Sample records for nitrogen complexes

  1. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOEpatents

    Givens, Edwin N.; Hoover, David S.

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  2. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    NASA Astrophysics Data System (ADS)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  3. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-07-01

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  4. Use of collagen hydrolysate as a complex nitrogen source for the synthesis of penicillin by Penicillium chrysogenum.

    PubMed

    Leonhartsberger, S; Lafferty, R M; Korneti, L

    1993-09-01

    Optimal conditions for both biomass formation and penicillin synthesis by a strain of Penicillium chrysogenum were determined when using a collagen-derived nitrogen source. Preliminary investigations were carried out in shaken flask cultures employing a planned experimental program termed the Graeco-Latin square technique (Auden et al., 1967). It was initially determined that up to 30% of a conventional complex nitrogen source such as cottonseed meal could be replaced by the collagen-derived nitrogen source without decreasing the productivity with respect to the penicillin yield. In the pilot scale experiments using a 30 l stirred tank type of bioreactor, higher penicillin yields were obtained when 70% of the conventional complex nitrogen source in the form of cottonseed meal was replaced by the collagen hydrolysate. Furthermore, the maximum rate of penicillin synthesis continued for over a longer period when using collagen hydrolysate as a complex nitrogen source. Penicillin synthesis rates were determined using a linear regression.

  5. Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinches, A.; Pallent, L.J.

    1986-10-01

    Rate and yield information relating to biomass and product formation and to nitrogen, glucose and oxygen consumption are described for xanthan gum batch fermentations in which both chemically defined (glutamate nitrogen) and complex (peptone nitrogen) media are employed. Simple growth and product models are used for data interpretation. For both nitrogen sources, rate and yield parameter estimates are shown to be independent of initial nitrogen concentrations. For stationary phases, specific rates of gum production are shown to be independent of nitrogen source but dependent on initial nitrogen concentration. The latter is modeled empirically and suggests caution in applying simple productmore » models to xanthan gum fermentations. 13 references.« less

  6. Structural analysis of the coordination of dinitrogen to transition metal complexes.

    PubMed

    Peigné, Benjamin; Aullón, Gabriel

    2015-06-01

    Transition-metal complexes show a wide variety of coordination modes for the nitrogen molecule. A structural database study has been undertaken for dinitrogen complexes, and geometrical parameters around the L(n)M-N2 unit are retrieved from the Cambridge Structural Database. These data were classified in families of compounds, according to metal properties, to determine the degree of lengthening for the dinitrogen bonding. The importance of the nature of the metal center, such as coordination number and electronic configuration, is reported. Our study reveals poor activation by coordination of dinitrogen in mononuclear complexes, always having end-on coordination. However, partial weakening of nitrogen-nitrogen bonding is found for end-on binuclear complexes, whereas side-on complexes can be completely activated.

  7. GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.

    PubMed

    Tate, Jennifer J; Georis, Isabelle; Rai, Rajendra; Vierendeels, Fabienne; Dubois, Evelyne; Cooper, Terrance G

    2015-05-29

    The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment. Copyright © 2015 Tate et al.

  8. GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation

    PubMed Central

    Tate, Jennifer J.; Georis, Isabelle; Rai, Rajendra; Vierendeels, Fabienne; Dubois, Evelyne; Cooper, Terrance G.

    2015-01-01

    The TorC1 protein kinase complex is a central component in a eukaryotic cell’s response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor−dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc13 localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells’ nitrogen environment. PMID:26024867

  9. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Heathman, Colt R.; Jansone-Popova, Santa

    Here, the novel metal chelator N-2-(pyridylmethyl)diethylenetriamine- N,N',N",N"-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine- N,N,N',N",N"-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am 3+, Cm 3+, and Ln 3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalentmore » europium is found in mixtures containing EuHL (aq) complexes at the same aqueous acidity. The denticity change observed for Eu 3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL (aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am 3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am 3+, Cm 3+) and trivalent lanthanide chelates (La 3+–Lu 3+) are observed in liquid–liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA-PyM as an aqueous holdback reagent. In addition, the enhanced nitrogen-donor softness of the new DTTA-PyM chelator was perturbed by adding a fluorine onto the pyridine group. The comparative characterization of N-(3-fluoro-2-pyridylmethyl)diethylenetriamine- N,N',N",N"-tetraacetic acid (DTTA-3-F-PyM) showed subdued 4 f/5 f differentiation due to the presence of this electron-withdrawing group.« less

  10. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE PAGES

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.; ...

    2017-02-15

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  11. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  12. Target of rapamycin complex 1 and Tap42-associated phosphatases are required for sensing changes in nitrogen conditions in the yeast Saccharomyces cerevisiae.

    PubMed

    Li, Jinmei; Yan, Gonghong; Liu, Sichi; Jiang, Tong; Zhong, Mingming; Yuan, Wenjie; Chen, Shaoxian; Zheng, Yin; Jiang, Yong; Jiang, Yu

    2017-12-01

    In yeast target of rapamycin complex 1 (TORC1) and Tap42-associated phosphatases regulate expression of genes involved in nitrogen limitation response and the nitrogen discrimination pathway. However, it remains unclear whether TORC1 and the phosphatases are required for sensing nitrogen conditions. Utilizing temperature sensitive mutants of tor2 and tap42, we examined the role of TORC1 and Tap42 in nuclear entry of Gln3, a key transcription factor in yeast nitrogen metabolism, in response to changes in nitrogen conditions. Our data show that TORC1 is essential for Gln3 nuclear entry upon nitrogen limitation and downshift in nitrogen quality. However, Tap42-associated phosphatases are required only under nitrogen limitation condition. In cells grown in poor nitrogen medium, the nitrogen permease reactivator kinase (Npr1) inhibits TORC1 activity and alters its association with Tap42, rendering Tap42-associated phosphatases unresponsive to nitrogen limitation. These findings demonstrate a direct role for TORC1 and Tap42-associated phosphatases in sensing nitrogen conditions and unveil an Npr1-dependent mechanism that controls TORC1 and the phosphatases in response to changes in nitrogen quality. © 2017 John Wiley & Sons Ltd.

  13. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOEpatents

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  14. A theoretical investigation on the neutral Cu(I) phosphorescent complexes with azole-based and phosphine mixed ligand

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min

    2018-04-01

    A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.

  15. Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme.

    PubMed

    Cardona, Tanai; Battchikova, Natalia; Zhang, Pengpeng; Stensjö, Karin; Aro, Eva-Mari; Lindblad, Peter; Magnuson, Ann

    2009-04-01

    Filamentous, heterocystous cyanobacteria are capable of nitrogen fixation and photoautotrophic growth. Nitrogen fixation takes place in heterocysts that differentiate as a result of nitrogen starvation. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase, e.g. by downregulation of oxygenic photosynthesis. The ATP and reductant requirement for the nitrogenase reaction is considered to depend on Photosystem I, but little is known about the organization of energy converting membrane proteins in heterocysts. We have investigated the membrane proteome of heterocysts from nitrogen fixing filaments of Nostoc punctiforme sp. PCC 73102, by 2D gel electrophoresis and mass spectrometry. The membrane proteome was found to be dominated by the Photosystem I and ATP-synthase complexes. We could identify a significant amount of assembled Photosystem II complexes containing the D1, D2, CP43, CP47 and PsbO proteins from these complexes. We could also measure light-driven in vitro electron transfer from Photosystem II in heterocyst thylakoid membranes. We did not find any partially disassembled Photosystem II complexes lacking the CP43 protein. Several subunits of the NDH-1 complex were also identified. The relative amount of NDH-1M complexes was found to be higher than NDH-1L complexes, which might suggest a role for this complex in cyclic electron transfer in the heterocysts of Nostoc punctiforme.

  16. 136. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN LIQUID NITROGEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    136. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770), FROM FUEL APRON WITH BAY DOOR OPEN - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  18. Population-level coordination of pigment response in individual cyanobacterial cells under altered nitrogen levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murton, Jaclyn; Nagarajan, Aparna; Nguyen, Amelia Y.

    Cyanobacterial phycobilisome (PBS) pigment-protein complexes harvest light and transfer the energy to reaction centers. Previous ensemble studies have shown that cyanobacteria respond to changes in nutrient availability by modifying the structure of PBS complexes, but this process has not been visualized for individual pigments at the single-cell level due to spectral overlap. We characterized the response of four key photosynthetic pigments to nitrogen depletion and repletion at the subcellular level in individual, live Synechocystis sp. PCC 6803 cells using hyperspectral confocal fluorescence microscopy and multivariate image analysis. Our results revealed that PBS degradation and re-synthesis comprise a rapid response tomore » nitrogen fluctuations, with coordinated populations of cells undergoing pigment modifications. Chlorophyll fluorescence originating from photosystem I and II decreased during nitrogen starvation, but no alteration in subcellular chlorophyll localization was found. Lastly, we observed differential rod and core pigment responses to nitrogen deprivation, suggesting that PBS complexes undergo a stepwise degradation process.« less

  19. Population-level coordination of pigment response in individual cyanobacterial cells under altered nitrogen levels

    DOE PAGES

    Murton, Jaclyn; Nagarajan, Aparna; Nguyen, Amelia Y.; ...

    2017-07-21

    Cyanobacterial phycobilisome (PBS) pigment-protein complexes harvest light and transfer the energy to reaction centers. Previous ensemble studies have shown that cyanobacteria respond to changes in nutrient availability by modifying the structure of PBS complexes, but this process has not been visualized for individual pigments at the single-cell level due to spectral overlap. We characterized the response of four key photosynthetic pigments to nitrogen depletion and repletion at the subcellular level in individual, live Synechocystis sp. PCC 6803 cells using hyperspectral confocal fluorescence microscopy and multivariate image analysis. Our results revealed that PBS degradation and re-synthesis comprise a rapid response tomore » nitrogen fluctuations, with coordinated populations of cells undergoing pigment modifications. Chlorophyll fluorescence originating from photosystem I and II decreased during nitrogen starvation, but no alteration in subcellular chlorophyll localization was found. Lastly, we observed differential rod and core pigment responses to nitrogen deprivation, suggesting that PBS complexes undergo a stepwise degradation process.« less

  20. Simulating nitrogen budgets in complex farming systems using INCA: calibration and scenario analyses for the Kervidy catchment (W. France)

    NASA Astrophysics Data System (ADS)

    Durand, P.

    The integrated nitrogen model INCA (Integrated Nitrogen in Catchments) was used to analyse the nitrogen dynamics in a small rural catchment in Western France. The agrosystem studied is very complex, with: extensive use of different organic fertilisers, a variety of crop rotations, a structural excess of nitrogen (i.e. more animal N produced by the intensive farming than the N requirements of the crops and pastures), and nitrate retention in both hydrological stores and riparian zones. The original model features were adapted here to describe this complexity. The calibration results are satisfactory, although the daily variations in stream nitrate are not simulated in detail. Different climate scenarios, based on observed climate records, were tested; all produced a worsening of the pollution in the short term. Scenarios of alternative agricultural practices (reduced fertilisation and catch crops) were also analysed, suggesting that a reduction by 40% of the fertilisation combined with the introduction of catch crops would be necessary to stop the degradation of water quality.

  1. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells weremore » growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCENitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeastY. lipolyticato determine how the nitrogen source regulates lipid metabolism. We show that disruption of both activators and repressors of nitrogen catabolite repression leads to increased lipid accumulation via activation of carbon catabolite repression through an as yet uncharacterized method.« less

  2. Polymeric Cd(II), trinuclear and mononuclear Ni(II) complexes of 5-methyl-4-phenyl-1,2,4-triazole-3-thione: Synthesis, structural characterization, thermal behaviour, fluorescence properties and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.

    2017-02-01

    Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.

  3. Carbon cycle: Nitrogen's carbon bonus

    NASA Astrophysics Data System (ADS)

    Janssens, Ivan A.; Luyssaert, Sebastiaan

    2009-05-01

    Atmospheric deposition of nitrogen can, but does not always, speed up the sequestration of carbon in trees and forest soil. This complexity may arise from the spatial variations in each of the three mechanisms by which nitrogen affects carbon storage.

  4. 74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR LIQUID NITROGEN PUMPING STATION - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin.

    PubMed

    Xiao, Yi; Jiang, Wen; Zhang, Fuzhong

    2017-10-20

    Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.

  6. Effects of different nitrogen sources on the biogas production - a lab-scale investigation.

    PubMed

    Wagner, Andreas Otto; Hohlbrugger, Peter; Lins, Philipp; Illmer, Paul

    2012-12-20

    For anaerobic digestion processes nitrogen sources are poorly investigated although they are known as possible process limiting factors (in the hydrolysis phase) but also as a source for fermentations for subsequent methane production by methanogenic archaea. In the present study different complex and defined nitrogen sources were investigated in a lab-scale experiment in order to study their potential to build up methane. The outcome of the study can be summarised as follows: from complex nitrogen sources yeast extract and casamino acids showed the highest methane production with approximately 600 ml methane per mole of nitrogen, whereas by the use of skim milk no methane production could be observed. From defined nitrogen sources L-arginine showed the highest methane production with almost 1400 ml methane per mole of nitrogen. Moreover it could be demonstrated that the carbon content and therefore C/N-ratio has only minor influence for the methane production from the used substrates. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Trans influence on the rate of reductive elimination. Reductive elimination of amines from isomeric arylpalladium amides with unsymmetrical coordination spheres.

    PubMed

    Yamashita, Makoto; Cuevas Vicario, Jose V; Hartwig, John F

    2003-12-31

    To determine the trans effect on the rates of reductive eliminations from arylpalladium(II) amido complexes, the reactions of arylpalladium amido complexes bearing symmetrical and unsymmetrical DPPF (DPPF = bis(diphenylphosphino)ferrocene) derivatives were studied. THF solutions of LPd(Ar)(NMeAr') (L = DPPF, DPPF-OMe, DPPF-CF3, DPPF-OMe,Ph, DPPF-Ph,CF3, and DPPF-OMe,CF3; Ar = C6H4-4-CF3; Ar' = C6H4-4-CH3, Ph, and C6H4-4-OMe) underwent C-N bond forming reductive elimination at -15 C to form the corresponding N-methyldiarylamine in high yield. Complexes ligated by symmetrical DPPF derivatives with electron-withdrawing substituents on the DPPF aryl groups underwent reductive elimination faster than complexes ligated by symmetrical DPPF derivatives with electron-donating substituents on the ligand aryl groups. Studies of arylpalladium amido complexes containing unsymmetrical DPPF ligands revealed several trends. First, the complex with the weaker donor trans to nitrogen and the stronger donor trans to the palladium-bound aryl group underwent reductive elimination faster than the regioisomeric complex with the stronger donor trans to nitrogen and the weaker donor trans to the palladium-bound aryl group. Second, the effect of varying the substituents on the phosphorus donor trans to the nitrogen was larger than the effect of varying the substituents on the phosphorus donor trans to the palladium-bound aryl group. Third, the difference in rate between the isomeric arylpalladium amido complexes was similar in magnitude to the differences in rates resulting from conventional variation of substituents on the symmetric phosphine ligands. This result suggests that the geometry of the complex is equal in importance to the donating ability of the dative ligands. The ratio of the differences in rates of reaction of the isomeric complexes was similar to the relative populations of the two geometric isomers. This result and consideration of transition state geometries suggest that the reaction rates are controlled more by substituent effects on ground state stability than on transition state energies. In addition, variation of the aryl group at the amido nitrogen showed systematically that complexes with more electron-donating groups at nitrogen undergo faster reductive elimination than those with less electron-donating groups at nitrogen.

  8. Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria.

    PubMed

    Aspmo, Stein Ivar; Horn, Svein Jarle; Eijsink, Vincent G H

    2005-07-01

    Hydrolysates of cod viscera were tested as an alternative to commonly used complex nitrogen sources (peptones and/or extracts) for the type strains of the lactic acid bacteria Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus casei, Lactobacillus sakei and Pediococcus pentosaceus. Comparative studies with MRS-like media containing different nitrogen sources showed that all the fish hydrolysates performed equally well or better than commercial extracts/peptones for all selected lactic acid bacteria.

  9. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand

    PubMed Central

    Kuriyama, Shogo; Arashiba, Kazuya; Nakajima, Kazunari; Matsuo, Yuki; Tanaka, Hiromasa; Ishii, Kazuyuki; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2016-01-01

    Synthesis and reactivity of iron-dinitrogen complexes have been extensively studied, because the iron atom plays an important role in the industrial and biological nitrogen fixation. As a result, iron-catalyzed reduction of molecular dinitrogen into ammonia has recently been achieved. Here we show that an iron-dinitrogen complex bearing an anionic PNP-pincer ligand works as an effective catalyst towards the catalytic nitrogen fixation, where a mixture of ammonia and hydrazine is produced. In the present reaction system, molecular dinitrogen is catalytically and directly converted into hydrazine by using transition metal-dinitrogen complexes as catalysts. Because hydrazine is considered as a key intermediate in the nitrogen fixation in nitrogenase, the findings described in this paper provide an opportunity to elucidate the reaction mechanism in nitrogenase. PMID:27435503

  10. Infrared spectroscopy and density functional calculations on titanium-dinitrogen complexes

    NASA Astrophysics Data System (ADS)

    Yoo, Hae-Wook; Choi, Changhyeok; Cho, Soo Gyeong; Jung, Yousung; Choi, Myong Yong

    2018-04-01

    Titanium-nitrogen complexes were generated by laser ablated titanium (Ti) atoms and N2 gas molecules in this study. These complexes were isolated on the pre-deposited solid Ar matrix on the pre-cooled KBr window (T ∼ 5.4 K), allowing infrared spectra to be measured. Laser ablation experiments with 15N2 isotope provided distinct isotopic shifts in the infrared spectra that strongly implicated the formation of titanium-nitrogen complexes, Ti(NN)x. Density functional theory (DFT) calculations were employed to investigate the molecular structures, electronic ground state, relative energies, and IR frequencies of the anticipated Ti(NN)x complexes. Based on laser ablation experiments and DFT calculations, we were able to assign multiple Ti(NN)x (x = 1-6) species. Particularly, Ti(NN)5 and Ti(NN)6, which have high nitrogen content, may serve as good precursors in preparing polynitrogens.

  11. 138. LIQUID NITROGEN INSTRUMENT PANEL ON EAST WALL OF LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    138. LIQUID NITROGEN INSTRUMENT PANEL ON EAST WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Nitrogen vacancy complexes in nitrogen irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, A. van; Westerduin, K.T.; Schut, H.

    1996-12-31

    Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed bymore » helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons.« less

  13. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    PubMed

    Kimata-Ariga, Yoko; Hase, Toshiharu

    2014-01-01

    Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  14. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    PubMed

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    PubMed Central

    Beatty, Perrin H.; Klein, Matthias S.; Fischer, Jeffrey J.; Lewis, Ian A.; Muench, Douglas G.; Good, Allen G.

    2016-01-01

    A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE) in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields. PMID:27735856

  16. 73. LIQUID NITROGEN PUMPING STATION ON WEST SIDE OF MST; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. LIQUID NITROGEN PUMPING STATION ON WEST SIDE OF MST; NITROGEN EXCHANGERS ON RIGHT. SOUTHWEST CORNER OF MST VISIBLE; ENVIRONMENTAL CURTAIN SWING AND PLATFORM EXTENDED. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    French, Christopher E.; Nicklin, Stephen; Bruce, Neil C.

    1998-01-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water. PMID:9687442

  18. Initial nitrogen enrichment conditions determines variations in nitrogen substrate utilization by heterotrophic bacterial isolates.

    PubMed

    Ghosh, Suchismita; Ayayee, Paul A; Valverde-Barrantes, Oscar J; Blackwood, Christopher B; Royer, Todd V; Leff, Laura G

    2017-04-04

    The nitrogen (N) cycle consists of complex microbe-mediated transformations driven by a variety of factors, including diversity and concentrations of N compounds. In this study, we examined taxonomic diversity and N substrate utilization by heterotrophic bacteria isolated from streams under complex and simple N-enrichment conditions. Diversity estimates differed among isolates from the enrichments, but no significant composition were detected. Substrate utilization and substrate range of bacterial assemblages differed within and among enrichments types, and not simply between simple and complex N-enrichments. N substrate use patterns differed between isolates from some complex and simple N-enrichments while others were unexpectedly similar. Taxonomic composition of isolates did not differ among enrichments and was unrelated to N use suggesting strong functional redundancy. Ultimately, our results imply that the available N pool influences physiology and selects for bacteria with various abilities that are unrelated to their taxonomic affiliation.

  19. Host and tissue variations overshadow the response of boreal moss-associated fungal communities to increased nitrogen load.

    PubMed

    Davey, Marie L; Skogen, Marte J; Heegaard, Einar; Halvorsen, Rune; Kauserud, Håvard; Ohlson, Mikael

    2017-01-01

    Human activity has more than doubled the amount of nitrogen entering the global nitrogen cycle, and the boreal forest biome is a nitrogen-limited ecosystem sensitive to nitrogen load perturbation. Although bryophyte-associated microbes contribute significantly to boreal forest ecosystem function, particularly in carbon and nitrogen cycling, little is known about their responses to anthropogenic global change. Amplicon pyrosequencing of the ITS2 region of rDNA was used to investigate how fungal communities associated with three bryophyte species responded to increased nitrogen loads in a long-term fertilization experiment in a boreal Picea abies forest in southern Norway. Overall, OTU richness, community composition and the relative abundance of specific ecological guilds were primarily influenced by host species identity and tissue type. Although not the primary factor affecting fungal communities, nitrogen addition did impact the abundance of specific guilds of fungi and the resulting overall community composition. Increased nitrogen loads decreased ectomycorrhizal abundance, with Amphinema, Cortinarius, Russula and Tylospora OTUs responding negatively to fertilization. Pathogen abundance increased with fertilization, particularly in the moss pathogen Eocronartium. Saprophytic fungi were both positively and negatively impacted by the nitrogen addition, indicating a complex community level response. The overshadowing of the effects of increased nitrogen loads by variation related to host and tissue type highlights the complexity of bryophyte-associated microbial communities and the intricate nature of their responses to anthropogenic global change. © 2016 John Wiley & Sons Ltd.

  20. Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage.

    PubMed

    Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter

    2006-01-17

    Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.

  1. Probing the coordination environment of Ti(3+) ions coordinated to nitrogen-containing Lewis bases.

    PubMed

    Morra, E; Maurelli, S; Chiesa, M; Van Doorslaer, S

    2015-08-28

    Multi-frequency continuous-wave and pulsed EPR techniques are employed to investigate the coordination of nitrogen-containing ligands to Ti(3+)-chloro complexes. Frozen solutions of TiCl3 and TiCl3(Py)3 dissolved in nitrogen-containing solvents have been investigated together with the TiCl3(Py)3 solid-state complex. For these different systems, the hyperfine and nuclear quadrupole data of Ti(3+)-bound (14)N nuclei are reported and discussed in the light of DFT computations, allowing for a detailed description of the microscopic structure of these systems.

  2. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    DOEpatents

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  3. 86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. The microbial nitrogen-cycling network.

    PubMed

    Kuypers, Marcel M M; Marchant, Hannah K; Kartal, Boran

    2018-05-01

    Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. By far, the largest inventory of freely accessible nitrogen is atmospheric dinitrogen, but most organisms rely on more bioavailable forms of nitrogen, such as ammonium and nitrate, for growth. The availability of these substrates depends on diverse nitrogen-transforming reactions that are carried out by complex networks of metabolically versatile microorganisms. In this Review, we summarize our current understanding of the microbial nitrogen-cycling network, including novel processes, their underlying biochemical pathways, the involved microorganisms, their environmental importance and industrial applications.

  5. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients

    Treesearch

    Filipa Cox; Nadia Barsoum; Erik A. Lilleskov; Martin I. Bidartondo

    2010-01-01

    Global environmental change has serious implications for functional biodiversity in temperate and boreal forests. Trees depend on mycorrhizal fungi for nutrient uptake, but predicted increases in nitrogen availability may alter fungal communities. To address a knowledge gap regarding the effects of nitrogen availability on mycorrhizal communities at large scales, we...

  6. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    PubMed

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  7. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia colimore » expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.« less

  8. Theoretical Study on the Complexes of Benzene with Isoelectronic Nitrogen-Containing Heterocycles

    PubMed Central

    Wang, Weizhou; Hobza, Pavel

    2008-01-01

    The π–π interactions between benzene and the aromatic nitrogen heterocycles pyridine, pyrimidine, 1,3,5-triazine, 1,2,3-triazine, 1,2,4,5-tetrazine, and 1,2,3,4,5-pentazine are systematically investigated. The T-shaped structures of all complexes studied exhibit a contraction of the C—H bond accompanied by a rather large blue shift (40–52 cm−1) of its stretching frequency, and they are almost isoenergetic with the corresponding displaced-parallel structures at reliable levels of theory. With increasing number of nitrogen atoms in the heterocycle, the geometries, frequencies, energies, percentage of s character at C, and the electron density in the C—H σ antibonding orbital of the complexes all increase or decrease systematically. Decomposition analysis of the total binding energy showed that for all the complexes, the dispersion energy is the dominant attractive contribution, and a rather large attraction originating from electrostatic contribution is compensated by its exchange counterpart. PMID:18389512

  9. Nitrogen Doped Carbon Nanotubes from Organometallic Compounds: A Review

    PubMed Central

    Nxumalo, Edward N.; Coville, Neil J.

    2010-01-01

    Nitrogen doped carbon nanotubes (N-CNTs) have become a topic of increased importance in the study of carbonaceous materials. This arises from the physical and chemical properties that are created when N is embedded in a CNT. These properties include modified chemical reactivity and modified conductivity and mechanical properties. A range of methodologies have been devised to synthesize N-CNTs. One of the procedures uses a floating catalyst in which an organometallic complex is decomposed in the gas phase in the presence of a nitrogen containing reactant to give N-CNTs. Most studies have been limited to ferrocene, ring substituted ferrocene and Fe(CO)5. This review covers the synthesis (and properties) of N-CNTs and other shaped carbon nanomaterials (SCNMs) produced using organometallic complexes. It summarizes the effects that physical parameters such as temperature, pressure, gas flow rates, type and concentration of N source etc. have on the N-CNT type, size and yields as well as the nitrogen content incorporated into the tubes that are produced from organometallic complexes. Proposed growth models for N-CNT synthesis are also reported.

  10. Nitrogen sources affect productivity, desiccation tolerance and storage stability of Beauveria bassiana blastospores.

    PubMed

    Mascarin, G M; Kobori, N N; Jackson, M A; Dunlap, C A; Delalibera, Í

    2018-03-01

    Nitrogen is a critical element in industrial fermentation media. This study investigated the influence of various nitrogen sources on blastospore production, desiccation tolerance and storage stability using two strains of the cosmopolitan insect-pathogenic fungus Beauveria bassiana. Complex organic sources of nitrogen such as soy flour, autolysed yeast and cottonseed flour induced great numbers of blastospores after 2-3 days of fermentation, which also survived drying and remained viable (32-56% survival) after 9 months storage at 4°C, although variations were found between strains. Nitrogen availability in the form of free amino acids directly influenced blastospore production and resistance to desiccation. Increasing glucose and nitrogen concentrations up to 120 and 30 g l -1 , respectively, did not improve blastospore production but enhanced desiccation tolerance. Cell viability after drying and upon fast-rehydration was increased when ≥25 g acid-hydrolysed casein per litre was supplemented in the liquid culture medium. These findings indicate that low-cost complex nitrogen compounds are suitable to enhance yeast-like growth by B. bassiana with good desiccation tolerance and therefore support its further scale-up production as a mycoinsecticide. Nitrogen is the most expensive nutrient in liquid media composition, but this study underscores the feasibility of using low-cost nitrogen compounds composed mainly of agro-industrial by-products for rapid production of desiccation-tolerant B. bassiana blastospores by liquid culture fermentation. © 2018 The Society for Applied Microbiology.

  11. Organic nitrogen storage in mineral soil: Implications for policy and management.

    PubMed

    Bingham, Andrew H; Cotrufo, M Francesca

    2016-05-01

    Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen. Published by Elsevier B.V.

  12. The generalized anomeric effect in the 1,3-thiazolidines: Evidence for both sulphur and nitrogen as electron donors. Crystal structures of various N-acylthiazolidines including mercury(II) complexes. Possible relevance to penicillin action

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Sosale; Chopra, Deepak; Gopalaiah, Kovuru; Guru Row, Tayur N.

    2007-06-01

    Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the C2- N and C2- S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were ˜0.04 Å for C2- N3, S1- C2, and ˜0.08 Å for N3- C6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr 2 complex. (The sulphur atom appears to be sp 2 hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins.

  13. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus

    PubMed Central

    Rineau, F; Shah, F; Smits, M M; Persson, P; Johansson, T; Carleer, R; Troein, C; Tunlid, A

    2013-01-01

    The majority of nitrogen in forest soils is found in organic matter–protein complexes. Ectomycorrhizal fungi (EMF) are thought to have a key role in decomposing and mobilizing nitrogen from such complexes. However, little is known about the mechanisms governing these processes, how they are regulated by the carbon in the host plant and the availability of more easily available forms of nitrogen sources. Here we used spectroscopic analyses and transcriptome profiling to examine how the presence or absence of glucose and/or ammonium regulates decomposition of litter material and nitrogen mobilization by the ectomycorrhizal fungus Paxillus involutus. We found that the assimilation of nitrogen and the decomposition of the litter material are triggered by the addition of glucose. Glucose addition also resulted in upregulation of the expression of genes encoding enzymes involved in oxidative degradation of polysaccharides and polyphenols, peptidases, nitrogen transporters and enzymes in pathways of the nitrogen and carbon metabolism. In contrast, the addition of ammonium to organic matter had relatively minor effects on the expression of transcripts and the decomposition of litter material, occurring only when glucose was present. On the basis of spectroscopic analyses, three major types of chemical modifications of the litter material were observed, each correlated with the expression of specific sets of genes encoding extracellular enzymes. Our data suggest that the expression of the decomposition and nitrogen assimilation processes of EMF can be tightly regulated by the host carbon supply and that the availability of inorganic nitrogen as such has limited effects on saprotrophic activities. PMID:23788332

  14. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.

    PubMed

    da Silva, M C; Bertolini, M C; Ernandes, J R

    2001-01-01

    The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

  15. 91. VIEW OF OXYGEN AND GASEOUS NITROGEN TANKS AND OXIDIZER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF OXYGEN AND GASEOUS NITROGEN TANKS AND OXIDIZER APRON FROM NORTH - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Initiating Molecular Growth in the Interstellar Medium via Dimeric Complexes of Observed Ions and Molecules

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2011-01-01

    A feasible initiation step for particle growth in the interstellar medium (ISM) is simulated by means of ab quantum chemistry methods. The systems studied are dimer ions formed by pairing nitrogen containing small molecules known to exist in the ISM with ions of unsaturated hydrocarbons or vice versa. Complexation energies, structures of ensuing complexes and electronic excitation spectra of the encounter complexes are estimated using various quantum chemistry methods. Moller-Plesset perturbation theory (MP2, Z-averaged perturbation theory (ZAP2), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)), and density functional theory (DFT) methods (B3LYP) were employed along with the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Two types of complexes are predicted. One type of complex has electrostatic binding with moderate (7-20 kcal per mol) binding energies, that are nonetheless significantly stronger than typical van der Waals interactions between molecules of this size. The other type of complex develops strong covalent bonds between the fragments. Cyclic isomers of the nitrogen containing complexes are produced very easily by ion-molecule reactions. Some of these complexes show intense ultraviolet visible spectra for electronic transitions with large oscillator strengths at the B3LYP, omegaB97, and equations of motion coupled cluster (EOM-CCSD) levels. The open shell nitrogen containing carbonaceous complexes especially exhibit a large oscillator strength electronic transition in the visible region of the electromagnetic spectrum.

  17. Effects of silvicultural practices on soil carbon and nitrogen in a nitrogen saturated central Appalachian (USA) hardwood forest ecosystem

    Treesearch

    Frank S. Gilliam; David A. Dick; Michelle L. Kerr; Mary Beth Adams

    2004-01-01

    Silvicultural treatments represent disturbances to forest ecosystems often resulting in transient increases in net nitrification and leaching of nitrate and base cations from the soil. Response of soil carbon (C) is more complex, decreasing from enhanced soil respiration and increasing from enhanced postharvest inputs of detritus. Because nitrogen (N) saturation can...

  18. Rotational spectrum of the nitrogen trifluoride-chlorine monofluoride complex and the inductive effect of groups R=CH 3, H, F on R 3N/ClF interactions

    NASA Astrophysics Data System (ADS)

    Waclawik, E. R.; Legon, A. C.; Holloway, J. H.

    1998-10-01

    Rotational constants B0, centrifugal distortion constants DJ and DJK, and nuclear quadrupole coupling constants χ aa( 14N) and χaa(Cl) were determined by pulsed-nozzle, Fourier transform microwave spectroscopy for the isotopomers F314N⋯ 35ClF and F314N⋯ 37ClF of a complex formed by nitrogen trifluoride and chlorine monofluoride. The distance r(N⋯Cl) and the intermolecular stretching force constant kσ for this symmetric-top species are compared with those of several axially symmetric complexes B⋯ClF in which a nitrogen atom of the base B interacts with ClF. In particular, it is shown that r(N⋯Cl) decreases along the series R 3N⋯ClF, where R=F, H or CH 3, while kσ increases dramatically.

  19. [Effect of carbon and nitrogen sources and complex B vitamins on the synthesis of alkaline protease by different strains of Bacillus mesentericus and Bacillus subtilis].

    PubMed

    Emtseva, T V

    1975-01-01

    The effect of different sources of carbon, nitrogen, amino acids and vitamins on the synthesis of alkaline proteases by the stock and mutant strains of Bacillus mesentericus and by the natural strain of Bacillus subtilis-12 has been investigated. The maximum synthesis of alkaline protease has been obtained in the media containing starch or its hydrolysates--dextrine and maltose as the carbon source. Ammonium phosphate and casein as the nitrogen source prove to be optimal for Bac. mesentericus and Bac. subtilis, respectively. Complex B vitamins added to the nutrient medium accelerate the enzyme synthesis 2.5-4-fold.

  20. Elements of a nitrogen budget for a stream collector. Appendix IX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    A simple diagram of a preliminary nitrogen budget for a generalized collector-gatherer is presented. The internal anatomy of chironomus sp. indicates its potential for fairly complex physiological processes. 26 refs., 2 figs.

  1. 133. NITROGEN SUPPLY PANEL ON SOUTH WALL OF CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. NITROGEN SUPPLY PANEL ON SOUTH WALL OF CONTROL ROOM (114), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. 56. VIEW OF LAUNCHER FROM SOUTHWEST. NITROGEN CONTROL UNIT ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. VIEW OF LAUNCHER FROM SOUTHWEST. NITROGEN CONTROL UNIT ON RIGHT; UMBILICAL MAST ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM (214), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. 137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Spectroscopic and thermogravimetric study of nickel sulfaquinoxaline complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tailor, Sanjay M., E-mail: sanjay-tailor10@yahoo.com; Patel, Urmila H.

    2016-05-06

    The ability of sulfaquinoxaline (4-Amino-N-2-quinoxalinylbenzenesulfonamide) to form metal complexes are investigated. The nickel complex of sulfaquinoxaline is prepared by reflux method and characterized by CHN analysis and IR spectra. The results of IR spectral data suggest that the binding of nickel atom to the sulfonamidic nitrogen are in good agreement. The thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential thermogravimetric (DTG) analysis of nickel sulfaquinoxaline are carried out from ambient temperature to 750°C in inert nitrogen atmosphere. The activation energy, enthalpy, entropy and Gibbs free energy of nickel sulfaquinoxaline complex is determined from the thermal curves using Broido method.more » The results are reported in this paper.« less

  6. 5. DETAIL OF MAIN LIQUID NITROGEN TANK, WEST SIDE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL OF MAIN LIQUID NITROGEN TANK, WEST SIDE WITH METERS, VALVES AND GAUGES; VIEW TO SOUTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28419, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  7. 141. NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER AREA SHELTER (117A), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. 71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ON SLC-3W LIQUID OXYGEN APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. EPR Characterization of Dinitrosyl Iron Complexes with Thiol-Containing Ligands as an Approach to Their Identification in Biological Objects: An Overview.

    PubMed

    Vanin, Anatoly F

    2018-06-01

    The overview demonstrates how the use of only one physico-chemical approach, viz., the electron paramagnetic resonance method, allowed detection and identification of dinitrosyl iron complexes with thiol-containing ligands in various animal and bacterial cells. These complexes are formed in biological objects in the paramagnetic (electron paramagnetic resonance-active) mononuclear and diamagnetic (electron paramagnetic resonance-silent) binuclear forms and control the activity of nitrogen monoxide, one of the most universal regulators of metabolic processes in the organism. The analysis of electronic and spatial structures of dinitrosyl iron complex sheds additional light on the mechanism whereby dinitrosyl iron complex with thiol-containing ligands function in human and animal cells as donors of nitrogen monoxide and its ionized form, viz., nitrosonium ions (NO + ).

  10. Review of Laboratory Program on Degradation Mechanisms in Soil of Wastewater From Nitroguanidine Manufacture

    DTIC Science & Technology

    1987-03-01

    in./hr) (3). Nutrients (organic nitrogen, ammonia-nitrogen, nitrate/I nitrite-nitrogen, potassium , and phosphorus) in SFAAP soils are generally...A mixture con- taining equal portions of these was diluted with 0.085 percent potassium chloride. The 30 percent solution was filtered and the...01 L (d) Cyanamide - Spectrophotometric determination after complexation with pentacyanoamine ferrate reagent. Detection limit was approximately 100

  11. Synthesis and structural studies of two pyridine-armed reinforced cyclen chelators and their transition metal complexes.

    PubMed

    Wilson, Kevin R; Cannon-Smith, Desiray J; Burke, Benjamin P; Birdsong, Orry C; Archibald, Stephen J; Hubin, Timothy J

    2016-08-16

    Two novel pyridine pendant-armed macrocycles structurally reinforced by an ethyl bridge, either between adjacent nitrogens (for side-bridged) or non-adjacent nitrogens (for cross-bridged), have been synthesized and complexed with a range of transition metal ions (Co 2+ , Ni 2+ , Cu 2+ and Zn 2+ ). X-ray crystal structures of selected cross-bridged complexes were obtained which showed the characteristic cis-V configuration with potential labile cis binding sites. The complexes have been characterized by their electronic spectra and magnetic moments, which show the expected high spin divalent metal complex in most cases. Exceptions are the nickel side-bridged complex, which shows a mixture of high-spin and low spin, and the cobalt cross-bridged complex which has oxidized to cobalt(III). Cyclic voltammetry in acetonitrile was carried out to assess the potential future use of these complexes in oxidation catalysis. Selected complexes offer significant catalytic potential enhanced by the addition of the pyridyl arm to a reinforced cyclen backbone.

  12. Mechanism and degradation kinetics of zinc complex containing isophthalato and 2,2‧-dipyridylamine ligands under different atmospheres

    NASA Astrophysics Data System (ADS)

    Zdravković, J. D.; Radovanović, L.; Poleti, D.; Rogan, J. R.; Vulić, P. J.; Radovanović, Ž.; Minić, D. M.

    2018-06-01

    The design of mixed-ligand complexes are of increasing interest from fundamental as well as technological and curative aspects. Having that in mind, we studied zinc complex containing 2,2‧-dipyridylamine (dipya) and dianion of isophthalic acid (ipht), [Zn(dipya)(ipht)]n, as promising precursor for synthesis of nanostructured metal oxide. In that sense, the mechanism and degradation kinetics of [Zn(dipya)(ipht)]n was analyzed under non-isothermal conditions in nitrogen and in air atmospheres. Peak deconvolution of the [Zn(dipya)(ipht)]n decomposition profile, in the form of a derivative thermogram (DTG), in nitrogen atmosphere, revealed the presence of three decomposition steps, while in air five single steps were isolated. In both cases ZnO is formed as residue at 530 °C: pure (in air) or in amorphous matrix (nitrogen). In air we obtained well crystalized ZnO nanospheres (∼25 nm), by thermal treatment in temperature range 370-530 °C showing that this complex could be considered as good precursor for production of nanosized ZnO.

  13. Switching between nitrogen and glucose limitation: Unraveling transcriptional dynamics in Escherichia coli.

    PubMed

    Löffler, Michael; Simen, Joana Danica; Müller, Jan; Jäger, Günter; Laghrami, Salaheddine; Schäferhoff, Karin; Freund, Andreas; Takors, Ralf

    2017-09-20

    Transcriptional control under nitrogen and carbon-limitation conditions have been well analyzed for Escherichia coli. However, the transcriptional dynamics that underlie the shift in regulatory programs from nitrogen to carbon limitation is not well studied. In the present study, cells were cultivated at steady state under nitrogen (ammonia)-limited conditions then shifted to carbon (glucose) limitation to monitor changes in transcriptional dynamics. Nitrogen limitation was found to be dominated by sigma 54 (RpoN) and sigma 38 (RpoS), whereas the "housekeeping" sigma factor 70 (RpoD) and sigma 38 regulate cellular status under glucose limitation. During the transition, nitrogen-mediated control was rapidly redeemed and mRNAs that encode active uptake systems, such as ptsG and manXYZ, were quickly amplified. Next, genes encoding facilitators such as lamB were overexpressed, followed by high affinity uptake systems such as mglABC and non-specific porins such as ompF. These regulatory programs are complex and require well-equilibrated and superior control. At the metabolome level, 2-oxoglutarate is the likely component that links carbon- and nitrogen-mediated regulation by interacting with major regulatory elements. In the case of dual glucose and ammonia limitation, sigma 24 (RpoE) appears to play a key role in orchestrating these complex regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. THRUST SECTION HEATER AND GASEOUS NITROGEN PURGE CONTROLS ON EAST SIDE OF LAUNCH DECK. LAUNCHER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 141. NITROGEN SUPPLY PANEL PRESSURE REGULATOR IN NORTHWEST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. NITROGEN SUPPLY PANEL PRESSURE REGULATOR IN NORTHWEST CORNER OF CONTROL ROOM (214), LSB (BLDG. 751), FACING WEST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. 79. VIEW FROM SOUTH OF NITROGEN AND HELIUM STORAGE TANKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. VIEW FROM SOUTH OF NITROGEN AND HELIUM STORAGE TANKS AND CONTROL SKIDS ON SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.

    PubMed

    Benesova, P; Kucera, D; Marova, I; Obruca, S

    2017-08-01

    The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l -1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.

  18. Exploring the Fate of Nitrogen Heterocycles in Complex Prebiotic Mixtures

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Cleaves, Henderson J.; Dworkin, Jason P.; House, Christopher H.

    2011-01-01

    A long standing question in the field of prebiotic chemistry is the origin of the genetic macromolecules DNA and RNA. DNA and RNA have very complex structures with repeating subunits of nucleotides, which are composed of nucleobases (nitrogen heterocycles) connected to sugar-phosphate. Due to the instability of some nucleobases (e.g. cytosine), difficulty of synthesis and instability of D-ribose, and the likely scarcity of polyphosphates necessary for the modern nucleotides, alternative nucleotides have been proposed for constructing the first genetic material. Thus, we have begun to investigate the chemistry of nitrogen heterocycles in plausible, complex prebiotic mixtures in an effort to identify robust reactions and potential alternative nucleotides. We have taken a complex prebiotic mixture produced by a spark discharge acting on a gas mixture of N2, CO2, CH4, and H2, and reacted it with four nitrogen heterocycles: uracil, 5-hydroxymethyluracil, guanine, and isoxanthopterin (2-amino-4,7-dihydroxypteridine). The products of the reaction between the spark mixture and each nitrogen heterocycle were characterized by liquid chromatography coupled to UV spectroscopy and Orbitrap mass spectrometry. We found that the reaction between the spark mixtUl'e and isoxanthopterin formed one major product, which was a cyanide adduct. 5-hydroxymethyluracil also reacted with the spark mixture to form a cyanide adduct, uracil-5-acetonitrile, which has been synthesized previously by reacting HCN with S-hydroxymethyluracil. Unlike isoxanthopterin, the chromatogram of the 5-hydroxymethyluracil reaction was much more complex with multiple products including spark-modified dimers. Additionally, we observed that HMU readily self-polymerizes in solution to a variety of oligomers consistent with those suggested by Cleaves. Guanine and uracil, the biological nucleobases, did not react with the spark mixture, even at high temperature (100 C). This suggests that there are alternative nucleobases which are more reactive under prebiotic conditions and may have been involved in producing precursor nucleotides.

  19. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  20. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  1. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand.

    PubMed

    Pan, Yupeng; Pan, Cheng-Ling; Zhang, Yufan; Li, Huaifeng; Min, Shixiong; Guo, Xunmun; Zheng, Bin; Chen, Hailong; Anders, Addison; Lai, Zhiping; Zheng, Junrong; Huang, Kuo-Wei

    2016-05-06

    An unsymmetrically protonated PN(3) -pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices

    PubMed Central

    Szpak, Paul

    2014-01-01

    Nitrogen isotopic studies have the potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1) agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage) and (2) animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens). The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts. PMID:25002865

  3. Checkerspot Butterflies as Charismatic Media Stars: Getting the Word Out From the Grassroots on Global Nitrogen Overdose

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2007-12-01

    Getting the word out to the general public about the global "nitrogen overdose" has proved challenging because of the complexities of the global nitrogen cycle and the insidious nature of cumulative effects on ecosystems. This presentation recounts successful media outreach efforts to bring attention to the nitrogen issue, using the threatened Bay checkerspot butterfly as a "charismatic" focal species and victim. The butterfly is threatened by atmospheric nitrogen deposition that enriches nutrient poor soils derived from serpentinite rock an allows nitrophilous grasses to invade and displace the dazzling wildflower displays that the butterfly depends on. Over the past decade, public and media outreach have resulted in numerous articles in local, regional, and national print media, and extensive TV and radio coverage of the reintroduction of the butterfly into restored habitat in 2007. The grassroots media strategy has several elements of success, including: 1) the public's (and journalists') love of butterflies and wildflowers; 2) field tours to dramatically illustrate the effects of N-deposition; 3) time-tested soundbites, humor, and amiable relationships with journalists; 4) careful fact checking; and 5) political outreach. Through these efforts, journalists effectively told relatively complex stories in creative approachable ways that have educated the public about the nitrogen pollution issue.

  4. Controls of Isotopic Patterns in Saprotrophic and Ectomycorrhizal Fungi

    EPA Science Inventory

    Isotopes of nitrogen (δ15N) and carbon (δ13C) in ectomycorrhizal and saprotrophic fungi contain important information about ecological functioning, but the complexity of physiological and ecosystem processes contributing to fungal carbon and nitrogen dynamics has limited our abil...

  5. 72. NORTHEAST SIDE OF NITROGEN EXCHANGERS IN FOREGROUND; FUEL APRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. NORTHEAST SIDE OF NITROGEN EXCHANGERS IN FOREGROUND; FUEL APRON IN BACKGROUND. NORTHEAST CORNER OF WEST CAMERA TOWER ALSO IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    PubMed

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Ynamides in Ring Forming Transformations

    PubMed Central

    WANG, XIAO-NA; YEOM, HYUN-SUK; FANG, LI-CHAO; HE, SHUZHONG; MA, ZHI-XIONG; KEDROWSKI, BRANT L.; HSUNG, RICHARD P.

