of organisms in these associations are depleted of N compared with those of other marine organisms, indicating that local sources of nitrogen are assimilated and that novel mechanisms of nitrogen metabolism may be involved. Although these symbioses have access to rich sources of ammonium (NH(4) and NH(3)) and/or nitrate, several investigators have proposed that N(2) fixation may account for some of these isotope values. Here we report that [N]ammonium and, to a lesser degree, [N]nitrate are assimilated into organic compounds by Solemya reidi, a gutless clam containing S-oxidizing bacteria, and seep mussel Ia, an undescribed mytilid containing methanotrophic bacteria. In contrast, Riftia pachyptila, the giant hydrothermal vent tube worm symbiotic with S-oxidizing bacteria, assimilated nitrate but not exogenous ammonium. The rates of assimilation of these sources are sufficient to at least partially support C(1) compound metabolism. N(2) assimilation was not exhibited by the symbionts tested.

  16. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys.

    PubMed

    Reeves, Eoghan P; Yoshinaga, Marcos Y; Pjevac, Petra; Goldenstein, Nadine I; Peplies, Jörg; Meyerdierks, Anke; Amann, Rudolf; Bach, Wolfgang; Hinrichs, Kai-Uwe

    2014-11-01

    Sulfide 'chimneys' characteristic of seafloor hydrothermal venting are diverse microbial habitats. ¹³C/¹²C ratios of microbial lipids have rarely been used to assess carbon assimilation pathways on these structures, despite complementing gene- and culture-based approaches. Here, we integrate analyses of the diversity of intact polar lipids (IPL) and their side-chain δ¹³C values (δ¹³ C(lipid)) with 16S rRNA gene-based phylogeny to examine microbial carbon flow on active and inactive sulfide structures from the Manus Basin. Surficial crusts of active structures, dominated by Epsilonproteobacteria, yield bacterial δ¹³C(lipid) values higher than biomass δ¹³C (total organic carbon), implicating autotrophy via the reverse tricarboxylic acid cycle. Our data also suggest δ¹³C(lipid) values vary on individual active structures without accompanying microbial diversity changes. Temperature and/or dissolved substrate effects - likely relating to variable advective-diffusive fluxes to chimney exteriors - may be responsible for differing ¹³C fractionation during assimilation. In an inactive structure, δ¹³C(lipid) values lower than biomass δ¹³C and a distinctive IPL and 16S rRNA gene diversity suggest a shift to a more diverse community and an alternate carbon assimilation pathway after venting ceases. We discuss here the potential of IPL and δ¹³C(lipid) analyses to elucidate carbon flow in hydrothermal structures when combined with other molecular tools.

  17. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture

    PubMed Central

    Masclaux-Daubresse, Céline; Daniel-Vedele, Françoise; Dechorgnat, Julie; Chardon, Fabien; Gaufichon, Laure; Suzuki, Akira

    2010-01-01

    Background Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. Scope An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. Conclusions This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising. PMID:20299346

  18. Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective

    PubMed Central

    van Heeswijk, Wally C.; Westerhoff, Hans V.

    2013-01-01

    SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575

  19. Subcellular Investigation of Photosynthesis-Driven Carbon Assimilation in the Symbiotic Reef Coral Pocillopora damicornis

    PubMed Central

    Domart-Coulon, Isabelle; Escrig, Stephane; Humbel, Bruno M.; Hignette, Michel

    2015-01-01

    ABSTRACT  Reef-building corals form essential, mutualistic endosymbiotic associations with photosynthetic Symbiodinium dinoflagellates, providing their animal host partner with photosynthetically derived nutrients that allow the coral to thrive in oligotrophic waters. However, little is known about the dynamics of these nutritional interactions at the (sub)cellular level. Here, we visualize with submicrometer spatial resolution the carbon and nitrogen fluxes in the intact coral-dinoflagellate association from the reef coral Pocillopora damicornis by combining nanoscale secondary ion mass spectrometry (NanoSIMS) and transmission electron microscopy with pulse-chase isotopic labeling using [13C]bicarbonate and [15N]nitrate. This allows us to observe that (i) through light-driven photosynthesis, dinoflagellates rapidly assimilate inorganic bicarbonate and nitrate, temporarily storing carbon within lipid droplets and starch granules for remobilization in nighttime, along with carbon and nitrogen incorporation into other subcellular compartments for dinoflagellate growth and maintenance, (ii) carbon-containing photosynthates are translocated to all four coral tissue layers, where they accumulate after only 15 min in coral lipid droplets from the oral gastroderm and within 6 h in glycogen granules from the oral epiderm, and (iii) the translocation of nitrogen-containing photosynthates is delayed by 3 h. PMID:25670779

  20. An Improved Analysis of Forest Carbon Dynamics using Data Assimilation

    NASA Technical Reports Server (NTRS)

    Williams, Mathew; Schwarz, Paul A.; Law, Beverly E.; Kurpius, Meredith R.

    2005-01-01

    There are two broad approaches to quantifying landscape C dynamics - by measuring changes in C stocks over time, or by measuring fluxes of C directly. However, these data may be patchy, and have gaps or biases. An alternative approach to generating C budgets has been to use process-based models, constructed to simulate the key processes involved in C exchange. However, the process of model building is arguably subjective, and parameters may be poorly defined. This paper demonstrates why data assimilation (DA) techniques - which combine stock and flux observations with a dynamic model - improve estimates of, and provide insights into, ecosystem carbon (C) exchanges. We use an ensemble Kalman filter (EnKF) to link a series of measurements with a simple box model of C transformations. Measurements were collected at a young ponderosa pine stand in central Oregon over a 3-year period, and include eddy flux and soil C02 efflux data, litterfall collections, stem surveys, root and soil cores, and leaf area index data. The simple C model is a mass balance model with nine unknown parameters, tracking changes in C storage among five pools; foliar, wood and fine root pools in vegetation, and also fresh litter and soil organic matter (SOM) plus coarse woody debris pools. We nested the EnKF within an optimization routine to generate estimates from the data of the unknown parameters and the five initial conditions for the pools. The efficacy of the DA process can be judged by comparing the probability distributions of estimates produced with the EnKF analysis vs. those produced with reduced data or model alone. Using the model alone, estimated net ecosystem exchange of C (NEE)= -251 f 197g Cm-2 over the 3 years, compared with an estimate of -419 f 29gCm-2 when all observations were assimilated into the model. The uncertainty on daily measurements of NEE via eddy fluxes was estimated at 0.5gCm-2 day-1, but the uncertainty on assimilated estimates averaged 0.47 g Cm-2 day-1, and

  1. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures

    PubMed Central

    Glass, Jennifer B.; Axler, Richard P.; Chandra, Sudeep; Goldman, Charles R.

    2012-01-01

    Molybdenum (Mo) is an essential micronutrient for biological assimilation of nitrogen gas and nitrate because it is present in the cofactors of nitrogenase and nitrate reductase enzymes. Although Mo is the most abundant transition metal in seawater (107 nM), it is present in low concentrations in most freshwaters, typically <20 nM. In 1960, it was discovered that primary productivity was limited by Mo scarcity (2–4 nM) in Castle Lake, a small, meso-oligotrophic lake in northern California. Follow up studies demonstrated that Mo also limited primary productivity in lakes in New Zealand, Alaska, and the Sierra Nevada. Research in the 1970s and 1980s showed that Mo limited primary productivity and nitrate uptake in Castle Lake only during periods of the growing season when nitrate concentrations were relatively high because ammonium assimilation does not require Mo. In the years since, research has shifted to investigate whether Mo limitation also occurs in marine and soil environments. Here we review studies of Mo limitation of nitrogen assimilation in natural microbial communities and pure cultures. We also summarize new data showing that the simultaneous addition of Mo and nitrate causes increased activity of proteins involved in nitrogen assimilation in the hypolimnion of Castle Lake when ammonium is scarce. Furthermore, we suggest that meter-scale Mo and oxygen depth profiles from Castle Lake are consistent with the hypothesis that nitrogen-fixing cyanobacteria in freshwater periphyton communities have higher Mo requirements than other microbial communities. Finally, we present topics for future research related to Mo bioavailability through time and with changing oxidation state. PMID:22993512

  2. Relationships between Carbon Assimilation, Partitioning, and Export in Leaves of Two Soybean Cultivars 1

    PubMed Central

    Fader, Gary M.; Koller, H. Ronald

    1983-01-01

    To evaluate leaf carbon balance during rapid pod-fill in soybean (Glycine max [L.] Merrill), measurements were made of CO2 assimilation at mid-day and changes in specific leaf weight, starch, and sucrose concentrations over a 9-hour interval. Assimilate export was estimated from CO2 assimilation and leaf dry matter accumulation. Chamber-grown `Amsoy 71' and `Wells' plants were subjected on the day of the measurements to one of six photosynthetic photon flux densities in order to vary CO2 assimilation rates. Rate of accumulation of leaf dry matter and rate of export both increased as CO2 assimilation rate increased in each cultivar. Starch concentrations were greater in Amsoy 71 than in Wells at all CO2 assimilation rates. At low CO2 assimilation rates, export rates in Amsoy 71 were maintained in excess of 1.0 milligram CH2O per square decimeter leaf area per hour at the expense of leaf reserves. In Wells, however, export rate continued to decline with decreasing CO2 assimilation rate. The low leaf starch concentration in Wells at low CO2 assimilation rates may have limited export by limiting carbon from starch remobilization. Both cultivars exhibited positive correlations between CO2 assimilation rate and sucrose concentration, and between sucrose concentration and export rate. Carbon fixation and carbon partitioning both influenced export rate via effects on sucrose concentration. PMID:16663211

  3. Quantifying the contribution of single microbial cells to nitrogen assimilation in aquatic environments

    NASA Astrophysics Data System (ADS)

    Musat, N.; Kuypers, M. M. M.

    2009-04-01

    Nitrogen is a primary productivity-limiting nutrient in the ocean. The nitrogen limitation of productivity may be overcome by organisms capable of converting dissolved N2 into fixed nitrogen available to the ecosystem. In many oceanic regions, growth of phytoplankton is nitrogen limited because fixation of N2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, NO3-) by anaerobic microbial processes. The amount of available fixed nitrogen in the ocean can be changed by the biological processes of heterotrophic denitrification, anaerobic ammonium oxidation and nitrogen fixation. For a complete understanding of nitrogen cycling in the ocean a link between the microbial and biogeochemical processes at the single cell level and their role in global biogeochemical cycles is essential. Here we report a recently developed method, Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS) and its potential application to study the nitrogen-cycle processes in the ocean. The method allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. It uses horseradish-peroxidase-labeled oligonucleotide probes and fluorine-containing tyramides for the identification of microorganisms in combination with stable-isotope-labeling experiments for analyzing the metabolic function of single microbial cells. HISH-SIMS was successfully used to study nitrogen assimilation and nitrogen fixation by anaerobic phototrophs in a meromictic alpine lake. The HISH-SIMS method enables studies of the ecophysiology of individual, phylogenetically identified microorganisms involved in the N-cycle and allows us to track the flow of nitrogen within microbial communities.

  4. Development of a Rapid Assimilable Organic Carbon Method for Water

    PubMed Central

    LeChevallier, Mark W.; Shaw, Nancy E.; Kaplan, Louis A.; Bott, Thomas L.

    1993-01-01

    A rapid method for measurement of assimilable organic carbon (AOC) is proposed. The time needed to perform the assay is reduced by increasing the incubation temperature and increasing the inoculum density. The ATP luciferin-luciferase method quickly enumerates the test organisms without the need for plate count media or dilution bottles. There was no significant difference between AOC values determined with strain P17 for the ATP and plate count procedures. For strain NOX, the plate count procedure underestimated bacterial levels in some samples. Comparison of AOC values obtained by the Belleville laboratory (by the ATP technique) and the Stroud Water Research Center (by plate counts) showed that values were significantly correlated and not significantly different. The study concludes that the rapid AOC method can quickly determine the bacterial growth potential of water within 2 to 4 days. PMID:16348936

  5. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs. PMID:19470091

  6. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  7. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

    PubMed Central

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  8. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants.

    PubMed

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  9. Reduced light and moderate water deficiency sustain nitrogen assimilation and sucrose degradation at low temperature in durum wheat.

    PubMed

    Majláth, Imre; Darko, Eva; Palla, Balázs; Nagy, Zoltán; Janda, Tibor; Szalai, Gabriella

    2016-02-01

    The rate of carbon and nitrogen assimilation is highly sensitive to stress factors, such as low temperature and drought. Little is known about the role of light in the simultaneous effect of cold and drought. The present study thus focused on the combined effect of mild water deficiency and different light intensities during the early cold hardening in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different levels of cold sensitivity. The results showed that reduced illumination decreased the undesirable effects of photoinhibition in the case of net photosynthesis and nitrate reduction, which may help to sustain these processes at low temperature. Mild water deficiency also had a slight positive effect on the effective quantum efficiency of PSII and the nitrate reductase activity in the cold. Glutamine synthesis was affected by light rather than by water deprivation during cold stress. The invertase activity increased to a greater extent by water deprivation, but an increase in illumination also had a facilitating effect on this enzyme. This suggests that both moderate water deficiency and light have an influence on nitrogen metabolism and sucrose degradation during cold hardening. A possible rise in the soluble sugar content caused by the invertase may compensate for the decline in photosynthetic carbon assimilation indicated by the decrease in net photosynthesis. The changes in the osmotic potential can be also correlated to the enhanced level of invertase activity. Both of them were regulated by light at normal water supply, but not at water deprivation in the cold. However, changes in the metabolic enzyme activities and osmotic adjustment could not be directly contributed to the different levels of cold tolerance of the cultivars in the early acclimation period. PMID:26788956

  10. Primary productivity and nitrogen assimilation with identifying the contribution of urea in Funka Bay, Japan

    NASA Astrophysics Data System (ADS)

    Kudo, Isao; Hisatoku, Takatsugu; Yoshimura, Takeshi; Maita, Yoshiaki

    2015-06-01

    Primary production is supported by utilization of several forms of nitrogen (N), such as nitrate, ammonium, and urea. Nevertheless, only few studies have measured the concentration and uptake of urea despite its importance as a nitrogenous nutrient for phytoplankton. We measured primary productivity monthly at four depths within the euphotic zone using a clean technique and the 13C method by a 24 h in situ mooring incubation over a year in Funka Bay, a subarctic coastal area in Japan, to make better updated estimates (re-evaluation) of annual primary production. Nitrogenous (N) nutrient assimilation rates (nitrate, ammonium and urea) were also measured to elucidate the relative contributions of these nutrients to autotrophic production and to distinguish between new and regenerated production. The estimated annual primary production was 164 g C m-2, which was 40-60% higher than the previously reported values in the bay. Use of a clean technique and more frequent measurement during the spring bloom may have contributed to the higher rates. The production during the spring bloom was 56.5 g C m-2, accounting for 35% of the annual production. The maximum daily productivity occurred in the bloom at 1.4 g C m-2 d-1, which is one of the highest values among the world embayments. The annual primary production in the bay was classified as mesotrophic state based on the classification by Cloern et al. (2014). The assimilation rate of nitrate was maximal at 54 nmol N L-1 h-1 during the bloom. During the post-bloom periods with nitrate depleted conditions, assimilation rates of ammonium and urea increased and accounted for up to 85% of the total N assimilation. The assimilation rate of urea was almost comparable to that of ammonium throughout the year. Taking urea into account, the f-ratio ranged from 0.15 under the nitrate-depleted conditions to 0.8 under the spring bloom conditions. These ratios were overestimated by 50% and 10%, respectively, if urea uptake was eliminated

  11. Assimilation and partitioning of prey nitrogen within two anthozoans and their endosymbiotic zooxanthellae

    USGS Publications Warehouse

    Piniak, G.A.; Lipschultz, F.; McClelland, J.

    2003-01-01

    The movement of nitrogen from zooplankton prey into the temperate scleractinian coral Oculina arbuscula and the anemone Aiptasia pallida was measured using 15N-labeled brine shrimp. The efficiency with which prey nitrogen was incorporated into cnidarian tissues was species-specific. O. arbuscula with a full complement of zooxanthellae had an assimilation efficiency of nearly 100%, compared to only 46% for corals containing few zooxanthellae. In A. pallida, symbiont density had no effect, and nitrogen assimilation was 23 to 29%. In both species, the host retained the bulk of the ingested label. Complete digestion was rapid (<4 h), as was the partitioning of the label between host amino acids and macromolecules. The label was primarily in the low-molecular weight-amino acid pool in O. arbuscula, where it remained for 30 h. A maximum of ca. 20% of the 15N appeared in the zooxanthellae, where it was rapidly converted into macromolecules. Individual amino acids in A. pallida tissues were highly labeled with 15N within 4 h and showed no subsequent enrichment with time; however, zooxanthellae amino acids became increasingly enriched over 30 h. Differences in 15N enrichment among amino acids were consistent with known synthesis and transformation pathways, but it was not possible to discriminate between host feeding and de novo synthesis.

  12. Accumulation of nitrogen and changes in assimilation pigments of lichens transplanted in an agricultural area.

    PubMed

    Frati, Luisa; Brunialti, Giorgio; Gaudino, Stefania; Pati, Alessandra; Rosamilia, Silvia; Loppi, Stefano

    2011-07-01

    The results of a survey aimed at testing the hypothesis that the lichen Evernia prunastri, when transplanted in an agricultural area with high atmospheric NH(3) concentrations, would respond to NH(3) air pollution accumulating nitrogen in its thalli and showing changes in the concentration of assimilation pigments are presented. The results confirmed the hypothesis and showed that all lichen transplants accumulated nitrogen, suggesting that besides the release of atmospheric ammonia by animal stockfarms, the use of N-based fertilizers and the deposition of N-rich dust also may contribute to the high nitrogen availability to lichens in the study area. The result indicated that in the study area both the critical level of NH(3) and the critical load of N for lichens are exceeded and physiological damage is to be expected in sensitive species. The results of assimilation pigments in E. prunastri, with a decrease in the concentration of chlorophylls a and b and carotenoids, as well as chlorophyll degradation to phaeophytin, confirmed this hypothesis. However, owing to the limited data set and pending further studies, these conclusions should be considered as limited to the study area.

  13. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    PubMed

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  14. Turbulence effects on the ratio of particulate carbon production to nutrient assimilation across nutrient gradients: An experimental approach.

    NASA Astrophysics Data System (ADS)

    Vidal, M.; Alcaraz, M.; Egge, J.; Jacobsen, A.; Marrasé, C.; Peters, F.; Roldán, C.; Thingstad, T. F.

    2003-04-01

    The uptake of inorganic carbon by the marine biota has been extensively studied in the context of the biological carbon pump. Carbon incorporation into biomass has been related to the availability of light and essential nutrients, such as dissolved inorganic nitrogen and phosphorus. Usually, it has been considered that nutrients are assimilated concurrently to inorganic carbon at constant Redfield proportions. Nevertheless, recent measurements have shown that, in some oceanic regions, the amount of inorganic carbon removed from the water significantly exceeded the amount expected from the removal of dissolved inorganic nutrients. This finding suggested that carbon incorporated into biomass per unit of consumed nitrogen or phosphorus might vary with time and across systems. The possible generalisation of this variability should have important consequences on the exportation of carbon and the role of the microbial plankton community on global carbon fluxes. Nutrient availability and light conditions have been invoked as the main factors influencing the ratio of particulate carbon production to nutrient assimilation. Despite the recognition of turbulence as a key factor influencing microbial dynamics, there is a lack of studies specifically relating the effect of turbulence on that ratio. Turbulence has been recently shown to increase the living carbon produced per phosphate consumed in microcosm experiments done with Mediterranean nutrient-starved plankton communities. According to this, we hypothesise that this effect may be found in other plankton communities and vary across gradients of nutrient concentration. We enclosed natural plankton communities from both Norwegian and Mediterranean coastal waters and subjected them to varying turbulence conditions and nutrient loads to monitor particulate and dissolved carbon and nutrient dynamics. We found that the effect of turbulence increased as nutrient concentration decreased. The magnitude of the response differed

  15. Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis.

    PubMed

    Esen, Merve; Ozturk Urek, Raziye

    2015-01-01

    The effect of various concentrations of ammonium nitrate (5-60 mM), an economical nitrogen source, on the growth, nitrate-ammonium uptake rates, production of some pigments and metabolites, and some nitrogen assimilation enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in Spirulina platensis (Gamont) Geitler was investigated. Ten millimolars of ammonium nitrate stimulated the growth, production of pigments and the other metabolites, and enzyme activities, whereas 30 and 60 mM ammonium nitrate caused inhibition. In the presence of 10 mM ammonium nitrate, different concentrations of iron were tried in the growth media of S. platensis. After achieving the best growth, levels of metabolite and pigment production, and enzyme activities in the presence of 10 mM ammonium nitrate as a nitrogen source, different iron concentrations (10-100 µM) were tried in the growth medium of S. platensis. The highest growth, pigment and metabolite levels, and enzyme activities were determined in the medium containing 50 µM iron and 10 mM ammonium nitrate. In this optimum condition, the highest dry biomass level, chlorophyll a, and pyruvate contents were obtained as 55.42 ± 3.8 mg mL(-1) , 93.114 ± 7.9 µg g(-1) , and 212.5 ± 18.7 µg g(-1) , respectively. The highest NR, NiR, GS, and GOGAT activities were 67.16 ± 5.1, 777.92 ± 52, 0.141 ± 0.01, and 44.45 ± 3.6, respectively. Additionally, 10 mM ammonium nitrate is an economical and efficient nitrogen source for nitrogen assimilation of S. platensis, and 50 µM iron is optimum for the growth of S. platensis. PMID:25425155

  16. Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism.

    PubMed

    Pérez-Delgado, Carmen M; Moyano, Tomás C; García-Calderón, Margarita; Canales, Javier; Gutiérrez, Rodrigo A; Márquez, Antonio J; Betti, Marco

    2016-05-01

    Nitrogen is one of the most important nutrients for plants and, in natural soils, its availability is often a major limiting factor for plant growth. Here we examine the effect of different forms of nitrogen nutrition and of photorespiration on gene expression in the model legume Lotus japonicus with the aim of identifying regulatory candidate genes co-ordinating primary nitrogen assimilation and photorespiration. The transcriptomic changes produced by the use of different nitrogen sources in leaves of L. japonicus plants combined with the transcriptomic changes produced in the same tissue by different photorespiratory conditions were examined. The results obtained provide novel information on the possible role of plastidic glutamine synthetase in the response to different nitrogen sources and in the C/N balance of L. japonicus plants. The use of gene co-expression networks establishes a clear relationship between photorespiration and primary nitrogen assimilation and identifies possible transcription factors connected to the genes of both routes. PMID:27117340

  17. Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism

    PubMed Central

    Pérez-Delgado, Carmen M.; Moyano, Tomás C.; García-Calderón, Margarita; Canales, Javier; Gutiérrez, Rodrigo A.; Márquez, Antonio J.; Betti, Marco

    2016-01-01

    Nitrogen is one of the most important nutrients for plants and, in natural soils, its availability is often a major limiting factor for plant growth. Here we examine the effect of different forms of nitrogen nutrition and of photorespiration on gene expression in the model legume Lotus japonicus with the aim of identifying regulatory candidate genes co-ordinating primary nitrogen assimilation and photorespiration. The transcriptomic changes produced by the use of different nitrogen sources in leaves of L. japonicus plants combined with the transcriptomic changes produced in the same tissue by different photorespiratory conditions were examined. The results obtained provide novel information on the possible role of plastidic glutamine synthetase in the response to different nitrogen sources and in the C/N balance of L. japonicus plants. The use of gene co-expression networks establishes a clear relationship between photorespiration and primary nitrogen assimilation and identifies possible transcription factors connected to the genes of both routes. PMID:27117340

  18. Carbon and nitrogen balance of leaf-eating sesarmid crabs ( Neoepisesarma versicolor) offered different food sources

    NASA Astrophysics Data System (ADS)

    Thongtham, Nalinee; Kristensen, Erik

    2005-10-01

    Carbon and nitrogen budgets for the leaf-eating crab, Neoepisesarma versicolor, were established for individuals living on pure leaf diets. Crabs were fed fresh (green), senescent (yellow) and partly degraded (brown) leaves of the mangrove tree Rhizophora apiculata. Ingestion, egestion and metabolic loss of carbon and nitrogen were determined from laboratory experiments. In addition, bacterial abundance in various compartments of the crabs' digestive tract was enumerated after dissection of live individuals. Ingestion and egestion rates (in terms of dry weight) were highest, while the assimilation efficiency was poorest for crabs fed on brown leaves. The low assimilation efficiency was more than counteracted by the high ingestion rate providing more carbon for growth than for crabs fed green and yellow leaves. In any case, the results show that all types of leaves can provide adequate carbon while nitrogen was insufficient to support both maintenance (yellow leaves) and growth (green, yellow and brown leaves). Leaf-eating crabs must therefore obtain supplementary nitrogen by other means in order to meet their nitrogen requirement. Three hypotheses were evaluated: (1) crabs supplement their diet with bacteria and benthic microalgae by ingesting own faeces and/or selective grazing at the sediment surface; (2) assimilation of symbiotic nitrogen-fixing bacteria in the crabs' own intestinal system; and (3) nitrogen storage following occasional feeding on animal tissues (e.g. meiofauna and carcasses). It appears that hypothesis 1 is of limited importance for N. versicolor since faeces and sediment can only supply a minor fraction of the missing nitrogen due to physical constraints on the amount of material the crabs can consume. Hypothesis 2 can be ruled out because tests showed no nitrogen fixation activity in the intestinal system of N. versicolor. It is therefore likely that leaf-eating crabs provide most of their nitrogen requirement from intracellular deposits

  19. Nitrogen, phosphorus, carbon and population.

    PubMed

    Gilland, Bernard

    2015-01-01

    Population growth makes food production increase necessary; economic growth increases demand for animal products and livestock feed. As further increase of the cropland area is ecologically undesirable, it is necessary to increase crop yields; this requires, inter alia, more nitrogen and phosphorus fertiliser despite the environmental problems which this will exacerbate. It is probable that a satisfactory food supply and an environmentally benign agriculture worldwide cannot be achieved without reducing population to approximately three billion. The reduction could be achieved by 2200 if the total fertility rate--currently 2.5--declined to 1.5 as a world average by 2050, and remained at that level until 2200, but the probability of such a global fertility trajectory is close to zero. It will also be necessary to replace fossil energy by nuclear and renewable energy in order to stabilise atmospheric carbon dioxide concentration, but the phase-out cannot be completed until the 22nd century, when the atmospheric concentration will be approximately 50% above the 2015 level of 400 ppm. PMID:26790176

  20. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase.

    PubMed

    Krejcík, Zdenĕk; Denger, Karin; Weinitschke, Sonja; Hollemeyer, Klaus; Paces, Václav; Cook, Alasdair M; Smits, Theo H M

    2008-08-01

    Taurine (2-aminoethanesulfonate) is a widespread natural product whose nitrogen moiety was recently shown to be assimilated by bacteria, usually with excretion of an organosulfonate via undefined novel pathways; other data involve transcriptional regulator TauR in taurine metabolism. A screen of genome sequences for TauR with the BLAST algorithm allowed the hypothesis that the marine gammaproteobacterium Neptuniibacter caesariensis MED92 would inducibly assimilate taurine-nitrogen and excrete sulfoacetate. The pathway involved an ABC transporter (TauABC), taurine:pyruvate aminotransferase (Tpa), a novel sulfoacetaldehyde dehydrogenase (SafD) and exporter(s) of sulfoacetate (SafE) (DUF81). Ten candidate genes in two clusters involved three sets of paralogues (for TauR, Tpa and SafE). Inducible Tpa and SafD were detected in cell extracts. SafD was purified 600-fold to homogeneity in two steps. The monomer had a molecular mass of 50 kDa (SDS-PAGE); data from gel filtration chromatography indicated a tetrameric native protein. SafD was specific for sulfoacetaldehyde with a K (m)-value of 0.12 mM. The N-terminal amino acid sequence of SafD confirmed the identity of the safD gene. The eight pathway genes were transcribed inducibly, which indicated expression of the whole hypothetical pathway. We presume that this pathway is one source of sulfoacetate in nature, where this compound is dissimilated by many bacteria.

  1. Comparison of assimilable organic carbon and UV-oxidizable carbon for evaluation of ultrapure-water systems.

    PubMed Central

    Governal, R A; Yahya, M T; Gerba, C P; Shadman, F

    1992-01-01

    Bacterial growth potential was measured in an ultrapure-water pilot plant by modified assimilable organic carbon (AOC) and UV-oxidizable carbon tests. An ion-exchange unit increased UV-oxidizable carbon, yet did not significantly (P greater than or equal to 0.05) alter AOC values. UV radiation decreased UV-oxidizable carbon and increased AOC. PMID:1610195

  2. Relationship between photosynthetic capacity, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa) grown with sewage sludge.

    PubMed

    Antolín, M Carmen; Fiasconaro, M Laura; Sánchez-Díaz, Manuel

    2010-10-15

    Sewage sludge has been used as N fertilizer because it contains some of inorganic N, principally as nitrate and ammonium ions. However, sewage sludge addition to legumes could result in impaired nodule metabolism due to the presence of inorganic N from sludge. A greenhouse experiment was conducted to examine the effects of sewage sludge on growth, photosynthesis, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa L. cv. Aragón). Plants were grown in pots with a mixture of perlite and vermiculite (2:1, v/v). The experiment included three treatments: (1) plants inoculated with rhizobia and amended with sewage sludge at rate of 10% (w/w) (RS); (2) plants inoculated with rhizobia without any amendment (R); and (3) non-inoculated plants fed with ammonium nitrate (N). N(2)-fixing plants had lower growth and sucrose phosphate synthase activity but higher photosynthesis than nitrate-fed plants because they compensated the carbon cost of the rhizobia. However, sewage sludge-treated plants evidenced a loss of carbon sink strength due to N(2) fixation by means of decreased photosynthetic capacity, leaf chlorophylls and N concentration in comparison to untreated plants. Sewage sludge did no affect nodulation but decreased nodule enzyme activities involved in carbon and N metabolisms that may lead to accumulation of toxic N-compounds. PMID:20591568

  3. Preparation of nitrogen-doped carbon tubes

    SciTech Connect

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  4. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn

    NASA Astrophysics Data System (ADS)

    Jin, Xiuliang; Yang, Guijun; Tan, Changwei; Zhao, Chunjiang

    2015-04-01

    A field experiment was conducted using three corn cultivars (Jingyu7, Nongda80, and Tangyu10) and three nitrogen (N) application rates (0, 75, and 150 kg N ha-1). The objectives of this study were to investigate the responses of photosynthetic CO2 assimilation (Ph), the maximum quantum yield of photosystem II (Fv/Fm), leaf dry weight (LDW), leaf nitrogen concentration (LNC), leaf sugar concentration (LSC), and the sugar-to-nitrogen concentration ratio (S/N) to N levels in three different field-grown corn cultivars on three sampling dates. The results showed that the LDW, Fv/Fm, Ph, LNC, and LSC increased with increasing N levels, and the variation patterns of Fv/Fm, Ph, and LNC were ``low-high-low''. In contrast, S/N decreased with increasing N levels, and its variation pattern was ``high-low-high''. The values of LDW, Fv/Fm, Ph, LNC, LSC, and S/N were greatest under high N conditions, followed by medium N conditions, and finally low N conditions. Significant interactions occurred between Ph, Fv/Fm, LNC, LSC, LDW, and S/N, with the exception of the interaction between LSC and S/N and between LSC and LDW. The correlation coefficients between Ph and S/N and between Fv/Fm and S/N were -0.714 and -0.798, respectively.

  5. Insights into Nitrogen Isotopic Fractionation During Algal Assimilation of Nitrate and Ammonium

    NASA Astrophysics Data System (ADS)

    Evans, S. L.; Swart, P. K.; Capo, T. R.

    2008-12-01

    Nitrogen availability is an important factor controlling algal growth in marine environments, representing a limiting nutrient throughout much of the global ocean. Anthropogenic inputs to the coastal zone may shift the nutrient regime, leading to questions regarding the extent of anthropogenic nutrient impacts in near-shore environments. A large body of work has been completed relating the δ15N of algae, seagrasses, and other benthic organisms to anthropogenic nutrient sources. However, previous work by our research group characterizing the δ15N of organic material associated with waste water discharge points, and in reef and embayment environments of the south Florida coastal zone, has suggested that δ15N values alone do not provide unequivocal evidence of anthropogenic nitrogen loading. Greater understanding of nitrogen processing and isotopic fractionation in coastal benthic organisms is necessary before blanket assumptions regarding nutrient uptake and source association can be universally accepted. Closed system mesocosm incubations examining fractionation associated with assimilation of nitrate and ammonium in cultured red algae, Gracilaria sp. and Agardhiella sp., were completed under varied nitrate and ammonium concentrations from 10 to 500 μM with initial nitrogen isotopic compositions of 2.7-3 ‰. Following 8-day incubations, the isotopic composition of new algal growth ranged between +2.43 and -5.77 ‰, with more depleted values coincident with higher N-availability. Rayleigh fractionation calculations yield fractionation factors of 4-9 ‰ (α values of 1.0045 to 1.008), which represent significantly larger values than those previously reported in the literature for macroalgae. 15N-tracer experiments (initial δ15N = 1000 ‰) were also conducted to assess nutrient preferences in the cultured algae. Isotopic composition of new algal growth varied from -1.3 to +495.0 ‰ with only Agardhiella exhibiting an obvious preference for ammonium

  6. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana.

    PubMed

    Kalcsits, Lee A; Guy, Robert D

    2013-10-01

    The nitrogen isotope composition (δ¹⁵N) of plants has potential to provide time-integrated information on nitrogen uptake, assimilation and allocation. Here, we take advantage of existing T-DNA and γ-ray mutant lines of Arabidopsis thaliana to modify whole-plant and organ-level nitrogen isotope composition. Nitrate reductase 2 (nia2), nitrate reductase 1 (nia1) and nitrate transporter (nrt2) mutant lines and the Col-0 wild type were grown hydroponically under steady-state NO₃⁻ conditions at either 100 or 1000 μM NO₃⁻ for 35 days. There were no significant effects on whole-plant discrimination and growth in the assimilatory mutants (nia2 and nia1). Pronounced root vs leaf differences in δ¹⁵N, however, indicated that nia2 had an increased proportion of nitrogen assimilation of NO₃⁻ in leaves while nia1 had an increased proportion of assimilation in roots. These observations are consistent with reported ratios of nia1 and nia2 gene expression levels in leaves and roots. Greater whole-plant discrimination in nrt2 indicated an increase in efflux of unassimilated NO₃⁻ back to the rooting medium. This phenotype was associated with an overall reduction in NO₃⁻ uptake, assimilation and decreased partitioning of NO₃⁻ assimilation to the leaves, presumably because of decreased symplastic intercellular movement of NO₃⁻ in the root. Although the results were more varied than expected, they are interpretable within the context of expected mechanisms of whole-plant and organ-level nitrogen isotope discrimination that indicate variation in nitrogen fluxes, assimilation and allocation between lines.

  7. Carbon Cost of Applying Nitrogen Fertilizer

    SciTech Connect

    Izaurralde, R Cesar C. ); Mcgill, William B.; Rosenberg, Norman J.

    2000-05-05

    When the addition of nitrogen (N) fertilizer leads to increased crop biomass, it also augments carbon (C)inputs to the soil and, hence often increases soil organic matter. Consequently, the efficient use of fertilizer N to increase crop production has also been found valuable for sequestering atmospheric carbon in soil.

  8. Final Technical Report: Genetic Control of Nitrogen Assimilation in Klebsiella oxytoca.

    SciTech Connect

    Valley Stewart

    2007-03-07

    Klebsiella oxytoca, an enterobacterium closely related to Escherichia coli and amenable to molecular genetic analysis, is a long-established model organism for studies of bacterial nitrogen assimilation. Our work concerned utilization of purines, nitrogen-rich compounds that are widespread in the biosphere. This project began with our observation that molybdenum cofactor (chlorate-resistant) mutants can use (hypo)xanthine as sole nitrogen source (Garzón et al., J. Bacteriol. 174:6298, 1992). Since xanthine dehydrogenase is a molybdoenzyme, Klebsiella must use an alternate route for (hypo)xanthine catabolsim. We identified and characterized a cluster of 22 genes that encode the enzymes, permeases and regulators for utilizing hypoxanthine and xanthine as sole nitrogen source. (Hypoxanthine and xanthine arise from deamination of adenine and guanine, respectively.) Growth and complementation tests with insertion mutants, combined with protein sequence comparisons, allow us to assign probable functions for the products of these genes and to deduce the overall pathway. We present genetic evidence that the first two enzymes for the Klebsiella purine utilization pathway have been recruited from pathways involved in catabolism of aromatic compounds. The first, HxaAB enzyme catalyzing (hypo)xanthine oxidation, is related to well-studied aromatic ring hydroxylating oxygenases such as phthalate dioxygenase. The second, HxbA enzyme catalyzing urate hydroxylation, is related to single-component monooxygenases. Thus, the Klebsiella purine utilization pathway has likely experienced non-orthologous gene displacement, substituting these oxygenases for the conventional enzymes, xanthine dehydrogenase and uricase. We also present evidence that transcription of the hxaAB operon is subject to dual regulation: global general nitrogen regulation (Ntr) through an unknown mechanism, and (hypo)xanthine induction mediated by a LysR-type activator.

  9. The re-assimilation of ammonia produced by photorespiration and the nitrogen economy of C3 higher plants.

    PubMed

    Keys, Alfred J

    2006-02-01

    Photorespiration involves the conversion of glycine to serine with the release of ammonia and CO(2). In C(3) terrestrial higher plants the flux through glycine and serine is so large that it results in the production of ammonia at a rate far exceeding that from reduction of new nitrogen entering the plant. The photorespiratory nitrogen cycle re-assimilates this ammonia using the enzymes glutamine synthetase and glutamine:2-oxoglutarateaminotransferase.

  10. Computational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp. WH 8102.

    PubMed

    Su, Zhengchang; Mao, Fenglou; Dam, Phuongan; Wu, Hongwei; Olman, Victor; Paulsen, Ian T; Palenik, Brian; Xu, Ying

    2006-01-01

    Deciphering the regulatory networks encoded in the genome of an organism represents one of the most interesting and challenging tasks in the post-genome sequencing era. As an example of this problem, we have predicted a detailed model for the nitrogen assimilation network in cyanobacterium Synechococcus sp. WH 8102 (WH8102) using a computational protocol based on comparative genomics analysis and mining experimental data from related organisms that are relatively well studied. This computational model is in excellent agreement with the microarray gene expression data collected under ammonium-rich versus nitrate-rich growth conditions, suggesting that our computational protocol is capable of predicting biological pathways/networks with high accuracy. We then refined the computational model using the microarray data, and proposed a new model for the nitrogen assimilation network in WH8102. An intriguing discovery from this study is that nitrogen assimilation affects the expression of many genes involved in photosynthesis, suggesting a tight coordination between nitrogen assimilation and photosynthesis processes. Moreover, for some of these genes, this coordination is probably mediated by NtcA through the canonical NtcA promoters in their regulatory regions.

  11. Computational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp. WH 8102

    PubMed Central

    Su, Zhengchang; Mao, Fenglou; Dam, Phuongan; Wu, Hongwei; Olman, Victor; Paulsen, Ian T.; Palenik, Brian; Xu, Ying

    2006-01-01

    Deciphering the regulatory networks encoded in the genome of an organism represents one of the most interesting and challenging tasks in the post-genome sequencing era. As an example of this problem, we have predicted a detailed model for the nitrogen assimilation network in cyanobacterium Synechococcus sp. WH 8102 (WH8102) using a computational protocol based on comparative genomics analysis and mining experimental data from related organisms that are relatively well studied. This computational model is in excellent agreement with the microarray gene expression data collected under ammonium-rich versus nitrate-rich growth conditions, suggesting that our computational protocol is capable of predicting biological pathways/networks with high accuracy. We then refined the computational model using the microarray data, and proposed a new model for the nitrogen assimilation network in WH8102. An intriguing discovery from this study is that nitrogen assimilation affects the expression of many genes involved in photosynthesis, suggesting a tight coordination between nitrogen assimilation and photosynthesis processes. Moreover, for some of these genes, this coordination is probably mediated by NtcA through the canonical NtcA promoters in their regulatory regions. PMID:16473855

  12. Carbon assimilation and loss in early bioenrgy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Chen, J.; Robertson, G. P.

    2011-12-01

    In this study we established a field experiment and deployed a cluster of eddy-covariance towers to quantify the magnitude and changes of ecosystem carbon assimilation, loss, and balance (i.e, Net Ecosystem Production) in three permanent grasslands and different types of candidate biofuel crop production systems (Switchgrass, mixed prairie, soybean and corn) that were converted from agricultural crops or CRP land. The six fields were converted to soybean in 2009 before establishing the biofuel cropping systems in 2010. Our field observations made between January 2009 (i.e., pre-conversion) through December 2010 showed that conversion of CRP to soybean induced net C emissions during the first year of bioenergy crops cultivation (2009) resulting in a NEP that ranging from 288.6 g C m-2 , 189.7 g C m-2 to 173.9 g C m-2 .During the second growth season (2010), the C balance and loss via respiration were mostly related to previous land use: in scenario 1 corn cultivation induced a net C accumulation of 310 and 220 g C m-2 year-1, resulting in a C balance of -42 g C m-2 over the 2 years at the sites previously cultivated as CRP , and -340 g C m-2 at the site under corn-soybean rotation. The two corn sites with different land use history showed a remarkable difference in the ecosystem respiration (Reco): overall Reco was greater of about 56% at the site converted from permanent grassland. In scenario 2 (switchgrass cultivation), regardless the previous land use history, both sites were C source over the 2 years of cultivation: scenario with a cumulative NEP varying from 153.9 g C m-2 while to 281.8 g C m-2; this site was characterized by the lowest SOC content (Zenone et al 2010) in comparison to the others. In scenario 3, site converted back to a permanent mixed prairie , even with the presence of oat as cover crop has resulted in a significative C emission over the 2 year with a cumulative NEP of 303.7 g C m-2. At the grassland reference site annual NEP in 2009 was -42

  13. Prediction of boron carbon nitrogen phase diagram

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  14. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  15. Does Ocean Color Data Assimilation Improve Estimates of Global Ocean Inorganic Carbon?

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Ocean color data assimilation has been shown to dramatically improve chlorophyll abundances and distributions globally and regionally in the oceans. Chlorophyll is a proxy for phytoplankton biomass (which is explicitly defined in a model), and is related to the inorganic carbon cycle through the interactions of the organic carbon (particulate and dissolved) and through primary production where inorganic carbon is directly taken out of the system. Does ocean color data assimilation, whose effects on estimates of chlorophyll are demonstrable, trickle through the simulated ocean carbon system to produce improved estimates of inorganic carbon? Our emphasis here is dissolved inorganic carbon, pC02, and the air-sea flux. We use a sequential data assimilation method that assimilates chlorophyll directly and indirectly changes nutrient concentrations in a multi-variate approach. The results are decidedly mixed. Dissolved organic carbon estimates from the assimilation model are not meaningfully different from free-run, or unassimilated results, and comparisons with in situ data are similar. pC02 estimates are generally worse after data assimilation, with global estimates diverging 6.4% from in situ data, while free-run estimates are only 4.7% higher. Basin correlations are, however, slightly improved: r increase from 0.78 to 0.79, and slope closer to unity at 0.94 compared to 0.86. In contrast, air-sea flux of C02 is noticeably improved after data assimilation. Global differences decline from -0.635 mol/m2/y (stronger model sink from the atmosphere) to -0.202 mol/m2/y. Basin correlations are slightly improved from r=O.77 to r=0.78, with slope closer to unity (from 0.93 to 0.99). The Equatorial Atlantic appears as a slight sink in the free-run, but is correctly represented as a moderate source in the assimilation model. However, the assimilation model shows the Antarctic to be a source, rather than a modest sink and the North Indian basin is represented incorrectly as a sink

  16. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.

    PubMed

    Payne, Emily G I; Fletcher, Tim D; Russell, Douglas G; Grace, Michael R; Cavagnaro, Timothy R; Evrard, Victor; Deletic, Ana; Hatt, Belinda E; Cook, Perran L M

    2014-01-01

    The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(-) (nitrate) over the course of one inflow event. The immediate partitioning of 15NO3(-) between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(-) under typical stormwater concentrations (∼1-2 mg N/L), contributing an average 89-99% of 15NO3(-) processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-), and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater biofilters

  17. Effects of nitrogen form on growth, CO₂ assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants.

    PubMed

    Zhou, Yan-hong; Zhang, Yi-li; Wang, Xue-min; Cui, Jin-xia; Xia, Xiao-jian; Shi, Kai; Yu, Jing-quan

    2011-02-01

    Cucumber and rice plants with varying ammonium (NH(4)(+)) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO(3)(-))-grown plants, cucumber plants grown under NH(4)(+)-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO(2)) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O(2)-independent alternative electron flux, and increased O(2)-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH(4)(+)-grown plants had a higher O(2)-independent alternative electron flux than NO(3)(-)-grown plants. NO(3)(-) reduction activity was rarely detected in leaves of NH(4)(+)-grown cucumber plants, but was high in NH(4)(+)-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO(3)(-) assimilation, an effect more significant in NO(3)(-)-grown plants than in NH(4)(+)-grown plants. Meanwhile, NH(4)(+)-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO(3)(-) reduction, regardless of the N form supplied, while NH(4)(+)-sensitive plants had a high water-water cycle activity when NH(4)(+) was supplied as the sole N source.

