Sample records for nitrogen fertilizer split-application

  1. Why the different responses between single and split nitrogen applications?

    USDA-ARS?s Scientific Manuscript database

    Split- opposed to single-nitrogen applications may improve corn (Zea mays L.) production, N use efficiency, and lessen environmental impacts due to fertilization. However, there has been an inconsistent response of yield, plant nitrogen (N) uptake, and residual soil nitrates (RSN) when comparing sin...

  2. Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Growth and Availability of Soil Nitrogen during Establishment of Highbush Blueberry

    PubMed Central

    Bryla, David R.; Machado, Rui M. A.

    2011-01-01

    A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. “Bluecrop”). Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls) and four levels of N fertilizer (0, 50, 100, and 150 kg·ha−1 N). Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple-split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple-split, and irrigated by drip or microsprinklers. Weekly fertigation produced the smallest plants among the four fertilizer application methods at 50 kg·ha−1 N during the first year after planting but the largest plants at 150 kg·ha−1 N in both the first and second year. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44–50% of the plants died when granular fertilizer was applied at 150 kg·ha−1 N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg·L−1) and electrical conductivity (>3 dS·m−1) in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied) at lower N rates than granular fertilizer application but is also safer (i.e., less plant death) and promotes more growth when high amounts of N fertilizer is applied. PMID:22639596

  3. Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Growth and Availability of Soil Nitrogen during Establishment of Highbush Blueberry.

    PubMed

    Bryla, David R; Machado, Rui M A

    2011-01-01

    A 2-year study was done to compare the effects of nitrogen (N) fertigation and granular fertilizer application on growth and availability of soil N during establishment of highbush blueberry (Vaccinium corymbosum L. "Bluecrop"). Treatments included four methods of N application (weekly fertigation, split fertigation, and two non-fertigated controls) and four levels of N fertilizer (0, 50, 100, and 150 kg·ha(-1) N). Fertigation treatments were irrigated by drip and injected with a liquid urea solution; weekly fertigation was applied once a week from leaf emergence to 60 d prior to the end of the season while split fertigation was applied as a triple-split from April to June. Non-fertigated controls were fertilized with granular ammonium sulfate, also applied as a triple-split, and irrigated by drip or microsprinklers. Weekly fertigation produced the smallest plants among the four fertilizer application methods at 50 kg·ha(-1) N during the first year after planting but the largest plants at 150 kg·ha(-1) N in both the first and second year. The other application methods required less N to maximize growth but were less responsive than weekly fertigation to additional N fertilizer applications. In fact, 44-50% of the plants died when granular fertilizer was applied at 150 kg·ha(-1) N. By comparison, none of the plants died with weekly fertigation. Plant death with granular fertilizer was associated with high ammonium ion concentrations (up to 650 mg·L(-1)) and electrical conductivity (>3 dS·m(-1)) in the soil solution. Early results indicate that fertigation may be less efficient (i.e., less plant growth per unit of N applied) at lower N rates than granular fertilizer application but is also safer (i.e., less plant death) and promotes more growth when high amounts of N fertilizer is applied.

  4. What plant and soil testing from 16 sites in eight midwestern states tells us about split nitrogen applications

    USDA-ARS?s Scientific Manuscript database

    It is hypothesized that split-nitrogen (N) relative to single near-planting applications improve corn (Zea mays L.) production, N recovery efficiency, and lessen environmental impacts of fertilization. However, these hypotheses have not been fully tested. A 16-site study across eight US Midwestern s...

  5. Corn nitrogen management influences nitrous oxide emissions in drained and undrained soils

    USDA-ARS?s Scientific Manuscript database

    Tile-drainage and nitrogen (N) fertilization are important for corn (Zea mays L.) production. To date, no studies have evaluated nitrous oxide (N2O) emissions of single vs. split-N fertilizer application under different soil drainage conditions. The objective of this study was to quantify season-lon...

  6. Corn yield and economic return with nitrogen applied through drip tubing

    USDA-ARS?s Scientific Manuscript database

    A two year project was established to determine corn (Zea mays, L) yield response to subsurface (SSDI) and surface (SDI) drip irrigation systems at various nitrogen fertilizer rates. Nitrogen was applied through the drip system at two nitrogen levels in three split applications. Supplemental dry N ...

  7. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella sativa L.

    NASA Astrophysics Data System (ADS)

    Salehi, Aliyeh; Fallah, Seyfollah; Sourki, Ali Abasi

    2017-01-01

    Cattle manure has a high carbon/nitrogen ratio and may not decompose; therefore, full-dose application of urea fertilizer might improve biological properties by increasing manure decomposition. This study aimed to investigate the effect of combining cattle manure and urea fertilizer on soil CO2 flux, microbial biomass carbon, and dry matter accumulation during Nigella sativa L. (black cumin) growth under field conditions. The treatments were control, cattle manure, urea, different levels of split and full-dose integrated fertilizer. The results showed that integrated application of cattle manure and chemical fertilizer significantly increased microbial biomass carbon by 10%, soil organic carbon by 2.45%, total N by 3.27%, mineral N at the flowering stage by 7.57%, and CO2 flux by 9% over solitary urea application. Integrated application increased microbial biomass carbon by 10% over the solitary application and the full-dose application by 5% over the split application. The soil properties and growth parameters of N. sativa L. benefited more from the full-dose application than the split application of urea. Cattle manure combined with chemical fertilizer and the full-dose application of urea increased fertilizer efficiency and improved biological soil parameters and plant growth. This method decreased the cost of top dressing urea fertilizer and proved beneficial for the environment and medicinal plant health.

  8. Biochar application mode influences nitrogen leaching and NH3 volatilization losses in a rice paddy soil irrigated with N-rich wastewater.

    PubMed

    Sun, Haijun; Min, Ju; Zhang, Hailin; Feng, Yanfang; Lu, Kouping; Shi, Weiming; Yu, Min; Li, Xuewen

    2017-07-11

    Impacts of biochar application mode on nitrogen (N) leaching, ammonia (NH 3 ) volatilization, rice grain yield and N use efficiency (NUE) are not well understood. Therefore, a field experiment was conducted to evaluate those impacts in a rice paddy soil received 225 kg N ha -1 from either urea or N-rich wastewater. One treatment received 10 t ha -1 biochar with the basal fertilization, and the other received same total amount of biochar but split applied with the three split N applications with same ratio as N fertilizer split ratio (40%, 30% and 30%). Results showed that N leaching loads were 4.20-6.22 kg ha -1 . Biochar one-time application reduced N leaching by 23.1%, and biochar split application further reduced N leaching by 32.4%. Total NH 3 volatilization loss was 15.5-24.5 kg ha -1 . Biochar one-time application did not influence the NH 3 volatilization, but biochar split application stimulated the cumulative NH 3 volatilization by 57.7%. Both biochar treatments had no influence on NUE and rice grain yield. In conclusion, biochar application mode indeed influences the N leaching and NH 3 volatilization in rice paddy soils, and biochar one-time application should be recommended for reducing N leaching without increasing NH 3 volatilization.

  9. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    PubMed

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  10. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration

    PubMed Central

    Xue, Cheng; auf’m Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems. PMID:27313585

  11. Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration

    Treesearch

    Chris A. Maier; Sari Palmroth; Eric Ward

    2008-01-01

    We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in ~20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO2]) for 9 years. Duke Forest free-air CO2 enrichment (FACE) plots were split and half of...

  12. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    PubMed

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil NO 3 - -N accumulation layer moved downward. By comprehensively considering above-ground biomass, seed cotton yield, water and nitrogen uptake and utilization, and soil NO 3 - -N accumulation in the soil profile, the treatment N 3 I 1 could be recommended as the optimal water and nitrogen application pattern for summer cotton production in the experimental region.

  13. The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments.

    PubMed

    Rodríguez-Andrade, Osvaldo; Fuentes-Ramírez, Luis E; Morales-García, Yolanda E; Molina-Romero, Dalia; Bustillos-Cristales, María R; Martínez-Contreras, Rebeca D; Muñoz-Rojas, Jesús

    2015-01-01

    It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH(4)NO(3) on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8mM of NH(4)NO(3) (640mgN/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH(4)NO(3) (0.35mM; 10mgN/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH(4)NO(3) (6.3mM; 180 mgN/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Effects of Nitrogen Fertilization on Synthesis of Primary and Secondary Metabolites in Three Varieties of Kacip Fatimah (Labisia Pumila Blume)

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.; Rahmat, Asmah; Rahman, Zaharah Abdul

    2011-01-01

    A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants. PMID:21954355

  15. [Research advances on regulating soil nitrogen loss by the type of nitrogen fertilizer and its application strategy.

    PubMed

    Zhou, Wei; Lyu, Teng Fei; Yang, Zhi Ping; Sun, Hong; Yang, Liang Jie; Chen, Yong; Ren, Wan Jun

    2016-09-01

    Unreasonable application of nitrogen fertilizer to cropland decreases nitrogen use efficiency of crop. A large amount of nitrogen loss to environment through runoff, leaching, ammonia volati-lization, nitrification-denitrification, etc., causes water and atmospheric pollution, poses serious environmental problems and threatens human health. The type of nitrogen fertilizer and its application rate, time, and method have significant effects on nitrogen loss. The primary reason for nitrogen loss is attributed to the supersaturated soil nitrogen concentration. Making full use of environmental nitrogen sources, reducing the application rate of chemical nitrogen fertilizers, applying deep placement fertilizing method, and applying organic fertilizers with chemical nitrogen fertilizers, are effective practices for reducing nitrogen loss and improving nitrogen use efficiency. It is suggested that deve-loping new high efficiency nitrogen fertilizers, enhancing nitrogen management, and strengthening the monitoring and use of environmental nitrogen sources are the powerful tools to decrease nitrogen application rate and increase efficiency of cropland.

  16. Nitrous Oxide (N2O) Emissions in Wheat and Canola Crops under Fertigation Management in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Chai, L.; Hernandez Ramirez, G.; Dyck, M. F.; Pauly, D.; Kryzanowski, L.; Middleton, A.; Powers, L. A.; Lohstraeter, G.; Werk, D.