    2013-01-01

    Conspectus The ynamide functional group activates carbon-carbon triple bonds through an attached nitrogen atom that bears an electron-withdrawing group. As a result, the alkyne has both electrophilic and nucleophilic properties. Through the selection of the electron-withdrawing group attached to nitrogen chemists can modulate the electronic properties and reactivity of ynamides, making these groups versatile synthetic building blocks. The reactions of ynamides also lead directly to nitrogen-containing products, which provides access to important structural motifs found in natural products and molecules of medicinal interest. Therefore, researchers have invested increasing time and research in the chemistry of ynamides in recent years. This Account surveys and assesses new organic transformations involving ynamides developed in our laboratory and in others around the world. We showcase the synthetic power of ynamides for rapid assembly of complex molecular structures. Among the recent reports of ynamide transformations, ring-forming reactions provide a powerful tool for generating molecular complexity quickly. In addition to their synthetic utility, such reactions are mechanistically interesting. Therefore, we focus primarily on the cyclization chemistry of ynamides. This Account highlights ynamide reactions that are useful in the rapid synthesis of cyclic and polycyclic structural manifolds. We discuss the mechanisms active in the ring formations and describe representative examples that demonstrate the scope of these reactions and provide mechanistic insights. In this discussion we feature examples of ynamide reactions involving radical cyclizations, ring-closing metathesis, transition metal and non-transition metal mediated cyclizations, cycloaddition reactions, and rearrangements. The transformations presented rapidly introduce structural complexity and include nitrogen within, or in close proximity to, a newly formed ring (or rings). Thus, ynamides have emerged as powerful synthons for nitrogen-containing heterocycles and nitrogen-substituted rings, and we hope this Account will promote continued interest in the chemistry of ynamides. PMID:24164363

  8. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    USGS Publications Warehouse

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may partly result from reaction with ammonium-containing pore waters.

  9. 147. EAST END OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    147. EAST END OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ROOM (215), LSB (BLDG. 751), WITH ASSOCIATED PIPING AND VALVES - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Symmetry and structure of carbon-nitrogen complexes in gallium arsenide from infrared spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Künneth, Christopher; Kölbl, Simon; Wagner, Hans Edwin; Häublein, Volker; Kersch, Alfred; Alt, Hans Christian

    2018-04-01

    Molecular-like carbon-nitrogen complexes in GaAs are investigated both experimentally and theoretically. Two characteristic high-frequency stretching modes at 1973 and 2060 cm-1, detected by Fourier transform infrared absorption (FTIR) spectroscopy, appear in carbon- and nitrogen-implanted and annealed layers. From isotopic substitution, it is deduced that the chemical composition of the underlying complexes is CN2 and C2N, respectively. Piezospectroscopic FTIR measurements reveal that both centers have tetragonal symmetry. For density functional theory (DFT) calculations, linear entities are substituted for the As anion, with the axis oriented along the 〈1 0 0 〉 direction, in accordance with the experimentally ascertained symmetry. The DFT calculations support the stability of linear N-C-N and C-C-N complexes in the GaAs host crystal in the charge states ranging from + 3 to -3. The valence bonds of the complexes are analyzed using molecular-like orbitals from DFT. It turns out that internal bonds and bonds to the lattice are essentially independent of the charge state. The calculated vibrational mode frequencies are close to the experimental values and reproduce precisely the isotopic mass splitting from FTIR experiments. Finally, the formation energies show that under thermodynamic equilibrium CN2 is more stable than C2N.

  11. 70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH PAD. ROCKET FUEL TANKS ON LEFT; GASEOUS NITROGEN AND HELIUM TANKS IN CENTER; AND A LARGE LIQUID NITROGEN TANK ON RIGHT. SKID 1 FOR GASEOUS NITROGEN TRANSFER AND SKID 5 FOR HELIUM TRANSFER IN THE CENTER RIGHT PORTION OF THE PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2008-10-27

    nitrogen or liquid helium) and dust particles are introduced in the plasma. In YD-2, a cryogenic plasma is produced in the vapor of liquid helium above the...cryogenic liquid ( liquid nitrogen or liquid helium) and dust particles are introduced in the plasma. In YD-2, a cryogenic plasma is produced in the vapor...cryogenic liquid ( liquid nitrogen or liquid helium) in the Dewar bottle produces a stable plasma. We have been successful in producing a plasma (1

  13. Synthesis, spectral characterization, thermal and photoluminescence properties of Zn(II) and Cd(II)-azido/thiocyanato complexes with thiazolylazo dye and 1,2-bis(diphenylphoshino)ethane.

    PubMed

    Yamgar, B A; Sawant, V A; Bharate, B G; Chavan, S S

    2011-01-01

    A series of complexes of the type [M(L)(dppe)X2]; where M=Zn(II) or Cd(II); L=4-(2'-thiazolylazo)chlorobenzene (L1), 4-(2'-thiazolylazo)bromobenzene (L2) and 4-(2'-thiazolylazo) iodobenzene (L3); dppe=1,2-bis(diphenylphosphino)ethane; X=N3- or NCS- have been prepared and characterized on the basis of their microanalysis, molar conductance, thermal, IR, UV-vis and 1H NMR spectral studies. IR spectra show that the ligand L is coordinated to the metal atom in bidentate manner via azo nitrogen and thiazole nitrogen. An octahedral structure is proposed for all the complexes. The thermal behavior of the complexes revealed that the thiocyanato complexes are thermally more stable than the azido complexes. All the complexes exhibit blue-green emission with high quantum yield as the result of the fluorescence from the intraligand emission excited state. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway.

    PubMed

    Algret, Romain; Fernandez-Martinez, Javier; Shi, Yi; Kim, Seung Joong; Pellarin, Riccardo; Cimermancic, Peter; Cochet, Emilie; Sali, Andrej; Chait, Brian T; Rout, Michael P; Dokudovskaya, Svetlana

    2014-11-01

    The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Molecular evolution of nitrogen assimilatory enzymes in marine prasinophytes.

    PubMed

    Ghoshroy, Sohini; Robertson, Deborah L

    2015-01-01

    Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.

  16. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 145. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    145. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ROOM (215), LSB (BLDG. 751), FROM FUEL APRON WITH BAY DOOR OPEN - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. A dynamic nitrogen budget model of a Pacific Northwest salt marsh

    EPA Science Inventory

    The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspirati...

  19. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulationmore » of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.« less

  20. Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity.

    PubMed

    Kopel, Pavel; Dolezal, Karel; Langer, Vratislav; Jun, Daniel; Adam, Vojtech; Kuca, Kamil; Kizek, Rene

    2014-04-08

    The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  1. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com, E-mail: s-shuwen@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W.

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms frommore » a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.« less

  2. The Nitrogen Cycle Before the Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Ward, L. M.; Hemp, J.; Fischer, W. W.

    2016-12-01

    The nitrogen cycle on Earth today is driven by a complex network of microbially-mediated transformations. Atmospheric N2 is fixed into biologically available forms that can either be incorporated into biomass or utilized for bioenergetic redox reactions. The cycle is kept in balance by the return of fixed nitrogen to the atmospheric N2 pool by anammox and denitrification. The early evolution and history of the nitrogen cycle is not well resolved, particularly before the evolution of oxygenic photosynthesis and rise of atmospheric oxygen ca. 2.3 Gya. Ammonia oxidation is a biochemically difficult reaction requiring activation of ammonia using O2 or oxidized nitrogen species that are produced using O2. Before the rise of oxygen, when O2 was largely unavailable, nitrification could not proceed, trapping fixed nitrogen in reduced forms such as ammonia and biomass. Without production of nitrite and nitrate, anammox and denitrification could not occur, preventing return of fixed nitrogen to the N2 pool and leaving the nitrogen cycle unclosed. While it has been hypothesized that ammonia oxidation could be driven anaerobically by processes such as phototrophy or iron reduction, these metabolisms have not been recovered in extant microorganisms, and would require complex unknown biochemical mechanisms. Furthermore, phylogenetic data for the key organisms and biochemical pathways involved in denitrification and anammox suggest that these metabolisms postdate the rise of oxygen. This is particularly clear for steps utilizing enzymes in the Heme-Copper Oxidoreductase superfamily, which appear to have originally evolved for O2 reduction at non-negligible substrate concentrations. Together, this suggests that the Archean nitrogen cycle was not closed, and that nitrogen fixed to reduced forms—either through biological nitrogen fixation or abiotic processes—was not easily returned to the atmospheric N2 pool. In principle, this could have stripped the atmosphere of N2 over timescales of hundreds of Myr, which is consistent with recent paleopressure estimates that suggest < 0.5 bar by late Archean time. The modern, N2-rich atmosphere and (largely) closed biological nitrogen cycle may therefore not have evolved until Proterozoic time, after the rise of oxygen.

  3. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2010-08-17

    inner diameter of 9.6 cm and the height of 80 cm. The Dewar bottle is filled with liquid helium or liquid nitrogen and is inserted in a liquid ...gas in the glass tube is controlled by the cryogenic liquid , liquid helium or liquid nitrogen , contained in the inner Dewar bottle. The outer Dewar...bottle contains liquid nitrogen to maintain the inner cryogenic temperature. An rf helium plasma with a neutral gas pressure P = 0.1 ~ 100 Pa is

  4. What Is the True Nitrogenase Reaction? A Guided Approach

    ERIC Educational Resources Information Center

    Ipata, Piero L.; Pesi, Rossana

    2015-01-01

    Only diazotrophic bacteria, called "Rizhobia," living as symbionts in the root nodules of leguminous plants and certain free-living prokaryotic cells can fix atmospheric N[subscript 2]. In these microorganisms, nitrogen fixation is carried out by the nitrogenase protein complex. However, the reduction of nitrogen to ammonia has an…

  5. 120. INERTIAL MEASUREMENT UNIT (IMU) NITROGEN PURGE REGULATOR PANEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. INERTIAL MEASUREMENT UNIT (IMU) NITROGEN PURGE REGULATOR PANEL FOR DEFENSE METEOROLOGICAL SYSTEM PROGRAM (DMSP) PAYLOADS IN SOUTHWEST CORNER OF VEHICLE MECHANICAL SYSTEMS ROOM (111), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. Nitrogen management to reduce nitrous oxide emissions

    USDA-ARS?s Scientific Manuscript database

    Nitrous oxide (N2O) emissions from agricultural soils represent a complex interaction between the inputs of nitrogen into the soil and the soil environment. Mitigating these emissions will have a positive impact on greenhouse gases. Agriculture is the primary source of N2O emissions and must develop...

  7. CARBON AND NITROGEN ALLOCATION MODEL FOR THE SUB-TROPICAL SEAGRASS THALASSIA TESTUDINUM AND THE TEMPERATE SEAGRASS ZOSTER MARINA

    EPA Science Inventory

    Our understanding of seagrass physiology is based on crude estimates of production and biomass. To better understand the complex physiological relationships between the plants and the environment we developed a model of carbon and nitrogen allocation in the sub-tropical seagrass ...

  8. Interactions of 1,12-diamino-4,9-dioxadodecane (OSpm) and Cu(II) ions with pyrimidine and purine nucleotides: adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP).

    PubMed

    Lomozik, L; Gasowska, A; Krzysko, G

    2006-11-01

    The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.

  9. Titan tholins formed from simuolated upper and lower atmosphere

    NASA Astrophysics Data System (ADS)

    Taniuchi, Toshinori; Hosogai, Tomohiro; Takano, Yoshinori; Kaneko, Takeo; Kobayashi, Kensei; Khare, Bishun; McKay, Chris

    Titan, the biggest satellite of Saturn, has dense atmosphere that mainly consists of nitrogen and methane. In this study, we irradiated proton beams to the mixture of nitrogen and methane, and analyzed the structure, the chemical composition, and molecular weight of the resulting aerosols (named PI-tholins), in order to simulate possible reactions in the lower Titan atmosphere. On the other hand, magnetosphere electrons could be effective for the formation of organic molecules in the upper atmosphere of Titan. Thus we compared PI-tholin with the tholin formed by plasma discharge (named PD-tholins). A mixture of methane and nitrogen was irradiated with 3 MeV protons from a van de Graaff accelerator (Tokyo Institute of Technology). Many nitriles and nitrogen-containing heterocyclic compounds were detected by Py-GC/MS, showing that quite complex organics were formed from the simulated Titan atmosphere by proton irradiation. Microscopic observation showed that the complex organic aerosols had the structure bigger than 0.01 mm. G-value of Gly was 0.03. PD-tholins were produced by plasma discharge in 1 Torr of a mixture of methane and nitrogen by using plasma discharge facility RFX-600 (NASA Ames Research Center). Discharges were continued at 100 W for 72 hours. PD-tholins had similar chemical structures to PI-tholins. But the G-value of Gly in PD-tholins was 0.000091, which was much less thatn that in PI-tholins. It was implied that cosmic rays in the lower Titan atmosphere was much more effective to form complex organics yielding amino acids than other energies in the upper Titan atmosphere.

  10. Mean age distribution of inorganic soil-nitrogen

    NASA Astrophysics Data System (ADS)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  11. Bacteriocin Production with Lactobacillus amylovorus DCE 471 Is Improved and Stabilized by Fed-Batch Fermentation

    PubMed Central

    Callewaert, Raf; De Vuyst, Luc

    2000-01-01

    Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source. PMID:10653724

  12. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    USDA-ARS?s Scientific Manuscript database

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  13. Glutamine synthetase in durum wheat: Genotypic variation and relationship with grain protein content

    USDA-ARS?s Scientific Manuscript database

    Nitrogen Use Efficiency (NUE), one of the most valuable indicators for nitrogen use in crops, both in terms of yield and final grain protein content (GPC), is a very complex trait. The identification of wheat varieties with high NUE, as well as the characterization of central enzymes involved in th...

  14. Insect-mediated nitrogen dynamics in decomposing wood

    Treesearch

    Michael D. Ulyshen

    2015-01-01

    1.Wood decomposition is characterised by complex and poorly understood nitrogen (N) dynamics with unclear implications for forest nutrient cycling and productivity.Wood-dwelling microbes have developed unique strategies for coping with the N limitations imposed by their substrate, including the translocation of N into wood by cord-forming fungi and the fixation of...

  15. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marusich, W.C.; Jensen, R.A.; Zamir, L.O.

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than in complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-phenylalanine will also induce lyase synthesis during exponential growth in minimal medium inmore » which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared fom cultures induced with doubly labeled (U-/sup 14/C; ring-4-/sup 3/H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate.« less

  16. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis.

    PubMed Central

    Marusich, W C; Jensen, R A; Zamir, L O

    1981-01-01

    Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than a complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-Phenylalanine will also induce lyase synthesis during exponential growth in minimal in which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared from cultures induced with doubly labeled (U-14C; ring-4-3H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate. PMID:7195398

  17. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    PubMed Central

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237

  18. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains.

    PubMed

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  19. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia-loaded biofilter.

    PubMed

    Yasuda, T; Waki, M; Fukumoto, Y; Hanajima, D; Kuroda, K; Suzuki, K; Matsumoto, T; Uenishi, H

    2017-12-01

    To obtain insight into the complex behaviour of denitrifying and total bacterial groups during the nitrogen accumulation process in an ammonia-loaded biofiltration system. Denitrifying and total bacterial communities in a laboratory-scale rockwool biofilter with intermittent water recirculation were analysed by using denaturing gradient gel electrophoresis targeting nosZ and metabarcoding sequencing of the 16S rRNA gene. Gene abundance was evaluated by quantitative PCR. The nosZ number increased from 6·59 × 10 6 to 3·33 × 10 8 copies per gram dry sample over the 436 days of operation, during which nitrogen mass balance errors increased to 39%. The nosZ sequences associated with the genera Castellaniella, Hyphomicrobium and Pseudomonas were detected. Metabarcoding sequencing analysis indicated that the proportions of the genera for which at least one denitrifying strain or species possessing nosZ had been characterized corresponded well to the nitrogen loss. In addition, the genus Nitrosococcus (γ-proteobacteria) increased its relative abundance at days 317 and 436. The increased proportion of denitrifying bacteria in this ammonia-loaded biofiltration system could be related to the nitrogen loss. These results will help to clarify the complex behaviour of nitrifiers and denitrifiers within ammonia-loaded biofiltration systems. © 2017 The Society for Applied Microbiology.

  20. Synthesis, spectroscopic characterization, thermal analysis and electrical conductivity studies of Mg(II), Ca(II), Sr(II) and Ba(II) vitamin B2 complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.

    2011-05-01

    Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.

  1. Toxicity, Spectroscopic Characterization and Electrochemical Behaviour of New Macrocclic Complexes of Lead(II) and Palladium(II) Metals

    PubMed Central

    Bansal, Anil; Singh, Randhir

    2000-01-01

    Tetraazamacrocyclie complexes of lead and palladium have been synthesized by the template process using the bis(benzil)ethylenediamine precursor. The tetradentate macrocycle (maL) reacts with PbCl2, PdCl2 and different diamines in a 1:1:1 molar ratio in methanol to give several solid complexes of the types [Pb(maL)(R)Cl2] and [Pd(maL)(R)]Cl2 (where R = 2,6-diaminopyridine or 1,2-phenylenediamine). The macrocycle and its metal complexes have been characterized by elemental analysis, molecular weight determinations, molar conductivity, IR, 1H NMR, 13C NMR, electronic, mass and electrochemical studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. The macrocycle along with its complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential. PMID:18475947

  2. Anionic carbonato and oxalato cobalt(III) nitrogen mustard complexes.

    PubMed

    Craig, Peter R; Brothers, Penelope J; Clark, George R; Wilson, William R; Denny, William A; Ware, David C

    2004-02-21

    Synthetic approaches to cobalt(III) complexes [Co(L)(L')2] containing the bidentate dialkylating nitrogen mustard N,N-bis(2-chloroethyl)-1,2-ethanediamine (L = dce) together with anionic ancilliary ligands (L') which are either carbonato (CO3(2-)), oxalato (ox2-), bis(2-hydroxyethyl)dithiocarbamato (bhedtc-), 2-pyridine carboxylato (pico-) or 2-pyrazine carboxylato (pyzc-) were investigated. Synthetic routes were developed using the related amines N,N-diethyl-1,2-ethanediamine (dee) and 1,2-ethanediamine (en). The complexes [Co(CO3)2(L)]- (L = dee 1, dce 2), [Co(ox)2(L)]- (L = dee 3, dce 4), [Co(bhedtc)2(dee)]+ 5, [Co(bhedtc)2(en)]+ 6, mer-[Co(pico)3], mer-[Co(pyzc)]3 7 and [Co(pico)2(dee)]+ 8 were prepared and were characterised by IR, UV-Vis, 1H and 13C[1H] NMR spectroscopy, mass spectrometry and cyclic voltammetry. [Co(bhedtc)2(en)]BPh4 6b and trans(O)-[Co(pico)2(dee)]ClO4 8 were characterised by X-ray crystallography. In vitro biological tests were carried out on complexes 1-4 in order to assess the degree to which coordination of the mustard to cobalt attenuated its cytotoxicity, and the differential toxicity in air vs. nitrogen.

  3. Electron mass in dilute nitrides and its anomalous dependence on hydrostatic pressure.

    PubMed

    Pettinari, G; Polimeni, A; Masia, F; Trotta, R; Felici, M; Capizzi, M; Niebling, T; Stolz, W; Klar, P J

    2007-04-06

    The dependence of the electron mass on hydrostatic pressure P in N-diluted GaAs1-xNx (x=0.10% and 0.21%) is investigated by magnetophotoluminescence. Exceedingly large fluctuations (up to 60%/kbar) in the electron mass with increasing P are found. These originate from a pressure-driven tuning of the hybridization degree between the conduction band minimum and specific nitrogen-related states. Present results suggest a hierarchy between different nitrogen complexes as regards the extent of the perturbation these complexes exert on the electronic properties of the GaAs host.

  4. Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species

    DOE PAGES

    Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.; ...

    2014-12-04

    Here, a Ni(ii) complex with nitrogen and sulfur donor ligands degrades electrochemically in the presence of acid in acetonitrile to form an electrode adsorbed film that catalytically evolves hydrogen.

  5. Interaction centres of pyrimidine nucleotides: cytidine-5'-diphosphate (CDP) and cytidine-5'-triphosphate (CTP) in their reactions with tetramines and Cu(II) ions.

    PubMed

    Gasowska, A

    2005-08-01

    The interactions between pyrimidine nucleotides: cytidine-5'-diphosphate (CDP) and cytidine-5'-triphosphate (CTP) and Cu(II) ions, spermine (Spm) and 1,11-diamino-4,8-diazaundecane (3,3,3-tet) have been studied. The composition and stability constants of the complexes formed have been determined by means of the potentiometric method, while the centres of interactions in the ligands have been identified by the spectral methods (UV-Vis, Ultraviolet and Visible spectroscopy; EPR, electron spin resonance; NMR). In the systems without metal, formation of the molecular complexes nucleotide-polyamine with the interaction centres at the endocyclic nitrogen atom of purine ring N3, the oxygen atoms of the phosphate group from the nucleotide and protonated nitrogen atoms of the polyamine have been detected. Significant differences have been found in the metallation between the systems with Spm and with 3,3,3-tet. In the systems with spermine, mainly protonated species are formed with the phosphate group of the nucleotide and deprotonated nitrogen atoms of the polyamine making the coordination centres, while the donor nitrogen atom of the nucleotide N3 is involved in the intramolecular interligand interactions, additionally stabilising the complex. In the systems with 3,3,3-tet, the MLL' type species are formed in which the oxygen atoms of the phosphate group and nitrogen atoms of the polyamine are involved in metallation, whereas the N3 atom from the pyrimidine ring of the nucleotide is located outside the inner coordination sphere of copper ion. The main centre of Cu(II) interaction in the nucleotide, both in the system with Spm and 3,3,3-tet is the phosphate group of the nucleotide.

  6. Comparing Methods for Assessing Forest Soil Net Nitrogen Mineralization and Net Nitrification

    Treesearch

    S. S. Jefts; I. J. Fernandez; L.E. Rustad; D. B. Dail

    2004-01-01

    A variety of analytical techniques are used to evaluate rates of nitrogen (N) mineralization and nitrification in soils. The diversity of methods takes on added significance in forest ecosystem research where high soil heterogeneity and multiple soil horizons can make comparisons over time and space even more complex than in agricultural Ap horizons. This study...

  7. The QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions

    USDA-ARS?s Scientific Manuscript database

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua Quine Starch, At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates...

  8. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops.

    PubMed

    Miflin, Ben J; Habash, Dimah Z

    2002-04-01

    This short review outlines the central role of glutamine synthetase (GS) in plant nitrogen metabolism and discusses some possibilities for crop improvement. GS functions as the major assimilatory enzyme for ammonia produced from N fixation, and nitrate or ammonia nutrition. It also reassimilates ammonia released as a result of photorespiration and the breakdown of proteins and nitrogen transport compounds. GS is distributed in different subcellular locations (chloroplast and cytoplasm) and in different tissues and organs. This distribution probably changes as a function of the development of the tissue, for example, GS1 appears to play a key role in leaf senescence. The enzyme is the product of multiple genes with complex promoters that ensure the expression of the genes in an organ- and tissue-specific manner and in response to a number of environmental variables affecting the nutritional status of the cell. GS activity is also regulated post-translationally in a manner that involves 14-3-3 proteins and phosphorylation. GS and plant nitrogen metabolism is best viewed as a complex matrix continually changing during the development cycle of plants. Along with GS, a number of other enzymes play key roles in maintaining the balance of carbon and nitrogen. It is proposed that one of these is glutamate dehydrogenase (GDH). There is considerable evidence for a GDH shunt to return the carbon in amino acids back into reactions of carbon metabolism and the tri-carboxylic acid cycle. Results with transgenic plants containing transferred GS genes suggest that there may be ways in which it is possible to improve the efficiency with which crop plants use nitrogen. Marker-assisted breeding may also bring about such improvements.

  9. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  10. Syntheses, spectroscopic characterization, thermal study, molecular modeling, and biological evaluation of novel Schiff's base benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) with Ni(II), and Cu(II) metal complexes

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit

    2015-02-01

    Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, 1H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand.

  11. A series of energetic metal pentazolate hydrates.

    PubMed

    Xu, Yuangang; Wang, Qian; Shen, Cheng; Lin, Qiuhan; Wang, Pengcheng; Lu, Ming

    2017-09-07

    Singly or doubly bonded polynitrogen compounds can decompose to dinitrogen (N 2 ) with an extremely large energy release. This makes them attractive as potential explosives or propellants, but also challenging to produce in a stable form. Polynitrogen materials containing nitrogen as the only element exist in the form of high-pressure polymeric phases, but under ambient conditions even metastability is realized only in the presence of other elements that provide stabilization. An early example is the molecule phenylpentazole, with a five-membered all-nitrogen ring, which was first reported in the 1900s and characterized in the 1950s. Salts containing the azide anion (N 3 - ) or pentazenium cation (N 5 + ) are also known, with compounds containing the pentazole anion, cyclo-N 5 - , a more recent addition. Very recently, a bulk material containing this species was reported and then used to prepare the first example of a solid-state metal-N 5 complex. Here we report the synthesis and characterization of five metal pentazolate hydrate complexes [Na(H 2 O)(N 5 )]·2H 2 O, [M(H 2 O) 4 (N 5 ) 2 ]·4H 2 O (M = Mn, Fe and Co) and [Mg(H 2 O) 6 (N 5 ) 2 ]·4H 2 O that, with the exception of the Co complex, exhibit good thermal stability with onset decomposition temperatures greater than 100 °C. For this series we find that the N 5 - ion can coordinate to the metal cation through either ionic or covalent interactions, and is stabilized through hydrogen-bonding interactions with water. Given their energetic properties and stability, pentazole-metal complexes might potentially serve as a new class of high-energy density materials or enable the development of such materials containing only nitrogen. We also anticipate that the adaptability of the N 5 - ion in terms of its bonding interactions will enable the exploration of inorganic nitrogen analogues of metallocenes and other unusual polynitrogen complexes.

  12. A series of energetic metal pentazolate hydrates

    NASA Astrophysics Data System (ADS)

    Xu, Yuangang; Wang, Qian; Shen, Cheng; Lin, Qiuhan; Wang, Pengcheng; Lu, Ming

    2017-09-01

    Singly or doubly bonded polynitrogen compounds can decompose to dinitrogen (N2) with an extremely large energy release. This makes them attractive as potential explosives or propellants, but also challenging to produce in a stable form. Polynitrogen materials containing nitrogen as the only element exist in the form of high-pressure polymeric phases, but under ambient conditions even metastability is realized only in the presence of other elements that provide stabilization. An early example is the molecule phenylpentazole, with a five-membered all-nitrogen ring, which was first reported in the 1900s and characterized in the 1950s. Salts containing the azide anion (N3-) or pentazenium cation (N5+) are also known, with compounds containing the pentazole anion, cyclo-N5-, a more recent addition. Very recently, a bulk material containing this species was reported and then used to prepare the first example of a solid-state metal-N5 complex. Here we report the synthesis and characterization of five metal pentazolate hydrate complexes [Na(H2O)(N5)]·2H2O, [M(H2O)4(N5)2]·4H2O (M = Mn, Fe and Co) and [Mg(H2O)6(N5)2]·4H2O that, with the exception of the Co complex, exhibit good thermal stability with onset decomposition temperatures greater than 100 °C. For this series we find that the N5- ion can coordinate to the metal cation through either ionic or covalent interactions, and is stabilized through hydrogen-bonding interactions with water. Given their energetic properties and stability, pentazole-metal complexes might potentially serve as a new class of high-energy density materials or enable the development of such materials containing only nitrogen. We also anticipate that the adaptability of the N5- ion in terms of its bonding interactions will enable the exploration of inorganic nitrogen analogues of metallocenes and other unusual polynitrogen complexes.

  13. Synthesis, Structure, Characterization, and Decomposition of Nickel Dithiocarbamates: Effect of Precursor Structure and Processing Conditions on Solid-State Products

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kulis, Michael J.; McNatt, Jeremiah S.; Duffy, Norman V.; Hoops, Michael D.; Gorse, Elizabeth; Fanwick, Philip E.; Masnovi, John; Cowen, Jonathan E.; Dominey, Raymond N.

    2016-01-01

    Single-crystal X-ray structures of four nickel dithiocarbamate complexes, the homoleptic mixed-organic bis-dithiocarbamates Ni[S2CN(isopropyl)(benzyl)]2, Ni[S2CN(ethyl)(n-butyl)]2, and Ni[S2CN(phenyl)(benzyl)]2, as well as the heteroleptic mixed-ligand complex NiCl[P(phenyl)3][(S2CN(phenyl)(benzyl)], were determined. Synthetic, spectroscopic, structural, thermal, and sulfide materials studies are discussed in light of prior literature. The spectroscopic results are routine. A slightly distorted square-planar nickel coordination environment was observed for all four complexes. The organic residues adopt conformations to minimize steric interactions. Steric effects also may determine puckering, if any, about the nickel and nitrogen atoms, both of which are planar or nearly so. A trans-influence affects the Ni-S bond distances. Nitrogen atoms interact with the CS2 carbons with a bond order of about 1.5, and the other substituents on nitrogen display transoid conformations. There are no strong intermolecular interactions, consistent with prior observations of the volatility of nickel dithiocarbamate complexes. Thermogravimetric analysis of the homoleptic species under inert atmosphere is consistent with production of 1:1 nickel sulfide phases. Thermolysis of nickel dithiocarbamates under flowing nitrogen produced hexagonal or -NiS as the major phase; thermolysis under flowing forming gas produced millerite (-NiS) at 300 C, godlevskite (Ni9S8) at 325 and 350 C, and heazlewoodite (Ni3S2) at 400 and 450 C. Failure to exclude oxygen results in production of nickel oxide. Nickel sulfide phases produced seem to be primarily influenced by processing conditions, in agreement with prior literature. Nickel dithiocarbamate complexes demonstrate significant promise to serve as single-source precursors to nickel sulfides, a quite interesting family of materials with numerous potential applications.

  14. Structural Characterization of Am(III)- and Pu(III)-DOTA Complexes.

    PubMed

    Audras, Matthieu; Berthon, Laurence; Berthon, Claude; Guillaumont, Dominique; Dumas, Thomas; Illy, Marie-Claire; Martin, Nicolas; Zilbermann, Israel; Moiseev, Yulia; Ben-Eliyahu, Yeshayahu; Bettelheim, Armand; Cammelli, Sebastiano; Hennig, Christoph; Moisy, Philippe

    2017-10-16

    The complexation of 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) ligand with two trivalent actinides (Am 3+ and Pu 3+ ) was investigated by UV-visible spectrophotometry, NMR spectroscopy, and extended X-ray absorption fine structure in conjunction with computational methods. The complexation process of these two cations is similar to what has been previously observed with lanthanides(III) of similar ionic radius. The complexation takes place in different steps and ends with the formation of a (1:1) complex [(An(III)DOTA)(H 2 O)] - , where the cation is bonded to the nitrogen atoms of the ring, the four carboxylate arms, and a water molecule to complete the coordination sphere. The formation of An(III)-DOTA complexes is faster than the Ln(III)-DOTA systems of equivalent ionic radius. Furthermore, it is found that An-N distances are slightly shorter than Ln-N distances. Theoretical calculations showed that the slightly higher affinity of DOTA toward Am over Nd is correlated with slightly enhanced ligand-to-metal charge donation arising from oxygen and nitrogen atoms.

  15. New mixed ligand cobalt(II/III) complexes based on the drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties

    NASA Astrophysics Data System (ADS)

    Abu Ali, Hijazi; Abu Shamma, Amani; Kamel, Shayma

    2017-08-01

    New cobalt valproate complexes with different nitrogen based ligands were synthesized and characterized using various techniques such as IR, UV-Vis, single crystal X-ray diffraction as well as other physical properties. The general formula of the prepared complexes is [Con(valp)m(L)z], (n = 1, 2 …; m = 1, 2, …; Z = 1, 2 …). The complexes [Co2(valp)4] (1), [Co(valp)2(2-ampy)2] (2) and [Co2(valp)4(quin)2] (3) showed different carboxylate coordination modes. The crystal structures of the complexes 2 and 3 were determined using single crystal X-ray diffraction. Kinetic studies of hydrolysis reactions of BNPP [bis-(p-nitrophenyl)phosphate] with complexes 2 and 3 were performed. The hydrolysis rate of BNPP was studied at different temperatures, pH and concentrations by UV-Vis spectrophotometric method. The results showed that the hydrolysis rate of BNPP was 7.70 × 102 L mol-1 s-1 for (3) and 2.60 × 10-1 L mol-1 s-1 for (2).

  16. Nitrogen-doped carbon capsules via poly(ionic liquid)-based layer-by-layer assembly.

    PubMed

    Zhao, Qiang; Fellinger, Tim-Patrick; Antonietti, Markus; Yuan, Jiayin

    2012-07-13

    Layer-by-layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen-doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3-cyanomethyl-1-vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen-doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as-synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m(2) g(-1). Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important implications for future air quality prediction.

  18. A first-principles study of carbon-related energy levels in GaN. I. Complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies

    NASA Astrophysics Data System (ADS)

    Matsubara, Masahiko; Bellotti, Enrico

    2017-05-01

    Various forms of carbon based complexes in GaN are studied with first-principles calculations employing Heyd-Scuseria-Ernzerhof hybrid functionals within the framework of the density functional theory. We consider carbon complexes made of the combinations of single impurities, i.e., CN-CGa, CI-CN , and CI-CGa , where CN, CGa , and CI denote C substituting nitrogen, C substituting gallium, and interstitial C, respectively, and of neighboring gallium/nitrogen vacancies ( VGa / VN ), i.e., CN-VGa and CGa-VN . Formation energies are computed for all these configurations with different charge states after full geometry optimizations. From our calculated formation energies, thermodynamic transition levels are evaluated, which are related to the thermal activation energies observed in experimental techniques such as deep level transient spectroscopy. Furthermore, the lattice relaxation energies (Franck-Condon shift) are computed to obtain optical activation energies, which are observed in experimental techniques such as deep level optical spectroscopy. We compare our calculated values of activation energies with the energies of experimentally observed C-related trap levels and identify the physical origins of these traps, which were unknown before.

  19. Disturbance and topography shape nitrogen availability and ä15N over long-term forest succession

    Treesearch

    Steven S. Perakis; Alan J. Tepley; Jana E. Compton

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil ä15N values. We examined soil and foliar patterns in N and ä15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane...

  20. USSR Report, Chemistry.

    DTIC Science & Technology

    1985-01-17

    potas- sium oxides. Only then does the mixture react to form ammonia . A method for synthesizing ammonium from nitrogen and hydrogen, along with a...manufactured by this method , most of which is used in the synthesis of nitrogen fertilizers. A modern ammonia factory is a complex, highly automated...V. Karyakin; ZHURNAL ANALITICHESKOY KHIMII, No 8, Aug 84) 5 CATALYSTS Ammonia Synthesis and Homogenous Catalysts (0. Yefimov; LENINSKOYE ZNAMYA

  1. Assessing regional differences in nitrogen losses from U.S. dairy farms using the integrated farm systems model

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) enters and leaves a dairy production system through many pathways and in many forms: undergoing numerous transformations as it passes from feed to animal to milk or manure and back again. Due to the complexity of the dairy system, estimates of N flows and losses require the use of model...

  2. Review of nitrogen fate models applicable to forest landscapes in the Southern U.S.

    Treesearch

    D. M. Amatya; C. G. Rossi; A. Saleh; Z. Dai; M. A. Youssef; R. G. Williams; D. D. Bosch; G. M. Chescheir; G. Sun; R. W. Skaggs; C. C. Trettin; E. D. Vance; J. E. Nettles; S. Tian

    2013-01-01

    Assessing the environmental impacts of fertilizer nitrogen (N) used to increase productivity in managed forests is complex due to a wide range of abiotic and biotic factors affecting its forms and movement. Models developed to predict fertilizer N fate (e.g., cycling processes) and water quality impacts vary widely in their design, scope, and potential application. We...

  3. A dynamic nitrogen budget model of a Pacific Northwest salt ...

    EPA Pesticide Factsheets

    The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspiration, and groundwater inputs, all of which can vary significantly on timescales ranging from sub-daily to seasonal. Additionally, many of these hydrologic drivers may vary with a changing climate. Due to this temporal variation in hydrology, it is difficult to represent salt marsh nitrogen budgets as steady-state models. A dynamic nitrogen budget model that varies based on hydrologic conditions may more accurately describe the role of salt marshes in nitrogen cycling. In this study we aim to develop a hydrologic model that is coupled with a process-based nitrogen model to simulate nitrogen dynamics at multiple temporal scales. To construct and validate our model we will use hydrologic and nitrogen species data collected from 2010 to present, from a 1.8 hectare salt marsh in the Yaquina Estuary, OR, USA. Hydrologic data include water table levels at two transects, upland tributary flow, tidal channel stage and flow, and vertical hydraulic head gradients. Nitrogen pool data include concentrations of nitrate and ammonium in porewater, tidal channel water, and extracted from soil cores. Nitrogen flux data include denitrification rates, nitrogen concentrations in upland runoff, and tida

  4. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.

    PubMed

    Singh, Shweta; Bakshi, Bhavik R

    2013-08-20

    Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online.

  5. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis

    PubMed Central

    Clúa, Joaquín; Roda, Carla

    2018-01-01

    The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems. PMID:29495432

  6. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops.

    PubMed

    Hammer, Graeme L; van Oosterom, Erik; McLean, Greg; Chapman, Scott C; Broad, Ian; Harland, Peter; Muchow, Russell C

    2010-05-01

    Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed.

  7. Nitrogen-Rich Energetic Metal-Organic Framework: Synthesis, Structure, Properties, and Thermal Behaviors of Pb(II) Complex Based on N,N-Bis(1H-tetrazole-5-yl)-Amine

    PubMed Central

    Liu, Qiangqiang; Jin, Bo; Zhang, Qingchun; Shang, Yu; Guo, Zhicheng; Tan, Bisheng; Peng, Rufang

    2016-01-01

    The focus of energetic materials is on searching for a high-energy, high-density, insensitive material. Previous investigations have shown that 3D energetic metal–organic frameworks (E-MOFs) have great potential and advantages in this field. A nitrogen-rich E-MOF, Pb(bta)·2H2O [N% = 31.98%, H2bta = N,N-Bis(1H-tetrazole-5-yl)-amine], was prepared through a one-step hydrothermal reaction in this study. Its crystal structure was determined through single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, and elemental analysis. The complex has high heat denotation (16.142 kJ·cm−3), high density (3.250 g·cm−3), and good thermostability (Tdec = 614.9 K, 5 K·min−1). The detonation pressure and velocity obtained through theoretical calculations were 43.47 GPa and 8.963 km·s−1, respectively. The sensitivity test showed that the complex is an impact-insensitive material (IS > 40 J). The thermal decomposition process and kinetic parameters of the complex were also investigated through thermogravimetry and differential scanning calorimetry. Non-isothermal kinetic parameters were calculated through the methods of Kissinger and Ozawa-Doyle. Results highlighted the nitrogen-rich MOF as a potential energetic material. PMID:28773805

  8. Nitrogen comes down to earth: report from the 5th European Nitrogen Fixation Conference.

    PubMed

    De Hoff, Peter; Hirsch, Ann M

    2003-05-01

    For four days and four nights, with almost 50 presentations and more than 175 posters, the 5th European Nitrogen Fixation Conference continued a tradition of excellence, bringing scientists from diverse fields such as microbiology, biochemistry, computational genomics, and plant physiology together to address the complex problems associated with biological nitrogen fixation (BNF). The conference was hosted by the John Innes Center and the University of East Anglia in Norwich, England and took place from September 6 through 10, 2002. A diverse range of topics was presented, from the evolution of rhizobial genomes to the plant genes involved in bacterial and fungal symbiosis, to the structure of nitrogenase, and to the means by which nitrogen is shuttled between the symbiotic bacteria and the plant. Additionally, sessions involving broader issues, such as nitrogen fertilizer use and work being done in developing countries, brought home the importance of the research being carried out in BNF around the world.

  9. Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound.

    PubMed

    Wang, Songlin; Wu, Xiaohui; Wang, Yansong; Li, Qifen; Tao, Meijun

    2008-09-01

    Experiments on the removal of organic matters and ammonia nitrogen from landfill leachate by ultrasound irradiation were carried out. The effects of COD reduction and ammonia removal of power input, initial concentration, initial pH and aeration were studied. It was found that the sonolysis of organic matters proceeds via reaction with ()OH radicals; a thermal reaction also occurs with a small contribution. The rise of COD at some intervals could be explained by the complexity of organic pollutant sonolysis in landfill leachate. Ultrasonic irradiation was shown to be an effective method for the removal of ammonia nitrogen from landfill leachate. After 180 min ultrasound irradiation, up to 96% ammonia nitrogen removal efficiency can be obtained. It was found that the mechanism of ammonia nitrogen removal by ultrasound irradiation is largely that the free ammonia molecules in leachate enter into the cavitation bubbles and transform into nitrogen molecules and hydrogen molecules via pyrolysis under instant high temperature and high pressure in the cavitation bubbles.

  10. Influence of domestic pets on soil concentrations of dissolved organic carbon, nitrogen, and phosphorus under turfgrass in apartment complexes of Central Texas, USA

    NASA Astrophysics Data System (ADS)

    Steele, M.; Aitkenhead-Peterson, J. A.

    2009-12-01

    High nitrogen (N) and phosphorus (P) watershed loading rates increases the concentration and loads present in urban streams and rivers, resulting in eutrophication and degradation of surface water quality. Domestic pet animal feed may represent a significant proportion of nitrogen loading in urban watersheds, and because it is deposited directly on the watershed surface may have a large effect on N loads in urban surface waters (Baker et al. 2001). Animal manure has long been used to increase soil N and phosphorus concentrations for the purpose of growing agricultural crops; however, little is known about unintentional urban manuring resulting from a high density of domesticated pets. The purpose of this study is to determine if the presence of domesticated animals in high density urban developments results in increased concentrations of soil dissolved organic carbon (DOC), N, and P and the potential to contribute to loading of urban streams. Composite soil samples from the 0 to 5 cm and 5 to 10 cm soil depth were collected from apartment complexes in Bryan/College Station (BCS) and San Antonio, Texas during August, 2009. Apartment complexes were randomly located around the city and were chosen based on their rules regarding pet ownership. Four apartment complexes that allowed all domestic pets were compared to four that did not allow any domestic pets on the property. A 10:1 water extraction of field moist soil was conducted immediately after sampling. Soil water extracts were analyzed for DOC, total dissolved nitrogen (TDN), nitrate-N, ammonium-N, dissolved organic N, and orthophosphate-P. Results indicated significantly increased concentrations of DOC and N species at both depths in BCS apartments that allowed pets compared to those that did not; however, opposite trends were found in San Antonio. There is a trend for increased concentrations of orthophosphate-P at both locations. Baker, L.A., D. Hope, Y. Xu, et al. 2001. Nitrogen balance for the central Arizona-Phoenix (CAP) ecosystem. Ecosystems 4: 582-602.

  11. HY5 regulates Nitrite Reductase 1 (NIR1) and Ammonium Transporter1;2 (AMT1;2) in Arabidopsis seedlings

    PubMed Central

    Huang, Lifen; Zhang, Hongcheng; Zhang, Huiyong; Deng, Xing Wang; Wei, Ning

    2016-01-01

    HY5 (Long Hypocotyles 5) is a key transcription factor in Arabidopsis thaliana that has a pivotal role in seedling development. Soil nitrogen is an essential macronutrient, and its uptake, assimilation and metabolism are influenced by nutrient availability and by lights. To understand the role of HY5 in nitrogen assimilation pathways, we examined the phenotype as well as the expression of selected nitrogen assimilation-related genes in hy5 mutant grown under various nitrogen limiting and nitrogen sufficient conditions, or different light conditions. We report that HY5 positively regulates nitrite reductase gene NIR1 and negatively regulates the ammonium transporter gene AMT1;2 under all nitrogen and light conditions tested, while it affects several other genes in a nitrogen supply-dependent manner. HY5 is not required for light induction of NIR1, AMT1;2 and NIA genes, but it is necessary for high level expression of NIR1 and NIA under optimal nutrient and light conditions. In addition, nitrogen deficiency exacerbates the abnormal root system of hy5. Together, our results suggest that HY5 exhibits the growth-promoting activity only when sufficient nutrients, including lights, are provided, and that HY5 has a complex involvement in nitrogen acquisition and metabolism in Arabidopsis seedlings. PMID:26259199

  12. Evaluation of the Impact of Alveolar Nitrogen Excretion on Indices Derived from Multiple Breath Nitrogen Washout

    PubMed Central

    Nielsen, Niklas; Nielsen, Jorgen G.; Horsley, Alex R.

    2013-01-01

    Background A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of body nitrogen excreted across the alveoli has previously been ignored. Methods A two-compartment lung model was developed that included ventilation heterogeneity and dead space (DS) effects, but also incorporated experimental data on nitrogen excretion. The model was used to assess the impact of nitrogen excretion on washout progress and accuracy of functional residual capacity (FRC) and lung clearance index (LCI) measurements. Results Excreted nitrogen had a small effect on accuracy of FRC (1.8%) in the healthy adult model. The error in LCI calculated with true FRC was greater (6.3%), and excreted nitrogen contributed 21% of the total nitrogen concentration at the end of the washout. Increasing DS and ventilation heterogeneity both caused further increase in measurement error. LCI was increased by 6–13% in a CF child model, and excreted nitrogen increased the end of washout nitrogen concentration by 24–49%. Conclusions Excreted nitrogen appears to have complex but clinically significant effects on washout progress, particularly in the presence of abnormal gas mixing. This may explain much of the previously described differences in washout outcomes between SF6 and nitrogen. PMID:24039916

  13. Nitrogen Fixation by Anaerobes is Stimulated by Low Oxygen and Insensitive to Combined Nitrogen in Coastal Sediments

    NASA Astrophysics Data System (ADS)

    Jenkins, B. D.; Spinette, R.; Jones, A.; Puggioni, G.; Ehrlich, A.; Brown, S. M.

    2016-02-01

    Coastal sediments are typically zones of nitrogen removal via coupled nitrification-denitrification pathways. Increasingly, there are reports of nitrogen fixation in anthropogenically impacted sediments containing ample combined nitrogen. In previous work in the estuarine sediments of Narragansett Bay, we found that anaerobes related to Desulfovibrio spp. and in the Desulfuromonadales express genes for nitrogen fixation (nifH). We also determined that nitrogen fixation rates and gene expression are elevated during periods of seasonal hypoxia. Statistical modeling shows that a combination of elevated phytoplankton biomass as with a duration of hypoxia for a week or longer lead to conditions that promote nitrogen fixation as measured by acetylene reduction. Interestingly, diazotrophs closely related to those identified in Narragansett Bay are present and active in other low oxygen systems, suggesting that expansion of hypoxic events may lead to unanticipated consequences for the benthic nitrogen cycle in many ecosystems. To determine controls on diazotrophy on the organismal level, we isolated and sequenced the genomes of two Narragansett Bay members of the Desulfovibrio. We found that these organisms are insensitive to nitrate and urea, as they are missing the genes to assimilate these nitrogen sources. However, their nitrogen fixation is suppressed by increasing concentrations of ammonium, indicating that they may be sensitive to this nitrogen source in the environment. The paradox of detectable nitrogen fixation in the background of measurable ammonium in estuarine systems is a newly emergent theme and suggests that there are complex microbial interactions and/or structure to the nutrient regimes allowing for fixation.

  14. Lanthanide anilido complexes: synthesis, characterization, and use as highly efficient catalysts for hydrophosphonylation of aldehydes and unactivated ketones.