  18. Preliminary studies on the evolution of carbon assimilation abilities within Mucorales.

    PubMed

    Pawłowska, Julia; Aleksandrzak-Piekarczyk, Tamara; Banach, Agnieszka; Kiersztyn, Bartosz; Muszewska, Anna; Serewa, Lidia; Szatraj, Katarzyna; Wrzosek, Marta

    2016-05-01

    Representatives of Mucorales belong to one of the oldest lineages of terrestrial fungi. Although carbon is of fundamental importance for fungal growth and functioning, relatively little is known about enzymatic capacities of Mucorales. The evolutionary history and the variability of the capacity to metabolize different carbon sources among representatives of the order Mucorales was studied using Phenotypic Microarray Plates. The ability of 26 strains belonging to 23 nonpathogenic species of Mucorales to use 95 different carbon sources was tested. Intraspecies variability of carbon assimilation profiles was lower than interspecies variation for some selected strains. Although similarities between the phylogenetic tree and the dendrogram created from carbon source utilization data were observed, the ability of the various strains to use the analyzed substrates did not show a clear correlation with the evolutionary history of the group. Instead, carbon assimilation profiles are probably shaped by environmental conditions. PMID:27109371

  19. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone.

    PubMed

    Astorga-Eló, Marcia; Ramírez-Flandes, Salvador; DeLong, Edward F; Ulloa, Osvaldo

    2015-05-01

    Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus.

  20. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone

    PubMed Central

    Astorga-Eló, Marcia; Ramírez-Flandes, Salvador; DeLong, Edward F; Ulloa, Osvaldo

    2015-01-01

    Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus. PMID:25700337

  1. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone.

    PubMed

    Astorga-Eló, Marcia; Ramírez-Flandes, Salvador; DeLong, Edward F; Ulloa, Osvaldo

    2015-05-01

    Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus. PMID:25700337

  2. Essentiality of mitochondrial oxidative metabolism for photosynthesis: optimization of carbon assimilation and protection against photoinhibition.

    PubMed

    Padmasree, K; Padmavathi, L; Raghavendra, A S

    2002-01-01

    The review emphasizes the essentiality of mitochondrial oxidative metabolism for photosynthetic carbon assimilation. Photosynthetic activity in chloroplasts and oxidative metabolism in mitochondria interact with each other and stimulate their activities. During light, the partially modified TCA cycle supplies oxoglutarate to cytosol and chloroplasts. The marked stimulation of O2 uptake after few minutes of photosynthetic activity, termed as light enhanced dark respiration (LEDR), is now a well-known phenomenon. Both the cytochrome and alternative pathways of mitochondrial electron transport are important in such interactions. The function of chloroplast is optimized by the complementary nature of mitochondrial metabolism in multiple ways: facilitation of export of excess reduced equivalents from chloroplasts, shortening of photosynthetic induction, maintenance of photorespiratory activity, and supply of ATP for sucrose biosynthesis as well as other cytosolic needs. Further, the mitochondrial oxidative electron transport and phosphorylation also protects chloroplasts against photoinhibition. Besides mitochondrial respiration, reducing equivalents (and ATP) are used for other metabolic phenomena, such as sulfur or nitrogen metabolism and photorespiration. These reactions often involve peroxisomes and cytosol. The beneficial interaction between chloroplasts and mitochondria therefore extends invariably to also peroxisomes and cytosol. While the interorganelle exchange of metabolites is the known basis of such interaction, further experiments are warranted to identify other biochemical signals between them. The uses of techniques such as on-line mass spectrometric measurement, novel mutants/transgenics, and variability in metabolism by growth conditions hold a high promise to help the plant biologist to understand this PMID:12027265

  3. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system.

  4. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation

    PubMed Central

    2011-01-01

    Background The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known. Results Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus Trichoderma reesei (anamorph of Hypocrea jecorina) by profiling transcription in a wild-type and a delta-cre1 mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes. Conclusions Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment. PMID:21619626

  5. Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kützing

    NASA Astrophysics Data System (ADS)

    Kim, Jang K.; Kraemer, George P.; Yarish, Charles

    2012-12-01

    The physical stresses associated with emersion have long been considered major factors determining the vertical zonation of intertidal seaweeds. We examined Porphyra umbilicalis (Linnaeus) Kützing thalli from the vertical extremes in elevation of an intertidal population ( i.e. upper and lower intertidal zones) to determine whether Porphyra thalli acclimate to different vertical elevations on the shore with different patterns of nitrate uptake and nitrate reductase (NR) and glutamine synthetase (GS) activities in response to different degrees of emersion stress. We found that the nitrate uptake and NR recovery in the emersed tissues took longer in lower intertidal sub-population than in upper intertidal sub-population; and GS activity was also significantly affected by emersion and, interestingly, such an activity was enhanced by emersion of thalli from both upper and lower intertidal zones. These results suggested that intra-population variability in post-emersion recovery of physiological functions such as nutrient uptake and NR activity enables local adaptation and contributes to the wide vertical distribution of P. umbilicalis. The high GS activity during periodic emersion stress may be a protective mechanism enabling P. umbilicalis to assimilate nitrogen quickly when it again becomes available, and may also be an evidence of photorespiration during emersion.

  6. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains.

    PubMed

    Martin, Valentina; Boido, Eduardo; Giorello, Facundo; Mas, Albert; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    In several grape varieties, the dominating aryl alkyl alcohols found are the volatile group of phenylpropanoid-related compounds, such as glycosylated benzyl and 2-phenylethyl alcohol, which contribute to wine with floral and fruity aromas after being hydrolysed during fermentation. Saccharomyces cerevisiae is largely recognized as the main agent in grape must fermentation, but yeast strains belonging to other genera, including Hanseniaspora, are known to predominate during the first stages of alcoholic fermentation. Although non-Saccharomyces yeast strains have a well-recognized genetic diversity, understanding of their impact on wine flavour richness is still emerging. In this study, 11 Hansenisapora vineae strains were used to ferment a chemically defined simil-grape fermentation medium, resembling the nutrient composition of grape juice but devoid of grape-derived secondary metabolites. GC-MS analysis was performed to determine volatile compounds in the produced wines. Our results showed that benzyl alcohol, benzyl acetate and 2-phenylethyl acetate are significantly synthesized by H. vineae strains. Levels of these compounds found in fermentations with 11 H. vineae different strains were one or two orders of magnitude higher than those measured in fermentations with a known S. cerevisiae wine strain. The implications for winemaking in response to the negative correlation of benzyl alcohol, benzyl acetate and 2-phenylethyl acetate production with yeast assimilable nitrogen concentrations are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Influence of shade on the growth and nitrogen assimilation of developing fruits on bell pepper

    SciTech Connect

    Achhireddy, N.R.; Fletcher, J.S.; Beevers, L.

    1982-08-01

    Accumulation of dry mass, total N, protein N, and soluble amino acid N in the developing fruit and seeds of bell pepper (Capsicum annuum L.) was determined at selected intervals following anthesis. The importance of photosynthesis to the growth and nitrogen (N) assimilation in the developing fruit wall plus placenta (FWP) and seeds was evaluated by comparing the growth and accumulation of reduced N in nonphotosynthetic and photosynthetic fruits (covered vs. uncovered). The growth rate of the FWP and seeds was similar under both conditions. After 65 days of growth, the fruits kept in the dark weighed about 15% less than those receiving illumination; seed weight was the same for both treatments. Total N content of the FWP or seed continued to increase up to 55 days after anthesis. The FWP accumulated over 90% of fruit's total N, and there were no significant differences between covered and uncovered fruits. Protein N accounted for about 50% of the total N present in both covered and uncovered fruits. 15 references, 2 figures, 2 tables.

  8. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains.

    PubMed

    Martin, Valentina; Boido, Eduardo; Giorello, Facundo; Mas, Albert; Dellacassa, Eduardo; Carrau, Francisco

    2016-07-01

    In several grape varieties, the dominating aryl alkyl alcohols found are the volatile group of phenylpropanoid-related compounds, such as glycosylated benzyl and 2-phenylethyl alcohol, which contribute to wine with floral and fruity aromas after being hydrolysed during fermentation. Saccharomyces cerevisiae is largely recognized as the main agent in grape must fermentation, but yeast strains belonging to other genera, including Hanseniaspora, are known to predominate during the first stages of alcoholic fermentation. Although non-Saccharomyces yeast strains have a well-recognized genetic diversity, understanding of their impact on wine flavour richness is still emerging. In this study, 11 Hansenisapora vineae strains were used to ferment a chemically defined simil-grape fermentation medium, resembling the nutrient composition of grape juice but devoid of grape-derived secondary metabolites. GC-MS analysis was performed to determine volatile compounds in the produced wines. Our results showed that benzyl alcohol, benzyl acetate and 2-phenylethyl acetate are significantly synthesized by H. vineae strains. Levels of these compounds found in fermentations with 11 H. vineae different strains were one or two orders of magnitude higher than those measured in fermentations with a known S. cerevisiae wine strain. The implications for winemaking in response to the negative correlation of benzyl alcohol, benzyl acetate and 2-phenylethyl acetate production with yeast assimilable nitrogen concentrations are discussed. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26945700

  9. Chemical Data Assimilation Estimates of Continental US Ozone and Nitrogen Budgets during INTEX-A

    NASA Technical Reports Server (NTRS)

    Pierce, Robert B.; Schaack, Todd K.; Al-Saadi, Jassim A.; Fairlie, T. Duncan; Kittaka, Chieko; Lingenfelser, Gretchen; Natarajan, Murali; Olson, Jennifer; Soja, Amber; Zapotocny, Tom; Lenzen, Allen; Stobie, James; Johnson, Donald; Avery, Melody A.; Sachse, Glen W.; Thompson, Anne; Cohen, Ron; Dibb, Jack E.; Crawford, James H.; Rault, Didier F.; Martin, Randall; Szykman, James J.; Fishman, Jack

    2007-01-01

    Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the Continental US during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during the INTEX-A show that RAQMS captures the main features of the global and Continental US distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the Continental US export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental US photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24 percent, with NOx+PAN accounting for 54 percent of the total NOy export during INTEX-A.

  10. ACTIVITIES OF AMMONIA ASSIMILATION ENZYMES AS INDICATORS OF THE RELATIVE SUPPLY OF NITROGEN SUBSTRATES FOR MARINE BACTERIOPLANKTON IN SUB-TROPICAL COASTAL WATER

    EPA Science Inventory

    The supply of nitrogen substrates available for bacterial production in seawater was determined using the activities of ammonia assimilation enzymes, glutamine synthetase (GS) and glutamate dehydrogenase (GDH). Expression of GS and GDH by bacteria in pure culture is generally ind...

  11. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  12. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses. PMID:26605918

  13. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses.

  14. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements.

    PubMed

    Fares, Silvano; Vargas, Rodrigo; Detto, Matteo; Goldstein, Allen H; Karlik, John; Paoletti, Elena; Vitale, Marcello

    2013-08-01

    High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through manipulative experiments that do not consider long-term exposure and propagate large uncertainty by up-scaling leaf-level observations to ecosystem-level interpretations. We analyzed long-term continuous measurements (>9 site-years at 30 min resolution) of environmental and eco-physiological parameters at three Mediterranean ecosystems: (i) forest site dominated by Pinus ponderosa in the Sierra Mountains in California, USA; (ii) forest site composed of a mixture of Quercus spp. and P. pinea in the Tyrrhenian sea coast near Rome, Italy; and (iii) orchard site of Citrus sinensis cultivated in the California Central Valley, USA. We hypothesized that higher levels of ozone concentration in the atmosphere result in a decrease in carbon assimilation by trees under field conditions. This hypothesis was tested using time series analysis such as wavelet coherence and spectral Granger causality, and complemented with multivariate linear and nonlinear statistical analyses. We found that reduction in carbon assimilation was more related to stomatal ozone deposition than to ozone concentration. The negative effects of ozone occurred within a day of exposure/uptake. Decoupling between carbon assimilation and stomatal aperture increased with the amount of ozone pollution. Up to 12-19% of the carbon assimilation reduction in P. ponderosa and in the Citrus plantation was explained by higher stomatal ozone deposition. In contrast, the Italian site did not show reductions in gross primary productivity either by ozone concentration or stomatal ozone deposition, mainly due to the lower ozone concentrations in the periurban site over the shorter period of investigation. These results highlight the importance of plant adaptation/sensitivity under field conditions, and the importance of

  15. The Effects of Chlorophyll Assimilation on Carbon Fluxes in a Global Biogeochemical Model. [Technical Report Series on Global Modeling and Data Assimilation

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    In this paper, we investigated whether the assimilation of remotely-sensed chlorophyll data can improve the estimates of air-sea carbon dioxide fluxes (FCO2). Using a global, established biogeochemical model (NASA Ocean Biogeochemical Model, NOBM) for the period 2003-2010, we found that the global FCO2 values produced in the free-run and after assimilation were within -0.6 mol C m(sup -2) y(sup -1) of the observations. The effect of satellite chlorophyll assimilation was assessed in 12 major oceanographic regions. The region with the highest bias was the North Atlantic. Here the model underestimated the fluxes by 1.4 mol C m(sup -2) y(sup -1) whereas all the other regions were within 1 mol C m(sup -2) y(sup -1) of the data. The FCO2 values were not strongly impacted by the assimilation, and the uncertainty in FCO2 was not decreased, despite the decrease in the uncertainty in chlorophyll concentration. Chlorophyll concentrations were within approximately 25% of the database in 7 out of the 12 regions, and the assimilation improved the chlorophyll concentration in the regions with the highest bias by 10-20%. These results suggest that the assimilation of chlorophyll data does not considerably improve FCO2 estimates and that other components of the carbon cycle play a role that could further improve our FCO2 estimates.

  16. Radiochemistry of carbon, nitrogen and oxygen

    SciTech Connect

    Sajjad, M.; Lambrecht, R.M.

    1988-01-01

    The present monograph consists of two reviews. The first section deals with radiopharmaceutical and biomedical applications. The second section deals with analysis of carbon, nitrogen and oxygen in different materials by use of nuclear techniques. This monograph is published as part of our continuing effort to update, revise, and expand the previously published monographs to keep them current and relevant. 158 refs., 4 figs., 12 tabs.

  17. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models.

    PubMed

    Xu, Xiaofeng; Schimel, Joshua P; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-05-01

    A mechanistic understanding of microbial assimilation of soil organic carbon is important to improve Earth system models' ability to simulate carbon-climate feedbacks. A simple modelling framework was developed to investigate how substrate quality and environmental controls over microbial activity regulate microbial assimilation of soil organic carbon and on the size of the microbial biomass. Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality leads to higher ratio of microbial carbon to soil organic carbon. Microbial biomass carbon peaks and then declines as cumulative activity increases. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global data set at the biome level. The modelling framework developed in this study offers a simple approach to incorporate microbial contributions to the carbon cycling into Earth system models to simulate carbon-climate feedbacks and explain global patterns of microbial biomass.

  18. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.

    PubMed

    Picossi, Silvia; Flores, Enrique; Herrero, Antonia

    2015-09-01

    Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph.

  19. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.

    PubMed

    Picossi, Silvia; Flores, Enrique; Herrero, Antonia

    2015-09-01

    Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph. PMID:25684321

  20. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    SciTech Connect

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A; Xu, Yifan

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations using LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.

  1. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    PubMed

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  2. The effects of Bacillus subtilis on nitrogen recycling from aquaculture solid waste using heterotrophic nitrogen assimilation in sequencing batch reactors.

    PubMed

    Lu, Lu; Tan, Hongxin; Luo, Guozhi; Liang, Wenyan

    2012-11-01

    A sequencing batch reactor (SBR) supplied with Bacillus subtilis (treatment group) was employed to treat the sludge from a re-circulating aquaculture system (RAS). The crude protein content of bio-flocs from the treatment group increased from 21.52%±1.5% to 29.65%±13.34%, which was 23.97%±11.62% greater than that of the SBRs without B. subtilis (control group). The removal rate of dissolved inorganic nitrogen (RR(DIN)) for the treatment group was 0.41±0.079 mg L(-1)d(-1), which was 1.17 times greater than that of the control group. The utility rate of total organic nitrogen (UR(TON)) for the treatment group was 1.42±0.33 mg L(-1)d(-1), which was 1.71 times greater than the control. The removal rate of dissolved organic carbon (RR(DOC)) for the treatment group was 138.39±7.77 mg L(-1)d(-1), which was 1.95 times greater than the control. The extra-cellular polymer substance (EPS) was primarily composed of polysaccharides. The flocs volume after 5 min (FV-5 min) reached 22.67%±2.08% at 19 days.

  3. Removal of bromate and assimilable organic carbon from drinking water using granular activated carbon.

    PubMed

    Huang, W J; Peng, H S; Peng, M Y; Chen, L Y

    2004-01-01

    This study investigated the feasibility of using granular activated carbon (GAC) to remove bromate ion (BrO3-) and assimilable organic carbon (AOC) from drinking water through a rapid small-scale column test (RSSCT) method and a pilot-scale study. Results from RSSCT indicated that the GAC capacity for BrO3- removal was dependent on the GAC type, empty bed contact time (EBCT), and source water quality. The GAC with a high number of basic groups and higher pHpzc values showed an increased BrO3- removal capacity. BrO3- removal was improved by increasing EBCT. The high EBCT provides a greater opportunity for BrO3- to be adsorbed and reduced to Br- on the GAC surface. On the other hand, the presence of dissolved organic carbon (DOC) and anions, such as chloride, bromide, and sulfate, resulted in poor BrO3- reduction. In the GAC pilot plant, a GAC column preloaded for 12 months achieved a BrO3- and AOC removal range from 79-96% and 41-75%, respectively. The BrO3- amount removed was found to be proportional to the influent BrO3- concentration. However, the BrO3- removal rate apparently decreased with increasing operation time. In contrast, the AOC apparently increased during the long-term operation period. This may be a result of the contribution due to new GAC being gradually transformed into biological activated carbon (BAC), and the bacterial biomass adsorbed on GAC surface hindering BrO3- reduction by GAC either by blocking pores or adsorbing at the activated sites for BrO3- reduction. PMID:15566189

  4. Temporary Storage or Permanent Removal? The Division of Nitrogen between Biotic Assimilation and Denitrification in Stormwater Biofiltration Systems

    PubMed Central

    Payne, Emily G. I.; Fletcher, Tim D.; Russell, Douglas G.; Grace, Michael R.; Cavagnaro, Timothy R.; Evrard, Victor; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.

    2014-01-01

    The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a ‘black-box’ approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3− (nitrate) over the course of one inflow event. The immediate partitioning of 15NO3− between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3− under typical stormwater concentrations (∼1–2 mg N/L), contributing an average 89–99% of 15NO3− processing in biofilter columns containing the most effective plant species, while only 0–3% was denitrified and 0–8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3−, and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater

  5. Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hemlock

    SciTech Connect

    Knoepp, J.D.; Turner, D.P.; Tingey, D.T.

    1993-01-01

    Western hemlock seedlings were grown in nutrient solutions with ammonium, nitrate or ammonium plus nitrate as nitrogen sources. The objectives were to examine (1) possible selectivity for ammonium or nitrate as an N source, (2) the maintenance of charge balance during ammonium and nitrate uptake, and (3) the activity of the nitrogen assimilating enzymes, nitrate reductase, glutamine synthetase, and glutamine dehydrogenase, in relation to the uptake of different nitrogen sources. The uptake studies revealed that western hemlock takes up ammonium faster than nitrate and that ammonium partially inhibits nitrate uptake. Nitrate reductase activity varied with nitrate availability in root tissue, but showed no response in needles, indicating that most nitrate is reduced in the roots. Results indicate that western hemlock may be adapted to sites where NH(4+) is the predominate N source.

  6. Long-term ferrocyanide application via deicing salts promotes the establishment of Actinomycetales assimilating ferrocyanide-derived carbon in soil.

    PubMed

    Gschwendtner, Silvia; Mansfeldt, Tim; Kublik, Susanne; Touliari, Evangelia; Buegger, Franz; Schloter, Michael

    2016-07-01

    Cyanides are highly toxic and produced by various microorganisms as defence strategy or to increase their competitiveness. As degradation is the most efficient way of detoxification, some microbes developed the capability to use cyanides as carbon and nitrogen source. However, it is not clear if this potential also helps to lower cyanide concentrations in roadside soils where deicing salt application leads to significant inputs of ferrocyanide. The question remains if biodegradation in soils can occur without previous photolysis. By conducting a microcosm experiment using soils with/without pre-exposition to road salts spiked with (13) C-labelled ferrocyanide, we were able to confirm biodegradation and in parallel to identify bacteria using ferrocyanide as C source via DNA stable isotope probing (DNA-SIP), TRFLP fingerprinting and pyrosequencing. Bacteria assimilating (13) C were highly similar in the pre-exposed soils, belonging mostly to Actinomycetales (Kineosporia, Mycobacterium, Micromonosporaceae). In the soil without pre-exposition, bacteria belonging to Acidobacteria (Gp3, Gp4, Gp6), Gemmatimonadetes (Gemmatimonas) and Gammaproteobacteria (Thermomonas, Xanthomonadaceae) used ferrocyanide as C source but not the present Actinomycetales. This indicated that (i) various bacteria are able to assimilate ferrocyanide-derived C and (ii) long-term exposition to ferrocyanide applied with deicing salts leads to Actinomycetales outcompeting other microorganisms for the use of ferrocyanide as C source. PMID:27194597

  7. Carbon assimilation and export in sugar beet leaves. [Beta vulgaris

    SciTech Connect

    Tucci, M.A.; Geiger, D.K.; Servaites, J.C.

    1987-04-01

    Net carbon exchange rates (NCE), starch accumulation rates, gas exchange, and the maximum amount of carbon available for export were studied in Beta vulgaris L. following a 25% increase or a 25% decrease in ambient CO/sub 2/ (340 ..mu..l/L). Changing CO/sub 2/ by 25% above or below ambient had no effect on the ratio of internal CO/sub 2/ to ambient CO/sub 2/. Stomatal aperature adjusted in both cases to maintain the same relative stomatal limitation to NCE. Increasing CO/sub 2/ 25% increased NCE and water use efficiency, but slightly decreased stomatal conductance by 9% below leaves maintained at ambient. In contrast, a 25% reduction in CO/sub 2/ decreased NCE and water use efficiency. Decreasing CO/sub 2/ caused an increase in conductance also by 9%. Increasing CO/sub 2/ increased starch storage by 36%, but caused no change in the ratio of starch accumulation to NCE. A reduction in CO/sub 2/ caused a 60% decrease in the rate of starch storage and decreased the ratio of starch accumulation to NCE by one-half. The maximum amount of carbon available for export was increased 25% by increasing CO/sub 2/, but decreased by 5% following a reduction in CO2 level. These data are evidence that export rates are maintained at the expense of starch synthesis during periods of low NCE.

  8. Computational protein design enables a novel one-carbon assimilation pathway

    SciTech Connect

    Siegel, JB; Smith, AL; Poust, S; Wargacki, AJ; Bar-Even, A; Louw, C; Shen, BW; Eiben, CB; Tran, HM; Noor, E; Gallaher, JL; Bale, J; Yoshikuni, Y; Gelb, MH; Keasling, JD; Stoddard, BL; Lidstrom, ME; Baker, D

    2015-03-09

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.

  9. Computational protein design enables a novel one-carbon assimilation pathway.

    PubMed

    Siegel, Justin B; Smith, Amanda Lee; Poust, Sean; Wargacki, Adam J; Bar-Even, Arren; Louw, Catherine; Shen, Betty W; Eiben, Christopher B; Tran, Huu M; Noor, Elad; Gallaher, Jasmine L; Bale, Jacob; Yoshikuni, Yasuo; Gelb, Michael H; Keasling, Jay D; Stoddard, Barry L; Lidstrom, Mary E; Baker, David

    2015-03-24

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway. PMID:25775555

  10. Computational protein design enables a novel one-carbon assimilation pathway.

    PubMed

    Siegel, Justin B; Smith, Amanda Lee; Poust, Sean; Wargacki, Adam J; Bar-Even, Arren; Louw, Catherine; Shen, Betty W; Eiben, Christopher B; Tran, Huu M; Noor, Elad; Gallaher, Jasmine L; Bale, Jacob; Yoshikuni, Yasuo; Gelb, Michael H; Keasling, Jay D; Stoddard, Barry L; Lidstrom, Mary E; Baker, David

    2015-03-24

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.

  11. Effect of shoot removal on remobilization of carbon and nitrogen during regrowth of nitrogen-fixing alfalfa.

    PubMed

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Aldasoro, Joseba; Arrese-Igor, Cesar; Nogués, Salvador

    2015-01-01

    The contribution of carbon and nitrogen reserves to regrowth following shoot removal has been studied in the past. However, important gaps remain in understanding the effect of shoot cutting on nodule performance and its relevance during regrowth. In this study, isotopic labelling was conducted at root and canopy levels with both (15) N2 and (13) C-depleted CO2 on exclusively nitrogen-fixing alfalfa plants. As expected, our results indicate that the roots were the main sink organs before shoots were removed. Seven days after regrowth the carbon and nitrogen stored in the roots was invested in shoot biomass formation and partitioned to the nodules. The large depletion in nodule carbohydrate availability suggests that root-derived carbon compounds were delivered towards nodules in order to sustain respiratory activity. In addition to the limited carbohydrate availability, the upregulation of nodule peroxidases showed that oxidative stress was also involved during poor nodule performance. Fourteen days after cutting, and as a consequence of the stimulated photosynthetic and N2 -fixing machinery, availability of Cnew and Nnew strongly diminished in the plants due to their replacement by C and N assimilated during the post-labelling period. In summary, our study indicated that during the first week of regrowth, root-derived C and N remobilization did not overcome C- and N-limitation in nodules and leaves. However, 14 days after cutting, leaf and nodule performance were re-established.

  12. [Effects of eutrophic nitrogen nutrition on carbon balance capacity of Liquidambar formosana seedlings under low light].

    PubMed

    Wang, Chuan-Hua; Li, Jun-Qing; Yang, Ying

    2011-12-01

    To investigate the effects of atmospheric nitrogen deposition on the seedlings regeneration of Liquidambar formosana, a greenhouse experiment was conducted, in which, the low light- and nitrogen supplies were controlled similar to those in typical L. formosana secondary forests, with the effects of different light- and nitrogen supply on the L. formosana seedlings survival, leaf functional traits, biomass allocation, and gas exchange studied. The whole plant light compensation point (LCP(whoIe-plant)) of the seedlings was estimated with a whole plant carbon balance model, and then compared with the understory photosynthetic active radiance (PAR) of the typical secondary forests. Under 3.0% and 6.0% of full sunlight, eutrophic nitrogen supply led to a decrease of seedlings survival (shade tolerance) and specific leaf area (SLA), but had no obvious effects on the seedlings biomass allocation. At eutrophic nitrogen supply, light intensity had significant effects on the leaf area based maximum assimilation rate, whereas increasing nitrogen supply under low light induced the increase of leaf mass based dark respiration rate. Both light intensity and nitrogen supply had significant effects on the mass based leaf respiration rate, and the interaction of light and nitrogen had significant effects on the mass based stem respiration rate. Increasing nitrogen supply increased the LCP(wholeplant), under 3.0%, 6.0%, and 12.0% of full sunlight, but decreased the LCP(whoIe-plant) under 25.0% of full sunlight. The decrease of the seedlings shade tolerance induced by the increasing nitrogen supply under low light was correlated with the variations of the seedlings carbon balance capacity. Under the background of elevated atmospheric nitrogen deposition, the maintenance of L. formosana populations in China would more depend on disturbances and gap regeneration, and the population dynamics would be deeply affected.

  13. Monitoring Carbon Assimilation of South American Tropical Forests

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Nunes, E. L.

    2009-12-01

    Net primary production (NPP) is a key variable for monitoring and understanding the impacts of environmental change on ecosystems and for generating realistic global and regional carbon budgets. However, although assessment of NPP over broad spatial scales has been made possible through the development of MODIS products such as MOD17A3, such global remotely sensed estimations are often inaccurate due to algorithm failure and parameterization issues. These inadequacies can be partly remedied by the development of biome-specific geographically localized algorithms. In this paper we develop a regional algorithm (RATE) for the automatic monitoring the rate of carbon fixation (as measured by NPP) of tropical forests in South America. The algorithm is based on a modification of the SITE model and uses data from the MODIS sensor (MOD12Q1 and MOD15A2 products) and meteorological data from the National Centers for Environmental Prediction (NCEP). The effectiveness of the algorithm was tested in eight field sites from two types of tropical forests in South America: the Amazon rainforest and the Atlantic forest. In the Amazonian sites, the RATE algorithm produced NPP values closer to the observed values than estimates from the MODIS NPP product, while in the Atlantic forest sites it generated NPP values similar to the MODIS sensor. In conclusion, RATE appears to be a reliable estimator of carbon fixation by tropical forests in South America, with an average error of only 4.7%, and is therefore a more precise way of monitoring regional environmental change in these globally important ecosystems.

  14. The Effects of Varying Crustal Carbonate Composition on Assimilation and CO2 Degassing at Arc Volcanoes

    NASA Astrophysics Data System (ADS)

    Carter, L. B.; Holmes, A. K.; Dasgupta, R.; Tumiati, S.

    2015-12-01

    Magma-crustal carbonate interaction and subsequent decarbonation can provide an additional source of CO2 release to the exogenic system superimposed on mantle-derived CO2. Carbonate assimilation at present day volcanoes is often modeled by limestone consumption experiments [1-4]. Eruptive products, however, do not clearly display the characteristic ultracalcic melt compositions produced during limestone-magma interaction [4]. Yet estimated CO2outflux [5] and composition of volcanics in many volcanic systems may allow ~3-17% limestone- or dolostone-assimilated melt contribution. Crystallization may retain ultracalcic melts in pyroxenite cumulates. To extend our completed study on limestone assimilation, here we explore the effect of varying composition from calcite to dolomite on chemical and thermal decarbonation efficiency of crustal carbonates. Piston cylinder experiments at 0.5 GPa and 900-1200 °C demonstrate that residual mineralogy during interaction with magma shifts from CaTs cpx and anorthite/scapolite in the presence of calcite to Di cpx and Fo-rich olivine with dolomite. Silica-undersaturated melts double in magnesium content, while maintaining high (>30 wt.%) CaO values. At high-T, partial thermal breakdown of dolomite into periclase and CO2 is minimal (<5%) suggesting that in the presence of magma, CO2 is primarily released due to assimilation. Assimilated melts at identical P-T conditions depict similarly high volatile contents (10-20 wt.% by EMPA deficit at 0.5 GPa, 1150 °C with hydrous basalt) with calcite or dolomite. Analysis of the coexisting fluid phase indicates the majority of water is dissolved in the melt, while CO2 released from the carbonate is preferentially partitioned into the vapor. This suggests that although assimilated melts have a higher CO2 solubility, most of the CO2can easily degas from the vapor phase at arc volcanoes, possibly more so at volcanic plumbing systems traversing dolomite [8]. [1]Conte et al 2009 EuJMin (21) 763

  15. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth.

    PubMed

    Resco de Dios, Víctor; Loik, Michael E; Smith, Renee; Aspinwall, Michael J; Tissue, David T

    2016-01-01

    Circadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole-plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian-regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth. PMID:26147129

  16. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth.

    PubMed

    Resco de Dios, Víctor; Loik, Michael E; Smith, Renee; Aspinwall, Michael J; Tissue, David T

    2016-01-01

    Circadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole-plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian-regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.

  17. Relationship between carbon and nitrogen mineralization in a subtropical soil

    NASA Astrophysics Data System (ADS)

    Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. β-1,4- Glucosaminidase, chitinase, acid phosphatase, β-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.

  18. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    PubMed

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  19. Turnover of recently assimilated carbon in arctic bryophytes.

    PubMed

    Street, L E; Subke, J A; Sommerkorn, M; Heinemeyer, A; Williams, M

    2011-10-01

    Carbon (C) allocation and turnover in arctic bryophytes is largely unknown, but their response to climatic change has potentially significant impacts on arctic ecosystem C budgets. Using a combination of pulse-chase experiments and a newly developed model of C turnover in bryophytes, we show significant differences in C turnover between two contrasting arctic moss species (Polytrichum piliferum and Sphagnum fuscum). (13)C abundance in moss tissues (measured up to 1 year) and respired CO(2) (traced over 5 days) were used to parameterise the bryophyte C model with four pools representing labile and structural C in photosynthetic and stem tissue. The model was optimised using an Ensemble Kalman Filter to ensure a focus on estimating the confidence intervals (CI) on model parameters and outputs. The ratio of aboveground NPP:GPP in Polytrichum piliferum was 23% (CI 9-35%), with an average turnover time of 1.7 days (CI 1.1-2.5 days). The aboveground NPP:GPP ratio in Sphagnum fuscum was 43% (CI 19-65%) with an average turnover time of 3.1 days (CI 1.6-6.1 days). These results are the first to show differences in C partitioning between arctic bryophyte species in situ and highlight the importance of modelling C dynamics of this group separately from vascular plants for a realistic representation of vegetation in arctic C models.

  20. A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle

    NASA Astrophysics Data System (ADS)

    Peylin, Philippe; Bacour, Cédric; MacBean, Natasha; Leonard, Sébastien; Rayner, Peter; Kuppel, Sylvain; Koffi, Ernest; Kane, Abdou; Maignan, Fabienne; Chevallier, Frédéric; Ciais, Philippe; Prunet, Pascal

    2016-09-01

    Large uncertainties in land surface models (LSMs) simulations still arise from inaccurate forcing, poor description of land surface heterogeneity (soil and vegetation properties), incorrect model parameter values and incomplete representation of biogeochemical processes. The recent increase in the number and type of carbon cycle-related observations, including both in situ and remote sensing measurements, has opened a new road to optimize model parameters via robust statistical model-data integration techniques, in order to reduce the uncertainties of simulated carbon fluxes and stocks. In this study we present a carbon cycle data assimilation system that assimilates three major data streams, namely the Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) observations of vegetation activity, net ecosystem exchange (NEE) and latent heat (LE) flux measurements at more than 70 sites (FLUXNET), as well as atmospheric CO2 concentrations at 53 surface stations, in order to optimize the main parameters (around 180 parameters in total) of the Organizing Carbon and Hydrology in Dynamics Ecosystems (ORCHIDEE) LSM (version 1.9.5 used for the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations). The system relies on a stepwise approach that assimilates each data stream in turn, propagating the information gained on the parameters from one step to the next. Overall, the ORCHIDEE model is able to achieve a consistent fit to all three data streams, which suggests that current LSMs have reached the level of development to assimilate these observations. The assimilation of MODIS-NDVI (step 1) reduced the growing season length in ORCHIDEE for temperate and boreal ecosystems, thus decreasing the global mean annual gross primary production (GPP). Using FLUXNET data (step 2) led to large improvements in the seasonal cycle of the NEE and LE fluxes for all ecosystems (i.e., increased amplitude for temperate ecosystems). The

  1. A dynamical systems analysis of the data assimilation linked ecosystem carbon (DALEC) models.

    PubMed

    Chuter, Anna M; Aston, Philip J; Skeldon, Anne C; Roulstone, Ian

    2015-03-01

    Changes in our climate and environment make it ever more important to understand the processes involved in Earth systems, such as the carbon cycle. There are many models that attempt to describe and predict the behaviour of carbon stocks and stores but, despite their complexity, significant uncertainties remain. We consider the qualitative behaviour of one of the simplest carbon cycle models, the Data Assimilation Linked Ecosystem Carbon (DALEC) model, which is a simple vegetation model of processes involved in the carbon cycle of forests, and consider in detail the dynamical structure of the model. Our analysis shows that the dynamics of both evergreen and deciduous forests in DALEC are dependent on a few key parameters and it is possible to find a limit point where there is stable sustainable behaviour on one side but unsustainable conditions on the other side. The fact that typical parameter values reside close to this limit point highlights the difficulty of predicting even the correct trend without sufficient data and has implications for the use of data assimilation methods.

  2. Geographycally-distributed mathematical model of carbon and nitrogen cycels in Arctic region

    SciTech Connect

    Vilkova, L.P.; Novichihin, Ye.P.

    1996-12-31

    The model of a carbon and nitrogen cycle in Arctic region investigates interactions in systems {open_quotes}atmosphere-plant-soil{close_quotes}, {open_quotes}atmosphere-ice-ocean{close_quotes}. The whole territory of a land in the model is divided into areas with various degree discretization (4 x 5 degree and 1 x 1 degree latitude and longitude accordingly). The nitrogen in model is considered only in the assimilating form. Within the framework of this model mathematical models of production, phytomass and dead organic matter are constructed. The model of Arctic region can be included in a global model. With their help numerical experiments are spent. From them follows, that though ecosystems of Arctic region take 5.5% of the whole territories of a land, contribution them in an absorption industrial CO{sub 2} at the moment of doubling carbon dioxide in atmosphere makes 11%, and relative changes of common organic matter in it ecosystems 40 - 50%.

  3. Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae.

    PubMed

    Glass, J B; Wolfe-Simon, F; Anbar, A D

    2009-03-01

    Marine primary producers adapted over eons to the changing chemistry of the oceans. Because a number of metalloenzymes are necessary for N assimilation, changes in the availability of transition metals posed a particular challenge to the supply of this critical nutrient that regulates marine biomass and productivity. Integrating recently developed geochemical, biochemical, and genetic evidence, we infer that the use of metals in N assimilation - particularly Fe and Mo - can be understood in terms of the history of metal availability through time. Anoxic, Fe-rich Archean oceans were conducive to the evolution of Fe-using enzymes that assimilate abiogenic NH(4)(+) and NO(2)(-). The N demands of an expanding biosphere were satisfied by the evolution of biological N(2) fixation, possibly utilizing only Fe. Trace O(2) in late Archean environments, and the eventual 'Great Oxidation Event' c. 2.3 Ga, mobilized metals such as Mo, enabling the evolution of Mo (or V)-based N(2) fixation and the Mo-dependent enzymes for NO(3)(-) assimilation and denitrification by prokaryotes. However, the subsequent onset of deep-sea euxinia, an increasingly-accepted idea, may have kept ocean Mo inventories low and depressed Fe, limiting the rate of N(2) fixation and the supply of fixed N. Eukaryotic ecosystems may have been particularly disadvantaged by N scarcity and the high Mo requirement of eukaryotic NO(3)(-) assimilation. Thorough ocean oxygenation in the Neoproterozoic led to Mo-rich oceans, possibly contributing to the proliferation of eukaryotes and thus the Cambrian explosion of metazoan life. These ideas can be tested by more intensive study of the metal requirements in N assimilation and the biological strategies for metal uptake, regulation, and storage. PMID:19320747

  4. Can We Estimate Surface Carbon Fluxes With a 6-hour Data Assimilation System?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Kang, J.; Liu, J.; Fung, I.

    2011-12-01

    The estimation of surface carbon fluxes from atmospheric measurements of CO2 is an ill-posed problem (Enting, 2002). In the real atmosphere emissions are transported and mixed, losing information; measuring atmospheric concentrations introduces further errors; and the calculation of transports with imperfect models amplifies the errors in estimating surface sources and sinks. Because of this ill-posedness, prior information on carbon surface fluxes is essential for inverse estimations (e.g., Gurney et al., 2004, Baker et al., 2006, Roedenbeck et al., 2003). Peters et al. (2007) have used instead an Ensemble Kalman Filter (EnKF) data assimilation approach where the winds are given (e.g., from ECMWF). They use a Kalman smoother with a 5-week smoother, producing the operational "Carbon Tracker" estimation of surface fluxes at NOAA. We address the ill-posedness by assimilating simultaneously every 6 hours both carbon concentrations and meteorological variables, since within this time scale changes in atmospheric CO2 concentrations should be dominated by surface fluxes rather than transport and mixing. A simulation system using the Local Ensemble Transform Kalman Filter (LETKF) to assimilate CO2 from a realistic observing system including GOSAT, AIRS and surface observations, and is able to estimate in detail the seasonal evolution of "true" surface fluxes (including fossil fuel emissions) even in the absence of prior information. These promising results (albeit simulated) suggest that with more advanced models and accurate column observations such as those expected from OCO-2 it may be possible to estimate surface carbon fluxes if the LETKF is optimized (Kang et al., 2011).

  5. Phosphoenolpyruvate Carboxylase in Arabidopsis Leaves Plays a Crucial Role in Carbon and Nitrogen Metabolism1

    PubMed Central

    Shi, Jianghua; Yi, Keke; Liu, Yu; Xie, Li; Zhou, Zhongjing; Chen, Yue; Hu, Zhanghua; Zheng, Tao; Liu, Renhu; Chen, Yunlong; Chen, Jinqing

    2015-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a crucial enzyme that catalyzes an irreversible primary metabolic reaction in plants. Previous studies have used transgenic plants expressing ectopic PEPC forms with diminished feedback inhibition to examine the role of PEPC in carbon and nitrogen metabolism. To date, the in vivo role of PEPC in carbon and nitrogen metabolism has not been analyzed in plants. In this study, we examined the role of PEPC in plants, demonstrating that PPC1 and PPC2 were highly expressed genes encoding PEPC in Arabidopsis (Arabidopsis thaliana) leaves and that PPC1 and PPC2 accounted for approximately 93% of total PEPC activity in the leaves. A double mutant, ppc1/ppc2, was constructed that exhibited a severe growth-arrest phenotype. The ppc1/ppc2 mutant accumulated more starch and sucrose than wild-type plants when seedlings were grown under normal conditions. Physiological and metabolic analysis revealed that decreased PEPC activity in the ppc1/ppc2 mutant greatly reduced the synthesis of malate and citrate and severely suppressed ammonium assimilation. Furthermore, nitrate levels in the ppc1/ppc2 mutant were significantly lower than those in wild-type plants due to the suppression of ammonium assimilation. Interestingly, starch and sucrose accumulation could be prevented and nitrate levels could be maintained by supplying the ppc1/ppc2 mutant with exogenous malate and glutamate, suggesting that low nitrogen status resulted in the alteration of carbon metabolism and prompted the accumulation of starch and sucrose in the ppc1/ppc2 mutant. Our results demonstrate that PEPC in leaves plays a crucial role in modulating the balance of carbon and nitrogen metabolism in Arabidopsis. PMID:25588735

  6. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    NASA Astrophysics Data System (ADS)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; Stahl, Clément; Anderson, Liana O.; Baker, Timothy R.; Becker, Gabriel Sebastian; Beeckman, Hans; Boanerges Souza, Danilo; Botosso, Paulo Cesar; Bowman, David M. J. S.; Bräuning, Achim; Brede, Benjamin; Irving Brown, Foster; Julio Camarero, Jesus; Barbosa Camargo, Plínio; Cardoso, Fernanda C. G.; Alvim Carvalho, Fabrício; Castro, Wendeson; Koloski Chagas, Rubens; Chave, Jérome; Chidumayo, Emmanuel N.; Clark, Deborah A.; Capellotto Costa, Flavia Regina; Couralet, Camille; Henrique da Silva Mauricio, Paulo; Dalitz, Helmut; Resende de Castro, Vinicius; Eloisa de Freitas Milani, Jaçanan; Consuelo de Oliveira, Edilson; de Souza Arruda, Luciano; Devineau, Jean-Louis; Drew, David M.; Dünisch, Oliver; Durigan, Giselda; Elifuraha, Elisha; Fedele, Marcio; Ferreira Fedele, Ligia; Figueiredo Filho, Afonso; Guimarães Finger, César Augusto; César Franco, Augusto; Lima Freitas Júnior, João; Galvão, Franklin; Gebrekirstos, Aster; Gliniars, Robert; Maurício Lima de Alencastro Graça, Paulo; Griffiths, Anthony D.; Grogan, James; Guan, Kaiyu; Homeier, Jürgen; Raquel Kanieski, Maria; Khoon Kho, Lip; Koenig, Jennifer; Valerio Kohler, Sintia; Krepkowski, Julia; Pires Lemos-Filho, José; Lieberman, Diana; Lieberman, Milton Eugene; Lisi, Claudio Sergio; Longhi Santos, Tomaz; López Ayala, José Luis; Eijji Maeda, Eduardo; Malhi, Yadvinder; Maria, Vivian R. B.; Marques, Marcia C. M.; Marques, Renato; Maza Chamba, Hector; Mbwambo, Lawrence; Liana Lisboa Melgaço, Karina; Mendivelso, Hooz Angela; Murphy, Brett P.; O'Brien, Joseph J.; Oberbauer, Steven F.; Okada, Naoki; Pélissier, Raphaël; Prior, Lynda D.; Alejandro Roig, Fidel; Ross, Michael; Rodrigo Rossatto, Davi; Rossi, Vivien; Rowland, Lucy; Rutishauser, Ervan; Santana, Hellen; Schulze, Mark; Selhorst, Diogo; Rodrigues Silva, Williamar; Silveira, Marcos; Spannl, Susanne; Swaine, Michael D.; Julio Toledo, José; Toledo, Marcos Miranda; Toledo, Marisol; Toma, Takeshi; Tomazello Filho, Mario; Valdez Hernández, Juan Ignacio; Verbesselt, Jan; Aparecida Vieira, Simone; Vincent, Grégoire; Volkmer de Castilho, Carolina; Volland, Franziska; Worbes, Martin; Bolzan Zanon, Magda Lea; Aragão, Luiz E. O. C.

    2016-04-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000 mm yr-1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr-1.