    2016-12-01

    Nitrous oxide (N2O) emissions from agricultural soils contribute significantly to the amount of greenhouse gases released to the atmosphere every year. Farming practices, such as fertigation in which nitrogen fertilizer is added to crops through irrigation water, could increase the risk for N2O losses. To assess the effect of N fertigation rates on N2O production, field chambers were used to collect weekly gas samples throughout the 2015 growing season in wheat (Triticum aestivum) and canola (Brassica Napus) plots in southern Alberta, Canada. Synthetic fertilizer was either added at seeding or both added at seeding and through irrigation water at one early crop growth stage. The 6 fertilizer treatments were: 60, 90 and 120 kg N ha-1 added at seeding in early May, and 30, 60 and 90 kg N ha-1 at seeding plus another 30 kg N ha-1 added through fertigation in mid-June. Controls with no fertilizer were also evaluated, and each treatment was replicated 4 times. In the wheat plots at a fertilization rate of 120 kg N ha-1, irrespective of single or split application, a larger N2O flux was produced compared to the control (P = 0.024). Similarly, in canola, a total N addition of 90 kg N ha-1 also led to larger N2O fluxes than the control (P = 0.035). The use of fertigation to split the N application had no effect on the N2O emissions in canola; however, in wheat, there was a statistical difference between emissions from 90 kg N ha-1 added all at seeding versus 90 kg N ha-1 split between seeding (60) and fertigation (30); splitting the fertilizer resulted in a 62% decrease in the overall N2O emissions (324 g vs. 524 g N2O-N ha-1; P = 0.039). No other N rates resulted in statistically different N2O emissions when N application was split. These results suggest that fertigation can reduce N2O emissions, but only at moderate N rates (90 kg ha-1 yr-1); conversely, when lower (60) or higher (120) rates are split, emissions remain unaffected.

  17. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica).

    PubMed

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L

    2016-04-15

    We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model

    NASA Astrophysics Data System (ADS)

    Deng, Qi; Hui, Dafeng; Wang, Junming; Yu, Chih-Li; Li, Changsheng; Reddy, K. Chandra; Dennis, Sam

    2016-02-01

    Quantification and prediction of N2O emissions from croplands under different agricultural management practices are vital for sustainable agriculture and climate change mitigation. We simulated N2O emissions under tillage and no-tillage,and different nitrogen (N) fertilizer types and application methods (i.e., nitrification inhibitor, chicken manure, and split applications) in a cornfield using the DeNitrification-DeComposition (DNDC) model. The model was parameterized with field experimental data collected in Nashville, Tennessee, under various agricultural management treatments and run for a short term (3 years) and a long term (100 years). Results showed that the DNDC model could adequately simulate N2O emissions as well as soil properties under different agricultural management practices. The modeled emissions of N2O significantly increased by 35% with tillage, and decreased by 24% with the use of nitrification inhibitor, compared with no-tillage and normal N fertilization. Chicken manure amendment and split applications of N fertilizer had minor impact on N2O emission in a short term, but over a long term (100 years) the treatments significantly altered N2O emission (+35%, -10%, respectively). Sensitivity analysis showed that N2O emission was sensitive to mean annual precipitation, mean annual temperature, soil organic carbon, and the amount of total N fertilizer application. Our model results provide valuable information for determining agricultural best management practice to maintain highly productive corn yield while reducing greenhouse gas emissions.

  19. The fates of 15N-labeled fertilizer in a wheat-soil system as influenced by fertilization practice in a loamy soil

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Lu, Dianjun; Zhou, Jianmin

    2016-10-01

    Appropriate fertilization practice is crucial to achieve maximum wheat grain yield with minimum nitrogen (N) loss. A field 15N micro-plot experiment was conducted to determine the effects of application methods [split application (SA) and band application (BA)] and N rates (60, 150 and 240 kg ha-1) on the wheat grain yield, urea-15N fate and N efficiency in Jiangyan County, China. At high N rates, wheat grain yield was significantly higher for SA than BA treatment, but there was no difference at the lower N rates. Plant N derived from fertilizer was higher in SA than in BA treatment. The high N fertilizer application increased total N uptake by wheat derived from fertilizer, but wheat plant N derived from soil was not affected by the N rate. Fertilizer-N recovery in SA treatment was higher than in BA treatment. Residual N recovery in the 0-80 cm soil layer was 31-51%, which decreased with increasing N rate. The highest N loss was found for BA treatment at the N application of 240 kg ha-1. The one-time BA of N fertilizer, especially for higher N rates, led to reduced wheat grain yield and N efficiency, and increased the N loss.

  20. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation.

    PubMed

    Hakeem, Khalid Rehman; Sabir, Muhammad; Ozturk, Munir; Akhtar, Mohd Sayeed; Ibrahim, Faridah Hanum

    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N 2 O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods used to determine nitrogen use efficincy (NUE), determine NUE for the major cereals grown across large agroclimatic regions, determine the key factors that control NUE, and finally analyze various strategies available to improve the use efficiency of fertilizer nitrogen.

  1. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea.

    PubMed

    Li, Pengfei; Lu, Jianwei; Hou, Wenfeng; Pan, Yonghui; Wang, Yang; Khan, Muhammad Rizwan; Ren, Tao; Cong, Rihuan; Li, Xiaokun

    2017-04-01

    Controlled release fertilizer can reduce nitrogen losses to the environment while increasing grain yield and improving apparent nitrogen recovery (ANR) of rice. However, few studies have evaluated the comparative efficacy of different polymer-coated urea products on nitrogen (N) losses, ANR, and N uptake of rice. A 2-year field experiment was conducted to compare the effects of three different types of polymer-coated urea fertilizer on nitrogen losses through NH 3 volatilization and surface runoff to the environment, ANR, grain yield, and N uptake as compared to conventional urea of rice. Six treatments including (1) control with 0 kg N ha -1 (CK), (2) basal application of urea (U b ), (3) split application (U s ) of urea (50% at transplanting, 25% at tillering, and 25% at panicle stages), (4) CRU-1 (polyurethane-coated urea), (5) CRU-2 (degradable polymer-coated urea), and (6) CRU-3 (water-based polymer-coated urea) all applied at 165 kg N ha -1 . It was found that CRU-2 resulted in the highest grain yield and panicle numbers among the N fertilization treatments in 2013 and 2014. Applying CRU could help increase N uptake in rice, reduce N losses through NH 3 volatilization and surface runoff, and hence improve ANR. Its single dose can meet the nutrient demand of the rice plant. Controlled release urea could be adopted as an effective mitigation alternative to retard N losses through NH 3 volatilization and surface runoff while improving ANR of double cropping of late rice.

  2. Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies.

    PubMed

    Liu, Shuai; Wang, Jim J; Tian, Zhou; Wang, Xudong; Harrison, Stephen

    2017-07-01

    Minimizing soil ammonia (NH 3 ) and nitrous oxide (N 2 O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH 3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH 3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N 2 O, carbon dioxide (CO 2 ), and methane (CH 4 ) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH 3 -N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N 2 O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH 3 -N and N 2 O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO 2 -C flux but had no effect on CH 4 -C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH 3 and N 2 O emissions in subtropical wheat production in Southern USA. Copyright © 2017. Published by Elsevier B.V.

  3. Lesquerella seed and oil yield response to split-applied N fertilizer

    USDA-ARS?s Scientific Manuscript database

    Agronomic management information is critical for successfully commercial production of new crops such as lesquerella [lesquerella ferndleri Gray (Wats.)]. Response of lesquerella to six nitrogen (N) fertilizer rates under well-watered and water-stressed treatments were studied in irrigated desert co...

  4. [Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers].

    PubMed

    Liu, Yi-Ren; Li, Xiang; Yu, Jie; Shen, Qi-Rong; Xu, Yang-Chun

    2012-01-01

    A pot experiment was conducted to study the effects of combined application of organic and inorganic fertilizers on the nitrogen uptake by rice and the nitrogen supply by soil in a wheat-rice rotation system, and approach the mechanisms for the increased fertilizer nitrogen use efficiency of rice under the combined fertilization from the viewpoint of microbiology. Comparing with applying inorganic fertilizers, combined application of organic and inorganic fertilizers decreased the soil microbial biomass carbon and nitrogen and soil mineral nitrogen contents before tillering stage, but increased them significantly from heading to filling stage. Under the combined fertilization, the dynamics of soil nitrogen supply matched best the dynamics of rice nitrogen uptake and utilization, which promoted the nitrogen accumulation in rice plant and the increase of rice yield and biomass, and increased the fertilizer nitrogen use efficiency of rice significantly. Combined application of inorganic and organic fertilizers also promoted the propagation of soil microbes, and consequently, more mineral nitrogen in soil was immobilized by the microbes at rice early growth stage, and the immobilized nitrogen was gradually released at the mid and late growth stages of rice, being able to better satisfy the nitrogen demand of rice in its various growth and development stages.

  5. [Effects of different fertilization modes on vegetable growth, fertilizer nitrogen utilization, and nitrogen loss from vegetable field].

    PubMed

    Huang, Dong-feng; Wang, Guo; Li, Wei-hua; Qiu, Xiao-xuan

    2009-03-01

    A field experiment with Chinese cabbage, water spinach, and three-colored amaranth cropped three times in one year was conducted to study the effects of seven fertilization modes, i.e., none fertilization, basal application of chemical fertilizers, 1/2 basal application and 1/2 top-dressing of chemical fertilizers, basal application of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure, and basal application of organic manure, on the plant height, yield, nitrogen accumulation, and fertilizer nitrogen utilization of the vegetables, and the loss of NO3- -N and NH4+ -N from vegetable field under natural rainfall condition. The results showed that comparing with none fertilization, the fertilization modes '1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure' and 'basal application of chemical fertilizers and dicyandiamide' improved the agronomic properties of test vegetables, increased their yields by 103%-219% and 93%-226%, and nitrogen accumulation by 153% -216% and 231%-320%, respectively, and enhanced fertilizer nitrogen utilization rate. They also decreased the surface runoff loss of NO3- -N and NH4+ -N by 48.1% and 46.5%, respectively, compared with the mode 'basal application of chemical fertilizers', and hence, reduced the risk of agricultural non-point pollution. Therefore, these two fertilization modes could be popularized in vegetable production.

  6. [Effects of grafting and nitrogen fertilization on melon yield and nitrogen uptake and utilization].