    PubMed

    Liu, Chengwei; Qian, Qinqin; Nie, Kun; Wang, Yaorong; Shen, Qi; Yuan, Dan; Yao, Yingming

    2014-06-14

    Lanthanide anilido complexes stabilized by the 2,6-diisopropylanilido ligand have been synthesized and characterized, and their catalytic activity for hydrophosphonylation reaction was explored. A reaction of anhydrous LnCl3 with 5 equivalents of LiNHPh-(I)Pr2-2,6 in THF generated the heterobimetallic lanthanide-lithium anilido complexes (2,6-(I)Pr2PhNH)5LnLi2(THF)2 [Ln = Sm(1), Nd(2), Y(3)] in good isolated yields. These complexes are well characterized by elemental analysis, IR, NMR (for complex ) and single-crystal structure determination. Complexes 1 - 3 are isostructural. In these complexes, the lanthanide metal ion is five-coordinated by five nitrogen atoms from five 2,6-diisopropylanilido ligands to form a distorted trigonal bipyramidal geometry. The lithium ion is coordinated by two nitrogen atoms from two 2,6-diisopropylanilido ligands, and one oxygen atom from a THF molecule. It was found that these simple lanthanide anilido complexes are highly efficient for catalyzing hydrophosphonylation reactions of various aldehydes and unactivated ketones to generate α-hydroxyphosphonates in good to excellent yields (up to 99%) within a short time (5 min for aldehydes, 20 min for ketones). Furthermore, the mechanism of hydrophosphonylation reactions has also been elucidated via(1)H NMR monitoring of reaction.

  15. Microbial Ecology of Thermophilic Anaerobic Digestion. Final Report

    DOE R&D Accomplishments Database

    Zinder, Stephen H.

    2000-04-15

    This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.

  16. Climate change decreases nitrogen pools and mineralization rates in northern hardwood forests

    Treesearch

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Gene E. Likens; Jerry M. Melillo; Myron J. Mitchell; Pamela H. Templer; Matthew A. Vadeboncoeur; D. P. C. Peters

    2016-01-01

    Nitrogen (N) supply often limits the productivity of temperate forests and is regulated by a complex mix of biological and climatic drivers. In excess, N is linked to a variety of soil, water, and air pollution issues. Here, we use results from an elevation gradient study and historical data from the long-term Hubbard Brook Ecosystem Study (New Hampshire, USA) to...

  17. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  18. Synthesis, structural studies and antimicrobial activity of N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide and its Co(II), Ni(II) complexes

    NASA Astrophysics Data System (ADS)

    Karadeniz, Şeyma; Ataol, Cigdem Yuksektepe; Şahin, Onur; İdil, Önder; Bati, Hümeyra

    2018-06-01

    A new aroylhydrazoneoxime, N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide ligand (LH2) and its Ni(II) and Co(II) complexes, have been synthesized and characterized by elemental and thermal analyses, IR and UV-vis spectroscopy, magnetic moment and X-ray diffraction. The antimicrobial activities of these compounds were tested by using minimal inhibitory concentration method (MIC). The ligand-containing aroylhydrazone and oxime groups and its Ni complex crystallize in the triclinic system and P 1 - space group, while its Co complex crystallizes in the monoclinic system and the C 2/c space group. X-ray results show that the ligand in the keto form is transformed into enolic form when it forms coordination. From elemental analysis data, the stoichiometry of Co(II) complex was found to be 1:2 (metal/ligand), but 1:1 for Ni(II). IR spectra indicate that the ligand acts as monoanionic NNO- tridentate and coordination takes place form through the oxime nitrogen, imine nitrogen, and enolate oxygen atoms.

  19. Syntheses, spectroscopic characterization, thermal study, molecular modeling, and biological evaluation of novel Schiff's base benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) with Ni(II), and Cu(II) metal complexes.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit

    2015-02-25

    Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  1. Ternary complexes of Zn(II) and Cu(II) with 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide in the presence of heterocyclic bases as auxiliary ligands: Synthesis, spectroscopic and structural characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2018-03-01

    The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.

  2. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation

    NASA Astrophysics Data System (ADS)

    Hill, Christopher K.; Hartwig, John F.

    2017-12-01

    Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.

  3. Management of Multiple Nitrogen Sources during Wine Fermentation by Saccharomyces cerevisiae.

    PubMed

    Crépin, Lucie; Truong, Nhat My; Bloem, Audrey; Sanchez, Isabelle; Dequin, Sylvie; Camarasa, Carole

    2017-03-01

    During fermentative growth in natural and industrial environments, Saccharomyces cerevisiae must redistribute the available nitrogen from multiple exogenous sources to amino acids in order to suitably fulfill anabolic requirements. To exhaustively explore the management of this complex resource, we developed an advanced strategy based on the reconciliation of data from a set of stable isotope tracer experiments with labeled nitrogen sources. Thus, quantifying the partitioning of the N compounds through the metabolism network during fermentation, we demonstrated that, contrary to the generally accepted view, only a limited fraction of most of the consumed amino acids is directly incorporated into proteins. Moreover, substantial catabolism of these molecules allows for efficient redistribution of nitrogen, supporting the operative de novo synthesis of proteinogenic amino acids. In contrast, catabolism of consumed amino acids plays a minor role in the formation of volatile compounds. Another important feature is that the α-keto acid precursors required for the de novo syntheses originate mainly from the catabolism of sugars, with a limited contribution from the anabolism of consumed amino acids. This work provides a comprehensive view of the intracellular fate of consumed nitrogen sources and the metabolic origin of proteinogenic amino acids, highlighting a strategy of distribution of metabolic fluxes implemented by yeast as a means of adapting to environments with changing and scarce nitrogen resources. IMPORTANCE A current challenge for the wine industry, in view of the extensive competition in the worldwide market, is to meet consumer expectations regarding the sensory profile of the product while ensuring an efficient fermentation process. Understanding the intracellular fate of the nitrogen sources available in grape juice is essential to the achievement of these objectives, since nitrogen utilization affects both the fermentative activity of yeasts and the formation of flavor compounds. However, little is known about how the metabolism operates when nitrogen is provided as a composite mixture, as in grape must. Here we quantitatively describe the distribution through the yeast metabolic network of the N moieties and C backbones of these nitrogen sources. Knowledge about the management of a complex resource, which is devoted to improvement of the use of the scarce N nutrient for growth, will be useful for better control of the fermentation process and the sensory quality of wines. Copyright © 2017 American Society for Microbiology.

  4. Management of Multiple Nitrogen Sources during Wine Fermentation by Saccharomyces cerevisiae

    PubMed Central

    Crépin, Lucie; Truong, Nhat My; Bloem, Audrey; Sanchez, Isabelle; Dequin, Sylvie

    2017-01-01

    ABSTRACT During fermentative growth in natural and industrial environments, Saccharomyces cerevisiae must redistribute the available nitrogen from multiple exogenous sources to amino acids in order to suitably fulfill anabolic requirements. To exhaustively explore the management of this complex resource, we developed an advanced strategy based on the reconciliation of data from a set of stable isotope tracer experiments with labeled nitrogen sources. Thus, quantifying the partitioning of the N compounds through the metabolism network during fermentation, we demonstrated that, contrary to the generally accepted view, only a limited fraction of most of the consumed amino acids is directly incorporated into proteins. Moreover, substantial catabolism of these molecules allows for efficient redistribution of nitrogen, supporting the operative de novo synthesis of proteinogenic amino acids. In contrast, catabolism of consumed amino acids plays a minor role in the formation of volatile compounds. Another important feature is that the α-keto acid precursors required for the de novo syntheses originate mainly from the catabolism of sugars, with a limited contribution from the anabolism of consumed amino acids. This work provides a comprehensive view of the intracellular fate of consumed nitrogen sources and the metabolic origin of proteinogenic amino acids, highlighting a strategy of distribution of metabolic fluxes implemented by yeast as a means of adapting to environments with changing and scarce nitrogen resources. IMPORTANCE A current challenge for the wine industry, in view of the extensive competition in the worldwide market, is to meet consumer expectations regarding the sensory profile of the product while ensuring an efficient fermentation process. Understanding the intracellular fate of the nitrogen sources available in grape juice is essential to the achievement of these objectives, since nitrogen utilization affects both the fermentative activity of yeasts and the formation of flavor compounds. However, little is known about how the metabolism operates when nitrogen is provided as a composite mixture, as in grape must. Here we quantitatively describe the distribution through the yeast metabolic network of the N moieties and C backbones of these nitrogen sources. Knowledge about the management of a complex resource, which is devoted to improvement of the use of the scarce N nutrient for growth, will be useful for better control of the fermentation process and the sensory quality of wines. PMID:28115380

  5. DNA interaction studies of new nano metal based anticancer agent: validation by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh; Azam, Ameer

    2010-05-01

    A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. 119Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant Kb = 8.42 × 104 M - 1. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.

  6. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes.

    PubMed

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor

    2015-03-21

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.

  7. Broadband Ftmw Spectroscopy of 2-METHYLIMIDAZOLE and Complexes with Water and Argon

    NASA Astrophysics Data System (ADS)

    Medcraft, Chris; Heitkämper, Juliane; Mullaney, John C.; Walker, Nick

    2017-06-01

    The rotational spectrum of 2-methylimidazole has been measured using laser ablation chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. 2-methylimidazole was laser vaporised then entrained within an argon buffer gas undergoing supersonic expansion allowing for efficient rotational cooling. Carbon-13 and nitrogen-15 isotopologues were measured in natural abundance and substitution coordinates have been determined. The barrier to internal rotation of the methyl group was found to be 122.697(20) cm^{-1}. Nuclear quadropole coupling constants for the two nitrogen nuclei were determined via a rigid rotor fit of the A internal rotor state. Complexes with water and argon were also observed and fit in a similar way.

  8. Kinetic and theoretical studies on the protonation of [Ni(2-SC6H4N){PhP(CH2CH2PPh2)2}]+: nitrogen versus sulfur as the protonation site.

    PubMed

    Petrou, Athinoula L; Koutselos, Andreas D; Wahab, Hilal S; Clegg, William; Harrington, Ross W; Henderson, Richard A

    2011-02-07

    The complexes [Ni(4-Spy)(triphos)]BPh(4) and [Ni(2-Spy)(triphos)]BPh(4) {triphos = PhP(CH(2)CH(2)PPh(2))(2), 4-Spy = 4-pyridinethiolate, 2-Spy = 2-pyridinethiolate} have been prepared and characterized both spectroscopically and using X-ray crystallography. In both complexes the triphos is a tridentate ligand. However, [Ni(4-Spy)(triphos)](+) comprises a 4-coordinate, square-planar nickel with the 4-Spy ligand bound to the nickel through the sulfur while [Ni(2-Spy)(triphos)](+) contains a 5-coordinate, trigonal-bipyramidal nickel with a bidentate 2-Spy ligand bound to the nickel through both sulfur and nitrogen. The kinetics of the reactions of [Ni(4-Spy)(triphos)](+) and [Ni(2-Spy)(triphos)](+) with lutH(+) (lut = 2,6-dimethylpyridine) in MeCN have been studied using stopped-flow spectrophotometry, and the two complexes show very different reactivities. The reaction of [Ni(4-Spy)(triphos)](+) with lutH(+) is complete within the deadtime of the stopped-flow apparatus (2 ms) and corresponds to protonation of the nitrogen. However, upon mixing [Ni(2-Spy)(triphos)](+) and lutH(+) a reaction is observed (on the seconds time scale) to produce an equilibrium mixture. The mechanistic interpretation of the rate law has been aided by the application of MSINDO semiempirical and ADF calculations. The kinetics and calculations are consistent with the reaction between [Ni(2-Spy)(triphos)](+) and lutH(+) involving initial protonation of the sulfur followed by dissociation of the nitrogen and subsequent transfer of the proton from sulfur to nitrogen. The factors affecting the position of protonation and the coupling of the coordination state of the 2-pyridinethiolate ligand to the site of protonation are discussed.

  9. Reductive Elimination from Phosphine-Ligated Alkylpalladium(II) Amido Complexes To Form sp3 Carbon-Nitrogen Bonds.

    PubMed

    Peacock, D Matthew; Jiang, Quan; Hanley, Patrick S; Cundari, Thomas R; Hartwig, John F

    2018-04-11

    We report the formation of phosphine-ligated alkylpalladium(II) amido complexes that undergo reductive elimination to form alkyl-nitrogen bonds and a combined experimental and computational investigation of the factors controlling the rates of these reactions. The free-energy barriers to reductive elimination from t-Bu 3 P-ligated complexes were significantly lower (ca. 3 kcal/mol) than those previously reported from NHC-ligated complexes. The rates of reactions from complexes containing a series of electronically and sterically varied anilido ligands showed that the reductive elimination is slower from complexes of less electron-rich or more sterically hindered anilido ligands than from those containing more electron-rich and less hindered anilido ligands. Reductive elimination of alkylamines also occurred from complexes bearing bidentate P,O ligands. The rates of reactions of these four-coordinate complexes were slower than those for reactions of the three-coordinate, t-Bu 3 P-ligated complexes. The calculated pathway for reductive elimination from rigid, 2-methoxyarylphosphine-ligated complexes does not involve initial dissociation of the oxygen. Instead, reductive elimination is calculated to occur directly from the four-coordinate complex in concert with a lengthening of the Pd-O bond. To investigate this effect experimentally, a four-coordinate Pd(II) anilido complex containing a flexible, aliphatic linker between the P and O atoms was synthesized. Reductive elimination from this complex was faster than that from the analogous complex containing the more rigid, aryl linker. The flexible linker enables full dissociation of the ether ligand during reductive elimination, leading to the faster reaction of this complex.

  10. High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.

    DTIC Science & Technology

    SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .

  11. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    PubMed

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  12. Influences of Geomorphic Complexity and Rehabilitation on Nutrient Uptake in an Urban Stream

    NASA Astrophysics Data System (ADS)

    Mueller, J. S.; Baker, D. W.; Bledsoe, B. P.

    2006-12-01

    Headwater streams, which are highly vulnerable to anthropogenic impacts associated with land use change, have large surface-to-volume ratios that favor retention and removal of nitrogen. We describe a study focused on how geomorphic complexity is related to nutrient retention in impacted and restored headwater streams along a gradient of human land use. A key element of the study is a detailed protocol for characterizing the spatial distribution of physical habitat units composed of relatively distinct combinations of flow hydraulics and textural facies. We are using the detailed physical characterization and nutrient injections in paired segments of a Colorado Front Range urban stream to examine associations among geomorphic complexity, nitrogen uptake, and the degree and style of channel rehabilitation. The results of the study have implications for the viability of stream rehabilitation as a tool for reducing N delivery to downstream aquatic systems that are vulnerable to eutrophication.

  13. Toxicological risk of melamine and cyanuric acid in food and feed

    PubMed Central

    Suchý, Pavel; Straková, Eva; Herzig, Ivan; Staňa, Jaroslav; Kalusová, Renata; Pospíchalová, Markéta

    2009-01-01

    From the toxicological point of view, in the last two years melamine and cyanuric acid have become matters of great interest. These substances, especially melamine, have been abused during food and feed adulteration by increasing the content of nitrogen compounds in these products. Melamine and cyanuric acid as individual substances do not pose any serious risk in terms of toxicology. From the point of view of toxicology, it is especially the complex of melamine with cyanuric acid that is important. This complex, also known as the melamine-cyanurate complex, is a cause of human and animal health problems. In this work we present two examples of the incidence of melamine and cyanuric acid in two feed products originating from China. They were rice and the pea concentrates intended for animal nutrition. Protein concentrates can be the main risk factor for food chain contamination with melamine and cyanuric acid, especially those of unknown origin. Feed with a high content of nitrogen compounds and low content of aminoacids can be regarded as particularly suspicious. A comparison of results for determining nitrogen compounds and amines can be used as proof of adulteration of protein feeds. These feeds must be subjected to further analysis to determine melamine and cyanuric acid. PMID:21217848

  14. Nitrogen metabolism of sheep and goats consuming Acacia brevispica and Sesbania sesban

    USGS Publications Warehouse

    Woodward, A.; Reed, J.D.

    1997-01-01

    We described the effects of two East African browses, Acacia brevispica and Sesbania sesban, on nitrogen metabolism of sheep and goats. The A. brevispica had a substantial amount of proanthocyanidins (condensed tannins); S. sesban did not. The browses were fed at three levels in combination with vetch (Vicia dasycarpa) and teff straw (Eragrostis abyssinica). Fecal N, N balance, and plasma urea N (PUN) were estimated with intact animals. Ruminal ammonia (RuA) and VFA concentrations were estimated with ruminally fistulated animals. Urinary N loss, PUN, RuA, and VFA concentrations were higher for S. sesban diets than for A. brevispica diets. Fecal N was highest with diets including A. brevispica due to high levels of fecal neutral-detergent insoluble N. Nitrogen retention was highest for diets including S. sesban. Nitrogen retention was adequate for A. brevispica diets because low urinary N compensated for high fecal N. Four hypotheses describe possible effects of tannins on N metabolism: 1) escape of protein from the rumen to the lower tract; 2) increased microbial yield; 3) increase in N-containing endogenous products; and 4) protein made indigestible in tannin-protein complexes. The effect of tannins in A. brevispica on N metabolism can best be described by the formation of indigestible tannin-protein complexes, although increased production of endogenous products is also possible.

  15. Tracking Nitrogen Sources, Transformation, and Transport at a Basin Scale with Complex Plain River Networks.

    PubMed

    Yi, Qitao; Chen, Qiuwen; Hu, Liuming; Shi, Wenqing

    2017-05-16

    This research developed an innovative approach to reveal nitrogen sources, transformation, and transport in large and complex river networks in the Taihu Lake basin using measurement of dual stable isotopes of nitrate. The spatial patterns of δ 15 N corresponded to the urbanization level, and the nitrogen cycle was associated with the hydrological regime at the basin level. During the high flow season of summer, nonpoint sources from fertilizer/soils and atmospheric deposition constituted the highest proportion of the total nitrogen load. The point sources from sewage/manure, with high ammonium concentrations and high δ 15 N and δ 18 O contents in the form of nitrate, accounted for the largest inputs among all sources during the low flow season of winter. Hot spot areas with heavy point source pollution were identified, and the pollutant transport routes were revealed. Nitrification occurred widely during the warm seasons, with decreased δ 18 O values; whereas great potential for denitrification existed during the low flow seasons of autumn and spring. The study showed that point source reduction could have effects over the short-term; however, long-term efforts to substantially control agriculture nonpoint sources are essential to eutrophication alleviation for the receiving lake, which clarifies the relationship between point and nonpoint source control.

  16. BCAA Metabolism and NH3 Homeostasis.

    PubMed

    Conway, M E; Hutson, S M

    2016-01-01

    The branched chain amino acids (BCAA) are essential amino acids required not only for growth and development, but also as nutrient signals and as nitrogen donors to neurotransmitter synthesis and glutamate/glutamine cycling. Transamination and oxidative decarboxylation of the BCAAs are catalysed by the branched-chain aminotransferase proteins (BCATm, mitochondrial and BCATc, cytosolic) and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), respectively. These proteins show tissue, cell compartmentation, and protein-protein interactions, which call for substrate shuttling or channelling and nitrogen transfer for oxidation to occur. Efficient regulation of these pathways is mediated through the redox environment and phosphorylation in response to dietary and hormonal stimuli. The wide distribution of these proteins allows for effective BCAA utilisation. We discuss how BCAT, BCKDC, and glutamate dehydrogenase operate in supramolecular complexes, allowing for efficient channelling of substrates. The role of BCAAs in brain metabolism is highlighted in rodent and human brain, where differential expression of BCATm indicates differences in nitrogen metabolism between species. Finally, we introduce a new role for BCAT, where a change in function is triggered by oxidation of its redox-active switch. Our understanding of how BCAA metabolism and nitrogen transfer is regulated is important as many studies now point to BCAA metabolic dysregulation in metabolic and neurodegenerative conditions.

  17. Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chaowei; Harrold, Duff R.; Claypool, Joshua T.

    Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH 4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis.more » Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.« less

  18. Plants can use protein as a nitrogen source without assistance from other organisms

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Rentsch, Doris; Robinson, Nicole; Christie, Michael; Webb, Richard I.; Gamage, Harshi K.; Carroll, Bernard J.; Schenk, Peer M.; Schmidt, Susanne

    2008-01-01

    Nitrogen is quantitatively the most important nutrient that plants acquire from the soil. It is well established that plant roots take up nitrogen compounds of low molecular mass, including ammonium, nitrate, and amino acids. However, in the soil of natural ecosystems, nitrogen occurs predominantly as proteins. This complex organic form of nitrogen is considered to be not directly available to plants. We examined the long-held view that plants depend on specialized symbioses with fungi (mycorrhizas) to access soil protein and studied the woody heathland plant Hakea actites and the herbaceous model plant Arabidopsis thaliana, which do not form mycorrhizas. We show that both species can use protein as a nitrogen source for growth without assistance from other organisms. We identified two mechanisms by which roots access protein. Roots exude proteolytic enzymes that digest protein at the root surface and possibly in the apoplast of the root cortex. Intact protein also was taken up into root cells most likely via endocytosis. These findings change our view of the spectrum of nitrogen sources that plants can access and challenge the current paradigm that plants rely on microbes and soil fauna for the breakdown of organic matter. PMID:18334638

  19. Impact of Hydrologic and Micro-topographic Variabilities on Spatial Distribution of Mean Soil-Nitrogen Age

    NASA Astrophysics Data System (ADS)

    Woo, D.; Kumar, P.

    2015-12-01

    Excess reactive nitrogen in soils of intensively managed agricultural fields causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a 3-dimensional model to characterize the spatially distributed ``age" of soil-nitrogen (nitrate and ammonia-ammonium) across a watershed. We use the general theory of age, which provides an assessment of the elapsed time since nitrogen is introduced into the soil system. Micro-topographic variability incorporates heterogeneity of nutrient transformations and transport associated with topographic depressions that form temporary ponds and produce prolonged periods of anoxic conditions, and roadside agricultural ditches that support rapid surface movement. This modeling effort utilizes 1-m Light Detection and Ranging (LiDAR) data. We find a significant correlation between hydrologic variability and mean nitrate age that enables assessment of preferential flow paths of nitrate leaching. The estimation of the mean nitrogen age can thus serve as a tool to disentangle complex nitrogen dynamics by providing the analysis of the time scales of soil-nitrogen transformation and transport processes without introducing additional parameters.

  20. Synthesis, characterization, thermal and antimicrobial studies of diabetic drug models: Complexes of vanadyl(II) sulfate with ascorbic acid (vitamin C), riboflavin (vitamin B2) and nicotinamide (vitamin B3)

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2010-04-01

    The oxovanadium(II) complexes of the different vitamins like ascorbic acid (vitamin C; Vit. C), riboflavin (vitamin B2; Vit. B2) and nicotinamide (vitamin B3; Vit. B3) were synthesized and characterized by elemental analysis, molar conductance, IR, electronic, magnetic measurements, thermal studies, XRD and SEM. Conductance measurements indicated that the vanadyl(II) complexes of Vit. B2 and Vit. B3 are 1:2 electrolytes except for [VO(Vit. C) 2(H 2O) 2] complex is non-electrolyte. IR data show that Vit. B2 is bidentate ligand against azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione but Vit. B3 and Vit. C acts as a monodentate ligand through pyridine nitrogen and hydroxo oxygen of furan ring, respectively. Electronic spectral measurements indicated that all VO(II) complexes have a square-pyramidal geometry. Magnetic measurements for the new vanadyl(II) complexes are in a good agreement with the proposed formula. Thermal analyses (TG/DSC) of the studied complexes show that the decomposition process takes place in more than two steps. XRD refer that VO(II) complexes have an amorphous behavior. The surface morphology of the complexes was studied by SEM. The antimicrobial activities of the ligands and its complexes indicate that the vanadyl(II) complexes possess high antibacterial and antifungal activities towards the bacterial species and the fungal species than start ligands.

  1. What can one sample tell us? Stable isotopes can assess complex processes in national assessments of lakes, rivers and streams.

    EPA Science Inventory

    Stable isotopes can be very useful in large-scale monitoring programs because samples for isotopic analysis are easy to collect, and isotopes integrate information about complex processes such as evaporation from water isotopes and denitrification from nitrogen isotopes. Traditi...

  2. Plant Size and Competitive Dynamics along Nutrient Gradients.

    PubMed

    Goldberg, Deborah E; Martina, Jason P; Elgersma, Kenneth J; Currie, William S

    2017-08-01

    Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.

  3. Responses of surface ozone air quality to anthropogenic nitrogen deposition in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Tai, Amos P. K.; Chen, Youfan; Pan, Yuepeng

    2017-08-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. Here we combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model, CLM) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by the addition of atmospheric deposited nitrogen - namely, emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index, LAI, in the model), could increase surface ozone from increased biogenic VOC emissions (e.g., a 6.6 Tg increase in isoprene emission), but it could also decrease ozone due to higher ozone dry deposition velocities (up to 0.02-0.04 cm s-1 increases). Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations shows general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate- and land-use-driven surface ozone changes at regional scales and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important implications for future air quality prediction.

  4. Stress Corrosion Cracking Control Plans. 3. Copper Alloys

    DTIC Science & Technology

    1975-06-01

    convenience intended to include amines and all other species which can react with copper to produce the cupric -ammonium complex ion or perhap...capability of forming complexes even resembling the cupric -ammonium complex should be considered as potentially causative of SCC as ammonia unless...nitrate, acetate, tartrate , or citrate which also contain copper ions. There is some evidence that oxides of nitrogen (generating ammoniacal species

  5. Synthesis and characterization of 5-bis(benzyl thio)-1, 3, 4-thiadiazole complexes with fac-ReBr3(CO) 32-

    USDA-ARS?s Scientific Manuscript database

    Reactions of 2,5-bis(benzylthio)-1,3,4-thiadiazole (Compound 1) with a common organometallic rhenium starting material [NEt4]2[fac-[Re(I)Br3(CO)3] yielded two distinct types of complexes. Both complexes coordinate only through the nitrogen of the thiadiazole ring. Reaction of Compound 1 with the rhe...

  6. Sparkle model for the calculation of lanthanide complexes: AM1 parameters for Eu(III), Gd(III), and Tb(III).

    PubMed

    Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M

    2005-05-02

    Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has been reparameterized for Eu(III) as well as newly parameterized for Gd(III) and Tb(III). The parameterizations have been carried out in a much more extensive manner, aimed at producing a new, more accurate model called Sparkle/AM1, mainly for the vast majority of all Eu(III), Gd(III), and Tb(III) complexes, which possess oxygen or nitrogen as coordinating atoms. All such complexes, which comprise 80% of all geometries present in the Cambridge Structural Database for each of the three ions, were classified into seven groups. These were regarded as a "basis" of chemical ambiance around a lanthanide, which could span the various types of ligand environments the lanthanide ion could be subjected to in any arbitrary complex where the lanthanide ion is coordinated to nitrogen or oxygen atoms. From these seven groups, 15 complexes were selected, which were defined as the parameterization set and then were used with a numerical multidimensional nonlinear optimization to find the best parameter set for reproducing chemical properties. The new parameterizations yielded an unsigned mean error for all interatomic distances between the Eu(III) ion and the ligand atoms of the first sphere of coordination (for the 96 complexes considered in the present paper) of 0.09 A, an improvement over the value of 0.28 A for the previous model and the value of 0.68 A for the first model (Chem. Phys. Lett. 1994, 227, 349). Similar accuracies have been achieved for Gd(III) (0.07 A, 70 complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements have been obtained as well; nitrates now coordinate correctly as bidentate ligands. The results, therefore, indicate that Eu(III), Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry prediction accuracies for lanthanide complexes with oxygen or nitrogen atoms in the coordination polyhedron that are competitive with present day ab initio/effective core potential calculations, while being hundreds of times faster.

  7. Influence of novel gallium complexes on the homeostasis of some biochemical and hematological parameters in rats.

    PubMed

    Gârban, Gabriela; Silaghi-Dumitrescu, Radu; Ioniţă, Hortensia; Gârban, Zeno; Hădărugă, Nicoleta-Gabriela; Ghibu, George-Daniel; Baltă, Cornel; Simiz, Florin-Dan; Mitar, Carmen

    2013-12-01

    The aim of this study was to detect possible homeostasis changes in some biochemical and hematological parameters after the administration of gallium (Ga) complexes C (24) and C (85) on an experimental animal model (Wistar strain rats). In order to observe chronobiological aspects, a morning (m) and an evening (e) animal series were constituted. Further on, each series were divided into three groups: control (C), experimental I (EI), and experimental II (EII). Both Ga complexes were solubilized in a carrier solution containing polyethylene glycol (PEG) 400, water, and ethanol. Animals of the C groups received the carrier solution by intraperitoneal injection, those from the EI groups received the solubilized C(24) gallium complex, and those of the EII groups received the solubilized C(85) gallium complex. At the end of the experiment, blood and tissue samples were taken and the following parameters were determined: serum concentration of the nonprotein nitrogenous compounds (uric acid, creatinine, and blood urea nitrogen), hematological parameters (erythrocytes, hemoglobin, leukocytes, and platelets), and the kidney tissue concentration of three essential trace elements (Fe, Cu, and Zn). With the exception of uric acid, the results revealed increased concentrations of the nonprotein nitrogenous compounds both in the morning and in the evening experimental groups. Hematological data showed increased levels of erythrocytes, hemoglobin, and leukocytes and decreased platelet levels in the experimental group given the C(24) gallium complex in the morning (EI-m) group; increased levels of leukocytes and decreased levels of the other parameters in the experimental group given the C(24) gallium complex in the evening (EI-e) group; and increased levels of all hematological parameters in the experimental groups receiving the C(85) gallium complex in the morning (EII-m) group and in the evening (EII-e) group. Decreased kidney tissue concentrations of metals were found in all the experimental groups. Fe levels were significantly decreased in the EI-m receiving the C(24) gallium complex and EII-m which received the C(85) gallium complex and in the EII-e group which received the C(85) gallium complex. In the EI-e group which received the C(24) gallium complex, a significant decrease of Cu concentration was reported.

  8. Fluorescent mixed ligand copper(II) complexes of anthracene-appended Schiff bases: studies on DNA binding, nuclease activity and cytotoxicity.

    PubMed

    Jaividhya, Paramasivam; Ganeshpandian, Mani; Dhivya, Rajkumar; Akbarsha, Mohammad Abdulkadher; Palaniandavar, Mallayan

    2015-07-14

    A series of mixed ligand copper(ii) complexes of the type [Cu(L)(phen)(ACN)](ClO4)21-5, where L is a bidentate Schiff base ligand (N(1)-(anthracen-10-ylmethylene)-N(2)-methylethane-1,2-diamine (L1), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-dimethylethane-1,2-diamine (L2), N(1)-(anthracen-10-yl-methylene)-N(2)-ethylethane-1,2-diamine (L3), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-diethylethane-1,2-diamine (L4) and N(1)-(anthracen-10-ylmethylene)-N(3)-methylpropane-1,3-diamine (L5)) and phen is 1,10-phenanthroline, have been synthesized and characterized by spectral and analytical methods. The X-ray crystal structure of 5 reveals that the coordination geometry around Cu(ii) is square pyramidal distorted trigonal bipyramidal (τ, 0.76). The corners of the trigonal plane of the geometry are occupied by the N2 nitrogen atom of phen, the N4 nitrogen atom of L5 and the N5 nitrogen of acetonitrile while the N1 nitrogen of phen and the N3 nitrogen of L5 occupy the axial positions with an N1-Cu1-N3 bond angle of 176.0(3)°. All the complexes display a ligand field band (600-705 nm) and three less intense anthracene-based bands (345-395 nm) in solution. The Kb values calculated from absorption spectral titration of the complexes (π→π*, 250-265 nm) with Calf Thymus (CT) DNA vary in the order 5 > 4 > 3 > 2 > 1. The fluorescence intensity of the complexes (520-525 nm) decreases upon incremental addition of CT DNA, which reveals the involvement of phen rather than the appended anthracene ring in partial DNA intercalation with the DNA base stack. The extent of quenching is in agreement with the DNA binding affinities and the relative increase in the viscosity of DNA upon binding to the complexes as well. Thus 5 interacts with DNA more strongly than 4 on account of the stronger involvement in hydrophobic DNA interaction of the anthracenyl moiety, which is facilitated by the propylene ligand backbone with chair conformation. The ability of complexes (100 μM) to cleave DNA (pUC19 DNA) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.1 in the absence of a reducing agent or light varies in the order 5 > 4 > 3 > 2 > 1, which is in conformity with their DNA binding affinities. Interestingly, cytotoxicity studies on the MCF-7 human breast cancer cell line show that the IC50 value of 5 is less than that of cisplatin for the same cell line, revealing that it can act as an effective cytotoxic drug in a time-dependent manner.

  9. Food for folivores: nutritional explanations linking diets to population density.

    PubMed

    Wallis, Ian R; Edwards, Melanie J; Windley, Hannah; Krockenberger, Andrew K; Felton, Annika; Quenzer, Megan; Ganzhorn, Joerg U; Foley, William J

    2012-06-01

    Ecologists want to explain why populations of animals are not evenly distributed across landscapes and often turn to nutritional explanations. In seeking to link population attributes with food quality, they often contrast nutritionally positive traits, such as the concentration of nitrogen, against negative ones, such as fibre concentration, by using a ratio of these traits. This specific ratio has attracted attention because it sometimes correlates with the biomass of colobine primates across sites in Asia and Africa. Although empirically successful, we have identified problems with the ratio that may explain why it fails under some conditions to predict colobine biomass. First, available nitrogen, rather than total nitrogen, is nutritionally important, while the presence of tannins is the major factor reducing the availability of nitrogen in browse plant species. Second, tannin complexes inflate measures of fibre. Finally, simple ratios may be unsound statistically because they implicitly assume isometric relationships between variables. We used data on the chemical composition of plants from three continents to examine the relationships between the concentrations of nitrogen, available nitrogen, fibre and tannins in foliage and to evaluate the nitrogen to fibre ratio. Our results suggest that the ratio of the concentration of nitrogen to fibre in leaves does sometimes closely correlate with the concentration of available nitrogen. However, the ratio may give misleading results when leaves contain high concentrations of tannins. The concentration of available nitrogen, which incorporates measures of total nitrogen, dry matter digestibility and tannins, should give a better indication of the nutritional value of leaves for herbivorous mammals that can readily be extrapolated to habitats.

  10. Saccharomyces cerevisiae vineyard strains have different nitrogen requirements that affect their fermentation performances.

    PubMed

    Lemos Junior, W J F; Viel, A; Bovo, B; Carlot, M; Giacomini, A; Corich, V

    2017-11-01

    In this work the fermentation performances of seven vineyard strains, together with the industrial strain EC1118, have been investigated at three differing yeast assimilable nitrogen (YAN) concentrations (300 mg N l -1 , 150 mg N l -1 and 70 mg N l -1 ) in synthetic musts. The results indicated that the response to different nitrogen levels is strain dependent. Most of the strains showed a dramatic decrease of the fermentation at 70 mg N l -1 but no significant differences in CO 2 production were found when fermentations at 300 mg N l -1 and 150 mg N l -1 were compared. Only one among the vineyard strains showed a decrease of the fermentation when 150 mg N l -1 were present in the must. These results contribute to shed light on strain nitrogen requirements and offer new perspectives to manage the fermentation process during winemaking. Selected vineyard Saccharomyces cerevisiae strains can improve the quality and the complexity of local wines. Wine quality is also influenced by nitrogen availability that modulates yeast fermentation activity. In this work, yeast nitrogen assimilation was evaluated to clarify the nitrogen requirements of vineyard strains. Most of the strains needed high nitrogen levels to express the best fermentation performances. The results obtained indicate the critical nitrogen levels. When the nitrogen concentration was above the critical level, the fermentation process increased, but if the level of nitrogen was further increased no effect on the fermentation was found. © 2017 The Society for Applied Microbiology.

  11. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    PubMed Central

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960

  12. Crystal structures of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Nishant D.; Reddy, Manchi C.M.; Palaninathan, Satheesh K.

    2010-10-11

    PII constitutes a family of signal transduction proteins that act as nitrogen sensors in microorganisms and plants. Mycobacterium tuberculosis (Mtb) has a single homologue of PII whose precise role has as yet not been explored. We have solved the crystal structures of the Mtb PII protein in its apo and ATP bound forms to 1.4 and 2.4 {angstrom} resolutions, respectively. The protein forms a trimeric assembly in the crystal lattice and folds similarly to the other PII family proteins. The Mtb PII:ATP binary complex structure reveals three ATP molecules per trimer, each bound between the base of the T-loop ofmore » one subunit and the C-loop of the neighboring subunit. In contrast to the apo structure, at least one subunit of the binary complex structure contains a completely ordered T-loop indicating that ATP binding plays a role in orienting this loop region towards target proteins like the ammonium transporter, AmtB. Arg38 of the T-loop makes direct contact with the {gamma}-phosphate of the ATP molecule replacing the Mg{sup 2+} position seen in the Methanococcus jannaschii GlnK1 structure. The C-loop of a neighboring subunit encloses the other side of the ATP molecule, placing the GlnK specific C-terminal 3{sub 10} helix in the vicinity. Homology modeling studies with the E. coli GlnK:AmtB complex reveal that Mtb PII could form a complex similar to the complex in E. coli. The structural conservation and operon organization suggests that the Mtb PII gene encodes for a GlnK protein and might play a key role in the nitrogen regulatory pathway.« less

  13. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species

    PubMed Central

    Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto

    2017-01-01

    The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments. PMID:28973038

  14. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species.

    PubMed

    Fusaro, Lina; Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto

    2017-01-01

    The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.

  15. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    DTIC Science & Technology

    2013-02-12

    detected in the undoped and JM5000 materials are related to the presence of a single nitrogen peak attributed to either amine, cyano or pyrrolic ...functionalities, including pyrrolic , pyridinic, amine and graphitic N. The bulk Ru:Pt ratio, measured with X-ray fluorescence (XRF), consistently...analysis suggests that the specific roles of pyridinic, pyrrollic , cyano, and graphic N are complex in nature and that the presence of two or more N

  16. Lignin peroxidase gene family of Phanerochaete chrysosporium : complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome

    Treesearch

    Philip Stewart; Philip Kersten; Amber J. Vanden Wymelenberg; Jill A. Gaskell; Daniel Cullen

    1992-01-01

    Lignin peroxidases (LiP) of Phanerochaete chrysosporium are encoded by a family of six closely related genes. Five LiP genes have been localized to the same dimorphic chromosome. In this investigation, relative transcript levels of the LiP genes were determined. Transcripts of the LiPA, LiPB, and 0282 genes were at similar levels in both carbon-and nitrogen-limited...

  17. An electrochemical sensor based on nitrogen doped carbon material prepared from nitrogen-containing precursors

    NASA Astrophysics Data System (ADS)

    Cui, G. Y.; Wang, C. Y.; Xiang, G. Q.; Zhou, B.

    2018-01-01

    In this work, a nitrogen doped carbon material (NDC) was prepared by using a copper adenine complex as precursor and applied to electrochemical sensing of Vitamin B2 (VB2). The experimental results show that the nitrogen doped carbon material is obtained after calcination at 650 °C under argon atmosphere, afterwards, which were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), fourier transform infrared (FT-IR), and electrochemical method. According to the XRD data, the product was a carbon material, and infrared data demonstrates that there are two kinds of carbonyl nitrogen combination, respectively, C-N and C = N combination of ways. Importantly, we used NDC to construct electrochemical biosensor to detect VB2 by differential pulse voltammetry (DPV). The linear range was 6 × 10-6 - 3.5 × 10-4 M (R=0.9962), the minimum detection limit was 5.4 × 10-6 M, and the sensitivity is better. Consequently, it has better sensing performance.

  18. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto.

    PubMed

    Nimmo, F; Hamilton, D P; McKinnon, W B; Schenk, P M; Binzel, R P; Bierson, C J; Beyer, R A; Moore, J M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E

    2016-12-01

    The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

  19. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Hamilton, D. P.; McKinnon, W. B.; Schenk, P. M.; Binzel, R. P.; Bierson, C. J.; Beyer, R. A.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Binzel, R. P.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Ore, C. Dalle; Earle, A.; Gladstone, R.; Grundy, W.; Howard, A. D.; Lauer, T.; Linscott, I.; Nimmo, F.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D. P.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.

    2016-12-01

    The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto’s tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin’s present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

  20. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    PubMed

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Substituent Effects on the [N-I-N](+) Halogen Bond.

    PubMed

    Carlsson, Anna-Carin C; Mehmeti, Krenare; Uhrbom, Martin; Karim, Alavi; Bedin, Michele; Puttreddy, Rakesh; Kleinmaier, Roland; Neverov, Alexei A; Nekoueishahraki, Bijan; Gräfenstein, Jürgen; Rissanen, Kari; Erdélyi, Máté

    2016-08-10

    We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyridine)iodine](+) and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine](+) BF4(-) complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by (15)N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N-I-N](+) halogen bond resulted in >100 ppm (15)N NMR coordination shifts. Substituent effects on the (15)N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N-I-N](+) halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine](+) complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N](+) bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N-I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N-X-N](+) halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen](+)-type synthetic reagents.

  2. Substituent Effects on the [N–I–N]+ Halogen Bond

    PubMed Central

    2016-01-01

    We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247

  3. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  4. Antiandrogen and Antimicrobial Aspects of Coordination Compounds of Palladium(II), Platinum(II) and Lead(II)

    PubMed Central

    Joshi, S. C.; Kulshrestha, Shalini; Nagpal, Pooja; Bansal, Anil

    2001-01-01

    Synthesis, characterization and antimicrobial activities of an interesting class of biologically potent macrocyclic complexes have been carried out. All the complexes have been evaluated for their antimicrobial effects on different species of pathogenic fungi and bacteria. The testicular sperm density, testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemical parameters of reproductive organs have been examined and discussed. The resulting biologically active [M(MaLn)(R2)]Cl2 and [Pb(MaLn)(R2)X2] (where, M = PdII or PtII and X = Cl or NO3) type of complexes have been synthesized by the reactions of macrocyclic ligands (MaLn) with metal salts and different diamines in 1:1:1 molar ratio in methanol. Initially the complexes were characterized by elemental analyses, molecular weight determinations and conductivity measurements. The mode of bonding was established on the basis of IR, 1H NMR, 13C NMR, 195Pt NMR, 207Pb NMR, XRD and electronic spectral studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium and platinum complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. PMID:18475989

  5. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    PubMed

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  6. The Ustilago maydis Nit2 Homolog Regulates Nitrogen Utilization and Is Required for Efficient Induction of Filamentous Growth

    PubMed Central

    Horst, Robin J.; Zeh, Christine; Saur, Alexandra; Sonnewald, Sophia; Sonnewald, Uwe

    2012-01-01

    Nitrogen catabolite repression (NCR) is a regulatory strategy found in microorganisms that restricts the utilization of complex and unfavored nitrogen sources in the presence of favored nitrogen sources. In fungi, this concept has been best studied in yeasts and filamentous ascomycetes, where the GATA transcription factors Gln3p and Gat1p (in yeasts) and Nit2/AreA (in ascomycetes) constitute the main positive regulators of NCR. The reason why functional Nit2 homologs of some phytopathogenic fungi are required for full virulence in their hosts has remained elusive. We have identified the Nit2 homolog in the basidiomycetous phytopathogen Ustilago maydis and show that it is a major, but not the exclusive, positive regulator of nitrogen utilization. By transcriptome analysis of sporidia grown on artificial media devoid of favored nitrogen sources, we show that only a subset of nitrogen-responsive genes are regulated by Nit2, including the Gal4-like transcription factor Ton1 (a target of Nit2). Ustilagic acid biosynthesis is not under the control of Nit2, while nitrogen starvation-induced filamentous growth is largely dependent on functional Nit2. nit2 deletion mutants show the delayed initiation of filamentous growth on maize leaves and exhibit strongly compromised virulence, demonstrating that Nit2 is required to efficiently initiate the pathogenicity program of U. maydis. PMID:22247264

  7. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  8. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-01-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.

  9. 'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.

    PubMed

    O'Connell, T C

    2017-06-01

    Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.

  10. Empirical regression models for estimating nitrogen removal in a stormwater wetland during dry and wet days.

    PubMed

    Guerra, Heidi B; Park, Kisoo; Kim, Youngchul

    2013-01-01

    Due to the highly variable hydrologic quantity and quality of stormwater runoff, which requires more complex models for proper prediction of treatment, a relatively few and site-specific models for stormwater wetlands have been developed. In this study, regression models based on extensive operational data and wastewater wetlands were adapted to a stormwater wetland receiving both base flow and storm flow from an agricultural area. The models were calibrated in Excel Solver using 15 sets of operational data gathered from random sampling during dry days. The calibrated models were then applied to 20 sets of event mean concentration data from composite sampling during 20 independent rainfall events. For dry days, the models estimated effluent concentrations of nitrogen species that were close to the measured values. However, overestimations during wet days were made for NH(3)-N and total Kjeldahl nitrogen, which resulted from higher hydraulic loading rates and influent nitrogen concentrations during storm flows. The results showed that biological nitrification and denitrification was the major nitrogen removal mechanism during dry days. Meanwhile, during wet days, the prevailing aerobic conditions decreased the denitrification capacity of the wetland, and sedimentation of particulate organic nitrogen and particle-associated forms of nitrogen was increased.

  11. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole).

    PubMed

    Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M

    2000-03-01

    Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.

  12. Synthesis and spectral studies on metal complexes of s-triazine based ligand and non linear optical properties

    NASA Astrophysics Data System (ADS)

    Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.

    2014-11-01

    A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.

  13. Fresh insight to functioning of selected enzymes of the nitrogen cycle.

    PubMed

    Eady, Robert R; Antonyuk, Svetlana V; Hasnain, S Samar

    2016-04-01

    The global nitrogen cycle is the process in which different forms of environmental N are interconverted by microorganisms either for assimilation into biomass or in respiratory energy-generating pathways. This short review highlights developments over the last 5 years in our understanding of functionality of nitrogenase, Cu-nitrite reductase, NO reductase and N2O reductase, complex metalloenzymes that catalyze electron/proton-coupled substrate reduction reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes.

    PubMed

    Pinho, P; Barros, C; Augusto, S; Pereira, M J; Máguas, C; Branquinho, C

    2017-11-01

    Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. An Isotopic view of water and nitrogen transport through the ...

    EPA Pesticide Factsheets

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variab

  16. An Isotopic view of water and nitrogen transport through the ...

    EPA Pesticide Factsheets

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years Results/ConclusionsOur results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitatio

  17. Using Synthetic Biology to Distinguish and Overcome Regulatory and Functional Barriers Related to Nitrogen Fixation

    PubMed Central

    Wang, Xia; Yang, Jian-Guo; Chen, Li; Wang, Ji-Long; Cheng, Qi; Dixon, Ray; Wang, Yi-Ping

    2013-01-01

    Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ∼100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase–LacI expression system was used to replace the σ54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ∼42% of the nitrogenase activity of the σ54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology. PMID:23935879

  18. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes

    NASA Astrophysics Data System (ADS)

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C.; Shimoni, Olga; Aharonovich, Igor

    2015-03-01

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07510b

  19. Prebiotic Chemistry and Atmospheric Warming of Early Earth by an Active Young Sun

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W.

    2016-01-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed Into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun -- so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, C02 and CH, suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  20. Flume experiments elucidate relationships between microbial genetics, nitrogen species and hydraulics in controlling nitrous oxide production in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Farrell, T. B.; Reeder, W. J.; Feris, K. P.; Tonina, D.; Benner, S. G.