  7. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  8. R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae

    PubMed Central

    Imamura, Sousuke; Kanesaki, Yu; Ohnuma, Mio; Inouye, Takayuki; Sekine, Yasuhiko; Fujiwara, Takayuki; Kuroiwa, Tsuneyoshi; Tanaka, Kan

    2009-01-01

    Plant cells sense environmental nitrogen levels and alter their gene expression accordingly to survive; however, the underlying regulatory mechanisms still remains to be elucidated. Here, we identified and characterized a transcription factor that is responsible for expression of nitrogen assimilation genes in a unicellular red alga Cyanidioschyzon merolae. DNA microarray and Northern blot analyses revealed that transcript of the gene encoding CmMYB1, an R2R3-type MYB transcription factor, increased 1 h after nitrogen depletion. The CmMYB1 protein started to accumulate after 2 h and reached a peak after 4 h after nitrogen depletion, correlating with the expression of key nitrogen assimilation genes, such as CmNRT, CmNAR, CmNIR, CmAMT, and CmGS. Although the transcripts of these nitrogen assimilation genes were detected in nitrate-grown cells, they disappeared upon the addition of preferred nitrogen source such as ammonium or glutamine, suggesting the presence of a nitrogen catabolite repression (NCR) mechanism. The nitrogen depletion-induced gene expression disappeared in a CmMYB1-null mutant, and the mutant showed decreased cell viability after exposure to the nitrogen-depleted conditions compared with the parental strain. Chromatin immunoprecipitation analysis demonstrated that CmMYB1 specifically occupied these nitrogen-responsive promoter regions only under nitrogen-depleted conditions, and electrophoretic mobility shift assays using crude cell extract revealed specific binding of CmMYB1, or a complex containing CmMYB1, to these promoters. Thus, the presented results indicated that CmMYB1 is a central nitrogen regulator in C. merolae. PMID:19592510

  9. R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae.

    PubMed

    Imamura, Sousuke; Kanesaki, Yu; Ohnuma, Mio; Inouye, Takayuki; Sekine, Yasuhiko; Fujiwara, Takayuki; Kuroiwa, Tsuneyoshi; Tanaka, Kan

    2009-07-28

    Plant cells sense environmental nitrogen levels and alter their gene expression accordingly to survive; however, the underlying regulatory mechanisms still remains to be elucidated. Here, we identified and characterized a transcription factor that is responsible for expression of nitrogen assimilation genes in a unicellular red alga Cyanidioschyzon merolae. DNA microarray and Northern blot analyses revealed that transcript of the gene encoding CmMYB1, an R2R3-type MYB transcription factor, increased 1 h after nitrogen depletion. The CmMYB1 protein started to accumulate after 2 h and reached a peak after 4 h after nitrogen depletion, correlating with the expression of key nitrogen assimilation genes, such as CmNRT, CmNAR, CmNIR, CmAMT, and CmGS. Although the transcripts of these nitrogen assimilation genes were detected in nitrate-grown cells, they disappeared upon the addition of preferred nitrogen source such as ammonium or glutamine, suggesting the presence of a nitrogen catabolite repression (NCR) mechanism. The nitrogen depletion-induced gene expression disappeared in a CmMYB1-null mutant, and the mutant showed decreased cell viability after exposure to the nitrogen-depleted conditions compared with the parental strain. Chromatin immunoprecipitation analysis demonstrated that CmMYB1 specifically occupied these nitrogen-responsive promoter regions only under nitrogen-depleted conditions, and electrophoretic mobility shift assays using crude cell extract revealed specific binding of CmMYB1, or a complex containing CmMYB1, to these promoters. Thus, the presented results indicated that CmMYB1 is a central nitrogen regulator in C. merolae. PMID:19592510

  10. Carbonate assimilation during magma evolution at Nisyros (Greece), South Aegean Arc: Evidence from clinopyroxenite xenoliths

    NASA Astrophysics Data System (ADS)

    Spandler, Carl; Martin, Lukas H. J.; Pettke, Thomas

    2012-08-01

    To contribute to the understanding of magma evolution in arc settings we investigate the oldest volcanic unit (Kanafià Synthem) of Nisyros volcano, located in the eastern Aegean Sea (Greece). The unit consists of porphyritic pillow lavas of basaltic andesite composition with trace element signatures that are characteristic of island-arc magmas. Two lava types are distinguished on the basis of geochemistry and the presence or absence of xenoliths, with the xenolith-bearing lavas having distinctly elevated Sr, MREE/HREE and MgO/Fe2O3 compared to the xenolith-free lavas. Xenoliths include relatively rare quartzo-feldspathic fragments that represent continental-type material, and coarse clinopyroxenite xenoliths that consist largely of aluminous and calcic clinopyroxene, and accessory aluminous spinel. Anorthite-diopside reaction selvages preserved around the clinopyroxenite xenoliths demonstrate disequilibrium between the xenoliths and the host magma. The xenolith clinopyroxene is distinctly enriched in most lithophile trace elements compared to clinopyroxene phenocrysts in the host magmas. A notable exception is the Sr concentration, which is similar in both clinopyroxene types. The high Al and low Na contents of the clinopyroxenites preclude a cumulate, deep metamorphic, or mantle origin for these xenoliths. Instead, their composition and mineralogy are diagnostic of skarn rocks formed by magma-carbonate interaction in the mid/upper crust. The Kanafià lavas are interpreted to have undergone crystal fractionation, magma mixing/mingling and crustal assimilation while resident in the upper crust. We show that magma-carbonate reaction and associated skarn formation does not necessarily result in easily recognised modification of the melt composition, with the exception of increasing Sr contents. Carbonate assimilation also releases significant CO2, which will likely form a free vapour phase due to the low CO2 solubility of arc magmas. In the broader context, we stress

  11. U.S. Eastern Continental Shelf Carbon Cycling (USECoS): Modeling, Data Assimilation, and Analysis

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2008-01-01

    Although the oceans play a major role in the uptake of fossil fuel CO2 from the atmosphere, there is much debate about the contribution from continental shelves, since many key shelf fluxes are not yet well quantified: the exchange of carbon across the land-ocean and shelf-slope interfaces, air-sea exchange of CO2, burial, and biological processes including productivity. Our goal is to quantify these carbon fluxes along the eastern U.S. coast using models quantitatively verified by comparison to observations, and to establish a framework for predicting how these fluxes may be modified as a result of climate and land use change. Our research questions build on those addressed with previous NASA funding for the USECoS (U.S. Eastern Continental Shelf Carbon Cycling) project. We have developed a coupled biogeochemical ocean circulation model configured for this study region and have extensively evaluated this model with both in situ and remotely-sensed data. Results indicate that to further reduce uncertainties in the shelf component of the global carbon cycle, future efforts must be directed towards 1) increasing the resolution of the physical model via nesting and 2) making refinements to the biogeochemical model and quantitatively evaluating these via the assimilation of biogeochemical data (in situ and remotely-sensed). These model improvements are essential for better understanding and reducing estimates of uncertainties in current and future carbon transformations and cycling in continental shelf systems. Our approach and science questions are particularly germane to the carbon cycle science goals of the NASA Earth Science Research Program as well as the U.S. Climate Change Research Program and the North American Carbon Program. Our interdisciplinary research team consists of scientists who have expertise in the physics and biogeochemistry of the U.S. eastern continental shelf, remote-sensing data analysis and data assimilative numerical models.

  12. Water Uptake and Carbon Assimilation in Maize at Elevated and ambient CO2: Modeling and Measurement.

    NASA Astrophysics Data System (ADS)

    Timlin, Dennis; Chun, Jong-Ahn; Kim, Soo-Hyung; Yang, Yang; Fleisher, David; Reddy, Vangimalla

    2013-04-01

    Potential transpiration in crops is dependent on both plant and environmental properties. Carbon dioxide content of the atmosphere is linked to potential transpiration because CO2 diffuses onto water saturated surfaces within plant stomata. At high CO2 concentrations, CO2 diffuses rapidly into stomata and therefore stomata do not have to remain open to the atmosphere for long periods of time. This results in lower transpiration rates per unit CO2 assimilated at elevated CO2 concentrations. The objective of this study was to measure CO2 assimilation and water uptake by maize under different irrigation regimes and two CO2 concentrations. The data were then used to evaluate the ability of the maize model MaizSim to simulate the effects of water stress and CO2 on water use and photosynthesis. MaizSim uses a Farquhar type photosynthesis model coupled a Ball-Berry stomatal control model. Non-linear beta functions are used to estimate the effects of temperature on growth and development processes. The experimental data come from experiments in outdoor, sunlit growth chambers at the USDA-ARS Beltsville Agricultural Research Center. The eight treatments comprised two levels of carbon dioxide concentrations (400 and 800 ppm) and four levels of water stress (well-watered control, mild, moderate, and severe). The water stress treatments were applied at both CO2 levels. Water contents were monitored hourly by a Time Domain Reflectometry (TDR) system. The model simulated higher water contents at the same time after applying water stress at the high CO2 treatment than for the low CO2 treatment as was found in the measured data. Measurement of water uptake by roots and carbon assimilation rates in the chambers will be addressed.

  13. Phylogenetic identification of methanogens assimilating acetate-derived carbon in dairy and swine manures.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Morissette, Bruno; Kalmokoff, Martin L; Topp, Edward; Brooks, Stephen P J; Matias, Fernando; Neufeld, Josh D; Talbot, Guylaine

    2015-02-01

    In order to develop approaches for reducing the carbon footprint of the swine and dairy industries, it is important first to identify the methanogenic communities that drive methane emissions from stored manure. In this study, the metabolically active methanogens in substrate-starved manure samples taken from two dairy and one swine manure storage tanks were identified using [(13)C]-acetate and DNA stable-isotope probing (DNA-SIP). Molecular analysis of recovered genomic [(13)C]-DNA revealed that two distinct clusters of unclassified methanogen populations affiliated with the Methanoculleus genus, and the populations affiliated with Methanoculleus chikugoensis assimilated acetate-derived carbon (acetate-C) in swine and dairy starved manure samples, respectively. Furthermore, carbon flow calculations indicated that these populations were the primary contributors to methane emissions during these anoxic SIP incubations. Comparative analysis of mcrA gene abundance (coding for a key enzyme of methanogenesis) for Methanoculleus spp. in fresh feces and a wider range of stored dairy or swine manure samples, by real-time quantitative PCR using newly designed specific primers, demonstrated that the abundance of this genus significantly increased during storage. The findings supported the involvement of these particular methanogen populations as methane emitters from swine and dairy manure storage tanks. The study revealed that the ability to assimilate acetate-C for growth in manure differed within the Methanoculleus genus.

  14. Unexpected capacity for organic carbon assimilation by Thermosynechococcus elongatus, a crucial photosynthetic model organism.

    PubMed

    Zilliges, Yvonne; Dau, Holger

    2016-04-01

    Genetic modification of key residues of photosystems is essential to identify functionally crucial processes by spectroscopic and crystallographic investigation; the required protein stability favours use of thermophilic species. The currently unique thermophilic photosynthetic model organism is the cyanobacterial genus Thermosynechococcus. We report the ability of Thermosynechococcus elongatus to assimilate organic carbon, specifically D-fructose. Growth in the presence of a photosynthesis inhibitor opens the door towards crucial amino acid substitutions in photosystems by the rescue of otherwise lethal mutations. Yet depression of batch-culture growth after 7 days implies that additional developments are needed. PMID:26935247

  15. Assimilation of Cellulose-Derived Carbon by Microeukaryotes in Oxic and Anoxic Slurries of an Aerated Soil

    PubMed Central

    Chatzinotas, Antonis; Schellenberger, Stefanie; Glaser, Karin

    2013-01-01

    Soil microeukaryotes may trophically benefit from plant biopolymers. However, carbon transfer from cellulose into soil microeukaryotes has not been demonstrated so far. Microeukaryotes assimilating cellulose-derived carbon in oxic and anoxic soil slurries were therefore examined by rRNA-based stable-isotope probing. Bacteriovorous flagellates and ciliates and, likely, mixotrophic algae and saprotrophic fungi incorporated carbon from supplemental [U-13C]cellulose under oxic conditions. A previous study using the same soil suggested that cellulolytic Bacteria assimilated 13C of supplemental cellulose. Thus, it can be assumed that ciliates, cercozoa, and chrysophytes assimilated carbon by grazing upon and utilizing metabolic products of Bacteria that hydrolyzed cellulose in the soil slurries. PMID:23851095

  16. Final Technical Report [Carbon Data Assimilation with a Coupled Ensemble Kalman Filter

    SciTech Connect

    Kalnay, Eugenia

    2013-08-30

    We proposed (and accomplished) the development of an Ensemble Kalman Filter (EnKF) approach for the estimation of surface carbon fluxes as if they were parameters, augmenting the model with them. Our system is quite different from previous approaches, such as carbon flux inversions, 4D-­Var, and EnKF with approximate background error covariance (Peters et al., 2008). We showed (using observing system simulation experiments, OSSEs) that these differences lead to a more accurate estimation of the evolving surface carbon fluxes at model grid-scale resolution. The main properties of the LETKF-­C are: a) The carbon cycle LETKF is coupled with the simultaneous assimilation of the standard atmospheric variables, so that the ensemble wind transport of the CO2 provides an estimation of the carbon transport uncertainty. b) The use of an assimilation window (6hr) much shorter than the months-long windows used in other methods. This avoids the inevitable “blurring” of the signal that takes place in long windows due to turbulent mixing since the CO2 does not have time to mix before the next window. In this development we introduced new, advanced techniques that have since been adopted by the EnKF community (Kang, 2009, Kang et al., 2011, Kang et al. 2012). These advances include “variable localization” that reduces sampling errors in the estimation of the forecast error covariance, more advanced adaptive multiplicative and additive inflations, and vertical localization based on the time scale of the processes. The main result has been obtained using the LETKF-­C with all these advances, and assimilating simulated atmospheric CO2 observations from different observing systems (surface flask observations of CO2 but no surface carbon fluxes observations, total column CO2 from GoSAT/OCO-­2, and upper troposphere AIRS retrievals). After a spin-­up of about one month, the LETKF-­C succeeded in reconstructing the true evolving surface fluxes of carbon at a model grid

  17. Final report on "Carbon Data Assimilation with a Coupled Ensemble Kalman Filter"

    SciTech Connect

    Kalnay, Eugenia; Kang, Ji-Sun; Fung, Inez

    2014-07-23

    We proposed (and accomplished) the development of an Ensemble Kalman Filter (EnKF) approach for the estimation of surface carbon fluxes as if they were parameters, augmenting the model with them. Our system is quite different from previous approaches, such as carbon flux inversions, 4D-Var, and EnKF with approximate background error covariance (Peters et al., 2008). We showed (using observing system simulation experiments, OSSEs) that these differences lead to a more accurate estimation of the evolving surface carbon fluxes at model grid-scale resolution. The main properties of the LETKF-C are: a) The carbon cycle LETKF is coupled with the simultaneous assimilation of the standard atmospheric variables, so that the ensemble wind transport of the CO2 provides an estimation of the carbon transport uncertainty. b) The use of an assimilation window (6hr) much shorter than the months-long windows used in other methods. This avoids the inevitable “blurring” of the signal that takes place in long windows due to turbulent mixing since the CO2 does not have time to mix before the next window. In this development we introduced new, advanced techniques that have since been adopted by the EnKF community (Kang, 2009, Kang et al., 2011, Kang et al. 2012). These advances include “variable localization” that reduces sampling errors in the estimation of the forecast error covariance, more advanced adaptive multiplicative and additive inflations, and vertical localization based on the time scale of the processes. The main result has been obtained using the LETKF-C with all these advances, and assimilating simulated atmospheric CO2 observations from different observing systems (surface flask observations of CO2 but no surface carbon fluxes observations, total column CO2 from GoSAT/OCO-2, and upper troposphere AIRS retrievals). After a spin-up of about one month, the LETKF-C succeeded in reconstructing the true evolving surface fluxes of carbon at a model grid resolution. When

  18. Differential Assimilation of Inorganic Carbon and Leucine by Prochlorococcus in the Oligotrophic North Pacific Subtropical Gyre

    PubMed Central

    Björkman, Karin M.; Church, Matthew J.; Doggett, Joseph K.; Karl, David M.

    2015-01-01

    The light effect on photoheterotrophic processes in Prochlorococcus, and primary and bacterial productivity in the oligotrophic North Pacific Subtropical Gyre was investigated using 14C-bicarbonate and 3H-leucine. Light and dark incubation experiments were conducted in situ throughout the euphotic zone (0–175 m) on nine expeditions to Station ALOHA over a 3-year period. Photosynthetrons were also used to elucidate rate responses in leucine and inorganic carbon assimilation as a function of light intensity. Taxonomic group and cell-specific rates were assessed using flow cytometric sorting. The light:dark assimilation rate ratios of leucine in the top 150 m were ∼7:1 for Prochlorococcus, whereas the light:dark ratios for the non-pigmented bacteria (NPB) were not significant different from 1:1. Prochlorococcus assimilated leucine in the dark at per cell rates similar to the NPB, with a contribution to the total community bacterial production, integrated over the euphotic zone, of approximately 20% in the dark and 60% in the light. Depth-resolved primary productivity and leucine incorporation showed that the ratio of Prochlorococcus leucine:primary production peaked at 100 m then declined steeply below the deep chlorophyll maximum (DCM). The photosynthetron experiments revealed that, for Prochlorococcus at the DCM, the saturating irradiance (Ek) for leucine incorporation was reached at approximately half the light intensity required for light saturation of 14C-bicarbonate assimilation. Additionally, high and low red fluorescing Prochlorococcus populations (HRF and LRF), co-occurring at the DCM, had similar Ek values for their respective substrates, however, maximum assimilation rates, for both leucine and inorganic carbon, were two times greater for HRF cells. Our results show that Prochlorococcus contributes significantly to bacterial production estimates using 3H-leucine, whether or not the incubations are conducted in the dark or light, and this should be

  19. Differential Assimilation of Inorganic Carbon and Leucine by Prochlorococcus in the Oligotrophic North Pacific Subtropical Gyre.

    PubMed

    Björkman, Karin M; Church, Matthew J; Doggett, Joseph K; Karl, David M

    2015-01-01

    The light effect on photoheterotrophic processes in Prochlorococcus, and primary and bacterial productivity in the oligotrophic North Pacific Subtropical Gyre was investigated using (14)C-bicarbonate and (3)H-leucine. Light and dark incubation experiments were conducted in situ throughout the euphotic zone (0-175 m) on nine expeditions to Station ALOHA over a 3-year period. Photosynthetrons were also used to elucidate rate responses in leucine and inorganic carbon assimilation as a function of light intensity. Taxonomic group and cell-specific rates were assessed using flow cytometric sorting. The light:dark assimilation rate ratios of leucine in the top 150 m were ∼7:1 for Prochlorococcus, whereas the light:dark ratios for the non-pigmented bacteria (NPB) were not significant different from 1:1. Prochlorococcus assimilated leucine in the dark at per cell rates similar to the NPB, with a contribution to the total community bacterial production, integrated over the euphotic zone, of approximately 20% in the dark and 60% in the light. Depth-resolved primary productivity and leucine incorporation showed that the ratio of Prochlorococcus leucine:primary production peaked at 100 m then declined steeply below the deep chlorophyll maximum (DCM). The photosynthetron experiments revealed that, for Prochlorococcus at the DCM, the saturating irradiance (E k) for leucine incorporation was reached at approximately half the light intensity required for light saturation of (14)C-bicarbonate assimilation. Additionally, high and low red fluorescing Prochlorococcus populations (HRF and LRF), co-occurring at the DCM, had similar E k values for their respective substrates, however, maximum assimilation rates, for both leucine and inorganic carbon, were two times greater for HRF cells. Our results show that Prochlorococcus contributes significantly to bacterial production estimates using (3)H-leucine, whether or not the incubations are conducted in the dark or light, and this should

  20. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change.

    PubMed

    Peltier, Drew M P; Ibáñez, Inés

    2015-01-01

    Predicting future forests' structure and functioning is a critical goal for ecologists, thus information on seedling recruitment will be crucial in determining the composition and structure of future forest ecosystems. In particular, seedlings' photosynthetic response to a changing environment will be a key component determining whether particular species establish enough individuals to maintain populations, as growth is a major determinant of survival. We quantified photosynthetic responses of sugar maple (Acer saccharum Marsh.), pignut hickory (Carya glabra Mill.), northern red oak (Quercus rubra L.) and eastern black oak (Quercus velutina Lam.) seedlings to environmental conditions including light habitat, temperature, soil moisture and vapor pressure deficit (VPD) using extensive in situ gas exchange measurements spanning an entire growing season. We estimated the parameters in a hierarchical Bayesian version of the Farquhar model of photosynthesis, additionally informed by soil moisture and VPD, and found that maximum Rubisco carboxylation (V(cmax)) and electron transport (J(max)) rates showed significant seasonal variation, but not the peaked patterns observed in studies of adult trees. Vapor pressure deficit and soil moisture limited J(max) and V(cmax) for all four species. Predictions indicate large declines in summer carbon assimilation rates under a 3 °C increase in mean annual temperature projected by climate models, while spring and fall assimilation rates may increase. Our model predicts decreases in summer assimilation rates in gap habitats with at least 90% probability, and with 20-99.9% probability in understory habitats depending on species. Predictions also show 70% probability of increases in fall and 52% probability in spring in understory habitats. All species were impacted, but our findings suggest that oak species may be favored in northeastern North America under projected increases in temperature due to superior assimilation rates under

  1. A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS

    NASA Astrophysics Data System (ADS)

    Sus, O.; Heuer, M. W.; Meyers, T. P.; Williams, M.

    2012-08-01

    Agroecosystem models are strongly dependent on information on land management patterns for regional applications. Land management practices play a major role in determining global yield variability, and add an anthropogenic signal to the observed seasonality of atmospheric CO2 concentrations. However, there is still little knowledge on spatial and temporal variability of important farmland activities such as crop sowing dates, and thus these remain rather crudely approximated within carbon cycle studies. In this study, we present a framework allowing for spatio-temporally resolved simulation of cropland carbon fluxes under observational constraints on land management and canopy greenness. We apply a data assimilation methodology in order to explicitly account for information on sowing dates and model leaf area index. MODIS 250 m vegetation index data were assimilated both variationally (for sowing date estimation) and sequentially (for improved model state estimation, using the Ensemble Kalman Filter) into a crop carbon mass balance model (SPAc). In doing so, we are able to accurately quantify the multiannual (2000-2006) regional carbon flux and biometry seasonality of maize-soybean crop rotations surrounding the Bondville Ameriflux eddy covariance site, averaged over 104 pixel locations within the wider area. (1) From Bondville site results we deduce that MODIS-derived sowing dates allow for accurate simulations of growing season carbon cycling at locations for which such ground-truth data are not available. Thus, this framework enables modellers to simulate current (i.e. last 10 yr) carbon cycling of major agricultural regions. Averaged over the 104 field patches analysed, relative spatial variability for biometry and net ecosystem exchange ranges from ~7 % to ~18 %. The annual sign of net biome productivity is not significantly different from carbon neutrality. (2) Moreover, observing carbon cycling at one single field with its individual sowing pattern is not

  2. Carbon rhizodeposition by plants of contrasting strategies for resource acquisition: responses to various nitrogen fertility regimes

    NASA Astrophysics Data System (ADS)

    Baptist, Florence; Aranjuelo, I.; Lopez-Sangil, L.; Rovia, P.; Nogués, S.

    2010-05-01

    Rhizodeposition by plants is one of the most important physiological mechanisms related to carbon and nitrogen cycling which is also believed to vary along the acquisition-conservation continuum. However, owing to methodological difficulties (i.e. narrow zone of soil around roots and rapid assimilation by soil microbes), root exudation and variations between species are one of the most poorly understood belowground process. Although previous approaches such as hydroponic culture based system, permit the chemical analysis of exudates, the fact that this protocol is qualitative, conditions its utility (see review in Phillips et al. 2008). Others techniques based on pulse-labelling approach have been developed to quantify rhizodeposition but are rarely sufficient to uniformly label all plant inputs to soil. Consequently with this typical pulse chase methods, recent assimilates are labeled but the recalcitrant carbon will not be labeled and therefore the contribution of this carbon will not be considered. Hence, traditional pulse labelling is not a quantitative means of tracing carbon due to inhomogeneous labelling and so limits greatly comparative studies of rhizodeposition fluxes at the interspecific level. In this study we developped a new protocole based on a long-term (3 months) steady state 13C labelling in order (1) to quantify rhizodeposition fluxes for six graminoid species caracterized by contrasted nutrient acquisition strategies and (2) to investigate to what extent various level of nitrogen fertility regimes modulate rhizodeposition fluxes. This method will enable to quantify under natural soil conditions both the accumulation of 13C in the soil but also the quantity that has been respired by the microorganisms during a given time and so will give an integrated picture of rhizodeposition fluxes for each species under each nitrogen fertility level. Results are currently being processed and will be presented at the conference. References: Phillips RP, Erlitz

  3. Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters.

    PubMed

    Lahrouni, Majida; Oufdou, Khalid; El Khalloufi, Fatima; Benidire, Loubna; Albert, Susann; Göttfert, Michael; Caviedes, Miguel A; Rodriguez-Llorente, Ignacio D; Oudra, Brahim; Pajuelo, Eloísa

    2016-05-01

    Irrigation of crops with microcystins (MCs)-containing waters-due to cyanobacterial blooms-affects plant productivity and could be a way for these potent toxins entering the food chain. This study was performed to establish whether MC-tolerant rhizobia could benefit growth, nodulation, and nitrogen metabolism of faba bean plants irrigated with MC-containing waters. For that, three different rhizobial strains-with different sensitivity toward MCs-were used: RhOF96 (most MC-sensitive strain), RhOF125 (most MC-tolerant strain), or Vicz1.1 (reference strain). As a control, plants grown without rhizobia and fertilized by NH4NO3 were included in the study. MC exposure decreased roots (30-37 %) and shoots (up to 15 %) dry weights in un-inoculated plants, whereas inoculation with rhizobia protects plants toward the toxic effects of MCs. Nodulation and nitrogen content were significantly impaired by MCs, with the exception of plants inoculated with the most tolerant strain RhOF125. In order to deep into the effect of inoculation on nitrogen metabolism, the nitrogen assimilatory enzymes (glutamine synthetase (GS) and glutamate synthase (GOGAT)) were investigated: Fertilized plants showed decreased levels (15-30 %) of these enzymes, both in shoots and roots. By contrast, inoculated plants retained the levels of these enzymes in shoots and roots, as well as the levels of NADH-GOGAT activity in nodules. We conclude that the microcystin-tolerant Rhizobium protects faba bean plants and improves nitrogen assimilation when grown in the presence of MCs. PMID:26865488

  4. A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS

    NASA Astrophysics Data System (ADS)

    Sus, O.; Heuer, M. W.; Meyers, T. P.; Williams, M.

    2013-04-01

    Agroecosystem models are strongly dependent on information on land management patterns for regional applications. Land management practices play a major role in determining global yield variability, and add an anthropogenic signal to the observed seasonality of atmospheric CO2 concentrations. However, there is still little knowledge on spatial and temporal variability of important farmland activities such as crop sowing dates, and thus these remain rather crudely approximated within carbon cycle studies. In this study, we present a framework allowing for spatio-temporally resolved simulation of cropland carbon fluxes under observational constraints on land management and canopy greenness. We apply data assimilation methodology in order to explicitly account for information on sowing dates and model leaf area index. MODIS 250 m vegetation index data were assimilated both in batch-calibration for sowing date estimation and sequentially for improved model state estimation, using the ensemble Kalman filter (EnKF), into a crop carbon mass balance model (SPAc). In doing so, we are able to quantify the multiannual (2000-2006) regional carbon flux and biometry seasonality of maize-soybean crop rotations surrounding the Bondville Ameriflux eddy covariance site, averaged over 104 pixel locations within the wider area. (1) Validation at the Bondville site shows that growing season C cycling is simulated accurately with MODIS-derived sowing dates, and we expect that this framework allows for accurate simulations of C cycling at locations for which ground-truth data are not available. Thus, this framework enables modellers to simulate current (i.e. last 10 yr) carbon cycling of major agricultural regions. Averaged over the 104 field patches analysed, relative spatial variability for biometry and net ecosystem exchange ranges from ∼7% to ∼18%. The annual sign of net biome productivity is not significantly different from carbon neutrality. (2) Moreover, observing carbon

  5. The influence of ecosystem nitrogen status on carbon cycling in forests

    NASA Astrophysics Data System (ADS)

    Ollinger, S. V.; Smith, M.; Richardson, A.; Hollinger, D. Y.; Martin, M.; Jenkins, J.

    2006-12-01

    The carbon and nitrogen cycles in terrestrial ecosystems are tightly coupled through a shared set of biological processes. The N status of plant canopies exerts a direct influence on carbon assimilation through its well-known effect on net photosynthesis. In soils, both the accumulation of N and the decay of organic matter are often related to the initial C/N ratio of litterfall. Similarly, respiration rates in both roots and foliage have been shown to be positively correlated with tissue N concentrations. These linkages suggest that the N status of ecosystems may provide a useful indicator of their overall C metabolism. Further, evidence from both CO2 and N enrichment experiments indicates that alteration of one cycle can have important implications for the other. This is significant in that global cycles of both C and N have been greatly perturbed by humans. Despite the well-known influence of nitrogen availability on fluxes of carbon, few studies have explicitly examined the role of nitrogen as it pertains to spatial and temporal variation in carbon cycling. This is due, in part, to limited crossover between different scientific communities, but also stems from some very real methodological limitations that make regional-scale assessment of N status difficult. Here, we report on an NACP investigation that examines the degree to which rates of carbon assimilation and growth in forests can be related to both local and regional variation in ecosystem N status. Field measurements from a series of forested research sites within the AmeriFlux network have been combined with hyperspectral remote sensing data from the AVIRIS and Hyperion instruments. Results from a cross-site synthesis indicate a positive relationship between canopy N and the maximum rate of carbon assimilation, as measured by flux towers. Because existing methods of canopy N detection are restricted to small landscapes, a parallel investigation involves developing generalizeable canopy N detection

  6. Nitrogen Deposition Enhances Carbon Sequestration by Plantations in Northern China

    PubMed Central

    Du, Zhihong; Wang, Wei; Zeng, Wenjing; Zeng, Hui

    2014-01-01

    Nitrogen (N) deposition and its ecological effects on forest ecosystems have received global attention. Plantations play an important role in mitigating climate change through assimilating atmospheric CO2. However, the mechanisms by which increasing N additions affect net ecosystem production (NEP) of plantations remain poorly understood. A field experiment was initialized in May 2009, which incorporated additions of four rates of N (control (no N addition), low-N (5 g N m−2 yr−1), medium-N (10 g N m−2 yr−1), and high-N (15 g N m−2 yr−1)) at the Saihanba Forestry Center, Hebei Province, northern China, a locality that contains the largest area of plantations in China. Net primary production (NPP), soil respiration, and its autotrophic and heterotrophic components were measured. Plant tissue carbon (C) and N concentrations (including foliage, litter, and fine roots), microbial biomass, microbial community composition, extracellular enzyme activities, and soil pH were also measured. N addition significantly increased NPP, which was associated with increased litter N concentrations. Autotrophic respiration (AR) increased but heterotrophic respiration (HR) decreased in the high N compared with the medium N plots, although the HR in high and medium N plots did not significantly differ from that in the control. The increased AR may derive from mycorrhizal respiration and rhizospheric microbial respiration, not live root respiration, because fine root biomass and N concentrations showed no significant differences. Although the HR was significantly suppressed in the high-N plots, soil microbial biomass, composition, or activity of extracellular enzymes were not significantly changed. Reduced pH with fertilization also could not explain the pattern of HR. The reduction of HR may be related to altered microbial C use efficiency. NEP was significantly enhanced by N addition, from 149 to 426.6 g C m−2 yr−1. Short-term N addition may significantly enhance the

  7. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.

  8. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration. PMID:25216023

  9. Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA).

    PubMed

    Abiko, Tomomi; Wakayama, Masataka; Kawakami, Akira; Obara, Mitsuhiro; Kisaka, Hiroaki; Miwa, Tetsuya; Aoki, Naohiro; Ohsugi, Ryu

    2010-07-01

    In plants, glutamine synthetase (GS) is the enzyme that is mainly responsible for the assimilation of ammonium. Conversely, in microorganisms such as bacteria and Ascomycota, NADP(H)-dependent glutamate dehydrogenase (GDH) and GS both have important roles in ammonium assimilation. Here, we report the changes in nitrogen assimilation, metabolism, growth, and grain yield of rice plants caused by an ectopic expression of NADP(H)-GDH (gdhA) from the fungus Aspergillus niger in the cytoplasm. An investigation of the kinetic properties of purified recombinant protein showed that the fungal gdhA had 5.4-10.2 times higher V(max) value and 15.9-43.1 times higher K(m) value for NH(4)(+), compared with corresponding values for rice cytosolic GS as reported in the literature. These results suggested that the introduction of fungal GDH into rice could modify its ammonium assimilation pathway. We therefore expressed gdhA in the cytoplasm of rice plants. NADP(H)-GDH activities in the gdhA-transgenic lines were markedly higher than those in a control line. Tracer experiments by feeding with (15)NH(4)(+) showed that the introduced gdhA, together with the endogenous GS, directly assimilated NH(4)(+) absorbed from the roots. Furthermore, in comparison with the control line, the transgenic lines showed an increase in dry weight and nitrogen content when sufficient nitrogen was present, but did not do so under low-nitrogen conditions. Under field condition, the transgenic line examined showed a significant increase in grain yield in comparison with the control line. These results suggest that the introduction of fungal gdhA into rice plants could lead to better growth and higher grain yield by enhancing the assimilation of ammonium.

  10. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    PubMed

    Zaehle, S

    2013-07-01

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  11. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    PubMed

    Zaehle, S

    2013-07-01

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing. PMID:23713123

  12. Report on carbon and nitrogen abundance studies

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1991-01-01

    The aim of the proposal was to determine the nitrogen to carbon abundance ratios from transition layer lines in stars with different T(sub eff) and luminosities. The equations which give the surface emission line fluxes and the measured ratio of the NV to CIV emission line fluxes are presented and explained. The abundance results are compared with those of photospheric abundance studies for stars in common with the photospheric investigations. The results show that the analyses are at least as accurate as the photospheric determinations. These studies can be extended to F and early G stars for which photospheric abundance determinations for giants are hard to do because molecular bands become too weak. The abundance determination in the context of stellar evolution is addressed. The N/C abundance ratio increases steeply at the point of evolution for which the convection zone reaches deepest. Looking at the evolution of the rotation velocities v sin i, a steep decrease in v sin i is related to the increasing depth of the convection zone. It is concluded that the decrease in v sin i for T(sub eff) less than or approximately = 5800 K is most probably due to the rearrangement of the angular momentum in the stars due to deep convective mixing. It appears that the convection zone is rotating with nearly depth independent angular momentum. Other research results and ongoing projects are discussed.

  13. Integrated operation of the photorespiratory cycle and cytosolic metabolism in the modulation of primary nitrogen assimilation and export of organic N-transport compounds from leaves: a hypothesis.

    PubMed

    Misra, Jitendra B

    2014-02-15

    Photorespiration is generally considered to be an essentially dissipative process, although it performs some protective and essential functions. A theoretical appraisal indicates that the loss of freshly assimilated CO2 due to photorespiration in well-watered plants may not be as high as generally believed. Even under moderately adverse conditions, these losses may not exceed 10%. The photorespiratory metabolism of the source leaves of well-watered and well-nourished crop plants ought to be different from that of other leaves because the fluxes of the export of both carbohydrates and organic N-transport compounds in source leaves is quite high. With a heuristic approach that involved the dovetailing of certain metabolic steps with the photorespiratory cycle (PR-cycle), a novel network is proposed to operate in the source-leaves of well-watered and well-nourished plants. This network allows for the diversion of metabolites from their cyclic-routes in sizeable quantities. With the removal of considerable quantities of glycine and serine from the cyclic route, the number of RuBP oxygenation events would be several times those of the formation of hydroxypyruvate. Thus, to an extreme extent, photorespiratory metabolism would become open-ended and involve much less futile recycling of glycine and serine. Conversion of glyoxylate to glycine has been proposed to be a crucial step in the determination of the relative rates of the futile (cyclic) and anabolic (open-ended) routes. Thus, in the source leaves of well-watered and well-nourished plants, the importance of the cyclic route is limited to the salvaging of photorespiratory intermediates for the regeneration of RuBP. The proposed network is resilient enough to coordinate the rates of the assimilation of carbon and nitrogen in accordance with the moisture and N-fertility statuses of the soil.

  14. The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7.

    PubMed

    Klähn, Stephan; Schaal, Christoph; Georg, Jens; Baumgartner, Desirée; Knippen, Gernot; Hagemann, Martin; Muro-Pastor, Alicia M; Hess, Wolfgang R

    2015-11-10

    Glutamine synthetase (GS), a key enzyme in biological nitrogen assimilation, is regulated in multiple ways in response to varying nitrogen sources and levels. Here we show a small regulatory RNA, NsiR4 (nitrogen stress-induced RNA 4), which plays an important role in the regulation of GS in cyanobacteria. NsiR4 expression in the unicellular Synechocystis sp. PCC 6803 and in the filamentous, nitrogen-fixing Anabaena sp. PCC 7120 is stimulated through nitrogen limitation via NtcA, the global transcriptional regulator of genes involved in nitrogen metabolism. NsiR4 is widely conserved throughout the cyanobacterial phylum, suggesting a conserved function. In silico target prediction, transcriptome profiling on pulse overexpression, and site-directed mutagenesis experiments using a heterologous reporter system showed that NsiR4 interacts with the 5'UTR of gifA mRNA, which encodes glutamine synthetase inactivating factor (IF)7. In Synechocystis, we observed an inverse relationship between the levels of NsiR4 and the accumulation of IF7 in vivo. This NsiR4-dependent modulation of gifA (IF7) mRNA accumulation influenced the glutamine pool and thus [Formula: see text] assimilation via GS. As a second target, we identified ssr1528, a hitherto uncharacterized nitrogen-regulated gene. Competition experiments between WT and an ΔnsiR4 KO mutant showed that the lack of NsiR4 led to decreased acclimation capabilities of Synechocystis toward oscillating nitrogen levels. These results suggest a role for NsiR4 in the regulation of nitrogen metabolism in cyanobacteria, especially for the adaptation to rapid changes in available nitrogen sources and concentrations. NsiR4 is, to our knowledge, the first identified bacterial sRNA regulating the primary assimilation of a macronutrient. PMID:26494284

  15. The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7.

    PubMed

    Klähn, Stephan; Schaal, Christoph; Georg, Jens; Baumgartner, Desirée; Knippen, Gernot; Hagemann, Martin; Muro-Pastor, Alicia M; Hess, Wolfgang R

    2015-11-10

    Glutamine synthetase (GS), a key enzyme in biological nitrogen assimilation, is regulated in multiple ways in response to varying nitrogen sources and levels. Here we show a small regulatory RNA, NsiR4 (nitrogen stress-induced RNA 4), which plays an important role in the regulation of GS in cyanobacteria. NsiR4 expression in the unicellular Synechocystis sp. PCC 6803 and in the filamentous, nitrogen-fixing Anabaena sp. PCC 7120 is stimulated through nitrogen limitation via NtcA, the global transcriptional regulator of genes involved in nitrogen metabolism. NsiR4 is widely conserved throughout the cyanobacterial phylum, suggesting a conserved function. In silico target prediction, transcriptome profiling on pulse overexpression, and site-directed mutagenesis experiments using a heterologous reporter system showed that NsiR4 interacts with the 5'UTR of gifA mRNA, which encodes glutamine synthetase inactivating factor (IF)7. In Synechocystis, we observed an inverse relationship between the levels of NsiR4 and the accumulation of IF7 in vivo. This NsiR4-dependent modulation of gifA (IF7) mRNA accumulation influenced the glutamine pool and thus [Formula: see text] assimilation via GS. As a second target, we identified ssr1528, a hitherto uncharacterized nitrogen-regulated gene. Competition experiments between WT and an ΔnsiR4 KO mutant showed that the lack of NsiR4 led to decreased acclimation capabilities of Synechocystis toward oscillating nitrogen levels. These results suggest a role for NsiR4 in the regulation of nitrogen metabolism in cyanobacteria, especially for the adaptation to rapid changes in available nitrogen sources and concentrations. NsiR4 is, to our knowledge, the first identified bacterial sRNA regulating the primary assimilation of a macronutrient.

  16. The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7

    PubMed Central

    Klähn, Stephan; Schaal, Christoph; Georg, Jens; Baumgartner, Desirée; Knippen, Gernot; Hagemann, Martin; Muro-Pastor, Alicia M.; Hess, Wolfgang R.

    2015-01-01

    Glutamine synthetase (GS), a key enzyme in biological nitrogen assimilation, is regulated in multiple ways in response to varying nitrogen sources and levels. Here we show a small regulatory RNA, NsiR4 (nitrogen stress-induced RNA 4), which plays an important role in the regulation of GS in cyanobacteria. NsiR4 expression in the unicellular Synechocystis sp. PCC 6803 and in the filamentous, nitrogen-fixing Anabaena sp. PCC 7120 is stimulated through nitrogen limitation via NtcA, the global transcriptional regulator of genes involved in nitrogen metabolism. NsiR4 is widely conserved throughout the cyanobacterial phylum, suggesting a conserved function. In silico target prediction, transcriptome profiling on pulse overexpression, and site-directed mutagenesis experiments using a heterologous reporter system showed that NsiR4 interacts with the 5′UTR of gifA mRNA, which encodes glutamine synthetase inactivating factor (IF)7. In Synechocystis, we observed an inverse relationship between the levels of NsiR4 and the accumulation of IF7 in vivo. This NsiR4-dependent modulation of gifA (IF7) mRNA accumulation influenced the glutamine pool and thus NH4+ assimilation via GS. As a second target, we identified ssr1528, a hitherto uncharacterized nitrogen-regulated gene. Competition experiments between WT and an ΔnsiR4 KO mutant showed that the lack of NsiR4 led to decreased acclimation capabilities of Synechocystis toward oscillating nitrogen levels. These results suggest a role for NsiR4 in the regulation of nitrogen metabolism in cyanobacteria, especially for the adaptation to rapid changes in available nitrogen sources and concentrations. NsiR4 is, to our knowledge, the first identified bacterial sRNA regulating the primary assimilation of a macronutrient. PMID:26494284

  17. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    PubMed

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity.

  18. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    PubMed

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. PMID:25958969

  19. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web

    USGS Publications Warehouse

    Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.

    2015-01-01

    We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.

  20. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  1. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance.

    PubMed

    Vega-Mas, Izargi; Marino, Daniel; Sánchez-Zabala, Joseba; González-Murua, Carmen; Estavillo, Jose María; González-Moro, María Begoña

    2015-12-01

    Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner. PMID:26706056

  2. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance.

    PubMed

    Vega-Mas, Izargi; Marino, Daniel; Sánchez-Zabala, Joseba; González-Murua, Carmen; Estavillo, Jose María; González-Moro, María Begoña

    2015-12-01

    Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner.

  3. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Ying, Rong-Rong; Qiu, Rong-Liang; Tang, Ye-Tao; Hu, Peng-Jie; Qiu, Hao; Chen, Hong-Ru; Shi, Tai-Hong; Morel, Jean-Louis

    2010-01-15

    To better understand the photosynthesis under stress, the effect of cadmium on carbon assimilation and chloroplast ultrastructure of a newly found Zn/Cd hyperaccumulator Picris divaricata in China was investigated in solution culture. The shoot and root Cd concentrations increased with increase in Cd supply, reaching maxima of 1109 and 5604mgkg(-1) dry weight at 75microM Cd, respectively. As Cd supply to P. divaricata increased, the shoot and root dry weight, leaf water content (except 75microM Cd), concentrations of chlorophyll a and b, chlorophyll a/b ratio and the concentration of carotenoids were not depressed at high Cd. However, the stomatal conductance, transpiration rate, net photosynthetic rate and intercellular CO(2) concentration were significantly affected when the Cd concentration reached 10, 10, 25 and 75microM, respectively. Meanwhile, carbonic anhydrase (CA; EC 4.2.1.1) activity and Rubisco (EC 4.1.1.39) content reached maxima in the presence of 50 and 5microM Cd, respectively. In addition, CA activity correlated positively with shoot Cd in plants treated with Cd at a range of 0-50microM. Moreover, the activities of NADP(+)-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), Rubisco and fructose-1, 6-bisphosphatase (EC 3.1.3.11) were not significantly suppressed by increased Cd supply. Although the mesophyll cell size was reduced, chloroplast ultrastructure remained intact at the highest Cd treatment. Our finding revealed that P. divaricata chloroplast and the enzymes of carbon assimilation tolerate high levels of Cd, demonstrating its potential in possible application in phytoremediation. PMID:19683362

  4. [Effect of bicarbonates and CO2 concentration increase in tissues on assimilation of ammonium nitrogen in cattle].

    PubMed

    Kebko, V G; Rogovskiĭ, S P; Os'makova, M M; Chizhskaia, G Ia; Kolesnichenko, L M

    1980-01-01

    The feeding of carboxyline and cobalt salts to cattle young fattener receiving the concentrate-silo rations with synthetic nitrogen-containing substances (diammonium phosphate and urea) is accompanied by an increase in the concentration of bicarbonates and CO2 in blood and citric acid in blood plasma with a decrease of the ketonic bodies content in it. The level of carbon dioxide in tissues being increased, the content of ammonium nitrogen in the rumen fluid lowers and the activity of transaminases in blood plasma, the content of glutamate in the liver and that of urea in the rumen fluid increase which evidences for an intensified transformation of the ration nitrogen in the organism. The performance of animals is increased. PMID:6770521

  5. Canopy carbon net assimilation of an urban, naturally assembled brownfield forest

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Wadhwa, S.; Tripathee, R.; Gallagher, F. J.

    2010-12-01

    In this study, we have been investigating an urban brownfield at Liberty State Park that has been abandoned approximately for 40 years. Natural colonization has taken place that allowed a pioneer forest to grow with primarily Betula populifera and Populus spec. Despite soil metal contamination this urban forest exhibits moderate annual productivity and serves as a carbon sink. Diameters at breast height (DBH, 1.35 m above ground) of all trees in a study plot were measured. Aboveground biomass equations were determined for both species through destructive sampling. Aboveground net primary production was about 770 gC m-2 a-1 in 2009. Canopy net assimilation (AnC) was modeled with the canopy conductance constrained assimilation (4CA) model using measured sapflux derived conductance and photosynthetic parameters measured with a LICOR 6400. Annual AnC in 2009 was approximately 1500 gC m-2 a-1 thus with a partitioning of biomass and respiration in the same range of most natural forest with less anthropogenic induced stress. Urban brownfields thus can serve as C sinks and provide phytostabilization of contaminants.