    PubMed

    Xue, Liang; Ma, Zhong Ming; DU, Shao Ping

    2017-06-18

    A split-field design experiment was carried out using two main methods of cultivation (grafting and self-rooted cultivation) and subplots with different nitrogen application levels (0, 120, 240, and 360 kg N·hm -2 ) to investigate the effects of cultivation method and nitrogen application levels on the yield and quality of melons, nitrogen transfer, nitrogen distribution, and nitrogen utilization rate. The results showed that melons produced by grafting cultivation had a 7.3% increase in yield and a 0.16%-3.28% decrease in soluble solid content, compared to those produced by self-rooted cultivation. The amount of nitrogen accumulated in melons grafted in the early growth phase was lower than that in self-rooted melons, and higher after fruiting. During harvest, nitrogen accumulation amount in grafted melon plants was 5.2% higher than that in self-rooted plants and nitrogen accumulation amount in fruits was 10.3% higher. Grafting cultivation increased the amount of nitrogen transfer from plants to fruits by 20.9% compared to self-rooted cultivation. Nitrogen distribution in fruits was >80% in grafted melons, whereas that in self-rooted melons was <80%. Under the same level of nitrogen fertilization, melons cultivated by grafting showed 1.3%-4.2% increase in nitrogen absorption and utilization rate, 2.73-5.56 kg·kg -1 increase in nitrogen agronomic efficiency, and 7.39-16.18 kg·kg -1 increase in nitrogen physiological efficiency, compared to self-rooted cultivation. On the basis of the combined perspective of commercial melon yield, and nitrogen absorption and utilization rate, an applied nitrogen amount of 240 kg·hm -2 is most suitable for graf-ting cultivation in this region.

  7. Scenario analysis of fertilizer management practices for N2O mitigation from corn systems in Canada.

    PubMed

    Abalos, Diego; Smith, Ward N; Grant, Brian B; Drury, Craig F; MacKell, Sarah; Wagner-Riddle, Claudia

    2016-12-15

    Effective management of nitrogen (N) fertilizer application by farmers provides great potential for reducing emissions of the potent greenhouse gas nitrous oxide (N 2 O). However, such potential is rarely achieved because our understanding of what practices (or combination of practices) lead to N 2 O reductions without compromising crop yields remains far from complete. Using scenario analysis with the process-based model DNDC, this study explored the effects of nine fertilizer practices on N 2 O emissions and crop yields from two corn production systems in Canada. The scenarios differed in: timing of fertilizer application, fertilizer rate, number of applications, fertilizer type, method of application and use of nitrification/urease inhibitors. Statistical analysis showed that during the initial calibration and validation stages the simulated results had no significant total error or bias compared to measured values, yet grain yield estimations warrant further model improvement. Sidedress fertilizer applications reduced yield-scaled N 2 O emissions by c. 60% compared to fall fertilization. Nitrification inhibitors further reduced yield-scaled N 2 O emissions by c. 10%; urease inhibitors had no effect on either N 2 O emissions or crop productivity. The combined adoption of split fertilizer application with inhibitors at a rate 10% lower than the conventional application rate (i.e. 150kgNha -1 ) was successful, but the benefits were lower than those achieved with single fertilization at sidedress. Our study provides a comprehensive assessment of fertilizer management practices that enables policy development regarding N 2 O mitigation from agricultural soils in Canada. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modeling the risk of phosphorus runoff following single and split phosphorus fertilizer applications in two contrasting catchments.

    PubMed

    Burkitt, Lucy L; Dougherty, Warwick J; Corkrey, Ross; Broad, Shane T

    2011-01-01

    The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.

  9. Effect of Expansion of Fertilization Width on Nitrogen Recovery Rate in Tea Plants

    NASA Astrophysics Data System (ADS)

    Nonaka, Kunihiko; Hirono, Yuhei; Watanabe, Iriki

    In cultivation of tea plants, large amounts of nitrogen, compared to amounts used for other crops, have been used for fertilization, resulting in degradation of the soil environment between hedges and an increase in concentrations of nitrate nitrogen in surrounding water systems. To reduce the environmental load, new methods of fertilizer application are needed. This report deals with the effect of expansion of fertilization width on nitrogen recovery rate in tea plants. In the test field, 15 N-labeled ammonium sulfate had been applied over custom fertilization by between-hedges fertilization (fertilization width of 15cm) and wide fertilization (fertilization width of 40cm), nitrogen recovery rates were compared. Expansion of fertilization width resulted in an approximately 30% increase in nitrogen recovery rate compared to that in the case of fertilization between hedges. Increases in nitrogen recovery rates were observed with fallapplied fertilization, spring-applied fertilization, pop-up fertilizer application, and summerapplied fertilization.

  10. Sunn Hemp Biomass and Nitrogen Production for Different Planting Dates and Seeding Rates

    USDA-ARS?s Scientific Manuscript database

    Elevated nitrogen (N) fertilizer costs have renewed interest in alternative N sources, such as legumes. Sunn hemp (Crotalaria juncea L.) is a tropical legume capable of producing considerable biomass in a short period of time. A randomized complete block design with a split-plot restriction and fou...

  11. [Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Duan, Xiao-Nan; Zheng, Hua

    2008-10-01

    With reference to the situation of nitrogen fertilization in 2003 and the recommendations from agricultural experts on fertilization to different crops, two scenarios, namely, 'current situation' and 'fertilization as recommended', were set for estimating the current and potential carbon sequestration of China's cropland soil under nitrogen fertilization. After collecting and analyzing the typical data from the long-term agricultural experiment stations all over China, and based on the recent studies of soil organic matter and nutrient dynamics, we plotted China into four agricultural regions, and estimated the carbon sequestration rate and potential of cropland soil under the two scenarios in each province of China. Meanwhile, with the data concerning fossil fuel consumption for fertilizer production and nitrogen fertilization, the greenhouse gas leakage caused by nitrogen fertilizer production and application was estimated with the help of the parameters given by domestic studies and IPCC. We further proposed that the available carbon sequestration potential of cropland soil could be taken as the criterion of the validity and availability of carbon sequestration measures. The results showed that the application of synthetic nitrogen fertilizer could bring about a carbon sequestration potential of 21.9 Tg C x a(-1) in current situation, and 30.2 Tg C x a(-1) with fertilization as recommended. However, under the two scenarios, the greenhouse gas leakage caused by fertilizer production and application would reach 72.9 Tg C x a(-1) and 91.4 Tg C x a(-1), and thus, the actual available carbon sequestration potential would be -51.0 Tg C x a(-1) and -61.1 Tg C x a(-1), respectively. The situation was even worse under the 'fertilization as recommended' scenario, because the increase in the amount of nitrogen fertilization would lead to 10. 1 Tg C x a(-1) or more net greenhouse gas emission. All these results indicated that the application of synthetic nitrogen fertilizer could not be taken as a feasible measure for the carbon sequestration of cropland soil in China. Since synthetic fertilizer application is the basic guarantee of China's crop production, it was suggested to increase the efficiency of synthetic nitrogen fertilizer, and at the same time, to cut down the synthetic nitrogen fertilizer production and its application on the premise that the crop yield should be ensured.

  12. [Interactive impact of water and nitrogen on yield, quality of watermelon and use of water and nitrogen in gravel-mulched field].

    PubMed

    Du, Shao-ping; Ma, Zhong-ming; Xue, Liang

    2015-12-01

    In order to develop the optimal coupling model of water and nitrogen of watermelon under limited irrigation in gravel-mulched field, a field experiment with split-plot design was conducted to study the effects of supplementary irrigation volume, nitrogen fertilization, and their interactions on the growth, yield, quality and water and nitrogen use efficiency of watermelon with 4 supplementary irrigation levels (W: 0, 35, 70, and 105 m³ · hm⁻²) in main plots and 3 nitrogen fertilization levels (N: 0, 120, and 200 kg N · hm⁻²) in sub-plots. The results showed that the photosynthetic rate, yield, and water and nitrogen use efficiency of watermelon increased with the increasing supplementary irrigation, but the nitrogen partial productivity and nitrogen use efficiency decreased with increasing nitrogen fertilization level. The photosynthetic rate and quality indicators increased with increasing nitrogen fertilization level as the nitrogen rate changed from 0 to 120 kg N · hm⁻², but no further significant increase as the nitrogen rate exceeded 120 kg · hm⁻². The interactive effects between water and nitrogen was significant for yield and water and nitrogen use efficiency of watermelon, supplementary irrigation volume was a key factor for the increase yield compared with the nitrogen fertilizer, and the yield reached the highest for the W₇₀N₂₀₀ and W₁₀₅ N₁₂₀ treatments, for which the yield increased by 42.4% and 40.4% compared to CK. Water use efficiency (WUE) was improved by supplementary irrigation and nitrogen rate, the WUE of all nitrogen fertilizer treatments were more than 26 kg · m⁻³ under supplemental irrigation levels 70 m³ · hm⁻² and 105 m³ · hm⁻². The nitrogen partial productivity and nitrogen use efficiency reached the highest in the treatment of W₁₀₅N₁₂₀. It was considered that under the experimental condition, 105 m³ · hm⁻² of supplementary irrigation plus 120 kg · hm⁻² of nitrogen fertilization was the optimal combination of obtaining the high yield and high efficiency.

  13. Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination

    PubMed Central

    de Almeida, Rodrigo Estevam Munhoz; Pierozan Junior, Clovis; Lago, Bruno Cocco; Trivelin, Paulo Cesar Ocheuze

    2018-01-01

    Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented. Five fertilizer N timings in an oat-corn system were evaluated in two studies utilizing an isotopic-labeled N determination, 15N isotope. The N fertilization timings were: (i) oat tillering, (ii) 15 days before corn planting time, over the oat residues, (iii) at corn planting time, (iv) in-season at the three-leaf growth stage (V3), and (v) in-season split application at V3 and six-leaf (V6) growth stages. Based on the statistical analysis, the N fertilization timings were separated into three groups: 1) N-OATS, designated to N applied at oat; 2) N-PLANT, referred to pre-plant and planting N applications; and 3) N-CORN, designated to in-season corn N applications. Corn yield was not affected by the N fertilization timing. However, the N-CORN N fertilization timings enhanced NRE by 17% and 35% and final N recovery system (plant plus soil) by 16% and 24% all relative to N-OATS and N-PLANT groups, respectively. Overall, N-OATS resulted in the largest N derived from fertilizer (NDFF) amount in the deeper soil layer, in overall a delta of 10 kg N ha-1 relative to the rest of the groups. Notwithstanding corn yield was not affected, early N fertilization under subtropical conditions is not a viable option since NRE was diminished and the non-recovery N increased relative to the in-season N applications. PMID:29462178

  14. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    PubMed

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  15. To burn or not to burn: The question of straw burning and nitrogen fertilization effect on nitrous oxide emissions in sugarcane.