    2014-12-01

    The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measured dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Denitrifying genes (nosZ, nirS, and nirK), determined using qPCR, were spatially associated with abundances of nitrogen species. Using residence times along a flow path, clear trends in oxygen conditions, genes encoding for microbial catalysis, and nitrogen species were observed. Hotspots of targeted genes correlated with hotspots for conversion of nitrogen species, including nitrous oxide production and conversion to dinitrogen. Trends were apparent regardless of dune size, allowing for the possibility to apply observed relationships to multiple streambed morphologies. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone.

  1. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.

    2014-08-01

    The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 μm, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.

  2. Complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives

    PubMed Central

    Kikot', Leonid S; Kulygina, Catherine Yu; Lyapunov, Alexander Yu; Shishkina, Svetlana V; Zubatyuk, Roman I; Bogaschenko, Tatiana Yu

    2017-01-01

    The complexation of molecular clips containing fragments of diphenylglycoluril and benzocrown ethers with paraquat and its derivatives has been studied both in solution and in the solid state. In this paper we studied the influence of the crown ether ring size and the nature of the substituents at the nitrogen atoms of the paraquat derivatives on the composition and stability of these complexes. PMID:29062427

  3. Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.

    PubMed

    Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie

    2016-09-15

    Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.

  4. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex.

    PubMed

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi

    2017-11-08

    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  5. Protons and pleomorphs: aerobic hydrogen production in Azotobacters.

    PubMed

    Noar, Jesse D; Bruno-Bárcena, José M

    2016-02-01

    As obligate aerobic soil organisms, the ability of Azotobacter species to fix nitrogen is unusual given that the nitrogenase complex requires a reduced cellular environment. Molecular hydrogen is an unavoidable byproduct of the reduction of dinitrogen; at least one molecule of H2 is produced for each molecule of N2 fixed. This could be considered a fault in nitrogenase efficiency, essentially a waste of energy and reducing equivalents. Wild-type Azotobacter captures this hydrogen and oxidizes it with its membrane-bound uptake hydrogenase complex. Strains lacking an active hydrogenase complex have been investigated for their hydrogen production capacities. What is the role of H2 in the energy metabolism of nitrogen-fixing Azotobacter? Is hydrogen production involved in Azotobacter species' protection from or tolerance to oxygen, or vice versa? What yields of hydrogen can be expected from hydrogen-evolving strains? Can the yield of hydrogen be controlled or increased by changing genetic, environmental, or physiological conditions? We will address these questions in the following mini-review.

  6. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    PubMed

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    NASA Astrophysics Data System (ADS)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected to obtain the concentrations of dissolved organic carbon, dissolved organic nitrogen, ammonium and nitrate. The comparison shows a better performance of the complex models reproducing carbon and nitrogen cycles. However, the TETIS nutrient sub-model, even simpler than BIOME-BGCMuSo and LEACHM, reproduces the water balance adequately and it obtains a suitable representation of the carbon and nitrogen cycles.

  8. [Preparation, spectral analysis and photocatalytic activities of TiO2 films codoped with iron and nitrogen].

    PubMed

    Liu, Wan-bing; Deng, Jian; Zhao, Yu-bao; Xu, Jin-sheng; Zhou, Liang

    2009-05-01

    Using tetrabutyl titanate as the titanium source, and ammonia and ferric nitrate as the sources of nitrogen and ferrum respectively, iron and nitrogen-codoped nano-TiO2 gelatins were prepared by sol-gel method. The iron and nitrogen-codoped nano-TiO2 complex films were prepared with the obtained gelatins used to coat the surface of cleaned glass slides by several times of dipping-lifting procedure, followed by natural seasoning at room temperature and calcined at 450 degrees C for 3 hours, then the films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectrum (XPS) and ultraviolet-visible diffuse reflectance spectrum (UV-Vis). The XRD spectra o f samples showed that the Fe-TiO(2-x)Nx, filmswere of anatase structure with a few of oxygen atoms in the lattice of anatase TiO2 substituted by nitrogen atoms, resulting in the distortion of crystal lattice. The SEM image showed that the nanoparticles of the films have a good dispersion characteristic and uniform orbicular shape with an average diameter of about 19 nm. The absorption edges of UV-Vis spectra exhibited a red shift up to 740 nm when the TiO2 films were codoped with iron and nitrogen. The XPS of the Fe-TiO(2-x)Nx film presented a lowering of Ti 2p(3/2) electron binding energy because of the codoping of iron and nitrogen, which then resulted in the widening of the absorption of visible light range. The photocatalytic properties were studied by photocatalytical degradation of sudan I as a model reaction in a self-assembled light-reactor. When the atomic ratio of Fe3+/Ti4+ reached 0.4%, the Fe-TiO(2-x)Nx film showed the highest catalytic performance in degradation of sudan I which was decomposed by up to 97% after 4 hours of photocatalytic reaction. Codoping of nitrogen and appropriate amount of iron in TiO2 enhances photoresponse and utilizing efficiency in visible light region, and then improves the performances of Fe-TiO(2-x)Nx photocatalyst. The complex film catalyst prepared by this method will have potential application in areas of wastewater disposal.

  9. Energetic Ionic Liquids Based on Lanthanide Nitrate Complex Anions (Postprint)

    DTIC Science & Technology

    2008-01-01

    calculated nitrogen content for CO-balanced aluminum -con- taining ionic liquids is 28%,[3] while the nitrogen content of CO-balanced salts 11 and 12 is...1 mg of 11 was heated to 200 8C in a micro melting point apparatus, gases rapidly evolved to leave white lanthanum oxide powder . The decomposition...Iyen- gar , J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J

  10. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions

    PubMed Central

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W.; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M. Paul; Salas-Fernandez, Maria G.; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-01-01

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance. PMID:26554020

  11. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions.

    PubMed

    Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M Paul; Salas-Fernandez, Maria G; Yin, Yanhai; Wurtele, Eve Syrkin

    2015-11-24

    The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.

  12. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  13. Nitrogen Metabolite Repression of Metabolism and Virulence in the Human Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.

    2011-01-01

    Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208

  14. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  15. The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Gruber, Nicolas

    2016-10-01

    Over the last 100 years, anthropogenic emissions have led to a strong increase of atmospheric nitrogen deposition over the ocean, yet the resulting impacts and feedbacks are neither well understood nor quantified. To this end, we run a suite of simulations with the ocean component of the Community Earth System Model v1.2 forced with five scenarios of nitrogen deposition over the period from 1850 through 2100, while keeping all other forcings unchanged. Even though global oceanic net primary production increases little in response to this fertilization, the higher export and the resulting expansion of the oxygen minimum zones cause an increase in pelagic and benthic denitrification and burial by about 5%. In addition, the enhanced availability of fixed nitrogen in the surface ocean reduces global ocean N2 fixation by more than 10%. Despite the compensating effects through these negative feedbacks that eliminate by the year 2000 about 60% of the deposited nitrogen, the anthropogenic nitrogen input forced the upper ocean N budget into an imbalance of between 9 and 22 Tg N yr-1 depending on the deposition scenario. The excess nitrogen accumulates to highly detectable levels and causes in most areas a distinct negative trend in the δ15N of the oceanic fixed nitrogen pools—a trend we refer to as the 15N Haber-Bosch effect. Changes in surface nitrate utilization and the nitrogen feedbacks induce further changes in the δ15N of NO3-, making it a good but complex recorder of the overall impact of the changes in atmospheric deposition.

  16. Relationship of peroxyacetyl nitrate to active and total odd nitrogen at northern high latitudes - Influence of reservoir species on NO(x) and O3

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Herlth, D.; O'Hara, D.; Zahnle, K.; Bradshaw, J. D.; Sandholm, S. T.; Talbot, R.; Crutzen, P. J.; Kanakidou, M. A.

    1992-01-01

    The partitioning of relative nitrogen in the Arctic and the sub-Arctic troposphere based on measurements conducted during the 1988 Arctic Boundary Layer Expedition (ABLE 3A) is described. The first set of comprehensive odd nitrogen and O3 measurements from the Arctic/sub-Arctic free troposphere shows that a highly aged air mass that has persisted under very cold conditions is present. A large fraction of the odd nitrogen appears to be present in the form of reservoir species such as PAN. Significant quantities of as yet unknown reactive nitrogen species, such as complex alkyl nitrates and pernitrates, are expected to be present. Together with PAN, these nitrate and pernitrate reservoir species could control the entire NO(x) availability of the high-latitude troposphere and in turn influence the O3 photochemistry of the region. The role of PAN in influencing the O3 reservoir is shown to be important and may be responsible for the increasing O3 temporal trend observed at high latitudes.

  17. Influence of polyunsaturated fatty acid supplementation and membrane fluidity on ozone and nitrogen dioxide sensitivity of rat alveolar macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietjens, I.M.; van Tilburg, C.A.; Coenen, T.M.

    1987-01-01

    The phospholipid polyunsaturated fatty acid (PUFA) content and the membrane fluidity of rat alveolar macrophages were modified dose-dependently and in different ways. This was done to study the importance of both membrane characteristics for the cellular sensitivity toward ozone and nitrogen dioxide. Cells preincubated with arachidonic acid (20:4) complexed to bovine serum albumin (BSA) demonstrated an increased in vitro sensitivity versus ozone and nitrogen dioxide. The phenomenon was only observed at the highest 20:4 concentrations tested, whereas the membrane fluidity of the 20:4-treated cells already showed a maximum increase at lower preincubation concentrations. Hence it could be concluded that themore » increased ozone and nitrogen dioxide sensitivity of PUFA-enriched cells is not caused by their increased membrane fluidity, resulting in an increased accessibility of sensitive cellular fatty acid moieties or amino acid residues. This conclusion receives further support from other observations. These results strongly support the involvement of lipid oxidation in the mechanism(s) of toxic action of both ozone and nitrogen dioxide in an intact cell system.« less

  18. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    PubMed Central

    Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl

    2015-01-01

    Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959

  19. Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features.

    PubMed

    Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P

    2013-11-01

    Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.

  20. Two novel magnesium(II) meso-tetraphenylporphyrin-based coordination complexes: Syntheses, combined experimental and theoretical structures elucidation, spectroscopy, photophysical properties and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Amiri, Nesrine; Hajji, Melek; Taheur, Fadia Ben; Chevreux, Sylviane; Roisnel, Thierry; Lemercier, Gilles; Nasri, Habib

    2018-02-01

    Two novel magnesium(II) tetraphenylporphyrin-based six-coordinate complexes; bis(hexamethylenetetramine)(5,10,15,2O tetrakis[4(benzoyloxy)phenyl]porphinato) magnesuim(II) (1) and bis(1,4-diazabicyclo(2.2.2)octane) (5,10,15,2O-tetrakis[4- (benzoyloxy)phenyl]porphinato)magnesium(II) (2) have been synthesised and confirmed by proton nuclear magnetic resonance, mass spectrometry, elemental analysis and IR spectroscopy. Both crystal structures were determined and described by single crystal X-ray diffraction analysis and Hirshfeld surfaces computational method. All Mg(II) atoms are surrounded by four porphyrin nitrogen atoms and two axial ligands coordinated to the metal ion through one nitrogen atom, forming a regular octahedron. In both complexes, molecular structures and three-dimensional framework are stabilised by inter-and intramolecular C-H ⋯O and C-H ⋯N hydrogen bonds, and by weak C-H ⋯Cg π interactions. UV-visible and Fluorescence investigations, respectively, show that studied complexes have a strong absorption in red part and exhibit an emission in the blue region. The HOMO-LUMO energy gap values, modelled using the DFT approach, indicates that both studied compounds can be classified as semiconductors. The role of these complexes as novel antibacterial agents was also performed.

  1. Synthesis, structural characterization and DNA interaction of zinc complex from 2,6-diacetylpyridine dihydrazone and {4-[(2E)-2-(hydroxyimino)acetyl]phenoxy} acetic acid.

    PubMed

    Gup, Ramazan; Gökçe, Cansu; Dilek, Nefise

    2015-03-01

    A new water soluble zinc complex has been prepared and structurally characterized. The Zn(II) complex was synthesized by the reaction of 2,6-diacetylpyridine dihydrazone (dph) with {4-[(2E)-2-(hydroxyimino)acetyl]phenoxy} acetic acid (H₂L) in the presence of zinc(II) acetate. Single crystal X-ray diffraction study revealed that the zinc ion is situated in distorted trigonal-bipyramidal environment where the equatorial position is occupied by the nitrogen atom of pyridine ring and the oxygen atoms of acetate groups of two oxime ligands (H₂L) whereas the axial positions of the zinc complex are occupied by the imine nitrogen atoms of dph ligand. Characterization of the complex with FTIR, (1)H and (13)C NMR, UV-vis and elemental analysis also confirmed the proposed structure. Interaction of the Zn(II) complex with calf-thymus DNA (CT-DNA) was investigated through UV-vis spectroscopy and viscosity measurements. The results suggest that the complex preferably bind to DNA through the groove binding mode. The zinc complex cleaves plasmid pBR 322 DNA in the presence and absence of an oxidative agent (H₂O₂), possibly through a hydrolytic pathway which is also supported by DNA cleave experiments in the presence of different radical scavengers. The nuclease activity of the zinc complex significantly depends on concentration of the complex and incubation time both in the presence and absence of H₂O₂. DNA cleave activity is inhibited in the presence of methyl green indicating that the zinc complex seems to bind the major groove of DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biogeochemical impacts of submerging forests through large dams in the Rio Negro, Uruguay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campo, J.; Sancholuz, K.

    1998-09-01

    The Bonete, Baygorria and Palmar dams of the Rio Negro successively submerged complex floodplain forests. The forest area submerged was greater than 280 km{sup 2} and resulted in large inputs of carbon, nitrogen and phosphorus to the reservoirs. After 46 years wood released 40, 34 and 71% of their original contents of carbon, nitrogen and phosphorus, respectively. During the same period the total amount of nutrients released by wood in comparison to leaves and litter is slightly less for nitrogen, almost double for phosphorus and more than three times for carbon. These results suggest that wood decomposition in water maymore » have a role in the trophic state of reservoirs.« less

  3. Structural and spectroscopic characterization of DMF complexes with nitrogen, carbon dioxide, ammonia and water. Infrared matrix isolation and theoretical studies

    NASA Astrophysics Data System (ADS)

    Sałdyka, Magdalena; Mielke, Zofia; Haupa, Karolina

    2018-02-01

    An infrared spectroscopic and MP2/6-311++G(2d,2p) study of the complexes between N,N-dimethylformamide (DMF) and nitrogen, carbon dioxide, water, ammonia trapped in solid argon matrices is reported. The 1:1 molecular complexes have been identified in the DMF/B/Ar matrices (B = N2, CO, H2O, NH3); their structures were determined by comparison of the spectra with the results of calculations. The analysis of the experimental and theoretical data indicate that the DMF-N2, CO complexes present in the matrices are stabilized by (C=)O⋯N and (C=)O⋯C van der Waals interactions. In turn, in the DMF-H2O, NH3 complexes the (C=)O⋯H(OH) and (C=)O⋯H(NH2) hydrogen bonding is present in which the carbonyl group of DMF acts as a proton acceptor. In all systems studied the C-H⋯X (X = N, C, O) bonding is a second intermolecular force stabilizing the planar complexes. Some spectral features indicate that for DMF-H2O, DMF-NH3 systems the nonplanar structures with the C=O⋯H interaction are also present. The study demonstrated the strong sensitivity of the CH stretching wavenumber to an involvement of the C-H and/or C=O groups of DMF in an intermolecular interaction.

  4. Determination of binding-dioxygen in dioxygen complexes by headspace gas chromatography.

    PubMed

    Wang, Wei; Feng, Shun; Li, Ya-ni; Wu, Meiying; Wang, Jide

    2008-06-06

    Dioxygen complexes play important roles in organisms' bodies, so the determination of binding-dioxygen has practical significance. A simple and robust method based on headspace gas chromatography was proposed to determine the binding-dioxygen in dioxygen complexes. By measuring the content change of nitrogen gas in a vial, the amount of oxygen released from dixoygen complexes can be determined. The method was validated using potassium chlorate as model sample, and the results exhibited good recoveries (90-99%) with the relative standard deviation less than 8%. It was also used to analyze dioxygen complex of cobalt bis(salicylaldehyde) ethylenediimine and polyamine cobalt complexes prepared by solid-phase reaction.

  5. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    PubMed

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. © 2013 John Wiley & Sons Ltd.

  6. Palladium complexes with simple iminopyridines as catalysts for polyketone synthesis.

    PubMed

    Rosar, V; Dedeic, D; Nobile, T; Fini, F; Balducci, G; Alessio, E; Carfagna, C; Milani, B

    2016-10-07

    Four iminopyridines (N-N') differing in the nature of the substituents on the iminic carbon and on the ortho positions of the aryl ring (H or CH3) on the iminic nitrogen were used for the synthesis of neutral and monocationic palladium(ii) complexes of general formulae [Pd(CH3)Cl(N-N')] and [Pd(CH3)(NCCH3)(N-N')][PF6]. The detailed NMR characterization in solution highlighted that: (i) for both series of complexes, the Pd-CH3 signal is progressively shifted to a lower frequency on increasing the number of methyl groups on the ligand skeleton; (ii) for the neutral derivatives, the chemical shift of the (15)N NMR signals, determined through {(1)H,(15)N}-HMBC spectra, is significantly affected by the coordination to palladium; (iii) the coordination induced shift (CIS) of the nitrogen atom trans to the CH3 ligand is smaller than the other. The structure in the solid state for the neutral derivatives with all the four ligands was solved, pointing out that: (iv) the Pd-C bond distance increases with the basicity of the nitrogen-donor ligand; (v) the Pd-N bond distance correlates well with the CIS value. The combining of the solution and solid state structural features allows stating that: (vi) the Pd-CH3 singlet is a good probe for the electron donor capability of the ligand; (vii) the CIS value might be used as a probe for the strength of the Pd-N bond. All monocationic complexes generated active catalysts for the CO/vinyl arene copolymerization, leading to prevailingly syndiotactic polyketones. The catalyst performances, both in terms of catalyst productivity and polymer molecular weight, correlate well with the precatalyst structural features.

  7. Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods

    PubMed Central

    Sharma, Ajay; Gaidamakova, Elena K.; Matrosova, Vera Y.; Bennett, Brian; Daly, Michael J.; Hoffman, Brian M.

    2013-01-01

    The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) “antioxidant” Mn2+–metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)–scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn2+ speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn2+ of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn2+ of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn2+ speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn2+ complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn2+ speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants. PMID:23536297

  8. Nitrogen Monoxide (NO) Storage and Transport by Dinitrosyl-Dithiol-Iron Complexes: Long-lived NO That Is Trafficked by Interacting Proteins*

    PubMed Central

    Suryo Rahmanto, Yohan; Kalinowski, Danuta S.; Lane, Darius J. R.; Lok, Hiu Chuen; Richardson, Vera; Richardson, Des R.

    2012-01-01

    Nitrogen monoxide (NO) markedly affects intracellular iron metabolism, and recent studies have shown that molecules traditionally involved in drug resistance, namely GST and MRP1 (multidrug resistance-associated protein 1), are critical molecular players in this process. This is mediated by interaction of these proteins with dinitrosyl-dithiol-iron complexes (Watts, R. N., Hawkins, C., Ponka, P., and Richardson, D. R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7670–7675; Lok, H. C., Suryo Rahmanto, Y., Hawkins, C. L., Kalinowski, D. S., Morrow, C. S., Townsend, A. J., Ponka, P., and Richardson, D. R. (2012) J. Biol. Chem. 287, 607–618). These complexes are bioavailable, have a markedly longer half-life compared with free NO, and form in cells after an interaction between iron, NO, and glutathione. The generation of dinitrosyl-dithiol-iron complexes acts as a common currency for NO transport and storage by MRP1 and GST P1-1, respectively. Understanding the biological trafficking mechanisms involved in the metabolism of NO is vital for elucidating its many roles in cellular signaling and cytotoxicity and for development of new therapeutic targets. PMID:22262835

  9. Synthesis, Structure, and Physical Properties for a Series of Monomeric Iron(III) Hydroxo Complexes with Varying Hydrogen-Bond Networks

    PubMed Central

    Mukherjee, Jhumpa; Lucas, Robie L.; Zart, Matthew K.; Powell, Douglas R.; Day, Victor W.; Borovik, A. S.

    2013-01-01

    Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric FeIIIOH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the FeIIIOH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe–Ohydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe–O bond became. Spectroscopic trends were also found, including an increase in the energy of the O–H vibrations with a decrease in the number of hydrogen bonds. However, the FeIII/II reduction potentials were constant throughout the series (∼2.0 V vs [Cp2Fe]0/+1), which is ascribed to a balancing of the primary and secondary coordination-sphere effects. PMID:18498155

  10. Nitrogen Fate in a Phreatic Fluviokarst Watershed: a Stable Isotope, Sediment Tracing, and Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Ford, W. I., III; Agouridis, C.; Currens, J. C.; Taylor, C. J.

    2017-12-01

    Sediment tracing tools provide an insight into provenance, fate, and transport of sediment and, when coupled to stable isotopes, can elucidate in-stream biogeochemical processes. Particulate nitrogen fate in fluviokarst systems is a relatively unexplored area of research partially due to the complex hydrodynamics at play in karst systems. Karst topography includes turbulent conduits that transport groundwater and contaminants at speeds more typical of open channel flows than laminar Darcian flows. While it is accepted that karst hydro-geomorphology represents a hybrid surface-subsurface system for fluid, further investigation is needed to determine whether, and to what extent, karst systems behave like surface agricultural streams or porous media aquifers with respect to their role in nitrogen cycling. Our objective is to gain an understanding of in-conduit nitrogen processes and their effect on net nitrogen-exports from karst springs to larger waterbodies. The authors apply water, sediment, carbon, and nitrogen tracing techniques to analyze water for nitrate, sediment carbon and nitrogen, and stable sediment nitrogen isotope (δ15N). Thereafter, a new numerical model is formulated that: simulates dissolved inorganic nitrogen and sediment nitrogen transformations in the phreatic karst conduit; couples carbon turnover and nitrogen transformations in the model structure; and simulates the nitrogen stable isotope mass balance for the dissolved and sediment phases. Nitrogen tracing data results show a significant increase in δ15N of sediment nitrogen at the spring outlet relative to karst inputs indicating the potential for isotope fractionation during dissolved N uptake by bed sediments in the conduit and during denitrification within bed sediments. The new numerical modeling structure is then used to reproduce the data results and provide an estimate of the relative dominance of N uptake and denitrification within the surficial sediments of the karst conduit system. For the first time to our knowledge, results shed light on sediment processes that help control nutrient retention in phreatic karst conduits and tend to suggest that the karst systems behave as an intermediate N conveyor relative to surface agricultural streams and porous media aquifers.

  11. Versatile chelating behavior of benzil bis(thiosemicarbazone) in zinc, cadmium, and nickel complexes.

    PubMed

    López-Torres, Elena; Mendiola, Ma Antonia; Pastor, César J; Pérez, Beatriz Souto

    2004-08-23

    Reactions of benzil bis(thiosemicarbazone), LH(6), with M(NO(3))(2).nH(2)O (M = Zn, Cd, and Ni), in the presence of LiOH.H(2)O, show the versatile behavior of this molecule. The structure of the ligand, with the thiosemicarbazone moieties on opposite sides of the carbon backbone, changes to form complexes by acting as a chelating molecule. Complexes of these metal ions with empirical formula [MLH(4)] were obtained, although they show different molecular structures depending on their coordinating preferences. The zinc complex is the first example of a crystalline coordination polymer in which a bis(thiosemicarbazone) acts as bridging ligand, through a nitrogen atom, giving a 1D polymeric structure. The coordination sphere is formed by the imine nitrogen and sulfur atoms, and the remaining position, in a square-based pyramid, is occupied by an amine group of another ligand. The cadmium derivative shows the same geometry around the metal ion but consists of a dinuclear structure with sulfur atoms acting as a bridge between the metal ions. However, in the nickel complex LH(6) acts as a N(2)S(2) ligand yielding a planar structure for the nickel atom. The ligand and its complexes have been characterized by X-ray crystallography, microanalysis, mass spectrometry, IR, (1)H, and (13)C NMR spectroscopies and for the cadmium complex by (113)Cd NMR in solution and in the solid state.

  12. Storage and Bioavailability of Molybdenum in Soils Increased by Organic Matter Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichard, T.; Mishra, B; Myneni, S

    2009-01-01

    The micronutrient molybdenum is a necessary component of the nitrogen-fixing enzyme nitrogenase1, 2. Molybdenum is very rare in soils, and is usually present in a highly soluble form, making it susceptible to leaching3, 4. However, it is generally thought that molybdenum attaches to mineral surfaces in acidic soils; this would prevent its escape into the groundwater, but would also impede uptake by microbes3. Here we use X-ray spectroscopy to examine the chemical speciation of molybdenum in soil samples from forests in Arizona and New Jersey. We show that in the leaf litter layer, most of the molybdenum forms strong complexesmore » with plant-derived tannins and tannin-like compounds; molybdenum binds to these organic ligands across a wide pH range. In deeper soils, molybdenum binds to both iron oxides and natural organic matter. We suggest that the molybdenum bound to organic matter can be captured by small complexing agents that are released by nitrogen-fixing bacteria; the molybdenum can then be incorporated into nitrogenase. We conclude that the binding of molybdenum to natural organic matter helps prevent leaching of molybdenum, and is thus a critical step in securing new nitrogen in terrestrial ecosystems.« less

  13. Biochemical and physiological bases for the use of carbon and nitrogen isotopes in environmental and ecological studies

    NASA Astrophysics Data System (ADS)

    Ohkouchi, Naohiko; Ogawa, Nanako O.; Chikaraishi, Yoshito; Tanaka, Hiroyuki; Wada, Eitaro

    2015-12-01

    We review the biochemical and physiological bases of the use of carbon and nitrogen isotopic compositions as an approach for environmental and ecological studies. Biochemical processes commonly observed in the biosphere, including the decarboxylation and deamination of amino acids, are the key factors in this isotopic approach. The principles drawn from the isotopic distributions disentangle the complex dynamics of the biosphere and allow the interactions between the geosphere and biosphere to be analyzed in detail. We also summarize two recently examined topics with new datasets: the isotopic compositions of individual biosynthetic products (chlorophylls and amino acids) and those of animal organs for further pursuing the basis of the methodology. As a tool for investigating complex systems, compound-specific isotopic analysis compensates the intrinsic disadvantages of bulk isotopic signatures. Chlorophylls provide information about the particular processes of various photoautotrophs, whereas amino acids provide a precise measure of the trophic positions of heterotrophs. The isotopic distributions of carbon and nitrogen in a single organism as well as in the whole biosphere are strongly regulated, so that their major components such as amino acids are coordinated appropriately rather than controlled separately.

  14. Adsorption of protein GlnB of Herbaspirillum seropedicae on Si(111) investigated by AFM and XPS.

    PubMed

    Lubambo, A F; Benelli, E M; Klein, J; Schreiner, W; Camargo, P C

    2006-01-01

    The protein GlnB-Hs (GlnB of Herbaspirillum seropedicae) in diazotroph micro-organisms signalizes levels of nitrogen, carbon, and energy for a series of proteins involved in the regulation of expression and control of the activity of nitrogenase complex that converts atmospheric nitrogen in ammonia, resulting in biological nitrogen fixation. Its structure has already been determined by X-ray diffraction, revealing a trimer of (36 kDa) with lateral cavities having hydrophilic boundaries. The interactions of GlnB-Hs with the well-known Si(111) surface were investigated for different incubation times, protein concentrations in initial solution, deposition conditions, and substrate initial state. The protein solution was deposited on Si(111) and dried under controlled conditions. An atomic force microscope operating in dynamic mode shows images of circular, linear, and more complex donut-shaped protein arrangement, and also filament types of organization, which vary from a few nanometers to micrometers. Apparently, the filament formation was favored because of protein surface polarity when in contact with the silicon surface, following some specific orientation. The spin-coating technique was successfully used to obtain more uniform surface covering.

  15. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties

    NASA Astrophysics Data System (ADS)

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-01

    In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.

  16. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties.

    PubMed

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-15

    In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pairmore » of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.« less

  18. Irreversible insertion of benzonitrile into platinum(II)-nitrogen bonds of nucleobase complexes. Synthesis and structural characterization of stable azametallacycle compounds.

    PubMed

    Montagner, Diego; Venzo, Alfonso; Zangrando, Ennio; Longato, Bruno

    2010-03-01

    Deprotonation of 1-methylcytosine (1-MeCy) and 9-methyladenine (9-MeAd) promoted by cis-[L(2)Pt(mu-OH)](2)(NO(3))(2) (L = PPh(3), PMePh(2), (1)/(2)dppe) in PhCN causes the irreversible insertion of a nitrile molecule into the Pt-N4 and Pt-N6 bonds of the cytosinate and adeninate ligands, respectively, to form the stable azametallacycle complexes cis-[L(2)PtNH=C(Ph){1-MeCy(-2H)}]NO(3) (L = PPh(3), 1; PMePh(2), 2; (1)/(2)dppe, 3) and cis-[L(2)PtNH=C(Ph){9-MeAd(-2H)}]NO(3) (L = PPh(3), 4; PMePh(2), 5) containing the deprotonated form of the molecules (Z)-9-N-(1-methyl-2-oxo-2,3-dihydropyrimidin-4(1H)-ylidene)benzimidamide and (Z)-N-(9-methyl-1H-purin-6(9H)-ylidene)benzimidamide. Single-crystal X-ray analyses of 2 and 4 show the metal coordinated to the N3 cytosine site [Pt-N3 = 2.112(7) A] and to the N1 site of adenine [Pt-N1 = 2.116(6) A] and to the nitrogen atom of the inserted benzonitrile [Pt-N2 = 2.043(6) and 2.010(6) A in 2 and 4, respectively], with the exocyclic nucleobase amino nitrogen bound to the carbon atom of the CN group. Complex 2, in solution, undergoes a dynamic process related to a partially restricted rotation around Pt-P bonds, arising from a steric interaction of the oxygen atom of the cytosine with one ring of the phosphine ligands. The reaction of 4 with acetylacetone (Hacac) causes the quantitative protonation of the anionic ligand, affording the acetylacetonate complex cis-[(PPh(3))(2)Pt(acac)]NO(3) and the free benzimidamide NH=C(Ph){9-MeAd(-H)}. In the same experimental conditions, complex 3 reacts with Hacac only partially.

  19. Sparkle/AM1 Parameters for the Modeling of Samarium(III) and Promethium(III) Complexes.

    PubMed

    Freire, Ricardo O; da Costa, Nivan B; Rocha, Gerd B; Simas, Alfredo M

    2006-01-01

    The Sparkle/AM1 model is extended to samarium(III) and promethium(III) complexes. A set of 15 structures of high crystallographic quality (R factor < 0.05 Å), with ligands chosen to be representative of all samarium complexes in the Cambridge Crystallographic Database 2004, CSD, with nitrogen or oxygen directly bonded to the samarium ion, was used as a training set. In the validation procedure, we used a set of 42 other complexes, also of high crystallographic quality. The results show that this parametrization for the Sm(III) ion is similar in accuracy to the previous parametrizations for Eu(III), Gd(III), and Tb(III). On the other hand, promethium is an artificial radioactive element with no stable isotope. So far, there are no promethium complex crystallographic structures in CSD. To circumvent this, we confirmed our previous result that RHF/STO-3G/ECP, with the MWB effective core potential (ECP), appears to be the most efficient ab initio model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. We thus generated a set of 15 RHF/STO-3G/ECP promethium complex structures with ligands chosen to be representative of complexes available in the CSD for all other trivalent lanthanide cations, with nitrogen or oxygen directly bonded to the lanthanide ion. For the 42 samarium(III) complexes and 15 promethium(III) complexes considered, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the Ln(III) ion and the ligand atoms of the first sphere of coordination, is 0.07 and 0.06 Å, respectively, a level of accuracy comparable to present day ab initio/ECP geometries, while being hundreds of times faster.

  20. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  1. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  2. Electrochemical CO 2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene

    DOE PAGES

    Zhang, Chenhao; Yang, Shize; Wu, Jingjie; ...

    2018-03-25

    Electrochemical reduction of CO 2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO 2 emissions from fuel use are collected and converted back to fuels. The reduction of CO 2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO 2 conversion to higher order products such as hydrocarbons. In this paper, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO 2 reduction to CO. Fe/NG has a lowmore » reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. Finally, the CO 2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N 4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.« less

  3. Electrochemical CO 2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chenhao; Yang, Shize; Wu, Jingjie

    Electrochemical reduction of CO 2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO 2 emissions from fuel use are collected and converted back to fuels. The reduction of CO 2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO 2 conversion to higher order products such as hydrocarbons. In this paper, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO 2 reduction to CO. Fe/NG has a lowmore » reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. Finally, the CO 2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N 4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.« less

  4. Unraveling the nitrogen isotopic signature of symbiotic corals

    NASA Astrophysics Data System (ADS)

    Devlin, Q.; Swart, P. K.; Altabet, M. A.

    2013-12-01

    Coral reefs thrive in shallow, tropical, low nutrient waters. Nutrient inputs to a reef environment are often interpreted by measuring the nitrogen isotopic composition of reef organisms. The δ15N signature of scleractinian corals has been historically measured to assess the presence of anthropogenic influences such as sewage and fertilizer runoff. The majority of reef building corals form a symbiotic partnership with the dinoflagellate algae, Symbiodinium microadriaticum. The δ15N signature of symbiotic corals is complex as it is not only dependent on nitrogen acquisition by the coral, but also by the algal symbionts that reside within the gastrodermal tissue layer. The relationship between the δ15N of dissolved inorganic nitrogen (DIN) and the δ15N of coral tissue has not been established. The aim of this study is to identify considerations necessary when interpreting nitrogen sources based on δ15N of coral tissue. Incubations were carried out in order to measure isotopic fractionation associated with nitrate and ammonium incorporation by the Pacific branching coral, Pocillopora damicornis. We investigated the dependence of nitrogen isotope fractionation on species of DIN (nitrate or ammonium), concentration of DIN (range: 1-50 μM N), genetic diversity of algal symbionts (clade C or clade D) and light levels.

  5. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  6. Novelmetal-organic photocatalysts: Synthesis, characterization and decomposition of organic dyes

    NASA Astrophysics Data System (ADS)

    Gopal Reddy, N. B.; Murali Krishna, P.; Kottam, Nagaraju

    2015-02-01

    An efficient method for the photocatalytic degradation of methylene blue in an aqueous medium was developed using metal-organic complexes. Two novel complexes were synthesized using, Schiff base ligand, N‧-[(E)-(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide (HL) and Ni(II) (Complex 1)/Co(II) (Complex 2) chloride respectively. These complexes were characterized using microanalysis, various spectral techniques. Spectral studies reveal that the complexes exhibit square planar geometry with ligand coordination through azomethine nitrogen and enolic oxygen. The effects of catalyst dosage, irradiation time and aqueous pH on the photocatalytic activity were studied systematically. The photocatalytic activity was found to be more efficient in the presence of Ni(II) complexes than the Co(II) complex. Possible mechanistic aspects were discussed.

  7. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, themore » chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.« less

  8. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    PubMed

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  9. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles

    NASA Astrophysics Data System (ADS)

    Berman-Frank, I.; Chen, Y.-B.; Gerchman, Y.; Dismukes, G. C.; Falkowski, P. G.

    2005-03-01

    Cyanobacterial N2-fixation supplies the vast majority of biologically accessible inorganic nitrogen to nutrient-poor aquatic ecosystems. The process, catalyzed by the heterodimeric protein complex, nitrogenase, is thought to predate that of oxygenic photosynthesis. Remarkably, while the enzyme plays such a critical role in Earth's biogeochemical cycles, the activity of nitrogenase in cyanobacteria is markedly inhibited in vivo at a post-translational level by the concentration of O2 in the contemporary atmosphere leading to metabolic and biogeochemical inefficiency in N2 fixation. We illustrate this crippling effect with data from Trichodesmium spp. an important contributor of "new nitrogen" to the world's subtropical and tropical oceans. The enzymatic inefficiency of nitrogenase imposes a major elemental taxation on diazotrophic cyanobacteria both in the costs of protein synthesis and for scarce trace elements, such as iron. This restriction has, in turn, led to a global limitation of fixed nitrogen in the contemporary oceans and provides a strong biological control on the upper bound of oxygen concentration in Earth's atmosphere.

  10. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    PubMed

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Conidiation of Penicillium camemberti in submerged liquid cultures is dependent on the nitrogen source.

    PubMed

    Boualem, Khadidja; Labrie, Steve; Gervais, Patrick; Waché, Yves; Cavin, Jean-François

    2016-02-01

    To study the ability of a commercial Penicillium camemberti strain, used for Camembert type cheese ripening, to produce conidia during growth in liquid culture (LC), in media containing different sources of nitrogen as, industrially, conidia are produced by growth at the surface of a solid state culture because conidiation in stirred submerged aerobic LC is not known. In complex media containing peptic digest of meat, hyphae ends did not differentiate into phialides and conidia. Contrarily, in a synthetic media containing KNO3 as sole nitrogen source, hyphae ends differentiated into phialides producing 0.5 × 10(7) conidia/ml. Conidia produced in LC were 25 % less hydrophobic than conidia produced in solid culture, and this correlates with a seven-times-lower expression of the gene rodA encoding hydrophobin RodA in the mycelium grown in LC. Conidiation of P. camembertii is stimulated in iquid medium containing KNO3 as sole source of nitrogen and therefore opens up opportunities for using liquid medium in commercial productions.

  12. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rydzak, Thomas; Garcia, David; Stevenson, David M.

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. And while recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H 2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in C. thermocellum. Deletion of glnA reduced levels of secretedmore » valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine and α-ketoglutarate levels indicative of nitrogen-rich conditions. Here, we propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine/α-ketoglutarate levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.« less

  13. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.

    PubMed

    Rydzak, Thomas; Garcia, David; Stevenson, David M; Sladek, Margaret; Klingeman, Dawn M; Holwerda, Evert K; Amador-Noguez, Daniel; Brown, Steven D; Guss, Adam M

    2017-05-01

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H 2 ), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum. Copyright © 2017. Published by Elsevier Inc.

  14. Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste

    NASA Astrophysics Data System (ADS)

    Robinson, Georgina; MacTavish, Thomas; Savage, Candida; Caldwell, Gary S.; Jones, Clifford L. W.; Probyn, Trevor; Eyre, Bradley D.; Stead, Selina M.

    2018-03-01

    The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste C : N from 5 : 1 to 20 : 1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood.

  15. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  16. Conduction Mechanism and Improved Endurance in HfO2-Based RRAM with Nitridation Treatment

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Yuan; Deng, Ning; Shih, Chih-Cheng; Tseng, Yi-Ting; Chang, Ting-Chang; Chang, Kuan-Chang; Wang, Ming-Hui; Chen, Wen-Chung; Zheng, Hao-Xuan; Wu, Huaqiang; Qian, He; Sze, Simon M.

    2017-10-01

    A nitridation treatment technology with a urea/ammonia complex nitrogen source improved resistive switching property in HfO2-based resistive random access memory (RRAM). The nitridation treatment produced a high performance and reliable device which results in superior endurance (more than 109 cycles) and a self-compliance effect. Thus, the current conduction mechanism changed due to defect passivation by nitrogen atoms in the HfO2 thin film. At a high resistance state (HRS), it transferred to Schottky emission from Poole-Frenkel in HfO2-based RRAM. At low resistance state (LRS), the current conduction mechanism was space charge limited current (SCLC) after the nitridation treatment, which suggests that the nitrogen atoms form Hf-N-Ox vacancy clusters (Vo +) which limit electron movement through the switching layer.

  17. Groundwater pollution by nitrates from livestock wastes.

    PubMed Central

    Goldberg, V M

    1989-01-01

    Utilization of wastes from livestock complexes for irrigation involves the danger of groundwater pollution by nitrates. In order to prevent and minimize pollution, it is necessary to apply geological-hydrogeological evidence and concepts to the situation of wastewater irrigation for the purposes of studying natural groundwater protectiveness and predicting changes in groundwater quality as a result of infiltrating wastes. The procedure of protectiveness evaluation and quality prediction is described. With groundwater pollution by nitrate nitrogen, the concentration of ammonium nitrogen noticeably increases. One of the reasons for this change is the process of denitrification due to changes in the hydrogeochemical conditions in a layer. At representative field sites, it is necessary to collect systematic stationary observations of the concentrations of nitrogenous compounds in groundwater and changes in redox conditions and temperature. PMID:2620669

  18. Non-amine-based dopamine transporter (reuptake) inhibitors retain properties of amine-based progenitors.

    PubMed

    Madras, Bertha K; Fahey, Michele A; Miller, Gregory M; De La Garza, Richard; Goulet, Martin; Spealman, Roger D; Meltzer, Peter C; George, Susan R; O'Dowd, Brian F; Bonab, Ali A; Livni, Eli; Fischman, Alan J

    2003-10-31

    Without exception, therapeutic and addictive drugs that produce their primary effects by blocking monoamine transporters in brain contain an amine nitrogen in their structure. This fundamental canon of drug design was based on a prevailing premise that an amine nitrogen is required to mimic the structures of monoamine neurotransmitters and other natural products. Non-amines, a novel class of compounds that contain no amine nitrogen, block monoamine transporters in the nM range and display markedly high selectivity for monoamine transporters, but not for receptors. Non-amines retain the spectrum of biochemical and pharmacological properties characteristic of amine-bearing counterparts. These novel drugs compel a revision of current concepts of drug-monoamine transporter complex formation and open avenues for discovery of a new generation of therapeutic drugs.

  19. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  20. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE PAGES

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek; ...

    2017-11-01

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  1. EHPG iron(III) complexes as potential contrast contrast agents for MRI.

    PubMed

    Kuźnik, Nikodem; Jewuła, Paweł; Oczek, Lidia; Kozłowicz, Sylwia; Grucela, Artur; Domagała, Wojciech

    2014-01-01

    A series of EHPG ligands and complexes were obtained. The derivatives of choice were p-OMe, 3,4-dimethyl, p-NHAc and p-Ph substituted ones. The complexes were characterized by NMR relaxation decay (T1), EPR and cyclic voltammetry (CV). r1 Relaxivity of the Fe-EHPG-OMe, Fe-EHPG-Ph derivatives was found higher than that of Fe-EHPG. EPR measurements at liquid nitrogen temperature indicate a typical rhombohedral structure for both rac- and meso-diastereoisomers of the EHPG complexes. CV revealed the redox inactivity of the Fe-EHPG complexes at physiological conditions. Interpretation and discussion of the results is presented.

  2. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases.

    PubMed

    Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J

    2003-04-01

    The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.

  3. Role of Hydrogen Bonding in Photoinduced Electron-Proton Transfer from Phenols to a Polypyridine Ru Complex with a Proton-Accepting Ligand

    DOE PAGES

    Lymar, Sergei V.; Ertem, Mehmed Z.; Lewandowska-Andralojc, Anna; ...

    2017-08-09

    Electron-proton transfer, EPT, from phenols to a triplet MLCT-excited Ru polypyridine complex containing an uncoordinated nitrogen site, 1(T), can be described by a kinetic model that accounts for the H-bonding of 1(T) to phenol, 1(T) to solvent, and phenol to solvent. The latter plays a major role in the kinetic solvent effect and commonly precludes simultaneous determination of the EPT rate constant and 1(T)-phenol H-bonding constant. A number of these quantities previously reported for similar systems are shown to be in error due to an inconsistent data analysis. In conclusion, control experiments replacing either 1(T) by its structural isomer withmore » a sterically screened nitrogen site or phenol by its H-bonding surrogate, trifluoroethanol, and the observation of negative activation enthalpies for the overall reactions between 1(T) and phenols lend support to the proposed model and provide evidence for the formation of a precursor H-bonded complex between the reactants, which is a prerequisite for EPT.« less

  4. Role of Hydrogen Bonding in Photoinduced Electron-Proton Transfer from Phenols to a Polypyridine Ru Complex with a Proton-Accepting Ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymar, Sergei V.; Ertem, Mehmed Z.; Lewandowska-Andralojc, Anna

    Electron-proton transfer, EPT, from phenols to a triplet MLCT-excited Ru polypyridine complex containing an uncoordinated nitrogen site, 1(T), can be described by a kinetic model that accounts for the H-bonding of 1(T) to phenol, 1(T) to solvent, and phenol to solvent. The latter plays a major role in the kinetic solvent effect and commonly precludes simultaneous determination of the EPT rate constant and 1(T)-phenol H-bonding constant. A number of these quantities previously reported for similar systems are shown to be in error due to an inconsistent data analysis. In conclusion, control experiments replacing either 1(T) by its structural isomer withmore » a sterically screened nitrogen site or phenol by its H-bonding surrogate, trifluoroethanol, and the observation of negative activation enthalpies for the overall reactions between 1(T) and phenols lend support to the proposed model and provide evidence for the formation of a precursor H-bonded complex between the reactants, which is a prerequisite for EPT.« less

  5. Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Crockett, Nathan; Wilkins, Olivia H.; Bergin, Edwin; Blake, Geoffrey

    2017-06-01

    A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging ^{13}CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present updated results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.

  6. Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Crockett, Nathan; Bergin, Edwin; Blake, Geoffrey

    2016-06-01

    A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) from the Herschel Space Telescope has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging 13CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present the initial results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.

  7. Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism.

    PubMed

    López-Berges, Manuel S; Schäfer, Katja; Hera, Concepción; Di Pietro, Antonio

    2014-01-01

    Velvet is a conserved protein complex that functions as a regulator of fungal development and secondary metabolism. In the soil-inhabiting pathogen Fusarium oxysporum, velvet governs mycotoxin production and virulence on plant and mammalian hosts. Here we report a previously unrecognized role of the velvet complex in regulation of nitrate metabolism. F. oxysporum mutants lacking VeA or LaeA, two key components of the complex, were impaired in growth on the non-preferred nitrogen sources nitrate and nitrite. Both velvet and the general nitrogen response GATA factor AreA were required for transcriptional activation of nitrate (nit1) and nitrite (nii1) reductase genes under de-repressing conditions, as well as for the nitrate-triggered increase in chromatin accessibility at the nit1 locus. AreA also contributed to chromatin accessibility and expression of two velvet-regulated gene clusters, encoding biosynthesis of the mycotoxin beauvericin and of the siderophore ferricrocin. Thus, velvet and AreA coordinately orchestrate primary and secondary metabolism as well as virulence functions in F. oxysporum. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Photoconductivity in DNA-Porphyrin Complexes

    NASA Astrophysics Data System (ADS)

    Myint, Peco; Oxford, Emma; Nyazenga, Collence; Smith, Walter; Qi, Zhengqing; Johnson, A. T.

    2015-03-01

    We have measured the photoconductivity of λ - DNA that is modified by intercalating a porphyrin compound, meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (TMPyP), into its base stacks. Intercalation was verified by a red shift and hypochromism of the Soret absorption peak. The DNA/porphyrin strands were then deposited onto oxidized silicon substrates which had been patterned with interdigitated electrodes, and blown dry. Electrical measurements were carried out under nitrogen, using illumination from a 445 nm laser; this wavelength falls within the absorption peak of the DNA/porphyrin complexes. When initially measured under dry nitrogen, the complexes show no photoconductivity or dark conductivity. However, at relative humidities of 30% and above, we do observe dark conductivity, and also photoconductivity that grows with time. Photoconductivity gets larger at higher relative humidity. Remarkably, when the humidity is lowered again, some photoconductivity is now observed, indicating a change that persists for more than 24 hours. It may be that the humidity alters the structure of the DNA, perhaps allowing for better alignment of the bases. This work was supported by NSF Grant BMAT-1306170.