  6. Improving the LPJ-GUESS modelled carbon balance with a particle filter data assimilation technique

    NASA Astrophysics Data System (ADS)

    McRobert, Andrew; Scholze, Marko; Kemp, Sarah; Smith, Ben

    2015-04-01

    The recent increases in anthropogenic carbon dioxide (CO_2) emissions have disrupted the equilibrium in the global carbon cycle pools with the ocean and terrestrial pools increasing their respective storages to accommodate roughly half of the anthropogenic increase. Dynamic global vegetation models (DGVM) have been developed to quantify the modern carbon cycle changes. In this study, a particle filter data assimilation technique has been used to calibrate the process parameters in the DGVM LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). LPJ-GUESS simulates individual plant function types (pft) as a competitive balance within high resolution forest patches. Thirty process parameters have been optimized twice, using both a sequential and iterative method of particle filter. The iterative method runs the model for the full time period of thirteen years and then evaluates the cost function from the mismatch of observations and model results before adjusting the parameters and repeating the full time period. The sequential method runs the model and particle filter for each year of the time series in order, adjusting the parameters between each year, then loops back to beginning of the series to repeat. For each particle, the model output of NEP (Net Ecosystem Productivity) is compared to eddy flux measurements from ICOS flux towers to minimize the cost function. A high-resolution regional carbon balance has been simulated for central Sweden using a network of several ICOS flux towers.

  7. Development and application of a bioluminescence-based test for assimilable organic carbon in reclaimed waters.

    PubMed

    Weinrich, Lauren A; Giraldo, Eugenio; Lechevallier, Mark W

    2009-12-01

    Assimilable organic carbon (AOC) is an important parameter governing the growth of heterotrophic bacteria in drinking water. Despite the recognition that variations in treatment practices (e.g., disinfection, coagulation, selection of filter media, and watershed protection) can have dramatic impacts on AOC levels in drinking water, few water utilities routinely measure AOC levels because of the difficulty of the method. To simplify the method, the Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX test bacteria were mutagenized by using luxCDABE operon fusion and inducible transposons to produce bioluminescent strains. The growth of these strains can easily be monitored with a programmable luminometer to determine the maximum cell yield via luminescence readings, and these values can be fitted to the classical Monod growth curve to determine bacterial growth kinetics and the maximum growth rate. Standard curves using acetate carbon (at concentrations ranging from 0 to 1,000 microg/liter) resulted in coefficients of determination (r(2)) between luminescence units and acetate carbon levels of 0.95 for P-17 and 0.89 for NOX. The bioluminescence test was used to monitor reclaimed water, in which average AOC levels range between 150 and 1,400 microg/liter acetate carbon equivalents. Comparison of the conventional AOC assay and the bioluminescent assay produced an r(2) of 0.92. PMID:19820156

  8. Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water.

    PubMed Central

    Kaplan, L A; Bott, T L; Reasoner, D J

    1993-01-01

    A modified assimilable organic carbon (AOC) bioassay is proposed. We evaluated all aspects of the AOC bioassay technique, including inoculum, incubation water, bioassay vessel, and enumeration technique. Other concerns included eliminating the need to prepare organic carbon-free glassware and minimizing the risks of bacterial and organic carbon contamination. Borosilicate vials (40 ml) with Teflon-lined silicone septa are acceptable incubation vessels. Precleaned vials are commercially available, and the inoculum can be injected directly through the septa. Both bioassay organisms, Pseudomonas fluorescens P-17 and Spirillum sp. strain NOX, are available from the American Type Culture Collection and grow well on R2A agar, making this a convenient plating medium. Turbid raw waters need to be filtered prior to an AOC analysis. Glass fiber filters used with either a peristaltic pump or a syringe-type filter holder are recommended for this purpose. A sampling design that emphasizes replication of the highest experimental level, individual batch cultures, is the most efficacious way to reduce the total variance associated with the AOC bioassay. Quality control for the AOC bioassay includes an AOC blank and checks for organic carbon limitation and inhibition of the bioassay organisms. PMID:8517748

  9. Variation and removal efficiency of assimilable organic carbon (AOC) in an advanced water treatment system.

    PubMed

    Lou, Jie-Chung; Chen, Bi-Hsiang; Chang, Ting-Wei; Yang, Hung-Wen; Han, Jia-Yun

    2011-07-01

    This study investigates the microorganism growth indicator and determines the assimilable organic carbon (AOC) content at the Cheng-Ching Lake Advanced Water Treatment Plant (CCLAWTP) in Kaohsiung, Taiwan. Notably, AOC is associated with the biological stability within the water distribution network and has garnered considerable attention in the environmental engineering field in recent years. Water samples were collected from the effluent of each unit in CCLAWTP once monthly during December 2008 to November 2009. Items of water quality related to carbon concentration levels, including AOC, total organic carbon, dissolved organic carbon, UV(254), and specific ultraviolent absorbance were analyzed. Analytical results demonstrate that the average AOC concentration in raw water was 83.61 μg/L and reduced in freshwater was controlled at an average of 50 μg/L after an advanced treatment system of roughly 54% of AOC was removed in compliance with treatment plant standards. If AOC concentrations in freshwater can be reduced, study results can provide a direction for improving water treatment capabilities. PMID:20835921

  10. Nitrogen deposition: how important is it for global terrestrial carbon uptake?

    NASA Astrophysics Data System (ADS)

    Bala, G.; Devaraju, N.; Chaturvedi, R. K.; Caldeira, K.; Nemani, R.

    2013-07-01

    Global carbon budget studies indicate that the terrestrial ecosystems have remained a~large sink for carbon despite widespread deforestation activities. CO2-fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12-17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial carbon losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating climate warming effects on carbon storage may overwhelm N deposition effects in the future.

  11. Nitrogen deposition: how important is it for global terrestrial carbon uptake?

    NASA Astrophysics Data System (ADS)

    Bala, G.; Devaraju, N.; Chaturvedi, R. K.; Caldeira, K.; Nemani, R.

    2013-11-01

    Global carbon budget studies indicate that the terrestrial ecosystems have remained a large sink for carbon despite widespread deforestation activities. CO2 fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12-17% of the deposited nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20 : 1. We calculate the sensitivity of the terrestrial biosphere for CO2 fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, the terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since pre-industrial times terrestrial carbon losses due to warming may have been more or less compensated by effects of increased N deposition, whereas the effect of CO2 fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating that climate warming effects on carbon storage may overwhelm N deposition effects in the future.

  12. Acetate Dissimilation and Assimilation in Mycobacterium tuberculosis Depend on Carbon Availability

    PubMed Central

    Rücker, Nadine; Billig, Sandra; Bücker, René; Jahn, Dieter; Wittmann, Christoph

    2015-01-01

    ABSTRACT Mycobacterium tuberculosis persists inside granulomas in the human lung. Analysis of the metabolic composition of granulomas from guinea pigs revealed that one of the organic acids accumulating in the course of infection is acetate (B. S. Somashekar, A. G. Amin, C. D. Rithner, J. Troudt, R. Basaraba, A. Izzo, D. C. Crick, and D. Chatterjee, J Proteome Res 10:4186–4195, 2011, doi:http://dx.doi.org/10.1021/pr2003352), which might result either from metabolism of the pathogen or might be provided by the host itself. Our studies characterize a metabolic pathway by which M. tuberculosis generates acetate in the cause of fatty acid catabolism. The acetate formation depends on the enzymatic activities of Pta and AckA. Using actyl coenzyme A (acetyl-CoA) as a substrate, acetyl-phosphate is generated and finally dephosphorylated to acetate, which is secreted into the medium. Knockout mutants lacking either the pta or ackA gene showed significantly reduced acetate production when grown on fatty acids. This effect is even more pronounced when the glyoxylate shunt is blocked, resulting in higher acetate levels released to the medium. The secretion of acetate was followed by an assimilation of the metabolite when other carbon substrates became limiting. Our data indicate that during acetate assimilation, the Pta-AckA pathway acts in concert with another enzymatic reaction, namely, the acetyl-CoA synthetase (Acs) reaction. Thus, acetate metabolism might possess a dual function, mediating an overflow reaction to release excess carbon units and resumption of acetate as a carbon substrate. IMPORTANCE During infection, host-derived lipid components present the major carbon source at the infection site. β-Oxidation of fatty acids results in the formation of acetyl-CoA. In this study, we demonstrate that consumption of fatty acids by Mycobacterium tuberculosis activates an overflow mechanism, causing the pathogen to release excess carbon intermediates as acetate. The Pta

  13. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  14. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation.

    PubMed

    Cho, Kun-Ching; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2016-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled (15)N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the (15)N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via (13)C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. PMID:27387802

  15. Nitrogen Oxyanion-dependent Dissociation of a Two-component Complex That Regulates Bacterial Nitrate Assimilation*

    PubMed Central

    Luque-Almagro, Victor M.; Lyall, Verity J.; Ferguson, Stuart J.; Roldán, M. Dolores; Richardson, David J.; Gates, Andrew J.

    2013-01-01

    Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression. PMID:24005668

  16. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation.

    PubMed

    Cho, Kun-Ching; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2016-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled (15)N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the (15)N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via (13)C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX.

  17. Effect of elevated carbon dioxide concentration on carbon assimilation under fluctuating light.

    PubMed

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Natural fluctuations in light intensity may significantly affect the amount of CO assimilated by plants and ecosystems. Little is known, however, about the interactive effect of dynamic light conditions and atmospheric CO concentrations. The hypothesis that elevated CO concentration (EC; 700 μmol CO mol) increases photosynthetic efficiency in dynamic light environments as compared to ambient CO concentration (AC; 385 μmol CO mol) was tested. Sun leaves of European beech ( L.) and current-year shoots of Norway spruce [ (L). Karst.] were exposed to five dynamic light regimes (LRs) occurring within forest canopies due to variable cloud cover or self-shading of leaves and to a steady-state LR. The LRs differed in the time course of incident irradiance, whereas the overall duration (600 s) and total amount of radiation (35.88 mmol photons m) were the same in all LRs. The EC treatment enhanced the amount of CO assimilated under all LRs tested. While the stimulation was only 37 to 50% in beech, it was 52 to 85% in spruce. The hypothesis that photosynthetic efficiency is stimulated by EC was confirmed in LRs when the leaves were pre-exposed to low light intensity and photosynthetic induction was required. By contrast, only a minor effect of EC treatment was found on the rate of induction loss and postillumination CO fixation in both species studied.

  18. [Influencing Factors of Assimilable Organic Carbon (AOC) Formation in Drinking Water During Ozonation Process].

    PubMed

    Dong, Bing-zhi; Zhang, Jia-li; He, Chang

    2016-05-15

    The influences of ozone dosage, pH and ionic strength on the formation of Assimilable Organic Carbon (AOC) during ozonation were investigated. The result demonstrated that within the range of 1-5 mg · L⁻¹ O₃, the formation of AOC increased with increasing ozone dosage, but higher ozone dosage (9 mg · L⁻¹) resulted in reduction of AOC formation. AOC formation increased with higher pH but decreased with increasing ionic strength. The result also showed that AOC formation with hydrophobic fraction (HPO) was the most, followed by transphilic fraction (TPI), and charged hydrophilic fraction (CHPI), while neutral hydrophilic fraction (NHPI) was the least. It was found that AOC formation related closely with SUVA of small molecular weight organics, and the lower SUVA produced more AOC. PMID:27506038

  19. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC. PMID:27372113

  20. Hydrothermal synthesis of highly nitrogen-doped carbon powder

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Hao, Yuan; Ma, Ying; Feng, Huixia

    2012-01-01

    Nitrogen-doped carbon powder (NCP) with high and controllable dopant concentration was facilely synthesized via hydrothermal treatment of sucrose under ammonia followed by calcination. The dopant concentration of the as-synthesized carbon powder can be easily adjusted in the range of 4.37-17.82 wt.% by careful choice of the reaction conditions. The precursor with high nitrogen content was prepared by aminization reaction between sucrose and ammonia in hydrothermal condition, amine groups are successfully introduced into the precursor molecule, which groups convert finally to pyridinic-like and graphitic-like structure in the followed heat-treatment process. Various techniques, including the elemental analysis, TG-DTA, XPS, XRD, SEM and FTIR, were employed to characterize and assess the compositional and structural properties of the precursor and final nitrogen-doped materials. The present work propose a novel method for synthesis of highly nitrogen-doped carbon materials.

  1. sup 15 NO sub 3 assimilation and its inhibitory effect on symbiotic nitrogen fixation in peanut

    SciTech Connect

    Stanfill, S.B.; Wells, R.; Israel, D.W.; Rufty, T.W. )

    1990-05-01

    To assess the inhibitory effect of nitrate on the contribution of symbiotic N fixation to total plant N, cultivars of different nodulation capacity were monitored in a growth chamber study. Plants inoculated with Bradyrhizobium sp. (Arachis) strain NC 70.1 were grown in a nutrient solution containing 0, 2.5, 5 or 10 mM NO{sub 3} enriched with 2.5 atom % {sup 15}N. Plant harvests at 30 and 60 DAP provided tissue for measurement of growth, total N, NO{sub 3} and {sup 15}N partitioning. Nitrogenase activity was estimated via C{sub 2}H{sub 2} reduction. Data indicates that plant growth was associated to NO{sub 3} concentration. Average nodule weight and N plant{sup {minus}1} decreased in excess of 2.5mM NO{sub 3}. Specific nitrogenase activity diminished markedly with application of NO{sub 3} with a decline from 40.2 to 25.0 {mu}moles C{sub 2}H{sub 2} g hr{sup {minus}1} at 0 and 2.5mM NO{sub 3}, respectively. Nitrate and fixed N assimilation patterns will be elucidated by {sup 15}N analysis.

  2. Assimilable organic carbon (AOC) in soil water extracts using Vibrio Harveyi BB721 and its implication for microbial biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a...

  3. EFFECT OF OZONATED WATER ON THE ASSIMILABLE ORGANIC CARBON AND COLIFORM GROWTH RESPONSE VALUES AND ON PATHOGENIC BACTERIA SURVIVAL

    EPA Science Inventory

    The assimilable organic carbon (AOC) and coliform growth response (CGR) are bioassays used to determine water quality. AOC and CGR are better indexes in determining whether water can support the growth of bacteria than biological oxygen demand (BOD). The AOC value of reconditione...

  4. Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination ▿

    PubMed Central

    Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.

    2011-01-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685

  5. Bioluminescence-based method for measuring assimilable organic carbon in pretreatment water for reverse osmosis membrane desalination.

    PubMed

    Weinrich, Lauren A; Schneider, Orren D; LeChevallier, Mark W

    2011-02-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment.

  6. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P < 0.01). Nevertheless, it is not clear why AM hyphae responded differently to nitrogen fertilization in the different sites. Carbon stocks within

  7. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source and root-zone and aerial environment on growth and productivity of soybean

    NASA Technical Reports Server (NTRS)

    Raper, C. David, Jr.

    1994-01-01

    The interdependence of root and shoot growth produces a functional equilibrium as described in quantitative terms by numerous authors. It was noted that bean seedlings grown in a constant environment tended to have a constant distribution pattern of dry matter between roots and leaves characteristic of the set of environmental conditions. Disturbing equilibrium resulted in a change in relative growth of roots and leaves until the original ratio was restored. To define a physiological basis for regulation of nitrogen uptake within the balance between root and shoot activities, the authors combined a partioning scheme and a utilization priority assumption in which: (1) all carbon enters the plant through photosynthesis in leaves and all nitrogen enters the plant through active uptake by roots, (2) nitrogen uptake by roots and secretion into the xylem for transport to the shoots are active processes, (3) availability of exogenous nitrogen determines concentration of soluble carbohydrates within the roots, (4) leaves are a source and a sink for carbohydrates, and (5) the requirement for nitrogen by leaf growth is proportionally greater during initiation and early expansion than during later expansion.

  8. [Quantifying soil autotrophic microbes-assimilated carbon input into soil organic carbon pools following continuous 14C labeling].

    PubMed

    Shi, Ran; Chen, Xiao-Juan; Wu, Xiao-Hong; Jian, Yan; Yuan, Hong-Zhao; Ge, Ti-Da; Sui, Fang-Gong; Tong, Cheng-Li; Wu, Jin-Shui

    2013-07-01

    Soil autotrophic microbe has been found numerous and widespread. However, roles of microbial autotrophic processes and the mechanisms of that in the soil carbon sequestration remain poorly understood. Here, we used soils incubated for 110 days in a closed, continuously labeled 14C-CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. The allocation of 14C-labeled assimilated carbon in variable soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) were also examined over the 14C labeling span. The results showed that significant amounts of 14C-SOC were measured in paddy soils, which ranged from 69.06-133.81 mg x kg(-1), accounting for 0.58% to 0.92% of the total soil organic carbon (SOC). The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C (14C-MBC) were dependent on the soils, ranged from 2.54 to 8.10 mg x kg(-1), 19.50 to 49.16 mg x kg(-1), respectively. There was a significantly positive linear relationship between concentrations of 14C-SOC and 14C-MBC (R2 = 0.957**, P < 0.01). The 14C-DOC and 14C-MBC as proportions of total DOC, MBC, were 5.65%-24.91% and 4.23%-20.02%, respectively. Moreover, the distribution and transformation of microbes-assimilated-derived C had a greater influence on the dynamics of DOC and MBC than that on the dynamics of SOC. These data provide new insights into the importance of microorganisms in the fixation of atmospheric CO2 and of the potentially significant contributions made by microbial autotrophy to terrestrial C cycling.

  9. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.

    PubMed

    Berger, Hanna; Blifernez-Klassen, Olga; Ballottari, Matteo; Bassi, Roberto; Wobbe, Lutz; Kruse, Olaf

    2014-10-01

    The unicellular green alga Chlamydomonas reinhardtii is capable of using organic and inorganic carbon sources simultaneously, which requires the adjustment of photosynthetic activity to the prevailing mode of carbon assimilation. We obtained novel insights into the regulation of light-harvesting at photosystem II (PSII) following altered carbon source availability. In C. reinhardtii, synthesis of PSII-associated light-harvesting proteins (LHCBMs) is controlled by the cytosolic RNA-binding protein NAB1, which represses translation of particular LHCBM isoform transcripts. This mechanism is fine-tuned via regulation of the nuclear NAB1 promoter, which is activated when linear photosynthetic electron flow is restricted by CO(2)-limitation in a photoheterotrophic context. In the wild-type, accumulation of NAB1 reduces the functional PSII antenna size, thus preventing a harmful overexcited state of PSII, as observed in a NAB1-less mutant. We further demonstrate that translation control as a newly identified long-term response to prolonged CO(2)-limitation replaces LHCII state transitions as a fast response to PSII over-excitation. Intriguingly, activation of the long-term response is perturbed in state transition mutant stt7, suggesting a regulatory link between the long- and short-term response. We depict a regulatory circuit operating on distinct timescales and in different cellular compartments to fine-tune light-harvesting in photoheterotrophic eukaryotes.

  10. Preparation of carbon nanoparticles and carbon nitride from high nitrogen compound

    DOEpatents

    Huynh, My Hang V.; Hiskey, Michael A.

    2009-09-01

    The high-nitrogen compound 3,6-di(azido)-1,2,4,5-tetrazine (DiAT) was synthesized by a relatively simple method and used as a precursor for the preparation of carbon nanospheres and nanopolygons, and nitrogen-rich carbon nitrides.

  11. Reduced nicotinamide adenine dinucleotide-activated phosphoenolpyruvate carboxylase in Pseudomonas MA: potential regulation between carbon assimilation and energy production.

    PubMed Central

    Newaz, S S; Hersh, L B

    1975-01-01

    Comparison of enzyme activities in crude extracts of methylamine-grown Pseudomonas MA (ATCC 23319) to those in succinate-grown cells indicates the involvement of an acetyl coenzyme A-independent phosphoenolpyruvate carboxylase in one-carbon metabolism. The purified phosphoenolpyruvate carboxylase is activated specifically by reduced nicotinamide adenine dinucleotide (KA = 0.2 mM). The regulatory properties of this enzyme suggests that phosphoenolpyruvate serves as a focal point for both carbon assimilation and energy metabolism. PMID:171253

  12. Comparing the CarbonTracker and M5-4DVar data assimilation systems for CO2 surface flux inversions

    NASA Astrophysics Data System (ADS)

    Babenhauserheide, A.; Basu, S.; Houweling, S.; Peters, W.; Butz, A.

    2015-09-01

    Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on the assimilation of more than 1 year of atmospheric in situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar (Transport Model 5 - Four-Dimensional Variational model), for CO2 flux estimation. CarbonTracker uses an ensemble Kalman filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude-latitude grid. Harmonizing the input data allows for analyzing the strengths and weaknesses of the two approaches by direct comparison of the modeled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as the length of the assimilation time window. Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the distant surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of the measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.

  13. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration

    USGS Publications Warehouse

    McGuire, David A.; Melillo, J.M.; Kicklighter, D.W.; Pan, Y.; Xiao, X.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L.

    1997-01-01

    insensitivity of NPP in the N+D simulations occurred because potential enhancements in NPP associated with reduced vegetation nitrogen concentration were approximately offset by lower nitrogen availability associated with the decomposition dynamics of reduced litter nitrogen concentration. For each 7.5% reduction in vegetation nitrogen concentration, soil carbon increased approximately an additional 60 Pg C, while vegetation carbon storage increased by only approximately 5 Pg C. As the reduction in vegetation nitrogen concentration gets greater in the lower N+D simulations, more of the additional carbon storage tends to become concentrated in the north temperateboreal region in comparison to the tropics. Other studies with TEM show that elevated CO2 more than offsets the effects of climate change to cause increased carbon storage. The results of this study indicate that carbon storage would be enhanced by the influence of changes in plant nitrogen concentration on carbon assimilation and decomposition rates. Thus changes in vegetation nitrogen concentration may have important implications for the ability of the terrestrial biosphere to mitigate increases in the atmospheric concentration of CO2 and climate changes associated with the increases.

  14. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance

    PubMed Central

    2013-01-01

    Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation. PMID:23822863

  15. Species-specific intrinsic water use efficiency and its mediation of carbon assimilation during the drought

    NASA Astrophysics Data System (ADS)

    Yi, K.; Wenzel, M. K.; Maxwell, J. T.; Novick, K. A.; Gray, A.; Roman, D. T.

    2015-12-01

    Drought is expected to occur more frequently and intensely in the future, and many studies have suggested frequent and intense droughts can significantly alter carbon and water cycling in forest ecosystems, consequently decreasing the ability of forests to assimilate carbon. Predicting the impact of drought on forest ecosystem processes requires an understanding of species-specific responses to drought, especially in eastern US where species composition is highly dynamic. An emerging approach for describing species-specific drought response is to classify the plant water use strategy into isohydric and anisohydric behaviors. Trees utilizing isohydric behavior regulate water potential by closing stomata to reduce water loss during drought conditions, while anisohydric trees allow water potential to drop by sustaining stomatal conductance, but with the risk of hydraulic failure caused by cavitation of xylem tissues. Since catastrophic cavitation occurs infrequently in the relatively wet eastern U.S., we hypothesize that 1) tree growth of isohydric trees will be more limited during the drought than the anisohydric trees due to decreased stomatal conductance, but 2) variation in intrinsic water use efficient (iWUE) during drought in isohydric trees will mediate the effects of drought on carbon assimilation. We will test these hypotheses by 1) analyzing tree-ring chronologies and dendrometer data on productivity, and 2) estimating intrinsic water use efficiency (iWUE) at multiple scales by analyzing gas exchange data for the leaf-level, inter-annual variability of d13C in tree stem cores for the tree-level, and eddy covariance technique for the stand-level. Our study site is the Morgan-Monroe State Forest (Indiana, USA). A 46 m flux tower has been continuously recording the carbon, water and energy fluxes, and tree diameter has been measured every 2 weeks using dendrometers, since 1998. Additional research, including gas exchange measurements performed during the

  16. Effect of Chilling on Carbon Assimilation, Enzyme Activation, and Photosynthetic Electron Transport in the Absence of Photoinhibition in Maize Leaves.

    PubMed Central

    Kingston-Smith, A. H.; Harbinson, J.; Williams, J.; Foyer, C. H.

    1997-01-01

    The relationships between electron transport and photosynthetic carbon metabolism were measured in maize (Zea mays L.) leaves following exposure to suboptimal temperatures. The quantum efficiency for electron transport in unchilled leaves was similar to that previously observed in C3 plants, although maize has two types of chloroplasts, mesophyll and bundle sheath, with PSII being largely absent from the latter. The index of noncyclic electron transport was proportional to the CO2 assimilation rate. Chilled leaves showed decreased rates of CO2 assimilation relative to unchilled leaves, but the integral relationships between the quantum efficiency for electron transport or the index of noncyclic electron transport and CO2 fixation were unchanged and there was no photoinhibition. The maximum catalytic activities of the Benson-Calvin cycle enzymes, fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase, were decreased following chilling, but activation was unaffected. Measurements of thiol-regulated enzymes, particularly NADP-malate dehydrogenase, indicated that chilling induced changes in the stromal redox state so that reducing equivalents were more plentiful. We conclude that chilling produces a decrease in photosynthetic capacity without changing the internal operational, regulatory or stoichiometric relationships between photosynthetic electron transport and carbon assimilation. The enzymes of carbon assimilation are particularly sensitive to chilling, but enhanced activation may compensate for decreases in maximal catalytic activity. PMID:12223758

  17. Nitrogen, Carbon, and Sulfur Metabolism in Natural Thioploca Samples

    PubMed Central

    Otte, Sandra; Kuenen, J. Gijs; Nielsen, Lars P.; Paerl, Hans W.; Zopfi, Jakob; Schulz, Heide N.; Teske, Andreas; Strotmann, Bettina; Gallardo, Victor A.; Jørgensen, Bo B.

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min−1 mg of protein−1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min−1 mg of protein−1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min−1 mg of protein−1 and could be increased to 10.7 nmol min−1 mg of protein−1 after the trichomes were starved for 45 h. Incorporation of 14CO2 was at a rate of 0.4 to 0.8 nmol min−1 mg of protein−1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min−1 mg of protein−1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples. PMID:10388716

  18. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate.

    PubMed

    Yang, Zhi; Xu, Minghan; Liu, Yun; He, Fengjiao; Gao, Feng; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2014-01-01

    The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis.

  19. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering.

    PubMed

    Petsch, S T; Eglington, T I; Edwards, K J

    2001-05-11

    Prokaryotes have been cultured from a modern weathering profile developed on a approximately 365-million-year-old black shale that use macromolecular shale organic matter as their sole organic carbon source. Using natural-abundance carbon-14 analysis of membrane lipids, we show that 74 to 94% of lipid carbon in these cultures derives from assimilation of carbon-14-free organic carbon from the shale. These results reveal that microorganisms enriched from shale weathering profiles are able to use a macromolecular and putatively refractory pool of ancient organic matter. This activity may facilitate the oxidation of sedimentary organic matter to inorganic carbon when sedimentary rocks are exposed by erosion. Thus, microorganisms may play a more active role in the geochemical carbon cycle than previously recognized, with profound implications for controls on the abundance of oxygen and carbon dioxide in Earth's atmosphere over geologic time.

  20. The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis.

    PubMed

    Milcamps, A; Van Dommelen, A; Stigter, J; Vanderleyden, J; de Bruijn, F J

    1996-05-01

    The rpoN (ntrA) gene (encoding sigma 54) of Azospirillum brasilense Sp7 was isolated by using conserved rpoN primers and the polymerase chain reaction, and its nucleotide sequence was determined. The deduced amino acid sequence of the RpoN protein was found to share a high degree of homology with other members of the sigma 54 family. Two additional open reading frames were found in the Azospirillum brasilense rpoN region, with significant similarity to equivalent regions surrounding the rpoN locus in other bacteria. An rpoN mutant of Azospirillum brasilense Sp7 was constructed by gene replacement and found to be defective in nitrogen fixation, nitrate assimilation, and ammonium uptake. Lack of ammonium uptake was also found in previously isolated Azospirillum brasilense ntrB and ntrC mutants, further supporting the role of the ntr system in this process. In addition, the rpoN mutant was found to be nonmotile, suggesting a role of RpoN in Azospirillum brasilense flagellar biosynthesis.

  1. Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis

    PubMed Central

    Su, Zhengchang; Olman, Victor; Mao, Fenglou; Xu, Ying

    2005-01-01

    We have developed a new method for prediction of cis-regulatory binding sites and applied it to predicting NtcA regulated genes in cyanobacteria. The algorithm rigorously utilizes concurrence information of multiple binding sites in the upstream region of a gene and that in the upstream regions of its orthologues in related genomes. A probabilistic model was developed for the evaluation of prediction reliability so that the prediction false positive rate could be well controlled. Using this method, we have predicted multiple new members of the NtcA regulons in nine sequenced cyanobacterial genomes, and showed that the false positive rates of the predictions have been reduced on an average of 40-fold compared to the conventional methods. A detailed analysis of the predictions in each genome showed that a significant portion of our predictions are consistent with previously published results about individual genes. Intriguingly, NtcA promoters are found for many genes involved in various stages of photosynthesis. Although photosynthesis is known to be tightly coordinated with nitrogen assimilation, very little is known about the underlying mechanism. We postulate for the fist time that these genes serve as the regulatory points to orchestrate these two important processes in a cyanobacterial cell. PMID:16157864

  2. Role of intracellular carbonic anhydrase in inorganic-carbon assimilation by Porphyridium purpureum.

    PubMed

    Dixon, G K; Patel, B N; Merrett, M J

    1987-12-01

    Air-grown cells of Porphyridium purpurem contain appreciable carbonic-anhydrase activity, comparable to that in air-grown Chlamydomonas reinhardtii, but activity is repressed in CO2-grown cells. Assay of carbonic-anhydrase activity in intact cells and cell extracts shows all activity to be intracellular in Porphyridium. Measurement of inorganic-carbon-dependent photosynthetic O2 evolution shows that sodium ions increase the affinity of Porphyridium cells for HCO 3 (-) . Acetazolamide and ethoxyzolamide were potent inhibitors of carbonic anhydrase in cell extracts but at pH 5.0 both acetazolamide and ethoxyzolamide had little effect upon the concentration of inorganic carbon required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]). At pH 8.0, where HCO 3 (-) is the predominant species of inorganic carbon, the K0.5 (CO2) was increased from 50 μM to 950 μM in the presence of ethoxyzolamide. It is concluded that in air-grown cells of Porphyridium. HCO 3 (-) is transported across the plasmalemma and intracellular carbonic anhydrase increases the steady-state flux of CO2 from inside the plasmalemma to ribulose-1,5-bisphosphate carboxylase-oxygenase by catalysing the interconversion of HCO 3 (-) and CO2 within the cell.

  3. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco.

    PubMed

    Simkin, Andrew J; McAusland, Lorna; Headland, Lauren R; Lawson, Tracy; Raines, Christine A

    2015-07-01

    Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12-19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields.

  4. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco.

    PubMed

    Simkin, Andrew J; McAusland, Lorna; Headland, Lauren R; Lawson, Tracy; Raines, Christine A

    2015-07-01

    Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12-19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields. PMID:25956882

  5. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco

    PubMed Central

    Simkin, Andrew J.; McAusland, Lorna; Headland, Lauren R.; Lawson, Tracy; Raines, Christine A.

    2015-01-01

    Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12–19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields. PMID:25956882

  6. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-01-01

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  7. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-12-31

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  8. Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content.

    PubMed

    Fechler, Nina; Zussblatt, Niels P; Rothe, Regina; Schlögl, Robert; Willinger, Marc-Georg; Chmelka, Bradley F; Antonietti, Markus

    2016-02-10

    Mixtures of phenols/ketones and urea show eutectic behavior upon gentle heating. These mixtures possess liquid-crystalline-like phases that can be processed. The architecture of phenol/ketone acts as structure-donating motif, while urea serves as melting-point reduction agent. Condensation at elevated temperatures results in nitrogen-containing carbons with remarkably high nitrogen content of mainly pyrazinic nature. PMID:26178584

  9. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    PubMed Central

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  10. CarbonTracker-Lagrange: A model-data assimilation system for North American carbon flux estimates

    NASA Astrophysics Data System (ADS)

    He, Wei; Chen, Huilin; van der Velde, Ivar; Andrews, Arlyn; Sweeney, Colm; Baker, Ian; Ju, Weimin; van der Laan-Luijkx, Ingrid; Tans, Pieter; Peters, Wouter

    2016-04-01

    Understanding the regional carbon fluxes is of great importance for climate-related studies. To derive these carbon fluxes, atmospheric inverse modeling methods are often used. Different from global inverse modeling, regional studies need to deal with lateral boundary conditions (BCs) at the outer atmospheric domain studied. Also, regional inverse modeling systems typically use a higher spatial resolution and can be more computation-intensive. In this study, we implement a regional inverse modeling system for atmospheric CO₂ based on the CarbonTracker framework. We combine it with a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). The new system uses independent information from aircraft CO₂ profiles to optimize lateral BCs, while simultaneously optimizing biosphere fluxes with near-surface CO₂ observations from tall towers. This Lagrangian transport model with precalculated footprints is computational more efficient than using an Eulerian model. We take SiBCASA biosphere model results as prior NEE from the terrestrial biosphere. Three different lateral BCs, derived from CarbonTracker North America mole fraction fields, CarbonTracker Europe mole fraction fields and an empirical BC from NOAA aircraft profiles, are employed to investigate the influence of BCs. To estimate the uncertainties of the optimized fluxes from the system and to determine the impacts of system setup on biosphere flux covariances, BC uncertainties and model-data mismatches, we tested various prior biosphere fluxes and BCs. To estimate the transport uncertainties, we also tested an alternative Lagrangian transport model Hybrid Single Particle Lagrangian Integrated Trajectory Model driven by the North American Mesoscale Forecast System meteorological fields (HYSPLIT-NAM12). Based on the above tests, we achieved an ensemble of inverse estimates from our system

  11. tert-Butanesulfinamides as Nitrogen Nucleophiles in Carbon-Nitrogen Bond Forming Reactions.

    PubMed

    Ramirez Hernandez, Johana; Chemla, Fabrice; Ferreira, Franck; Jackowski, Olivier; Oble, Julie; Perez-Luna, Alejandro; Poli, Giovanni

    2016-01-01

    The use of tert-butanesulfinamides as nitrogen nucleophiles in carbon-nitrogen bond forming reactions is reviewed. This field has grown in the shadow of the general interest in N-tert-butanesulfinyl imines for asymmetric synthesis and occupies now an important place in its own right in the chemistry of the chiral amine reagent tert-butanesulfinamide. This article provides an overview of the area and emphasizes recent contributions wherein the tert-butanesulfinamides act as chiral auxiliaries or perform as nitrogen donors in metal-catalyzed amination reactions. PMID:26931222

  12. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

    NASA Astrophysics Data System (ADS)

    Babenhauserheide, A.; Basu, S.; Houweling, S.; Peters, W.; Butz, A.

    2015-03-01

    Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on assimilation of more than one year of atmospheric in-situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar, for CO2 flux estimation. CarbonTracker uses an Ensemble Kalman Filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude/latitude grid. Harmonizing the input data allows analyzing the strengths and weaknesses of the two approaches by direct comparison of the modelled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as temporal and spatial correlation lengths. Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the far-away surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.

  13. Carbon assimilation and digestive toxicity in naïve grass shrimp (Palaemonetes pugio) exposed to dietary cadmium.

    PubMed

    Seebaugh, David R; Wallace, William G; L'Amoreaux, William J; Stewart, Gillian M

    2012-03-01

    Naïve grass shrimp Palaemonetes pugio were pulse-fed cadmium-contaminated meals containing carbon-14, fluorescent or near-infrared markers and analyzed for carbon assimilation efficiency, gut residence time, feces elimination rate, extracellular digestive protease activity or gut pH. Carbon assimilation efficiency (~83%), minimum gut residence time (~435 min) and proventriculus pH (~5.29 to ~6.01) were not impacted significantly by cadmium ingestion. A dose-dependent decrease in feces elimination rate (from ~14.4 to ~6.4 mm h(-1)) was observed for shrimp for 2 h following minimum gut residence time. Protease activities increased ~2.4-fold over the range of dietary cadmium exposures, however, this variation was not dose-dependent. Differential impacts of cadmium exposure on carbon and cadmium assimilation reported previously are consistent with work involving shrimp subjected to chronic field exposure. The influence of ingested cadmium on feces elimination rate may be related to pre-assimilatory impacts on packaging, intestinal transport or release of feces. Protease activities may have been influenced by pre-assimilatory interactions between available cadmium ions in gut fluid and enzyme-secreting cells of the hepatopancreatic epithelium or direct impacts on active enzymes.

  14. The Path of Carbon in Photosynthesis X. Carbon Dioxide Assimilation in Plants

    DOE R&D Accomplishments Database

    Calvin, M.; Bassham, J. A.; Benson, A. A.; Lynch, V.; Ouellet, C.; Schou, L.; Stepka, W.; Tolbert, N. E.

    1950-04-01

    The conclusions which have been drawn from the results of C{sup 14}O{sub 2} fixation experiments with a variety of plants are developed in this paper. The evidence for thermochemical reduction of carbon dioxide fixation intermediates is presented and the results are interpreted from such a viewpoint.

  15. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Xu, Minghan; Liu, Yun; He, Fengjiao; Gao, Feng; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2014-01-01

    The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis.The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis. Electronic supplementary information (ESI) available: The curve of photoluminescence and absorbance of N-doped CDs and quinine sulfate, and the table showing XPS detailed information. See DOI: 10.1039/c3nr05380f

  16. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment

    SciTech Connect

    Knops, J.M.H.; Tilman, D.

    2000-01-01

    The authors used two independent methods to determine the dynamics of soil carbon and nitrogen following abandonment of agricultural fields on a Minnesota sand plain. First, they used a chronosequence of 19 fields abandoned from 1927 to 1982 to infer soil carbon and nitrogen dynamics. Second, they directly observed dynamics of carbon and nitrogen over a 12-yr period in 1900 permanent plots in these fields. These observed dynamics were used in a differential equation model to predict soil carbon and nitrogen dynamics. The two methods yielded similar results. Resampling the 1,900 plots showed that the rates of accumulation of nitrogen and carbon over 12 yr depended on ambient carbon and nitrogen levels in the soil, with rates of accumulation declining at higher carbon and nitrogen levels. A dynamic model fitted to the observed rates of change predicted logistic dynamics for nitrogen and carbon accumulation. On average, agricultural practices resulted in a 75% loss of soil nitrogen and an 89% loss of soil carbon at the time of abandonment. Recovery to 95% of the preagricultural levels is predicted the soil carbon, nitrogen, and carbon:nitrogen ratio patterns observed in the chronosequence of old fields, suggesting that the chronosequence may be indicative of actual changes in soil carbon and nitrogen. Their results suggest that the rate of carbon accumulation was controlled by the rate of nitrogen accumulation, which in turn depended on atmospheric nitrogen deposition and symbiotic nitrogen fixation by legumes. Their data support the hypothesis that these abandoned fields initially retain essentially all nitrogen and have a closed nitrogen cycle. Multiple regression suggests that vegetation composition had a significant influence on the rates of accumulation of both nitrogen and carbon; legumes increased these rates, and C{sub 3} grasses and forbs decreased them. C{sub 4} grasses increased the C:N ratio of the soil organic matter and thereby increased the rate of

  17. The link between assimilation and below-ground processes - stable isotopes as tools to assess carbon transfer

    NASA Astrophysics Data System (ADS)

    Gessler, A.; Wingate, L.; Ogeé, J.; Offermann, C.; Kodama, N.

    2011-12-01

    At present, there is lack of knowledge on how plant physiological processes, the transfer of carbon within the plant, carbon storage and remobilization in the plant tissues as well as the release of carbon from the roots to the soil interact with ecosystem-scale processes. On the background of global climate change, we need to mechanistically link plant physiology, CO2 net exchange between ecosystems and the atmosphere and plant biomass accumulation. This is the basis for predicting productivity of forests as well as their carbon sequestration potential in future. This paper will give an overview on how stable isotope studies can give insights into the fate of newly assimilated carbon transported within trees and transferred to the soil and atmosphere. The paper includes assessments characterizing temporal and spatial variation in the natural abundance of carbon and oxygen isotopes or applying isotopically enriched tracers. In addition, it highlights the fact that the stable isotope composition of assimilates transported within the plant contains important time integrated information on environmental conditions, leaf physiology, and post-photosynthetic metabolism. The paper on the one hand focuses on the fast turn over carbon pools, which fuel plant respiration and soil microbial activity and on the other hand explores the transfer of the isotope information to long-lived compounds in plant archives such as tree rings.

  18. Effectiveness of Nitrogen Assimilation in the Non-Tidal Chesapeake Bay Watershed: Evaluations Based on Thirty Years of Data

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wei, H.; Ha, D.; Ball, W. P.

    2014-12-01

    Control of watershed nutrient input has long been a priority of Chesapeake Bay watershed management for alleviating hypoxia in the Bay. Therefore, systematic evaluations of historical watershed nutrient inputs and responses of river water quality can help managers to assess the effectiveness of nutrient management across the Bay watershed. Toward that end, we conducted a comprehensive comparison of multi-decadal total nitrogen (TN) watershed input and riverine output for the nine major rivers in the non-tidal Bay watershed. Specifically, we (1) compiled available data regarding multi-decadal TN input from four major sources, (2) obtained updated estimates of TN flux at downstream (edge-of-tide) river locations ('output'), and (3) used these inputs and outputs to quantify the watersheds' land/river effectiveness (LRE) factors in regard to TN assimilation, including an investigation of relationships between LRE and TN input. Our compiled data for N sources confirmed known trends regarding the two largest of the four TN sources (atmospheric deposition and fertilizer loadings) - i.e., that the former has declined significantly in all river basins, whereas the latter has decreased in most of the river basins. For the other two sources, point sources have declined most dramatically in the Patuxent River but exhibited various trends in other basins, whereas manure sources have increased statistically significantly in most of the river basins. The riverine output results were observed to follow watershed inputs in a non-linear manner. Finally, the LRE of the various basins were observed to correlate inversely with the watersheds' input loadings, whereas temporal correlations within a given basin were less consistent. In addition, the Susquehanna sub-watersheds show lower LREs compared with other river basins, with riverine output similar to or even larger than input, implying that greater management effort at these locations could be especially fruitful for load reduction.

  19. Soil Carbon and Nitrogen Mineralization with Flexible Soil and Microbial C:N Ratios

    NASA Astrophysics Data System (ADS)

    Wang, G.; Mayes, M. A.; Thornton, P. E.; Hoffman, F. M.

    2014-12-01

    Microbial assimilation of C-N and the physicochemical protection of soil organic matter (SOM) play fundamental roles in regulating land-atmosphere interactions. However, these microbial and physicochemical processes are not explicitly represented in current region/global terrestrial ecosystem models, e.g., the Community Land Model (CLM). The lack of explicit representation of microbial pools and functions results in unrealistic fixed-C:N ratios in SOM pools currently in CLM. Thus current soil C-N model configuration is inadequate to model the effects of litter inputs or fertilization on soil carbon and nitrogen mineralization and linkages between plant litter C:N ratios and soil or microbial C:N ratios. We propose a coupled C-N model that allows for flexible C:N ratios in microbe and SOM pools and thus the ability to represent the decomposition response to fertilization and/or litter inputs with various C:N ratios. Our preliminary analysis has shown that the C:N ratios in SOM, dissolved organic matter (DOM), and microbial pools can be well constrained by the new C-N model and microbes regulate the C:N ratios in SOM and DOM pools. We will use this new model framework to evaluate the soil carbon and nitrogen mineralization processes under conditions of excess organic C, excess organic N, or limited mineral N.

  20. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions.

    PubMed

    Quek, Soon Bee; Cheng, Liang; Cord-Ruwisch, Ralf

    2015-06-15

    The development of an assimilable organic carbon (AOC) detecting marine microbial fuel cell (MFC) biosensor inoculated with microorganisms from marine sediment was successful within 36 days. This established marine MFC was tested as an AOC biosensor and reproducible microbiologically produced electrical signals in response to defined acetate concentration were achieved. The dependency of the biosensor sensitivity on the potential of the electron-accepting electrode (anode) was investigated. A linear correlation (R(2) > 0.98) between electrochemical signals (change in anodic potential and peak current) and acetate concentration ranging from 0 to 150 μM (0-3600 μg/L of AOC) was achieved. However, the present biosensor indicated a different-linear relation at somewhat elevated acetate concentration ranging from 150 to 450 μM (3600-10,800 μg/L of AOC). This high concentration of acetate addition could be measured by coulombic measurement (cumulative charges) with a linear correlation. For the acetate concentration detected in this study, the sensor recovery time could be controlled within 100 min.

  1. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions.

    PubMed

    Quek, Soon Bee; Cheng, Liang; Cord-Ruwisch, Ralf

    2015-06-15

    The development of an assimilable organic carbon (AOC) detecting marine microbial fuel cell (MFC) biosensor inoculated with microorganisms from marine sediment was successful within 36 days. This established marine MFC was tested as an AOC biosensor and reproducible microbiologically produced electrical signals in response to defined acetate concentration were achieved. The dependency of the biosensor sensitivity on the potential of the electron-accepting electrode (anode) was investigated. A linear correlation (R(2) > 0.98) between electrochemical signals (change in anodic potential and peak current) and acetate concentration ranging from 0 to 150 μM (0-3600 μg/L of AOC) was achieved. However, the present biosensor indicated a different-linear relation at somewhat elevated acetate concentration ranging from 150 to 450 μM (3600-10,800 μg/L of AOC). This high concentration of acetate addition could be measured by coulombic measurement (cumulative charges) with a linear correlation. For the acetate concentration detected in this study, the sensor recovery time could be controlled within 100 min. PMID:25846984

  2. Pressure monitoring data assimilation to locate and quantify leaks in carbon storage projects.

    NASA Astrophysics Data System (ADS)

    Benson, S. M.; Cameron, D. A.; Durlofsky, L. J.