    PubMed

    Chalco Vera, Jorge; Valeiro, Alejandro; Posse, Gabriela; Acreche, Martín Moisés

    2017-06-01

    Nitrous oxide (N 2 O) is the main greenhouse gas emitted from farming systems and is associated with nitrogen (N) fertilizer application as well as decomposition of organic matter present in the environment. The objective of this study was to determine the effect of post-harvest straw burning and synthetic N fertilization on the dynamics of N 2 O emissions in the sugarcane-soil system in Tucuman, Argentina, compared with a native forest. Close-vented chambers were used to capture N 2 O during three consecutive growing seasons. The highest N 2 O emissions from the sugarcane-soil system coincided with the period of high soil and air temperatures, rainfall and soil N content. The effect of synthetic N fertilization on annual cumulative N 2 O emission was 7.4-61.5% higher in straw burned than in unburned treatments, especially during a wet growing season. There was a significant effect of treatments on N 2 O emission factors among growing seasons: 0.58-1.67% and 0.94-3.34% in the unburnt and burnt treatments, respectively. The emission factors for sugarcane are highly dependent on rainfall, temperature and crop management practices; regarding the latter, avoiding straw burning and reducing N soil availability, assessing alternative N fertilizers or new application modes such as split rates, seem to be the key for mitigating N 2 O emissions from the sugarcane-soil system in Tucumán, Argentina. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Influence of long-term fertilization on soil physicochemical properties in a brown soil

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng

    2018-01-01

    This study aims to explore the influence on soil physicochemical properties under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen and phosphate fertilizer).The results showed thatthe long-term application of chemical fertilizers reduced soil pH value, while the application of organic fertilizers increased pH value. Fertilization significantly increased the content of AHN, TN and SOM. Compared with the CK treatment and chemical fertilizer treatments, organic fertilizer treatments significantly increased the content of AP and TP. The content of AK and TK were no significant difference in different treatment.

  17. Five Years of Nitrogen Fertilization in a Sweetgum-Oak Stand

    Treesearch

    W. M. Broadfoot

    1966-01-01

    Diameter and height growth were significantly increased in a 20-year-old sweetgum-oak stand by annual surface application of ammonium nitrate and of complete N-P-K fertilizer. Nitrogen fertilization significantly increased the nitrogen content of foliage. With increasing nitrate application, exchangeable potassium in the soil 1 year after treatment decreased.

  18. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops.

    PubMed

    Thorburn, Peter J; Biggs, Jody S; Palmer, Jeda; Meier, Elizabeth A; Verburg, Kirsten; Skocaj, Danielle M

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N) -1 , where yields were low (i.e., <50 Mg ha -1 ) and N inputs were high, to >5 Mg cane (kg N) -1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency fertilizers have potential for making N fertilizer management more site specific, an action that should facilitate increased NUE.

  19. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops

    PubMed Central

    Thorburn, Peter J.; Biggs, Jody S.; Palmer, Jeda; Meier, Elizabeth A.; Verburg, Kirsten; Skocaj, Danielle M.

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N)-1, where yields were low (i.e., <50 Mg ha-1) and N inputs were high, to >5 Mg cane (kg N)-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency fertilizers have potential for making N fertilizer management more site specific, an action that should facilitate increased NUE. PMID:28928756

  20. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    PubMed

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nitrogen Use Efficiency of California Almond Orchards Using Advanced Farming Practices

    NASA Astrophysics Data System (ADS)

    Smart, David; Schellenberg, Daniel; Saa Silva, Sebastian; Muhammad, Saiful; Sanden, Blake; Brown, Patrick

    2014-05-01

    Mobilization of reactive nitrogen species (NH3, NH4+, NOx, N2O, NO2- and NO3-) is perceived as one of the foremost challenges for modern agricultural production systems. Yet information to address the question of how advanced nitrogen (N) management alters reactive N mobilization is lacking. During 2009 to 2012 we monitored spatially constrained N2O emissions and potential leachable NO3-, along with yield-N content to examine their contribution to nitrogen use efficiency (NUE, fruit-N exported/fertilizer-N applied) for a modern, high yielding almond production system. This modern production system schedules irrigation to match evapotranspiration (ETc) estimated from the Penman-Montieth calculation of a reference evapotranspiration (ETo) times a seasonal crop coefficient (Kc) which was verified using eddy covariance and surface renewal latent heat flux estimates. Split N-fertilizer applications were targeted to tree-N demand and root proliferation. These production systems demand upwards of 300 kg N ha-1. NUE was found to be nearly 80% at an N application level allowing for economic sustainability of the system (308 kg N ha-1). When mobilization of N2O and NO3- were included in the NUE assessment, these systems were still highly sustainable in terms of N applied. We also monitored production and consumption of the greenhouse gases of carbon dioxide (CO2) and methane (CH4). These systems had relatively low levels of N2O emissions with emissions of N2O as a fraction of N-fertilizer applied being consistently less than IPCC Tier 1 emissions factors, and lower than the average estimated for most continental US farming systems. The system also demonstrated a capacity for net CH4 oxidation over the course of a season that occurred mainly in the driveways between tree rows that are kept dry over the course of the season in this arid environment. Our study indicated that tight management of water resources and targeted applications of N-fertilizer resulted in net positive greenhouse gas consumption overall.

  2. Effects of different nitrogen reduction modes on yield of spring maize and nitrate - N residue in soils of the southern Loess Plateau

    NASA Astrophysics Data System (ADS)

    Dang, Tinghui; Dong, Qiang

    2017-04-01

    【Objectives】Excessive fertilization in farmland caused nitrate leaching and accumulation in soil, which not only reduced the fertilizer utilization rate, but also had potential environmental problems. The effects of different nitrogen reduction modes on yield of spring maize and soil NO3-N in the southern Loess Plateau were discussed, and scientific fertilization suggestions were put forward, which were of great significance to instruct local maize fertilization and protect environment safety. 【Methods】A field experiment was conducted in the south of the Loess Plateau for three years. Spring maize was planted with half plastic film mulching in one crop per annum.The experiment consisted of 5 N fertilization treatments: control treatment (CK),conventional N fertilization rate (Con), optimal N fertilizationⅠ(OptⅠ), optimal N fertilizationⅡ (Opt Ⅱ) and optimal N fertilization Ⅲ(Opt Ⅲ), The changes of yield of maize, nitrogen uptake and soil NO3-N were measured.【Results】The results showed that, compared with the conventional fertilization, the grain yield and N uptake of maize had no significant change under the three optimal N fertilization application models, the rate of the grain yield's change is 100 300kg/hm2. Compared with the conventional fertilization, agronomic efficiency of fertilizer-nitrogen and N partial fertilizer productivity were increased by 20.2% 23.2% and 21.9% 23.7%, respectively. The accumulation of nitrate nitrogen in profile (0-200 cm) decreased by 90.7 kg / hm2, 97.3 kg / hm2, 100.7 kg / hm2 ,respectively, with the decreases of 44.7%, 47.9% and 49.6% respectively.【Conclusions】The optimum nitrogen fertilization pattern did not affect spring maize yield and N uptake, and could improve agronomic efficiency of fertilizer-nitrogen and N partial fertilizer productivity. Under the same nitrogen application rate, the effects of adding nitrification inhibitor or slow-release fertilizer on nitrate-N residue were not obvious. The amount of nitrogen applied, the mode and type of fertilization had a certain effect on the migration of nitrate nitrogen. Optimized N - application model could significantly reduce the NO3—N residue in soil profile. It is suggested to reduce the amount of nitrogen fertilizer by 20% on the basis of the traditional nitrogen fertilizer when the spring maize is planted with half plastic film mulching, which can guarantee the yield and protect the environment.

  3. Quantifying long-term responses of crop yield and nitrate leaching in an intensive farmland using agro-eco-environmental model.

    PubMed

    Sun, Mei; Huo, Zailin; Zheng, Yanxia; Dai, Xiaoqin; Feng, Shaoyuan; Mao, Xiaomin

    2018-02-01

    Quantitatively ascertaining and analyzing long-term responses of crop yield and nitrate leaching on varying irrigation and fertilization treatments are focal points for guaranteeing crop yield and reducing nitrogen loss. The calibrated agricultural-hydrological RZWQM2 model was used to explore the long-term (2003-2013) transport processes of water and nitrogen and the nitrate leaching amount into groundwater in summer maize and winter wheat rotation field in typical intensive plant area in the North China Plain, Daxing district of Beijing. Simulation results showed that application rates of irrigation and nitrogen fertilizer have couple effects on crop yields and nitrogen leaching of root zone. When both the irrigation and fertilizer for summer maize and winter wheat were 400mm and 400kgNha -1 , respectively, nitrate leaching into groundwater accounted for 47.9% of application amount of nitrogen fertilizer. When application amount of irrigation is 200mm and fertilization is 200kgNha -1 , NUPE (nitrogen uptake efficiency), NUE (nitrogen use efficiency), NPFP (nitrogen partial factor productivity), and W pi (irrigation water productive efficiency) were in general higher than that under other irrigation and fertilization condition (irrigation from 104-400mm, fertilizer 104-400kgNha -1 ). Irrigation bigger than 200mm could shorten the response time of nitrate leaching in deeper soil layer in different irrigation treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties].

    PubMed

    Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang

    2017-04-18

    To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could significantly increase effective panicles and filled grains per panicle, improve rice quality, and ensure high yield and superior quality simultaneously.

  5. Tritrophic interactions between parasitoids and cereal aphids are mediated by nitrogen fertilizer.

    PubMed

    Aqueel, Muhammad A; Raza, Abu-bakar M; Balal, Rashad M; Shahid, Muhammad A; Mustafa, Irfan; Javaid, Muhammad M; Leather, Simon R

    2015-12-01

    Host plant nutritional quality can directly and indirectly affect the third trophic levels. The aphid-parasitoid relationship provides an ideal system to investigate tritrophic interactions (as the parasitoids are completely dependent for their development upon their hosts) and assess the bottom up forces operating at different concentrations of nitrogen applications. The effects of varying nitrogen fertilizer on the performance of Aphidius colemani (V.) reared on Sitobion avenae (F.) and Aphidius rhopalosiphi (D.) reared on Rhopalosiphum padi (L.) were measured. Parasitism and percent emergence of parasitoids were positively affected by nitrogen fertilizer treatments while developmental duration (egg, larval, and pupal stages) was not affected by increasing nitrogen inputs. In males and females of both parasitoid species, adult longevity increased with the increasing nitrogen fertilizer. Hind tibia length and mummy weight of both parasitoid species increased with nitrogen fertilizer concentrations, as a result of larger aphids. This study showed that nitrogen application to the soil can have important consequences for aboveground multitrophic interactions. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  6. Corn grain yield and nutrient uptake from application of enhanced-efficiency nitrogen fertilizers

    USDA-ARS?s Scientific Manuscript database

    Increasing demand for food and agricultural products directly impact the use of chemical fertilizers particularly nitrogen (N). This study examined corn grain yield and nutrient uptake resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitr...