  9. Pnicogen bonds between X═PH3 (X = O, S, NH, CH2) and phosphorus and nitrogen bases.

    PubMed

    Alkorta, Ibon; Sánchez-Sanz, Goar; Elguero, José; Del Bene, Janet E

    2014-02-27

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the pnicogen bonded complexes formed between the acids O═PH3, S═PH3, HN═PH3, and H2C═PH3 and the bases NH3, NCH, N2, PH3, and PCH. All nitrogen and phosphorus bases form complexes in which the bases are lone pair electron donors. The binding energies of complexes involving the stronger bases NH3, NCH, and PH3 differentiate among the acids, but the binding energies of complexes with the weaker bases do not. These complexes are stabilized by charge transfer from the lone pair orbital of N or P to the σ*P═A orbital of X═PH3, where A is the atom of X directly bonded to P. PCH also forms complexes with the X═PH3 acids as a π electron donor to the σ*P═A orbital. The binding energies and the charge-transfer energies of the π complexes are greater than those of the complexes in which PCH is a lone pair donor. Whether the positive charge on P increases, decreases, or remains the same upon complex formation, the chemical shieldings of (31)P decrease in the complexes relative to the corresponding monomers. (1p)J(P-N) and (1p)J(P-P) values correlate best with the corresponding P-N and P-P distances as a function of the nature of the base. (1)J(P-A) values do not correlate with P-A distances. Rather, the absolute values of (1)J(P-O), (1)J(P-S), and (1)J(P-N) decrease upon complexation. Decreasing (1)J(P-A) values correlate linearly with increasing complex binding energies. In contrast, (1)J(P-C) values increase upon complexation and correlate linearly with increasing binding energies.

  10. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.

    PubMed

    Farraj, Yousef; Grouchko, Michael; Magdassi, Shlomo

    2015-01-31

    Highly conductive copper patterns on low-cost flexible substrates are obtained by inkjet printing a metal complex based ink. Upon heating the ink, the soluble complex, which is composed of copper formate and 2-amino-2-methyl-1-propanol, decomposes under nitrogen at 140 °C and is converted to pure metallic copper. The decomposition process of the complex is investigated and a suggested mechanism is presented. The ink is stable in air for prolonged periods, with no sedimentation or oxidation problems, which are usually encountered in copper nanoparticle based inks.

  11. International trade in meat: the tip of the pork chop.

    PubMed

    Galloway, James N; Burke, Marshall; Bradford, G Eric; Naylor, Rosamond; Falcon, Walter; Chapagain, Ashok K; Gaskell, Joanne C; McCullough, Ellen; Mooney, Harold A; Oleson, Kirsten L L; Steinfeld, Henning; Wassenaar, Tom; Smil, Vaclav

    2007-12-01

    This paper provides an original account of global land, water, and nitrogen use in support of industrialized livestock production and trade, with emphasis on two of the fastest-growing sectors, pork and poultry. Our analysis focuses on trade in feed and animal products, using a new model that calculates the amount of "virtual" nitrogen, water, and land used in production but not embedded in the product. We show how key meat-importing countries, such as Japan, benefit from "virtual" trade in land, water, and nitrogen, and how key meat-exporting countries, such as Brazil, provide these resources without accounting for their true environmental cost. Results show that Japan's pig and chicken meat imports embody the virtual equivalent of 50% of Japan's total arable land, and half of Japan's virtual nitrogen total is lost in the US. Trade links with China are responsible for 15% of the virtual nitrogen left behind in Brazil due to feed and meat exports, and 20% of Brazil's area is used to grow soybean exports. The complexity of trade in meat, feed, water, and nitrogen is illustrated by the dual roles of the US and The Netherlands as both importers and exporters of meat. Mitigation of environmental damage from industrialized livestock production and trade depends on a combination of direct-pricing strategies, regulatory approaches, and use of best management practices. Our analysis indicates that increased water- and nitrogen-use efficiency and land conservation resulting from these measures could significantly reduce resource costs.

  12. Organization of biogeochemical nitrogen pathways with switch-like adjustment in fluctuating soil redox conditions

    PubMed Central

    Lamba, Sanjay; Bera, Soumen; Rashid, Mubasher; Medvinsky, Alexander B.; Acquisti, Claudia; Li, Bai-Lian

    2017-01-01

    Nitrogen is cycled throughout ecosystems by a suite of biogeochemical processes. The high complexity of the nitrogen cycle resides in an intricate interplay between reversible biochemical pathways alternatively and specifically activated in response to diverse environmental cues. Despite aggressive research, how the fundamental nitrogen biochemical processes are assembled and maintained in fluctuating soil redox conditions remains elusive. Here, we address this question using a kinetic modelling approach coupled with dynamical systems theory and microbial genomics. We show that alternative biochemical pathways play a key role in keeping nitrogen conversion and conservation properties invariant in fluctuating environments. Our results indicate that the biochemical network holds inherent adaptive capacity to stabilize ammonium and nitrate availability, and that the bistability in the formation of ammonium is linked to the transient upregulation of the amo-hao mediated nitrification pathway. The bistability is maintained by a pair of complementary subsystems acting as either source or sink type systems in response to soil redox fluctuations. It is further shown how elevated anthropogenic pressure has the potential to break down the stability of the system, altering substantially ammonium and nitrate availability in the soil, with dramatic effects on biodiversity. PMID:28280580

  13. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    PubMed

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  14. A 25-Year Retrospective Analysis of River Nitrogen Fluxes in the Atchafalaya

    NASA Astrophysics Data System (ADS)

    Xu, Y.

    2005-05-01

    Nitrogen enrichment from the upper Mississippi River Basin has been attributed to be the major cause for the hypoxia in the Northern Gulf of Mexico. The hypoxia threatens not only the aquatic ecosystem health but Louisiana's fishery industry directly among other problems. Although fresh water diversion from the lower Mississippi River into the region's wetlands has been considered an alternative means for reducing nitrogen loading, it is largely uncertain how much nitrogen can actually be retained from the overflowing waters in these natural wetlands. Generally, there is a knowledge gap in what tools are available for accurate assessment of nitrogen inflow, outflow and removal potential for the complex and diverse coastal floodplain systems. This study is to seek answers to three critical questions: (1) Does the Atchafalaya River Swamp remove a significant amount of nitrogen from the overflowing water or release more nitrogen into the Gulf than removing it? (2) How seasonally and annually do the nitrogen removal or release rates fluctuate? (3) What are the relationships between the nitrogen removal capacity and the basin's hydrologic conditions such as river stage and discharge? By utilizing river's long-term discharge and water quality data (1978-2002), monthly and annual nitrogen fluxes were quantified, and their relationships with the basin's hydrologic conditions were investigated. A total Kjeldahl nitrogen (TKN) mass input-output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the organic nitrogen removal potential for this largest freshwater swamp basin in North America. The results showed that on average, TKN input into the Atchafalaya was 200,323 Mg yr-1 and TKN output leaving the basin was 145,917 Mg yr-1, resulting in a 27% removal rate of nitrogen. Monthly nitrogen input and output in the basin were highest from March to June (input vs. output: 25,000 vs. 18,000 Mg mon-1) and lowest from August to November (8,000 vs. 6,000 Mg mon-1). There was a large variation in both annual and inter-annual nitrogen removals, and the variability was positively correlated with the amount of inflow water at Simmesport. However, no close relationship between the river inflow and percentage nitrogen removal rate was found. The results gained from this study suggest that regulating the river's inflow will help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. The in-stream loss of nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi-Atchafalaya River system. Furthermore, the study found that knowledge on spatial hydrological conditions in the basin is needed to understand nitrogen dynamics in the Atchafalaya River Swamp.

  15. Tracing the source and fate of nitrate in contemporary mixed land-use surface water systems

    NASA Astrophysics Data System (ADS)

    Stewart, S. D.; Young, M. B.; Horton, T. W.; Harding, J. S.

    2011-12-01

    Nitrogenous fertilizers increase agricultural productivity, ultimately feeding the planet. Yet, it is possible to have too much of a good thing, and nitrogen is no exception. When in excess nitrogen has been shown to accelerate eutrophication of water bodies, and act as a chronic toxin (e.g. methemoglobinemia). As land-use intensity continues to rise in response to increases in agricultural productivity, the risk of adverse effects of nitrogen loading on surface water bodies will also increase. Stable isotope proxies are potential tracers of nitrate, the most common nitrogenous phase in surface waters. Applying stable isotope proxies therefore presents an opportunity to identify and manage sources of excess nitrogen before aquatic systems are severely degraded. However, the heterogeneous nature of potential pollution sources themselves, and their distribution with a modified catchment network, make understanding this issue highly complex. The Banks Peninsula, an eroded late tertiary volcanic complex located on the east coast of the South Island New Zealand, presents a unique opportunity to study and understand the sources and fates of nitrate within streams in a contemporary mixed land-use setting. Within this small geographic area there a variety of agricultural activities are practiced, including: heavily fertilized golf courses; stands of regenerating native forest; and areas of fallow gorse (Ulex europaeus; a invasive N-fixing shrub). Each of these landuse classes has its own unique nitrogen budget. Multivariate analysis was used on stream nitrate concentrations to reveal that stream reaches dominated by gorse had significantly higher nitrate concentrations than other land-use classes. Nitrate δ15N & δ18O data from these sites show strong covariance, plotting along a distinct fractionation line (r2 = 0.96). This finding facilitates interpretation of what processes are controlling nitrate concentration within these systems. Further, complementary aquatic foodweb δ15N δ13C analyses of multiple species in various trophic positions allow for a unique, holistic insight in to the fate of gorse-derived nitrate at an ecosystem level. We present here physicochemical and stable isotopic data from a variety of aqueous and aquatic foodweb components. Data is generated using emerging and established analytical techniques, in order to explore links between foodweb ecology, ecosystem function, and fate and transport of excess nitrate along longitudinal gradients of mixed land-use catchments.

  16. Acid rain impacts on calcium nutrition and forest health

    Treesearch

    Donald H. DeHayes; Paul G. Schaberg; Gary J. Hawley; G. Richard Strimbeck

    1999-01-01

    Forest ecosystems throughout the world are exposed to acid rain, a complex solution consisting largely of H+, SO42-, NH4+, and NO3- pollutant ions derived from sulfur and nitrogen oxides. Although the public in...

  17. 78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. A script to highlight hydrophobicity and charge on protein surfaces

    PubMed Central

    Hagemans, Dominique; van Belzen, Ianthe A. E. M.; Morán Luengo, Tania; Rüdiger, Stefan G. D.

    2015-01-01

    The composition of protein surfaces determines both affinity and specificity of protein-protein interactions. Matching of hydrophobic contacts and charged groups on both sites of the interface are crucial to ensure specificity. Here, we propose a highlighting scheme, YRB, which highlights both hydrophobicity and charge in protein structures. YRB highlighting visualizes hydrophobicity by highlighting all carbon atoms that are not bound to nitrogen and oxygen atoms. The charged oxygens of glutamate and aspartate are highlighted red and the charged nitrogens of arginine and lysine are highlighted blue. For a set of representative examples, we demonstrate that YRB highlighting intuitively visualizes segments on protein surfaces that contribute to specificity in protein-protein interfaces, including Hsp90/co-chaperone complexes, the SNARE complex and a transmembrane domain. We provide YRB highlighting in form of a script that runs using the software PyMOL. PMID:26528483

  19. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed.

    PubMed

    Yu, Changjiang; Zhao, Xiaowen; Qi, Guang; Bai, Zetao; Wang, Yu; Wang, Shumin; Ma, Yubin; Liu, Qian; Hu, Ruibo; Zhou, Gongke

    2017-01-01

    Duckweed is considered a promising source of energy due to its high starch content and rapid growth rate. Starch accumulation in duckweed involves complex processes that depend on the balanced expression of genes controlled by various environmental and endogenous factors. Previous studies showed that nitrogen starvation induces a global stress response and results in the accumulation of starch in duckweed. However, relatively little is known about the mechanisms underlying the regulation of starch accumulation under conditions of nitrogen starvation. In this study, we used next-generation sequencing technology to examine the transcriptome responses of Lemna aequinoctialis 6000 at three stages (0, 3, and 7 days) during nitrogen starvation in the presence of exogenously applied sucrose. Overall, 2522, 628, and 1832 differentially expressed unigenes (DEGs) were discovered for the treated and control samples. Clustering and enrichment analysis of DEGs revealed several biological processes occurring under nitrogen starvation. Genes involved in nitrogen metabolism showed the earliest responses to nitrogen starvation, whereas genes involved in carbohydrate biosynthesis were responded subsequently. The expression of genes encoding nitrate reductase, glutamine synthetase, and glutamate synthase was down-regulated under nitrogen starvation. The expression of unigenes encoding enzymes involved in gluconeogenesis was up-regulated, while the majority of unigenes involved in glycolysis were down-regulated. The metabolite results showed that more ADP-Glc was accumulated and lower levels of UDP-Glc were accumulated under nitrogen starvation, the activity of AGPase was significantly increased while the activity of UGPase was dramatically decreased. These changes in metabolite levels under nitrogen starvation are roughly consistent with the gene expression changes in the transcriptome. Based on these results, it can be concluded that the increase of ADP-glucose and starch contents under nitrogen starvation is a consequence of increased output from the gluconeogenesis and TCA pathways, accompanied with the reduction of lipids and pectin biosynthesis. The results provide novel insights into the underlying mechanisms of starch accumulation during nitrogen starvation, which provide a foundation for the improvement of advanced bioethanol production in duckweed.

  20. Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants.

    PubMed

    Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone

    2011-01-17

    Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA cleavage by C2 is twice that measured for [Cu(tacn)(OH2)2](2+), suggesting some degree of cooperativity between the copper center and guanidinium pendants in the hydrolysis of the phosphate ester linkages of DNA. A predominantly hydrolytic cleavage mechanism was confirmed through experiments performed either in the presence of various radical scavengers or under anaerobic conditions.

  1. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata.

    PubMed

    Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke

    2011-05-27

    The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on mycotoxin production by A. alternata. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Decontamination and Disposal Methods for Chemical Agents - A Literature Survey

    DTIC Science & Technology

    1982-11-01

    aqueous copper (I) ammonia complex to give a red copper (1) acetylide precipitate. The precipitate was determined either iodometricaily (sensitivity of I...ppm in decontamination solution) or colorintrically by a copper (11) ammonia complex (12 ppm). Lewisite was also assayed by gas liquid chromatography...to ammonia (then degraded to nitrogen) and carbonate ion. The latter reaction is relatively slow. The reaction may thus be con- sidered to consist of

  3. Modulating Radiation Resistance: Novel Protection Paradigms Based on Defenses against Ionizing Radiation in the Extrempohile Deinococcus radiodurans

    DTIC Science & Technology

    2013-07-01

    USA (2013); 2) Many environmental yeast are extremely radiation-resistant, accumulate nitrogenous Mn2+-Pi complexes, and highly resistant to...5 important in aerobic environments . Numerous organisms which accumulate “compatible solutes” fit this model, including representative archaea...cyanobacteria, lichens, alpine yeast, and tardigrades. 4.3 Knowns and Unknowns of Deinococcus Mn2+ Complexes It is worth reminding the reader

  4. Synthesis, structure, spectroscopic and electrochemical properties of (2-amino-4-methylpyrimidine)-(pyridine-2,6-dicarboxylato)copper(II) monohydrate

    NASA Astrophysics Data System (ADS)

    Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet; Büyükgüngör, Orhan

    2007-05-01

    The (2-amino-4-methylpyrimidine)-(pyridine-2,6-dicarboxylato)copper(II) monohydrate complex was synthesized and characterized by spectroscopic (IR, UV/Vis, EPR), thermal (TG/DTA) and electrochemical methods. X-ray structural analysis of the title complex revealed that the copper ion can be considered to have two coordination spheres. In the first coordination sphere the copper ion forms distorted square-planar geometry with trans-N 2O 2 donor set, and also the metal ion is weakly bonded to the amino-nitrogen in the layer over and to the carboxylic oxygen in the layer underneath in the second coordination sphere. The second coordination environment on the copper ion is attributed to pseudo octahedron. The powder EPR spectra of Cu(II) complex at room and liquid nitrogen temperature were recorded. The calculated g and A parameters have indicated that the paramagnetic centre is axially symmetric. The molecular orbital bond coefficients of the Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centered electroactivity in the potential range -1.25 to 1.5 V versus Ag/AgCl reference electrode.

  5. Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications.

    PubMed

    Xu, Yang; Wu, Ming; Liu, Yang; Feng, Xi-Zeng; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui

    2013-02-11

    Carbon dots (Cdots) are an important probe for imaging and sensing applications because of their fluorescence property, good biocompatibility, and low toxicity. However, complex procedures and strong acid treatment are often required and Cdots suffer from low photoluminescence (PL) emission. Herein, a facile and general strategy using carbonization of precursors and then extraction with solvents is proposed for the preparation of nitrogen-doped Cdots (N-Cdots) with 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA), L-histidine, and L-arginine as precursor models. After they are heated, the precursors become carbonized. Nitrogen-doped Cdots are subsequently extracted into N,N'-dimethylformamide (DMF) from the carbogenic solid. A core-shell structure of Cdots with a carbon core and the oxygen-containing shell was observed. Nitrogen has different forms in N-Cdots and oxidized N-Cdots. The doped nitrogen and low oxidation level in N-Cdots improve their emission significantly. The N-Cdots show an emission with a nitrogen-content-dependent intensity and Cdot-size-dependent emission-peak wavelength. Imaging of HeLa cells, a human cervical cancer cell line, and HepG2 cells, a human hepatocellular liver carcinoma line, was observed with high resolution using N-Cdots as a probe and validates their use in imaging applications and their multicolor property in the living cell system. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High frequency measurements of reach scale nitrogen uptake in a fourth order river with contrasting hydromorphology and variable water chemistry (Weiße Elster, Germany)

    NASA Astrophysics Data System (ADS)

    Kunz, Julia Vanessa; Hensley, Robert; Brase, Lisa; Borchardt, Dietrich; Rode, Michael

    2017-01-01

    River networks exhibit a globally important capacity to retain and process nitrogen. However direct measurement of in-stream removal in higher order streams and rivers has been extremely limited. The recent advent of automated sensors has allowed high frequency measurements, and the development of new passive methods of quantifying nitrogen uptake which are scalable across river size. Here we extend these methods to higher order streams with anthropogenically elevated nitrogen levels, substantial tributaries, complex input signals, and multiple N species. We use a combination of two station time-series and longitudinal profiling of nitrate to assess differences in nitrogen processing dynamics in a natural versus a channelized impounded reach with WWTP effluent impacted water chemistry. Our results suggest that net mass removal rates of nitrate were markedly higher in the unmodified reach. Additionally, seasonal variations in temperature and insolation affected the relative contribution of assimilatory versus dissimilatory uptake processes, with the latter exhibiting a stronger positive dependence on temperature. From a methodological perspective, we demonstrate that a mass balance approach based on high frequency data can be useful in deriving quantitative uptake estimates, even under dynamic inputs and lateral tributary inflow. However, uncertainty in diffuse groundwater inputs and more importantly the effects of alternative nitrogen species, in this case ammonium, pose considerable challenges to this method.

  7. Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC

    NASA Astrophysics Data System (ADS)

    Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.

    2018-05-01

    Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.

  8. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphos Ph Complexes.

    PubMed

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-04-10

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphos(Ph)) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphos(Ph) ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphos(Ph) ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ(3)P] (2) were isolated on cooling to RT. The (31)P{(1)H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ(3)P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ(3)P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ(3)P{CH3CO(CH2)2CO2H}-κ(2)O](PF6) (6).

  9. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphosPh Complexes

    PubMed Central

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-01-01

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphosPh) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphosPh ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphosPh ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ3P] (2) were isolated on cooling to RT. The 31P{1H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ3P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ3P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ3P{CH3CO(CH2)2CO2H}-κ2O](PF6) (6). PMID:25938678

  10. 93. VIEW OF LIQUID OXYGEN TOPPING TANK BEHIND SKID 9 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. VIEW OF LIQUID OXYGEN TOPPING TANK BEHIND SKID 9 AND GASEOUS NITROGEN TANKS BEHIND SKID 7 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. EFFECTS OF PHOTOCHEMICAL OXIDANTS ON PLANTS

    EPA Science Inventory

    Photochemical oxidants are found in 'photochemical smog' which is a complex mixture of primary and secondary air pollutants. The photochemical oxidants are secondary air pollutants formed by the action of sunlight on nitrogen oxides and reactive hydrocarbons, their precursors. Th...

  12. PEGylated N-methyl-S-methyl dithiocarbazate as a new reagent for the high-yield preparation of nitrido Tc-99m and Re-188 radiopharmaceuticals.

    PubMed

    Boschi, Alessandra; Massi, Alessandro; Uccelli, Licia; Pasquali, Micol; Duatti, Adriano

    2010-11-01

    A novel nitrido nitrogen atom donor for the preparation of (99m)Tc and (188)Re radiopharmaceuticals containing a metal-nitrogen multiple bond is presented. HO(2)C-PEG(600)-DTCZ was obtained by conjugation of N-methyl-S-methyl dithiocarbazate [H(2)N-N(CH(3))-C(S)SCH(3), HDTCZ] with polyethylene glycol 600 (PEG(600)). Asymmetrical heterocomplexes of the type [M(N)(PNP)(B)](0/+) (M=(99m)Tc, (188)Re; PNP=diphosphine ligands, B=DBODC, DEDC, NSH, H(2)OS, CysNAc, HDTCZ) and symmetrical nitride compounds of the type [M(N)(L)(2)] (L=DEDC, DPDC) have been prepared in high yield by using the newly designed nitride nitrogen atom donor HO(2)C-PEG(600)-DTCZ. A two-step procedure was applied for preparing the above symmetrical and asymmetrical complexes. The first step involved the preliminary formation of a mixture of nitride Tc-99m or Re-188 precursors, which contained the [M≡N](2+) core, through reduction of generator-eluted (99m)Tc-pertechnetate or (188)Re-perrhenate with thin (II) chloride in the presence of HO(2)C-PEG(600)-DTCZ. In the second step, the intermediate mixture was converted either in the final mixed asymmetrical complex by the simultaneous addition of diphosphine ligand and the suitable bidentate ligand B, or in the final symmetrical complex by the only addition of the bidentate ligand L. It was also demonstrated that the novel water-soluble nitride nitrogen atom donor HO(2)C-PEG(600)-DTCZ did not show coordinating properties toward the M≡N ((99m)Tc, (188)Re) core. Biodistribution studies in rats of the hitherto unreported [(99m)Tc(N)(PNP(3))DTCZ](+) and [(99m)Tc(N)(PNP(5))DTCZ](+) complexes showed that they selectively localize in the myocardium of rats with a favourable heart-to-lung and heart-to-liver uptake ratios. In particular, the heart-to-lung and heart-to-liver uptake ratios dramatically increased in the interval between 60 and 120 min postinjection. Hence, the combination of the favourable chemical and biological properties of HO(2)C-PEG(600)-DTCZ might confer to this novel compound an important role for the development of new (99m)Tc and (188)Re-nitrido radiopharmaceuticals. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Genetic Basis of Variations in Nitrogen Source Utilization in Four Wine Commercial Yeast Strains

    PubMed Central

    Gutiérrez, Alicia; Beltran, Gemma; Warringer, Jonas; Guillamón, Jose M.

    2013-01-01

    The capacity of wine yeast to utilize the nitrogen available in grape must directly correlates with the fermentation and growth rates of all wine yeast fermentation stages and is, thus, of critical importance for wine production. Here we precisely quantified the ability of low complexity nitrogen compounds to support fast, efficient and rapidly initiated growth of four commercially important wine strains. Nitrogen substrate abundance in grape must failed to correlate with the rate or the efficiency of nitrogen source utilization, but well predicted lag phase length. Thus, human domestication of yeast for grape must growth has had, at the most, a marginal impact on wine yeast growth rates and efficiencies, but may have left a surprising imprint on the time required to adjust metabolism from non growth to growth. Wine yeast nitrogen source utilization deviated from that of the lab strain experimentation, but also varied between wine strains. Each wine yeast lineage harbored nitrogen source utilization defects that were private to that strain. By a massive hemizygote analysis, we traced the genetic basis of the most glaring of these defects, near inability of the PDM wine strain to utilize methionine, as consequence of mutations in its ARO8, ADE5,7 and VBA3 alleles. We also identified candidate causative mutations in these genes. The methionine defect of PDM is potentially very interesting as the strain can, in some circumstances, overproduce foul tasting H2S, a trait which likely stems from insufficient methionine catabolization. The poor adaptation of wine yeast to the grape must nitrogen environment, and the presence of defects in each lineage, open up wine strain optimization through biotechnological endeavors. PMID:23826223

  14. Assessment of watershed scale nitrogen cycling and dynamics by hydrochemical modeling

    NASA Astrophysics Data System (ADS)

    Onishi, T.; Hiramatsu, K.; Somura, H.

    2017-12-01

    Nitrogen cycling in terrestrial areas is affecting water quality and ecosystem of aquatic area such as lakes and oceans through rivers. Owing to the intensive researches on nitrogen cycling in each different type of ecosystem, we acquired rich knowledge on nitrogen cycling of each ecosystem. On the other hand, since watershed are composed of many different kinds of ecosystems, nitrogen cycling in a watershed as a complex of these ecosystems is not well quantified. Thus, comprehensive understanding of nitrogen cycling of watersheds by modelling efforts are required. In this study, we attempted to construct hydrochemical model of the Ise Bay watershed to reproduce discharge, TN, and NO3 concentration. The model is based on SWAT (Soil and Water Assessment Tools) model. As anthropogenic impacts related to both hydrological cycling and nitrogen cycling, agricultural water intake/drainage, and domestic water intake/drainage were considered. In addition, fertilizer input to agricultural lands were also considered. Calibration period and validation period are 2004-2006, and 2007-2009, respectively. As a result of calibration using 2000 times LCS (Latin Cubic Sampling) method, discharge of rivers were reproduced fairly well with NS of 0.6-0.8. In contrast, the calibration result of TN and NO3 concentration tended to show overestimate values in spite of considering parameter uncertainties. This implies that unimplemented denitrification processes in the model. Through exploring the results, it is indicated that riparian areas, and agricultural drainages might be important spots for denitrification. Based on the result, we also attempted to evaluate the impact of climate change on nitrogen cycling. Though it is fully explored, this result will also be reported.

  15. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts

    NASA Astrophysics Data System (ADS)

    Krim, Lahouari; Nourry, Sendres

    2015-06-01

    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step towards complex organic molecules production in the interstellar medium.

  16. Catalytic Isonitrile Insertions and Condensations Initiated by RNC–X Complexation

    PubMed Central

    Fleming, Fraser F.

    2014-01-01

    Isonitriles are delicately poised chemical entities capable of being coaxed to react as nucleophiles or electrophiles. Directing this tunable reactivity with metal and non-metal catalysts provides rapid access to a large array of complex nitrogenous structures ideally functionalized for medicinal applications. Isonitrile insertion into transition metal complexes has featured in numerous synthetic and mechanistic studies, leading to rapid deployment of isonitriles in numerous catalytic processes, including multicomponent reactions (MCR). Covering the literature from 1990–2014, the present review collates reaction types to highlight reactivity trends and allow catalyst comparison. PMID:25484847

  17. Pnicogen bonded complexes of PO2X (X = F, Cl) with nitrogen bases.

    PubMed

    Alkorta, Ibon; Elguero, José; Del Bene, Janet E

    2013-10-10

    An ab initio MP2/aug'-cc-pVTZ study has been carried out on complexes formed between PO2X (X = F and Cl) as the Lewis acids and a series of nitrogen bases ZN, including NH3, H2C═NH, NH2F, NP, NCH, NCF, NF3, and N2. Binding energies of these complexes vary from -10 to -150 kJ/mol, and P-N distances from 1.88 to 2.72 Å. Complexes ZN:PO2F have stronger P(...)N bonds and shorter P-N distances than the corresponding complexes ZN:PO2Cl. Charge transfer from the N lone pair through the π-hole to the P-X and P-O σ* orbitals leads to stabilization of these complexes, although charge-transfer energies can be evaluated only for complexes with binding energies less than -71 kJ/mol. Complexation of PO2X with the strongest bases leads to P···N bonds with a significant degree of covalency, and P-N distances that approach the P-N distances in the molecules PO2NC and PO2NH2. In these complexes, the PO2X molecules distort from planarity. Changes in (31)P absolute chemical shieldings upon complexation do not correlate with changes in charges on P, although they do correlate with the binding energies of the complexes. EOM-CCSD spin-spin coupling constants (1p)J(P-N) are dominated by the Fermi-contact term, which is an excellent approximation to total J. (1p)J(P-N) values are small at long distances, increase as the distance decreases, but then decrease at short P-N distances. At the shortest distances, values of (1p)J(P-N) approach (1)J(P-N) for the molecules PO2NC and PO2NH2.

  18. Synthesis, Spectroscopic, and Antimicrobial Studies on Bivalent Nickel and Copper Complexes of Bis(thiosemicrbazone)

    PubMed Central

    Chandra, Sulekh; Raizada, Smriti; Tyagi, Monika; Gautam, Archana

    2007-01-01

    A series of metal complexes of Cu(II) and Ni(II) having the general composition [M(L)X2] with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties. PMID:18273385

  19. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    PubMed

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  20. Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols

    NASA Astrophysics Data System (ADS)

    Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.

    2010-12-01

    Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in negative. The differences in the number of species and what species are identified between these two methods are important for planning future analyses of organic nitrogen compounds. In addition, these data provide new insight into the potential source of organic nitrogen in RMNP. Using the GCxGC method, 39 organic nitrogen species were detected and 20 were identified. Identified species include several types of amines and phenols. The LC/MS method identified several types of cresols, amines, and nitrates.

  1. Linked gas chromatograph-thermal energy analyzer/ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, A.; Martin, W.H.; Andresen, B.D.

    1991-05-01

    The capability of comparing a nitrogen chromatogram generated from a gas chromatograph (GC, Varian model 3400) linked to a thermal energy analyzer (TEA, Thermedics Inc. Model 610) with a total ion chromatogram (from a Finnigan-MAT Ion Trap Mass Spectrometer, ITMS) has provided a new means to screen and identifying trace levels of nitrogen-containing compounds in complex mixtures. Prior to the work described here, it has not been possible to simultaneously acquire TEA and MS data. What was needed was a viable GC-TEA/ITMS interface to combine the capabilities of both instruments. 4 figs.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, Yu. M.; Tsapkov, V. I., E-mail: vtsapkov@gmail.com; Antosyak, B. Ya.

    Nitrato-4-bromo-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper and nitrato-4-chloro-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper were synthesized and studied by X-ray diffraction. The crystals are isostructural. The coordination polyhedron of the copper atom can be described as a distorted square pyramid whose basal plane is formed by the phenolic and alcoholic oxygen atoms and the nitrogen atom of the monodeprotonated tridentate azomethine molecule and the imidazole nitrogen atom. The apex of the copper polyhedron is occupied by the oxygen atom of the nitrato group. The complexes are linked together by hydrogen bonds with the participation of the nitrato groups to form a three-dimensional framework.

  3. Sorption J-T refrigeration utilizing manganese nitride chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Lund, Alan

    1990-01-01

    The equilibrium pressures and compositions have been measured for a system of finely powdered manganese nitride and nitrogen gas at 650, 700, 800, and 850 C for various nitrogen loadings. Pressures ranged from less than 0.02 MPa at 650 C to 6.38 MPa at 850 C. Analysis of the test results has shown that under certain conditions Mn(x)N(y) could potentially be used in a triple regenerative sorption compressor refrigeration system, but the potential power savings are small compared to the increased complexity and reliability problems associated with very high temperature (above 950 C) pressurized systems.

  4. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    NASA Astrophysics Data System (ADS)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  5. On-line Analysis of Nitrogen Containing Compounds in Complex Hydrocarbon Matrixes.

    PubMed

    Ristic, Nenad D; Djokic, Marko R; Van Geem, Kevin M; Marin, Guy B

    2016-08-05

    The shift to heavy crude oils and the use of alternative fossil resources such as shale oil are a challenge for the petrochemical industry. The composition of heavy crude oils and shale oils varies substantially depending on the origin of the mixture. In particular they contain an increased amount of nitrogen containing compounds compared to the conventionally used sweet crude oils. As nitrogen compounds have an influence on the operation of thermal processes occurring in coker units and steam crackers, and as some species are considered as environmentally hazardous, a detailed analysis of the reactions involving nitrogen containing compounds under pyrolysis conditions provides valuable information. Therefore a novel method has been developed and validated with a feedstock containing a high nitrogen content, i.e., a shale oil. First, the feed was characterized offline by comprehensive two-dimensional gas chromatography (GC × GC) coupled with a nitrogen chemiluminescence detector (NCD). In a second step the on-line analysis method was developed and tested on a steam cracking pilot plant by feeding pyridine dissolved in heptane. The former being a representative compound for one of the most abundant classes of compounds present in shale oil. The composition of the reactor effluent was determined via an in-house developed automated sampling system followed by immediate injection of the sample on a GC × GC coupled with a time-of-flight mass spectrometer (TOF-MS), flame ionization detector (FID) and NCD. A novel method for quantitative analysis of nitrogen containing compounds using NCD and 2-chloropyridine as an internal standard has been developed and demonstrated.

  6. Synthesis and characterization of Ni(II) complex with 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Latifah M.; Yusoff, Siti Fairus M.; Ismail, Wafiuddin

    Nickel(II) complex have been synthesized by treating a 14-membered ring tetraaza macrocyclic compound, 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium, bromide (Me{sub 6}N{sub 4}H{sub 4})Br{sub 2} with nickel acetate in metanol. The complex was characterized using elemental analysis, Fourier Transform Infrared (FTIR), Ultraviolet-Visible (UV-Vis), and single crystal diffraction (X-ray). The nickel atom coordinates through four nitrogen atoms in the ligand. Square planar geometry has been proposed for this complex.

  7. Transport, speciation, toxicity, and treatability of highway stormwater discharged to receiving waters in Louisiana.

    DOT National Transportation Integrated Search

    2013-01-01

    Stormwater from transportation land uses is a complex heterogeneous mixture of particulate matter, nutrients (phosphorus and nitrogen), heavy metals, inorganic, and organic compounds with variations in flow and mass loadings by orders of magnitude du...

  8. LOW TEMPERATURE FORMATION OF NITROGEN-SUBSTITUTED POLYCYCLIC AROMATIC HYDROCARBONS (PANHs)—BARRIERLESS ROUTES TO DIHYDRO(iso)QUINOLINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.

    Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and thereforemore » at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.« less

  9. Plant growth promoting potential and phylogenetic characteristics of a lichenized nitrogen fixing bacterium, Enterobacter cloacae.

    PubMed

    Swamy, Chidanandamurthy Thippeswamy; Gayathri, Devaraja; Devaraja, Thimmalapura Neelakantaiah; Bandekar, Mandar; D'Souza, Stecy Elvira; Meena, Ram Murti; Ramaiah, Nagappa

    2016-12-01

    Lichens are complex symbiotic association of mycobionts, photobionts, and bacteriobionts, including chemolithotropic bacteria. In the present study, 46 lichenized bacteria were isolated by conventional and enrichment culture methods on nitrogen-free bromothymol blue (NFb) medium. Only 11 of the 46 isolates fixed nitrogen on NFb and had reduced acetylene. All these 11 isolates had also produced siderophore and 10 of them the IAA. Further, ammonia production was recorded from nine of these nitrogen fixers (NF). On molecular characterization, 16 S rRNA sequencing recorded that, nine NF belonged to Proteobacteria, within Gammaproteobacteria, and were closely related to Enterobacter sp. with a maximum similarity to Enterobacter cloacae. Each one of our NF isolates was aligned closely to Enterobacter pulveris strain E443, Cronobacter sakazakii strain PNP8 and Providencia rettgeri strain ALK058. Notably, a few strains we examined found to possess plant growth promoting properties. This is the first report of Enterobacter sp. from lichens which may be inhabit lichen thalli extrinsically or intrinsically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Globalising Synthetic Nitrogen: The Interwar Inauguration of a New Industry.

    PubMed

    Travis, Anthony S

    2017-02-01

    The most spectacular development in industrial chemistry during the early twentieth century concerned the capture of atmospheric nitrogen by the Haber-Bosch high-pressure ammonia process at the German chemical enterprise Badische Anilin- & Soda-Fabrik (BASF), of Ludwigshafen. This firm, confident that its complex process could not be readily imitated, set out to dominate the global nitrogen fertiliser market. The response was the emergence of rival high-pressure ammonia processes in Western Europe, the United States, and Japan during the 1920s. This article is an historical appreciation of the settings in which several countries, often driven by concerns over national security, were encouraged to develop and adopt non-BASF high-pressure nitrogen capture technologies. Moreover, synthetic ammonia was at the forefront of large-scale strategic self-sufficiency and state sponsored programmes in three countries - Italy, Russia, and Japan - at the very same time when the newer technologies became available. As a result, the chemical industries of these nations, under the influences of fascism, communism, and colonial modernisation projects, began moving into the top ranks.

  11. Characterization of ternary bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis?Tris) and the comparison of five crystal structures of Bis?Tris complexes*1

    NASA Astrophysics Data System (ADS)

    Inomata, Yoshie; Gochou, Yoshihiro; Nogami, Masanobu; Howell, F. Scott; Takeuchi, Toshio

    2004-09-01

    Eleven bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis-Tris:hihm): [M(hihm)(H 2O)]SO 4· nH 2O (M: Co, Ni, Cu, Zn), [MCl(hihm)]Cl· nH 2O (M: Co, Ni, Cu), and [M(HCOO)(hihm)](HCOO) (M: Co, Ni, Cu, Zn) have been prepared and characterized by using their infrared absorption and powder diffuse reflection spectra, magnetic susceptibility, thermal analysis and powder X-ray diffraction analysis. The crystal structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [Cu(hihm)(H 2O)]SO 4 ( 3), [NiCl(hihm)]Cl·H 2O ( 6), [CuCl(hihm)]Cl ( 7) and [Co(HCOO)(hihm)](HCOO) ( 8) have been determined by single crystal X-ray diffraction analysis. The crystals of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2) and [Cu(hihm)(H 2O)]SO 4 ( 3) are each orthorhombic with the space group P2 12 12 1 and Pna2 1. For both complexes, the metal atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a water molecule. [NiCl(hihm)]Cl·H 2O ( 6) is monoclinic with the space group P2 1/ n. For complex ( 6), the nickel atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a chloride ion. [CuCl(hihm)]Cl ( 7) is orthorhombic with the space group P2 12 12 1. Although in this copper(II) complex the copper atom is ligated by six atoms, it is more reasonable to think that the copper atom is in a trigonal bipyramidal geometry coordinated with five atoms: three hydroxyl oxygen atoms, a nitrogen atom and a chloride ion if the bond distances and angles surrounding the copper atom are taken into consideration. [Co(HCOO)(hihm)](HCOO) ( 8) is monoclinic with the space group P2 1. In cobalt(II) complex ( 8), the cobalt atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and an oxygen atom of a formate ion. The structure of complex ( 8) is the same as the structure of [NiCl(hihm)]Cl·H 2O ( 6) except for the formate ion coordinating instead of the chloride ion. [M(hihm)(H 2O)]SO 4·H 2O (M: Co, Zn) ( 1, 4), [CoCl(hihm)]Cl·H 2O ( 5) and [M(HCOO)(hihm)](HCOO) (M: Ni, Cu, Zn) ( 9- 11) seem to have the same structures as the structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [NiCl(hihm)]Cl·H 2O ( 6) and [Co(HCOO)(hihm)](HCOO) ( 8), respectively, judging by the results of IR and powder diffuse reflection spectra and powder X-ray diffraction analysis. Bis-Tris has coordinated to the metal atoms as a pentadentate ligand in all complexes of which the structures have been determined by single crystal X-ray diffraction analysis in this work.

  12. Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pig.

    PubMed

    Lan, Ruixia; Tran, Hoainam; Kim, Inho

    2017-03-01

    Probiotics can serve as alternatives to antibiotics to increase the performance of weaning pigs, and the intake of probiotics is affected by dietary nutrient density. The objective of this study was to evaluate the effects of a probiotic complex in different nutrient density diets on growth performance, digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pigs. From day 22 to day 42, both high-nutrient-density and probiotic complex supplementation diets increased (P < 0.05) the average daily gain. On day 42, the apparent total tract digestibility (ATTD) of dry matter, nitrogen and gross energy (GE), blood urea nitrogen concentration and NH 3 and H 2 S emissions were increased (P < 0.05) in pigs fed high-nutrient-density diets. Pigs fed probiotic complex supplementation diets had higher (P < 0.05) ATTD of GE than pigs fed non-supplemented diets. Fecal Lactobacillus counts were increased whereas Escherichia coli counts and NH 3 and H 2 S emissions were decreased (P < 0.05) in pigs fed probiotic complex supplementation diets. Interactive effects on average daily feed intake (ADFI) were observed from day 22 to day 42 and overall, where probiotic complex improved ADFI more dramatically in low-nutrient-density diets. The beneficial effects of probiotic complex (Bacillus coagulans, Bacillus licheniformis, Bacillus subtilis and Clostridium butyricum) supplementation on ADFI is more dramatic with low-nutrient-density diets. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes.

    PubMed

    Fisher, Susan H; Wray, Lewis V

    2008-01-22

    The Bacillus subtilis GlnR repressor controls gene expression in response to nitrogen availability. Because all GlnR-regulated genes are expressed constitutively in mutants lacking glutamine synthetase (GS), GS is required for repression by GlnR. Feedback-inhibited GS (FBI-GS) was shown to activate GlnR DNA binding with an in vitro electophoretic mobility shift assay (EMSA). The activation of GlnR DNA binding by GS in these experiments depended on the feedback inhibitor glutamine and did not occur with mutant GS proteins defective in regulating GlnR activity in vivo. Although stable GS-GlnR-DNA ternary complexes were not observed in the EMSA experiments, cross-linking experiments showed that a protein-protein interaction occurs between GlnR and FBI-GS. This interaction was reduced in the absence of the feedback inhibitor glutamine and with mutant GS proteins. Because FBI-GS significantly reduced the dissociation rate of the GlnR-DNA complexes, the stability of these complexes is enhanced by FBI-GS. These results argue that FBI-GS acts as a chaperone that activates GlnR DNA binding through a transient protein-protein interaction that stabilizes GlnR-DNA complexes. GS was shown to control the activity of the B. subtilis nitrogen transcription factor TnrA by forming a stable complex between FBI-GS and TnrA that inhibits TnrA DNA binding. Thus, B. subtilis GS is an enzyme with dual catalytic and regulatory functions that uses distinct mechanisms to control the activity of two different transcription factors.

  14. Investigation of the effect of cucurbit[7]uril complexation on the photophysical and acid-base properties of the antimalarial drug quinine.

    PubMed

    Mallick, Suman; Pal, Kaushik; Chandra, Falguni; Koner, Apurba L

    2016-11-09

    Host-guest complexation of mono and dicationic quinine with cucurbit[7]uril (CB7), a water-soluble macrocyclic host molecule, has been investigated. Job's plot, time-resolved anisotropy as well as concentration dependent NMR titration confirm the binding of two CB7 macrocycles with one quinine molecule. The binding affinity of dicationic quinine with CB7 is one order of magnitude higher than the binding constant of mono-cationic quinine. Such preferential binding results in one unit pK a shift in the ground-state of the quinoline ring. However, using fluorescence spectroscopy we have obtained two acid-dissociation constants, one for quinoline ring nitrogen and the other for the nitrogen of the quinuclidine moiety. In the excited state, CB7 complexation causes one unit pK a shift for the quinoline ring and 1.9 unit shift for the quinuclidine moiety. Interestingly, a large enhancement of fluorescence lifetime and anisotropy of quinine at pH 2.7 and pH 9.0 upon CB7 complexation was observed due to the restriction of conformational flexibility. Moreover, at pH 3.0, a large fluorescence enhancement of quinine due to CB7 complexation was observed and it was quite significant as compared to that of quinine in 0.1 (M) HCl without CB7. We believe that this study of quinine complexation with CB7 will reduce phototoxicity, increase bioavailability and offer an alternative standard for quantum yield measurements in an amiable condition.

  15. Synthesis, characterization, nucleic acid interactions and photoluminescent properties of methaniminium hydrazone Schiff base and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Sennappan, M.; Murali Krishna, P.; Hosamani, Amar A.; Hari Krishna, R.

    2018-07-01

    An environmental benign and efficient reaction was carried out via amine exchange and condensation reaction in water and methanol mixture (3:1) and absence of catalyst between 1-[3-(2-hydroxy benzylidene)amine)phenyl]ethanone and benzhydrazide yields methaniminium hydrazone Schiff base in high yield. The prepared ligand was structurally characterized by using single crystal XRD, elemental analysis and spectroscopy (UV-Vis, FT-IR, LC-MS and NMR) techniques. The crystal data indicates the ligand crystallizes in orthorhombic system with Pna21 space group. Further, the ligand was used in synthesis of mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes and were characterized by elemental analysis, magnetic moment and spectroscopy (UV-Vis, FT-IR and ESR) studies. The spectral data showed that ligand is coordinated to the metal ion through azomethine nitrogen and methaniminium nitrogen. The DNA binding absorption titrations reveals that, ligand, L and its metal complexes, 1-6 are avid binders to CT- DNA. The apparent binding constant values of compounds are in the order of 106 M-1. The nuclease activity of ligand, L and its metal complexes, 1-6 were investigated by gel electrophoresis method using pUC18 DNA. The photoluminescent properties of the methaniminium hydrazone ligand, L and its various metal complexes, 1-6 were investigated. The emission spectra of both ligand (L) and metal complexes (1-6) exhibits emission in the range of blue to red.

  16. Nitrogen Cycling throughout Secondary Succession following Agricultural Disturbance in North-Central Virginia

    NASA Astrophysics Data System (ADS)

    Parisien, A.; Epstein, H. E.

    2017-12-01

    While much is known about the carbon cycle during succession that follows agricultural disturbance, less understood are the dynamics of the nitrogen cycle throughout secondary succession, and how plant-available nitrogen may or may not limit vegetation transitions and net primary productivity over time. Two chronosequences at the Blandy Experimental Farm in Boyce, north-central Virginia were examined to elucidate the complexities of the nitrogen cycle over a temporal successional gradient. Each chronosequence consists of one early, one mid, and one late secondary successional field ( 15 years, 30 years, and 100 years post agricultural abandonment, respectively). Five 10x10 m plots were established in each of the 6 fields for a total of 30 plots. Total soil nitrogen (and carbon) data were collected from soils to 30 cm depth at 10-cm intervals, and net nitrogen mineralization and nitrification were estimated using an in situ soil core with anion-cation exchange resin bag technique. Previous studies of carbon cycling at this location have indicated relatively constant soil CO2 efflux of approximately 1100 g C/m2, as well as increasing net primary production and therefore net ecosystem production, with time since abandonment. In addition, soil C and N, and the soil C:N ratio have been shown to increase from the early to late successional plots. Our current study marks the first comprehensive examination of soil nitrogen dynamics including mineralization and nitrification over a successional gradient at Blandy Farm. A thorough understanding of nitrogen dynamics during secondary succession is especially important in the southeastern United States, where a large portion of previously cultivated land has been abandoned over the past century, due to advances in farming efficiency and the move westward to more fertile soils. Much of the southeastern U.S. is now undergoing secondary succession, and quality data on the dynamics of nitrogen cycling during this procession can help guide future land management decisions and carbon cycling predictions.