    2015-12-01

    We investigate the use of pressure data from monitoring wells overlying a carbon storageaquifer with uncertain geology, in order to locate and quantify leakage as quickly and inexpensively aspossible. Formal data assimilation using the Karhunen-Loeve expansion reduces the optimizationvariable space, while enabling candidate solutions to implicitly honor both hard (well) data and priorgeologic characterizations. Minimization of the mismatch in pressure response between synthetic`true' and history matched models is performed using particle swarm optimization. Our resultsindicate that, given the prior geologic characterization, as little as six to 12 months of pressuremonitoring data may be sufficient to reasonably locate a leak and to quantify leakage, including futureleakage over extended periods. We find that the accuracy in predicting leak locations improves withadditional monitoring wells and suggest that three to four wells may be sufficient for reasonablelocation estimates. No significant benefit is seen in the cases considered when using multilevel versussingle-level wells for monitoring in the overlying aquifer. Finally, we find that adding white noise, withmagnitude consistent with current pressure monitoring techniques, generally reduces error insolutions, which is likely due to a regularization effect. Taken in total, the results and proceduresintroduced in this study should be of use in designing monitoring strategies for large-scale carbonstorage projects.

  3. A mobile light source for carbon/nitrogen cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  4. Imaging carbon and nitrogen concentrations for narcotics and explosives screening

    SciTech Connect

    Trower, W.P.

    1993-12-31

    The author describes a nuclear technique for imaging carbon and nitrogen concentrations with surface densities characteristics of bulk narcotics and concealed explosives, the Carbon and the Nitrogen Camera. The physics is rooted in the tightly bound carbon-12 nucleus to which its neighboring isobars, nitrogen-12 and boron-12, decay rapidly (11 and 20 ms), mostly to its ground state, by emitting energetic beta particles (E{sub {beta}}{sup max} {approximately} 13 and 17 MeV) all of which produce bremsstrahlung and some yield annihilate radiation. The signal, photons detected in the multiscalar mode, results from the reactions {sup 13}C({gamma},p){sup 12}{Beta} for the bulk narcotics application and {sup 14}N({gamma},2n){sup 12}N and 14N({gamma},2p){sup 12}{Beta} for explosives detection and are initiated by a stepped pulsed electron beam with energy of {approximately} 30 and {approximately} 50 MeV, respectively. Images of 180 {approximately} 5 cm{sup 2} pixels taken in {approximately} 7 seconds will be presented of the carbon in a kilo of cocaine and the nitrogen in 125 grams of SEMTEX.

  5. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  6. Landscape controls on carbon and nitrogen cycling in boreal forests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change in the boreal forest biome is having a large impact on two of the main controllers of carbon (C) and nitrogen (N) cycling within this region: permafrost and fire. Permafrost, and its effects on soil drainage, controls the inputs and losses of C and N via net primary productivity (NP...

  7. Effects of Assimilable Organic Carbon and Free Chlorine on Bacterial Growth in Drinking Water

    PubMed Central

    Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network. PMID:26034988

  8. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    PubMed

    Liu, Xiaolu; Wang, Jingqi; Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L(-1) in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5) cells.mL(-1) to 2.6 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.6 mg.L(-1) to 4.8 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.3 mg.L(-1) due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  9. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii.

    PubMed

    Patel, Anil K; Huang, Eric L; Low-Décarie, Etienne; Lefsrud, Mark G

    2015-08-01

    Chlamydomonas reinhardtii was batch-cultured for 12 days under continuous illumination to investigate nitrogen uptake and metabolic responses to wastewater processing. Our approach compared two conditions: (1) artificial wastewater containing nitrate and ammonia and (2) nutrient-sufficient control containing nitrate as sole form of nitrogen. Treatments did not differ in final biomass; however, comparison of group proteomes revealed significant differences. Label-free shotgun proteomic analysis identified 2358 proteins, of which 92 were significantly differentially abundant. Wastewater cells showed higher relative abundances of photosynthetic antenna proteins, enzymes related to carbon fixation, and biosynthesis of amino acids and secondary metabolites. Control cells showed higher abundances of enzymes and proteins related to nitrogen metabolism and assimilation, synthesis and utilization of starch, amino acid recycling, evidence of oxidative stress, and little lipid biosynthesis. This study of the eukaryotic microalgal proteome response to nitrogen source, availability, and switching highlights tightly controlled pathways essential to the maintenance of culture health and productivity in concert with light absorption and carbon assimilation. Enriched pathways in artificial wastewater, notably, photosynthetic carbon fixation and biosynthesis of plant hormones, and those in nitrate only control, most notably, nitrogen, amino acid, and starch metabolism, represent potential targets for genetic improvement requiring targeted elucidation. PMID:25997359

  10. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii.

    PubMed

    Patel, Anil K; Huang, Eric L; Low-Décarie, Etienne; Lefsrud, Mark G

    2015-08-01

    Chlamydomonas reinhardtii was batch-cultured for 12 days under continuous illumination to investigate nitrogen uptake and metabolic responses to wastewater processing. Our approach compared two conditions: (1) artificial wastewater containing nitrate and ammonia and (2) nutrient-sufficient control containing nitrate as sole form of nitrogen. Treatments did not differ in final biomass; however, comparison of group proteomes revealed significant differences. Label-free shotgun proteomic analysis identified 2358 proteins, of which 92 were significantly differentially abundant. Wastewater cells showed higher relative abundances of photosynthetic antenna proteins, enzymes related to carbon fixation, and biosynthesis of amino acids and secondary metabolites. Control cells showed higher abundances of enzymes and proteins related to nitrogen metabolism and assimilation, synthesis and utilization of starch, amino acid recycling, evidence of oxidative stress, and little lipid biosynthesis. This study of the eukaryotic microalgal proteome response to nitrogen source, availability, and switching highlights tightly controlled pathways essential to the maintenance of culture health and productivity in concert with light absorption and carbon assimilation. Enriched pathways in artificial wastewater, notably, photosynthetic carbon fixation and biosynthesis of plant hormones, and those in nitrate only control, most notably, nitrogen, amino acid, and starch metabolism, represent potential targets for genetic improvement requiring targeted elucidation.

  11. Spatial heterogeneity of forest soil carbon and nitrogen controls nitrogen transformations and trace gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-scale spatial heterogeneity of soil nitrogen (N) and carbon (C) pools and net transformation processes in forested ecosystems are not well understood. Two forests in central Oregon (Black Butte and Santiam Pass) were used to test the hypothesis that spatial distribution of soil nutrients cont...

  12. A data assimilation framework for constraining upscaled cropland carbon flux seasonality with MODIS

    NASA Astrophysics Data System (ADS)

    Sus, O.; Williams, M.

    2012-04-01

    Agroecosystem models are strongly dependent on information on land management patterns for regional applications. Land management practices play a major role in determining global yield variability, and add an anthropogenic signal to the observed seasonality of atmospheric CO2 concentrations. However, there is still little knowledge on spatial and temporal variability of important farmland activities such as crop sowing dates, cultivar selection, and fertilisation application, and thus these remain rather crudely approximated within carbon (C) cycle studies. In this study, we present a data assimilation framework allowing for spatiotemporally resolved simulation of cropland C fluxes under observational constraints on sowing dates and canopy greenness. MODIS 250 m vegetation index data were assimilated both variationally (for sowing date estimation) and sequentially (for improved model state estimation, using the EnKF) into a crop C mass balance model (SPAc). In doing so, we are able to accurately quantify the multiannual (2000-2006) regional C flux seasonality of maize-soybean crop rotations surrounding the Bondville (IL, US) Ameriflux EC site, averaged over 104 pixel locations within the wider area (32 km - 25 km). We find that MODIS-derived sowing dates allow for highly accurate simulations of growing season C cycling at locations for which ground-truth sowing dates are not available. Resulting simulations provide an envelope on upscaled cropland phenology, with significant deviations from plot-scale observations at Bondville: study area average growing season length is ~20 days longer than observed, primarily because of an earlier estimated start of season. Relative spatial variability of net ecosystem exchange (NEE) of C ranges from ~7% to ~10%, but variability in net biome productivity is considerably larger (~24% to ~32%). Differences between Bondville and upscaled NEE are especially large in years with non-optimal weather conditions for sowing. This shows

  13. Reconstruction Of Air-Sea Fluxes And Meridional Transport Rates Of Anthropogenic Carbon With An Ensemble Kalman Filter Data Assimilation

    NASA Astrophysics Data System (ADS)

    Gerber, M.; Joos, F.; Vazquez Rodriguez, M.

    2007-12-01

    Regional air-sea fluxes and meridional transport of anthropogenic carbon are inferred by assimilating anthropogenic carbon concentrations within the ocean from different data-based reconstructions. An inverse, Ensemble Kalman Filter method with the Bern3D ocean model is applied. The Bern3D model (Müller et al., 2006) is a computationally-efficient, 3-dimensional coarse resolution ocean model. The Ensemble Kalman Filter (Evenson, 2003) is suited for the assimilation of spatially and temporally varying data into a range of models, for model tuning or for model initialization. Regional fluxes through the air-sea interface and meridional transport rates in the ocean are determined by minimizing deviations between the distributions of anthropogenic carbon from the GLODAP database (Key et al., 2004) and from the Bern3D ocean model in the Ensemble Kalman Filtering optimzation. The resulting anthropogenic carbon fluxes are in agreement with those from another ocean inversion study using the same GLODAP data (Mikaloff Fletcher et al., 2006). Transport uncertainties are addressed by utilizing different configuration of the Bern3D model. The inferred transport uncertainties are comparable in magnitude to the uncertainties obtained by Mikaloff Fletcher et al. The fields of anthropogenic carbon reconstructed with six different reconstruction methods: CFC-shortcut (Thomas et al., 2001), C-star (Gruber et al. 1996), IPSL (Lo Monaco et al., 2005), PHI-CT (Vazquez Rodriguez et al, submitted), TrOCA (Touratier et al., 2004), and TTD (Waugh et al., 2006) from four sections in the Atlantic are assimilated individually to investigate the influence of data uncertainties on the inferred fluxes. Deviations in the inferred fluxes from the different reconstruction methods are comparable or even larger than uncertainties arising from model transport uncertainties. For example, anthropogenic carbon uptake is more than twice as large for the IPSL reconstruction than for the PHI

  14. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    PubMed

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  15. Methods of detection and identificationoc carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhalivyan, Leonid Zavenovich; Brothers, Louis Joseph; Wilhide, Larry K

    2013-11-12

    Methods for detecting and identifying carbon- and/or nitrogen-containing materials are disclosed. The methods may comprise detection of photo-nuclear reaction products of nitrogen and carbon to detect and identify the carbon- and/or nitrogen-containing materials.

  16. Functionalization of carbon nanotubes via nitrogen glow discharge.

    PubMed

    Khare, Bishun; Wilhite, Patrick; Tran, Benjamin; Teixeira, Elico; Fresquez, Kenneth; Mvondo, Delphine Nna; Bauschlicher, Charles; Meyyappan, M

    2005-12-15

    We have exposed single-wall carbon nanotubes (SWCNTs) to microwave-generated N2 plasma with the aim to functionalize the nanotubes. The results strongly depend on the distance between the discharge source and the sample, since nitrogen atoms generated can be lost due to recombination. No functionalization was observed when this distance was 7.0 cm. At intermediate distances (2.5 cm), the incorporation of nitrogen and oxygen onto the SWCNT was observed, while, at short distances (1 cm), products containing CN were also observed. PMID:16375320

  17. CARBOHYDRATE USE AND ASSIMILATION BY LITTER AND SOIL FUNGI ASSESSED BY CARBON ISOTOPES AND BIOLOG ASSAYS

    EPA Science Inventory

    Soil fungi are integral to decomposition in forests, yet identification of probable functional roles of different taxa is problematic. Here, we compared carbohydrate assimilation patterns derived from stable isotope analyses on cultures with those produced from cultures on Biolo...

  18. Carbon and Nitrogen Chemistry of Lodranites: Relationship to Acapulco?

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Franchi, I. A.; Pillinger, C. T.

    1993-07-01

    Recent studies on the mineralogy, petrology, and oxygen isotopic composition of lodranites and acapulcoites indicate that these meteorites are probably derived from a common parent body, but experienced different degrees of partial melting [1,2]. Ar-Ar chronometry implies that lodranites were heated ca. 100 degrees C higher than acapulcoites, and cooled more slowly [3], however measurement of nitrogen and xenon in Acapulco [4,5] shows that volatiles are not equilibrated between different phases within the meteorite, hence its thermal history has been complex. The aim of this study is to determine the carbon and nitrogen chemistry of lodranites, for comparison with Acapulco, to indicate the effect that differing thermal histories might have had on the volatile inventories of these meteorites. The carbon chemistry of Acapulco has been described previously [6]. The meteorite contains ca. 400 ppm indigenous carbon, distributed between two major phases: graphite and carbides. Graphite has been identified petrographically in Acapulco [7], where it is intimately associated with metal. In contrast, both Lodran and MAC 88177 contain much lower quantities of indigenous carbon: approximately 100 ppm and 38 ppm respectively, released in decreasing amounts up to 1200 degrees C. In Lodran, delta^13C rises almost monotonically, from -25 per mil at 600 degrees C to -12 per mil at 1200 degrees C; total delta^13C is ca. -23 per mil. Neither meteorite shows evidence for the occurrence of graphite. Nitrogen released by pyrolysis of Acapulco totals ca. 2.8 ppm [4,5], and is resolvable into two components, with delta^15N ca. +10 per mil and -120 per mil [8]. The first component is, as yet, unidentified, but the second is believed to be associated with the metal fraction [8]. The procedure used herein, of several combustion steps below 500 degrees C to remove contaminants, followed by high resolution combustion up to 1200 degrees C, would also resolve discrete nitrogen-bearing components

  19. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.).

    PubMed

    Gill, Sarvajeet Singh; Khan, Nafees A; Tuteja, Narendra

    2012-01-01

    Metal contamination of soils has become a worldwide problem and great environmental threat, as these metals accumulate in soils and plants in excess, and enter the food chain. Increased cadmium (Cd) uptake from contaminated soils leads to altered plant metabolism and limits the crop productivity. The experimental crop, Lepidium sativum L. (Garden Cress, Family: Brassicaceae) is a medicinally and economically important plant. An experiment was conducted to examine the effect of different concentrations of Cd (0, 25, 50 or 100 mg kg(-1) soil) on the performance of L. sativum. Cd accumulation in roots and leaves (roots>leaves) increased with the increaseing Cd concentration in soil. High Cd concentration (100mg Cd kg(-1) soil) inhibited the leaf area and plant dry mass and significant decline in net photosynthetic rate (P(N)), stomatal conductance (gs), intercellular CO(2) (Ci), chlorophyll (Chl a, Chl b, total Chl) content, carbonic anhydrase (CA; E.C. 4.2.1.1) activity, nitrate reductase (NR; E.C. 1.6.6.1) activity and nitrogen (N) content was also observed. However, ATP-sulfurylase (ATP-S; EC. 2.7.7.4) activity, sulfur (S) content and activities of antioxidant enzymes such as superoxide dismutase (SOD; E.C. 1.15.1.1); catalase (CAT; E.C. 1.11.1.6); ascorbate peroxidase (APX; E.C. 1.11.1.11) and glutathione reductase (GR; E.C. 1.6.4.2) and glutathione (GSH) content were increased. Specifically, the decrease in NR activity and N content showed that Cd affects N metabolism negatively; whereas, the increase in ATP-S activity and S content suggests the up-regulation of S assimilation pathway for possible Cd tolerance in coordination with enhanced activities of antioxidant enzymes and GSH. High Cd concentration (100mg Cd kg(-1) soil) perturbs the L. sativum growth by interfering with the photosynthetic machinery and disrupting the coordination between carbon, N and S metabolism. On the other hand, at low Cd concentration (25mg Cd kg(-1) soil) co-ordination of S and N

  20. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment.

    PubMed

    Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N

    2016-09-15

    Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP.

  1. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment.

    PubMed

    Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N

    2016-09-15

    Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP. PMID:27262548

  2. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    DOE PAGESBeta

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; Hensley, Dale K.

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media withmore » pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  3. Simultaneous tracing of carbon and nitrogen isotopes in human cells.

    PubMed

    Nilsson, Roland; Jain, Mohit

    2016-05-24

    Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the metabolic network of living cells. However, most studies of mammalian cells have used (13)C-labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured with (13)C- and (15)N-labeled glucose and glutamine. To facilitate interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly consistent with known biochemical pathways. Whereas measured (13)C MIDs were informative for central carbon metabolism, (15)N isotopes provided evidence for nitrogen-carrying reactions in amino acid and nucleotide metabolism. This computational and experimental methodology expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic phenotypes in health and disease.

  4. Integrating the nitrogen cycle in carbon and GHG observation systems

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Brummer, C.

    2013-12-01

    Nitrogen is an important factor for the regulation of carbon and GHG fluxes within ecosystems and between ecosystems and the atmosphere. Nitrogen fertilization is important for high agricultural yields but also increases N2O emissions. In Germany, e.g., N2O emissions from agriculture comprise about 6 % of the total GHG inventory. Nitrogen deposition may enhance productivity of ecosystems (e.g. forests, natural grasslands or wetlands) but may also change community structure - in particular in ecosystems that are adapted to low nitrogen availability. It also can lead to increased N2O emissions. Global nitrogen fluxes due to the trade of agricultural products may concentrate nitrogen in specific areas (e.g. in areas with high animal stock). In these areas increased N2O emissions are to be expected. The Thünen Institute of Climate-Smart Agriculture drives parts of the German ICOS consortium with a special focus on agricultural sites or indirect effects of agriculture on GHG emissions. We propose a concept to integrate nitrogen into research infrastructures for GHG monitoring. A conceptual frame will identify the most important parameters of the N cycle. Data from the CarboEurope and NitroEurope core site Gebesee (crop) will be presented to show first integrative results.Finally, first experiences with new technologies will be presented, comprising quantum cascade laser measurements of N2O and ammonia used with eddy covariance (EC) and chambers and EC measurements of total reactive nitrogen with the TRANC methodology (Marx et al. 2012).

  5. Responses of Tree Seedlings to a Changing Atmosphere: Effects of Carbon Dioxide, Nitrogen Dioxide, and Ozone

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; Sparks, J. P.

    2008-12-01

    Human activities have caused changes in the chemical composition of the atmosphere: the concentrations of carbon dioxide (CO2), nitrogen dioxide (NO2), and ozone (O3) have increased and are expected to continue increasing in the future. These gases have the potential to alter plant physiological processes, change growth rates, C:N, and carbon storage potential. The responses of tree seedlings to these changes will have a profound impact on the species composition and carbon storage potential of forests in the future. Others have found CO2 tends to increase plant growth and O3 to decrease it. NO2, if assimilated by plants, can be a source of nutrient nitrogen, but is also an oxidant with the potential to damage cell membranes and decrease growth. The objectives of this study were to determine the single and combined effects of CO2, NO2, and O3 on sugar maple, eastern hemlock, and two clones of trembling aspen. The trees were fumigated for two growing seasons with elevated (40ppb) or ambient NO2, elevated (560ppm) or ambient CO2, elevated (100 ppb 5 days/week) or ambient O3, and with or without additional soil nitrate (30 kg ha-1 yr-1) to simulate ecosystems with and without nitrogen limitation. We found that elevated CO2 increased total biomass of both maples and hemlocks. Further, the CO2 growth effect was most striking when combined with elevated O2; elevated CO2 eliminated the growth decrease induced by O3 especially when nitrogen was limited. Elevated NO2 had no effect on maple seedlings, but, similar to CO2, eliminated the decrease in growth under O3 on hemlock seedlings. The two aspen clones differed in their resistance to ozone. The non-resistant clone exhibited growth responses similar to maple. However, the resistant clone did not exhibit a growth response under any gas treatment regardless of soil nitrogen status. The variation in responses among species, within clones of the same species, and between fumigations was large in this study and suggests

  6. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  7. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    PubMed

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  8. Boron and nitrogen-doped single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Azadi, Sam

    2006-10-01

    Boron nitride semiconducting zigzag single-walled carbon nanotube (SWCNT), BcbNcnC, as a potential candidate for making nanoelectronic devices is investigated by first-principle full potential density functional theory (DFT). In contrast to the previous DFT calculations, where just one boron and nitrogen doping configuration is considered, here for the average over all possible configurations density of states is calculated in terms of boron and nitrogen concentrations. For example in many body techniques (MBTs) [R. Moradian, Phys. Rev. B 89 (2004) 205425] it is found that semiconducting average gap, Eg, could be controlled by doping nitrogen and boron. But in contrast to MBTs where gap edge in the average density of states is sharp, the gap edge is smeared and impurity states appear in the SWCNT semiconducting gap.

  9. Progress in instrumenting the nitrogen/carbon cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Saunders, A. W.; Shvedunov, V. I.

    1997-02-01

    We have imaged in the laboratory elemental nitrogen/carbon concentrations by inducing 14N(γ,2p)12B, 14N(γ,2n)12N, and 13C(γ,p)12B reactions and detecting resulting γ-rays with energies above ˜1 MeV during a ˜5 to 40 ms interval after irradiation. We are now developing instrumentation with which to capture these images in field deployable Nitrogen and Carbon Cameras. Here we describe our progress in developing suitable light sources (compact, mobile 70 MeV electron accelerators), detector materials (bright, dense, rugged scintillators and large, room temperature semiconductors), and arrays of detectors (densely packed, durable, and automated.)

  10. Carbon and nitrogen diagenesis in deep sea sediments

    NASA Astrophysics Data System (ADS)

    Waples, Douglas W.; Sloan, Jon R.

    1980-10-01

    The sections penetrated on Leg 58 of the Deep Sea Drilling Project represent periods of geologic time during which depositional conditions apparently remained quite constant, thus offering an unusual opportunity to study the effects of diagenesis on organic material. Organic carbon and nitrogen contents decrease monotonically with increasing depth of burial before levelling off at minimum values of about 0.05-0.10 and 0.01%, respectively. The depths at which minima are reached vary from site to site, but the ages of the sediments at the minima are all about 2-5 Myr. These data indicate that diagenetic transformations are responsible for the gradual depletion of organic carbon and nitrogen. If diagenesis is at least partly the result of microbial activity, then the role of bacterial ecosystems in deep water sediments is much greater than has previously been thought.

  11. Carbon and Nitrogen Content of Natural Planktonic Bacteria †

    PubMed Central

    Nagata, Toshi

    1986-01-01

    A method of estimating carbon and nitrogen content per unit of natural bacterial cell volume was developed. This method is based on the difference in the retentiveness of bacteria between two kinds of glass fiber filter, GF/C and GF/F (Whatman, Inc., Clifton, N.J.). Biovolume and biomass (carbon and nitrogen content) of bacteria which passed through the GF/C but not the GF/F filter were estimated with an epifluorescence microscopy and a CHN analyzer, respectively. From seasonal determinations of natural planktonic bacteria in epilimnetic waters of a mesotrophic lake, the conversion factors of 106 fg of C/μm3 and 25 fg of N/μm3 were derived as average values. By using these values, the contribution of bacteria to the biomass of lake plankton is discussed. PMID:16347114

  12. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?

    PubMed

    Dang, Chi V

    2010-10-01

    A cancer cell comprising largely of carbon, hydrogen, oxygen, phosphorus, nitrogen and sulfur requires not only glucose, which is avidly transported and converted to lactate by aerobic glycolysis or the Warburg effect, but also glutamine as a major substrate. Glutamine and essential amino acids, such as methionine, provide energy through the TCA cycle as well as nitrogen, sulfur and carbon skeletons for growing and proliferating cancer cells. The interplay between utilization of glutamine and glucose is likely to depend on the genetic make-up of a cancer cell. While the MYC oncogene induces both aerobic glycolysis and glutaminolysis, activated β-catenin induces glutamine synthesis in hepatocellular carcinoma. Cancer cells that have elevated glutamine synthetase can use glutamate and ammonia to synthesize glutamine and are hence not addicted to glutamine. As such, cancer cells have many degrees of freedom for re-programming cell metabolism, which with better understanding will result in novel therapeutic approaches.

  13. Effect of carbon monoxide and nitrogen dioxide on ICR mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Times to incapacitation and death and LC(50) values were determined for male ICR mice exposed to different concentration of carbon monoxide for 30 min and of nitrogen dioxide for 10 min in a 4.2 liter hemispherical chamber. The data indicate that ICR mice are more resistant to these two toxicants than Swiss albino mice. The carbon monoxide LC(50) for a 30-min exposure was about 8,000 ppm for ICR mice compared to 3,570 ppm for Swiss albino mice. The nitrogen dioxide LC(50) for a 10-min exposure was above 2,000 ppm for ICR mice compared to about 1,000 ppm for Swiss albino mice.

  14. Vacancy Mediated Mechanism of Nitrogen Substitution in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Sadanadan, Bindu; Rao, Apparao M.

    2003-01-01

    Nitrogen substitution reaction in a graphene sheet and carbon nanotubes of different diameter are investigated using the generalized tight-binding molecular dynamics method. The formation of a vacancy in curved graphene sheet or a carbon nanotube is found to cause a curvature dependent local reconstruction of the surface. Our simulations and analysis show that vacancy mediated N substitution (rather than N chemisorption) is favored on the surface of nanotubes with diameter larger than 8 nm. This predicted value of the critical minimum diameter for N incorporation is confirmed by experimental results presented.

  15. Carbon, nitrogen, and oxygen abundances in Sirius and Vega

    SciTech Connect

    Lambert, D.L.; Roby, S.W.; Bell, R.A.

    1982-03-15

    Carbon, nitrogen, and oxygen abundances are obtained from C I, N I, and O I high excitation permitted lines in the spectra of the standard A star Vega and the ''hot'' Am star Sirius. Vega has normal abundances. Relative to Vega, Sirius is C deficient by 0.60 dex, N enhanced by 0.22 dex, and O deficient by 0.27 dex.

  16. Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.

    1996-01-01

    Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.

  17. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  18. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance.

    PubMed

    Henry, L T; Raper, C D

    1991-03-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  19. Efficiency of Nitrogen Assimilation by N(2)-Fixing and Nitrate-Grown Soybean Plants (Glycine max [L.] Merr.).

    PubMed

    Finke, R L; Harper, J E; Hageman, R H

    1982-10-01

    Nodulated and non-nodulated (not inoculated) soybeans (Glycine max [L.] Merr. cv Wells) were grown in controlled environments with N(2) or nonlimiting levels of NO(3) (-), respectively, serving as sole source of nitrogen. The efficiency of the N(2)-fixing plants was compared with that of the nitrate-supplied plants on the basis of both plant age and plant size. Efficiency evaluations of the plants were expressed as the ratio of moles of carbon respired by the whole plant to the moles of nitrogen incorporated into plant material.Continuous 24-hour CO(2) exchange measurements on shoot and root systems made at the beginning of flowering (28 days after planting) indicated that N(2)-fixing plants respired 8.28 moles of carbon per mole of N, fixed from dinitrogen, while nitrate-supplied plants respired only 4.99 moles of carbon per mole of nitrate reduced. Twenty-one-day-old nitrate-supplied plants were even more efficient, respiring only 3.18 moles of carbon per mole of nitrate reduced. The decreased efficiency of the N(2)-fixing plants was not due to plant size since, on a dry weight basis, the 28-day-old N(2)-fixing plants were intermediate between the 28- and 21-day-old nitrate-supplied plants.The calculated efficiencies were predominantly a reflection of root-system respiration. N(2)-fixing plants lost 25% of their daily net photosynthetic input of carbon through root-system respiration, compared with 16% for 28-day-old nitrate-supplied plants and 12% for 21-day-old nitrate-supplied plants. Shoot dark respiration was similar for all three plant groups, varying between 7.9% and 9.0% of the apparent photosynthate.The increased respiratory loss by the roots of the N(2)-fixing plants was not compensated for by increased net photosynthetic effectiveness. Canopy photosynthesis expressed on a leaf area basis was similar for 28-day-old N(2)-fixing plants (15.5 milligrams CO(2) square decimeter per hour) and 21-day-old nitrate-supplied plants (14.5 milligrams CO(2) square

  20. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions.

    PubMed

    Larsson, C; von Stockar, U; Marison, I; Gustafsson, L

    1993-08-01

    Aerobic chemostat cultures of Saccharomyces cerevisiae were performed under carbon-, nitrogen-, and dual carbon- and nitrogen-limiting conditions. The glucose concentration was kept constant, whereas the ammonium concentration was varied among different experiments and different dilution rates. It was found that both glucose and ammonium were consumed at the maximal possible rate, i.e., the feed rate, over a range of medium C/N ratios and dilution rates. To a small extent, this was due to a changing biomass composition, but much more important was the ability of uncoupling between anabolic biomass formation and catabolic energy substrate consumption. When ammonium started to limit the amount of biomass formed and hence the anabolic flow of glucose, this was totally or at least partly compensated for by an increased catabolic glucose consumption. The primary response when glucose was present in excess of the minimum requirements for biomass production was an increased rate of respiration. The calculated specific oxygen consumption rate, at D = 0.07 h-1, was more than doubled when an additional nitrogen limitation was imposed on the cells compared with that during single glucose limitation. However, the maximum respiratory capacity decreased with decreasing nitrogen concentration. The saturation level of the specific oxygen consumption rate decreased from 5.5 to 6.0 mmol/g/h under single glucose limitation to about 4.0 mmol/g/h at the lowest nitrogen concentration tested. The combined result of this was that the critical dilution rate, i.e., onset of fermentation, was as low as 0.10 h-1 during growth in a medium with a low nitrogen concentration compared with 0.20 h-1 obtained under single glucose limitation.

  1. Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest.

    PubMed

    Keel, Sonja G; Siegwolf, Rolf T W; Körner, Christian

    2006-01-01

    How rapidly newly assimilated carbon (C) is invested into recalcitrant structures of forests, and how closely C pools and fluxes are tied to photosynthesis, is largely unknown. A crane and a purpose-built free-air CO2 enrichment (FACE) system permitted us to label the canopy of a mature deciduous forest with 13C-depleted CO2 for 4 yr and continuously trace the flow of recent C through the forest without disturbance. Potted C4 grasses in the canopy ('isometers') served as a reference for the C-isotope input signal. After four growing seasons, leaves were completely labelled, while newly formed wood (tree rings) still contained 9% old C. Distinct labels were found in fine roots (38%) and sporocarps of mycorrhizal fungi (62%). Soil particles attached to fine roots contained 9% new C, whereas no measurable signal was detected in bulk soil. Soil-air CO2 consisted of 35% new C, indicating that considerable amounts of assimilates were rapidly returned back to the atmosphere. These data illustrate a relatively slow dilution of old mobile C pools in trees, but a pronounced allocation of very recent assimilates to C pools of short residence times.

  2. Effects of cryptogamic covers on the global carbon and nitrogen balance as investigated by different approaches

    NASA Astrophysics Data System (ADS)

    Weber, Bettina; Porada, Philipp; Elbert, Wolfgang; Burrows, Susannah; Caesar, Jennifer; Steinkamp, Jörg; Tamm, Alexandra; Andreae, Meinrat O.; Büdel, Burkhard; Kleidon, Axel; Pöschl, Ulrich

    2014-05-01

    Cryptogamic covers are composed of cyanobacteria, green algae, lichens, bryophytes, fungi and bacteria in varying proportions. As cryptogamic ground covers, comprising biological soil and rock crusts they occur on many terrestrial ground surfaces. Cryptogamic plant covers, containing epiphytic and epiphyllic crusts as well as foliose or fruticose lichens and bryophytes spread over large portions of terrestrial plant surfaces. Photoautotrophic organisms within these crusts sequester atmospheric CO2 and many of them include nitrogen-fixing cyanobacteria, utilizing atmospheric N2 to form ammonium which can be readily used by vascular plants. In a large-scale data analysis approach, we compiled all available data on the physiological properties of cryptogamic covers and developed a model to calculate their annual nitrogen fixation and net primary production. Here, we obtained a total value of 3.9 Pg a-1 for the global net uptake of carbon by cryptogamic covers, which corresponds to approximately 7% of the estimated global net primary production of terrestrial vegetation. Nitrogen assimilation of cryptogamic covers revealed a global estimate of ~49 Tg a-1, accounting for as much as about half the estimated total terrestrial biological nitrogen fixation. In a second approach, we calculated the global carbon uptake by lichens and bryophytes by means of a process-based model. In this model, we used gridded climate data combined with key habitat properties (as e.g. disturbance intervals) to predict the processes which control net carbon uptake, i.e. photosynthesis, respiration, water uptake and evaporation. The model relies on equations frequently used in dynamic vegetation models, which were combined with concepts specific to lichens and bryophytes. As this model only comprises lichens and bryophytes, the predicted terrestrial net uptake of 0.34 to 3.3 Gt a-1 is in accordance with our empirically-derived estimate. Based on this result, we quantified the amount of nitrogen

  3. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane

    PubMed Central

    Strøm, Terje; Ferenci, Thomas; Quayle, J. Rodney

    1974-01-01

    d-arabino-3-Hexulose 6-phosphate was prepared by condensation of formaldehyde with ribulose 5-phosphate in the presence of 3-hexulose phosphate synthase from methane-grown Methylococcus capsulatus. The 3-hexulose phosphate was unstable in solutions of pH greater than 3, giving a mixture of products in which, after dephosphorylation, allulose and fructose were detected. A complete conversion of d-ribulose 5-phosphate and formaldehyde into d-fructose 6-phosphate was demonstrated in the presence of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase (prepared from methane-grown M. capsulatus). d-Allulose 6-phosphate was prepared from d-allose by way of d-allose 6-phosphate. No evidence was found for its metabolism by extracts of M. capsulatus, thus eliminating it as an intermediate in the carbon assimilation process of this organism. A survey was made of the enzymes involved in the regeneration of pentose phosphate during C1 assimilation via a modified pentose phosphate cycle. On the basis of the presence of the necessary enzymes, two alternative routes for cleavage of fructose 6-phosphate are suggested, one route involves fructose diphosphate aldolase and the other 6-phospho-2-keto-3-deoxygluconate aldolase. A detailed formulation of the complete ribulose monophosphate cycle of formaldehyde fixation is presented. The energy requirements for carbon assimilation by this cycle are compared with those for the serine pathway and the ribulose diphosphate cycle of carbon dioxide fixation. A cyclic scheme for oxidation of formaldehyde via 6-phosphogluconate is suggested. PMID:4377654

  4. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  5. Carbon and nitrogen isotope studies in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-01-01

    The Phase II studies of the R4D Program on stream and watershed ecology reflect the accomplishments and accumulation of baseline information obtained during the past studies. Although our rough estimates indicate that nitrogen inputs to the watershed ba lance losses, the carbon fluxes suggest that they are not in equilibrium and that there is a net loss of carbon from the tundra ecosystem through respiration and transport out of the watershed via the stream system. Radiocarbon profiles of soil sections coupled with mass transport calculations revealed that peat accumulation has essentially ceased in the R4D watershed and appears to be in ablative loss. Thus the carbon flux measurements provide validation tests for the PLANTGRO and GAS-HYDRO models of the PHASE II studies. These findings are also important in the context of global CO[sub 2] increases from positive feedback mechanisms in peatlands associated with climatic warming in the subarctic regions.

  6. Carbon and nitrogen isotope studies in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-12-31

    The Phase II studies of the R4D Program on stream and watershed ecology reflect the accomplishments and accumulation of baseline information obtained during the past studies. Although our rough estimates indicate that nitrogen inputs to the watershed ba lance losses, the carbon fluxes suggest that they are not in equilibrium and that there is a net loss of carbon from the tundra ecosystem through respiration and transport out of the watershed via the stream system. Radiocarbon profiles of soil sections coupled with mass transport calculations revealed that peat accumulation has essentially ceased in the R4D watershed and appears to be in ablative loss. Thus the carbon flux measurements provide validation tests for the PLANTGRO and GAS-HYDRO models of the PHASE II studies. These findings are also important in the context of global CO{sub 2} increases from positive feedback mechanisms in peatlands associated with climatic warming in the subarctic regions.

  7. Trends in Carbohydrate Depletion, Respiratory Carbon Loss, and Assimilate Export from Soybean Leaves at Night 1

    PubMed Central

    Mullen, Jeffrey A.; Koller, H. Ronald

    1988-01-01

    To evaluate assimilate export from soybean (Glycine max [L.] Merrill) leaves at night, rates of respiratory CO2 loss, specific leaf weight loss, starch mobilization, and changes in sucrose concentration were measured during a 10-hour dark period in leaves of pod-bearing `Amsoy 71' and `Wells II' plants in a controlled environment. Lateral leaflets were removed at various times between 2200 hours (beginning dark period) and 0800 hours (ending dark period) for dry weight determination and carbohydrate analyses. Respiratory CO2 loss was measured throughout the 10-hour dark period. Rate of export was estimated from the rate of loss in specific leaf weight and rate of CO2 efflux. Rate of assimilate export was not constant. Rate of export was relatively low during the beginning of the dark period, peaked during the middle of the dark period, and then decreased to near zero by the end of darkness. Rate of assimilate export was associated with rate of starch mobilization and amount of starch reserves available for export. Leaves of Amsoy 71 had a higher maximum export rate in conjunction with a greater total change in starch concentration than did leaves of Wells II. Sucrose concentration rapidly declined during the first hour of darkness and then remained constant throughout the rest of the night in leaves of both cultivars. Rate of assimilate export was not associated with leaf sucrose concentration. PMID:16665939

  8. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups.

    PubMed

    Dong, Haifeng; Zhao, Yong; Tang, Yifan; Burkert, Seth C; Star, Alexander

    2015-05-27

    We demonstrate a facile synthesis of different nanostructures by oxidative unzipping of stacked nitrogen-doped carbon nanotube cups (NCNCs). Depending on the initial number of stacked-cup segments, this method can yield graphene nanosheets (GNSs) or hybrid nanostructures comprised of graphene nanoribbons partially unzipped from a central nanotube core. Due to the stacked-cup structure of as-synthesized NCNCs, preventing complete exposure of graphitic planes, the unzipping mechanism is hindered, resulting in incomplete unzipping; however, individual, separated NCNCs are completely unzipped, yielding individual nitrogen-doped GNSs. Graphene-based materials have been employed as electrocatalysts for many important chemical reactions, and it has been proposed that increasing the reactive edges results in more efficient electrocatalysis. In this paper, we apply these graphene conjugates as electrocatalysts for the oxygen reduction reaction (ORR) to determine how the increase in reactive edges affects the electrocatalytic activity. This investigation introduces a new method for the improvement of ORR electrocatalysts by using nitrogen dopants more effectively, allowing for enhanced ORR performance with lower overall nitrogen content. Additionally, the GNSs were functionalized with gold nanoparticles (GNPs), resulting in a GNS/GNP hybrid, which shows efficient surface-enhanced Raman scattering and expands the scope of its application in advanced device fabrication and biosensing.

  9. Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances.

    PubMed

    Alcántara, Cynthia; Domínguez, Jesús M; García, Dimas; Blanco, Saúl; Pérez, Rebeca; García-Encina, Pedro A; Muñoz, Raúl

    2015-09-01

    Algal-bacterial symbiosis, implemented in an innovative anoxic-aerobic photobioreactor configuration with biomass recycling, supported an efficient removal of total organic carbon (86-90%), inorganic carbon (57-98%) and total nitrogen (68-79%) during synthetic wastewater treatment at a hydraulic and sludge retention times of 2 days and 20 days, respectively. The availability of inorganic carbon in the photobioreactor, determined by its supply in the wastewater and microalgae activity, governed the extent of nitrogen removal by assimilation or nitrification-denitrification. Unexpectedly, nitrate production was negligible despite the high dissolved oxygen concentrations, denitrification being only based on nitrite reduction. Biomass recycling resulted in the enrichment of rapidly settling algal flocs, which supported effluent total suspended solid concentrations below the European Union maximum discharge limits. Finally, the maximum nitrous oxide emissions recorded were far below the emission factors reported for wastewater treatment plants, confirming the environmental sustainability of this innovative photobioreactor in terms of global warming impact.

  10. Nitrogen and carbon uptake dynamics in Lake Superior

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sterner, Robert W.; Finlay, Jacques C.

    2008-12-01

    Despite a fivefold rise in nitrate concentration over the last century, many fundamental aspects of Lake Superior's N and C cycles are still very poorly understood. We present here the first measurements of inorganic N uptake and in situ C uptake rates in Lake Superior, one of the largest lakes in the world. A profile of C uptake suggests that more than 95% of production occurs in the top 30 m with highest productivity to biomass ratio in the epilimnion. High C uptake:N uptake and particulate C: N ratio compared to the Redfield ratio (6.6) in the epilimnion suggests higher turnover rate of C compared to N in epilimnetic particles. Experiments performed over a range of typical environmental conditions suggest a strong temperature dependence of N uptake with maximum rates observed during the warmest stratified period. Lakewide N uptake estimates derived from a temperature-based model suggest that on an annual basis, uptake is considerably higher than total N inputs from outside the lake. This difference indicates that the lake is recycling N rapidly, leading to a shorter turnover time in the water column than previously assumed. The long-term buildup of nitrate in the lake has been hypothesized to arise from limited assimilation of nitrate entering the lake. In contrast, our results suggest that nitrate accumulating in the lake is a result of internal N cycling, a finding consistent with recent studies based on a nitrogen budget and NO3- stable isotope analyses.

  11. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    PubMed

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  12. Comparing the diel vertical migration of Karlodinium veneficum (dinophyceae) and Chattonella subsalsa (Raphidophyceae): PSII photochemistry, circadian control, and carbon assimilation.

    PubMed

    Tilney, Charles L; Hoadley, Kenneth D; Warner, Mark E

    2015-02-01

    Diel vertical migration (DVM) is thought to provide an adaptive advantage to some phytoplankton, and may help determine the ecological niche of certain harmful algae. Here we separately compared DVM patterns between two species of harmful algae isolated from the Delaware Inland Bays, Karlodinium veneficum and Chattonella subsalsa, in laboratory columns. We interpreted the DVM patterns of each species with Photosystem II (PSII) photochemistry, rates of carbon assimilation, and specific growth rates. Each species migrated differently, wherein K. veneficum migrated closer to the surface each day with high population synchrony, while C. subsalsa migrated near to the surface from the first day of measurements with low population synchrony. Both species appeared to downregulate PSII in high light at the surface, but by different mechanisms. C. subsalsa grew slower than K. veneficum in low light intensities (≈bottom of columns), and exhibited maximal rates of C-assimilation (Pmax) at surface light intensities, suggesting this species may prefer high light, potentially explaining this species' rapid surface migration. Contrastingly, K. veneficum showed declines in carbon assimilation at surface light intensities, and exhibited a smaller reduction in growth at low (bottom) light intensities (compared to C. subsalsa), suggesting that this species' step-wise migration was photoacclimative and determined daily migration depth. DVM was found to be under circadian control in C. subsalsa, but not in K. veneficum. However, there was little evidence for circadian regulation of PSII photochemistry in either species. Migration conformed to each species' physiology, and the results contribute to our understanding each alga's realized environmental niche.

  13. Carbon Monoxide Data Assimilation for Atmospheric Composition and Climate Science: Evaluating Performance with Current and Future Observations

    NASA Astrophysics Data System (ADS)

    Barre, J.; Edwards, D. P.; Gaubert, B.; Worden, H. M.; Arellano, A. F.; Anderson, J. L.

    2015-12-01

    Current satellite observations of tropospheric composition made from low Earth orbit provide at best one or two measurements each day at any given location. Comparisons of Terra/MOPITT carbon monoxide (CO) and IASI/Metop CO observation assimilations will be presented. We use the DART Ensemble Adjustment Kalman Filter to assimilate observations in the CAM-Chem global chemistry-climate model. Data assimilation impacts due to both different instrument capabilities (i.e. vertical sensitivity and global coverage) will be discussed. Coverage is global but sparse, often with large uncertainties in individual measurements that limit examination of local and regional atmospheric composition over short time periods. This has hindered the operational uptake of these data for monitoring air quality and population exposure, and for initializing and evaluating chemical weather forecasts. By the end of the current decade there are planned geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations of continental domains for mapping pollutant sources and variability on diurnal and local scales. We describe Observing System Simulation Experiments (OSSEs) to evaluate the contributions of these GEO missions to improve knowledge of near-surface air pollution due to intercontinental long-range transport and quantify chemical precursor emissions. Our approach uses an efficient computational method to sample a high-resolution global GEOS-5 chemistry Nature Run over each geographical region of the GEO constellation. The demonstration carbon monoxide (CO) observation simulator, which will be expanded to other chemical pollutants, currently produces multispectral retrievals (MOPITT-like) and captures realistic scene-dependent variation in measurement

  14. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.

    PubMed

    Koven, Charles D; Lawrence, David M; Riley, William J

    2015-03-24

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  15. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  16. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient.

    PubMed

    Wang, Yingjun; Stessman, Dan J; Spalding, Martin H

    2015-05-01

    The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.

  17. The overexpression of the pine transcription factor PpDof5 in Arabidopsis leads to increased lignin content and affects carbon and nitrogen metabolism.