  7. Stabilized nitrogen fertilizers and application rate influence nitrogen losses under rainfed spring wheat

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) losses associated with fertilizer application have negative economic and environmental consequences, but urease and nitrification inhibitors have potential to reduce N losses. The effectiveness of these inhibitors has been studied extensively in irrigated but not rainfed systems. Theref...

  8. Organically fertilized onions (Allium cepa L.): effects of the fertilizer placement method on quercetin content and soil nitrogen dynamics.

    PubMed

    Mogren, Lars M; Caspersen, Siri; Olsson, Marie E; Gertsson, Ulla E

    2008-01-23

    Field-cured onions cv. Hyskin ( Allium cepa L.) supplied with organic nitrogen fertilizer were studied. The fertilizer was applied by broadcasting and harrowing, broadcasting and rotary cultivation, or placement between rows. Nitrogen dynamics were monitored throughout the growing season by soil sampling. Variation in quercetin content in the onion scales was analyzed by HPLC. The organically fertilized onions were compared with inorganically fertilized onions grown in the same field. Inoculation with arbuscular mycorrhizal fungi (AMF) in the row at sowing or during commercial transplant production was tested but did not significantly affect mycorrhizal root colonization levels in the field. Onions that received no fertilizer at all or that had fertilizer placed between rows had better establishment, probably due to more favorable soil nitrogen concentrations for seedling emergence. Broadcast application led to higher nitrogen concentration in the root zone, resulting in fewer but larger individual onions. Quercetin levels were not significantly altered as a result of nitrogen fertilizer source (inorganic or organic), application method, or mycorrhizal inoculation. However, variation between years was significant, with quercetin levels in 2004 almost twice as high as those in 2005.

  9. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Riddick, Stuart; Ward, Daniel; Hess, Peter; Mahowald, Natalie; Massad, Raia; Holland, Elisabeth

    2016-06-01

    Nitrogen applied to the surface of the land for agricultural purposes represents a significant source of reactive nitrogen (Nr) that can be emitted as a gaseous Nr species, be denitrified to atmospheric nitrogen (N2), run off during rain events or form plant-useable nitrogen in the soil. To investigate the magnitude, temporal variability and spatial heterogeneity of nitrogen pathways on a global scale from sources of animal manure and synthetic fertilizer, we developed a mechanistic parameterization of these pathways within a global terrestrial land model, the Community Land Model (CLM). In this first model version the parameterization emphasizes an explicit climate-dependent approach while using highly simplified representations of agricultural practices, including manure management and fertilizer application. The climate-dependent approach explicitly simulates the relationship between meteorological variables and biogeochemical processes to calculate the volatilization of ammonia (NH3), nitrification and runoff of Nr following manure or synthetic fertilizer application. For the year 2000, approximately 125 Tg N yr-1 is applied as manure and 62 Tg N yr-1 is applied as synthetic fertilizer. We estimate the resulting global NH3 emissions are 21 Tg N yr-1 from manure (17 % of manure production) and 12 Tg N yr-1 from fertilizer (19 % of fertilizer application); reactive nitrogen runoff during rain events is calculated as 11 Tg N yr-1 from manure and 5 Tg N yr-1 from fertilizer. The remaining nitrogen from manure (93 Tg N yr-1) and synthetic fertilizer (45 Tg N yr-1) is captured by the canopy or transferred to the soil nitrogen pools. The parameterization was implemented in the CLM from 1850 to 2000 using a transient simulation which predicted that, even though absolute values of all nitrogen pathways are increasing with increased manure and synthetic fertilizer application, partitioning of nitrogen to NH3 emissions from manure is increasing on a percentage basis, from 14 % of nitrogen applied in 1850 (3 Tg NH3 yr-1) to 17 % of nitrogen applied in 2000 (21 Tg NH3 yr-1). Under current manure and synthetic fertilizer application rates we find a global sensitivity of an additional 1 Tg NH3 (approximately 3 % of manure and fertilizer) emitted per year per °C of warming. While the model confirms earlier estimates of nitrogen fluxes made in a range of studies, its key purpose is to provide a theoretical framework that can be employed within a biogeochemical model, that can explicitly respond to climate and that can evolve and improve with further observation.

  10. Response of Alamo switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA

    USDA-ARS?s Scientific Manuscript database

    The purpose of this research was to examine above- and belowground responses to nitrogen fertilization in 5-year old “Alamo” switchgrass (Panicum virgatum). A fertilizer experiment included spring and fall sampling of switchgrass grown under annual applications of 0, 67, and 202 kg N ha-1. Nitrogen ...

  11. Effects of late-stage nitrogen fertilizer application on the starch structure and cooking quality of rice.

    PubMed

    Cao, XianMei; Sun, HuiYan; Wang, ChunGe; Ren, XiaoJia; Liu, HongFei; Zhang, ZuJian

    2018-04-01

    With the rapid development of modern agriculture, high-quality rice production and consumption has become the current urgent demand for the development of rice production. In this paper, the effects of late-stage nitrogen fertilizer application on rice quality were studied under the same genetic background. Wx near-isogenic lines were used as test materials to study the starch composition, amylopectin structure and cooking quality of rice. Results showed that rice amylose content and gel consistency significantly differed when different Wx genes were tranformed into waxy rice. The law of apparent amylose content in rice is Wx a > Wx in > Wx b > wx at the same nitrogen level, while the trend of gel consistency was opposite to that of apparent amylose content, presenting obvious characteristics of Indica and Japonica varieties. As the amount of fertilizer application increased, apparent amylose content increased, gel consistency decreased, breakdown and peak viscosities dropped and setback viscosity and peak time increased. Moreover, the cooking quality of rice significantly decreased with the use of nitrogen fertilizer, especially under low-level nitrogen fertilizer application. Amylopectin structure varied significantly in different genotypes of the Wx gene, and the degree of branching was as follows: wx > Wx b > Wx in > Wx a . This result indicated that the closer to Indica rice, the fewer short chains of amylopectin. Starch crystallinity and swelling potential were negatively correlated with amylose content but significantly positively correlated with amylopectin branching degree, decreasing with the increase of late-stage nitrogen fertilization. Late-stage nitrogen fertilization reduced the cooking quality of rice by increasing amylose content and reducing amylopectin branching degree, which decreased starch crystallinity and aggravated pasting properties. Obviously, controlling late nitrogen application is essential to optimize rice quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. [Further reduction of nitrogen fertilizer application in paddy field under green manuring of Taihu Area, China].

    PubMed

    Zhao, Dong; Yan, Ting-mei; Qiao, Jun; Yang, Lin-zhang; Tang, Fang; Song, Yun-fei

    2015-06-01

    This study focused on the nitrogen loss via runoff, change of nitrogen in different forms in surface water in paddy field, and grain yield, through further reduction of nitrogen fertilizer application rate under green manuring without basal dressing. Results showed that with 150 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil, no basal dressing could not only sharply reduce N concentration in surface water and decrease 17.2% of N loss, but also increase 2.8% of grain yield in comparison with basal dressing. It was a worthwhile farming method that inorganic nitrogen fertilizer was not used for basal dressing but for topdressing after return of green ma- nure to soil in Taihu Area. However, the grain yield would decrease if the rate of topdressing nitro- gen was excessively reduced or increased. After all, it was feasible to realize harmonization of grain yield and environmental benefits in Taihu Area, with 133 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil as well as no application of basal dressing, which could greatly reduce N fertilizer input and N loss as well as ensure rice yield.

  13. Predicting Nitrogen in Streams: A Comparison of Two Estimates of Fertilizer Application

    NASA Astrophysics Data System (ADS)

    Mehaffey, M.; Neale, A.

    2011-12-01

    Decision makers frequently rely on water and air quality models to develop nutrient management strategies. Obviously, the results of these models (e.g., SWAT, SPARROW, CMAQ) are only as good as the nutrient source input data and recently the Nutrient Innovations Task Group has called for a better accounting of nonpoint nutrient sources. Currently, modelers frequently rely on county level fertilizer sales records combined with acreage of crops to estimate nitrogen sources from fertilizer for counties or watersheds. However, since fertilizer sales data are based on reported amounts they do not necessarily reflect actual use on the fields. In addition the reported sales data quality varies by state resulting in differing accuracy between states. In this study we examine an alternative method potentially providing a more uniform, spatially explicit, estimate of fertilizer use. Our nitrogen application data is estimated at a 30m pixel resolution which allows for scalable inputs for use in water and air quality models. To develop this dataset we combined raster data from the National Cropland data layer (CDL) data with the National Land Cover Data (NLCD). This process expanded the NLCD's 'cultivated crops' classes to included major grains, cover crops, and vegetable and fruits. The Agriculture Resource Management Survey chemical fertilizer application rate data were summarized by crop type and year for each state, encompassing the corn, soybean, spring wheat, and winter wheat crop types (ARMS, 2002-2005). The chemical fertilizer application rate data were then used to estimate annual application parameters for nitrogen, phosphate, potash, herbicide, pesticide, and total pesticide, all expressed on a mass-per-unit-crop-area basis for each state for each crop type. By linking crop types to nitrogen application rates, we can better estimate where applied fertilizer would likely be in excess of the amounts used by crops or where conservation practices may improve retention and uptake helping offset the impacts to water. To test the accuracy of our finer resolution nitrogen application data, we compare its ability to predict nitrogen concentrations in streams with the ability of the county sales data to do the same.

  14. Physiological indicators of nitrogen response in short-rotation sycamore plantations. [Platanus occidentalis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tschaplinski, T.J.; Norby, R.J.

    1989-04-01

    American sycamore (Platanus occidentalis L.) seedlings were grown in the field under urea-nitrogen fertilization regimes to identify physiological variables that characterize the growth responses. Treatments included trees fertilized at the beginning of the growing season with 450 kg N/ha, trees fertilized periodically (three times during the growing season) at 37.5 kg N/ha, and unfertilized controls. Above ground biomass accumulation in the heaviest nitrogen treatment was three times that of the controls, and nearly as much growth occurred when less nitrogen was added periodically. Photosynthesis, chlorophyll concentrations, and growth increased rapidly after a midseason application of a small amount of nitrogen,more » but not to a late-season application. There was no evidence that fertilization extended the physiologically active season or increased susceptibility to drought or cold. Sycamore leaves accumulated sucrose and mannose in response to water and cold stress in all treatments. Photosynthetic pigment concentrations, net photosynthetic rate, and leaf nitrate reductase activity were sensitive indicators of nitrogen fertilization, but foliar concentrations of nitrate, total nitrogen, soluble carbohydrate and soluble protein were not.« less

  15. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.).