  17. The physiological kinetics of nitrogen and the prevention of decompression sickness.

    PubMed

    Doolette, D J; Mitchell, S J

    2001-01-01

    Decompression sickness (DCS) is a potentially crippling disease caused by intracorporeal bubble formation during or after decompression from a compressed gas underwater dive. Bubbles most commonly evolve from dissolved inert gas accumulated during the exposure to increased ambient pressure. Most diving is performed breathing air, and the inert gas of interest is nitrogen. Divers use algorithms based on nitrogen kinetic models to plan the duration and degree of exposure to increased ambient pressure and to control their ascent rate. However, even correct execution of dives planned using such algorithms often results in bubble formation and may result in DCS. This reflects the importance of idiosyncratic host factors that are difficult to model, and deficiencies in current nitrogen kinetic models. Models describing the exchange of nitrogen between tissues and blood may be based on distributed capillary units or lumped compartments, either of which may be perfusion- or diffusion-limited. However, such simplistic models are usually poor predictors of experimental nitrogen kinetics at the organ or tissue level, probably because they fail to account for factors such as heterogeneity in both tissue composition and blood perfusion and non-capillary exchange mechanisms. The modelling of safe decompression procedures is further complicated by incomplete understanding of the processes that determine bubble formation. Moreover, any formation of bubbles during decompression alters subsequent nitrogen kinetics. Although these factors mandate complex resolutions to account for the interaction between dissolved nitrogen kinetics and bubble formation and growth, most decompression schedules are based on relatively simple perfusion-limited lumped compartment models of blood: tissue nitrogen exchange. Not surprisingly, all models inevitably require empirical adjustment based on outcomes in the field. Improvements in the predictive power of decompression calculations are being achieved using probabilistic bubble models, but divers will always be subject to the possibility of developing DCS despite adherence to prescribed limits.

  18. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--discrimination of ammonium nitrate sources.

    PubMed

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Roux, Claude

    2009-06-01

    An evaluation was undertaken to determine if isotope ratio mass spectrometry (IRMS) could assist in the investigation of complex forensic cases by providing a level of discrimination not achievable utilising traditional forensic techniques. The focus of the research was on ammonium nitrate (AN), a common oxidiser used in improvised explosive mixtures. The potential value of IRMS to attribute Australian AN samples to the manufacturing source was demonstrated through the development of a preliminary AN classification scheme based on nitrogen isotopes. Although the discrimination utilising nitrogen isotopes alone was limited and only relevant to samples from the three Australian manufacturers during the evaluated time period, the classification scheme has potential as an investigative aid. Combining oxygen and hydrogen stable isotope values permitted the differentiation of AN prills from three different Australian manufacturers. Samples from five different overseas sources could be differentiated utilising a combination of the nitrogen, oxygen and hydrogen isotope values. Limited differentiation between Australian and overseas prills was achieved for the samples analysed. The comparison of nitrogen isotope values from intact AN prill samples with those from post-blast AN prill residues highlighted that the nitrogen isotopic composition of the prills was not maintained post-blast; hence, limiting the technique to analysis of un-reacted explosive material.

  19. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    PubMed Central

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  20. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    PubMed

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  1. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Eric M.; Lethbridge, Kathryn G.; Sanishvili, Ruslan

    The beta-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A beta-lactamases, the beta-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A beta-lactamase with a ruthenocene-conjugated penicillin-a 0.85 angstrom resolution structure of E166A mutant complexed with the penilloate product, a 1.30 angstrom resolution complex structure of the same mutant with the penicilloate product, and a 1.18 angstrom resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanismsmore » and product inhibition of PBPs and Class A beta-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A beta-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine.« less

  2. Unusual saccharin-N,O (carbonyl) coordination in mixed-ligand copper(II) complexes: Synthesis, X-ray crystallography and biological activity

    NASA Astrophysics Data System (ADS)

    Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed

    2017-07-01

    Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.

  3. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    PubMed Central

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  4. Complexation of rhodium(II) tetracarboxylates with aliphatic diamines in solution: 1H and 13C NMR and DFT investigations.

    PubMed

    Jaźwiński, Jarosław; Sadlej, Agnieszka

    2013-10-01

    The complexation of rhodium(II) tetraacetate, tetrakistrifluoroaceate and tetrakisoctanoate with a set of diamines (ethane-1,diamine, propane-1,3-diamine and nonane-1,9-diamine) and their N,N'-dimethyl and N,N,N',N'-tetramethyl derivatives in chloroform solution has been investigated by (1) H and (13) C NMR spectroscopy and density functional theory (DFT) modelling. A combination of two bifunctional reagents, diamines and rhodium(II) tetracarboxylates, yielded insoluble coordination polymers as main products of complexation and various adducts in the solution, being in equilibrium with insoluble material. All diamines initially formed the 2 : 1 (blue), (1 : 1)n oligomeric (red) and 1 : 2 (red) axial adducts in solution, depending on the reagents' molar ratio. Adducts of primary and secondary diamines decomposed in the presence of ligand excess, the former via unstable equatorial complexes. The complexation of secondary diamines slowed down the inversion at nitrogen atoms in NH(CH3 ) functional groups and resulted in the formation of nitrogenous stereogenic centres, detectable by NMR. Axial adducts of tertiary diamines appeared to be relatively stable. The presence of long aliphatic chains in molecules (adducts of nonane-1,9-diamines or rhodium(II) tetrakisoctanoate) increased adduct solubility. Hypothetical structures of the equatorial adduct of rhodium(II) tetraacetate with ethane-1,2-diamine and their NMR parameters were explored by means of DFT calculations. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Comparative Toxicity of Simulated Smog Atmospheres in Healthy and Allergic Mice

    EPA Science Inventory

    Effects of complex regional multipollutant mixtures on disease expression in susceptible populations are dependent on multiple exposure and susceptibility factors. Differing profiles of ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM), which are key components of s...

  6. 183. Photocopy of drawing (1965 mechanical drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    183. Photocopy of drawing (1965 mechanical drawing by Koebig & Koebig, Inc.) GASEOUS NITROGEN PURGE SYSTEM FOR THE MST, SHEET M-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. 22. DOOR CONTROL BOX AT STATION 70.5 OF MST FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DOOR CONTROL BOX AT STATION 70.5 OF MST FOR CONTROL OF SOUTH DOORS. NITROGEN PRESSURE REGULATOR ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Nodulation outer proteins: double-edged swords of symbiotic rhizobia

    USDA-ARS?s Scientific Manuscript database

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation is the result of a complex bacterial infection process, which depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial nodulation outer proteins (Nops)...

  9. Infrared defect dynamics—Nitrogen-vacancy complexes in float zone grown silicon introduced by electron irradiation

    NASA Astrophysics Data System (ADS)

    Inoue, Naohisa; Kawamura, Yuichi

    2018-05-01

    The interaction of nitrogen and intrinsic point defects, vacancy (V) and self-interstitial (I), was examined by infrared absorption spectroscopy on the electron irradiated and post-annealed nitrogen doped float zone (FZ) silicon crystal. Various absorption lines were observed, at 551 cm-1 in as-grown samples, at 726 and 778 cm-1 in as-irradiated samples (Ir group), at 689 cm-1 after post-annealing at 400 °C and above (400 °C group), at 762 and 951 cm-1 after annealing at 600 °C (600 °C group), and at 714 cm-1 up to 800 °C (800 °C group). By irradiation, a part of N2 was changed into the Ir group. VN2 is the candidate for the origin of the Ir group. By the post annealing at 400 and 600 °C, a part of N2 and the Ir group were changed into the 400 °C group, to less extent at 600 °C. V2N2 is the candidate for the origin of the 400 °C group. By annealing at 600 °C, most of the Ir group turned into 400 °C and 600 °C groups. By annealing at 800 °C, N2 recovered almost completely, and most other complexes were not observed. Recently, lifetime degradation has been observed in the nitrogen doped FZ Si annealed at between 450 and 800 °C. The N-V interaction in the same temperature range revealed here will help to understand the lifetime degradation mechanism. The behavior of the 689 cm-1 line corresponded well to the lifetime degradation.

  10. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    PubMed Central

    Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders

    2012-01-01

    Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter–protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems. PMID:22469289

  11. Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations.

    PubMed

    Menard, Aymeric; Monnez, Claire; Estrada de Los Santos, Paulina; Segonds, Christine; Caballero-Mellado, Jesus; Lipuma, John J; Chabanon, Gerard; Cournoyer, Benoit

    2007-05-01

    Burkholderia vietnamiensis is the third most prevalent species of the Burkholderia cepacia complex (Bcc) found in cystic fibrosis (CF) patients. Its ability at fixing nitrogen makes it one of the main Bcc species showing strong filiations with environmental reservoirs. In this study, 83% (29 over 35) of the B. vietnamiensis CF isolates and 100% of the environmental ones (over 29) were found expressing the dinitrogenase complex (encoded by the nif cluster) which is essential in N(2) fixation. Among the deficient strains, two were found growing with ammonium chloride suggesting that they were defective in N(2) fixation, and four with amino acids supplements suggesting that they were harbouring auxotrophic mutations. To get insights about the genetic events that led to the emergence of the N(2)-fixing defective strains, a genetic analysis of B. vietnamiensis nitrogen-fixing property was undertaken. A 40-kb-long nif cluster and nif regulatory genes were identified within the B. vietnamiensis strain G4 genome sequence, and analysed. Transposon mutagenesis and nifH genetic marker exchanges showed the nif cluster and several other genes like gltB (encoding a subunit of the glutamate synthase) to play a key role in B. vietnamiensis ability at growing in nitrogen-free media. nif cluster DNA probings of restricted genomic DNA blots showed a full deletion of the nif cluster for one of the N(2)-fixing defective strain while the other one showed a genetic organization similar to the one of the G4 strain. For 17% of B. vietnamiensis clinical strains, CF lungs appeared to have favoured the selection of mutations or deletions leading to N(2)-fixing deficiencies.

  12. Tetrabenzoporphyrin and -mono-, -cis-di- and Tetrabenzotriazaporphyrin Derivatives: Electrochemical and Spectroscopic Implications of meso CH Group Replacement with Nitrogen.

    PubMed

    van As, Adele; Joubert, Chris C; Buitendach, Blenerhassitt E; Erasmus, Elizabeth; Conradie, Jeanet; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Swarts, Jannie C

    2015-06-01

    Nonperipherally hexyl-substituted metal-free tetrabenzoporphyrin (2H-TBP, 1a) tetrabenzomonoazaporphyrin (2H-TBMAP, 2a), tetrabenzo-cis-diazaporphyrin (2H-TBDAP, 3a), tetrabenzotriazaporphyrin (2H-TBTAP, 4a), and phthalocyanine (2H-Pc, 5a), as well as their copper complexes (1b-5b), were synthesized. As the number of meso nitrogen atoms increases from zero to four, λmax of the Q-band absorption peak becomes red-shifted by almost 100 nm, and extinction coefficients increased at least threefold. Simultaneously the blue-shifted Soret (UV) band substantially decreased in intensity. These changes were related to the relative electron-density of each macrocycle expressed as the group electronegativity sum of all meso N and CH atom groups, ∑χR. X-ray photoelectron spectroscopy differentiated between the three different types of macrocyclic nitrogen atoms (the Ninner, (NH)inner, and Nmeso) in the metal-free complexes. Binding energies of the Nmeso and Ninner,Cu atoms in copper chelates could not be resolved. Copper insertion lowered especially the cathodic redox potentials, while all four observed redox processes occurred at larger potentials as the number of meso nitrogens increased. Computational chemical methods using density functional theory confirmed 1b to exhibit a Cu(II) reduction prior to ring-based reductions, while for 2b, Cu(II) reduction is the first reductive step only if the nonperipheral substituents are hydrogen. When they are methyl groups, it is the second reduction process; when they are ethyl, propyl, or hexyl, it becomes the third reductive process. Spectro-electrochemical measurements showed redox processes were associated with a substantial change in intensity of at least two main absorbances (the Q and Soret bands) in the UV spectra of these compounds.

  13. Synthesis, spectral characterization and catalytic activity of Co(II) complexes of drugs: crystal structure of Co(II)-trimethoprim complex.

    PubMed

    Madhupriya, Selvaraj; Elango, Kuppanagounder P

    2014-01-24

    New Co(II) complexes with drugs such as trimethoprim (TMP), cimetidine (CTD), niacinamide (NAM) and ofloxacin (OFL) as ligands were synthesized. The complexes were characterized by analytical analysis, various spectral techniques such as FT-IR, UV-Vis, magnetic measurements and molar conductivity. The magnetic susceptibility results coupled with the electronic spectra suggested a tetrahedral geometry for the complexes. The coordination mode of trimethoprim ligand and geometry of the complex were confirmed by single crystal X-ray studies. In this complex the metal ion possesses a tetrahedral geometry with two nitrogen atom from two TMP ligands and two chloride ions coordinated to it. The catalytic activity of the complexes in aryl-aryl coupling reaction was screened and the results indicated that among the four complexes [Co(OFL)Cl(H2O)] exhibited excellent catalytic activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Novel antibiofilm chemotherapies target nitrogen from glutamate and glutamine.

    PubMed

    Hassanov, Tal; Karunker, Iris; Steinberg, Nitai; Erez, Ayelet; Kolodkin-Gal, Ilana

    2018-05-08

    Bacteria in nature often reside in differentiated communities termed biofilms, which are an active interphase between uni-cellular and multicellular life states for bacteria. Here we demonstrate that the development of B. subtilis biofilms is dependent on the use of glutamine or glutamate as a nitrogen source. We show a differential metabolic requirement within the biofilm; while glutamine is necessary for the dividing cells at the edges, the inner cell mass utilizes lactic acid. Our results indicate that biofilm cells preserve a short-term memory of glutamate metabolism. Finally, we establish that drugs that target glutamine and glutamate utilization restrict biofilm development. Overall, our work reveals a spatial regulation of nitrogen and carbon metabolism within the biofilm, which contributes to the fitness of bacterial complex communities. This acquired metabolic division of labor within biofilm can serve as a target for novel anti-biofilm chemotherapies.

  15. Issues in system boundary definition for substance flow analysis: the case of nitrogen cycle management in Catalonia.

    PubMed

    Bartrolí, J; Martin, M J; Rigola, M

    2001-10-16

    The great complexity of the nitrogen cycle, including anthropogenic contributions, makes it necessary to carry out local studies, which allow us to identify the specific cause-effect links in a particular society. Models of local societies that are based on methods such as Substance Flow Analysis (SFA), which study and characterise the performance of metabolic exchanges between human society and the environment, are a useful tools for directing local policy towards sustainable management of the nitrogen cycle. In this paper, the selection of geographical boundaries for SFA application is discussed. Data availability and accuracy, and the possibility of linking the results with instructions for decision making, are critical aspects for proper scale selection. The experience obtained in the construction of the model for Catalonia is used to draw attention to the difficulties found in regional studies.

  16. Ecological issues related to N deposition to natural ecosystems: research needs.

    PubMed

    Adams, Mary Beth

    2003-06-01

    There has and continues to be concern about the effects of elevated nitrogen (N) deposition on natural ecosystems. In this paper, research on natural ecosystems, including wetlands, heathlands, grasslands, steppe, naturally regenerated forests and deserts, is evaluated to determine what is known about nitrogen cycling in these ecosystems, the effects of elevated nitrogen on them and to identify research gaps. Aquatic ecosystems are not included in this review, except as they are part of the larger ecosystem. Research needs fall into several categories: (1) improved understanding and quantification of the N cycle, particularly relatively unstudied processes such as dry deposition, N fixation and decomposition/mineralization; (2) carbon cycling as affected by increased N deposition; (3) effects on arid ecosystems and other "neglected" ecosystems; (4) effects on complex ecosystems and interactions with other pollutants; (5) indicators and assessment tools for natural ecosystems.

  17. Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helton, Ashley; Poole, Geoffrey C.; Meyer, Judy

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify importantmore » components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial-aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles.« less

  18. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    PubMed

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of the impacts of climate change and the need to incorporate extreme conditions in managing water environment and developing climate change adaptation and mitigation strategies.

  19. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean

    PubMed Central

    Muñoz, N; Qi, X; Li, M-W; Xie, M; Gao, Y; Cheung, M-Y; Wong, F-L; Lam, H-M

    2016-01-01

    Biological nitrogen fixation (BNF) in soybeans is a complex process involving the interplay between the plant host and the symbiotic rhizobia. As nitrogen supply has a crucial role in growth and development, higher nitrogen fixation capacity would be important to achieve bigger plants and larger seeds, which were important selection criteria during plant domestication by humans. To test this hypothesis, we monitored the nitrogen fixation-related performance in 31 cultivated and 17 wild soybeans after inoculation with the slow-growing Bradyrhizobium diazoefficiens sp. nov. USDA110 and the fast-growing Sinorhizobium (Ensifer) fredii CCBAU45436. Our results showed that, in general, cultivated soybeans gave better performance in BNF. Electron microscopic studies indicated that there was an exceptionally high accumulation of poly-β-hydroxybutyrate bodies in bacteroids in the nodules of all wild soybeans tested, suggesting that the C/N balance in wild soybeans may not be optimized for nitrogen fixation. Furthermore, we identified new quantitative trait loci (QTLs) for total ureides and total nodule fresh weight by employing a recombinant inbred population composed of descendants from a cross between a cultivated and a wild parent. Using nucleotide diversity (θπ), divergence index (Fst) and distribution of fixed single-nucleotide polymorphisms as parameters, we found that some regions in the total ureides QTL on chromosome 17 and the total nodule fresh weight QTL on chromosome 12 exhibited very low diversity among cultivated soybeans, suggesting that these were traits specially selected during the domestication and breeding process. PMID:27118154

  20. Pluto's Global Surface Composition Through Pixel-by-Pixel Hapke Modeling of New Horizons Ralph LEISA Data

    NASA Technical Reports Server (NTRS)

    Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.; hide

    2016-01-01

    On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55degN, the second dominated by nitrogen, continues south to 35 degN, and the third, com- posed again mainly of methane, reaches 20 degN. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.

  1. Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.; Binzel, R. P.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; Olkin, C. B.; Parker, A.; Singer, K. N.; Stern, A.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; New Horizons Science Team

    2017-05-01

    On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55°N, the second dominated by nitrogen, continues south to 35°N, and the third, composed again mainly of methane, reaches 20°N. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.

  2. Formation of simple nitrogen hydrides NH and NH2 at cryogenic temperatures through N + NH3→ NH + NH2 reaction: dark cloud chemistry of nitrogen.

    PubMed

    Nourry, Sendres; Krim, Lahouari

    2016-07-21

    Although NH3 molecules interacting with ground state nitrogen atoms N((4)S) seem not to be a very reactive system without providing additional energy to initiate the chemical process, we show through this study that, in the solid phase, at very low temperature, NH3 + N((4)S) reaction leads to the formation of the amidogen radical NH2. Such a dissociation reaction previously thought to occur exclusively through UV photon or energetic particle irradiation is in this work readily occurring just by stimulating the mobility of N((4)S)-atoms in the 3-10 K temperature range in the solid sample. The N((4)S)-N((4)S) recombination may be the source of metastable molecular nitrogen N2(A), a reactive species which might trigger the NH3 dissociation or react with ground state nitrogen atoms N((4)S) to form excited nitrogen atoms N((4)P/(2)D) through energy transfer processes. Based on our obtained results, it is possible to propose reaction pathways to explain the NH2 radical formation which is the first step in the activation of stable species such as NH3, a chemical induction process that, in addition to playing an important role in the origin of molecular complexity in interstellar space, is known to require external energy supplies to occur in the gas phase.

  3. Performance evaluation of the UV/H2O2 process on selected nitrogenous organic compounds: reductions of organic contents vs. corresponding C-, N-DBPs formations.

    PubMed

    Chen, Huei-Wen; Chen, Chia-Yang; Wang, Gen-Shuh

    2011-10-01

    The presence of various organic contaminants in water sources is of concern due to their direct threats to human health and potential to react with disinfectants to form carcinogenic byproducts including trihalomethanes, haloacetic acids and nitrosamines in finished water. This study applied both medium-pressure and low-pressure ultraviolet light coupled with hydrogen peroxide (UV/H2O2) to evaluate its efficacy for degradation of selected nitrogenous organic compounds and corresponding disinfection byproduct (DBP) formation. Six organic compounds were chosen as target precursors based on their nitrogen contents and molecular structures. The results showed that higher oxidation capacity resulted in better reduction of organic matters and DBP formation potentials (DBPFPs). However, insufficient contact time and oxidant doses could lead to a rise of DBPFPs in the early stages of UV/H2O2 reactions. A greater percentage removal was achieved for organic carbon than organic nitrogen after UV/H2O2 treatment, especially for compounds with complicated structure such as diltiazem. During the UV/H2O2 treatment, the intermediate products include tertiary amine, dimethyl amine (DMA) or DMA-like structures, which are N-nitrosodimethylamine (NDMA) precursors after chlorination or chloramination. Furthermore, it was observed that using dissolved organic nitrogen and DMA to predict NDMAFP could lead to biased conclusions because of the complex nature of nitrogenous matters in aqueous environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Parameterization of Nitrogen Limitation for a Dynamic Ecohydrological Model: a Case Study from the Luquillo Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Bras, R. L.

    2017-12-01

    Feedbacks between vegetation and the soil nutrient cycle are important in ecosystems where nitrogen limits plant growth, and consequently influences the carbon balance in the plant-soil system. However, many biosphere models do not include such feedbacks, because interactions between carbon and the nitrogen cycle can be complex, and remain poorly understood. In this study we coupled a nitrogen cycle model with an eco-hydrological model by using the concept of carbon cost economics. This concept accounts for different "costs" to the plant of acquiring nitrogen via different pathways. This study builds on tRIBS-VEGGIE, a spatially explicit hydrological model coupled with a model of photosynthesis, stomatal resistance, and energy balance, by combining it with a model of nitrogen recycling. Driven by climate and spatially explicit data of soils, vegetation and topography, the model (referred to as tRIBS-VEGGIE-CN) simulates the dynamics of carbon and nitrogen in the soil-plant system; the dynamics of vegetation; and different components of the hydrological cycle. The tRIBS-VEGGIE-CN is applied in a humid tropical watershed at the Luquillo Critical Zone Observatory (LCZO). The region is characterized by high availability and cycling of nitrogen, high soil respiration rates, and large carbon stocks.We drive the model under contemporary CO2 and hydro-climatic forcing and compare results to a simulation under doubling CO2 and a range of future climate scenarios. The results with parameterization of nitrogen limitation based on carbon cost economics show that the carbon cost of the acquisition of nitrogen is 14% of the net primary productivity (NPP) and the N uptake cost for different pathways vary over a large range depending on leaf nitrogen content, turnover rates of carbon in soil and nitrogen cycling processes. Moreover, the N fertilization simulation experiment shows that the application of N fertilizer does not significantly change the simulated NPP. Furthermore, an experiment with doubling of the CO2 concentration level shows a significant increase of the NPP and turnover of plant tissues. The simulation with future climate scenarios shows consistent decrease in NPP but the uncertainties in projected NPP arising from selection of climate model and scenario is large.

  5. Fluorescent probes for "off-on" highly sensitive detection of Hg²⁺ and L-cysteine based on nitrogen-doped carbon dots.

    PubMed

    Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang

    2016-05-15

    Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Two Discrete RuCp* (Cp*=Pentamethylcyclopentadienyl) Binding Modes of N-Confused Porphyrins: Peripheral π Complex and Sitting Atop Ruthenocenophane Complex by Skeletal Transformation.

    PubMed

    Yamamoto, Takaaki; Mitsuno, Koki; Mori, Shigeki; Itoyama, Shuhei; Shiota, Yoshihito; Yoshizawa, Kazunari; Ishida, Masatoshi; Furuta, Hiroyuki

    2018-05-07

    Complexation of a RuCp* cation with N-confused tetraarylporphyrins (NCPs) forms directly bound ruthenium(II) pentamethylcyclopentadienyl (Cp*) π-complex on a specific meso-aryl group (e.g., phenyl) neighboring peripheral imino nitrogen of NCPs in high yields. In contrast, in the case of NCPs bearing bulky meso-substituents (e.g., 3,5-di-tert-butylphenyl), new ruthenocenophane-like complex embedded on an N-confused calix[4]phyrin was formed through multiple C-H bond activation of methyl groups of Cp* ligand. The mechanistic insight into the formation of the ruthenocenophane was derived from DFT calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A new synthetic route to the preparation of a series of strong photoreducing agents: fac Tris-ortho-metalated complexes of iridium(III) with substituted 2-phenylpyridines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Baer, C.D.; Camaioni-Neto, C.

    1991-04-17

    A new procedure is reported for the high-yield synthesis of fac-tris-ortho-metalated complexes of Ir(III) with 2-phenylpyridine (Hppy) and with substituted 2-phenylpyridine (R-Hppy) ligands. The reported procedure uses the Ir(III) starting material Ir(acac){sub 3} (acac = 2,4-pentanedionate) and typically produces the fac-tris-ortho-metalated complexes in yields of 40-75%. Each of the complexes formed with substituted phenylpyridines exhibited a luminescence lifetime of approximately 2-5 microseconds in nitrogen-saturated acetonitrile at room temperature, and each complex is characterized by a reversible oxidative wave in cyclic voltammetry in acetonitrile. 42 refs., 1 fig., 1 tab.

  8. A DFT based analysis of adsorption of Hg2+ ion on chitosan monomer and its citralidene and salicylidene derivatives: Prior to the removal of Hg toxicity.

    PubMed

    Hassan, Basila; Rajan, Vijisha K; Mujeeb, V M Abdul; K, Muraleedharan

    2017-06-01

    A Density functional theory based study of adsorption of the toxic metal Hg (II) ion by chitosan monomer and two of its derivatives; citralidene and salicylidene chitosan, has been performed. The effect of structural features on the stability of studied complexes has been analyzed by using Gaussian03 software package. All the possible conformations of these adsorbents were studied using the global minimum geometries. All the adsorbing sites were studied by placing the metal ion on the centroid of the atoms and the stable conformer of the adsorbent-metal ion complex was identified. Interaction between Hg (II) and the adsorbents is found to be electrostatic. Metal ion binding with nitrogen atom is stronger than that with oxygen atoms in all the cases as the charge density of nitrogen is enhanced on Schiff base formation. The advantage of derivatives over chitosan monomer is their stability in acidic media. ΔE value of the complexes are in the order SC-Hg (II)>chitosan-Hg (II)>CC-Hg (II) which indicates that the stability of complexes increases with increase in energy gap. The study reveals that aromatic Schiff base derivatives of chitosan is better for Hg(II) intake than aliphatic derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile - Marine sources and diagenetic effects.

    PubMed

    Lucassen, Friedrich; Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A

    2017-01-01

    Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture.

  10. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile – Marine sources and diagenetic effects

    PubMed Central

    Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A.

    2017-01-01

    Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture. PMID:28594902

  11. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex

    NASA Astrophysics Data System (ADS)

    Falcone, Marta; Chatelain, Lucile; Scopelliti, Rosario; Živković, Ivica; Mazzanti, Marinella

    2017-07-01

    Molecular nitrogen (N2) is cheap and widely available, but its unreactive nature is a challenge when attempting to functionalize it under mild conditions with other widely available substrates (such as carbon monoxide, CO) to produce value-added compounds. Biological N2 fixation can do this, but the industrial Haber-Bosch process for ammonia production operates under harsh conditions (450 degrees Celsius and 300 bar), even though both processes are thought to involve multimetallic catalytic sites. And although molecular complexes capable of binding and even reducing N2 under mild conditions are known, with co-operativity between metal centres considered crucial for the N2 reduction step, the multimetallic species involved are usually not well defined, and further transformation of N2-binding complexes to achieve N-H or N-C bond formation is rare. Haber noted, before an iron-based catalyst was adopted for the industrial Haber-Bosch process, that uranium and uranium nitride materials are very effective heterogeneous catalysts for ammonia production from N2. However, few examples of uranium complexes binding N2 are known, and soluble uranium complexes capable of transforming N2 into ammonia or organonitrogen compounds have not yet been identified. Here we report the four-electron reduction of N2 under ambient conditions by a fully characterized complex with two UIII ions and three K+ centres held together by a nitride group and a flexible metalloligand framework. The addition of H2 and/or protons, or CO to the resulting complex results in the complete cleavage of N2 with concomitant N2 functionalization through N-H or N-C bond-forming reactions. These observations establish that a molecular uranium complex can promote the stoichiometric transformation of N2 into NH3 or cyanate, and that a flexible, electron-rich, multimetallic, nitride-bridged core unit is a promising starting point for the design of molecular complexes capable of cleaving and functionalizing N2 under mild conditions.

  12. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities.

    PubMed

    Oliveira, Catarina S S; Silva, Carlos E; Carvalho, Gilda; Reis, Maria A

    2017-07-25

    Production of polyhydroxyalkanoates (PHAs) by open mixed microbial cultures (MMCs) has been attracting increasing interest as an alternative technology to PHA production by pure cultures, due to the potential for lower costs associated with the use of open systems (eliminating the requirement for sterile conditions) and the utilisation of cheap feedstock (industrial and agricultural wastes). Such technology relies on the efficient selection of an MMC enriched in PHA-accumulating organisms. Fermented cheese whey, a protein-rich complex feedstock, has been used previously to produce PHA using the feast and famine regime for selection of PHA accumulating cultures. While this selection strategy was found efficient when operated at relatively low organic loading rate (OLR, 2g-CODL -1 d -1 ), great instability and low selection efficiency of PHA accumulating organisms were observed when higher OLR (ca. 6g-CODL -1 d -1 ) was applied. High organic loading is desirable as a means to enhance PHA productivity. In the present study, a new selection strategy was tested with the aim of improving selection for high OLR. It was based on uncoupling carbon and nitrogen supply and was implemented and compared with the conventional feast and famine strategy. For this, two selection reactors were fed with fermented cheese whey applying an OLR of ca. 8.5g-CODL -1 (with 3.8g-CODL -1 resulting from organic acids and ethanol), and operated in parallel under similar conditions, except for the timing of nitrogen supplementation. Whereas in the conventional strategy nitrogen and carbon substrates were added simultaneously at the beginning of the cycle, in the uncoupled substrates strategy, nitrogen addition was delayed to the end of the feast phase (i.e. after exogenous carbon was exhausted). The two different strategies selected different PHA-storing microbial communities, dominated by Corynebacterium and a Xantomonadaceae, respectively with the conventional and the new approaches. The new strategy originated a more efficient PHA-production process than the conventional one (global PHA productivity of 6.09g-PHAL -1 d -1 and storage yield of 0.96 versus 2.55g-PHAL -1 d -1 and 0.86, respectively). Dissociation between the feast to famine length ratio (F/F) and storage efficiency was shown to be possible with the new strategy, allowing selection of an efficient PHA-storing culture with complex feedstock under high organic loading rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Formation of amino acids and nucleic acid constituents from simulated primitive planetary atmospheres by irradiation with high-energy protons

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Yamanashi, H.; Ohashi, A.; Kaneko, T.; Miyakawa, S.; Saito, T.

    It is suggested that primitive Earth atmosphere was only slightly reduced, which w as composed of carbon dioxide, carbon monoxide, nitrogen and water. It has been shown that bioorganic compounds can be hardly formed by energies as UV light, heat and spark discharges. We therefore examined possible formation pat hways of bioorganic compounds in the primitive E arth. A mixt ure of carbon monoxide, nitrogen and water was irradiated with high-energy prot ons generated by a van de Graaff accelerator, whi c h simulated an action of cosm ic rays. Aqueous solution of the product was hydr olyzed, and then analyzed by chromatography and mass spectrometry. A wide variety of amino acids and uracil, one of the nucle ic acid bases, wer e identified. Ribose, the RNA sugar, has not been identified, but formation of reducing polyols was suggested. A mino acids and uracil were also formed from a mixture of carbo n dioxide, carbon monoxide, nitrogen and water, and their yields correlated to the ratio of carbon monoxide and nitrogen in the mixture. Since a certain percentage of carbon monoxide could be expected to be in it [1], cosmic radiation can be regarded as an effective energ so urce for prebiotic formation of life's building blocks in they primitive Earth [2]. In the conventional scenario of chemical evolution, amino acids were formed in t he primitive ocean from such intermediates as HCN an d HCHO formed in t he atmosphere. T his scenario seem s not to be possible due to the following reasons: (1) The irradiation products were quit e complex organic com pound s whose molecular weights were ca. 1000, and they gave amino acids after hydrolysis. (2) Energy yields of amino ac ids in the hydrolysates were comparable to those of HCN and HCHO in the irradiation pro duct s. (3) Irradiation products from a mixture of carbon monoxide and nitrogen without water als o gave amino acids aft er hydrolysis. T hes e observations strongly sugge s t e d that complex precursors of bioor ganic com poun ds could be formed directly in the atmosphere. A new scenario of chemical evolution via complex organics toward the origin of life will be prop o s e d. [1] J. Kasting, Origins Life Evol. Biosph ere, 20, 199 (1990). [2] K. Kobay ashi , et al., Origins Life Evol. Biosphere, 28, 155 (1998). * Present address: Rensselaer Polytechnic Ins titut e.

  14. MICROWAVE-ASSISTED SYNTHESIS OF NITROGEN AND OXYGEN CONTAINING HETEROCYCLES IN AQUEOUS MEDIUM

    EPA Science Inventory

    Pharmaceutical scientists are required to generate diverse arrays of complex targets in short periods of time. A primary driver of organic chemistry is, therefore, the development of efficient and environmentally benign synthetic protocols. This can be achieved via the selection ...

  15. 167. Photocopy of drawing (1979 piping drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    167. Photocopy of drawing (1979 piping drawing by Stearns-Roger Incorporated) HELIUM AND NITROGEN PUMPING SYSTEMS PIPING PLAN, SHEET 511-P8 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. EPA Research Highlights: Minimizing SO3 Emissions from Coal-Fired Power Plants

    EPA Science Inventory

    There have been substantial reductions in emissions of particulate matter, nitrogen oxides, and sulfur dioxide through the application of control technologies and strategies. The installation of control technologies has added to the complexity of coal-fired boilers and their ope...

  17. 146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. Spatial variability in denitrification rates in an Oregon tidal salt marsh

    EPA Science Inventory

    Modeling denitrification (DeN) is particularly challenging in tidal systems, which play a vital role in buffering adjacent coastal waters from nitrogen inputs. These systems are hydrologically and biogeochemically complex, varying on fine temporal and spatial scales. As part of a...

  19. 166. Photocopy of drawing (1979 piping drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    166. Photocopy of drawing (1979 piping drawing by Stearns-Roger Incorporated) HELIUM AND NITROGEN PUMPING SYSTEMS FLOW DIAGRAM, SHEET 511-P6 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Effects of Isoprene- and Toluene-Generated Smog on Allergic Inflammation in Mice

    EPA Science Inventory

    Reactions of organic compounds with nitric oxide (NO) and sunlight produce complex mixtures of pollutants including secondary organic aerosol (SOA), ozone (O3), nitrogen dioxide (NO2), and reactive aldehydes. The health effects of these photochemical smog mixtures in susceptible ...

  1. A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes

    DOE PAGES

    Wang, Jie; Wu, Zexing; Han, Lili; ...

    2017-03-07

    Here, we develop a simple one-pot synthetic strategy for the general preparation of nitrogen doped carbon supported metal/metal oxides (Co@CoO/NDC, Ni@NiO/NDC and MnO/NDC) derived from the complexing function of (ethylenediamine)tetraacetic acid (EDTA). EDTA serves not only as a resource to tune the morphology in terms of the complexation constant for M–EDTA, but also as a nitrogen and oxygen source for nitrogen doping and metal oxide formation, respectively. When the materials are used as electrocatalysts for the oxygen electrode reaction, Co@CoO/NDC-700 and MnO/NDC-700 show superior electrocatalytic activity towards the oxygen reduction reaction (ORR), while Co@CoO/NDC-700 and Ni@NiO/NDC-700 exhibit excellent oxygen evolutionmore » reaction (OER) activities. Taken together, the resultant Co@CoO/NDC-700 exhibits the best catalytic activity with favorable reaction kinetics and durability as a bi-functional catalyst for the ORR and OER, which is much better than the other two catalysts, Pt/C and Ir/C. Moreover, as an air electrode for a homemade zinc–air battery, Co@CoO/NDC-700 shows superior cell performance with a highest power density of 192.1 mW cm -2, the lowest charge–discharge overpotential and high charge–discharge durability over 100 h.« less

  2. On the Surface Formation of NH3 and HNCO in Dark Molecular Clouds - Searching for Wöhler Synthesis in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Fedoseev, Gleb; Lamberts, Thanja; Linnartz, Harold; Ioppolo, Sergio; Zhao, Dongfeng

    Despite its potential to reveal the link between the formation of simple species and more complex molecules (e.g., amino acids), the nitrogen chemistry of the interstellar medium (ISM) is still poorly understood. Ammonia (NH _{3}) is one of the few nitrogen-bearing species that have been observed in interstellar ices toward young stellar objects (YSOs) and quiescent molecular clouds. The aim of the present work is to experimentally investigate surface formation routes of NH _{3} and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant cryogenic temperatures. This study focuses on the formation of NH _{3} and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in interstellar dark cloud regions, well before thermal and energetic processing start to become predominant. Our work confirms the surface formation of ammonia through the sequential addition of three hydrogen/deuterium atoms to a single nitrogen atom at low temperature. The H/D fractionation of the formed ammonia is also shown. Furthermore, we show the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH _{3}. Finally, we discuss the implications of HNCO in astrobiology, as a possible starting point for the formation of more complex prebiotic species.

  3. Hydrogen Cyanide In Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore

    2018-01-01

    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  4. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    PubMed

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  5. Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation.

    PubMed

    Pappas, Iraklis; Chirik, Paul J

    2016-10-03

    The hydrogenolysis of titanium-nitrogen bonds in a series of bis(cyclopentadienyl) titanium amides, hydrazides and imides by proton coupled electron transfer (PCET) is described. Twelve different N-H bond dissociation free energies (BDFEs) among the various nitrogen-containing ligands were measured or calculated, and effects of metal oxidation state and N-ligand substituent were determined. Two metal hydride complexes, (η 5 -C 5 Me 5 )(py-Ph)Rh-H (py-Ph = 2-pyridylphenyl, [Rh]-H) and (η 5 -C 5 R 5 )(CO) 3 Cr-H ([Cr] R -H, R= H, Me) were evaluated for formal H atom transfer reactivity and were selected due to their relatively weak M-H bond strengths yet ability to activate and cleave molecular hydrogen. Despite comparable M-H BDFEs, disparate reactivity between the two compounds was observed and was traced to the vastly different acidities of the M-H bonds and overall redox potentials of the molecules. With [Rh]-H, catalytic syntheses of ammonia, silylamine and N,N-dimethylhydrazine have been accomplished from the corresponding titanium(IV) complex using H 2 as the stoichiometric H atom source. The data presented in this study provides the thermochemical foundation for the synthesis of NH 3 by proton coupled electron transfer at a well-defined transition metal center.

  6. Supramolecular assemblies of a nitrogen-embedded buckybowl dimer with C60† †Electronic supplementary information (ESI) available. CCDC 1579079 and 1579080. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04453d

    PubMed Central

    Yokoi, Hiroki; Sakamaki, Daisuke; Seki, Shu

    2017-01-01

    A directly connected azabuckybowl dimer was synthesized via a palladium-catalysed C–H/C–Br coupling. The electron-donating nature of the pyrrolic nitrogen atoms of the azabuckybowl enabled a strong complexation with pristine C60. In the presence of two equivalents of C60, the azabuckybowl dimer formed crystals with a 1 : 2 stoichiometry. Conversely, in diluted solution, complexes with a 1 : 1 stoichiometry of the dimer and C60 were detected predominantly, and these precipitated upon increasing the concentration of C60. Scanning electron microscopy images of the precipitate showed fibre-like aggregates, indicating the formation of supramolecular assemblies with 1D chain structures. A variable-temperature 1H NMR analysis revealed that the precipitate consists of the dimer and C60 in a 1 : 1 ratio. PMID:29629149

  7. Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions.

    PubMed

    Gou, Changlong; Wang, Yuqiong; Zhang, Xiqing; Lou, Yujie; Gao, Yunhang

    2017-11-01

    The objective was to determine the effects of psychrotrophic-thermophilic complex microbial agent (PTCMA) comprised of a psychrotrophic bacterium consortium (PBC) and a thermophilic cellulolytic fungi consortium (TCFC), on composting in a cold climate. Mixtures of dairy manure and rice straw were inoculated with PTCMA, PBC, TCFC and sterile water (control) and composted at an initial ambient temperatures of -2 to 5°C. In compost piles inoculated with PBC or PTCMA, temperatures reached the thermophilic phase (>55°C) faster (8-11d) than piles inoculated with TCFC or control. Furthermore, compost inoculated with TCFC or PTCMA had greater decreases in total organic carbon and carbon-to-nitrogen ratios, as well as significant increases in total nitrogen, degradation of cellulose and lignin and germination index than PBC inoculation or Control compost. Consequently, inoculation with both (i.e. PTCMA) accelerated the onset and promoted maturity of composting under cold-climate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preparation and Optoelectronic Characteristics of ZnO/CuO-Cu2O Complex Inverse Heterostructure with GaP Buffer for Solar Cell Applications

    PubMed Central

    Hsu, Chih-Hung; Chen, Lung-Chien; Lin, Yi-Feng

    2013-01-01

    This study reports the optoelectronic characteristics of ZnO/GaP buffer/CuO-Cu2O complex (COC) inverse heterostructure for solar cell applications. The GaP and COC layers were used as buffer and absorber in the cell structure, respectively. An energy gap widening effect and CuO whiskers were observed as the copper (Cu) layer was exerted under heat treatment for oxidation at 500 °C for 10 min, and arose from the center of the Cu2O rods. For preparation of the 30 nm-thick GaP buffer by sputtering from GaP target, as the nitrogen gas flow rate increased from 0 to 2 sccm, the transmittance edge of the spectra demonstrated a blueshift form 2.24 to 3.25 eV. Therefore, the layer can be either GaP, GaNP, or GaN by changing the flow rate of nitrogen gas. PMID:28788341

  9. Diamonds from Orapa Mine show a clear subduction signature in SIMS stable isotope data

    NASA Astrophysics Data System (ADS)

    Chinn, Ingrid L.; Perritt, Samantha H.; Stiefenhofer, Johann; Stern, Richard A.

    2018-05-01

    Spatially resolved analyses reveal considerable isotopic heterogeneity within and among diamonds ranging in size from 0.15 to 4.75 mm from the Orapa Mine, Botswana. The isotopic data are interpreted in conjunction with nitrogen aggregation state data and growth zone relationships from cathodoluminescence images. The integrated information confirms that a distinct diamond growth event (with low IaAB nitrogen aggregation states, moderately high nitrogen contents and δ13C and δ15N values compatible with average mantle values) is younger than the dominant population(s) of Type IaAB diamonds and cores of composite diamonds with more negative and positive δ13C and δ15N values, respectively. A significant proportion of the older diamond generation has high nitrogen contents, well outside the limit sector relationship, and these diamonds are likely to reflect derivation from subducted organic matter. Diamonds with low δ13C values combined with high nitrogen contents and positive δ15N values have not been previously widely recognised, even in studies of diamonds from Orapa. This may have been caused by prior analytical bias towards inclusion-bearing diamonds that are not necessarily representative of the entire range of diamond populations, and because of average measurements from heterogeneous diamonds measured by bulk combustion methods. Two distinct low nitrogen/Type II microdiamond populations were recognised that do not appear to continue into the macrodiamond sizes in the samples studied. Other populations, e.g. those containing residual singly-substituted nitrogen defects, range in size from small microdiamonds to large macrodiamonds. The total diamond content of the Orapa kimberlite thus reflects a complex assortment of multiple diamond populations.

  10. Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota.

    PubMed

    Dahal, Bibha; NandaKafle, Gitanjali; Perkins, Lora; Brözel, Volker S

    2017-01-01

    Biological Nitrogen Fixation is critical for ecosystem productivity. Select members of Bacteria and Archaea express a nitrogenase enzyme complex that reduces atmospheric nitrogen to ammonia. Several nitrogen fixing bacteria form symbiotic associations with plants, but free-living diazotrophs also contribute a substantial amount of nitrogen to ecosystems. The aim of this study was to isolate and characterize free-living diazotrophs in arid lands of South Dakota Badlands. Samples were obtained from sod tables and the surrounding base in spring and fall. Diazotrophs were isolated on solid nitrogen free medium (NFM) under hypoxic conditions, and their16S rRNA and nifH genes sequenced. nifH was also amplified directly from soil DNA extracts. The 16S rRNA gene data indicated a diversity of putative free-living diazotrophs across 4 phyla (Actinomycetes, Proteobacteria, Bacteroidetes, and Firmicutes), but ∼50% of these clustered with Streptomyces. These Streptomyces isolates grew in liquid NFM in an ammonia-depleted environment. Only 5 of these yielded a nifH gene product using the PolF/PolR primer set. Four of these aligned with nifH of the cyanobacteria Scytonema and Nostoc, and the other one aligned with nifH of Bradyrhizobium. Six selected Streptomyces isolates, three of which were nifH positive by PCR, all indicated 15 N 2 incorporation, providing strong support of nitrogen fixation. All nifH amplicons from soil DNA extract resembled Cyanobacteria. This is the first known report of diazotrophic Streptomyces, other than the thermophilic, autotrophic S. thermoautotrophicus. nifH genes of these Streptomyces were related to those from Cyanobacteria. It is possible that the cyanobacteria-like nifH amplicons obtained from soil DNA were associated with Streptomyces. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Novel FeII and CoII Complexes of Natural Product Tryptanthrin: Synthesis and Binding with G-Quadruplex DNA

    PubMed Central

    Zhong, Yi-ning; Zhang, Yan; Gu, Yun-qiong; Wu, Shi-yun; Shen, Wen-ying

    2016-01-01

    Tryptanthrin is one of the most important members of indoloquinoline alkaloids. We obtained this alkaloid from Isatis. Two novel FeII and CoII complexes of tryptanthrin were first synthesized. Single-crystal X-ray diffraction analyses show that these complexes display distorted four-coordinated tetrahedron geometry via two heterocyclic nitrogen and oxygen atoms from tryptanthrin ligand. Binding with G-quadruplex DNA properties revealed that both complexes were found to exhibit significant interaction with G-quadruplex DNA. This study may potentially serve as the basis of future rational design of metal-based drugs from natural products that target the G-quadruplex DNA. PMID:27698647

  12. Hybrid copper complex-derived conductive patterns printed on polyimide substrates

    NASA Astrophysics Data System (ADS)

    Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho

    2012-06-01

    We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.

  13. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekshmy, R. K., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com; Thara, G. S., E-mail: lekshmyulloor@gmail.com, E-mail: tharapradeepkumar@yahoo.com

    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all themore » complexes.« less

  14. Late Stage Azidation of Complex Molecules

    PubMed Central

    2016-01-01

    Selective functionalization of complex scaffolds is a promising approach to alter the pharmacological profiles of natural products and their derivatives. We report the site-selective azidation of benzylic and aliphatic C–H bonds in complex molecules catalyzed by the combination of Fe(OAc)2 and a PyBox ligand. The same system also catalyzes the trifluoromethyl azidation of olefins to form derivatives of natural products containing both fluorine atoms and azides. In general, both reactions tolerate a wide range of functional groups and occur with predictable regioselectivity. Azides obtained by functionalization of C–H and C=C bonds were converted to the corresponding amines, amides, and triazoles, thus providing a wide variety of nitrogen-containing complex molecules. PMID:27800554

  15. Hampton roads regional Water-Quality Monitoring Program

    USGS Publications Warehouse

    Porter, Aaron J.; Jastram, John D.