    PubMed

    Rueda-López, Marina; Cañas, Rafael A; Canales, Javier; Cánovas, Francisco M; Ávila, Concepción

    2015-12-01

    PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees. PMID:26333592

  18. Carbon cycling of European croplands: A framework for the assimilation of optical and microwave Earth observation data

    NASA Astrophysics Data System (ADS)

    Revill, Andrew; Sus, Oliver; Williams, Mathew

    2013-04-01

    Croplands are traditionally managed to maximise the production of food, feed, fibre and bioenergy. Advancements in agricultural technologies, together with land-use change, have approximately doubled World grain harvests over the past 50 years. Cropland ecosystems also play a significant role in the global carbon (C) cycle and, through changes to C storage in response to management activities, they can provide opportunities for climate change mitigation. However, quantifying and understanding the cropland C cycle is complex, due to variable environmental drivers, varied management practices and often highly heterogeneous landscapes. Efforts to upscale processes using simulation models must resolve these challenges. Here we show how data assimilation (DA) approaches can link C cycle modelling to Earth observation (EO) and reduce uncertainty in upscaling. We evaluate a framework for the assimilation of leaf area index (LAI) time series, empirically derived from EO optical and radar sensors, for state-updating a model of crop development and C fluxes. Sensors are selected with fine spatial resolutions (20-50 m) to resolve variability across field sizes typically used in European agriculture. Sequential DA is used to improve the canopy development simulation, which is validated by comparing time-series LAI and net ecosystem exchange (NEE) predictions to independent ground measurements and eddy covariance observations at multiple European cereal crop sites. Significant empirical relationships were established between the LAI ground measurements and the optical reflectance and radar backscatter, which allowed for single LAI calibrations being valid for all the cropland sites for each sensor. The DA of all EO LAI estimates results indicated clear adjustments in LAI and an enhanced representation of daily CO2 exchanges, particularly around the time of peak C uptake. Compared to the simulation without DA, the assimilation of all EO LAI estimates improved the predicted at

  19. Plant growth is influenced by glutamine synthetase-catalyzed nitrogen metabolism

    SciTech Connect

    Langston-Unkefer, P.J.

    1991-06-11

    Ammonia assimilation has been implicated as participating in regulation of nitrogen fixation in free-living bacteria. In fact, these simple organisms utilize an integrated regulation of carbon and nitrogen metabolism; we except to observe an integration of nitrogen and carbon fixation in plants; how could these complex systems grow efficiently and compete in the ecosystem without coordinating these two crucial activities We have been investigating the role of ammonia assimilation regulating the complex symbiotic nitrogen fixation of legumes. Just as is observed in the simple bacterial systems, perturbation of ammonia assimilation in legumes results in increased overall nitrogen fixation. The perturbed plants have increased growth and total nitrogen fixation capability. Because we have targeted the first enyzme in ammonia assimilation, glutamine synthetase, this provides a marker that could be used to assist selection or screening for increased biomass yield. 45 refs., 4 tabs.

  20. Nanoscale High Energetic Materials: A Polymeric Nitrogen Chain N8 Confined inside a Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Abou-Rachid, Hakima; Hu, Anguang; Timoshevskii, Vladimir; Song, Yanfeng; Lussier, Louis-Simon

    2008-05-01

    We present a theoretical study of a new hybrid material, nanostructured polymeric nitrogen, where a polymeric nitrogen chain is encapsulated in a carbon nanotube. The electronic and structural properties of the new system are studied by means of ab initio electronic structure and molecular dynamics calculations. Finite temperature simulations demonstrate the stability of this nitrogen phase at ambient pressure and room temperature using carbon nanotube confinement. This nanostructured confinement may open a new path towards stabilizing polynitrogen or polymeric nitrogen at ambient conditions.

  1. Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1980-01-01

    The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.

  2. Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees

    PubMed Central

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L. Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R2 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R2 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R2 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R2 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method. PMID:23112620

  3. Methylamine Utilization via the N-Methylglutamate Pathway in Methylobacterium extorquens PA1 Involves a Novel Flow of Carbon through C1 Assimilation and Dissimilation Pathways

    PubMed Central

    Nayak, Dipti D.

    2014-01-01

    Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine. PMID:25225269

  4. Methylamine utilization via the N-methylglutamate pathway in Methylobacterium extorquens PA1 involves a novel flow of carbon through C1 assimilation and dissimilation pathways.

    PubMed

    Nayak, Dipti D; Marx, Christopher J

    2014-12-01

    Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine.

  5. Assimilable organic carbon (AOC) in soil water extracts using Vibrio harveyi BB721 and its implication for microbial biomass.

    PubMed

    Ma, Jincai; Ibekwe, A Mark; Wang, Haizhen; Xu, Jianming; Leddy, Menu; Yang, Ching-Hong; Crowley, David E

    2012-01-01

    Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 µg l(-1) glucose (equivalent to 0-16.0 mg glucose C kg(-1) soil) with the detection limit of 10 µg l(-1) equivalent to 0.20 mg glucose C kg(-1) soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg(-1). Our data showed that AOC levels in soil water extracts were significantly correlated (P<0.05) with microbial biomass determined as microbial biomass carbon, indicating that the AOC concentrations determined by the method developed might be a good indicator of soil microbial biomass. Our findings provide a new approach that may be used to determine AOC in environmental samples using a non-growth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils. PMID:22679477

  6. Assimilable organic carbon (AOC) in soil water extracts using Vibrio harveyi BB721 and its implication for microbial biomass.

    PubMed

    Ma, Jincai; Ibekwe, A Mark; Wang, Haizhen; Xu, Jianming; Leddy, Menu; Yang, Ching-Hong; Crowley, David E

    2012-01-01

    Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 µg l(-1) glucose (equivalent to 0-16.0 mg glucose C kg(-1) soil) with the detection limit of 10 µg l(-1) equivalent to 0.20 mg glucose C kg(-1) soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg(-1). Our data showed that AOC levels in soil water extracts were significantly correlated (P<0.05) with microbial biomass determined as microbial biomass carbon, indicating that the AOC concentrations determined by the method developed might be a good indicator of soil microbial biomass. Our findings provide a new approach that may be used to determine AOC in environmental samples using a non-growth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils.

  7. Assimilable Organic Carbon (AOC) in Soil Water Extracts Using Vibrio harveyi BB721 and Its Implication for Microbial Biomass

    PubMed Central

    Ma, Jincai; Ibekwe, A. Mark; Leddy, Menu; Yang, Ching-Hong; Crowley, David E.

    2012-01-01

    Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 µg l−1 glucose (equivalent to 0–16.0 mg glucose C kg−1 soil) with the detection limit of 10 µg l−1 equivalent to 0.20 mg glucose C kg−1 soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg−1. Our data showed that AOC levels in soil water extracts were significantly correlated (P<0.05) with microbial biomass determined as microbial biomass carbon, indicating that the AOC concentrations determined by the method developed might be a good indicator of soil microbial biomass. Our findings provide a new approach that may be used to determine AOC in environmental samples using a non-growth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils. PMID:22679477

  8. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.

    PubMed

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH3. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH3, leads to a low surface area down to 458 m(2)/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~4 at.% carbon atoms and part of oxygen function groups reacted with NH3. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g).

  9. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  10. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  11. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    SciTech Connect

    Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Goddard, Caroline J. L.

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  12. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    DOE Data Explorer

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  13. Investigating the role of background and observation error correlations in improving a model forecast of forest carbon balance using four dimensional variational data assimilation.

    NASA Astrophysics Data System (ADS)

    Pinnington, Ewan; Casella, Eric; Dance, Sarah; Lawless, Amos; Morison, James; Nichols, Nancy; Wilkinson, Matthew; Quaife, Tristan

    2016-04-01

    Forest ecosystems play an important role in sequestering human emitted carbon-dioxide from the atmosphere and therefore greatly reduce the effect of anthropogenic induced climate change. For that reason understanding their response to climate change is of great importance. Efforts to implement variational data assimilation routines with functional ecology models and land surface models have been limited, with sequential and Markov chain Monte Carlo data assimilation methods being prevalent. When data assimilation has been used with models of carbon balance, background "prior" errors and observation errors have largely been treated as independent and uncorrelated. Correlations between background errors have long been known to be a key aspect of data assimilation in numerical weather prediction. More recently, it has been shown that accounting for correlated observation errors in the assimilation algorithm can considerably improve data assimilation results and forecasts. In this paper we implement a 4D-Var scheme with a simple model of forest carbon balance, for joint parameter and state estimation and assimilate daily observations of Net Ecosystem CO2 Exchange (NEE) taken at the Alice Holt forest CO2 flux site in Hampshire, UK. We then investigate the effect of specifying correlations between parameter and state variables in background error statistics and the effect of specifying correlations in time between observation error statistics. The idea of including these correlations in time is new and has not been previously explored in carbon balance model data assimilation. In data assimilation, background and observation error statistics are often described by the background error covariance matrix and the observation error covariance matrix. We outline novel methods for creating correlated versions of these matrices, using a set of previously postulated dynamical constraints to include correlations in the background error statistics and a Gaussian correlation

  14. Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As carbon sinks, forests are increasingly becoming important trading commodities in carbon trading markets. However, disturbances such as fire, hurricanes and herbivory can lead to forests being sources rather than sinks of carbon. Here, we investigate the carbon balance of an oak/pine forest in the...

  15. Carbon, nitrogen, and phosphorus transport by world rivers

    SciTech Connect

    Meybeck, M.

    1982-04-01

    The various forms (dissolved and particulate, organic and inorganic) of carbon, nitrogen, and phosphorus in world rivers are reviewed from literature data. Natural levels are based mainly on major rivers for the subarctic and tropical zones which are still unpolluted and on smaller streams for the temperate zone. Atmospheric fallout is also reviewed. Natural contents of dissolved organic carbon (DOC) are mainly dependent on environmental conditions: DOC varies from 1 mg 1/sup -1/ in the mountainous alpine environments to 20 mg 1/sup -1/ in some taiga rivers. The world DOC average is 5.75 mg l/sup -1/. Nitrogen forms include dissolved organic nitrogen (DON), dissolved inorganic nitrogen (DIN = N - NH/sub 4//sup +/ + N - NO/sub 3//sup -/ + N - NO/sub 2//sup -/), and particulate organic nitrogen (PON). Natural levels are very low: DIN = 120 ..mu..g 1/sup -1/ of which only 15 percent is present as ammonia, and 1 percent as nitrite. Phosphorus is naturally present in very low amounts: around 10 ..mu..g 1/sup -1/ for P-PO/sub 4//sup 3/ and 25 ..mu..g 1/sup -1/ for total dissolved phosphorus (TDP which includes the organic form). The average nutrient content of rains has been estimated with a set of unpolluted stations: P - PO/sub 4/ = 5 ..mu..g 1/sup -1/, TDP = 10, N - NO/sub 2/ = 5, N - NH/sub 4/ = 225, DON = 225, and N - NO/sub 3/ = 175 ..mu..g 1/sup -1/. TOC levels are probably around several mg 1/sup -1/. These contents are very similar to those found in unpolluted rivers. Man's influence on surface waters has now greatly increased natural nutrient levels. Total dissolved P and N have globally increased by a factor of two and locally (Western Europe, North America) by factors of 10 to 50. These increases were found to be directly proportional to the watershed population and to its energy consumption.

  16. Pathways of nitrogen assimilation in cowpea nodules studied using /sup 15/N/sub 2/ and allopurinol. [Vigna unguiculata L. Walp. cv Vita

    SciTech Connect

    Atkins, C.A.; Storer, P.J.; Pate, J.S.

    1988-01-01

    In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo (3,4-d)pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (vigna unguiculata L. Walp. cv Vita 3) formed (/sup 15/N)xanthine from /sup 15/N/sub 2/ at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.87.99.2) activity. Negligible /sup 15/N -labeling of asparagine from /sup 15/N/sub 2/ was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery.

  17. Four Components of the Conjugated Redox System in Organisms: Carbon, Nitrogen, Sulfur, Oxygen.

    PubMed

    Tereshina, E V; Laskavy, V N; Ivanenko, S I

    2015-09-01

    C1 compounds participate in various metabolic processes and regulations including DNA methylation. Formaldehyde (FA), a product of methyl group oxidation, is highly cytotoxic. In the cell, there are two pathways of its utilization: assimilation and oxidation. Formaldehyde displays cytotoxicity, and therefore its oxidation is considered as detoxification. The sensitivity to the threshold concentration of FA we regard as an indication of its major role in biosystem functioning. A model of a three-component conjugated redox system is proposed in which the methyl group oxidation pathway is an archaic and conservative donor of protons and electrons, the reduction of O2 serves as an acceptor, and the arginine amino group is used for production of both urea and nitric oxide (the donor and acceptor, respectively). The fourth component of the redox system is glutathione, which maintains redox balance. The three-level system of proton donors includes the oxidation of a methyl group (first level), the oxidation of acetate in mitochondria (second level), and glucose catabolism in the pentose phosphate pathway (third level). The whole redox system is united by the sulfhydryl groups of cysteines, glutathione, thioredoxin, and α-lipoic acid. The central regulatory role in this redox system belongs to glutathione-dependent formaldehyde dehydrogenase, which controls FA binding with tetrahydrofolic acid, arginine methylation, and denitrosation of sulfhydryl groups. The conjugated redox system was formed during evolution as a union of separate redox cycles of carbon, nitrogen, sulfur, and oxygen.

  18. Characterizing drought-induced changes in active microbial communities and recently assimilated carbon transferred belowground in a forest understory

    NASA Astrophysics Data System (ADS)

    von Rein, Isabell; Kayler, Zachary; Gessler, Arthur

    2013-04-01

    Greenhouse gas induced global warming is expected to result in droughts of longer duration and higher intensity. Since droughts can disturb ecosystem interconnections, the investigation of ecosystem responses is crucial. Nonetheless, little is known about how changes in water availability affect ecosystem interconnections, e.g. the plant-microorganism response towards a drought event. We hypothesize that there is a shift in the microbial community structure and activity under drought when compared to a well-watered control. Moreover, we assume that changes seen at the microbial level are linked to plant carbon (C) assimilation and transport. We expect reduced C assimilation in plants under drought and a subsequent weakening in the coupling between the plant and belowground processes. How do microbial communities that depend on the rhizodeposited C provided by plants react to a reduction in exudate availability? To answer this question, three intact soil monoliths (70x70x20cm) with their natural understory vegetation were taken from a spruce forest in Hainich, Germany and transferred to a climate chamber. Half of the monoliths are exposed to drought whereas the other half is kept well-watered. The monoliths are pulse labeled with 13CO2 and the label is traced through the plant-soil system. Plants, roots and soil are sampled after labeling and analyzed for their isotopic composition. Pyrosequencing and PLFA-SIP (Phospholipid fatty acids stable isotope probing) are performed to detect changes in the microbial community structure and in the composition of the metabolically active microorganisms, respectively. We will discuss our first results concerning the effects of drought on understory carbon partitioning and the impact of drought on carbon availability to soil microorganisms.

  19. Effect of long-term drought on carbon allocation and nitrogen uptake of Pinus sylvestris seedlings

    NASA Astrophysics Data System (ADS)

    Pumpanen, Jukka; Aaltonen, Heidi; Lindén, Aki; Köster, Kajar; Biasi, Christina; Heinonsalo, Jussi

    2015-04-01

    Weather extremes such as drought events are expected to increase in the future as a result of climate change. The drought affects the allocation of carbon assimilated by plants e.g. by modifying the root to shoot ratio, amount of fine roots and the amount of mycorrhizal fungal hyphae. We studied the effect of long term drought on the allocation of carbon in a common garden experiment with 4-year-old Pinus sylvestris seedlings. Half of the seedlings were exposed to long-term drought by setting the soil water content close to wilting point for over two growing seasons whereas the other half was grown in soil close to field capacity. We conducted a pulse labelling with 13CO2 in the end of the study by injecting a known amount of 13C enriched CO2 to the seedlings and measuring the CO2 uptake and distribution of 13C to the biomass of the seedlings and to the root and rhizosphere respiration. In addition, we studied the effect of drought on the decomposition of needle litter and uptake of nitrogen by 15N labelled needles buried in the soil in litter bags. The litterbags were collected and harvested in the end of the experiment and the changes in microbial community in the litterbags were studied from the phospholipid fatty acid (PLFA) composition. We also determined the 15N isotope concentrations from the needles of the seedlings to study the effect of drought on the nitrogen uptake of the seedlings. Our results indicate that the drought had a significant effect both on the biomass allocation of the seedlings and on the microbial species composition. The amount of carbon allocated belowground was much higher in the seedlings exposed to drought compared to the control seedlings. The seedlings seemed to adapt their carbon allocation to long-term drought to sustain adequate needle biomass and water uptake. The seedlings also adapted their osmotic potential and photosynthesis capacity to sustain the long-term drought as was indicated by the measurements of osmotic potential

  20. Exploring the Sensitivity of Terrestrial Carbon Sources and Sinks to Nitrogen Cycle Processes

    NASA Astrophysics Data System (ADS)

    Kheshgi, H. S.; Yang, X.; Jain, A.

    2009-12-01

    The sensitivity of terrestrial carbon sources and sinks to modeled nitrogen-cycle processes is explored and observational constraints considered to advance understanding of model differences and the uncertainty of CO2 projections. The magnitude of worldwide terrestrial carbon sources and sinks driven by changing climate and CO2 fertilization have been found to be attenuated by the dynamics of the nitrogen cycle, with the strength of this attenuation effect differing between coupled nitrogen-carbon-cycle models (Jain et al., GBC in press, 2009; Sokolov et al., J. of Climate, 2008; Thornton et al., GBC, 2007). In this study, a terrestrial nitrogen-carbon-cycle model (Yang et al., GBC in press, 2009) was used to evaluate how the nitrogen cycle influences terrestrial carbon sinks and sources in response to observation-based changes in atmospheric CO2, climate, nitrogen inputs, and land use over the 20th century and scenarios for these drivers over the 21st century. Modeled global carbon uptake by the terrestrial biosphere is found to be sensitive to, for example, the extent of nitrogen limitation in the tropics, the extent plant C/N ratio increase under nitrogen limitation and its consequent effects on productivity, and the change of rates of nitrogen inputs (e.g. biological nitrogen fixation and nitrogen deposition) and outputs (e.g. leaching and denitrification). Greater nitrogen limitation in tropical regions, reduced ability of plants to grow with increased C/N ratio, and decreased rates of nitrogen inputs and outputs (equal in equilibrium) each strengthen the nitrogen cycle’s effect of reducing carbon sinks and sources. Application of observation-based constraints to these nitrogen-cycle processes gives an estimate of the contribution of uncertainty in these processes to the uncertainty of CO2 projections.

  1. Contrasted reactivity to oxygen tensions in Frankia sp. strain CcI3 throughout nitrogen fixation and assimilation.

    PubMed

    Ghodhbane-Gtari, Faten; Hezbri, Karima; Ktari, Amir; Sbissi, Imed; Beauchemin, Nicholas; Gtari, Maher; Tisa, Louis S

    2014-01-01

    Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection. PMID:24987692

  2. Contrasted Reactivity to Oxygen Tensions in Frankia sp. Strain CcI3 throughout Nitrogen Fixation and Assimilation

    PubMed Central

    Ghodhbane-Gtari, Faten; Hezbri, Karima; Ktari, Amir; Sbissi, Imed; Beauchemin, Nicholas; Gtari, Maher; Tisa, Louis S.

    2014-01-01

    Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection. PMID:24987692

  3. Nitrogen Attenuation of Terrestrial Carbon Cycle Response to Global Environmental Change

    NASA Astrophysics Data System (ADS)

    Jain, A.; Yang, X.; Kheshgi, H.; McGuire, A. D.; Post, W. M.

    2008-12-01

    The magnitude of worldwide terrestrial carbon sinks driven by CO2 fertilization are found to be attenuated by nitrogen dynamics. However, the terrestrial nitrogen cycle also has the potential to interact with carbon cycle responses to changes in climate, nitrogen inputs, and land use. In this study, a terrestrial carbon and nitrogen cycle model was used to evaluate how the nitrogen cycle influences the terrestrial carbon sinks in the 20th Century in response to changes in atmospheric CO2, climate, nitrogen inputs, and land use. Two series of simulations were performed. First, the model of the nitrogen cycle was fixed at the 1765 levels. Next, nitrogen availability was allowed to vary dynamically according to plant nitrogen supply and demand. These simulations were driven by a single driving variable. Comparisons of these applications of the model with a fully dynamic nitrogen cycle to applications in which nitrogen availability was fixed at 1765 levels revealed that in 1990s there was (1) a decreased sink associated with increasing atmospheric CO2, (2) a decreased source associated with changes in climate, (3) an increased sink associated with nitrogen inputs, and (4) an increased source associated with changes in land use. While the analysis for individual driving variables indicates that during the 1990s the role of the nitrogen cycle in changing atmospheric CO2, climate, nitrogen and land use counterbalance each other to some extent, model applications that simultaneously considered all of these effects indicate that the nitrogen and carbon cycles are in fact currently playing an important role in changing the terrestrial CO2 sinks at the global scale. Results indicate the importance of including the nitrogen cycle in coupled carbon-climate system models.

  4. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi

    2015-04-01

    Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the

  5. US EPA (Environmental Protection Agency) perspective on AOC (assimilable organic carbon) research as related to coliform colonization and compliance problems

    SciTech Connect

    Reasoner, D.J.; Rice, E.W.

    1989-01-01

    The biological stability of treated drinking water has become a major concern for water utilities. The U.S. E.P.A. is concerned from the perspective of coliform MCL compliance and remediation of coliform biofilm problems. The levels of readily assimilable nutrients present in treated water are affected by water treatment processes, but of greatest concern are those processes, such as ozonation, that cause increases in the levels of assimilable organic carbon (AOC) and therefore contribute to biological instability of the water. Thus, the combined use of ozonation (pre-oxidant) and a lower disinfectant residual as an approach to reducing disinfectant byproducts may result in increased bacterial growth, including coliforms, in the distribution system. Information is needed on: the AOC flux level that stimulate coliform growth in biofilm: the specific nutrients and concentrations that can stimulate growth of both coliforms and HPC; treatment strategies to reduce AOC levels and strategies to effectively control biofilm formation where AOC levels cannot be reduced.

  6. Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants.

    PubMed

    Lou, Jie-Chung; Lin, Chung-Yi; Han, Jia-Yun; Tseng, Wei-Biu; Hsu, Kai-Lin; Chang, Ting-Wei

    2012-06-01

    Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms and has large impacts on the quality of drinking water in a distribution system. With respect to the effectiveness of traditional and advanced processing methods in removing trace organic compounds (including TOC, DOC, UV(254), and AOC) from water, experimental results indicate that the removal rate of AOC at the Cheng Ching Lake water treatment plant (which utilizes advanced water treatment processes, and is hereinafter referred to as CCLWTP) is 54%, while the removal rate of AOC at the Gong Yuan water treatment plant (which uses traditional water treatment processes, and is hereinafter referred to as GYWTP) is 36%. In advanced water treatment units, new coagulation-sedimentation processes, rapid filters, and biological activated carbon filters can effectively remove AOC, total organic carbon (TOC), and dissolved organic carbon (DOC). In traditional water treatment units, coagulation-sedimentation processes are most effective in removing AOC. Simulation results and calculations made using the AutoNet method indicate that TOC, TDS, NH(3)-N, and NO(3)-N should be regularly monitored in the CCLWTP, and that TOC, temperature, and NH(3)-N should be regularly monitored in the GYWTP.

  7. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    SciTech Connect

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu E-mail: zouguifu@suda.edu.cn; Gao, Peng; Zhang, Ke-Qin E-mail: zouguifu@suda.edu.cn; Du, Dezhuang; Guo, Jun

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  8. Regulation of nitrogen uptake and assimilation: Effects of nitrogen source, root-zone pH, and aerial CO2 concentration on growth and productivity of soybeans

    NASA Technical Reports Server (NTRS)

    Raper, C. D.; Tolley-Henry, L.

    1989-01-01

    An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.

  9. Soil nitrogen and carbon impacts of raising chickens on pasture

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Leach, A.; Tang, J.; Hastings, M. G.; Galloway, J. N.

    2014-12-01

    Chicken is the most consumed meat in the US, and production continues to intensify rapidly around the world. Chicken manure from confined feeding operations is typically applied in its raw form to nearby croplands, resulting in hotspots of soil nitrous oxide (N2O) emissions. Pasture-raised chicken is an alternative to industrial production and is growing in popularity with rising consumer demand for more humanely raised protein sources. In this agricultural model, manure is deposited directly onto grassland soils where it is thought to increase pools of soil carbon and nitrogen. The fate of manure nitrogen from pasture-raised chicken production remains poorly understood. We conducted a controlled, replicated experiment on a permaculture farm in Charlottesville, Virginia (Timbercreek Organics) in which small chicken coops (10 ft x 12 ft) were moved daily in a pasture. We measured manure deposition rates, soil inorganic nitrogen pools, soil moisture, and soil N2O and CO2 emissions. Measurements were made for the 28-day pasture life of three separate flocks of chickens in the spring, summer, and fall. Each flock consisted of approximately 200-300 chickens occupying three to five coops (~65 chickens/coop). Measurements were also made in paired ungrazed control plots. Manure deposition rates were similar across flocks and averaged 1.5 kgdrywt ha-1 during the spring grazing event and 4.0 kgdrywt ha-1 during the summer and fall grazing events. Manure deposition was relatively constant over the four weeks pasture-lifetime of the chickens. Compared to control plots, grazed areas exhibited higher soil N2O and CO2 fluxes. The magnitude of these fluxes diminished significantly over the four-week span. Soil gas fluxes significantly increased following rainfall events. For a given rainfall event, higher fluxes were observed from transects that were grazed more recently. Soil gaseous reactive nitrogen losses were less in this pasture system compared to cultivated field amended

  10. Responses of Leaf-level Carbon Assimilation and Transpiration to Root-zone Water Potential Changes in a Subtropical Tree Species

    NASA Astrophysics Data System (ADS)

    Cicheng, Z.; Guan, H.; Han, G.; Zhang, X.

    2013-12-01

    Photosynthetic carbon assimilation in terrestrial ecosystems significantly contributes to global carbon balance in the atmosphere. While vegetation photosynthesizes to fix CO2, it simultaneously transpires H2O. These two interdependent processes are regulated by leaf stomata which are sensitive to environmental conditions (such as root zone soil moisture). Knowledge of the responses of leaf-level transpiration and carbon assimilation to a change of root-zone soil moisture condition is important to understand how these processes influence water balance and carbon sequestration in terrestrial ecosystems, and to understand the capacity of trees to cope with future climate changes.We will present the results of a one-year observational study on a subtropical evergreen broadleaf tree species (Osmanthus fragrans) in the central south China. The observations were carried out on two 8-year Osmanthus fragrans trees in a plantation site from 1 Sep, 2012 to 31 Aug, 2013. A portable infrared gas exchange analyzer (Li-6400, Li-COR, Inc., Lincoln, Nebraska, USA) was used to measure leaf photosynthesis and leaf transpiration on clear days. Root zone soil water potential was estimated from predawn stem water potential using stem psychrometers (ICT, Australia). Sap flow and micrometeorological data were also collected. The results show that the average leaf carbon assimilation rate at light saturation decreases quickly with the root zone water potential from 0 to -1 MPa, and slowly after the root zone water potential falls below -1 MPa. The average leaf transpiration at light saturation shows a similar pattern. Leaf-level water use efficiency increases slowly with a decrease of root-zone water potential from 0 to -1 MPa, and keeps constant when the root zone gets drier. This relationship provides a potential to estimate whole-tree carbon assimilation from sap flow measurements. Leaf assimilation rates at light saturation in early morning vs. root-zone water potential for Osmanthus

  11. Atmospheric nitrogen deposition promotes carbon loss from peat bogs.

    PubMed

    Bragazza, Luca; Freeman, Chris; Jones, Timothy; Rydin, Håkan; Limpens, Juul; Fenner, Nathalie; Ellis, Tim; Gerdol, Renato; Hájek, Michal; Hájek, Tomás; Iacumin, Paola; Kutnar, Lado; Tahvanainen, Teemu; Toberman, Hannah

    2006-12-19

    Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from approximately 0.2 to 2 g.m(-2).yr(-1). We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased N availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.

  12. The Sub-Arctic Carbon Cycle: Assimilating Multi-Scale Chamber, Tower and Aircraft Flux Observations into Ecological Models

    NASA Astrophysics Data System (ADS)

    Hill, T. C.; Stoy, P. C.; Baxter, R.; Clement, R.; Disney, M.; Evans, J.; Fletcher, B.; Gornall, J.; Harding, R.; Hartley, I. P.; Ineson, P.; Moncrieff, J.; Phoenix, G.; Sloan, V.; Poyatos, R.; Prieto-Blanco, A.; Subke, J.; Street, L.; Wade, T. J.; Wayolle, A.; Wookey, P.; Williams, M. D.

    2009-12-01

    The Arctic has already warmed significantly, and warming of 4-7 °C is expected over the next century. However, linkages between climate, the carbon cycle, the energy balance, and hydrology mean that the response of arctic ecosystems to these changes remains poorly understood. The release by warming of considerable but poorly quantified carbon stores from high latitude soils could accelerate the build-up of atmospheric CO2. The Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project, part of International Polar Year, was designed to improve predictions of the response of the Arctic terrestrial biosphere to climate change. The project operated at two sites (Abisko, Sweden and Kevo, Finland) over multiple years, utilising roving flux chambers (CO2/CH4), five flux towers (CO2/CH4/H2O) and a research aircraft equipped for fluxes (CO2/H2O) to directly measure multi-scale exchanges in-conjunction with other observations (both plot level and satellite). We show how these data can be combined using data assimilation approaches to address the question “what controls the temporal and spatial variability of carbon exchange by sub-Arctic ecosystems?” Eddy covariance measurements of mire methane exchanges agreed with chamber estimates, indicating that mires were strong summer sources, while birch woodland was a weak sink. However, remote sensing of mire extent was limited at resolutions > 30 m, and variations in sink/source activity suggested that upscaling CH4 exchanges (from chamber, to tower, to landscape) required higher resolution (ideally <10 m) landcover data in heterogeneous Arctic landscapes. Chamber and eddy covariance measurements of CO2 exchange recorded similar seasonal timing over a range of vegetation types. Birch woodlands had the greatest range of CO2 exchanges compared to tundra and mires. The challenge of measuring continuous fluxes across the full annual cycle, and inherent uncertainties in the methods, complicates the determination of

  13. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-09-01

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere. PMID:21886160

  14. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-08-31

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.

  15. Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice.

    PubMed

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2014-01-01

    Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield.

  16. Accumulated Expression Level of Cytosolic Glutamine Synthetase 1 Gene (OsGS1;1 or OsGS1;2) Alter Plant Development and the Carbon-Nitrogen Metabolic Status in Rice

    PubMed Central

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2014-01-01

    Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield. PMID:24743556

  17. Organo-mineral complexation alters carbon and nitrogen cycling in stream microbial assemblages

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Wanek, Wolfgang; Prommer, Judith; Mooshammer, Maria; Battin, Tom

    2014-05-01

    Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. microbial utilization as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids. Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation

  18. Does canopy nitrogen uptake enhance carbon sequestration by trees?

    PubMed

    Nair, Richard K F; Perks, Micheal P; Weatherall, Andrew; Baggs, Elizabeth M; Mencuccini, Maurizio

    2016-02-01

    Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1)  yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies.

  19. Does canopy nitrogen uptake enhance carbon sequestration by trees?

    PubMed

    Nair, Richard K F; Perks, Micheal P; Weatherall, Andrew; Baggs, Elizabeth M; Mencuccini, Maurizio

    2016-02-01

    Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1)  yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies. PMID:26391113

  20. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes.

    PubMed

    Sharifi, Tiva; Hu, Guangzhi; Jia, Xueen; Wågberg, Thomas

    2012-10-23

    Heat treating nitrogen-doped multiwalled carbon nanotubes containing up to six different types of nitrogen functionalities transforms particular nitrogen functionalities into other types which are more catalytically active toward oxygen reduction reactions (ORR). In the first stage, the unstable pyrrolic functionalities transform into pyridinic functionalities followed by an immediate transition into quaternary center and valley nitrogen functionalities. By measuring the electrocatalytic oxidation reduction current for the different samples, we achieve information on the catalytic activity connected to each type of nitrogen functionality. Through this, we conclude that quaternary nitrogen valley sites, N-Q(valley), are the most active sites for ORR in N-CNTs. The number of electrons transferred in the ORR is determined from ring disk electrode and rotating ring disk electrode measurements. Our measurements indicate that the ORR processes proceed by a direct four-electron pathway for the N-Q(valley) and the pyridinic sites while it proceeds by an indirect two-electron pathway via hydrogen peroxide at the N-Q(center) sites. Our study gives both insights on the mechanism of ORR on different nitrogen functionalities in nitrogen-doped carbon nanostructures and it proposes how to treat samples to maximize the catalytic efficiency of such samples.

  1. Transport and Optical Investigations of Substitutional and Trapped Nitrogen in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Qajar, Ali; Ma, Danhao; Rajagopalan, Ramakrishnan; Adu, Kofi; Sumanasekera, Gamini

    2015-03-01

    Multiwall carbon nanotubes that contain nitrogen were synthesized using acetonitrile as the precursor and ferrocene as the catalysis. X-ray photoelectron spectroscopy detected ~ 2 atomic% nitrogen in the carbon nanotubes with ~ 1 atomic% of the nitrogen as substitutionally doped in the carbon nanotubes skeletal structure and 1 atomic% present as gaseous nitrogen trapped inside the nanotubes. Investigation of the temperature dependent transport properties (thermoelectric power and resistivity) and the phonon modes of the CNTs and the trapped gaseous nitrogen are used to further substantiate the XPS results. High pressure adsorption of CO2 at room temperature also confirmed no porosity accessible for CO2 molecules. Transmission electron microscopy (TEM) showed presence of corrugations and wisps in the carbon nanotubes framework attributed to the curvature induced by nitrogen atoms. This Work is Supported by Penn State Altoona Undergraduate Research Sponsored Program and Penn State Materials Research Institute, University Park.

  2. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    SciTech Connect

    Tamilarasan, P.; Ramaprabhu, Sundara

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  3. Controlling the volumetric parameters of nitrogen-doped carbon nanotube cups.

    PubMed

    Allen, Brett L; Keddie, Matthew B; Star, Alexander

    2010-07-01

    Analogous to multiwalled carbon nanotubes, nitrogen-doped carbon nanotube cups (NCNCs) have been synthesized with defined volumetric parameters (diameter and segment lengths) by controlling the catalyst particle size and the concentration of nitrogen precursor utilized in the chemical vapor deposition (CVD) reaction, allowing for tailored interior cavity space of cross-linked NCNCs, i.e. nanocapsules.

  4. Device for detection and identification of carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  5. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  6. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    SciTech Connect

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; Boguslawski, Piotr; Bernholc, J.

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is a deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.

  7. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    DOE PAGESBeta

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; Oak Ridge National Lab.; Boguslawski, Piotr; Univ. of Warsaw; Bernholc, J.; Oak Ridge National Lab.

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less

  8. Low Carbon Costs of Nitrogen Fixation in Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Gei, M. G.; Powers, J. S.

    2015-12-01

    Legume tree species with the ability to fix nitrogen (N) are highly diverse and widespread across tropical forests but in particular in the dry tropics. Their ecological success in lower latitudes has been called a "paradox": soil N in the tropics is thought to be high, while acquiring N through fixation incurs high energetic costs. However, the long held assumptions that N fixation is limited by photosynthate and that N fixation penalizes plant productivity have rarely been tested, particularly in legume tree species. We show results from three different experiments where we grew eleven species of tropical dry forest legumes. We quantified plant biomass and N fixation using nodulation and the 15N natural isotope abundance (Ndfa or nitrogen derived from fixation). These data show little evidence for costs of N fixation in seedlings grown under different soil fertility, light regimes, and with different microbial communities. Seedling productivity did not incur major costs because of N fixation: indeed, the average slope between Ndfa and biomass was positive (range in slopes: -0.03 to 0.3). Moreover, foliar N, which varied among species, was tightly constrained and not correlated with Ndfa. This finding implies that legume species have a target N that does not change depending on N acquisition strategies. The process of N fixation in tropical legumes may be more carbon efficient than previously thought. This view is more consistent with the hyperabundance of members of this family in tropical ecosystems.

  9. Carbon Accumulation and Nitrogen Pool Recovery during Transitions from Savanna to Forest in Central Brazil

    NASA Astrophysics Data System (ADS)

    Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.

    2014-12-01

    The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical

  10. Particulate organic carbon and nitrogen export from major Arctic rivers

    NASA Astrophysics Data System (ADS)

    McClelland, J. W.; Holmes, R. M.; Peterson, B. J.; Raymond, P. A.; Striegl, R. G.; Zhulidov, A. V.; Zimov, S. A.; Zimov, N.; Tank, S. E.; Spencer, R. G. M.; Staples, R.; Gurtovaya, T. Y.; Griffin, C. G.

    2016-05-01

    Northern rivers connect a land area of approximately 20.5 million km2 to the Arctic Ocean and surrounding seas. These rivers account for ~10% of global river discharge and transport massive quantities of dissolved and particulate materials that reflect watershed sources and impact biogeochemical cycling in the ocean. In this paper, multiyear data sets from a coordinated sampling program are used to characterize particulate organic carbon (POC) and particulate nitrogen (PN) export from the six largest rivers within the pan-Arctic watershed (Yenisey, Lena, Ob', Mackenzie, Yukon, Kolyma). Together, these rivers export an average of 3055 × 109 g of POC and 368 × 109 g of PN each year. Scaled up to the pan-Arctic watershed as a whole, fluvial export estimates increase to 5767 × 109 g and 695 × 109 g of POC and PN per year, respectively. POC export is substantially lower than dissolved organic carbon export by these rivers, whereas PN export is roughly equal to dissolved nitrogen export. Seasonal patterns in concentrations and source/composition indicators (C:N, δ13C, Δ14C, δ15N) are broadly similar among rivers, but distinct regional differences are also evident. For example, average radiocarbon ages of POC range from ~2000 (Ob') to ~5500 (Mackenzie) years before present. Rapid changes within the Arctic system as a consequence of global warming make it challenging to establish a contemporary baseline of fluvial export, but the results presented in this paper capture variability and quantify average conditions for nearly a decade at the beginning of the 21st century.

  11. Modelling carbon and nitrogen turnover in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  12. Novel Tool for Simultaneous Carbon and Nitrogen Stable Isotope Analyses in Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Federherr, E.; Schmidt, T. C.; Cerli, C.; Kalbitz, K.; Kupka, H. J.; Lange, L.; Dunsbach, R.; Panetta, R. J.; Kasson, A.

    2014-12-01

    Investigation of transformation and transport processes of carbon and nitrogen in ecosystems plays an important role to understand and predict their dynamics and role in biogeochemistry. Consequently, suitable and accurate methods for concentration as well as stable isotopic composition analysis of carbon and nitrogen in waters and aqueous solutions play a significant role. Traditionally dissolved carbon and nitrogen stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analysis isotope ratio mass spectrometry (EA/IRMS) or modified wet chemical oxidation based device coupled to IRMS. Recently we presented a high temperature combustion system (HTC), which significantly improves upon these methods for dissolved organic carbon (DOC) SIA. The analysis of δ15N of dissolved nitrogen still has large limitations. Its low concentration makes EA/IRMS laborious, time and sample consuming. Systems based on wet chemical oxidation-IRMS bare the risk of sensitivity loss as well as of fractionation due to incomplete mineralization. In addition, the high solubility of molecular nitrogen in water remains a technical challenge, as it requires additional separation steps to distinguish between physically dissolved nitrogen and bound nitrogen. Further development of our HTC system lead to the implementation of the δ15N determination which now coupled, into a novel total organic carbon (TOC) analyzing system, especially designed for SIA of both, carbon and nitrogen. Integrated, innovative purge and trap technique (peak focusing) for nitrogen with aluminosilicate adsorber and peltier element based cooling system, in combination with high injection volume (up to 3 mL) as well as favorable carrier gas flow significantly improves sensitivity. Down to 1ppm and less total nitrogen can be measured with precision of ≤ 0.5‰. To lower the background caused by physically dissolved nitrogen new, membrane-vacuum based, degasser was designed

  13. Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems

    NASA Astrophysics Data System (ADS)

    Zhou, Z. H.; Wang, C. K.

    2015-07-01

    Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic) and nitrogen (Nmic) and related parameters from 207 independent studies published during the past 15 years across China's forest ecosystems. Our objectives were to (1) examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates) by climate zones and management regimes for these forests; and (2) identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg-1), Nmic (60.1 mg kg-1), Cmic : Nmic ratio (8.25), Cmic / Csoil rate (1.92 %), and Nmic/ Nsoil rate (3.43 %) across China's forests, with coefficients of variation varying from 61.2 to 95.6 %. The natural forests had significantly greater Cmic and Nmic than the planted forests, but had less Cmic : Nmic ratio and Cmic / Csoil rate. Soil resources and climate together explained 24.4-40.7 % of these variations. The Cmic : Nmic ratio declined slightly with the Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plastic homeostasis of microbial carbon-nitrogen stoichiometry. The Cmic/ Csoil and Nmic / Nsoil rates were responsive to soil resources and climate differently, suggesting that soil microbial assimilation of carbon and nitrogen be regulated by different mechanisms. We conclude that soil resources and climate jointly drive microbial growth and metabolism, and also emphasize the necessity of appropriate procedures for data compilation and standardization in cross-study syntheses.

  14. Assimilation of aged organic carbon in a glacial river food web

    NASA Astrophysics Data System (ADS)

    Fellman, J.; Hood, E. W.; Raymond, P. A.; Bozeman, M.; Hudson, J.; Arimitsu, M.

    2013-12-01

    Identifying the key sources of organic carbon supporting fish and invertebrate consumers is fundamental to our understanding of stream ecosystems. Recent laboratory bioassays highlight that aged organic carbon from glacier environments is highly bioavailable to stream bacteria relative to carbon originating from ice-free areas. However, there is little evidence suggesting that this aged, bioavailable organic carbon is also a key basal carbon source for stream metazoa. We used natural abundance of Δ14C, δ13C, and δ15N to determine if fish and invertebrate consumers are subsidized by aged organic carbon in a glacial river in southeast Alaska. We collected biofilm, leaf litter, three different species of macroinvertebrates, and resident juvenile salmonids from a reference stream and two sites (one site is directly downstream of the glacial outflow and one site is upstream of the tidal estuary) on the heavily glaciated Herbert River. Key producers, fish, and invertebrate consumers in the reference stream had carbon isotope values that ranged from -26 to -30‰ for δ13C and from -12 to 53‰ for Δ14C, reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial sites was highly Δ14C depleted (-203 to -215‰) relative to the reference site. Although biofilm may consist of both bacteria and benthic algae utilizing carbon depleted in Δ14C, δ13C values for biofilm (-24.1‰), dissolved inorganic carbon (-5.9‰), and dissolved organic carbon (-24.0‰) suggest that biofilm consist of bacteria sustained in part by glacier-derived, aged organic carbon. Invertebrate consumers (mean Δ14C of -80.5, mean δ13C of -26.5) and fish (mean Δ14C of -63.3, mean δ13C of -25.7) in the two glacial sites had carbon isotope values similar to biofilm. These results similarly show that aged organic carbon is incorporated into the metazoan food web. Overall, our findings indicate that continued watershed deglaciation and

  15. Nitrogen and Carbon Budgets for Three Boreal Forest Watersheds

    NASA Astrophysics Data System (ADS)

    Petrone, K. C.; Hinzman, L. D.; Jones, J. B.

    2001-12-01

    We examined the annual export of dissolved C, N and major cations and anions during the 1998-1999 and 2000-2001 water years in the Caribou Poker Creeks Research Watershed (CPCRW) in interior Alaska. During the 2000-2001 water year three different watersheds underlain by 3, 18 and 50% permafrost were examined while only the medium (18%) permafrost watershed was examined during 1998-1999. Inputs were calculated from an on-site National Atmospheric Deposition Program (NADP) station. Total inorganic nitrogen wet deposition for the 1998-1999 water year was 0.2 kg ha-1yr-1. Annual N export from the stream for this period was 1.1 kg ha-1yr-1 of which 70% was inorganic N. Carbon export as dissolved organic carbon (DOC) was 7.5 kg ha-1yr-1. Concentrations of DOC increased with discharge while nitrate showed positive and negative relationships with discharge, depending on season and the contributing area for peak flow. For the 1998-1999 budget, N export was greater than precipitation inputs, suggesting either that the watershed is a net source for N or we are missing an important N input. Further examination of the 2000-2001 season for watersheds with varying permafrost coverage will allow us do determine if this N balance persists.

  16. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  17. Predicted phase diagram of boron-carbon-nitrogen

    NASA Astrophysics Data System (ADS)

    Zhang, Hantao; Yao, Sanxi; Widom, Michael

    2016-04-01

    Noting the structural relationships between phases of carbon and boron carbide with phases of boron nitride and boron subnitride, we investigate their mutual solubilities using a combination of first-principles total energies supplemented with statistical mechanics to address finite temperatures. Thus we predict the solid-state phase diagram of boron-carbon-nitrogen (B-C-N). Owing to the large energy costs of substitution, we find that the mutual solubilities of the ultrahard materials diamond and cubic boron nitride are negligible, and the same for the quasi-two-dimensional materials graphite and hexagonal boron nitride. In contrast, we find a continuous range of solubility connecting boron carbide to boron subnitride at elevated temperatures. An electron-precise ternary compound B13CN consisting of B12 icosahedra with NBC chains is found to be stable at all temperatures up to melting. It exhibits an order-disorder transition in the orientation of NBC chains at approximately T =500 K. We also propose that the recently discovered binary B13N2 actually has composition B12.67N2 .

  18. Elevated CO2 influences microbial carbon and nitrogen cycling

    PubMed Central

    2013-01-01

    Background Elevated atmospheric CO2 (eCO2) has been shown to have significant effects on terrestrial ecosystems. However, little is known about its influence on the structure, composition, and functional potential of soil microbial communities, especially carbon (C) and nitrogen (N) cycling. A high-throughput functional gene array (GeoChip 3.0) was used to examine the composition, structure, and metabolic potential of soil microbial communities from a grassland field experiment after ten-year field exposure to ambient and elevated CO2 concentrations. Results Distinct microbial communities were established under eCO2. The abundance of three key C fixation genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide dehydrogenase (CODH) and propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), significantly increased under eCO2, and so did some C degrading genes involved in starch, cellulose, and hemicellulose. Also, nifH and nirS involved in N cycling were significantly stimulated. In addition, based on variation partitioning analysis (VPA), the soil microbial community structure was largely shaped by direct and indirect eCO2-driven factors. Conclusions These findings suggest that the soil microbial community structure and their ecosystem functioning for C and N cycling were altered dramatically at eCO2. This study provides new insights into our understanding of the feedback response of soil microbial communities to elevated CO2 and global change. PMID:23718284

  19. Method 440.0 Determination of Carbon and Nitrogen in Sediments and Particulatesof Estuarine/Coastal Waters Using Elemental Analysis

    EPA Science Inventory

    Elemental analysis is used to determine particulate carbon (PC) and particulate nitrogen (PN) in estuarine and coastal waters and sediment. The method measures the total carbon and nitrogen irrespective of source (inorganic or organic).