    PubMed

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-04-22

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha⁻¹) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha⁻¹) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate.

  16. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)

    PubMed Central

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-01-01

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896

  17. Effect of manure under different nitrogen application rates on winter wheat production and soil fertility in dryland

    NASA Astrophysics Data System (ADS)

    Zhang, H. Q.; Yu, X. Y.; Zhai, B. N.; Jin, Z. Y.; Wang, Z. H.

    2016-08-01

    Exploring an effective fertilization practice is crucial for achieving a sustainable dryland winter wheat cropping system. Following a split-plot design, this study was conducted to investigate the combined effect of manure (-M or +M; main plot) and various rates of nitrogen (N) fertilizer (0, 75, 150, 225, and 300 kg N ha-1; sub plot) on grain yield, water and N use efficiencies of winter wheat, and soil nutrients. The results showed that the treatments with manure improved the grain yield by 8%, and WUE by 10% relative to that without manure throughout the study years. The highest winter wheat yield and WUE were both recorded in the M+N225 treatment, which were not significantly different from those for M+N75 and M+N150 treatment. In contrast, high levels of N fertilizer (> 150 kg N ha-1) combined with manure not only caused a reduction in the N use efficiency (NUE), but it also caused an increase in the soil residual nitrate-N (from 43.7 to 188.9 kg ha-1) relative to without manure. After three years of continuous cropping, the treatment combining manure with 150 kg N ha-1 fertilizer had the highest SOM, available P and available K, which was 24%, 379% and 102% higher than that for unfertilized treatment (CK), and 10%, 267%, and 55% higher than that for without manure, respectively. Thus, the combination of manure (17.5 t ha-1 poultry or 30 t ha-1 pig manure) with 75-150 kg N ha-1 N fertilizer is recommended for improving winter wheat yield, water and N use efficiencies, and reducing soil nitrate-N residue as well.

  18. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.

    PubMed

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of fertilizer applications and grazing exclusion on species composition and biomass in wet meadow restoration in eastern Washington.

    Treesearch

    John Beebe; Richard Everett; George Scherer; Carl. Davis

    2002-01-01

    Fertilizer applications and grazing exclusion were used as restoration strategies in degraded wet meadows in eastern Washington to grow biomass in the root systems where it could not be grazed. We used a split-block design to test vegetation responses to six fertilizer rates, eight fertilizer types, and three grazing treatments after three growing seasons. Little...

  20. [Nitrogen Loss Through Different Ways in Cropland Under Conventional Fertilization: An In-situ Study of Summer Maize Season in the Middle and Lower Reaches of the Yangtze River].

    PubMed

    Sang, Meng-meng; Fan, Hui; Jiang, Shan-shan; Jiang, Jing-yan

    2015-09-01

    In order to better understand the characteristics of nitrogen loss through different pathways under conventional fertilization conditions, a field experiment was conducted to investigate the variations of N2O emission, NH3 volatilization, N losses through surface runoff and leaching caused by the application of nitrogen fertilizers during summer maize growing season in the Middle and Lower reaches of the Yangtze River, China. Our results showed that when compound fertilizer was used as basal fertilizer at the nitrogen rate of 150 kg.hm-2, and urea with the same level of fertilizing as topdressing, the N2O emission coefficient in the entire growing season was 3. 3%, NH3 volatilization loss rate was 10. 2%, and nitrogen loss rate by leaching and surface runoff was 11. 2% and 5. 1%, respectively. In addition, leaching was the main pathway of nitrogen loss after basal fertilizer, while NH, volatilization and nitrogen leaching accounted for the majority of nitrogen loss after topdressing, which suggested that nitrogen loss from different pathways mainly depended on the type of nitrogen fertilizer. Taken together, it appears to be effective to apply the new N fertilizer with low ammonia volatilization instead of urea when maize needs topdressing, so as to reduce N losses from N fertilizer.

  1. Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster County, Pennsylvania

    USGS Publications Warehouse

    Hall, D.W.; Risser, D.W.

    1993-01-01

    Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1,25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year, 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987-1990.

  2. Measuring and modeling the temporal dynamics of nitrogen balance in an experimental-scale paddy field

    NASA Astrophysics Data System (ADS)

    Tseng, C.; Lin, Y.

    2013-12-01

    Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.

  3. [Effects of applying controlled-release fertilizer blended with conventional nitrogen fertilizer on Chinese cabbage yield and quality as well as nitrogen losses].

    PubMed

    Yang, Jun-gang; Xu, Kai; Tong, Er-jian; Cao, Bing; Ni, Xiao-hui; Xu, Jun-xiang

    2010-12-01

    An open field experiment was conducted to study the effects of applying controlled-release fertilizer blended with rapidly available chemical N fertilizer on Chinese cabbage yield and quality as well as nitrogen losses, including ammonia volatilization and NO3- -N accumulation and leaching in Beijing suburb. The results showed that a combined application of 2:1 controlled-release fertilizer and urea fertilizer (total N rate 150 kg x hm(-2)) did not induce the reduction of Chinese cabbage yield, and decreased the leaf nitrate and organic acid contents significantly, compared with conventional urea N application (300 kg x hm(-2)), and had no significant difference in the cabbage yield and leaf nitrate content, compared with applying 150 kg x hm(-2) of urea N. The combined application of 2:1 controlled-release fertilizer and urea fertilizer improved the N use efficiency of Chinese cabbage, and reduced the ammonia volatilization and NO3- -N leaching. At harvest, the NO3- -N concentrations in 20-40, 60-80 and 80-100 cm soil layers were significantly lower in the combined application treatment than in urea N treatment.

  4. Response of Bacteria Community to Long-Term Inorganic Nitrogen Application in Mulberry Field Soil

    PubMed Central

    Hu, Xingming; Deng, Wen; Li, Yong; Han, Guangming; Xiong, Chao

    2016-01-01

    The bacterial community and diversity in mulberry field soils with different application ages of inorganic nitrogen fertilizer (4Y, 4-year-old; 17Y, 17-year-old; 32Y, 32-year- old) were investigated using next-generation sequencing. The results demonstrated that the application ages of nitrogen fertilizer significantly altered soil bacterial community and diversity. Soil bacterial Shannon diversity index and Chao 1 index decreased with the consecutive application of nitrogen fertilizer, and the 4Y soil exhibited the highest bacterial relative abundance and diversity. Of 45 bacterial genera (relative abundance ratio of genera greater than 0.3%), 18 were significantly affected by the plant age, and seven belong to Acidobacteria. The relative abundances of Acidobacteria Gp 1, Gp4 and Gp6 in the 4Y soil were significantly lower than that of in the 17Y and 32Y soils. However, the relative abundance of Pseudononas sp. in the 4Y soil was significantly higher than that of in the 17Y and 32Y soils. Most microbial parameters were significantly affected by soil pH and organic matter content which were significantly changed by long-term application of inorganic nitrogen fertilizer. PMID:27977728

  5. Response of Bacteria Community to Long-Term Inorganic Nitrogen Application in Mulberry Field Soil.

    PubMed

    Yu, Cui; Hu, Xingming; Deng, Wen; Li, Yong; Han, Guangming; Xiong, Chao

    2016-01-01

    The bacterial community and diversity in mulberry field soils with different application ages of inorganic nitrogen fertilizer (4Y, 4-year-old; 17Y, 17-year-old; 32Y, 32-year- old) were investigated using next-generation sequencing. The results demonstrated that the application ages of nitrogen fertilizer significantly altered soil bacterial community and diversity. Soil bacterial Shannon diversity index and Chao 1 index decreased with the consecutive application of nitrogen fertilizer, and the 4Y soil exhibited the highest bacterial relative abundance and diversity. Of 45 bacterial genera (relative abundance ratio of genera greater than 0.3%), 18 were significantly affected by the plant age, and seven belong to Acidobacteria. The relative abundances of Acidobacteria Gp 1, Gp4 and Gp6 in the 4Y soil were significantly lower than that of in the 17Y and 32Y soils. However, the relative abundance of Pseudononas sp. in the 4Y soil was significantly higher than that of in the 17Y and 32Y soils. Most microbial parameters were significantly affected by soil pH and organic matter content which were significantly changed by long-term application of inorganic nitrogen fertilizer.

  6. [Effects of nitrogen management on yield, quality, nitrogen accumulation and its transportation of watermelon in gravel-mulched field].

    PubMed

    Ma, Zhong-ming; Du, Shao-ping; Xue, Liang

    2015-11-01

    The effects of nitrogen management on yield, quality, nitrogen and dry matter accumulation and transportation of watermelon in sand field were studied based on a field experiment. The results showed that too low or too high basal nitrogen fertilzation was unfavorable to seedling growth of watermelon in sand field, and no nitrogen application at vine extension or fruiting stages limited the formation of 'source' or 'sink'. At the same nitrogen rate, compared with the traditional T1 treatment (30% basal N fertilizer + 70% N fertilizer in vine extension), the nitrogen and dry matter accumulation of vegetative organs of T4 treatment (30% basal N fertilizer + 30% N fertilizer in vine extension + 40% N fertilizer in fruiting) and T6 treatment (100% basal N fertilizer + NAM) were reduced significantly, but the nitrogen and dry matter accumulation of fruit were increased significantly in the flushing period. The nitrogen transportation ratio and nitrogen contribution ratio of T4 were 33.6% and 12.0%, respectively. Compared to T1, the nitrogen harvest index, nitrogen fertilizer partial factor productivity and nitrogen fertilizer recovery efficiency of T4 and T6 treatments increased by 14.1% and 12.7%, 11.6% and 12.5%, 5.3% and 8.7%, respectively, and yield of watermelon increased by 11.6% and 12.5%, the soluble sugar, effective acid, the ratio of sugar and acid, Vc content increased by 16.5% and 11.7%, 4.5% and 2.8%, 19.4% and 13.4%, 35.6% and 19.0%, respectively. Therefore, T4 and T6 treatments were the optimal nitrogen fertilizer management mode which could not only achieve high yield and quality but also obtain high nitrogen fertilizer use efficiency in sand field. T6 treatment was the best nitrogen fertilizer management mode considering reduction of fertilizing labor intensity and extending service time of gravel-mulched field.

  7. [Effects of postponed basal nitrogen application with reduced nitrogen rate on grain yield and nitrogen use efficiency of south winter wheat].