    2016-12-02

    IntroductionHow much nitrogen, phosphorus, and suspended solids are contributed by the highly urbanized areas of the Hampton Roads region in Virginia to Chesapeake Bay? The answer to this complex question has major implications for policy decisions, resource allocations, and efforts aimed at restoring clean waters to Chesapeake Bay and its tributaries. To quantify the amount of nitrogen, phosphorus, and suspended solids delivered to the bay from this region, the U.S. Geological Survey has partnered with the Hampton Roads Sanitation District (HRSD), in cooperation with the Hampton Roads Planning District Commission (HRPDC), to conduct a water-quality monitoring program throughout the Hampton Roads region.

  16. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli

    DTIC Science & Technology

    2012-10-22

    glucose uptake and glycolytic end product consumption are carried out by  the  same  enzyme   complex  (the  phosphotransferase  system),  regulation  of...this  enzyme   by  nitrogen  availability enables substantial changes in glycolytic flux without significant changes in glycolytic intermediate...insights  into  nutrient  coordination  in  E.  coli.  By  combining  LC‐MS‐based  metabolomics with genetics  ( enzyme  knockouts and point mutants

  17. Landscape-scale food webs of fish nursery habitat along a river-coast mixing zone

    EPA Science Inventory

    We used carbon and nitrogen stable isotope analysis to study connections between allochthonous energy use and ecological connectivity of fish larvae in a complex coastal mosaic. We quantified fish larvae support by autochthonous and allochthonous material in three coastal river-w...

  18. 266. Photocopy of drawing (1979 piping drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    266. Photocopy of drawing (1979 piping drawing by Stearns-Roger Incorporated) PIPING PLAN FOR HELIUM AND NITROGEN PUMPING SYSTEMS, SHEET 501-P17 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  20. 238. Photocopy of drawing (1958 piping drawing by the Ralph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    238. Photocopy of drawing (1958 piping drawing by the Ralph M. Parsons Company) NITROGEN FLOW DIAGRAM FOR THE LSB, SHEET P3 OF 36 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. 265. Photocopy of drawing (1979 piping drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    265. Photocopy of drawing (1979 piping drawing by Stearns-Roger Incorporated) FLOW DIAGRAM FOR HELIUM AND NITROGEN PUMPING SYSTEMS, SHEET 501-P16 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Ligational behavior of clioquinol antifungal drug towards Ag(I), Hg(II), Cr(III) and Fe(III) metal ions: Synthesis, spectroscopic, thermal, morphological and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Refat, Moamen S.

    2015-04-01

    This article presents a synthesis, characterization, theoretical and biological (anti-bacterial, and anti-fugal) evaluation studies of Ag(I), Hg(II), Cr(III) and Fe(III) complexes of clioquinol (CQ) drug ligand. Structures of the titled complexes cited herein were discussed using elemental analyses and spectral measurements e.g., IR, 1H NMR, and electronic studies. The results confirmed the formation of the clioquinol complexes by three molar ratios (1:1) for Ag(I), (1:2) for Hg(II) and (1:3) for both Cr(III) and Fe(III) metal ions. The clioquinol reacts as a bidentate chelate bound to all respected metal ions through the oxygen and nitrogen of quinoline-8-ol. The metal(II) ions coordinated to clioquinol ligand through deprotonation of sbnd OH terminal group. Infrared and 1H NMR spectral data confirm that coordination is via the oxygen of phenolic group and nitrogen atom of quinoline moiety. The molar conductance measurements of the CQ complexes in DMSO correspond to be non-electrolyte nature. Thus, these complexes may be formulated as [Ag(CQ)(H2O)2] H2O, [Hg(CQ)2]ṡ2H2O, [Cr(CQ)3] and [Fe(CQ)3]H2O. The Coats-Redfern method, the kinetic thermodynamic parameters like activation energies (E∗), entropies (ΔS∗), enthalpies (ΔH∗), and Gibbs free energies (ΔG∗) of the thermal decomposition reactions have been deduced from thermogravimetric curves (TG) with helpful of differential thermo gravimetric (DTG) curves. The narrow size distribution in nano-scale range for the clioquinol complexes have been discussed using X-ray powder diffraction (XRD), scanning electron microscope (SEM), and X-ray energy dispersive spectrometer (EDX) analyzer.

  3. Herschel Observations of Extraordinary Sources: Analysi sof the HIFI 1.2 THz Wide Spectral Survey toward Orion KL II. Chemical Implications

    NASA Astrophysics Data System (ADS)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Favre, C.; Blake, G. A.; Herbst, E.; Anderson, D. E.; Hassel, G. E.

    2015-06-01

    We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH3CN, C2H3CN, C2H5CN, and NH2CHO systematically trace hotter gas than the oxygen bearing organics CH3OH, C2H5OH, CH3OCH3, and CH3OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (Tkin ∼ 300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales ≳105 years, with several species being underpredicted by less than 3σ. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules that also contain oxygen (i.e., SO, SO2, and OCS) tend to probe the hottest gas toward Orion KL, indicating the formation pathways for these species are most efficient at high temperatures. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Present-day Galactic Evolution: Low-metallicity, Warm, Ionized Gas Inflow Associated with High-velocity Cloud Complex A

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex. S.; Madsen, G. J.; Duncan, A. K.

    2012-12-01

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin Hα Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s-1 in the local standard of rest reference frame. These observations include the first full Hα intensity map of Complex A across (\\mathit {l, b}) = (124{^\\circ }, 18{^\\circ }) to (171°, 53°) and deep targeted observations in Hα, [S II] λ6716, [N II] λ6584, and [O I] λ6300 toward regions with high H I column densities, background quasars, and stars. The Hα data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 106 M ⊙. We find that the Bland-Hawthorn & Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 104 K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  5. PRESENT-DAY GALACTIC EVOLUTION: LOW-METALLICITY, WARM, IONIZED GAS INFLOW ASSOCIATED WITH HIGH-VELOCITY CLOUD COMPLEX A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.

    2012-12-20

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin H{alpha} Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map of Complex A across (l, b) = (124 Degree-Sign , 18 Degree-Sign ) to (171 Degree-Sign , 53 Degree-Sign ) and deep targeted observationsmore » in H{alpha}, [S II] {lambda}6716, [N II] {lambda}6584, and [O I] {lambda}6300 toward regions with high H I column densities, background quasars, and stars. The H{alpha} data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 10{sup 6} M{sub Sun }. We find that the Bland-Hawthorn and Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 10{sup 4} K or for gas with a high fraction of singly ionized nitrogen and sulfur.« less

  6. Crystal Structures of Covalent Complexes of [beta]-Lactam Antibiotics with Escherichia coli Penicillin-Binding Protein 5: Toward an Understanding of Antibiotic Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicola, George; Tomberg, Joshua; Pratt, R.F.

    Penicillin-binding proteins (PBPs) are the molecular targets for the widely used {beta}-lactam class of antibiotics, but how these compounds act at the molecular level is not fully understood. We have determined crystal structures of Escherichia coli PBP 5 as covalent complexes with imipenem, cloxacillin, and cefoxitin. These antibiotics exhibit very different second-order rates of acylation for the enzyme. In all three structures, there is excellent electron density for the central portion of the {beta}-lactam, but weak or absent density for the R1 or R2 side chains. Areas of contact between the antibiotics and PBP 5 do not correlate with themore » rates of acylation. The same is true for conformational changes, because although a shift of a loop leading to an electrostatic interaction between Arg248 and the {beta}-lactam carboxylate, which occurs completely with cefoxitin and partially with imipenem and is absent with cloxacillin, is consistent with the different rates of acylation, mutagenesis of Arg248 decreased the level of cefoxitin acylation only 2-fold. Together, these data suggest that structures of postcovalent complexes of PBP 5 are unlikely to be useful vehicles for the design of new covalent inhibitors of PBPs. Finally, superimposition of the imipenem-acylated complex with PBP 5 in complex with a boronic acid peptidomimetic shows that the position corresponding to the hydrolytic water molecule is occluded by the ring nitrogen of the {beta}-lactam. Because the ring nitrogen occupies a similar position in all three complexes, this supports the hypothesis that deacylation is blocked by the continued presence of the leaving group after opening of the {beta}-lactam ring.« less

  7. A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

    PubMed Central

    Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. PMID:24146630

  8. Field- and Remote Sensing-based Structural Attributes Measured at Multiple Scales Influence the Relationship Between Nitrogen and Reflectance of Forest Canopies

    NASA Astrophysics Data System (ADS)

    Sullivan, F.; Ollinger, S. V.; Palace, M. W.; Ouimette, A.; Sanders-DeMott, R.; Lepine, L. C.

    2017-12-01

    The correlation between near-infrared reflectance and forest canopy nitrogen concentration has been demonstrated at varying scales using a range of optical sensors on airborne and satellite platforms. Although the mechanism underpinning the relationship is unclear, at its basis are biologically-driven functional relationships of multiple plant traits that affect canopy chemistry and structure. The link between near-infrared reflectance and canopy nitrogen has been hypothesized to be partially driven by covariation of canopy nitrogen with canopy structure. In this study, we used a combination of airborne LiDAR data and field measured leaf and canopy chemical and structural traits to explore interrelationships between canopy nitrogen, near-infrared reflectance, and canopy structure on plots at Bartlett Experimental Forest in the White Mountain National Forest, New Hampshire. Over each plot, we developed a 1-meter resolution canopy height profile and a 1-meter resolution canopy height model. From canopy height profiles and canopy height models, we calculated a set of metrics describing the plot-level variability, breadth, depth, and arrangement of LiDAR returns. This combination of metrics was used to describe both vertical and horizontal variation in structure. In addition, we developed and measured several field-based metrics of leaf and canopy structure at the plot scale by directly measuring the canopy or by weighting leaf-level metrics by species leaf area contribution. We assessed relationships between leaf and structural metrics, near-infrared reflectance and canopy nitrogen concentration using multiple linear regression and mixed effects modeling. Consistent with our hypothesis, we found moderately strong links between both near-infrared reflectance and canopy nitrogen concentration with LiDAR-derived structural metrics, and we additionally found that leaf-level metrics scaled to the plot level share an important role in canopy reflectance. We suggest that canopy structure has a governing role in canopy reflectance, reducing maximum potential reflectance as structural complexity increases, and therefore also influences the relationship between canopy nitrogen and NIR reflectance.

  9. Variation in Virus Symptom Development and Root Architecture Attributes at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato Plants Grown with or without Nitrogen

    PubMed Central

    Villordon, Arthur Q.; Clark, Christopher A.

    2014-01-01

    It has been shown that virus infections, often symptomless, significantly limit sweetpotato productivity, especially in regions characterized by low input agricultural systems. In sweetpotatoes, the successful emergence and development of lateral roots (LRs), the main determinant of root architecture, determines the competency of adventitious roots to undergo storage root initiation. This study aimed to investigate the effect of some plant viruses on root architecture attributes during the onset of storage root initiation in ‘Beauregard’ sweetpotatoes that were grown with or without the presence of nitrogen. In two replicate experiments, virus-tested plants consistently failed to show visible symptoms at 20 days regardless of nitrogen treatment. In both experiments, the severity of symptom development among infected plants ranged from 25 to 118% when compared to the controls (virus tested plants grown in the presence of nitrogen). The presence of a complex of viruses (Sweet potato feathery mottle virus, Sweet potato virus G, Sweet potato virus C, and Sweet potato virus 2) was associated with 51% reduction in adventitious root number among plants grown without nitrogen. The effect of virus treatments on first order LR development depended on the presence or absence of nitrogen. In the presence of nitrogen, only plants infected with Sweet potato chlorotic stunt virus showed reductions in first order LR length, number, and density, which were decreased by 33%, 12%, and 11%, respectively, when compared to the controls. In the absence of nitrogen, virus tested and infected plants manifested significant reductions for all first order LR attributes. These results provide evidence that virus infection directly influences sweetpotato yield potential by reducing both the number of adventitious roots and LR development. These findings provide a framework for understanding how virus infection reduces sweetpotato yield and could lead to the development of novel strategies to mitigate virus effects on sweetpotato productivity. PMID:25243579

  10. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and CO2

    PubMed Central

    Johnson, Ian R.; Thornley, John H. M.; Frantz, Jonathan M.; Bugbee, Bruce

    2010-01-01

    Background and Aims The distribution of photosynthetic enzymes, or nitrogen, through the canopy affects canopy photosynthesis, as well as plant quality and nitrogen demand. Most canopy photosynthesis models assume an exponential distribution of nitrogen, or protein, through the canopy, although this is rarely consistent with experimental observation. Previous optimization schemes to derive the nitrogen distribution through the canopy generally focus on the distribution of a fixed amount of total nitrogen, which fails to account for the variation in both the actual quantity of nitrogen in response to environmental conditions and the interaction of photosynthesis and respiration at similar levels of complexity. Model A model of canopy photosynthesis is presented for C3 and C4 canopies that considers a balanced approach between photosynthesis and respiration as well as plant carbon partitioning. Protein distribution is related to irradiance in the canopy by a flexible equation for which the exponential distribution is a special case. The model is designed to be simple to parameterize for crop, pasture and ecosystem studies. The amount and distribution of protein that maximizes canopy net photosynthesis is calculated. Key Results The optimum protein distribution is not exponential, but is quite linear near the top of the canopy, which is consistent with experimental observations. The overall concentration within the canopy is dependent on environmental conditions, including the distribution of direct and diffuse components of irradiance. Conclusions The widely used exponential distribution of nitrogen or protein through the canopy is generally inappropriate. The model derives the optimum distribution with characteristics that are consistent with observation, so overcoming limitations of using the exponential distribution. Although canopies may not always operate at an optimum, optimization analysis provides valuable insight into plant acclimation to environmental conditions. Protein distribution has implications for the prediction of carbon assimilation, plant quality and nitrogen demand. PMID:20861273

  11. Five Conditions Commonly Used to Down-regulate Tor Complex 1 Generate Different Physiological Situations Exhibiting Distinct Requirements and Outcomes*

    PubMed Central

    Tate, Jennifer J.; Cooper, Terrance G.

    2013-01-01

    Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc13 localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc13 localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal. PMID:23935103

  12. Pyyromethene-BF2 Complexes as Laser Dyes

    DTIC Science & Technology

    1990-05-24

    pyrromethene S1 state via exciplex formation, a pro- cess well known for polyamines [20], was not incompatible with the available information... exciplex formation [21]. Strong fluorescence in a bidentate BF 2 complex with nitrogen and/or oxygen atoms as ligand term’ini was afforded by P-BF2...M. Gordon and W. R. Ware, Eds., "The Exciplex ," Academic Press, New York, 1975. [21] M. E. Huston, K. W. Haider, and A. W. Czarnik, J. Amer. Chem. Soc

  13. The prokaryotic enhancer binding protein NTRC has an ATPase activity which is phosphorylation and DNA dependent.

    PubMed Central

    Austin, S; Dixon, R

    1992-01-01

    The prokaryotic activator protein NTRC binds to enhancer-like elements and activates transcription in response to nitrogen limitation by catalysing open complex formation by sigma 54 RNA polymerase holoenzyme. Formation of open complexes requires the phosphorylated form of NTRC and the reaction is ATP dependent. We find that NTRC has an ATPase activity which is activated by phosphorylation and is strongly stimulated by the presence of DNA containing specific NTRC binding sites. Images PMID:1534752

  14. Determination of nitrogen balance in agroecosystems.

    PubMed

    Sainju, Upendra M

    2017-01-01

    Nitrogen balance in agroecosystems provides a quantitative framework of N inputs and outputs and retention in the soil that examines the sustainability of agricultural productivity and soil and environmental quality. Nitrogen inputs include N additions from manures and fertilizers, atmospheric depositions including wet and dry depositions, irrigation water, and biological N fixation. Nitrogen outputs include N removal in crop grain and biomass and N losses through leaching, denitrification, volatilization, surface runoff, erosion, gas emissions, and plant senescence. Nitrogen balance, which is the difference between N inputs and outputs, can be reflected in changes in soil total (organic + inorganic) N during the course of the experiment duration due to N immobilization and mineralization. While increased soil N retention and mineralization can enhance crop yields and decrease N fertilization rate, reduced N losses through N leaching and gas emissions (primarily NH 4 and NO x emissions, out of which N 2 O is a potent greenhouse gas) can improve water and air quality. •This paper discusses measurements and estimations (for non-measurable parameters due to complexity) of all inputs and outputs of N as well as changes in soil N storage during the course of the experiment to calculate N balance.•The method shows N flows, retention in the soil, and losses to the environment from agroecosystems.•The method can be used to measure agroecosystem performance and soil and environmental quality from agricultural practices.

  15. Overexpression of a glutamine synthetase gene affects growth and development in sorghum.

    PubMed

    Urriola, Jazmina; Rathore, Keerti S

    2015-06-01

    Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.

  16. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Andrade, D. P. P.; da Silveira, E. F.; Alcantara, K. F.; Boduch, P.; Rothard, H.

    2018-02-01

    The radiolysis of 10:1 nitrogen:acetone mixture, condensed at 11 K, by 40 MeV 58Ni11 + ions is studied. These results are representative of studies concerning Solar system objects, such as transneptunian objects, exposed to cosmic rays. Bombardment by cosmic rays triggers chemical reactions leading to synthesis of larger molecules. In this work, destruction cross-sections of acetone and nitrogen molecules in solid phase are determined and compared with those for pure acetone. The N2 column density decreases very fast indicating that, under irradiation, nitrogen leaves quickly a porous sample. The most abundant molecular species formed in the radiolysis are C3H6, C2H6, N3, CO, CH4 and CO2. Some N-bearing species are also formed, but with low production yield. Dissolving acetone in nitrogen decreases the formation cross-sections of CH4, CO2 and H2CO, while increases those for CO and C2H6 species. This fact may explain the presence of C2H6 in Pluto's surface where CH4 is not pure, but diluted in an N2 matrix. The formation of more complex molecules, such as HNCO and, possibly, glycine is observed, suggesting the formation of small prebiotic species in objects beyond Neptune from acetone diluted in a N2 matrix irradiated by cosmic rays.

  17. Temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy field at Kelantan, Malaysia.

    PubMed

    Hussain, Hazilia; Yusoff, Mohd Kamil; Ramli, Mohd Firuz; Abd Latif, Puziah; Juahir, Hafizan; Zawawi, Mohamed Azwan Mohammed

    2013-11-15

    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.

  18. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction.

    PubMed

    Liang, Jingwen; Hassan, Mehboob; Zhu, Dongsheng; Guo, Liping; Bo, Xiangjie

    2017-03-15

    Nitrogen-doped graphene (N/GR) has been considered as active metal-free electrocatalysts for oxygen reduction reaction (ORR). However, the nitrogen (N) doping efficiency is very low and only few N atoms are doped into the framework of GR. To boost the N doping efficiency, in this work, a confined pyrolysis method with high N doping efficiency is used for the preparation of cobalt nanoparticles/nitrogen-doped GR (Co/N/GR). Under the protection of SiO 2 , the inorganic ligand NH 3 in cobalt amine complex ([Co(NH 3 ) 6 ] 3+ ) is trapped in the confined space and then can be effectively doped into the framework of GR without the introduction of any carbon residues. Meanwhile, due to the redox reaction between the cobalt ions and carbon atoms of GR, Co nanoparticles are supported into the framework of N/GR. Due to prevention of GR layer aggregation with SiO 2 , the Co/N/GR with high dispersion provides sufficient surface area and maximum opportunity for the exposure of Co nanoparticles and active sites of N dopant. By combination of enhanced N doping efficiency, Co nanoparticles and high dispersion of GR sheets, the Co/N/GR is remarkably active, cheap and selective noble-metal free catalysts for ORR. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii▿†

    PubMed Central

    Hamilton, Trinity L.; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S.; Dos Santos, Patricia C.; Setubal, João C.; Bryant, Donald A.; Dean, Dennis R.; Peters, John W.

    2011-01-01

    Most biological nitrogen (N2) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandiicultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N2fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N2fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo. PMID:21724999

  20. Stability, speciation and spectral properties of NpO2+ complexes with pyridine monocarboxylates in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dumpala, Rama Mohana Rao; Rawat, Neetika; Tomar, B. S.

    2017-06-01

    Neptunyl ion as NpO2+ is the least reacting and most mobile radioactive species among all the actinides. The picolinic acid used for decontamination is co-disposed along with the radioactive waste. Thus, in long term storage of HLW, there is high possibility of interaction of actinides and long lived fission products with the picolinate and can cause migration. The complexation of NpO2+ with the three structural isomers of pyridine monocarboxylates provides an insight to explore the role of hetero atom (nitrogen) with respect to key binding moiety (carboxylate). In the present study, the log β values, speciation and spectral properties of NpO2+ complexes with pyridine monocarboxylates viz. picolinate, nicotinate and isonicotinate, have been studied at 298 K in 0.1 M NaClO4 medium using spectrophotometry. The complexation reactions involving protonated ligands are always accompanied by protonation/deprotonation process; thus, the protonation constants of all the three pyridine monocarboxylates under same conditions were also determined by potentiometry. The spectrophotometric data analysis for complexation of NpO2+ with pyridine monocarboxylates indicated the presence of ML and ML2 complexes with log β values of 2.96 ± 0.04, 5.67 ± 0.08 for picolinate, 1.34 ± 0.09, 1.65 ± 0.12 for nicotinate and 1.52 ± 0.04, 2.39 ± 0.06 for isonicotinate. The higher values of log β for picolinate were attributed to chelation while in other two isomers, the binding is through carboxylate group only. Density Functional Theory (DFT) calculations were carried out to get optimized geometries and electrostatic charges on various atoms of the complexes and free pyridine monocarboxylates to support the experimental data. The higher stability of NpO2+ nicotinate and isonicotinate complexes compared to simple carboxylates and the difference in log β between the two is due to the charge polarization from unbound nitrogen to the bound carboxylate oxygen atoms.

  1. Bimetallic lanthanide amido complexes as highly active initiators for the ring-opening polymerization of lactides.

    PubMed

    Sun, Song; Nie, Kun; Tan, Yufang; Zhao, Bei; Zhang, Yong; Shen, Qi; Yao, Yingming

    2013-02-28

    A series of neutral bimetallic lanthanide amido complexes supported by rigid phenylene bridged bis(β-diketiminate) ligands were synthesized, and their catalytic behavior for the polymerization of L-lactide and rac-lactide was explored. The amine elimination reaction of Ln[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with PARA-H(2), [PARA-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(para-phenylene)] in a 2:1 molar ratio in THF at 25 °C afforded the corresponding bimetallic lanthanide amido complexes PARA-{Ln[N(SiMe(3))(2)](2)}(2) [Ln = Nd(1), Sm(2), Y(3)] in high isolated yields. Similar reaction of Nd[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with META-H(2), [META-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(meta-phenylene)] at 90 °C in toluene for about 48 h gave META-{Nd[N(SiMe(3))(2)](2)}(2) (4). Complexes 1-4 were well characterized by elemental analysis, IR spectroscopy, and their definitive structures were confirmed by an X-ray crystal structure analysis. The coordination environment and coordination geometry around the metal atoms are similar in these complexes. Each of the metal atoms is four-coordinated with two nitrogen atoms from the N,N-chelating β-diketiminate unit, and two nitrogen atoms from two (Me(3)Si)(2)N- groups to form a distorted tetrahedron. These complexes can serve as highly active initiators for L-lactide polymerization in toluene. In addition, they also showed high activity towards rac-lactide polymerization in THF at room temperature, giving heterotactic-enriched polymers (P(r) ≈ 0.70), and complex 4 displays obviously higher activity in comparison with complex 1.

  2. The simulated effects of wastewater-management actions on the hydrologic system and nitrogen-loading rates to wells and ecological receptors, Popponesset Bay Watershed, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.

    2013-01-01

    The discharge of excess nitrogen into Popponesset Bay, an estuarine system on western Cape Cod, has resulted in eutrophication and the loss of eel grass habitat within the estuaries. Septic-system return flow in residential areas within the watershed is the primary source of nitrogen. Total Maximum Daily Loads (TMDLs) for nitrogen have been assigned to the six estuaries that compose the system, and local communities are in the process of implementing the TMDLs by the partial sewering, treatment, and disposal of treated wastewater at wastewater-treatment facilities (WTFs). Loads of waste-derived nitrogen from both current (1997–2001) and future sources can be estimated implicitly from parcel-scale water-use data and recharge areas delineated by a groundwater-flow model. These loads are referred to as “instantaneous” loads because it is assumed that the nitrogen from surface sources is delivered to receptors instantaneously and that there is no traveltime through the aquifer. The use of a solute-transport model to explicitly simulate the transport of mass through the aquifer from sources to receptors can improve implementation of TMDLs by (1) accounting for traveltime through the aquifer, (2) avoiding limitations associated with the estimation of loads from static recharge areas, (3) accounting more accurately for the effect of surface waters on nitrogen loads, and (4) determining the response of waste-derived nitrogen loads to potential wastewater-management actions. The load of nitrogen to Popponesset Bay on western Cape Cod, which was estimated by using current sources as input to a solute-transport model based on a steady-state flow model, is about 50 percent of the instantaneous load after about 7 years of transport (loads to estuary are equal to loads discharged from sources); this estimate is consistent with simulated advective traveltimes in the aquifer, which have a median of 5 years. Model-calculated loads originating from recharge areas reach 80 percent of the instantaneous load within 30 years; this result indicates that loads estimated from recharge areas likely are reasonable for estimating current instantaneous loads. However, recharge areas are assumed to remain static as stresses and hydrologic conditions change in response to wastewater-management actions. Sewering of the Popponesset Bay watershed would not change hydraulic gradients and recharge areas to receptors substantially; however, disposal of wastewater from treatment facilities can change hydraulic gradients and recharge areas to nearby receptors, particularly if the facilities are near the boundary of the recharge area. In these cases, nitrogen loads implicitly estimated by using current recharge areas that do not accurately represent future hydraulic stresses can differ significantly from loads estimated with recharge areas that do represent those stresses. Nitrogen loads to two estuaries in the Popponesset Bay system estimated by using recharge areas delineated for future hydrologic conditions and nitrogen sources were about 3 and 9 times higher than loads estimated by using current recharge areas; for this reason, reliance on static recharge areas can present limitations for effective TMDL implementation by means of a hypothetical, but realistic, wastewater-management action. A solute-transport model explicitly represents nitrogen transport from surface sources and does not rely on the use of recharge areas; because changes in gradients resulting from wastewater-management actions are accounted for in transport simulations, they provide more reliable predictions of future nitrogen loads. Explicitly representing the mass transport of nitrogen can better account for the mechanisms by which nitrogen enters the estuary and improve estimates of the attenuation of nitrogen concentrations in fresh surface waters. Water and associated nitrogen can enter an estuary as either direct groundwater discharge or as surface-water inflow. Two estuaries in the Popponesset Bay watershed receive surface-water inflows: Shoestring Bay receives water from the Santuit River, and the tidal reach of the Mashpee River receives water (and associated nitrogen) from the nontidal reach of the Mashpee River. Much of the water discharging into these streams passes through ponds prior to discharge. The additional attenuation of nitrogen in groundwater that has passed through a pond and discharged into a stream prior to entering an estuary is about 3 kilograms per day. Advective-transport times in the aquifer generally are small—median traveltimes are about 4.5 years—and nitrogen loads at receptors respond quickly to wastewater-management actions. The simulated decreases in nitrogen loads were 50 and 80 percent of the total decreases within 5 and 15 years, respectively, after full sewering of the watershed and within 3 and 10 years, for sequential phases of partial sewering and disposal at WTFs. The results show that solute-transport models can be used to assess the responses of nitrogen loads to wastewater-management actions, and that loads at ecological receptors (receiving waters—ponds, streams or coastal waters—that support ecosystems) will respond within a few years to those actions. The responses vary for individual receptors as functions of hydrologic setting, traveltimes in the aquifer, and the unique set of nitrogen sources representing current and future wastewater-disposal actions within recharge areas. Changes in nitrogen loads from groundwater discharge to individual estuaries range from a decrease of 90 percent to an increase of 80 percent following sequential phases of hypothetical but realistic wastewater-management actions. The ability to explicitly represent the transport of mass through the aquifer allows for the evaluation of complex responses that include the effects of surface waters, traveltimes, and complex changes in sources. Most of the simulated decreases in nitrogen loads to Shoestring Bay and the tidal portion of the Mashpee River, 79 and 69 percent, respectively, were caused by decreases in the nitrogen loads from surface-water inflow.

  3. Insights on the interaction of Zn2 + cation with triazoles: Structures, bonding, electronic excitation and applications

    NASA Astrophysics Data System (ADS)

    Dahmani, R.; Ben Yaghlane, S.; Boughdiri, S.; Mogren Al-Mogren, M.; Prakash, M.; Hochlaf, M.

    2018-03-01

    At present, we investigate the structures, the stability, the bonding and the spectroscopy of the Zn2 +-triazole complexes (Zn2 +-Tz), which are subunits of triazolate based porous materials and Zn-enzymes. This theoretical work is performed using ab initio methods and density functional theory (DFT) where dispersion correction is included. Through these benchmarks, we establish the ability and reliability of M05-2X + D3 and PBE0 + D3 functionals for the correct description of Zn2 +-Tz bond since these DFTs lead to close agreement with post Hartree-Fock methods. Therefore, M05-2X + D3 and PBE0 + D3 functionals are recommended for the characterization of larger organometallic complexes formed by Zn and N-rich linkers. For Zn2 +-Tz, we found two stable σ-type complexes: (i) a planar structure where Zn2 + links to unprotonated nitrogen and (ii) an out-of-plane cluster where carbon interacts with Zn2 +. The most stable isomers consist on a coordinated covalent bond between the lone pair of unprotonated nitrogen and the vacant 4 s orbital of Zn2 +. The roles of covalent interactions within these complexes are discussed after vibrational, NBO, NPA charges and orbital analyses. The bonding is dominated by charge transfer from Zn2 + to Tz and intramolecular charge transfer, which plays a vital role for the catalytic activity of these complexes. These findings are important to understand, at the microscopic level, the structure and the bonding within triazolate based macromolecular porous materials and Zn-enzymes.

  4. Effect of low temperature baking in nitrogen on the performance of a niobium superconducting radio frequency cavity

    DOE PAGES

    Dhakal, Pashupati; Chetri, Santosh; Balachandran, Shreyas; ...

    2018-03-08

    Here, we report the rf performance of a single-cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 °C with a nitrogen partial pressure of ~25 mTorr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N 2-treated at 120 °C and at 140 °C, showed no degradation in accelerating gradient, however themore » accelerating gradient was reduced by ~25% with a 160 °C N 2 treatment, compared to the baseline tests after electropolishing. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb 2O 5, NbO and NbN (1-x)O x within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.« less

  5. Effect of low temperature baking in nitrogen on the performance of a niobium superconducting radio frequency cavity

    NASA Astrophysics Data System (ADS)

    Dhakal, Pashupati; Chetri, Santosh; Balachandran, Shreyas; Lee, Peter J.; Ciovati, Gianluigi

    2018-03-01

    We report the rf performance of a single cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120 - 160 °C with a nitrogen partial pressure of ˜25 m Torr . This increase in quality factor as well as the Q -rise phenomenon (anti-Q -slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N2 -treated at 120 °C and at 140 °C showed no degradation in accelerating gradient, however the accelerating gradient was reduced by ˜25 % with a 160 °C N2 treatment, compared to the baseline tests after electropolishing. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb2O5 , NbO and NbN(1 -x )Ox within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.

  6. Effect of low temperature baking in nitrogen on the performance of a niobium superconducting radio frequency cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhakal, Pashupati; Chetri, Santosh; Balachandran, Shreyas

    Here, we report the rf performance of a single-cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 °C with a nitrogen partial pressure of ~25 mTorr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N 2-treated at 120 °C and at 140 °C, showed no degradation in accelerating gradient, however themore » accelerating gradient was reduced by ~25% with a 160 °C N 2 treatment, compared to the baseline tests after electropolishing. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb 2O 5, NbO and NbN (1-x)O x within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.« less

  7. THE EFFECTS OF TYPE II BINDING ON METABOLIC STABILITY AND BINDING AFFINITY IN CYTOCHROME P450 CYP3A4

    PubMed Central

    Peng, Chi-Chi; Pearson, Josh T.; Rock, Dan A.; Joswig-Jones, Carolyn A.; Jones, Jeffrey P.

    2010-01-01

    One goal in drug design is to decrease clearance due to metabolism. It has been suggested that a compound’s metabolic stability can be increased by incorporation of a sp2 nitrogen into an aromatic ring. Nitrogen incorporation is hypothesized to increase metabolic stability by coordination of nitrogen to the heme iron (termed type II binding). However, questions regarding binding affinity, metabolic stability, and how metabolism of type II binders occurs remain unanswered. Herein, we use pyridinyl quinoline-4-carboxamide analogs to answer these questions. We show that type II binding can have a profound influence on binding affinity for CYP3A4, and the difference in binding affinity can be as high as 1,200 fold. We also find that type II binding compounds can be extensively metabolized, which is not consistent with the dead-end complex kinetic model assumed for type II binders. Two alternate kinetic mechanisms are presented to explain the results. The first involves a rapid equilibrium between the type II bound substrate and a metabolically oriented binding mode. The second involves direct reduction of the nitrogen-coordinated heme followed by oxygen binding. PMID:20346909

  8. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis.

    PubMed

    Tsai, Wen-Tien; Lee, Mei-Kuei; Chang, Jeng-Hung; Su, Ting-Yi; Chang, Yuan-Ming

    2009-05-01

    In this study, gas chromatography-mass spectrometry (GC-MS) was used to analyze the pyrolytic bio-oils and gas fractions derived from the pyrolysis of industrial sewage sludges using induction-heating technique. The liquid products were obtained from the cryogenic condensation of the devolatilization fraction in a nitrogen atmosphere using a heating rate of 300 degrees C/min ranging from 25 to 500 degrees C. The analytical results showed that the pyrolysis bio-oils were very complex mixtures of organic compounds and contained a lot of nitrogenated and/or oxygenated compounds such as aliphatic hydrocarbons, phenols, pyridines, pyrroles, amines, ketones, and so on. These organic hydrocarbons containing nitrogen and/or oxygen should originate from the protein and nucleic acid textures of the microbial organisms present in the sewage sludge. The non-condensable devolatilization fractions were also composed of nitrogenated and oxygenated compounds, but contained small fractions of phenols, 1H-indoles, and fatty carboxylic acids. On the other hand, the compositions in the non-condensable gas products were principally carbon dioxide, carbon monoxide and methane analyzed by gas chromatography-thermal conductivity detector (GC-TCD).

  9. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development.

    PubMed

    Vymazal, Jan

    2013-09-15

    The hybrid systems were developed in the 1960s but their use increased only during the late 1990 s and in the 2000s mostly because of more stringent discharge limits for nitrogen and also more complex wastewaters treated in constructed wetlands (CWs). The early hybrid CWs consisted of several stages of vertical flow (VF) followed by several stages of horizontal flow (HF) beds. During the 1990 s, HF-VF and VF-HF hybrid systems were introduced. However, to achieve higher removal of total nitrogen or to treat more complex industrial and agricultural wastewaters other types of hybrid constructed wetlands including free water surface (FWS) CWs and multistage CWs have recently been used as well. The survey of 60 hybrid constructed wetlands from 24 countries reported after 2003 revealed that hybrid constructed wetlands are primarily used on Europe and in Asia while in other continents their use is limited. The most commonly used hybrid system is a VF-HF constructed wetland which has been used for treatment of both sewage and industrial wastewaters. On the other hand, the use of a HF-VF system has been reported only for treatment of municipal sewage. Out of 60 surveyed hybrid systems, 38 have been designed to treat municipal sewage while 22 hybrid systems were designed to treat various industrial and agricultural wastewaters. The more detailed analysis revealed that VF-HF hybrid constructed wetlands are slightly more efficient in ammonia removal than hybrid systems with FWS CWs, HF-VF systems or multistage VF and HF hybrid CWs. All types of hybrid CWs are comparable with single VF CWs in terms of NH4-N removal rates. On the other hand, CWs with FWS units remove substantially more total nitrogen as compared to other types of hybrid constructed wetlands. However, all types of hybrid constructed wetlands are more efficient in total nitrogen removal than single HF or VF constructed wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Sandeep, E-mail: sipusukhn@gmail.com; Sharma, Amrish; Mudahar, Isha, E-mail: isha@pbi.ac.in

    First principle calculations based on density functional theory were performed to calculate the structural and electronic properties of C{sub 20}-N{sub m}@C{sub n} dimer complexes. The calculated binding energies of the complexes formed are comparable to C{sub 60} dimer which ensures their stability. The bond lengths of these dimer complexes were found to be nearly same as pure complexes C{sub 20}-C{sub n}. Further, nitrogen (N) atoms were encapsulated inside the secondary cage (C{sub n}) of dimer complexes and the number of N atoms depends on diameter of the cage. The HOMO-LUMO gaps of new proposed complexes indicate the increase in gapmore » as compared to pure complexes. Mulliken charge analysis of these complexes has been studied which shows the significant charge transfer from the N atoms to the secondary cage of these complexes. The study propose the formation of the new dimer complexes which are stable and are able to encapsulate atoms which are otherwise reactive in free space.« less

  11. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  12. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  13. Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control

    PubMed Central

    Schauries, Marie; Kaczmarek, Adrian; Franz-Wachtel, Mirita; Du, Wei; Krug, Karsten; Maček, Boris; Petersen, Janni

    2017-01-01

    Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division. PMID:28273166

  14. 168. Photocopy of drawing (1979 civil engineering drawing by the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    168. Photocopy of drawing (1979 civil engineering drawing by the Space and Missile Test Center, USAF) NITROGEN AND HELIUM PUMPING SYSTEM INSTALLATION SITE PLAN, SHEET 511-C-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 263. Photocopy of drawing (1977 piping drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    263. Photocopy of drawing (1977 piping drawing by Stearns-Roger Incorporated) NOAA MODIFICATION, SECTIONS FOR NITROGEN SUPPLY CABINET FOR INERTIAL MEASUREMENT UNIT, SHEET 501-P8 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)

    EPA Science Inventory

    A sulfide identification protocol was developed to quantify specific metal
    sulfides that could exist in river water. Using a series of acid additions,
    nitrogen purges, and voltammetric analyses, metal sulfides were identified and
    semiquantified in three specific gr...

  17. 58. VIEW OF SOUTHWEST SIDE OF LAUNCHER FROM ABOVE. AFRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. VIEW OF SOUTHWEST SIDE OF LAUNCHER FROM ABOVE. A-FRAME PIVOT POINT IN CENTER OF PHOTOGRAPH; NITROGEN CONTROL UNIT IN UPPER LEFT CORNER OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 269. Photocopy of drawing (1981 piping drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    269. Photocopy of drawing (1981 piping drawing by Stearns-Roger Incorporated) ATLAS H CONVERSION; PLANS, SECTIONS, AND DETAILS FOR FUEL AND NITROGEN PIPING, SHEET 517-P3 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. 140. VIEW OF CHECKOUT AREA (117), LSB (BLDG. 770), FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    140. VIEW OF CHECKOUT AREA (117), LSB (BLDG. 770), FROM AGENA TRANSFER AREA SHELTER (117A). NITROGEN TEST PANEL ON EAST WALL OF AGENA TRANSFER AREA SHELTER (117A). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 144. VIEW OF EAST WALL OF CONTROL ROOM (214), LSB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    144. VIEW OF EAST WALL OF CONTROL ROOM (214), LSB (BLDG. 751). PNEUMATIC SUPPLY PANEL ON LEFT; NITROGEN AND HELIUM PIPING AT TOP; PURGE PANEL AT BOTTOM OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. CARBON AND NITROGEN ALLOCATION MODEL FOR THE SEAGRASS THALASSIA TESTUDUNUM IN LOWER LAGUNA MADRE

    EPA Science Inventory

    Inverse modeling methods are a powerful tool for understanding complex physiological relationships between seagrasses and their environment. The power of the method is a result of using ranges of data in a system of constraints to describe the biological system, in this case, t...

  2. Nickel(II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis.

    PubMed

    Balamurugan, Mani; Mayilmurugan, Ramasamy; Suresh, Eringathodi; Palaniandavar, Mallayan

    2011-10-07

    Several mononuclear Ni(II) complexes of the type [Ni(L)(CH(3)CN)(2)](BPh(4))(2) 1-7, where L is a tetradentate tripodal 4N ligand such as N,N-dimethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L1), N,N-diethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L2), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)-N'-(pyrid-2-ylmethyl)ethane-1,2-diamine (L3), N,N-dimethyl-N',N'-bis(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine (L4), N,N-dimethyl-N',N'-bis(quinolin-2-ylmethyl)ethane-1,2-diamine (L5), tris(benzimidazol-2-ylmethyl)amine (L6) and tris(pyrid-2-ylmethyl)amine (L7), have been isolated and characterized using CHN analysis, UV-Visible spectroscopy and mass spectrometry. The single-crystal X-ray structures of the complexes [Ni(L1)(CH(3)CN)(H(2)O)](ClO(4))(2) 1a, [Ni(L2)(CH(3)CN)(2)](BPh(4))(2) 2, [Ni(L3)(CH(3)CN)(2)](BPh(4))(2) 3 and [Ni(L4)(CH(3)CN)(2)](BPh(4))(2) 4 have been determined. All these complexes possess a distorted octahedral coordination geometry in which Ni(II) is coordinated to four nitrogen atoms of the tetradentate ligands and two CH(3)CN (2, 3, 4) or one H(2)O and one CH(3)CN (1a) are located in cis positions. The Ni-N(py) bond distances (2.054(2)-2.078(3) Å) in 1a, 2 and 3 are shorter than the Ni-N(amine) bonds (2.127(2)-2.196(3) Å) because of sp(2) and sp(3) hybridizations of the pyridyl and tertiary amine nitrogens respectively. In 3 the Ni-N(im) bond (2.040(5) Å) is shorter than the Ni-N(py) bond (2.074(4) Å) due to the stronger coordination of imidazole compared with the pyridine donor. In dichloromethane/acetonitrile solvent mixture, all the Ni(ii) complexes possess an octahedral coordination geometry, as revealed by the characteristic ligand field bands in the visible region. They efficiently catalyze the hydroxylation of alkanes when m-CPBA is used as oxidant with turnover number (TON) in the range of 340-620 and good alcohol selectivity for cyclohexane (A/K, 5-9). By replacing one of the pyridyl donors in TPA by a weakly coordinating -NMe(2) or -NEt(2) donor nitrogen atom the catalytic activity decreases slightly with no change in the selectivity. In contrast, upon replacing the pyridyl nitrogen donor by the strongly σ-bonding imidazolyl or sterically demanding quinolyl/benzimidazolyl nitrogen donor, both the catalytic activity and selectivity decrease, possibly due to destabilization of the intermediate [(4N)(CH(3)CN)Ni-O˙](+) radical species. Adamantane is selectively (3°/2°, 12-17) oxidized to 1-adamantanol, 2-adamantanol and 2-adamantanone while cumene is selectively oxidized to 2-phenyl-2-propanol. In contrast to cyclohexane oxidation, the incorporation of sterically hindering quinolyl/benzimidazolyl donors around Ni(ii) leads to a high 3°/2° bond selectivity for adamantane oxidation. A linear correlation between the metal-ligand covalency parameter (β) and the turnover number has been observed.

  3. Implications of the Nitrogen Isotope Ratio in Titan's Atmosphere for the Nitrogen Ratio in Ammonia in Comets

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Mousis, O.

    2013-12-01

    The D/H ratio of water measured in solar system bodies has been established as a tool for determining the conditions under which bodies such as comets or icy moons formed. This ratio varies significantly and indicates complex thermal and chemical evolution of the solar nebula during solar system and planetary formation. Nitrogen isotope ratios also vary significantly, and in some but not all cases correlate to D/H ratios, but are poorly understood. Nitrogen in the solar nebula was primarily in the form of atomic and molecular nitrogen. The isotope ratio (14N/15N) of this reservoir is expected to be ~435 based on the ratio measured in Jupiter's atmosphere, because the atmosphere of Jupiter is made up of gas captured from the solar nebula (Owen et al., 2001). The terrestrial atmospheric ratio is 272, which is close to the ratio measured in the Earth's mantle. This may be the primordial ratio for nitrogen delivered to Earth depending on the amount of exchange between the atmosphere and the mantle and any atmospheric fractionation processes that may have influenced the ratio over time. Comets are a possible source of nitrogen in the Earth's atmosphere (Hutsmekers et al., 2009), although chondrites have also been suggested as a source (Marty, 2012). In the case of comets, nitrogen would have been essentially retained in the form of ammonia (Mousis et al., 2012), which is the most abundant form of nitrogen in comets. The nitrogen in Titan's atmosphere is expected to have originated as ammonia hydrates and converted to N2 early in Titan's history (Atreya et al., 1978). The nitrogen ratio in Titan's atmosphere is ~170, which is significantly enriched in the heavy isotope compared to the terrestrial value. We will discuss the evolution of the nitrogen ratio in Titan's atmosphere (Mandt et al., 2009), the limits of the primordial ratio in ammonia, and the implications for this ratio for the isotope ratio in ammonia in comets that should be measured by the ROSINA instrument on Rosetta in comet 67P/Churyumov-Gerasimenko (Balsiger et al., 2007). Atreya, S., et al., 1978, Science, 201, 611-613. Balsiger, H., et al., 2007, Space Science Reviews, 128, 745-801. Hutsmekers et al., 2009, Icarus, 204, 346-348. Marty, B., 2012, Earth and Planetary Science Letters, 313-314, 56-66. Mandt, K. E., et al., 2009, Planetary and Space Science, 57, 1917-1930. Mousis, O., et al., 2012, The Astrophysical Journal, 757, 146. Owen, T. et al., 2001, The Astrophysical Journal, 553, L77-L79.

  4. Coordination Chemistry of Cyclic Disilylated Germylenes and Stannylenes with Group 11 Metals

    PubMed Central

    2014-01-01

    Reactions of Et3P adducts of bissilylated germylenes and stannylenes with gold, silver, and copper cyanides led to cyanogermyl or -stannyl complexes of the respective metals. In the course of the reaction the phosphine moved to the metal, while the cyanide migrated to the low-coordinate group 14 element. The respective gold complexes were found to be monomeric, whereas the silver and copper complexes exhibited a tendency to dimerize in the solid state. Attempts to abstract the phosphine ligand with B(C6F5)3 led only to the formation of adducts with the borane coordinating to the cyanide nitrogen atom. PMID:25550678

  5. Regio-selective bromination of multiflorine and structures of 3-bromomultiflorine and its molecular complex with succinimide

    NASA Astrophysics Data System (ADS)

    Borowiak, Teresa; Kubicki, Maciej; Wysocka, Waleria; Przybył, Anna

    1998-02-01

    The regio-specific bromination of multiflorine, an alkaloid isolated from Lupinus albus is described. The bromomultiflorine and its molecular complex with succinimide have been characterized by IR and NMR spectroscopy, as well as by X-ray diffraction. The conformation in solution and in the solid state has been determined. The molecular complex formation between 3-bromomultiflorine and succinimide molecules is the first case in the class of lupine alkaloids. Both molecules of this complex are held together by an intermolecular hydrogen bond NH⋯N which leads to a conversion of alkaloid nitrogen atom configuration. As a consequence, ring C adopts a chair conformation, whereas it is in a boat form in 3-bromomultiflorine.