  20. Importance of Nitrogen Availability on Land Carbon Sequestration in Northern Eurasia during the 21st Century

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Melillo, J. M.; Monier, E.; Sokolov, A. P.; Lu, X.; Zhuang, Q.

    2015-12-01

    Atmospheric nitrogen deposition, nitrogen fixation, and the application of nitrogen fertilizers provide subsidies to land ecosystems that can increase nitrogen availability for vegetation production and thereby influence land carbon dynamics. In addition, enhanced decomposition of soil organic matter (SOM) from warming soils and permafrost degradation may also increase nitrogen availability in Northern Eurasia. Here, we examine how changes in nitrogen availability may influence land carbon dynamics in Northern Eurasia during the 21st century by comparing results for a "business as usual" scenario (the IPCC Representative Concentration Pathways or RCP 8.5) and a stabilization scenario (RCP 4.5) between a version of the Terrestrial Ecosystem Model that does not consider the effects of atmospheric nitrogen deposition, nitrogen fixation and soil thermal dynamics on land carbon dynamics (TEM 4.4) and a version that does consider these dynamics (TEM 6.0). In these simulations, atmospheric nitrogen deposition, nitrogen fixation, and fertilizer applications provide an additional 3.3 Pg N (RCP 4.5) to 3.9 Pg N (RCP 8.5) to Northern Eurasian ecosystems over the 21st century. Land ecosystems retain about 38% (RCP4.5) to 48% (RCP 8.5) of this nitrogen subsidy. Net nitrogen mineralization estimated by TEM 6.0 provide an additional 1.0 Pg N to vegetation than estimated by TEM 4.4 over the 21st century from enhanced decomposition of SOM including SOM formerly protected by permafrost. The enhanced nitrogen availability in TEM 6.0 allows Northern Eurasian ecosystems to sequester 1.8x (RCP 8.5) to 2.4x (RCP 4.5) more carbon over the 21st century than estimated by TEM 4.4. Our results indicate that consideration of nitrogen subsidies and soil thermal dynamics have a large influence on how simulated land carbon dynamics in Northern Eurasia will respond to future changes in climate, atmospheric chemistry, and disturbances.

  1. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  2. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-01-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.

  3. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

    DOE PAGESBeta

    Jian, Siyang; Li, Jianwei; Chen, Ji; Wang, Gangsheng; Mayes, Melanie A.; Dzantor, Kudjo E.; Hui, Dafeng; Luo, Yiqi

    2016-07-08

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less

  4. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells.

    PubMed

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-12-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.

  5. Nitrogen-doped carbon nanotube as a potential metal-free catalyst for CO oxidation.

    PubMed

    Lin, I-Hsiang; Lu, Yu-Huan; Chen, Hsin-Tsung

    2016-04-28

    We elucidate the possibility of nitrogen-doped carbon nanotube as a robust catalyst for CO oxidation. We have performed first-principles calculations considering the spin-polarization effect to demonstrate the reaction of CO oxidation catalyzed by the nitrogen-doped carbon nanotube. The calculations show that O2 species can be partially reduced with charge transfer from the nitrogen-doped carbon nanotube and directly chemisorbed on the C-N sites of the nitrogen-doped carbon nanotube. The partially reduced O2 species at the C-N sites can further directly react with a CO molecule via the Eley-Rideal mechanism with the barriers of 0.45-0.58 eV for the different diameter of nanotube. Ab initio molecular dynamics (AIMD) simulations were performed and showed that the oxidation of CO occurs by the Eley-Rideal mechanism. The relationship between the curvature and reactivity of the nitrogen doped carbon nanotube was also unraveled. It appears that the barrier height of the rate-limiting step depends on the curvature of the nitrogen-doped carbon nanotube in the trend of (3,3)-NCNT < (4,4)-NCNT < (5,5)-NCNT (decreases with increased curvature). Using this relationship, we can predict the barriers for other N-doped carbon nanotubes with different tube diameters. Our results reveal that the nitrogen doped carbon nanomaterials can be a good, low-cost, and metal-free catalyst for CO oxidation.

  6. Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4(+) assimilation and nitrogen derived protective compounds.

    PubMed

    Navarro-León, Eloy; Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2016-07-01

    Zinc (Zn) deficiency is a major problem in agricultural crops of many world regions. N metabolism plays an essential role in plants and changes in their availability and their metabolism could seriously affect crop productivity. The main objective of the present work was to perform a comparative analysis of different strategies against Zn deficiency between two plant species of great agronomic interest such as Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. For this, both species were grown in hydroponic culture with different Zn doses: 10μM Zn as control and 0.01μM Zn as deficiency treatment. Zn deficiency treatment decreased foliar Zn concentration, although in greater extent in B. oleracea plants, and caused similar biomass reduction in both species. Zn deficiency negatively affected NO3(-) reduction and NH4(+) assimilation and enhanced photorespiration in both species. Pro and GB concentrations were reduced in L. sativa but they were increased in B. oleracea. Finally, the AAs profile changed in both species, highlighting a great increase in glycine (Gly) concentration in L. sativa plants. We conclude that L. sativa would be more suitable than B. oleracea for growing in soils with low availability of Zn since it is able to accumulate a higher Zn concentration in leaves with similar biomass reduction. However, B. oleracea is able to accumulate N derived protective compounds to cope with Zn deficiency stress. PMID:27181942

  7. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  8. Gaetice depressus (Crustacea, Varunidae): Species profile and its role in organic carbon and nitrogen flow

    NASA Astrophysics Data System (ADS)

    Wahyudi, A'an. J.; Wada, Shigeki; Aoki, Masakazu; Hama, Takeo

    2015-06-01

    intake flux of organic carbon and nitrogen is used for the total assimilation of G. depressus. Intake flux was also considered as affecting the high dynamism of primary producer consumption. The total population of G. depressus is estimated to consume about 18.4% of primary producer in average throughout the year. Therefore, the turnover time of primary producer by consumption of G. depressus was about five days.

  9. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence.

    PubMed

    Gilson, Angélique; Barthes, Laure; Delpierre, Nicolas; Dufrêne, Éric; Fresneau, Chantal; Bazot, Stéphane

    2014-07-01

    Forest productivity declines with tree age. This decline may be due to changes in metabolic functions, resource availability and/or changes in resource allocation (between growth, reproduction and storage) with tree age. Carbon and nitrogen remobilization/storage processes are key to tree growth and survival. However, studies of the effects of tree age on these processes are scarce and have not yet considered seasonal carbon and nitrogen variations in situ. This study was carried out in a chronosequence of sessile oak (Quercus petraea Liebl.) for 1 year to survey the effects of tree age on the seasonal changes of carbon and nitrogen compounds in several tree compartments, focusing on key phenological stages. Our results highlight a general pattern of carbon and nitrogen function at all tree ages, with carbon reserve remobilization at budburst for growth, followed by carbon reserve formation during the leafy season and carbon reserve use during winter for maintenance. The variation in concentrations of nitrogen compounds shows less amplitude than that of carbon compounds. Storage as proteins occurs later, and mainly depends on leaf nitrogen remobilization and root uptake in autumn. We highlight several differences between tree age groups, in particular the loss of carbon storage function of fine and medium-sized roots with tree ageing. Moreover, the pattern of carbon compound accumulation in branches supports the hypothesis of a preferential allocation of carbon towards growth until the end of wood formation in juvenile trees, at the expense of the replenishment of carbon stores, while mature trees start allocating carbon to storage right after budburst. Our results demonstrate that at key phenological stages, physiological and developmental functions differ with tree age, and together with environmental conditions, influence the carbon and nitrogen concentration variations in sessile oaks. PMID:25122620

  10. Carbon assimilation and accumulation of cyanophycin during the development of dormant cells (akinetes) in the cyanobacterium Aphanizomenon ovalisporum

    PubMed Central

    Sukenik, Assaf; Maldener, Iris; Delhaye, Thomas; Viner-Mozzini, Yehudit; Sela, Dotan; Bormans, Myriam

    2015-01-01

    Akinetes are spore-like non-motile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Here, we demonstrate variations in cellular ultrastructure during akinete formation concomitant with accumulation of cyanophycin; a copolymer of aspartate and arginine that forms storage granules. Cyanophycin accumulation is initiated in vegetative cells few days post-exposure to akinete inducing conditions. This early accumulated cyanophycin pool in vegetative cells disappears as a nearby cell differentiates to an akinete and stores large pool of cyanophycin. During the akinete maturation, the cyanophycin pool is further increased and comprise up to 2% of the akinete volume. The cellular pattern of photosynthetic activity during akinete formation was studied by a nano-metric scale secondary ion mass spectrometry (NanoSIMS) analysis in 13C-enriched cultures. Quantitative estimation of carbon assimilation in vegetative cells and akinetes (filament-attached and -free) indicates that vegetative cells maintain their basal activity while differentiating akinetes gradually reduce their activity. Mature-free akinetes practically lost their photosynthetic activity although small fraction of free akinetes were still photosynthetically active. Additional 13C pulse-chase experiments indicated rapid carbon turnover during akinete formation and de novo synthesis of cyanophycin in vegetative cells 4 days post-induction of akinete differentiation. PMID:26483781

  11. Assimilable organic carbon release, chemical migration, and drinking water impacts of multiple brands of plastic pipes available in the USA

    NASA Astrophysics Data System (ADS)

    Connell, Matthew

    Increased installation of polymer potable water pipes in United States plumbing systems has created a need to thoroughly evaluate their water quality impacts. Eleven brands of new polymer drinking water pipe were evaluated for assimilable organic carbon (AOC) release at room temperature for 28 days. They included polyvinyl chloride (PVC), high-density polyethylene (HDPE), polypropylene (PP), and cross-linked polyethylene (PEX) pipes. Three of eight PEX pipe brands exceeded a 100 microg/L AOC threshold for microbial regrowth for the first exposure period and no brands exceeded this value on day 28. No detectable increase in AOC was found for PP and PEX-a1 pipes; the remaining pipe brands contributed marginal AOC levels. Water quality impacts were more fully evaluated for two brands of PEX-b and one brand of PP pipe. PEX pipes released more total organic carbon (TOC), volatile organic compounds (VOC), and semivolatile organic compounds (SVOC) and caused greater odor than the PP pipe. All three materials showed reductions in these water quality parameters over 30 days. Three PEX pipe field studies revealed that aged systems did not display more intense odors than distribution systems. However, the organic releases from polymer pipes may still alter water quality and contribute to rapid microbial growth, even though the aesthetic impacts are temporary.

  12. Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula.

    PubMed

    Mäenpää, Maarit; Riikonen, Johanna; Kontunen-Soppela, Sari; Rousi, Matti; Oksanen, Elina

    2011-08-01

    Rising temperature and tropospheric ozone (O(3)) concentrations are likely to affect carbon assimilation processes and thus the carbon sink strength of trees. In this study, we investigated the joint action of elevated ozone and temperature on silver birch (Betula pendula) and European aspen (Populus tremula) saplings in field conditions by combining free-air ozone exposure (1.2 × ambient) and infrared heaters (ambient +1.2 °C). At leaf level measurements, elevated ozone decreased leaf net photosynthesis (P(n)), while the response to elevated temperature was dependent on leaf position within the foliage. This indicates that leaf position has to be taken into account when leaf level data are collected and applied. The ozone effect on P(n) was partly compensated for at elevated temperature, showing an interactive effect of the treatments. In addition, the ratio of photosynthesis to stomatal conductance (P(n)/g(s) ratio) was decreased by ozone, which suggests decreasing water use efficiency. At the plant level, the increasing leaf area at elevated temperature resulted in a considerable increase in photosynthesis and growth in both species.

  13. A survey on levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water.

    PubMed

    Ohkouchi, Yumiko; Ly, Bich Thuy; Ishikawa, Suguru; Aoki, Yusuke; Echigo, Shinya; Itoh, Sadahiko

    2011-10-01

    In Japan, customers' concerns about chlorinous odour in drinking water have been increasing. One promising approach for reducing chlorinous odour is the minimization of residual chlorine in water distribution, which requires stricter control of organics to maintain biological stability in water supply systems. In this investigation, the levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water were surveyed to accumulate information on organics in terms of biological stability. In tap water samples purified through rapid sand filtration processes, the average AOC concentration was 174 microgC/L in winter and 60 microgC/L in summer. This difference seemed to reflect the seasonal changes of AOC in the natural aquatic environment. On the other hand, very little or no AOC could be removed after use of an ozonation-biological activated carbon (BAC) process. Especially in winter, waterworks should pay attention to BAC operating conditions to improve AOC removal. The storage of BAC effluent with residual chlorine at 0.05-0.15 mgCl2/L increased AOC drastically. This result indicated the possibility that abundant AOC precursors remaining in the finished water could contribute to newly AOC formation during water distribution with minimized residual chlorine. Combined amino acids, which remained at roughly equivalent to AOC in finished water, were identified as major AOC precursors. Prior to minimization of residual chlorine, enhancement of the removal abilities for both AOC and its precursors would be necessary.

  14. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.

  15. Nitrogen management and the future of food: lessons from the management of energy and carbon.

    PubMed

    Socolow, R H

    1999-05-25

    The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.

  16. Stable carbon isotope evidence for nitrogenous fertilizer impact on carbonate weathering in a small agricultural watershed.

    PubMed

    Brunet, F; Potot, C; Probst, A; Probst, J-L

    2011-10-15

    The isotopic signature of Dissolved Inorganic Carbon (DIC), δ(13)C(DIC), has been investigated in the surface waters of a small agricultural catchment on calcareous substratum, Montoussé, located at Auradé (south-west France). The Montoussé catchment is subjected to intense farming (wheat/sunflower rotation) and a moderated application of nitrogenous fertilizers. During the nitrification of the NH(4)(+), supplied by fertilization, nitrate and H(+) ions are produced in the soil. This anthropogenic acidity is combined with the natural acidity due to carbonic acid in weathering processes. From an isotopic point of view, with 'natural weathering', using carbonic acid, δ(13)C(DIC) is intermediate between the δ(13)C of soil CO(2) produced by organic matter oxidation and that of the carbonate rocks, while it has the same value as the carbonates when carbonic acid is substituted by another acid like nitric acid derived from nitrogen fertilizer. The δ(13)C(DIC) values range from -17.1‰ to -10.7‰ in Montoussé stream waters. We also measured the δ(13)C of calcareous molassic deposits (average -7.9‰) and of soil organic carbon (between -24.1‰ and -26‰) to identify the different sources of DIC and to estimate their contribution. The δ(13) C(DIC) value indicates that weathering largely follows the carbonic acid pathway at the springs (sources of the stream). At the outlet of the basin, H(+) ions, produced during the nitrification of N-fertilizer, also contribute to weathering, especially during flood events. This result is illustrated by the relationship between δ(13)C(DIC) and the molar ratio NO(3)(-)/(Ca(2+) + Mg(2+)). Consequently, when the contribution of nitrate increases, the δ(13)C(DIC) increases towards the calcareous end-member. This new isotopic result provides evidence for the direct influence of nitrogen fertilizer inputs on weathering, CO(2) consumption and base cation leaching and confirms previous results obtained using the chemistry of the

  17. Assessing the response of the Australian carbon balance to climate variability by assimilating satellite observations in a distributed ecosystem model

    NASA Astrophysics Data System (ADS)

    Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; Williams, Mathew

    2016-04-01

    Terrestrial ecosystems offset about 25% of anthropogenic emissions of fossil fuel responsible for the current global warming. This long-term carbon sink exhibits a large inter-annual variability that recent studies have associated to the response of semi-arid ecosystems to variations in climate conditions and especially the occurrence of extreme events. For example, wet conditions during the 2010-2011 La Niña episode led to the strongest annual terrestrial carbon sink ever observed. Satellite observations of plant productivity and modelling experiments indicate that this anomalous sink was mostly located in the southern hemisphere where Australia experienced record-breaking rainfall. However, the durability of this extra-sink has yet to be assessed as dry conditions returned in northern Australia at the end of 2011, causing large-scale fires. In this paper we investigate the influence of climate variability on Australian ecosystems and we particularly focus on the resilience of the La Niña driven 2010-2011 sink to subsequent dry years. Therefore, we use the CARbon Data MOdel fraMework (CARDAMOM) data-assimilation system to retrieve the 21st century Australian terrestrial carbon cycle simulated by an ecosystem model in agreement with climate data and Earth Observations relevant to the biosphere: burned area, leaf area index and biomass. Accordingly with previous studies results indicate a strong influence of the El Niño/Southern Oscillation on the inter-annual variability of the Australian carbon balance at the continent-scale. More precisely, in 2010-2011 the La Niña-driven wet conditions led the continent to become a strong sink of atmospheric carbon. Then, dry conditions accompanied by intense fires returned at the end of 2011 and our analyses indicate that the totality of the northern Australian sink (north of 30°S) was re-emitted by late 2011 as fires immediately burnt the extra-fuel produced during the record wet seasons. These results raise concerns on

  18. [Characteristics of the mineralization and transformation of autotrophic microbes-assimilated carbon in upland and paddy soils].

    PubMed

    Jian, Yan; Ge, Ti-Da; Wu, Xiao-Hong; Zhou, Ping; Wang, Jiu-Rong; Yuan, Hong-Zhao; Zou, Dong-Sheng; Wu, Jin-Shui

    2014-06-01

    In this study, the mineralization and decomposition of autotrophic microbe assimilated carbon (new carbon) and native organic carbon in three upland and three paddy soils in subtropical China were measured using the 14C-labelled tracer technique. The results showed that, during the 100-d incubation, the mineralization of the 'new carbon' displayed three stages: a rise in the first 10 days, a slowdown from 11-d to 50-d, and a stabilization stage after 50 d. The mineralization ratio of the 'new carbon' ranged between 8.0% and 26.9% and the mineralization rate ranged from 0.01 to 0.22 microg 14C x g(-1) x d(-1) (0.01-0.22 microg 14C x g(-1) x d(-1) in paddy soils and 0.01-0.08 microg 14C x g(-1) x d(-1) in upland soils). However, the mineralization ratio and rate for native SOC were 1.55%-5.74% and 1.3-25.66 microg C x g(-1) x d(-1), respectively. In the soil active C pools, the 14C-dissolved organic carbon (DOC) first rose by as much as 0.3 mg x kg(-1) in the early stages of incubation (0-10 d), decreased rapidly by 0.42 mg x kg(-1) from 10-30 d, and then declined gradually. The fluctuation of the 14C-microbial biomass carbon (MBC) differed from that of the 14C DOC. At the beginning stage of the incubation (0-10 d), the 14C-MBC decreased rapidly, and then rapidly increased from 10 to 30 d, and the rate of increase reduced and was gradually stabilized after 40 d. The 14C-DOC/DOC renewal rate in the paddy soil was significantly higher than in the upland soil while the 14C-MBC/MBC renewal rate in the upland soil was significantly greater than in the paddy soil.

  19. Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups.

    PubMed

    Allen, Brett L; Kichambare, Padmakar D; Star, Alexander

    2008-09-23

    Isolated, carbon nanotube cups with diameters of 12-40 nm have been synthesized by chemical vapor deposition through incorporation of nitrogen atoms into graphitic carbon structure and subsequent mechanical separation. Incorporation of nitrogen affords carbon nanotube cups with a unique composition comprising multiwalled, graphitic lattice with nitrogen groups on the exterior rim and hollow interior cavities. These nanostructures demonstrate the ability to participate in hydrogen bonding because of nitrogen functionalities on their open edges. Furthermore, reaction with these nitrogen functionalities results in the coupling of gold nanoparticles (GNPs) to the open rim of carbon nanotube cups. Through atomic force microscopy manipulation and adhesion force measurements, we compare the mobility of these structures on a hydrophilic surface before and after GNP coupling. Understanding of these forces will aid in useful nanostructure assembly for energy and biomedical applications.

  20. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  1. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  2. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  3. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  4. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  5. Aerosol water soluble organic nitrogen and carbon over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pollard, Liam; Baker, Alex; Jickels, Tim

    2014-05-01

    Nitrogen is a limiting or co-limiting nutrient in large parts of the world's oceans particularly in oligotrophic regions such as gyres. In the open ocean there are two pathways by which new nutrient nitrogen can enter the oligotrophic system: biological nitrogen fixation and atmospheric deposition. Aerosol matter contributes to the latter route via dry and wet deposition, therefore it is important to understand and quantify the nitrogen containing material in aerosols and establish its major sources. Until recently, the organic nitrogen component of aerosol nitrogen was largely ignored, however, it is now known to contribute between 25-30 % of total water soluble nitrogen in aerosols, globally. This organic nitrogen is known to be chemically complex, shows high spatial and temporal variability and a large proportion of it has been shown to be bioavailable. It is important that this material is further quantified and characterised (including its carbon component) to determine its biogeochemical impact. Data gathered from fine and coarse mode aerosol samples collected on three Atlantic cruises (AMT21, AMT22 and ANT26-4) will be presented. Bulk and water soluble organic carbon and nitrogen data will be shown alongside major ion and inorganic nitrogen data. Potential sources of organic nitrogen and carbon material will be evaluated using a combination of inter-component correlations with known tracers and air-parcel back trajectories, allowing estimates of the anthropogenic impact on nutrient deposition to the remote Atlantic Ocean to be made.

  6. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    NASA Astrophysics Data System (ADS)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  7. Carbon and nitrogen abundance variations in globular cluster red giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  8. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?

    PubMed

    Hall, Marianne; Medlyn, Belinda E; Abramowitz, Gab; Franklin, Oskar; Räntfors, Mats; Linder, Sune; Wallin, Göran

    2013-11-01

    Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photosynthesis under climatic changes, which parameters are then most important to calibrate for future conditions? To assess this, we used measurements of shoot carbon assimilation rates and microclimate conditions collected at Flakaliden, northern Sweden. Twelve 40-year-old Norway spruce trees were enclosed in whole-tree chambers and exposed to elevated [CO2] and elevated air temperature, separately and in combination. The treatments imposed were elevated temperature, +2.8 °C in July/August and +5.6 °C in December above ambient, and [CO2] (ambient CO2 ∼370 μ mol mol(-1), elevated CO2 ∼700 μ mol mol(-1)). The relative importance of parameterization of Q, T and D responses for effects on the photosynthetic rate, expressed on a projected needle area, and the annual shoot carbon uptake was quantified using an empirical shoot photosynthesis model, which was developed and fitted to the measurements. The functional form of the response curves was established using an artificial neural network. The [CO2] treatment increased annual shoot carbon (C) uptake by 50%. Most important was effects on the light response curve, with a 67% increase in light-saturated photosynthetic rate, and a 52% increase in the initial slope of the light response curve. An interactive effect of light saturated photosynthetic rate was found with foliage N status, but no interactive effect for high temperature and high CO2. The air temperature treatment increased the annual shoot C uptake by 44%. The most important parameter was the seasonality, with an elongation of the growing season by almost 4

  9. Modelling developmental changes in the carbon and nitrogen budgets of larval brachyuran crabs

    NASA Astrophysics Data System (ADS)

    Anger, K.

    1990-03-01

    The uptake and partitioning of nutritional carbon (C) and nitrogen (N) were studied during the complete larval development of a brachyuran crab, Hyas araneus, reared under constant conditions in the laboratory. Biochemical and physiological data were published in a foregoing paper, and complete budgets of C and N were now constructed from these data. Regression equations describing rates of feeding ( F), growth ( G), respiration ( R), and ammonia excretion ( U) as functions of time during individual larval moult cycles were inserted in a simulation model, in order to analyse time-dependent (i.e. developmental) patterns of variation in these parameters as well as in bioenergetic efficiencies. Absolute daily feeding rates ( F; per individual) as well as carbon and nitrogen-specific rates ( F/C, F/N) are in general maximum in early, and minimum in late stages of individual larval moult cycles (postmoult and premoult, respectively). Early crab zoeae may ingest equivalents of up to ca 40% body C and 30% body N per day, respectively, whereas megalopa larvae usually eat less than 10%. Also growth rates ( G; G/C, G/N) reveal decreasing tendencies both during individual moult cycles and, on the average, in subsequent instars. Conversion of C and N data to lipid and protein, respectively, suggests that in all larval instars there is initially an increase in the lipid: protein ratio. Protein, however, remains clearly the predominant biochemical constituent in larval biomass. The absolute and specific values of respiration ( R; R/C) and excretion ( U; U/N) vary only little during the course of individual moult cycles. Thus, their significance in relation to G increases within the C and N budgets, and net growth efficiency ( K 2) decreases concurrently. Also gross growth and assimilation efficiency ( K 2; A/F) are, in general, maximum in early stages of the moult cycle (postmoult). Biochemical data suggest that lipid utilization efficiency is particularly high in early moult

  10. Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species.

    PubMed

    Wilson, Kell B.; Baldocchi, Dennis D.; Hanson, Paul J.

    2000-06-01

    Gas exchange techniques were used to investigate light-saturated carbon assimilation and its stomatal and non-stomatal limitations over two seasons in mature trees of five species in a closed deciduous forest. Stomatal and non-stomatal contributions to decreases in assimilation resulting from leaf age and drought were quantified relative to the maximum rates obtained early in the season at optimal soil water contents. Although carbon assimilation, stomatal conductance and photosynthetic capacity (V(cmax)) decreased with leaf age, decreases in V(cmax) accounted for about 75% of the leaf-age related reduction in light-saturated assimilation rates, with a secondary role for stomatal conductance (around 25%). However, when considered independently from leaf age, the drought response was dominated by stomatal limitations, accounting for about 75% of the total limitation. Some of the analytical difficulties associated with computing limitation partitioning are discussed, including path dependence, patchy stomatal closure and diffusion in the mesophyll. Although these considerations may introduce errors in our estimates, our analysis establishes some reasonable boundaries on relative limitations and shows differences between drought and non-drought years. Estimating seasonal limitations under natural conditions, as shown in this study, provides a useful basis for comparing limitation processes between years and species.

  11. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    NASA Astrophysics Data System (ADS)

    Ombaka, L. M.; Ndungu, P. G.; Omondi, B.; McGettrick, J. D.; Davies, M. L.; Nyamori, V. O.

    2016-03-01

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF3 and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF3 catalyst indicates that steric factors influence the X-ray structure of 1,1‧-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF3 catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and are less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF3 and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF3 catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials.

  12. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CNx-multi-wall carbon nanotube hybrid materials

    NASA Astrophysics Data System (ADS)

    Simmons, Trevor J.; Hashim, Daniel P.; Zhan, Xiaobo; Bravo-Sanchez, Mariela; Hahm, Myung Gwan; López-Luna, Edgar; Linhardt, Robert J.; Ajayan, Pulickel M.; Navarro-Contreras, Hugo; Vidal, Miguel A.

    2012-08-01

    In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI3), it was possible to form covalent bonds between the Ga3+ ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy

  13. Production of Aligned Carbon Nanotube Films and Nitrogen Doped Carbon Nanotube Films from the Pyrolysis of Styrene

    NASA Astrophysics Data System (ADS)

    Jin, Yi Zheng; Hsu, Wen Kuang; Zhu, Yan Qiu; Watts, Paul C. P.; Chueh, Yu Lun; Chou, Li Jen; Kroto, Harold W.; Walton, David R. M.

    2004-09-01

    Styrene is used as a carbon source in a CVD process to obtain aligned carbon nanotube films. Changing the carrier gas from argon to ammonia introduces nitrogen into the tubes. SEM, TEM and HRTEM show the well-aligned structures, which appear to exist as macrobundles. EELS analyses have verified the existence of 3.3 wt.% nitrogen in the tube. Irradiation experiments show that this technique can be used to manipulate NCNTs.

  14. Identification of nitrogen dopants in single-walled carbon nanotubes by scanning tunneling microscopy.

    PubMed

    Tison, Yann; Lin, Hong; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Henrard, Luc; Zheng, Bing; Susi, Toma; Kauppinen, Esko I; Ducastelle, François; Loiseau, Annick

    2013-08-27

    Using scanning tunnelling microscopy and spectroscopy, we investigated the atomic and electronic structure of nitrogen-doped single walled carbon nanotubes synthesized by chemical vapor deposition. The insertion of nitrogen in the carbon lattice induces several types of point defects involving different atomic configurations. Spectroscopic measurements on semiconducting nanotubes reveal that these local structures can induce either extended shallow levels or more localized deep levels. In a metallic tube, a single doping site associated with a donor state was observed in the gap at an energy close to that of the first van Hove singularity. Density functional theory calculations reveal that this feature corresponds to a substitutional nitrogen atom in the carbon network.

  15. An Improved Analysis onTrends and Uncertainties of Carbon Stocks and Fluxes in the Piedmont Ecoregion of the United States Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Chen, M.; Liu, S.; Young, C.; Tieszen, L. L.

    2011-12-01

    Accurate quantification of carbon fluxes and stocks in the terrestrial ecoregions can improve our understanding of carbon sequestration processes and further help address global climate change issues. However, two current principal approaches, modeling and measuring, have inherent limitations that usually lead to uncertainties of quantification. Such limitations include poorly defined parameters, model input errors, and spatially patchy and multi-resolution characteristics of measurements. Advanced data assimilation techniques can mitigate these limitations by combining a series of measurements with dynamic models. In this study, we used a sequential data assimilation method, the Smoothed Ensemble Kalman Filter (SEnKF), to assimilate the data from various sources into the General Ensemble Biogeochemical Modeling System (GEMS). This method (1) optimally estimates trends of carbon fluxes and stocks in the Piedmont ecoregion of the United States from the 1970s to the 2000s, and (2) simultaneously constrains several key model parameters (e.g., maximum potential production) for various types of land covers for improving the model prediction. Assimilated data included gross primary production, net primary production, and leaf area index from the Moderate Resolution Imaging Spectroradiometer (MODIS), grain yields at the county level from the U.S. Department of Agriculture (USDA), and forest characteristics from the USDA Forest Service's Forest Inventory and Analysis database. Our preliminary analyses indicated that carbon sequestration in the Piedmont ecoregion gradually decreased in the past three decades, and the interannual variability was strongly affected by climate variability. Our approach reduced uncertainties in the estimated carbon fluxes and stocks in forests, croplands, and grasslands by 50 percent compared to the estimates using originally defined parameters.

  16. Nitrogen-enriched carbon from melamine resins with superior oxygen reduction reaction activity.

    PubMed

    Zhong, Hexiang; Zhang, Huamin; Liu, Sisi; Deng, Chengwei; Wang, Meiri

    2013-05-01

    Catalytic carbon: Nitrogen-doped porous carbon (CN(x)) electrocatalysts are derived from inexpensive melamine formaldehyde resins. These potential PEMFC catalysts are synthesized by using a facile method, which yields materials that contain a meso- and macroporous structure. The carbon-based materials display attractive catalytic activity toward ORR and superior stability compared to a commercial Pt-based catalyst.

  17. Structure-function studies of glutamate synthases: a class of self-regulated iron-sulfur flavoenzymes essential for nitrogen assimilation.

    PubMed

    Vanoni, Maria Antonietta; Curti, Bruno

    2008-05-01

    Glutamate synthases play with glutamine synthetase an essential role in nitrogen assimilation processes in microorganisms, plants, and lower animals by catalyzing the net synthesis of one molecule of L-glutamate from L-glutamine and 2-oxoglutarate. They exhibit a modular architecture with a common subunit or region, which is responsible for the L-glutamine-dependent glutamate synthesis from 2-oxoglutarate. Here, a PurF- (Type II- or Ntn-) type amidotransferase domain is coupled to the synthase domain, a (beta/alpha)8 barrel containing FMN and one [3Fe-4S]0,+1 cluster, through a approximately 30 angstroms-long intramolecular tunnel for the transfer of ammonia between the sites. In bacterial and eukaryotic GltS, reducing equivalents are provided by reduced pyridine nucleotides thanks to the stable association with a second subunit or region, which acts as a FAD-dependent NAD(P)H oxidoreductase and is responsible for the formation of the two low potential [4Fe-4S]+1,+2 clusters of the enzyme. In photosynthetic cells, reduced ferredoxin is the physiological reductant. This review focus on the mechanism of cross-activation of the synthase and glutaminase reactions in response to the bound substrates and the redox state of the enzyme cofactors, as well as on recent information on the structure of the alphabeta protomer of the NADPH-dependent enzyme, which sheds light on the intramolecular electron transfer pathway between the flavin cofactors. PMID:18421771

  18. Carbon: nitrogen stoichiometry following afforestation: a global synthesis

    PubMed Central

    Xu, Xia; Li, Dejun; Cheng, Xiaoli; Ruan, Honghua; Luo, Yiqi

    2016-01-01

    Though carbon (C): nitrogen (N) stoichiometry has been widely studied in terrestrial ecosystems, little is known about its variation following afforestation. By synthesizing the results of 53 studies, we examined temporal and spatial variation in C: N ratios and in N-C scaling relationships of both the organic and the mineral soil horizons. Results showed that C: N ratios remained constant in the mineral horizon but significantly decreased in the organic horizon over the age sequence following afforestation. Among different climate zones, C: N ratios of the organic and the mineral horizons increased and decreased, respectively, with increasing mean annual temperature (MAT) (decreasing latitude). Pasture exhibited higher C: N ratios than cropland in the organic horizon while C: N of the mineral horizon did not change much among different land use types. For both the organic and the mineral horizons, hardwoods exhibited lower C: N ratios than pine and softwoods. Additionally, N and C in general scaled isometrically in both the organic and the mineral horizons over the age sequence and among different climate zones, land use types, and plantation species following afforestation. Our results suggest that C and N may remain coupled following afforestation. PMID:26743490

  19. Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri.

    PubMed

    Bougoure, Jeremy J; Brundrett, Mark C; Grierson, Pauline F

    2010-06-01

    *Rhizanthella gardneri is a rare and fully subterranean orchid that is presumably obligately mycoheterotrophic. R. gardneri is thought to be linked via a common mycorrhizal fungus to co-occurring autotrophic shrubs, but there is no experimental evidence to support this supposition. *We used compartmentalized microcosms to investigate the R. gardneri tripartite relationship. (13)CO(2) was applied to foliage of Melaleuca scalena plants and [(13)C-(15)N]glycine was fed to the common mycorrhizal fungus, and both sources traced to R. gardneri plants. *In our microcosm trial, up to 5% of carbon (C) fed as (13)CO(2) to the autotrophic shrub was transferred to R. gardneri. R. gardneri also readily acquired soil C and nitrogen (N), where up to 6.2% of C and 22.5% of N fed as labelled glycine to soil was transferred via the fungus to R. gardneri after 240 h. *Our study confirms that R. gardneri is mycoheterotrophic and acquires nutrients via mycorrhizal fungus connections from an ectomycorrhizal autotrophic shrub and directly from the soil via the same fungus. This connection with a specific fungus is key to explaining why R. gardneri occurs exclusively under certain Melaleuca species at a very limited number of sites in Western Australia.

  20. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1979-01-01

    The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.

  1. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors.

    PubMed

    Sun, Li; Fu, Yu; Tian, Chungui; Yang, Ying; Wang, Lei; Yin, Jie; Ma, Jing; Wang, Ruihong; Fu, Honggang

    2014-06-01

    Separated boron and nitrogen porous graphitic carbon (BNGC) is fabricated by a facile hydrothermal coordination/ZnCl2-activation process from renewable and inexpensive nitrogen-containing chitosan. In this synthetic pathway, chitosan, which has a high nitrogen content, first coordinates with Fe(3+) ions to form chitosan-Fe that subsequently reacts with boric acid (boron source) to generate the BNGC precursor. After simultaneous carbonization and ZnCl2 activation followed by removal of the Fe catalyst, BNGC, containing isolated boron and nitrogen centers and having a high surface area of 1567 m(2)  g(-1) and good conductivity, can be obtained. Results indicate that use of chitosan as a nitrogen-containing carbon source effectively prevents nitrogen atoms from direct combination with boron atoms. In addition, the incorporation of Fe(3+) ions not only endows BNGC with high graphitization, but also favors for nitrogen fixation. Remarkably, the unique microstructure of BNGC enables its use as an advanced electrode material for energy storage. As electrode material for supercapacitors, BNGC shows a high capacitance of 313 F g(-1) at 1 A g(-1), and also long-term durability and coulombic efficiency of >99.5 % after 5000 cycles. Notably, in organic electrolytes, the energy density could be up to 50.1 Wh kg(-1) at a power density of 10.5 kW kg(-1). The strategy developed herein opens a new avenue to prepare BNGC without inactive BN bonds from commercially available chitosan for high-performance supercapacitors.

  2. Carbon and Nitrogen cycling in a permafrost soil profile

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Schaedel, C.; Mack, M. C.; Schuur, E.

    2015-12-01

    In high latitude ecosystems, active layer soils thaw during the growing season and are situated on top of perennially frozen soils (permafrost). Permafrost affected soil profiles currently store a globally important pool of carbon (1330-1580 PgC) due to cold temperatures constraining the decomposition of soil organic matter. With global warming, however, seasonal thaw is expected to increase in speed and extend to deeper portions of the soil profile. As permafrost soils become part of the active layer, carbon (C) and nitrogen (N) previously stored in soil organic matter will be released via decomposition. In this experiment, the dynamic relationship between N mineralization, C mineralization, and C quality was investigated in moist acidic tundra soils. Soils from the active layer surface down through the permafrost (80cm) were incubated aerobically at 15°C for 225 days. Carbon dioxide fluxes were fit with a two pool exponential decay model so that the size and turnover of both the quickly decomposing C pool (Cfast) and the slowly decomposing C pool (Cslow) could be assessed. Soil extractions with 2M KCl were performed at six time points throughout the incubation so that dissolve inorganic N (DIN) and dissolved organic C (DOC) could be measured. DIN was readily extractable from deep permafrost soils throughout the incubation (0.05 mgN/g dry soil) but in active layer soils DIN was only produced after Cfast had been depleted. In contrast, active layer soils had high levels of DOC (0.65 mgC/g dry soil) throughout the incubation but in permafrost soils, DOC became depleted as Cfast reduced in size. The strong contrasts between the C and N cycling in active layer soils versus permafrost soils suggest that the deeper thaw will dramatically increase N availability in these soil profiles. Plants and soil microbes in the tundra are currently N limited so our findings imply that deepening thaw will 1) provide N necessary for increased plant growth and 2) stimulate losses of

  3. Assimilation of benzene carbon through multiple trophic levels traced by different stable isotope probing methodologies.

    PubMed

    Bastida, Felipe; Jechalke, Sven; Bombach, Petra; Franchini, Alessandro G; Seifert, Jana; von Bergen, Martin; Vogt, Carsten; Richnow, Hans H

    2011-08-01

    The flow of benzene carbon along a food chain consisting of bacteria and eukaryotes, including larvae (Diptera: Chironomidae), was evaluated by total lipid fatty acids (TLFAs)-, amino acid- and protein-stable isotope probing (SIP). A coconut-fibre textile, colonized by a benzene-degrading biofilm, was sampled in a system established for the remediation of benzene, toluene, ethylbenzene and xylenes (BTEX)-polluted groundwater and incubated with (12)C- and [(13)C(6)]-benzene (>99 at.%) in a batch-scale experiment for 2-8 days. After 8 days, Chironomus sp. larvae were added to study carbon flow to higher trophic levels. Gas chromatography-combustion-isotope ratio monitoring mass spectrometry of TLFA showed increased isotope ratios in the (13)C-benzene-incubated biofilm. A higher (13)C-enrichment was observed in TLFAs, indicative of Gram-negative bacteria than for Gram-positive. Fatty acid indicators of eukaryotes showed significant (13)C-incorporation, but to a lower extent than bacterial indicators. Fatty acids extracted from larvae feeding on (13)C-biofilm reached an isotopic ratio of 1.55 at.%, illustrating that the larvae feed, to some extent, on labelled biomass. No (13)C-incorporation was detectable in larval proteins after their separation by sodium-dodecyl sulphate-polyacrylamide gel electrophoresis and analysis by nano-liquid-chromatography-mass spectrometry. The flow of benzene-derived carbon could be traced in a food web consisting of bacteria and eukaryotes.

  4. Modeling the above and below ground carbon and nitrogen stocks in northern high latitude terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    ElMasri, B.; Jain, A. K.

    2012-12-01

    Climate change is expected to cause warming in the northern high latitudes, but it is still uncertain what the respond of the northern high latitudes ecosystem will be to such warming. One of the biggest scientific questions is to determine whether northern high latitude ecosystem are or will act as a terrestrial carbon sink or source. Therefore, it is essential to understand and quantify the biogeochemical cycle of the northern high latitude ecosystems in order to predict their respond to climate change. Using a land surface model, the Integrated Science Assessment Model (ISAM) with its coupled carbon-nitrogen cycle, we provide a detail quantification of the carbon and nitrogen in the vegetation pools and the soil carbon for the northern high latitude ecosystems. We focus on soil carbon and vegetation carbon and nitrogen, though we provide results for gross primary production (GPP), autotrophic respiration (Ra), net primary production (NPP), net ecosystem exchange (NEE), and heterotrophic respiration (Rh). In addition, we examine the effect of nitrogen limitation on the carbon fluxes and soil carbon. We present the results for several flux tower sites representative of the tundra and the boreal ecosystems as well as for the northern high latitude region. Our results provide a comprehensive assessment of below and above ground carbon and nitrogen pools in the northern high latitude and the model calibrated parameters can be used to improve the results of other land surface models.

  5. Optimal recovery of regional carbon dioxide surface fluxes by data assimilation of anthropogenic and biogenic tracers

    NASA Astrophysics Data System (ADS)

    Campbell, Elliott

    Measurements of atmospheric carbon dioxide (CO2) have led to an understanding of the past and present CO2 trends at global scales. However, many of the processes that underlie the CO 2 fluxes are highly uncertain, especially at smaller spatial scales in the terrestrial biosphere. Our abilities to forecast climate change and manage the carbon cycle are reliant on an understanding of these underlying processes. In this dissertation, new steps were taken to understand the biogenic and anthropogenic processes based on analysis with an atmospheric transport model and simultaneous measurements of CO2 and other trace gases. The biogenic processes were addressed by developing an approach for quantifying photosynthesis and respiration surface fluxes using observations of CO 2 and carbonyl sulfide (COS). There is currently no reliable method for separating the influence of these gross biosphere fluxes on atmospheric CO2 concentrations. First, the plant sink for COS was quantified as a function of the CO2 photosynthesis uptake using the STEM transport model and measurements of COS and CO2 from the INTEX-NA campaign. Next, the STEM inversion model was modified for the simultaneous optimization of fluxes using COS and CO2 measurements and using only CO 2 measurements. The CO2-only inversion was found to be process blind, while the simultaneous COS/CO2 inversion was found to provide a unique estimate of the respiration and photosynthesis component fluxes. Further validation should be pursued with independent observations. The approach presented here is the first application of COS measurements for inferring information about the carbon cycle. Anthropogenic emissions were addressed by improving the estimate of the fossil fuel component of observed CO2 by using observed carbon monoxide (CO). Recent applications of the CO approach were based on simple approximations of non-fossil fuel influences on the measured CO such as sources from oxidation of volatile organic carbon species

  6. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping.

    PubMed

    Yang, Yuling; Li, Xiaoyi; Jiang, Jinliang; Du, Huailiang; Zhao, Lina; Zhao, Yuliang

    2010-10-26

    To establish ways to control the performance of artificial water channels is a big challenge. With molecular dynamics studies, we found that water flow inside the water channels of carbon nanotubes (CNTs) can be controlled by reducing or intensifying interaction energy between water molecules and the wall of the CNTs channel. A way of example toward this significant goal was demonstrated by the doping of nitrogen into the wall of CNTs. Different ratios of nitrogen doping result in different controllable water performance which is dominated mainly through a gradient of van der Waals forces created by the heteroatom doping in the wall of CNTs. Further results revealed that the nitrogen-doped CNT channels show less influence on the integrality of biomembrane than the pristine one, while the nitrogen-doped double-walled carbon nanotube exhibits fewer disturbances to the cellular membrane integrality than the nitrogen-doped single-walled carbon nanotube when interacting with biomembranes.

  7. α-ketoglutarate coordinates carbon and nitrogen utilization via Enzyme I inhibition

    PubMed Central

    Doucette, Christopher D; Schwab, David J; Wingreen, Ned S; Rabinowitz, Joshua D

    2011-01-01

    Microbes survive in a variety of nutrient environments by modulating their intracellular metabolism. Balanced growth requires coordinated uptake of carbon and nitrogen, the primary substrates for biomass production. The mechanisms that balance carbon and nitrogen uptake are, however, poorly understood. We find in Escherichia coli that a sudden increase in nitrogen availability results in an almost immediate increase in glucose uptake. The concentrations of known glycolytic intermediates and regulators, however, remain homeostatic. Instead, we find that α-ketoglutarate, which accumulates in nitrogen limitation, directly blocks glucose uptake by inhibiting Enzyme I, the first step of the phosphotransferase system (PTS). This enables rapid modulation of glycolytic flux without marked concentration changes in glycolytic intermediates by simultaneously accelerating glucose import and consumption of the terminal glycolytic intermediate phosphoenolpyruvate. Quantitative modeling shows that this previously unidentified regulatory connection is in principle sufficient to coordinate carbon and nitrogen utilization. PMID:22002719

  8. Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Chun; Wei, Zidong; Hu, Baoshan; Chen, Siguo; Li, Li; Guo, Lin; Ding, Wei; Liu, Xiao; Ji, Weijia; Wang, Xiaopei

    2012-10-01

    The aligned nitrogen-doped carbon nanotubes (NCNT) with bamboo-like structure are synthesized via thermal chemical vapor deposition using melamine and urea as different nitrogen precursors. Meanwhile, ferrocene is used as catalyst and carbon precursor. The resulting NCNT with melamine (M-NCNT) have shown superior ORR performance in terms of limiting current density and number of electrons transferred. Further characterizations by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy illustrated higher nitrogen content and more defects in M-NCNT compared to that in NCNT with urea (U-NCNT), which indicate the important role of the nitrogen precursor in nitrogen content and structure of NCNT. It is concluded that higher nitrogen content and more defects of NCNT lead to high performance of ORR.