    PubMed

    Zhang, Lei; Shao, Yu Hang; Gu, Shi Lu; Hu, Hang; Zhang, Wei Wei; Tian, Zhong Wei; Jiang, Dong; Dai, Ting Bo

    2016-12-01

    Excessive nitrogen (N) fertilizer application has led to a reduction of nitrogen use efficiency and environmental problems. It was of great significance for high-yield and high-efficiency cultivation to reduce N fertilizer application with modified application strategies. A two-year field experiment was conducted to study effects of different N application rates at basal and seedling application stages on grain yield and nitrogen use efficiency. Taking the conventional nitrogen application practice (240 kg N·hm -2 with application at basal, jointing, and booting stages at ratios of 5:3:2, respectively) as control, a field trial was conducted at different N application rates (240, 180 and 150 kg N·hm -2 , N 240 , N 180 and N 150 , respectively) and different application times [basal (L 0 ), fourth (L 4 ) and sixth leaf stage (L 6 )] to investigate the effects on grain yield and nitrogen use efficiency. The results indicated that grain yield decreased along with reducing the N application rate, but it had no significant difference between N 240 and N 180 while decreased significantly under N 150 . Nitrogen agronomy and recovery efficiency were all highest under N 180 . Among different N application stages, grain yield and nitrogen use efficiency were highest under L 4 . N 180 L 4 had no signifi-cant difference with control in grain yield, but its nitrogen use efficiency was significantly higher. The leaf area index, flag leaf photosynthesis rate, leaf nitrogen content, activity of nitrogen reductase and glutamine synthase in flag leaf, dry matter and N accumulation after jointing of N 180 L 4 had no significant difference with control. In an overall view, postponing basal N fertilizer application at reduced nitrogen rate could maintain high yield and improve nitrogen use efficiency through improving photosynthetic production capacity and promoting nitrogen uptake and assimilation.

  8. Manipulating Crop Density to Optimize Nitrogen and Water Use: An Application of Precision Agroecology

    NASA Astrophysics Data System (ADS)

    Brown, T. T.; Huggins, D. R.; Smith, J. L.; Keller, C. K.; Kruger, C.

    2011-12-01

    Rising levels of reactive nitrogen (Nr) in the environment coupled with increasing population positions agriculture as a major contributor for supplying food and ecosystem services to the world. The concept of Precision Agroecology (PA) explicitly recognizes the importance of time and place by combining the principles of precision farming with ecology creating a framework that can lead to improvements in Nr use efficiency. In the Palouse region of the Pacific Northwest, USA, relationships between productivity, N dynamics and cycling, water availability, and environmental impacts result from intricate spatial and temporal variations in soil, ecosystem processes, and socioeconomic factors. Our research goal is to investigate N use efficiency (NUE) in the context of factors that regulate site-specific environmental and economic conditions and to develop the concept of PA for use in sustainable agroecosystems and science-based Nr policy. Nitrogen and plant density field trials with winter wheat (Triticum aestivum L.) were conducted at the Washington State University Cook Agronomy Farm near Pullman, WA under long-term no-tillage management in 2010 and 2011. Treatments were imposed across environmentally heterogeneous field conditions to assess soil, crop and environmental interactions. Microplots with a split N application using 15N-labeled fertilizer were established in 2011 to examine the impact of N timing on uptake of fertilizer and soil N throughout the growing season for two plant density treatments. Preliminary data show that plant density manipulation combined with precision N applications regulated water and N use and resulted in greater wheat yield with less seed and N inputs. These findings indicate that improvements to NUE and agroecosystem sustainability should consider landscape-scale patterns driving productivity (e.g., spatial and temporal dynamics of water availability and N transformations) and would benefit from policy incentives that promote a PA approach.

  9. Fertilizer placement to maximize nitrogen use by fescue

    USDA-ARS?s Scientific Manuscript database

    The method of fertilizer nitrogen(N) application can affect N uptake in tall fescue and therefore its yield and quality. Subsurface-banding (knife) of fertilizer maximizes fescue N uptake in the poorly-drained clay–pan soils of southeastern Kansas. This study was conducted to determine if knifed N r...

  10. [Effects of different fertilization patterns on soil enzyme activities in greenhouse vegetable field.

    PubMed

    Wang, Wen Feng; Li, Chun Hua; Huang, Shao Wen; Gao, Wei; Tang, Ji Wei

    2016-03-01

    A fixed-site greenhouse vegetable fertilization experiment was carried out to study effects of 6 fertilization patterns on soil enzyme activities in Tianjin City, Northern China. The results showed that during the growing stages of tomato, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased first and then decreased, while soil urease activities increased first and then became flat. Compared with the chemical nitrogen fertilizer treatment, soil enzyme activities were much higher in treatments of combined application of organic materials with chemical fertilizers, and rose with the increasing input of pig manure and especially the application of straw. A significant positive correlation was found between soil enzyme activities, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contents at different growing stages of tomato. Under the condition of same nutrient input, the combined application of inorganic fertilizers with organic materials, especially a certain amount of corn straw, was capable of increasing soil enzyme activities and keeping soil fertility and sustainability in greenhouse vegetable production.

  11. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.

    PubMed

    Rogers, Christian; Oldroyd, Giles E D

    2014-05-01

    Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals.

  12. Effect of empty fruit bunch to the accumulated plant height, mass of fresh and dry weight of tomato plant treated with organic and inorganic fertilizer

    NASA Astrophysics Data System (ADS)

    Elias, Aishah; Mutalib, Sahilah Abd.; Mustapha, Wan Aida Wan

    2016-11-01

    A glasshouse experiment was conducted to study the effect of different type of compost and fertilizers on the growth of tomato (Lycopersicon esculentum). The experiment consisted of sixteen treatments. Compost of Empty fruit bunch (EFB) and cow dung is mixed in the ratio of 3:2:1 (soil: compost: sand) and put into 25.4 mm2 polyethylene bag. Organic fertilizer of 10 ml were added twice a week, while inorganic fertilizer was applied at the rate of 3 g per polyethylene bag of soil three weeks after sowing. Treatment without fertilizer application was established as a control. The treatments were laid in a split-split plot design with three replications. Plant growth was assessed using accumulating plant height, fresh weight and dry weight. The application of organic plus inorganic fertilizer had significant effects on plant height. The application of organic fertilizer combination with cow dung gave significant difference to plant mass (fresh and dry). The data obtained from these treatments were significantly higher than the data obtained from the control (without fertilizer). In conclusion, the type of compost did not gave significant difference towards plant height while it only gave significant difference towards plant mass.

  13. Variable-rate nitrogen application algorithm based on canopy reflected spectrum and its influence on wheat

    NASA Astrophysics Data System (ADS)

    Liang, Hongxia; Zhao, Chunjiang; Huang, Wenjiang; Liu, Liangyun; Wang, Jihua; Ma, Youhua

    2005-01-01

    This study was to develop the time-specific and time-critical method to overcome the limitations of traditional field sampling methods for variable rate fertilization. Farmers, agricultural managers and grain processing enterprises are interested in measuring and assessing soil and crop status in order to apply adequate fertilizer quantities to crop growth. This paper focused on studying the relationship between vegetation index (OSAVI) and nitrogen content to determine the amount of nitrogen fertilizer recommended for variable rate management in precision agriculture. The traditional even rate fertilizer management was chosen as the CK. The grain yield, ear numbers, 1000-grain weight and grain protein content were measured among the CK, uniform treatments and variable rate fertilizer treatments. It indicated that variable rate fertilization reduced the variability of wheat yield, ear numbers and dry biomass, but it didn't increased crop yield and grain protein content significantly and did not decrease the variety of 1000-grain weight, compared to traditional rate application. The nitrogen fertilizer use efficiency was improved, for this purpose, the variable rate technology based on vegetation index could be used to prevent under ground water pollution and environmental deterioration.

  14. Decreasing Nitrogen Fertilizer Input Had Little Effect on Microbial Communities in Three Types of Soils

    PubMed Central

    Yu, Hailing; Gao, Qiang; Shao, Zeqiang; Ying, Anning; Sun, Yuyang; Liu, Jingwei; Mao, Wei; Zhang, Bin

    2016-01-01

    In this study, we examined the influence of different nitrogen (N) application rates (0, 168, 240, 270 and 312 kg N ha-1) on soil properties, maize (Zea mays L.) yields and microbial communities of three types of soils (clay, alluvial and sandy soils). Phospholipid fatty acid analysis was used to characterize soil microbial communities. Results indicated that N fertilization significantly decreased microbial biomass in both clay and sandy soils regardless of application rate. These decreases were more likely a result of soil pH decreases induced by N fertilization, especially in the sandy soils. This is supported by structural equation modeling and redundancy analysis results. Nitrogen fertilization also led to significant changes in soil microbial community composition. However, the change differences were gradually dismissed with increase in N application rate. We also observed that N fertilization increased maize yields to the same level regardless of application rate. This suggests that farmers could apply N fertilizers at a lower rate (i.e. 168 kg N ha-1), which could achieve high maize yield on one hand while maintain soil microbial functions on the other hand. PMID:26992097

  15. Effect of Rates and Timing of Midseason Nitrogen Applications on Performance of Short-season Rice Varieties, 1964-1965

    Treesearch

    John L. Sims; V. L. Hall; T. H. Johnston

    1967-01-01

    Research conducted in Arkansas has shown the value of splitting nitrogen applications made to rice and the importance of proper timing of applications near midseason. Results of these studies recently were presented and references to the world literature on timing of nitrogen applications to rice were reviewed.

  16. Soybean plant growth study conducted using purified protein hydrolysate-based fertilizer made from chrome-tanned leather waste.

    PubMed

    Pati, Anupama; Chaudhary, Rubina

    2015-12-01

    Leather processing discharges enormous amount of chrome containing leather solid waste which creates a major disposal problem. Chrome-tanned leather solid waste is a complex of collagen and chromium. The presence of chromium limits protein application in fertilizer industry. The purified protein hydrolysate with zero chromium could be used as a nitrogen source for fertilizer formulation. In this study, an attempt has been made to employ purified protein hydrolysate derived from chrome-tanned leather shavings (CTLS) in formulation of fertilizer. The formulated fertilizer (1–3 t ha(-1)) is employed as nitrogen source in production of soybean. Plant growth study demonstrates that formulated fertilizer dosage 3 t ha(-1) produced similar effects of commercial fertilizer-treated plants. Application of formulated fertilizer yielded higher seed in plant than commercial fertilizer.