  6. Adenosine/guanosine-3',5'-bis-phosphates as biocompatible and selective Zn2+-ion chelators. Characterization and comparison with adenosine/guanosine-5'-di-phosphate.

    PubMed

    Sayer, Alon Haim; Blum, Eliav; Major, Dan Thomas; Vardi-Kilshtain, Alexandra; Levi Hevroni, Bosmat; Fischer, Bilha

    2015-04-28

    Although involved in various physiological functions, nucleoside bis-phosphate analogues and their metal-ion complexes have been scarcely studied. Hence, here, we explored the solution conformation of 2′-deoxyadenosine- and 2′-deoxyguanosine-3′,5′-bisphosphates, 3 and 4, d(pNp), as well as their Zn(2+)/Mg(2+) binding sites and binding-modes (i.e. inner- vs. outer-sphere coordination), acidity constants, stability constants of their Zn(2+)/Mg(2+) complexes, and their species distribution. Analogues 3 and 4, in solution, adopted a predominant Southern ribose conformer (ca. 84%), gg conformation around C4'-C5' and C5'-O5' bonds, and glycosidic angle in the anti-region (213-270°). (1)H- and (31)P-NMR experiments indicated that Zn(2+)/Mg(2+) ions coordinated to P5' and P3' groups of 3 and 4 but not to N7 nitrogen atom. Analogues 3 and 4 formed ca. 100-fold more stable complexes with Zn(2+)vs. Mg(2+)-ions. Complexes of 3 and 4 with Mg(2+) at physiological pH were formed in minute amounts (11% and 8%, respectively) vs. Zn(2+) complexes (46% and 44%). Stability constants of Zn(2+)/Mg(2+) complexes of analogues 3 and 4 (log KML(M) = 4.65-4.75/2.63-2.79, respectively) were similar to those of the corresponding complexes of ADP and GDP (log KML(M) = 4.72-5.10/2.95-3.16, respectively). Based on the above findings, we hypothesized that the unexpectedly low log K values of Zn(2+)-d(pNp) as compared to Zn(2+)-NDP complexes, are possibly due to formation of outer-sphere coordination in the Zn(2+)-d(pNp) complex vs. inner-sphere in the NDP-Zn(2+) complex, in addition to loss of chelation to N7 nitrogen atom in Zn(2+)-d(pNp). Indeed, explicit solvent molecular dynamics simulations of 1 and 3 for 100 ns supported this hypothesis.

  7. Forms of adsorption and transition states of oxidation of carbon monoxide by molecular oxygen and dissociation of nitrogen monooxide, catalyzed by monovalent copper

    NASA Astrophysics Data System (ADS)

    Ermakov, A. I.; Mashutin, V. Y.; Vishnjakov, A. V.

    With the help of the results of semiempirical (parametric method 3) and ab initio (second-order Møller-Plesset [MP2] unrestricted Hartree-Fock [UHF] 6-31G**, unrestricted density functional theory [UDFT] 6-31G** Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar [B3LYP] and UDFT LANL2DZ B3LYP) quantum-chemical calculations has been studied the complexation CO and NO with molecular hydroxide of copper(I). The influence of charge defects has been simulated by the calculations of anionic, neutral, and cationic systems. It is shown that CO and NO are mainly coordinated by nonoxygen atom on an atom of copper(I) hydroxide as one- and two-center forms. These forms are suitable for appearance of prereactionary complexes of catalytic oxidation CO by molecular oxygen and decomposition NO into atoms of nitrogen and oxygen. The corresponding prereactionary complexes for systems with participation of copper(II) hydroxide and copper(III) hydroxide are not revealed. The calculations predict inhibiting impact of copper(II) and copper(III) of the observed reactions. Computed stability of complexes CO and NO with copper(I) hydroxide and activation energy of catalytic conversion of monooxides essentially depend on an excessive charge of the system. Introduction of electron-donating additives into copper(I) hydroxide promotes rise of catalytic activity of copper(I) compound.

  8. Divalent Metal-Ion Complexes with Dipeptide Ligands Having Phe and His Side-Chain Anchors: Effects of Sequence, Metal Ion, and Anchor.

    PubMed

    Dunbar, Robert C; Berden, Giel; Martens, Jonathan K; Oomens, Jos

    2015-09-24

    Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides.

  9. The effect of hydrogen peroxide on N/P ratio and phytoplankton diversity in Vannamei shrimp (litopeneus vanname) ponds in Banyuwangi, East Java

    NASA Astrophysics Data System (ADS)

    Daruti, D. N.; Rozi; Rahayu, K.

    2018-04-01

    Abundance of plankton in a waters is influenced by environmental parameters and physiological characteristics. Complex factors support phytoplankton growth. They are light intensity, dissolved oxygen, temperature stratification, salinity and availability of nitrogen and phosphorus. Nitrogen is an important element in the formation of chlorophyll, protoplasm, protein and nucleic acids. Observation of the three ponds in North Banyuwangi (Wongsorejo, Bangsring and Bulusan) and three ponds area of South Banyuwangi (Bomo, Jatisari and Badean). The observed parameters were NH4, NO2, NO3, PO4. Hidrogen peroxide effectively improve water quality, however it has a different effect in each different area.

  10. The natural and perturbed troposphere

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.; Hameed, S.; Pinto, J.

    1978-01-01

    A quantitative assessment of the chemical and climatic effects of industrial emissions into the atmosphere requires an understanding of the complex interactions of species within the atmosphere and of the atmosphere with other physical systems such as the oceans, lithosphere, and biosphere. The concentration of a particular species is determined by competition between various production and loss processes. The abundances of tropospheric gases are examined. The reactions of the members of the oxygen group are considered along with the models which have been developed to describe the involved relationships. Attention is also given to the natural carbon cycle, perturbations to the carbon cycle, the natural nitrogen cycle, perturbations to the nitrogen cycle, the hydrogen group, the sulfur group, and the halogen group.

  11. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study

    NASA Astrophysics Data System (ADS)

    Wieder, William R.; Cleveland, Cory C.; Lawrence, David M.; Bonan, Gordon B.

    2015-04-01

    Uncertainties in terrestrial carbon (C) cycle projections increase uncertainty of potential climate feedbacks. Efforts to improve model performance often include increased representation of biogeochemical processes, such as coupled carbon-nitrogen (N) cycles. In doing so, models are becoming more complex, generating structural uncertainties in model form that reflect incomplete knowledge of how to represent underlying processes. Here, we explore structural uncertainties associated with biological nitrogen fixation (BNF) and quantify their effects on C cycle projections. We find that alternative plausible structures to represent BNF result in nearly equivalent terrestrial C fluxes and pools through the twentieth century, but the strength of the terrestrial C sink varies by nearly a third (50 Pg C) by the end of the twenty-first century under a business-as-usual climate change scenario representative concentration pathway 8.5. These results indicate that actual uncertainty in future C cycle projections may be larger than previously estimated, and this uncertainty will limit C cycle projections until model structures can be evaluated and refined.

  12. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data

    PubMed Central

    Chakraborty, Subrata; Muskatel, B. H.; Jackson, Teresa L.; Ahmed, Musahid; Levine, R. D.; Thiemens, Mark H.

    2014-01-01

    Nitrogen isotopic distributions in the solar system extend across an enormous range, from −400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ15N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ15N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula. PMID:25267643

  13. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  15. Observation of nuclear spin species conversion inside the 1593 cm -1 structure of H 2O trapped in argon matrices: Nitrogen impurities and the H 2O:N 2 complex

    NASA Astrophysics Data System (ADS)

    Pardanaud, Cédric; Vasserot, Anne-Marie; Michaut, Xavier; Abouaf-Marguin, L.

    2008-02-01

    We have investigated, at high resolution (0.03 cm -1), the 1593 cm -1 structure observed in the IR absorption spectrum of water trapped in solid argon doped with nitrogen. It exhibits a doublet at 1592.59 ± 0.05 and 1593.08 ± 0.05 cm -1 and a line centered at 1592.93 ± 0.05 cm -1. The central component, which increases irreversibly upon annealing and when the concentration is increased, is due to the proton acceptor submolecule of the H 2O dimer, as mentioned in the literature. The doublet is assigned to the H 2O:N 2 complex. After a fast cooling of the sample from 20 to 4 K, the low frequency line of the doublet decreases with time and the high frequency one increases, the total integrated absorption increasing slightly. The ratio of the integrated intensities between the low frequency component and the high frequency one reaches a constant limit of 0.5 ± 0.1 at infinite time. This time behavior, perfectly exponential with a time constant τ of about 680 min, is reproducible. As the nitrogen molecule cannot rotate in an argon substitutional site, and as the H 2O submolecule seems to preserve somewhat its identity, this is interpreted as nuclear spin species conversion between ortho and para states of the H 2O submolecule within the complex. The order of magnitude of the energy difference between the ortho and para lowest levels, about 5 cm -1, is too weak to imply any, even very hindered, rotational motion of H 2O, but it could be the energy range of a tunneling effect. When the temperature is increased, the two components coalesce at 25 K into a single symmetrical line pointing at 1593.3 cm -1 and the conversion time shortens dramatically. An Arrhenius plot leads to a weak activation energy of the conversion process (about 30 cm -1). A possible geometry of the complex in solid argon, different from the gas phase one, is proposed.

  16. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  17. The Response of Nannochloropsis gaditana to Nitrogen Starvation Includes De Novo Biosynthesis of Triacylglycerols, a Decrease of Chloroplast Galactolipids, and Reorganization of the Photosynthetic Apparatus

    PubMed Central

    Simionato, Diana; Block, Maryse A.; La Rocca, Nicoletta; Jouhet, Juliette; Maréchal, Eric

    2013-01-01

    Microalgae of the genus Nannochloropsis are capable of accumulating triacylglycerols (TAGs) when exposed to nutrient limitation (in particular, nitrogen [N]) and are therefore considered promising organisms for biodiesel production. Here, after nitrogen removal from the medium, Nannochloropsis gaditana cells showed extensive triacylglycerol accumulation (38% TAG on a dry weight basis). Triacylglycerols accumulated during N deprivation harbored signatures, indicating that they mainly stemmed from freshly synthesized fatty acids, with a small proportion originating from a recycling of membrane glycerolipids. The amount of chloroplast galactoglycerolipids, which are essential for the integrity of thylakoids, decreased, while their fatty acid composition appeared to be unaltered. In starved cells, galactolipids were kept at a level sufficient to maintain chloroplast integrity, as confirmed by electron microscopy. Consistently, N-starved Nannochloropsis cells contained less photosynthetic membranes but were still efficiently performing photosynthesis. N starvation led to a modification of the photosynthetic apparatus with a change in pigment composition and a decrease in the content of all the major electron flow complexes, including photosystem II, photosystem I, and the cytochrome b6f complex. The photosystem II content was particularly affected, leading to the inhibition of linear electron flow from water to CO2. Such a reduction, however, was partially compensated for by activation of alternative electron pathways, such as cyclic electron transport. Overall, these changes allowed cells to modify their energetic metabolism in order to maintain photosynthetic growth. PMID:23457191

  18. In vitro synthesis of the iron–molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins

    PubMed Central

    Curatti, Leonardo; Hernandez, Jose A.; Igarashi, Robert Y.; Soboh, Basem; Zhao, Dehua; Rubio, Luis M.

    2007-01-01

    Biological nitrogen fixation, the conversion of atmospheric N2 to NH3, is an essential process in the global biogeochemical cycle of nitrogen that supports life on Earth. Most of the biological nitrogen fixation is catalyzed by the molybdenum nitrogenase, which contains at its active site one of the most complex metal cofactors known to date, the iron–molybdenum cofactor (FeMo-co). FeMo-co is composed of 7Fe, 9S, Mo, R-homocitrate, and one unidentified light atom. Here we demonstrate the complete in vitro synthesis of FeMo-co from Fe2+, S2−, MoO42−, and R-homocitrate using only purified Nif proteins. This synthesis provides direct biochemical support to the current model of FeMo-co biosynthesis. A minimal in vitro system, containing NifB, NifEN, and NifH proteins, together with Fe2+, S2−, MoO42−, R-homocitrate, S-adenosyl methionine, and Mg-ATP, is sufficient for the synthesis of FeMo-co and the activation of apo-dinitrogenase under anaerobic-reducing conditions. This in vitro system also provides a biochemical approach to further study the function of accessory proteins involved in nitrogenase maturation (as shown here for NifX and NafY). The significance of these findings in the understanding of the complete FeMo-co biosynthetic pathway and in the study of other complex Fe-S cluster biosyntheses is discussed. PMID:17978192

  19. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of northern China.

    PubMed

    Chen, Li-ding; Peng, Hong-jia; Fu, Bo-Jie; Qiu, Jun; Zhang, Shu-rong

    2005-01-01

    Surface waters can be contaminated by human activities in two ways: (1) by point sources, such as sewage treatment discharge and storm-water runoff; and (2) by non-point sources, such as runoff from urban and agricultural areas. With point-source pollution effectively controlled, non-point source pollution has become the most important environmental concern in the world. The formation of non-point source pollution is related to both the sources such as soil nutrient, the amount of fertilizer and pesticide applied, the amount of refuse, and the spatial complex combination of land uses within a heterogeneous landscape. Land-use change, dominated by human activities, has a significant impact on water resources and quality. In this study, fifteen surface water monitoring points in the Yuqiao Reservoir Basin, Zunhua, Hebei Province, northern China, were chosen to study the seasonal variation of nitrogen concentration in the surface water. Water samples were collected in low-flow period (June), high-flow period (July) and mean-flow period (October) from 1999 to 2000. The results indicated that the seasonal variation of nitrogen concentration in the surface water among the fifteen monitoring points in the rainfall-rich year is more complex than that in the rainfall-deficit year. It was found that the land use, the characteristics of the surface river system, rainfall, and human activities play an important role in the seasonal variation of N-concentration in surface water.

  20. Reactions of a Chromium(III)-Superoxo Complex and Nitric Oxide That Lead to the Formation of Chromium(IV)-Oxo and Chromium(III)-Nitrito Complexes

    PubMed Central

    Yokoyama, Atsutoshi; Cho, Kyung-Bin

    2013-01-01

    The reaction of an end-on Cr(III)-superoxo complex bearing a 14-membered tetraazamacrocyclic TMC ligand, [CrIII(14-TMC)(O2)(Cl)]+, with nitric oxide (NO) resulted in the generation of a stable Cr(IV)-oxo species, [CrIV(14-TMC)(O)(Cl)]+, via the formation of a Cr(III)-peroxynitrite intermediate and homolytic O-O bond cleavage of the peroxynitrite ligand. Evidence for the latter comes from EPR spectroscopy, computational chemistry, and the observation of phenol nitration chemistry. The Cr(IV)-oxo complex does not react with nitrogen dioxide (NO2), but reacts with NO to afford a Cr(III)-nitrito complex, [CrIII(14-TMC)(NO2)(Cl)]+. The Cr(IV)-oxo and Cr(III)-nitrito complexes were also characterized spectroscopically and/or structurally. PMID:24066924

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strickland, Madeleine; Stanley, Ann Marie; Wang, Guangshun

    Paralogous enzymes arise from gene duplication events that confer a novel function, although it is unclear how cross-reaction between the original and duplicate protein interaction network is minimized. We investigated HPr:EIsugar and NPr:EINtr, the initial complexes of paralogous phosphorylation cascades involved in sugar import and nitrogen regulation in bacteria, respectively. Although the HPr:EIsugar interaction has been well characterized, involving multiple complexes and transient interactions, the exact nature of the NPr:EINtr complex was unknown. We set out to identify the key features of the interaction by performing binding assays and elucidating the structure of NPr in complex with the phosphorylation domainmore » of EINtr (EINNtr), using a hybrid approach involving X-ray, homology, and sparse nuclear magnetic resonance. We found that the overall fold and active-site structure of the two complexes are conserved in order to maintain productive phosphorylation, however, the interface surface potential differs between the two complexes, which prevents cross-reaction.« less

  2. Heteroleptic complexes of Zn(II) based on 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide: Synthesis, structural characterization, theoretical studies and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim

    2017-04-01

    Four new ternary complexes, [ZnL (2,2‧-bipy)] (1), Zn2L2(4,4‧-bipy)] (2), [ZnL(Imd)]·H2O (3) and [ZnL3(MeImd)] (4), have been synthesized from the reaction of Zn(II) acetate with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2L) in the presence of a heterocyclic base, 2,2‧-bipyridine, 4,4‧-bipyridine, imidazole or 2-methylimidazole, as an auxiliary ligand. The complexes have been investigated by elemental analysis and FT-IR, UV-Vis and 1HNMR spectroscopy. These data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination sphere was completed by the nitrogen atom(s) of the secondary ligand. The structure of 1 was also confirmed by X-ray crystallography and shown to be a five coordinate complex with coordination geometry between the square-pyramidal and trigonal-bipyramidal. Density functional theory (DFT) calculations including geometry optimization, vibrational frequencies and electronic absorptions have been performed for 1 with the B3LYP functional at the TZP(6-311G*) basis set using the Gaussian 03 or ADF 2009 packages. The optimization calculation showed that the crystallographically determined geometry parameters can be reproduced with that basis set. Experimental IR frequencies and calculated vibration frequencies also support each other. The in vitro antibacterial activities of the ligand and complexes have been evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and compared with the standard antibacterial drugs. The results reveal that all of the complexes show much better activity in comparison to the individual thiosemoicarbazone ligand (H2L), against all bacterial strains used, with complex 3 showing the most promising results.

  3. Synthesis and structures of a pincer-type rhodium(iii) complex: reactivity toward biomolecules.

    PubMed

    Milutinović, Milan M; Bogojeski, Jovana V; Klisurić, Olivera; Scheurer, Andreas; Elmroth, Sofi K C; Bugarčić, Živadin D

    2016-10-04

    A novel rhodium(iii) complex [Rh III (H 2 L tBu )Cl 3 ] (1) (H 2 L tBu = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine) containing a pincer type, tridentate nitrogen-donor chelate system was synthesized. Single crystal X-ray structure analysis revealed that 1 crystallizes in the orthorhombic space group Pbcn with a = 20.7982(6), b = 10.8952(4), c = 10.9832(4) Å, V = 2488.80(15) Å 3 , and eight molecules in the unit cell. The rhodium center in the complex [Rh III (H 2 L tBu )Cl 3 ] (1) is coordinated in a slightly distorted octahedral geometry by the tridentate N,N,N-donor and three chloro ligands, adopting a mer arrangement with an essentially planar ligand skeleton. Due to the tridentate coordination of the N,N,N-donor, the central nitrogen atom N1 is located closer to the Rh III center. The reactivity of the synthesized complex toward small biomolecules (l-methionine (l-Met), guanosine-5'-monophosphate (5'-GMP), l-histidine (l-His) and glutathione (GSH)) and to a series of duplex DNAs and RNA was investigated. The order of reactivity of the studied small biomolecules is: 5'-GMP > GSH > l-Met > l-His. Duplex RNA reacts faster with the [Rh III (H 2 L tBu )Cl 3 ] complex than duplex DNA, while shorter duplex DNA (15mer GG) reacts faster compared with 22mer GG duplex DNA. In addition, a higher reactivity is achieved with a DNA duplex with a centrally located GG-sequence than with a 22GTG duplex DNA, in which the GG-sequence is separated by a T base. Furthermore, the interaction of this metal complex 1 with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) was examined by absorption (UV-Vis) and emission spectral studies (EthBr displacement studies). Overall, the studied complex exhibited good DNA and BSA interaction ability.

  4. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution.

    PubMed

    Lewandowski, Eric M; Lethbridge, Kathryn G; Sanishvili, Ruslan; Skiba, Joanna; Kowalski, Konrad; Chen, Yu

    2018-01-01

    The β-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A β-lactamases, the β-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A β-lactamase with a ruthenocene-conjugated penicillin-a 0.85 Å resolution structure of E166A mutant complexed with the penilloate product, a 1.30 Å resolution complex structure of the same mutant with the penicilloate product, and a 1.18 Å resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanisms and product inhibition of PBPs and Class A β-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A β-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine. Structural data are available in the PDB database under the accession numbers 5TOP, 5TOY, and 5VLE. © 2017 Federation of European Biochemical Societies.

  5. A porphyrin complex of Gold(I): (Phosphine)gold(I) azides as cation precursors

    PubMed Central

    Partyka, David V.; Robilotto, Thomas J.; Zeller, Matthias; Hunter, Allen D.; Gray, Thomas G.

    2008-01-01

    A silver- and Brönsted acid-free protocol for generating the (tricyclohexylphosphine)gold(I) cation from the corresponding azide complexes is disclosed. The gold(I) cations so liberated are trapped by complexation with octaethylporphyrin. The first structurally authenticated gold(I) porphyrin complex crystallizes with formula C72H112Au2F12N4P2Sb2, space group C2/c, a = 21.388 (4), b = 19.679 (4), c = 19.231 (3) Å; β = 111.030 (3)°. Solution spectroscopic studies indicate that the di-gold complex fragments on dissolution in organic solvents. Approximate density-functional theory calculations find an electrostatic origin for the binding of two gold(I) centers to the unprotonated nitrogen atoms, despite greater orbital density on the porphyrin meso carbons. PMID:18780788

  6. A series of binuclear lanthanide(III) complexes: Crystallography, antimicrobial activity and thermochemistry properties studies

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Ren, Ning; Xu, Su-Ling; Zhang, Jian-Jun; Zhang, Da-Hai

    2015-02-01

    A series of novel lanthanide complexes with the general formula [Ln(3,4-DClBA)3phen]2 (Ln = Ho(1), Nd(2), Sm(3), Dy(4), Eu(5), Tb(6), Yb(7) and Er(8), 3,4-DClBA = 3,4-dichlorobenzoate, phen = 1,10-phenanthroline) were prepared at room temperature and characterized. The crystal structures of complexes 1-8 have been determined by single crystal X-ray diffraction. These complexes are isomorphous and lanthanide ions are all eight-coordinated to oxygen atoms and nitrogen atoms with distorted square-antiprism geometry. The thermal decomposition mechanism and TG-FTIR spectra of gaseous products of thermal decomposition processes for complexes 1-8 were acquired through TG/DSC-FTIR system. The heat capacities of complexes 1-8 were measured using DSC technology and fitted to a polynomial equation by the least-squares method. Complexes 3-6 display characteristic lanthanide emission bands in the visible region. Meanwhile, these complexes exhibit in good antimicrobial activity against Candida albicans, Escherichia coli, and Staphylococcus aureu.

  7. Utility of charge-transfer complexation for the assessment of macrocyclic polyethers: Spectroscopic, thermal and surface morphology characteristics of two highly crown ethers complexed with acido acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Adam, Abdel Majid A.; Saad, Hosam A.

    2015-04-01

    The study of the complexing ability of macrocyclic compounds to organic and inorganic substances is of great interest. The aim of this work is to provide basic data that can be used to the assessment of macrocyclic crown ethers quantitatively based on charge-transfer (CT) complexation. This goal was achieved by preparing CT complexes of two interesting mixed nitrogen-oxygen crown ethers with acido acceptors (chloranilic and picric acid), which were fully structurally characterized. The crown ethers are 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (HDHC) and 1,4,10-trioxa-7,13-diaza-cyclopentadecane (TDPD). The obtained complexes were structurally characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. Thermal properties of these complexes were also studied, and their kinetic thermodynamic parameters were calculated. Furthermore, the microstructure properties of these complexes have also been investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM).

  8. Hydride-Meisenheimer Complex Formation and Protonation as Key Reactions of 2,4,6-Trinitrophenol Biodegradation by Rhodococcus erythropolis

    PubMed Central

    Rieger, Paul-Gerhard; Sinnwell, Volker; Preuß, Andrea; Francke, Wittko; Knackmuss, Hans-Joachim

    1999-01-01

    Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1. PMID:9973345

  9. Structure and Abundance of Nitrous Oxide Complexes in Earth's Atmosphere.

    PubMed

    Salmon, Steven R; de Lange, Katrina M; Lane, Joseph R

    2016-04-07

    We have investigated the lowest energy structures and binding energies of a series of atmospherically relevant nitrous oxide (N2O) complexes using explicitly correlated coupled cluster theory. Specifically, we have considered complexes with nitrogen (N2-N2O), oxygen (O2-N2O), argon (Ar-N2O), and water (H2O-N2O). We have calculated rotational constants and harmonic vibrational frequencies for the complexes and the constituent monomers. Statistical mechanics was used to determine the thermodynamic parameters for complex formation as a function of temperature and pressure. These results, in combination with relevant atmospheric data, were used to estimate the abundance of N2O complexes in Earth's atmosphere as a function of altitude. We find that the abundance of N2O complexes in Earth's atmosphere is small but non-negligible, and we suggest that N2O complexes may contribute to absorption of terrestrial radiation and be relevant for understanding the atmospheric fate of N2O.

  10. 264. Photocopy of drawing (1977 piping drawing by the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    264. Photocopy of drawing (1977 piping drawing by the Space and Missile Test Center, VAFB, USAF) NITROGEN AND HELIUM PUMPING SYSTEMS INSTALLATION SITE PLAN AND DETAILS, SHEET 3 OF 9 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Hydrogen production using ammonia borane

    DOEpatents

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  12. Speciation and Trends of Organic Nitrogen in Southeastern U.S. Fine Particulate Matter (PM2.5)

    EPA Science Inventory

    Dissolved free amino acids (FAA; amino acids present in a dissolvable state) and combined AA (CAA; amino acids present in peptides, proteins, or humic complexes) in fine aerosols (PM) are investigated at a semi-urban site in the southeastern US. Detection of native (chemically un...

  13. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    EPA Science Inventory

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  14. The Paralinear Oxidation of SiC in Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    SiC is proposed for structural applications in high pressure, high temperature. high gas velocity environments of turbine and rocket engines. These environments are typically composed of complex gas mixtures containing carbon dioxide, oxygen, water vapor, and nitrogen. It is known that the primary oxidant for SiC in these environments is water vapor.

  15. Mining Information form a Coupled Air Quality Model to Examine the Impacts of Agricultural Management Practices on Air and Groundwater Quality

    EPA Science Inventory

    Attributing nitrogen (N) in the environment to emissions from agricultural management practices is difficult because of the complex and inter-related chemical and biological reactions associated with N and its cascading effects across land, air and water. Such analyses are criti...

  16. Using Nitrogen Stable Isotope Tracers to Track Climate Change Impacts on Coastal Salt Marshes

    EPA Science Inventory

    Climate change impacts on coastal salt marshes are predicted to be complex and multi-faceted. In addition to rising sea level and warmer water temperatures, regional precipitation patterns are also expected to change. At least in the Northeast and Mid-Atlantic U.S., more severe s...

  17. 202. Photocopy of drawing (1976 piping drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    202. Photocopy of drawing (1976 piping drawing by Stearns-Roger Incorporated) HIGH PRESSURE GASEOUS NITROGEN AND HELIUM LINES FOR THE PAYLOAD PRESSURIZATION UNIT IN THE MST, SHEET 501-P2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 235. Photocopy of drawing (1958 piping drawing by the Ralph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    235. Photocopy of drawing (1958 piping drawing by the Ralph M. Parsons Company) PLAN FOR THE FUEL, HELIUM, AND NITROGEN STORAGE AREA FOR THE LSB, SHEET P13 OF 36 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. 262. Photocopy of drawing (1976 piping drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    262. Photocopy of drawing (1976 piping drawing by Stearns-Roger Incorporated) GLOBAL POSITIONING SYSTEM MODIFICATIONS, PAYLOAD PRESSURIZATION UNIT HIGH PRESSURE GASEOUS NITROGEN AND HELIUM LINES FOR LSB, SHEET 501-P3 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 236. Photocopy of drawing (1958 piping drawing by the Ralph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    236. Photocopy of drawing (1958 piping drawing by the Ralph M. Parsons Company) SECTIONS AND DETAILS FOR THE FUEL, HELIUM, AND NITROGEN STORAGE AREA FOR THE LSB, SHEET P14 OF 36 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. 182. Photocopy of drawing (1972 piping drawing by the Ralph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    182. Photocopy of drawing (1972 piping drawing by the Ralph M. Parsons Company) PLAN FOR THE LIQUID NITROGEN STORAGE AND BOOSTER CONTROL ROOM FOR THE LSB (BLDG. 770), SHEET P-12 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Lumped Parameter Models for Predicting Nitrogen Transport in Lower Coastal Plain Watersheds

    Treesearch

    Devendra M. Amatya; George M. Chescheir; Glen P. Fernandez; R. Wayne Skaggs; F. Birgand; J.W. Gilliam

    2003-01-01

    hl recent years physically based comprehensive disfributed watershed scale hydrologic/water quality models have been developed and applied 10 evaluate cumulative effects of land arld water management practices on receiving waters, Although fhesc complex physically based models are capable of simulating the impacts ofthese changes in large watersheds, they are often...

  3. Synthesis and Characterization of Copper Complexes with a Tridentate Nitrogen-Donor Ligand: An Integrated Research Experiment for Undergraduate Students

    ERIC Educational Resources Information Center

    Bussey, Katherine A.; Cavalier, Annie R.; Connell, Jennifer R.; Mraz, Margaret E.; Holderread, Ashley S.; Oshin, Kayode D.; Pintauer, Tomislav

    2015-01-01

    An integrated laboratory experiment applying concepts and techniques developed in organic chemistry, inorganic chemistry, and instrumental analysis is presented for use by students interested in undergraduate research. The experiment incorporates some advanced laboratory practices such as multistep organic synthesis and purification, detailed…

  4. Tillage, crop rotation, and cultural practice impact on nitrogen balance under dryland cropping systems

    USDA-ARS?s Scientific Manuscript database

    Accounting of N inputs and outputs and N retention in the soil provides N balance that measures agroecosystem performance and environmental sustainability. Because of the complexity of measurements of some N inputs and outputs, studies on N balance in long-term experiments are scanty. We examined th...

  5. Using a Coupled Modelling System to Examine the Impacts of Increased Corn Production on Groundwater Quality and Human Health

    EPA Science Inventory

    Attributing nitrogen (N) in the environment to emissions from agricultural management practices is difficult because of the complex and inter-related chemical and biological reactions associated with N and its cascading effects across land, air and water. Such analyses are critic...

  6. Synthesis and crystal structure of new copper(II) metal complex: Noncovalent interactions and electrical conductance properties

    NASA Astrophysics Data System (ADS)

    Pathak, Sudipta; Chakraborty, Koushik; Ghosh, Surajit; Roy, Kunal; Jana, Barnali; Konar, Saugata

    2018-01-01

    [Cu(pydc)(apyz)(H2O)2] (1) (where pydcH2 = pyridine-2,6-dicarboxylic acid; apyz = 2- aminopyrazine) has been synthesized and characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction techniques. Crystallographic analysis revealed that complex 1 has distorted octahedral geometry with pydcH2 coordinated as tridentate ligands to metal ion through two oxygen atoms of each carboxylate group, nitrogen atom of the pyridine ring and the auxiliary ligand pyrazine nitrogen atom form basal plane and apical positions are occupied by two oxygen atoms of water molecules. In addition, the coordination compounds are connected by a variety of non covalent interactions like OH … π, lone pair … π, π … π and hydrogen bonds. The evaluation of these noncovalent interactions is useful for rationalizing their influence in the crystal packing. In addition, electrical current measured at room temperature on thin film before and after annealed is in the order of 229 μA and 246 μA respectively with bias voltage 1 V.

  7. Production and characterization of enzymatic cocktail produced by Aspergillus niger using green macroalgae as nitrogen source and its application in the pre-treatment for biogas production from Ulva rigida.

    PubMed

    Karray, Raida; Hamza, Manel; Sayadi, Sami

    2016-09-01

    Marine macroalgae are gaining more and more importance as a renewable feedstock for durable bioenergy production, but polysaccharides of this macroalgae are structurally complex in its chemical composition. The use of enzymatic hydrolysis may provide new pathways in the conversion of complex polysaccharides to fermentable sugars. In this study, an enzymatic cocktail with high specificity was first isolated from Aspergillus niger using the green macroalgae Ulva rigida as nitrogen source. The cocktail is rich on β-glucosidase, pectinase and carboxy-methyl-cellulase (CMCase). The highest activity was obtained with β-glucosidase (109IUmL(-1)) and pectinase (76IUmL(-1)), while CMCase present the lowest activity 4.6IUmL(-1). The U. rigida pre-treatment with this enzymatic cocktail showed high rate of reduced sugar release, and could bring promising prospects for enzymatic pre-treatment of the biogas production from U. rigida biomass which reached 1175mLgCODint(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pulse radiolysis studies of the reaction of nitrogen dioxide with the vitamin B₁₂ complexes Cob(II)alamin and nitrocobalamin

    DOE PAGES

    Brasch, Nicola E.; Cabelli, Diane E.; Dassanayake, Rohan S.

    2014-10-06

    Although now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there few studies on the reactivity of ˙NO2, including the reactions between ˙NO2 and transition metal complexes. We report kinetic studies on the reaction of ˙NO2 with two forms of vitamin B12 – cob(II)alamin and nitrocobalamin. UV-vis spectroscopy and HPLC analysis of the product solution show that ˙NO2 cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of (3.5 ± 0.3) × 10⁸ M⁻¹ s ⁻¹ (pH 7.0 and 9.0, RT, Imore » = 0.20 M). The stoichiometry of the reaction is 1:1. No reaction is detected by UV-vis spectroscopy and by HPLC analysis of the product solution when nitrocobalamin is exposed to up to 2.0 mol equiv.˙NO2.« less

  9. Zinc Bioavailability from Phytate-Rich Foods and Zinc Supplements. Modeling the Effects of Food Components with Oxygen, Nitrogen, and Sulfur Donor Ligands.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2017-10-04

    Aqueous solubility of zinc phytate (K sp = (2.6 ± 0.2) × 10 -47 mol 7 /L 7 ), essential for zinc bioavailability from plant foods, was found to decrease with increasing temperature corresponding to ΔH dis of -301 ± 22 kJ/mol and ΔS dis of -1901 ± 72 J/(mol K). Binding of zinc to phytate was found to be exothermic for the stronger binding site and endothermic for the weaker binding site. The solubility of the slightly soluble zinc citrate and insoluble zinc phytate was found to be considerably enhanced by the food components with oxygen donor, nitrogen donor, and sulfur donor ligands. The driving force for the enhanced solubility is mainly due to the complex formation between zinc and the investigated food components rather than ligand exchange and ternary complex formation as revealed by quantum mechanical calculations and isothermal titration calorimetry. Histidine and citrate are promising ligands for improving zinc absorption from phytate-rich foods.

  10. Pulse radiolysis studies of the reaction of nitrogen dioxide with the vitamin B₁₂ complexes Cob(II)alamin and nitrocobalamin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasch, Nicola E.; Cabelli, Diane E.; Dassanayake, Rohan S.

    Although now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there few studies on the reactivity of ˙NO2, including the reactions between ˙NO2 and transition metal complexes. We report kinetic studies on the reaction of ˙NO2 with two forms of vitamin B12 – cob(II)alamin and nitrocobalamin. UV-vis spectroscopy and HPLC analysis of the product solution show that ˙NO2 cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of (3.5 ± 0.3) × 10⁸ M⁻¹ s ⁻¹ (pH 7.0 and 9.0, RT, Imore » = 0.20 M). The stoichiometry of the reaction is 1:1. No reaction is detected by UV-vis spectroscopy and by HPLC analysis of the product solution when nitrocobalamin is exposed to up to 2.0 mol equiv.˙NO2.« less

  11. Reciprocal Regulation of GlnR and PhoP in Response to Nitrogen and Phosphate Limitations in Saccharopolyspora erythraea

    PubMed Central

    Yao, Li-li

    2015-01-01

    Nitrogen and phosphate source sensing, uptake, and assimilation are essential for the growth and development of microorganisms. In this study, we demonstrated that SACE_6965 encodes the phosphate regulator PhoP, which controls the transcription of genes involved in phosphate metabolism in the erythromycin-producing Saccharopolyspora erythraea. We found that PhoP and the nitrogen regulator GlnR both regulate the transcription of glnR as well as other nitrogen metabolism-related genes. Interestingly, both GlnR- and PhoP-binding sites were identified in the phoP promoter region. Unlike the nonreciprocal regulation of GlnR and PhoP observed in Streptomyces coelicolor and Streptomyces lividans, GlnR negatively controls the transcription of the phoP gene in S. erythraea. This suggests that GlnR directly affects phosphate metabolism and demonstrates that the cross talk between GlnR and PhoP is reciprocal. Although GlnR and PhoP sites in the glnR and phoP promoter regions are located in close proximity to one another (separated by only 2 to 4 bp), the binding of both regulators to their respective region was independent and noninterfering. These results indicate that two regulators could separately bind to their respective binding sites and control nitrogen and phosphate metabolism in response to environmental changes. The reciprocal cross talk observed between GlnR and PhoP serves as a foundation for understanding the regulation of complex primary and secondary metabolism in antibiotic-producing actinomycetes. PMID:26519391

  12. Electro-Reduction of Nitrogen on Molybdenum Nitride: Structure, Energetics, and Vibrational Spectra from DFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Garzon, Fernando; Henson, Neil J.

    2014-02-21

    We used density functional theory to study the electrochemical conversion of nitrogen to ammonia on the (001), (100/010), (101), and (111) surfaces of g-Mo2N. Based on the calculated free energy profiles for the reduction of nitrogen by the associative and dissociative mechanisms, reactivity was found to decrease in the order (111) > (101) > (100/010) E (001). Namely, the cell potentials needed to drive the reduction to ammonia increase in the following order: *0.7 V on (111), *1.2 V on (101), and *1.4 V on (100/010) and (001) surfaces. The (111) surface was found to be the most reactive formore » nitrogen due to (i) its ability to adsorb the N2 in the side-on position which activates N–N bonding and (ii) its high affinity for N-adatoms which also prevents accumulation of H-adatoms on the catalytic surface at low cell potentials. We have also calculated vibrational frequencies of different NxHy species adsorbed on various g-Mo2N surfaces. The frequencies are found to depend strongly on the type of the binding sites available on the crystal facets. A comparison of the calculated frequencies with the frequencies of the corresponding species in transition metal complexes and other metal surfaces shows that the frequencies of several signature modes fall in a similar region and might be used to assign the spectra of hydrogen and nitrogen containing surface species on different metal surfaces.« less

  13. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.

  14. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  15. Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms.

    PubMed

    Rai, Rajendra; Tate, Jennifer J; Georis, Isabelle; Dubois, Evelyne; Cooper, Terrance G

    2014-01-31

    Nitrogen catabolite repression (NCR)-sensitive transcription is activated by Gln3 and Gat1. In nitrogen excess, Gln3 and Gat1 are cytoplasmic, and transcription is minimal. In poor nitrogen, Gln3 and Gat1 become nuclear and activate transcription. A long standing paradox has surrounded Gat1 production. Gat1 was first reported as an NCR-regulated activity mediating NCR-sensitive transcription in gln3 deletion strains. Upon cloning, GAT1 transcription was, as predicted, NCR-sensitive and Gln3- and Gat1-activated. In contrast, Western blots of Gat1-Myc(13) exhibited two constitutively produced species. Investigating this paradox, we demonstrate that wild type Gat1 isoforms (IsoA and IsoB) are initiated at Gat1 methionines 40, 95, and/or 102, but not at methionine 1. Their low level production is the same in rich and poor nitrogen conditions. When the Myc(13) tag is placed after Gat1 Ser-233, four N-terminal Gat1 isoforms (IsoC-F) are also initiated at methionines 40, 95, and/or 102. However, their production is highly NCR-sensitive, being greater in proline than glutamine medium. Surprisingly, all Gat1 isoforms produced in sufficient quantities to be confidently analyzed (IsoA, IsoC, and IsoD) require Gln3 and UASGATA promoter elements, both requirements typical of NCR-sensitive transcription. These data demonstrate that regulated Gat1 production is more complex than previously recognized, with wild type versus truncated Gat1 proteins failing to be regulated in parallel. This is the first reported instance of Gln3 UASGATA-dependent protein production failing to derepress in nitrogen poor conditions. A Gat1-lacZ ORF swap experiment indicated sequence(s) responsible for the nonparallel production are downstream of Gat1 leucine 61.

  16. Phycoremediation of landfill leachate with chlorophytes: Phosphate a limiting factor on ammonia nitrogen removal.

    PubMed

    Paskuliakova, Andrea; Tonry, Steven; Touzet, Nicolas

    2016-08-01

    The potential of microalgae to bioremediate wastewater has been reported in numerous studies but has not been investigated as extensively for landfill leachate, which may be attributed to its complex nature and toxicity. In this study we explored if microalgal phycoremediation could constitute an alternative biological treatment option for landfill leachate management in regions with temperate climatic conditions. The aim of this study was to assess the performance of microalgae species at relatively low temperature (15 °C) and light intensity (14:10 h, light: dark, 22 μmol m(-2) s(-1)) for reduction in energy inputs. Four chlorophyte strains originating from the North-West of Ireland were selected and used in batch experiments in order to evaluate their ability to reduce total ammonia nitrogen, oxidised nitrogen and orthophosphate in landfill leachate. The Chlamydomonas sp. strain SW15aRL isolated from raw leachate achieved the highest level of pollutant reduction whereby a decrease of 51.7% of ammonia nitrogen was observed in 10% raw leachate (∼100 mg l(-1) NH4(+)-N) by day 24 in experiments without culture agitation. However, in the experiment conducted with 10% raw leachate supplemented with phosphate, a decrease of 90.7% of ammonia nitrogen was obtained by day 24 while also achieving higher biomass production. This series of experiments pointed to phosphorus being a limiting factor in the microalgae based phycoremediation of the landfill leachate. The effective reduction of ammonia nitrogen in landfill leachate can be achieved at lower temperature and light conditions. This was attained by employing native species adapted to such conditions and by improving nutrient balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Organo-Nitrogen Reactions on Jupiter

    NASA Astrophysics Data System (ADS)

    Lamothe, V. L.; Moses, J. I.

    2000-10-01

    Because the altitude regions for CH4 and NH3 photodissociation are physically separated from each other in the Jovian atmosphere, the possibility of forming organo-nitrogen compounds on Jupiter has been an uncertain problem [1,2,3,4,5]. Carbon- and nitrogen-bearing species do not interact significantly in laboratory experiments involving ultraviolet irradiation of CH4-NH3-H2 mixtures [6,7]. However, HCN and a variety of complex organo-nitrogen molecules are produced when methane in the above experiments is replaced by unsaturated hydrocarbons such as C2H2 or CH3C2H [8,9]. To determine the formation efficiency of organo-nitrogen compounds on Jupiter, we have added the reaction schemes proposed by [3,8,9] to a photochemical model of the Jovian troposphere and stratosphere. We find that HCN does not form in observable quantities unless a large tropospheric source of C2H2 exists (e.g., via lightning-induced chemistry, see [10]). Organo-nitrogen reactions are unlikely to be important on Jupiter --- chromophores are most likely due to inorganic compounds. References: [1] Strobel, D. F. (1973), J. Atmos. Sci. 30, 1205; [2] Kaye, J. A., and D. F. Strobel (1983a), Icarus\\ 55, 399; [3] Kaye, J. A., and D. F. Strobel (1983b), Icarus\\ 54, 417; [4] Tokunaga, A. T. et al./ (1981), Icarus\\ 48, 283; [5] Bézard, B. et al./ (1995), Icarus\\ 118, 384; [6] Raulin, F. et al. (1979), Icarus\\ 38, 358; [7] Ferris, J. P., and J. Y. Morimoto (1981), Icarus\\ 48, 118; [8] Ferris, J. P., and Y. Ishikawa (1988), J. Am. Chem. Soc. 110, 4306; [9] Ferris, J. et\\ al. (1992), Icarus\\ 95, 54; [10] Bétremieux, Y., and R. V. Yelle (1999), BAAS\\ 31, 1180.

  18. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    PubMed

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.

  19. Design and synthesis of binucleating macrocyclic clefts derived from Schiff-base calixpyrroles.

    PubMed

    Givaja, Gonzalo; Volpe, Manuel; Leeland, James W; Edwards, Michael A; Young, Thomas K; Darby, S Barnie; Reid, Stuart D; Blake, Alexander J; Wilson, Claire; Wolowska, Joanna; McInnes, Eric J L; Schröder, Martin; Love, Jason B

    2007-01-01

    The syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).2 EtOH and H(4)L(6).H2O confirm that [2+2] cyclisation has occurred, with either EtOH or H2O hydrogen-bonded within the macrocyclic cleft. A series of complexation reactions generate the dipalladium [Pd2(L)] (L=L(1) to L(5)), dinickel [Ni2(L(1))] and dicopper [Cu2(L)] (L=L(1) to L(3)) complexes. All of these complexes have been structurally characterised in the solid state and are found to adopt wedged structures that are enforced by the rigidity of the aryl backbone to give a cleft reminiscent of the structures of Pacman porphyrins. The binuclear nickel complexes [Ni2(mu-OMe)2Cl2(HOMe)2(H(4)L(1))] and [Ni2(mu-OH)2Cl2(HOMe)(H(4)L(5))] have also been prepared, although in these cases the solid-state structures show that the macrocyclic ligand remains protonated at the pyrrolic nitrogen atoms, and the Ni(II) cations are therefore co-ordinated by the imine nitrogen atoms only to give an open conformation for the complex. The dicopper complex [Cu2(L(3))] was crystallised in the presence of pyridine to form the adduct [Cu2(py)(L(3))], in which, in the solid state, the pyridine ligand is bound within the binuclear molecular cleft. Reaction between H(4)L(1) and [Mn(thf){N(SiMe(3))2}2] results in clean formation of the dimanganese complex [Mn2(L(1))], which, upon crystallisation, formed the mixed-valent complex [Mn2(mu-OH)(L(1))] in which the hydroxo ligand bridges the metal centres within the molecular cleft.

  20. Synthesis, characterization, molecular modeling and biological activity of metal complexes derived from (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Emam, Sanaa M.; Emara, Esam M.

    2017-10-01

    A new series of some biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized from the novel thiosemicarbazone ligand; (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide (HL). Elemental, spectral, thermal analyses, magnetic susceptibility and molar conductivity measurements were used to elucidate the structure of separated compounds. The data prove that the ligand reacts with all metal ions in a neutral thione form. The electrolytic tetra-coordinate Cu(II); Zn(II) complexes (5, 6; 10) bind through the thione sulfur, furfural oxygen and azomethine nitrogen atoms of the ligand (NSO type) to construct fused five membered rings. However, the rest non-electrolyte octahedral complexes chelate via the furfural oxygen and azomethine nitrogen atoms of the ligand (NO type). Molecular modeling was conducted for the ligand and two representative complexes (1, 5) in order to substantiate their chemical structures. Thermal analyses are compatible with molecular modeling studies to support the proposed thermal decomposition pathways of metal complexes which start with the rupture of the long and weak N-NH bond. The thermal stability of metal complexes varies according to the number of solvents of crystallization, ionic radii and steric effect of anions. The ESR spectra of Cu(II) complexes are compatible with a primarily (dx2-y2)1 ground state with axial symmetry. The ligand and its Co(II); Cu(II); Cd(II) complexes (1; 5, 8; 11) along with their mixtures with metaldehyde were screened in vitro for their molluscicidal activity against Eobania vermiculata. Combination with metaldehyde enhances the toxicity effect of the tested compounds through reducing the period required for mortality and increasing the percentage of mortality after 24 h of treatments. The tested compounds gathered with metaldehyde are strongly affecting on the activity of ACP and ALP enzymes and TP content which are very important factors in the mucous secretion of Eobania vermiculata. These effects lead to excess mucous secretion, causing dryness and death for the snails.

Top