  9. Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual.

    PubMed

    Ohkouchi, Yumiko; Ly, Bich Thuy; Ishikawa, Suguru; Kawano, Yoshihiro; Itoh, Sadahiko

    2013-02-01

    There is considerable interest in minimizing the chlorine residual in Japan because of increasing complaints about a chlorinous odor in drinking water. However, minimizing the chlorine residual causes the microbiological water quality to deteriorate, and stricter control of biodegradable organics in finished water is thus needed to maintain biological stability during water distribution. In this investigation, an acceptable level of assimilable organic carbon (AOC) for biologically stable water with minimized chlorine residual was determined based on the relationship between AOC, the chlorine residual, and bacterial regrowth. In order to prepare water samples containing lower AOC, the fractions of AOC and biodegradable organic matter (BOM) in tap water samples were reduced by converting into biomass after thermal hydrolysis of BOM at alkaline conditions. The batch-mode incubations at different conditions of AOC and chlorine residual were carried out at 20 °C, and the presence or absence of bacterial regrowth was determined. The determined curve for biologically stable water indicated that the acceptable AOC was 10.9 μg C/L at a minimized chlorine residual (0.05 mg Cl(2)/L). This result indicated that AOC removal during current water treatment processes in Japan should be significantly enhanced prior to minimization of the chlorine residual in water distribution.

  10. The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes.

    PubMed

    Baldazzi, Valentina; Ropers, Delphine; Markowicz, Yves; Kahn, Daniel; Geiselmann, Johannes; de Jong, Hidde

    2010-06-01

    Gene regulatory networks consist of direct interactions but also include indirect interactions mediated by metabolites and signaling molecules. We describe how these indirect interactions can be derived from a model of the underlying biochemical reaction network, using weak time-scale assumptions in combination with sensitivity criteria from metabolic control analysis. We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our results show that the derived gene regulatory network is densely connected, contrary to what is usually assumed. Moreover, the network is largely sign-determined, meaning that the signs of the indirect interactions are fixed by the flux directions of biochemical reactions, independently of specific parameter values and rate laws. An inversion of the fluxes following a change in growth conditions may affect the signs of the indirect interactions though. This leads to a feedback structure that is at the same time robust to changes in the kinetic properties of enzymes and that has the flexibility to accommodate radical changes in the environment. PMID:20548959

  11. Pore size analysis of activated carbons from argon and nitrogen porosimetry using density functional theory

    SciTech Connect

    Dombrowski, R.J.; Hyduke, D.R.; Lastoskie, C.M.

    2000-05-30

    The authors present isotherms calculated from density functional theory for the adsorption of argon in model slit-shaped carbon pores at 77 K. The model isotherms are used to interpret experimental argon uptake measurements and to obtain the pore size distributions of several porous carbons. A similar set of density measurements and to obtain the pore size distributions of several porous carbons. A similar set of density functional theory isotherms, previously reported for nitrogen adsorption on carbon slit pores at 77 K, are used to determine pore size distributions for the same set of carbons. The pore size distribution maxima, mean pore widths, and specific pore volumes measured using the two different probe gases are all found to agree to within approximately 8% on average. Some of the differences in the pore size distributions obtained from argon and nitrogen porosimetry may be attributable to quadrupolar interactions of the nitrogen molecules with functional groups on the carbon surface.

  12. Exports of carbon and nitrogen from river basins in Canada's Atlantic Provinces

    NASA Astrophysics Data System (ADS)

    Clair, T. A.; Pollock, T. L.; Ehrman, J. M.

    1994-12-01

    The loss of carbon and organic nitrogen from the terrestrial ecosystem via streams and rivers is dependent on a number of factors such as basin vegetation, geography, geology, climate, and hydrology. We studied the export of dissolved carbon and nitrogen from 26 rivers varying in size from 45 to 92,500 km2 located in Atlantic Canada. Twenty-four of the basins studied were free of significant anthropogenic activity and were covered with coniferous and mixed hardwood forests. Our results showed that total organic carbon loss from the region, normalized for area, was approximately 29 kg ha-1 yr-1, while inorganic C was considerably lower at 4.3 kg ha-1 yr-1. We developed predictive statistical models using total precipitation, basin size, and basin slope to predict the export of organic carbon and nitrogen. Our results suggest that increases in regional precipitation will most likely increase the loss of organic carbon and nitrogen from terrestrial systems. We also found that inorganic carbon and nitrogen were not influenced by precipitation. Inorganic carbon seemed more influenced by geology, and inorganic nitrogen seemed more influenced by basin slope.

  13. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Fu, Fei-Xue; Webb, Eric A.; Walworth, Nathan; Tagliabue, Alessandro

    2013-09-01

    Much of the bioavailable nitrogen that supports open ocean food webs and biogeochemical cycles is fixed from the atmosphere by marine cyanobacteria of the genera Trichodesmium and Crocosphaera. In previous experiments carried out with a limited set of cyanobacterial isolates, rates of cyanobacterial nitrogen fixation were shown to increase with carbon dioxide concentrations. Here, we report results from a series of laboratory experiments in which we grew seven strains of Trichodesmium and Crocosphaera from the Atlantic and Pacific oceans under a wide range of carbon dioxide concentrations, and monitored rates of nitrogen fixation and growth. We document large, strain-specific differences in the relationship between nitrogen fixation and carbon dioxide concentration, suggesting that individual strains within each genus are adapted to grow and fix nitrogen at different concentrations of carbon dioxide. We apply kinetic constants from the individual carbon dioxide response curves to an illustrative biogeochemical model of the ocean in 2100, which suggests that strains adapted to high carbon dioxide concentrations could potentially be favoured in a future acidified ocean. We suggest that surface ocean carbon dioxide concentrations could constitute a previously unrecognized selective force that shapes the community composition and diversity of nitrogen-fixing cyanobacteria.

  14. Tracing carbon assimilation in endosymbiotic deep-sea hydrothermal vent Mytilid fatty acids by 13C-fingerprinting

    NASA Astrophysics Data System (ADS)

    Riou, V.; Bouillon, S.; Serrão Santos, R.; Dehairs, F.; Colaço, A.

    2010-09-01

    Bathymodiolus azoricus mussels thrive at Mid-Atlantic Ridge hydrothermal vents, where part of their energy requirements are met via an endosymbiotic association with chemolithotrophic and methanotrophic bacteria. In an effort to describe phenotypic characteristics of the two bacterial endosymbionts and to assess their ability to assimilate CO2, CH4 and multi-carbon compounds, we performed experiments in aquaria using 13C-labeled NaHCO3 (in the presence of H2S), CH4 or amino-acids and traced the incorporation of 13C into total and phospholipid fatty acids (tFA and PLFA, respectively). 14:0; 15:0; 16:0; 16:1(n - 7)c+t; 18:1(n - 13)c+t and (n - 7)c+t; 20:1(n - 7); 20:2(n - 9,15); 18:3(n - 7) and (n - 5,10,13) PLFA were labeled in the presence of H13CO3- (+H2S) and 13CH4, while the 12:0 compound became labeled only in the presence of H13CO3- (+H2S). In contrast, the 17:0; 18:0; 16:1(n - 9); 16:1(n - 8) and (n - 6); 18:1(n - 8); and 18:2(n - 7) PLFA were only labeled in the presence of 13CH4. Some of these symbiont-specific fatty acids also appeared to be labeled in mussel gill tFA when incubated with 13C-enriched amino acids, and so were mussel-specific fatty acids such as 22:2(n - 7,15). Our results provide experimental evidence for the potential of specific fatty acid markers to distinguish between the two endosymbiotic bacteria, shedding new light on C1 and multi-carbon compound metabolic pathways in B. azoricus and its symbionts.

  15. Tracing carbon assimilation in endosymbiotic deep-sea hydrothermal vent Mytilid fatty acids by 13C-fingerprinting

    NASA Astrophysics Data System (ADS)

    Riou, V.; Bouillon, S.; Serrão Santos, R.; Dehairs, F.; Colaço, A.

    2010-05-01

    Bathymodiolus azoricus mussels thrive at Mid-Atlantic Ridge hydrothermal vents, where part of their energy requirements are met via an endosymbiotic association with chemolithotrophic and methanotrophic bacteria. In an effort to describe phenotypic characteristics of the two bacterial endosymbionts and to assess their ability to assimilate CO2, CH4 and multi-carbon compounds, we performed experiments in aquaria using 13C-labeled NaHCO3 (in the presence of H2S), CH4 or amino-acids and traced the incorporation of 13C into total and phospholipid fatty acids (tFA and PLFA, respectively). 14:0, 15:0, 16:1(n-7)c+t and 18:1(n-7)c+t PLFA were labeled in the presence of H13CO3- (+H2S) and 13CH4, while the 12:0 compound became labeled only in the presence of H13CO3- (+H2S). In contrast, the 16:1(n-9), 16:1(n-8) and (n-6), 18:1(n-8)c and (n-7), 20:1(n-7) and 18:2(n-7) PLFA were only labeled in the presence of 13CH4. Some of these symbiont-specific fatty acids also appeared to be labeled in mussel gill tFA when incubated with 13C-enriched amino acids, and so were mussel-specific fatty acids such as 22:2(n-7,15). Our results provide experimental evidence for the potential of specific fatty acid markers to distinguish between the two endosymbiotic bacteria, shedding new light on C1 and multi-carbon compound metabolic pathways in B. azoricus and its symbionts.

  16. Interacting effects of photoperiod and photosynthetic photon flux on net carbon assimilation and starch accumulation in potato leaves

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Yorio, N. C.; Wheeler, R. M.

    1996-01-01

    The effect of photoperiod (PP) on net carbon assimilation rate (Anet) and starch accumulation in newly mature canopy leaves of 'Norland' potato (Solanum tuberosum L.) was determined under high (412 varies as mol m-2s-1) and low (263 varies as mol m-2s-1) photosynthetic photon flux (PPF) conditions. The Anet decreased from 13.9 to 11.6 and 9.3 micromoles m-2s-1, and leaf starch increased from 70 to 129 and 118 mg g-1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/6, and 24/0, respectively. Longer PP had a greater effect with high PPF conditions than with low PPF treatments, with high PPF showing greater decline in Anet. Photoperiod did not affect either the CO2 compensation point (50 micromoles mol-1) or CO2 saturation point (1100-1200 micromoles mol-1) for Anet. These results show an apparent limit to the amount of starch that can be stored (approximately 15% DM) in potato leaves. An apparent feedback mechanism exists for regulating Anet under high PPF, high CO2, and long PP, but there was no correlation between Anet and starch concentration in individual leaves. This suggests that maximum Anet cannot be sustained with elevated CO2 conditions under long PP (> or = 12 hours) and high PPF conditions. If a physiological limit exists for the fixation and transport of carbon,then increasing photoperiod and light intensity under high CO2 conditions is not the most appropriate means to maximize the yield of potatoes.

  17. Controlling the volumetric parameters of nitrogen-doped carbon nanotube cups

    NASA Astrophysics Data System (ADS)

    Allen, Brett L.; Keddie, Matthew B.; Star, Alexander

    2010-07-01

    Analogous to multiwalled carbon nanotubes, nitrogen-doped carbon nanotube cups (NCNCs) have been synthesized with defined volumetric parameters (diameter and segment lengths) by controlling the catalyst particle size and the concentration of nitrogen precursor utilized in the chemical vapor deposition (CVD) reaction, allowing for tailored interior cavity space of cross-linked NCNCs, i.e. nanocapsules.Analogous to multiwalled carbon nanotubes, nitrogen-doped carbon nanotube cups (NCNCs) have been synthesized with defined volumetric parameters (diameter and segment lengths) by controlling the catalyst particle size and the concentration of nitrogen precursor utilized in the chemical vapor deposition (CVD) reaction, allowing for tailored interior cavity space of cross-linked NCNCs, i.e. nanocapsules. Electronic supplementary information (ESI) available: AFM and DLS of FeNPs, high-resolution TEM and EELS analysis, and TEM of statistical distributions. See DOI: 10.1039/c0nr00043d

  18. Independently Controlled Carbon and Nitrogen Potential: A New Approach to Carbonitriding Process

    NASA Astrophysics Data System (ADS)

    Winter, Karl-Michael

    2013-07-01

    Recent research projects show that retained austenite, if stabilized by nitrogen, has a positive influence on the fatigue strength of work pieces. The combined diffusion profile of carbon and nitrogen applied in a carbonitriding process plays a major role, besides the process temperature. Yet today, only the carbon potential is somehow controlled and even this is not easy to achieve. This paper will present a new system able to measure and control both the carbon potential and the nitrogen potential independently. The knowledge of the activities of nitrogen and carbon in iron and the effect of alloying elements on such activities as well as the solubilities offers a way to apply the potentials on real steels.

  19. STABLE ISOTOPIC EVIDENCE OF CARBON AND NITROGEN USE IN CULTURED ECTOMYCORRHIZAL AND SAPROTROPHIC FUNGI

    EPA Science Inventory

    Stable isotopes in sporocarps have proven useful for inferring ectomycorrhizal or saprotrophic status and understanding carbon (C) and nitrogen (N) utilization. However, greater understanding of processes producing isotopic concentrations is needed. We measured natural abundanc...

  20. Biological cycling of carbon and nitrogen to reduce agricultural pollution by nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon and nitrogen are two key elements of global significance, playing large roles in the production of food, feed, fiber, and fuel for human existence, as well as providing numerous other ecosystem services. Although nitrogen is often a limiting element in natural systems, it can become a pollut...

  1. [Quantifying rice (Oryza sativa L.) photo-assimilated carbon input into soil organic carbon pools following continuous 14C labeling].

    PubMed

    Nie, San-An; Zhou, Ping; Ge, Ti-Da; Tong, Cheng-Li; Xiao, He-Ai; Wu, Jin-Shui; Zhang, Yang-Zhu

    2012-04-01

    The microcosm experiment was carried out to quantify the input and distribution of photo-assimilated C into soil C pools by using a 14C continuous labeling technique. Destructive samplings of rice (Oryza sativa) were conducted after labeling for 80 days. The allocation of 14C-labeled photosynthates in plants and soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) in rice-planted soil were examined over the 14C labeling span. The amounts of rice shoot and root biomass C was ranged from 1.86 to 5.60 g x pot(-1), 0.46 to 0.78 g x pot(-1) in different tested paddy soils after labeling for 80 days, respectively. The amount of 14C in the soil organic C (14C-SOC) was also dependent on the soils, ranged from 114.3 to 348.2 mg x kg(-1), accounting for 5.09% to 6.62% of the rice biomass 14C, respectively. The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C(14C-MBC), as proportions of 14C-SOC, were 2.21%-3.54% and 9.72% -17.2%, respectively. The 14C-DOC, 14C-MBC, and 14C-SOC as proportions of total DOC, MBC, and SOC, respectively, were 6.72% -14.64%, 1.70% -7.67%, and 0.73% -1.99%, respectively. Moreover, the distribution and transformation of root-derived C had a greater influence on the dynamics of DOC and MBC than on the dynamics of SOC. Further studies are required to ascertain the functional significance of soil microorganisms (such as C-sequestering bacteria and photosynthetic bacteria) in the paddy system. PMID:22720588

  2. Yeast mutants of glucose metabolism with defects in the coordinate regulation of carbon assimilation.

    PubMed

    Dennis, R A; Rhodey, M; McCammon, M T

    1999-05-15

    The enzymes of the glyoxylate cycle and gluconeogenesis are tightly regulated by transcriptional, posttranscriptional, and posttranslational mechanisms in Saccharomyces cerevisiae. We have previously identified four genes, ACN8, ACN9, ACN17, and ACN18, whose mutant phenotype includes two- to fourfold elevated levels of enzymes of the glyoxylate cycle, gluconeogenesis, and acetyl-CoA metabolism. The affected enzymes are elevated on nonfermentable carbon sources but are still fully repressed by glucose. Catabolite inactivation of the cytosolic malate dehydrogenase is not affected in the mutants. Instead, the phenotype appeared to be manifested primarily at the level of transcription. The ACN8, ACN17, and ACN18 genes were isolated by functional complementation of the respective mutant's inability to utilize acetate as a carbon and energy source, and these genes were shown to encode subunits of metabolic enzymes. ACN8 was identical to FBP1, which encodes the gluconeogenic enzyme, fructose 1,6-bisphosphatase, while ACN17 and ACN18 were identical to the SDH2 and SDH4 genes, respectively, that encode subunits of the respiratory chain and tricarboxylic acid cycle enzyme, succinate dehydrogenase. Mutants defective in other glyoxylate cycle and gluconeogenic enzymes also display the elevated enzyme phenotype, indicating that the enzyme superinduction is a general property of gluconeogenic dysfunction. Glucose 6-phosphate levels were diminished in the mutants, suggesting that endogenous glucose synthesis can regulate the expression of gluconeogenic enzymes.

  3. Graphitic and pyridinic nitrogen in carbon nanotubes: energetic and polarization aspects

    NASA Astrophysics Data System (ADS)

    Sedelnikova, Olga V.; Bulusheva, Lyubov G.; Okotrub, Alexander V.

    2016-03-01

    The incorporation of nitrogen atoms into carbon nanotube (CNT) walls occurs mainly via bonding with three or two carbon atoms, and the obtained configurations are referred to as graphitic and pyridinic nitrogen forms. Here, we evaluate the energy of formation of these nitrogen defects in an armchair (6,6) CNT and the static polarizability of the obtained nitrogen-containing carbon (CNx) nanotubes using a dispersion-corrected hybrid functional. The calculations showed that the graphitic nitrogen atoms prefer to be in the pentagonal rings located at a nanotube cap. The CNx nanotubes with such nitrogen impurities have enhanced polarizability as compared to their nondoped counterparts. The formation of the pyridinic nitrogen defect requires ˜7.1 eV however, if the CNT already contains a vacancy, this energy reduces to ˜0.2 eV. The presence of pyridinic nitrogen atoms in CNx nanotubes should not increase the polarization response. Our results suggest that the electromagnetic properties of CNx nanotubes can be tuned by interconverting between graphitic and pyridinic nitrogen forms.

  4. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen - Preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1980-01-01

    The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.

  5. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J; Bradford, Mark A

    2015-04-01

    Understanding the role of soil microbial communities in coupled carbon and nitrogen cycles has become an area of great interest as we strive to understand how global change will influence ecosystem function. In this endeavor, microbially explicit decomposition models are being adopted because they include microbial stoichiometry- and biomass-mediated mechanisms that may be important in shaping ecosystem response to environmental change. Yet there has been a dearth of empirical tests to verify the predictions of these models and hence identify potential improvements. We measured the response of soil microbes to multiple rates of carbon and nitrogen amendment in experimental microcosms, and used the respiration and nitrogen mineralization responses to assess a well-established, single-pool, microbial decomposition model. The model generally predicted the empirical trends in carbon and nitrogen fluxes, but failed to predict the empirical trends in microbial biomass. Further examination of this discontinuity indicated that the model successfully predicted carbon and nitrogen cycling because stoichiometry overrode microbial biomass as a regulator of cycling rates. Stoichiometric control meant that the addition of carbon generally increased respiration and decreased nitrogen mineralization, whereas nitrogen had the opposite effects. Biomass only assumed importance as a control on cycling rates when stoichiometric ratios of resource inputs were a close match to those of the microbial biomass. Our work highlights the need to advance our understanding of the stoichiometric demands of microbial biomass in order to better understand biogeochemical cycles in the face of changing organic- and inorganic-matter inputs to terrestrial ecosystems. PMID:26230033

  6. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J; Bradford, Mark A

    2015-04-01

    Understanding the role of soil microbial communities in coupled carbon and nitrogen cycles has become an area of great interest as we strive to understand how global change will influence ecosystem function. In this endeavor, microbially explicit decomposition models are being adopted because they include microbial stoichiometry- and biomass-mediated mechanisms that may be important in shaping ecosystem response to environmental change. Yet there has been a dearth of empirical tests to verify the predictions of these models and hence identify potential improvements. We measured the response of soil microbes to multiple rates of carbon and nitrogen amendment in experimental microcosms, and used the respiration and nitrogen mineralization responses to assess a well-established, single-pool, microbial decomposition model. The model generally predicted the empirical trends in carbon and nitrogen fluxes, but failed to predict the empirical trends in microbial biomass. Further examination of this discontinuity indicated that the model successfully predicted carbon and nitrogen cycling because stoichiometry overrode microbial biomass as a regulator of cycling rates. Stoichiometric control meant that the addition of carbon generally increased respiration and decreased nitrogen mineralization, whereas nitrogen had the opposite effects. Biomass only assumed importance as a control on cycling rates when stoichiometric ratios of resource inputs were a close match to those of the microbial biomass. Our work highlights the need to advance our understanding of the stoichiometric demands of microbial biomass in order to better understand biogeochemical cycles in the face of changing organic- and inorganic-matter inputs to terrestrial ecosystems.

  7. Simultaneous inhibition of carbon and nitrogen mineralization in a forest soil by simulated acid precipitation

    SciTech Connect

    Klein, T.M.; Novick, N.J.; Kreitinger, J.P.; Alexander, M.

    1984-06-01

    One method to simulate the long-term exposure of soil to acid rain involves the addition of single doses of concentrated acid. The inhibition of carbon mineralization accompanied by a stimulation of nitrogen mineralization may result from this severe, unnatural treatment. The present study was designed to determine whether the inhibition of carbon mineralization and the accompanying enhanced nitrogen mineralization would occur when soils are treated with more dilute acid for long periods of time, as takes place in nature.

  8. Infrared spectrum of the complex of formaldehyde with carbon dioxide in argon and nitrogen matrices

    NASA Technical Reports Server (NTRS)

    Van Der Zwet, G. P.; Allamandola, Louis J.; Baas, F.; Greenberg, J. M.

    1989-01-01

    The complex of formaldehyde with carbon dioxide has been studied by infrared spectroscopy in argon and nitrogen matrices. The shifts relative to the free species show that the complex is weak and similar in argon and nitrogen. The results give evidence for T-shaped complexes, which are isolated in several configurations. Some evidence is also presented which indicates that, in addition to the two well-known sites in argon, carbon dioxide can be trapped in a third site.

  9. Textural properties of raw carbon nanotubes by nitrogen adsorption and mercury porosimetry

    NASA Astrophysics Data System (ADS)

    Bossuot, Ch.; Bister, G.; Fonseca, A.; Nagy, J. B.; Pirard, J.-P.

    2001-11-01

    A sample of raw material made by catalytic decomposition of methane and containing a fraction of single-wall carbon nanotubes (SWNTs) was studied. Interpretation of mercury porosimetry and nitrogen adsorption-desorption isotherms was difficult because the purity of carbon nanotubes, thermogravimetry revealed, was rather poor. Indeed, the raw material was made up by carbon soot, graphitic disordered carbon, damaged nanotubes, SWNTs and catalyst residues. The raw material was mainly microporous with some mesopores.

  10. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region.

  11. Syntheses with stable isotopes of carbon, nitrogen, and oxygen

    SciTech Connect

    Ott, D.G.

    1981-01-01

    Methods, techniques, ideas, information, and references to prepare compounds labeled with stable isotopes of carbon, nitrogen, and oxygen are presented, which can be used in selecting or devising synthetic schemes. By studying and comparing methods that other investigators have applied to problems in isotopic labeling, the task of deciding on suitable syntheses for incorporating isotopes into various other compounds can be considerably simplified. The major portion of the book is devoted to synthetic procedures that have been used for preparation of specific labeled compounds. The descriptions are often given in sufficient detail that they can be applied or modified without necessity for recourse to the original literature. Methods can be compared, feasibility for extensions to other isotope isomers or to related compounds can be assessed, and requirements for apparatus, materials, time, effort, and skills can be evaluated. Additional methods and speculations are presented for a number of other compounds whose syntheses are not given in detail. A few biosynthetic preparations, which afford specific products in good isotopic yield, are described; certain other applications of biological methods are considered briefly. Arrangement of the procedures into chapters according to functional groups is somewhat arbitrary; that is, not all preparations of carboxylic acids will be found in the chapter dealing with acids and derivatives; certain alcohols appear as components in multistep syntheses in the chapter on hydrocarbons; some compounds could just as well have been placed elsewhere; and so on. Thus it is important to use the index. Following the introductory chapter, the contents of this book are as follows: (1) acids, anhydrides, amids, esters, and nitriles; (2) aldehydes and ketones; (3) alcohols, ethers, and phenols; (4) amines, and hydrocarbons; (5) heterocyclic compounds; and (6) other compounds.

  12. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. PMID:25711504

  13. Impacts of Invasive Pests on Forest Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Lovett, G. M.; Crowley, K. F.

    2014-12-01

    Forests of the U.S. have been subject to repeated invasions of destructive insects and diseases imported from other continents. Like other disturbances, these pests can produce short-term ecosystem effects due to tree mortality, but unlike other disturbances, they often target individual species and therefore can cause long-term species change in the forest. Because tree species vary in their influence on carbon (C) and nitrogen (N) cycles, pest-induced species change can radically alter the biogeochemistry of a forest. In this paper we use both data and modeling to examine how pest-induced species change may alter the C and N cycling in forests of the eastern U.S. We describe a new forest ecosystem model that distinguishes individual tree species and allows species composition to shift over the course of the model run. Results indicate that the mortality of eastern hemlock (Tsuga canadensis) by hemlock woolly adelgid and its replacement by faster-growing species such as black birch (Betula lenta) will reduce forest floor C stocks but increase productivity as the birch become established. Decline of American beech (Fagus grandifolia) from beech bark disease and its replacement by sugar maple (Acer saccharum) is likely to decrease soil C storage and increase N leaching from the ecosystem. Responses to other invasive pests will also be discussed. The magnitude of these species-specific effects on C and N cycling is in many cases larger than direct effects expected from changes in climate and atmospheric N deposition, indicating that species change should be included in models that predict forest ecosystem function under future environmental conditions.

  14. Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.

    PubMed

    Thomsson, Elisabeth; Gustafsson, Lena; Larsson, Christer

    2005-06-01

    Anaerobic starvation conditions are frequent in industrial fermentation and can affect the performance of the cells. In this study, the anaerobic carbon or nitrogen starvation response of Saccharomyces cerevisiae was investigated for cells grown in anaerobic carbon or nitrogen-limited chemostat cultures at a dilution rate of 0.1 h(-1) at pH 3.25 or 5. Lactic or benzoic acid was present in the growth medium at different concentrations, resulting in 16 different growth conditions. At steady state, cells were harvested and then starved for either carbon or nitrogen for 24 h under anaerobic conditions. We measured fermentative capacity, glucose uptake capacity, intracellular ATP content, and reserve carbohydrates and found that the carbon, but not the nitrogen, starvation response was dependent upon the previous growth conditions. All cells subjected to nitrogen starvation retained a large portion of their initial fermentative capacity, independently of previous growth conditions. However, nitrogen-limited cells that were starved for carbon lost almost all their fermentative capacity, while carbon-limited cells managed to preserve a larger portion of their fermentative capacity during carbon starvation. There was a positive correlation between the amount of glycogen before carbon starvation and the fermentative capacity and ATP content of the cells after carbon starvation. Fermentative capacity and glucose uptake capacity were not correlated under any of the conditions tested. Thus, the successful adaptation to sudden carbon starvation requires energy and, under anaerobic conditions, fermentable endogenous resources. In an industrial setting, carbon starvation in anaerobic fermentations should be avoided to maintain a productive yeast population.

  15. Starvation Response of Saccharomyces cerevisiae Grown in Anaerobic Nitrogen- or Carbon-Limited Chemostat Cultures

    PubMed Central

    Thomsson, Elisabeth; Gustafsson, Lena; Larsson, Christer

    2005-01-01

    Anaerobic starvation conditions are frequent in industrial fermentation and can affect the performance of the cells. In this study, the anaerobic carbon or nitrogen starvation response of Saccharomyces cerevisiae was investigated for cells grown in anaerobic carbon or nitrogen-limited chemostat cultures at a dilution rate of 0.1 h−1 at pH 3.25 or 5. Lactic or benzoic acid was present in the growth medium at different concentrations, resulting in 16 different growth conditions. At steady state, cells were harvested and then starved for either carbon or nitrogen for 24 h under anaerobic conditions. We measured fermentative capacity, glucose uptake capacity, intracellular ATP content, and reserve carbohydrates and found that the carbon, but not the nitrogen, starvation response was dependent upon the previous growth conditions. All cells subjected to nitrogen starvation retained a large portion of their initial fermentative capacity, independently of previous growth conditions. However, nitrogen-limited cells that were starved for carbon lost almost all their fermentative capacity, while carbon-limited cells managed to preserve a larger portion of their fermentative capacity during carbon starvation. There was a positive correlation between the amount of glycogen before carbon starvation and the fermentative capacity and ATP content of the cells after carbon starvation. Fermentative capacity and glucose uptake capacity were not correlated under any of the conditions tested. Thus, the successful adaptation to sudden carbon starvation requires energy and, under anaerobic conditions, fermentable endogenous resources. In an industrial setting, carbon starvation in anaerobic fermentations should be avoided to maintain a productive yeast population. PMID:15932996

  16. Genomic signatures of fifth autotrophic carbon assimilation pathway in bathypelagic Crenarchaeota.

    PubMed

    La Cono, Violetta; Smedile, Francesco; Ferrer, Manuel; Golyshin, Peter N; Giuliano, Laura; Yakimov, Michail M

    2010-09-01

    Marine Crenarchaeota, ubiquitous and abundant organisms in the oceans worldwide, remain metabolically uncharacterized, largely due to their low cultivability. Identification of candidate genes for bicarbonate fixation pathway in the Cenarchaeum symbiosum A was an initial step in understanding the physiology and ecology of marine Crenarchaeota. Recent cultivation and genome sequencing of obligate chemoautotrophic Nitrosopumilus maritimus SCM1 were a major breakthrough towards understanding of their functioning and provide a valuable model for experimental validation of genomic data. Here we present the identification of multiple key components of 3-hydroxipropionate/4-hydroxybutyrate cycle, the fifth pathway in carbon fixation, found in data sets of environmental sequences representing uncultivated superficial and bathypelagic Crenarchaeota from Sargasso sea (GOS data set) and KM3 (Mediterranean Sea) and ALOHA (Atlantic ocean) stations. These organisms are likely to use acetyl-CoA/propionyl-CoA carboxylase(s) as CO₂-fixing enzyme(s) to form succinyl-CoA, from which one molecule of acetyl-CoA is regenerated via 4-hydroxybutyrate cleavage and another acetyl-CoA to be the pathway product. The genetic distinctiveness and matching sympatric abundance imply that marine crenarchaeal genotypes from the three different geographic sites share similar ecophysiological properties, and therefore may represent fundamental units of marine ecosystem functioning. To couple results of sequence comparison with the dark ocean primary production, dissolved inorganic carbon fixation rates were measured at KM3 Station (3000 m depth, Eastern Mediterranean Sea), i.e. at the same site and depth used for metagenomic library construction. PMID:21255356

  17. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Yaling; Feng, Xiaoting; Zhang, Feng; Yang, Yongzhen; Liu, Xuguang

    2016-11-01

    To investigate the effect of reaction temperature and nitrogen doping on the structure and fluorescence properties of carbon dots (CDs), six kinds of nitrogen-doped CDs (NCDs) were synthesized at reaction temperatures of 120, 140, 160, 180, 200 and 220 °C, separately, by using citric acid as carbon source and ammonia solution as nitrogen source. Nitrogen-free CDs (N-free CDs-180) was also prepared at 180 °C by using citric acid as the only carbon source for comparison. Results show that reaction temperature has obvious effect on carbonization degree, quantum yield (QY), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectra but less effect on functional groups, nitrogen doping degree and fluorescence lifetime of NCDs. Compared with N-free CDs-180, NCDs-180 possesses enchanced QY and longer fluorescence lifetime. Doping nitrogen has obvious effect on UV-vis absorption and PL spectra but less effect on particles sizes and carbonization degree. The formation mechanism of NCDs is explored: QY of NCDs depends largely on the number of fluorescent polymer chains (FPC), the competition between FPC formation on the surface of NCDs and carbon core growth leads to the change in number of FPC, and consequently to the NCDs with highest QY at appropriate hydrothermal temperature.

  18. Land Cover Differences in Soil Carbon and Nitrogen at Fort Benning, Georgia

    SciTech Connect

    Garten Jr., C.T.

    2004-02-09

    Land cover characterization might help land managers assess the impacts of management practices and land cover change on attributes linked to the maintenance and/or recovery of soil quality. However, connections between land cover and measures of soil quality are not well established. The objective of this limited investigation was to examine differences in soil carbon and nitrogen among various land cover types at Fort Benning, Georgia. Forty-one sampling sites were classified into five major land cover types: deciduous forest, mixed forest, evergreen forest or plantation, transitional herbaceous vegetation, and barren land. Key measures of soil quality (including mineral soil density, nitrogen availability, soil carbon and nitrogen stocks, as well as properties and chemistry of the O-horizon) were significantly different among the five land covers. In general, barren land had the poorest soil quality. Barren land, created through disturbance by tracked vehicles and/or erosion, had significantly greater soil density and a substantial loss of carbon and nitrogen relative to soils at less disturbed sites. We estimate that recovery of soil carbon under barren land at Fort Benning to current day levels under transitional vegetation or forests would require about 60 years following reestablishment of vegetation. Maps of soil carbon and nitrogen were produced for Fort Benning based on a 1999 land cover map and field measurements of soil carbon and nitrogen stocks under different land cover categories.

  19. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    NASA Astrophysics Data System (ADS)

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; McGuire, A. David; Post, Wilfred; Kicklighter, David

    2009-12-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr-1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr-1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr-1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr-1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources

  20. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    SciTech Connect

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; Mcguire, David; Post, Wilfred M

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and

  1. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    USGS Publications Warehouse

    Jain, A.A.; Yang, Xiaojuan; Kheshgi, H.; McGuire, Anthony; Post, W.; Kicklighter, David W.

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon

  2. Diel variation of the cellular carbon to nitrogen ratio of Chlorella autotrophica (Chlorophyta) growing in phosphorus- and nitrogen-limited continuous cultures.

    PubMed

    Ng, Wai Ho Albert; Liu, Hongbin

    2015-02-01

    We investigated the relationship between daily growth rates and diel variation of carbon (C) metabolism and C to nitrogen (N) ratio under P- and N-limitation in the green algae Chlorella autotrophica. To do this, continuous cultures of C. autotrophica were maintained in a cyclostat culture system under 14:10 light:dark cycle over a series of P- and N-limited growth rates. Cell abundance, together with cell size, as reflected by side scatter signal from flow cytometric analysis demonstrated a synchronized diel pattern with cell division occurring at night. Under either type of nutrient limitation, the cellular C:N ratio increased through the light period and decreased through the dark period over all growth rates, indicating a higher diel variation of C metabolism than that of N. Daily average cellular C:N ratios were higher at lower dilution rates under both types of nutrient limitation but cell enlargement was only observed at lower dilution rates under P-limitation. Carbon specific growth rates during the dark period positively correlated with cellular daily growth rates (dilution rates), with net loss of C during night at the lowest growth rates under N-limitation. Under P-limitation, dark C specific growth rates were close to zero at low dilution rates but also exhibited an increasing trend at high dilution rates. In general, diel variations of cellular C:N were low when dark C specific growth rates were high. This result indicated that the fast growing cells performed dark C assimilation at high rates, hence diminished the uncoupling of C and N metabolism at night.

  3. Diel variation of the cellular carbon to nitrogen ratio of Chlorella autotrophica (Chlorophyta) growing in phosphorus- and nitrogen-limited continuous cultures.

    PubMed

    Ng, Wai Ho Albert; Liu, Hongbin

    2015-02-01

    We investigated the relationship between daily growth rates and diel variation of carbon (C) metabolism and C to nitrogen (N) ratio under P- and N-limitation in the green algae Chlorella autotrophica. To do this, continuous cultures of C. autotrophica were maintained in a cyclostat culture system under 14:10 light:dark cycle over a series of P- and N-limited growth rates. Cell abundance, together with cell size, as reflected by side scatter signal from flow cytometric analysis demonstrated a synchronized diel pattern with cell division occurring at night. Under either type of nutrient limitation, the cellular C:N ratio increased through the light period and decreased through the dark period over all growth rates, indicating a higher diel variation of C metabolism than that of N. Daily average cellular C:N ratios were higher at lower dilution rates under both types of nutrient limitation but cell enlargement was only observed at lower dilution rates under P-limitation. Carbon specific growth rates during the dark period positively correlated with cellular daily growth rates (dilution rates), with net loss of C during night at the lowest growth rates under N-limitation. Under P-limitation, dark C specific growth rates were close to zero at low dilution rates but also exhibited an increasing trend at high dilution rates. In general, diel variations of cellular C:N were low when dark C specific growth rates were high. This result indicated that the fast growing cells performed dark C assimilation at high rates, hence diminished the uncoupling of C and N metabolism at night. PMID:26986260

  4. A Model-based Estimate of the Relative Importance of Climate warming, CO2-fertilization and Nitrogen Deposition to Global Terrestrial Carbon Uptake (Invited)

    NASA Astrophysics Data System (ADS)

    Bala, G.; Narayanappa, D.; Chaturvedi, R.; Caldeira, K.; Nemani, R. R.

    2013-12-01

    Global carbon budget studies indicate that the terrestrial ecosystems have remained a large sink for carbon in recent decades despite deforestation activities. Carbon uptake due to CO2- fertilization, N deposition and regrowth of mid-latitude forests are believed to be the key drivers. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our 1000-year equilibrium simulations, only 12-17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C:N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial carbon losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating climate warming effects on carbon storage may overwhelm N deposition effects in the future.

  5. Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor J.; Kaminski, Thomas; Köstler, Christoph; Carvalhais, Nuno; Voßbeck, Michael; Kattge, Jens; Giering, Ralf; Rödenbeck, Christian; Heimann, Martin; Zaehle, Sönke

    2016-09-01

    We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the JSBACH land-surface scheme, which is part of the MPI-Earth System Model v1. The simulated phenology and net land carbon balance were constrained by globally distributed observations of the fraction of absorbed photosynthetically active radiation (FAPAR, using the TIP-FAPAR product) and atmospheric CO2 at a global set of monitoring stations for the years 2005 to 2009. When constrained by FAPAR observations alone, the system successfully, and computationally efficiently, improved simulated growing-season average FAPAR, as well as its seasonality in the northern extra-tropics. When constrained by atmospheric CO2 observations alone, global net and gross carbon fluxes were improved, despite a tendency of the system to underestimate tropical productivity. Assimilating both data streams jointly allowed the MPI-CCDAS to match both observations (TIP-FAPAR and atmospheric CO2) equally well as the single data stream assimilation cases, thereby increasing the overall appropriateness of the simulated biosphere dynamics and underlying parameter values. Our study thus demonstrates the value of multiple-data-stream assimilation for the simulation of terrestrial biosphere dynamics. It further highlights the potential role of remote sensing data, here the TIP-FAPAR product, in stabilising the strongly underdetermined atmospheric inversion problem posed by atmospheric transport and CO2 observations alone. Notwithstanding these advances, the constraint of the observations on regional gross and net CO2 flux patterns on the MPI-CCDAS is limited through the coarse-scale parametrisation of the biosphere model. We expect improvement through a refined initialisation strategy and inclusion of further biosphere observations as constraints.

  6. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    SciTech Connect

    Thornton, Peter E; Doney, Scott C.; Lindsay, Keith; Moore, Jefferson Keith; Mahowald, Natalie; Randerson, James T; Fung, Inez; Lamarque, Jean-Francois H; Feddema, Johan J.

    2009-01-01

    Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO{sub 2} fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO{sub 2} predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO{sub 2} emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO{sub 2} concentration and

  7. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  8. Examining Patterns of Carbon Assimilation and Allocation to Defense Processes in a Restored Southern Pine Forest

    NASA Astrophysics Data System (ADS)

    Ritger, H.; Novick, K. A.

    2014-12-01

    Southern pine forests provide many important ecosystem services, including biodiversity, carbon sequestration, and softwood timber production, which is a vital component of local economies in the American South. However, all southern pine forests are sensitive to damage from infestations of bark beetles and drought events, which can lead to declines in productivity that may cause mortality in extreme cases, and which may increase in frequency in the future due to ongoing climate change. This study explores how southern pine management for restored, old-growth like conditions, in contrast with management for timber production, affects stand scale drought response and tree resistance to bark beetle herbivory by leveraging a suite of data from a new eddy covariance flux monitoring site in a 65-year-old restored loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine forest situated in the Crossett Experimental Forest (Arkansas, USA). The sensitivity of ecosystem scale fluxes of CO2 and H2O to drought is interpreted through a synthesis with other long-running Ameriflux sites located in southern pine forests. The effects of the management regime on resin production, which is the pine trees' main defense against beetle attacks, are assessed by comparing monthly resin flow observations collected over the course of the 2013 growing season in the restored stand and in a co-located stand of even-age planted loblolly pines managed for timber production. Results show that loblolly in the uneven-aged stand consistently produced much larger amounts of resin than loblolly in the even-aged stand, and shortleaf pines were the lowest producers throughout the growing season. No significant relationship between resin flow and diameter at breast height was observed within or across species and sites; thus, species and management effects are independent of their effect on tree size.

  9. The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NASA Astrophysics Data System (ADS)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2016-02-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our vegetation model SiBCASA, we increase data usage by assimilating two streams of satellite-derived soil moisture. We study whether the assimilation improved SiBCASA's soil moisture and its effect on the simulated carbon fluxes. By comparing to unique in situ soil moisture observations, we show that the passive microwave soil moisture product did not improve the soil moisture simulated by SiBCASA, but the active data seem promising in some aspects. The match between SiBCASA and ASCAT soil moisture is best in the summer months over low vegetation. Nevertheless, ASCAT failed to detect the major droughts occurring between 2007 and 2013. The performance of ASCAT soil moisture seems to be particularly sensitive to ponding, rather than to biomass. The effect on the simulated carbon fluxes is large, 5-10 % on annual GPP and TER, tens of percent on local NEE, and 2 % on area-integrated NEE, which is the same order of magnitude as the inter-annual variations. Consequently, this study shows that assimilation of satellite-derived soil moisture has potentially large impacts, while at the same time further research is needed to understand under which conditions the satellite-derived soil moisture improves the simulated soil moisture.

  10. [Simultaneous removal of carbon and nitrogen from organic-rich wastewater with Anammox].

    PubMed

    Chen, Chongjun; Zhu, Weijing; Huang, Xiaoxiao; Wu, Weixiang

    2014-12-01

    In order to simultaneously remove carbon and nitrogen from organic-rich wastewater, we used an up-flow anaerobic sludge bed/blanket (UASB) reactor that was started up with anammox with high concentration of carbon and nitrogen by gradually raising the organic loading of influent. We optimized the removal of nitrogen and carbon when the chemical oxygen demand (COD) concentration varied from 172 to 620 mg/L. During the entire experiment, the ammonium and total nitrogen removal efficiency was higher than 85%, while the average COD removal efficiency was 56.6%. The high concentration of organic matter did not restrain the activity of anammox bacteria. Based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and tapping sequencing analyses, the Planctomycete, Proteobacteria, Chloroflexi, Chlorobi bacteria are detected in the UASB reactor, which indicated complex removal pathway of carbon and nitrogen coexisted in the reactor. However, a part of Planctomycete which referred to anammox bacteria could tolerate a high content of organic carbon, and it provided help for high performance of nitrogen removal in UASB reactor.

  11. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    Elbert, Wolfgang; Weber, Bettina; Burrows, Susannah; Steinkamp, Jörg; Büdel, Burkhard; Andreae, Meinrat O.; Pöschl, Ulrich

    2012-07-01

    Many terrestrial surfaces, including soils, rocks and plants, are covered by photoautotrophic communities, capable of synthesizing their own food from inorganic substances using sunlight as an energy source. These communities, known as cryptogamic covers, comprise variable proportions of cyanobacteria, algae, fungi, lichens and bryophytes, and are able to fix carbon dioxide and nitrogen from the atmosphere. However, their influence on global and regional biogeochemical cycling of carbon and nitrogen has not yet been assessed. Here, we analyse previously published data on the spatial coverage of cryptogamic communities, and the associated fluxes of carbon and nitrogen, in different types of ecosystem across the globe. We estimate that globally, cryptogamic covers take up around 3.9 Pg carbon per year, corresponding to around 7% of net primary production by terrestrial vegetation. We derive a nitrogen uptake by cryptogamic covers of around 49 Tg per year, suggesting that cryptogamic covers account for nearly half of the biological nitrogen fixation on land. We suggest that nitrogen fixation by cryptogamic covers may be crucial for carbon sequestration by plants.

  12. Kinetics and yields of pesticide biodegradation at low substrate concentrations and under conditions restricting assimilable organic carbon.

    PubMed

    Helbling, Damian E; Hammes, Frederik; Egli, Thomas; Kohler, Hans-Peter E

    2014-02-01

    The fundamentals of growth-linked biodegradation occurring at low substrate concentrations are poorly understood. Substrate utilization kinetics and microbial growth yields are two critically important process parameters that can be influenced by low substrate concentrations. Standard biodegradation tests aimed at measuring these parameters generally ignore the ubiquitous occurrence of assimilable organic carbon (AOC) in experimental systems which can be present at concentrations exceeding the concentration of the target substrate. The occurrence of AOC effectively makes biodegradatio