  17. Soil-pit Method for Distribution and Leaching Loss of Nitrogen in Winter Wheat’s Soil, Weishan Irrigation District

    NASA Astrophysics Data System (ADS)

    Zhao, Erni; Xu, Lirong; Wang, Rongzhen

    2018-01-01

    Unreasonable application of irrigation and fertilizer will cause the waste of water and nitrogen and environmental pollution. In this paper, a series of soil-pit experiments were carried out to study the distribution and leaching loss of nitrogen in winter wheat’s soil. The results showed that NO3 - concentration at 20-80cm depth mainly responded to fertilizer application at the beginning of field experiment, but the amount of irrigation became the dominant factor with the growth of winter wheat. It is noteworthy that the distribution of NO3 - was mainly affected by the amount of fertilizer applied at the depth of 120-160cm in the whole period of growth of winter wheat. The accumulation position of NH4 + was deepened as the amount of irrigation increased, however, the maximum aggregation depth of ammonium nitrogen was no more than 80cm owing to its poor migration. It can be concluded that the influence of irrigation amount on the concentration of NH4 + in soil solution was more obvious than that of fertilizer. Compared with fertilizer, the amount of irrigation played a leading role in the utilization ratio of nitrogen and the yield of winter wheat. In summary, the best water and fertilizer treatment occurred in No.3 soil-pit, which meant that the middle amount of water and fertilizer could get higher wheat yield and less nitrogen leaching losses in the study area.

  18. Sawdust biochar application to rice paddy field: reduced nitrogen loss in floodwater accompanied with increased NH3 volatilization.

    PubMed

    Feng, Yanfang; Sun, Haijun; Xue, Lihong; Wang, Yueman; Yang, Linzhang; Shi, Weiming; Xing, Baoshan

    2018-03-01

    Sawdust biochar (SDB) was for the first time applied to rice paddy field to evaluate its effects on potential nitrogen (N) runoff and ammonia (NH 3 ) volatilization losses in a soil column experimental system. Results showed that total N concentration of surface floodwater under SDB treatments was reduced by 7.29-35.16, 16.34-32.35, and 12.21-28.12% after three split N fertilizations, respectively. Particularly, NH 4 + -N was decreased by 11.84-27.08, 14.29-36.50, and 2.97-19.64%, respectively. However, SDB addition has no significant influence on NO 3 - -N concentration. Meanwhile, SDB application increased NH 4 + -N and total N content of top (0-15 cm) soil. Furthermore, these SDB-induced influences were more pronounced for 3 wt% SDB treatments. SDB treatments recorded 3.56-5.78 kg ha -1 higher NH 3 volatilization than urea control treatment, which was attributed to the elevated pH values of floodwater and top soil induced by SDB. Fortunately, the yield-scale NH 3 volatilization was not increased dramatically.

  19. Narrowing the agronomic yield gap with improved nitrogen use efficiency: a modeling approach.

    PubMed

    Ahrens, T D; Lobell, D B; Ortiz-Monasterio, J I; Li, Y; Matson, P A

    2010-01-01

    Improving nitrogen use efficiency (NUE) in the major cereals is critical for more sustainable nitrogen use in high-input agriculture, but our understanding of the potential for NUE improvement is limited by a paucity of reliable on-farm measurements. Limited on-farm data suggest that agronomic NUE (AE(N)) is lower and more variable than data from trials conducted at research stations, on which much of our understanding of AE(N) has been built. The purpose of this study was to determine the magnitude and causes of variability in AE(N) across an agricultural region, which we refer to as the achievement distribution of AE(N). The distribution of simulated AE(N) in 80 farmers' fields in an irrigated wheat system in the Yaqui Valley, Mexico, was compared with trials at a local research center (International Wheat and Maize Improvement Center; CIMMYT). An agroecosystem simulation model WNMM was used to understand factors controlling yield, AE(N), gaseous N emissions, and nitrate leaching in the region. Simulated AE(N) in the Yaqui Valley was highly variable, and mean on-farm AE(N) was 44% lower than trials with similar fertilization rates at CIMMYT. Variability in residual N supply was the most important factor determining simulated AE(N). Better split applications of N fertilizer led to almost a doubling of AE(N), increased profit, and reduced N pollution, and even larger improvements were possible with technologies that allow for direct measurement of soil N supply and plant N demand, such as site-specific nitrogen management.

  20. Nitrous oxide emissions from a golf course fairway and rough following application of different nitrogen fertilizers

    USDA-ARS?s Scientific Manuscript database

    Nitrous oxide (N2O) is a potent greenhouse gas that destroys stratospheric ozone. There is limited research of golf course N2O emission and the effects of frequent fertilization and irrigation. Three enhanced efficiency nitrogen fertilizers (EENFs) were applied to a Colorado golf course fairway and ...

  1. Changes in soil surface chemistry after fifty years of tillage and nitrogen fertilization

    USDA-ARS?s Scientific Manuscript database

    Knowledge gained on the long-term effects of crop management practices on soil fertility is critical in developing nutrient management strategies to optimize crop yields. This study examined the long-term effects of nitrogen (N) fertilizer application (N rates of 0, 22, 45 and 67 kg N ha-1) and till...

  2. [Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation].

    PubMed

    Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua

    2015-09-01

    Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss.

  3. Review of nitrogen fate models applicable to forest landscapes in the Southern U.S.

    Treesearch

    D. M. Amatya; C. G. Rossi; A. Saleh; Z. Dai; M. A. Youssef; R. G. Williams; D. D. Bosch; G. M. Chescheir; G. Sun; R. W. Skaggs; C. C. Trettin; E. D. Vance; J. E. Nettles; S. Tian

    2013-01-01

    Assessing the environmental impacts of fertilizer nitrogen (N) used to increase productivity in managed forests is complex due to a wide range of abiotic and biotic factors affecting its forms and movement. Models developed to predict fertilizer N fate (e.g., cycling processes) and water quality impacts vary widely in their design, scope, and potential application. We...

  4. Effect of the nitrogen fertilizer type on the enzyme activity in the rhizosphere of calcic chernozem and soybean production

    NASA Astrophysics Data System (ADS)

    Emnova, E. E.; Daraban, O. V.; Bizgan, Ya. V.; Toma, S. I.; Vozian, V. I.; Iacobuta, M. D.

    2015-05-01

    Three varieties (Aura, Magie, and Indra) of soybean ( Glycine max [L.] Merr.) were grown in a small-plot experiment on a calcic chernozem with the application of two types of nitrogen fertilizers: ammonium nitrate (Nan) or carbamide (Nc). These fertilizers at the rate of 20 kg N/ha were applied before sowing together with potassium phosphate (60 kg P2O5/ha). The microbial nitrification capacity and the activity of enzymes related to the nitrogen cycle (urease and nitrate reductase) were measured in the rhizosphere (0-20 cm) at the stage of soybean flowering. It was determined that the biological (enzyme) activity of the calcic chernozem in the soybean rhizosphere was more intense on the plots with the Nan fertilizer than on the plots with the Nc fertilizer. The urease activity depended on the type of nitrogen fertilizer (Nan or Nc) under the conditions of soil water deficiency. In the soil under the Aura variety, the urease activity was significantly lower in the treatments with Nc application, and this was accompanied by a decrease in the crop yield. The nitrification capacity of the calcic chernozem was generally low; in the case of the Nc fertilizer, it was significantly lower than in the case of the Nan fertilizer. The nitrate reductase activity of the soil was also lower in the case of the Nc fertilizer. Each of the three soybean varieties had its own response to changes in the nitrogen nutrition aimed at improving the soybean tolerance to fluctuations in the soil water content during the growing season.

  5. Quality of fresh and stored carrots depending on iodine and nitrogen fertilization.

    PubMed

    Smoleń, Sylwester; Sady, Włodzimierz; Ledwożyw-Smoleń, Iwona; Strzetelski, Piotr; Liszka-Skoczylas, Marta; Rożek, Stanisław

    2014-09-15

    Iodine is an important mineral nutrient essential for a proper functioning of human and animal organism. Despite current programmes of iodine prophylaxis (mainly based on salt iodization) approximately 30-38% of human population has insufficient iodine intake. Crop plants can become an efficient vector of this element in the food chain. Iodine is not a nutrient for plants. For that reason, in addition to determining the possibility of increasing iodine content in crop plant it is necessary to describe its impact on yield quality. The aim of the study was to analyze the influence of soil fertilization with iodine and nitrogen on the quality of carrot roots and its storage ability. In 2008-2010 the field study with carrot cv. 'Kazan F1' was conducted. A differential soil fertilization with iodine (in the form of I(-) or IO3(-)) and nitrogen (as NO3(-) or NH4(+)) was applied in the experiment: (1) control without N and I, (2) KI application without N, (3) KIO3 application without N, (4) KI+Ca(NO3)2, (5) KIO3+Ca(NO3)2, (6) KI+(NH4)2SO4 and (7) KIO3+(NH4)2SO4. The experiment was arranged in a split-plot design. Iodine (in both forms) was applied pre-sowing in a dose of 2 kg I ha(-1). Nitrogen in the form of Ca(NO3)2 and (NH4)2SO4 was introduced pre-sowing and as a top dressing, each dose of 100 kg N ha(-1). A diverse, statistically significant influence of tested factors on the activity of free radical-scavenging (DPPH) and the content of: dry matter, glucose, fructose, sucrose, total soluble sugars, soluble solids - Brix %, phenolic compounds, phenylpropanoids, flavonols, anthocyanins and carotenoids was noted in carrot roots directly after the harvest as well as at the end of four-month storage. Iodine applied with relatively high doses of nitrogen decreased the quality of fresh carrot. After storage, opposite relations were noted for tested combinations (with I and N application) with respect to carrot quality when compared to results obtained after the harvest. The lowest storage ability was found for carrot treated with KI without N. Obtained results directly suggest the need for developing individual agronomic rules for iodine biofortification of carrot for: (a) consumption and/or processing directly after the harvest and (b) long-term storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    PubMed

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO 2 , SrTiO 3 , (Ga 1-x Zn x )(N 1-x O x ), CdS, and g-C 3 N 4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N 2 . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.

  7. [Effects of controlled-release fertilizers on summer maize grain yield, field ammonia volatilization, and fertilizer nitrogen use efficiency].

    PubMed

    Zhao, Bin; Dong, Shu-Ting; Wang, Kong-Jun; Zhang, Ji-Wang; Liu, Peng

    2009-11-01

    A field experiment with colophony-coated fertilizer (CRF) and sulfur-coated fertilizer (SCF) showed that under the same application rates of N, P and K, applying CRF and SCF increased the summer maize grain yield by 13.15% and 14.15%, respectively, compared to the application of common compound fertilizer CCF. When the applied amount of CRF and SCF was decreased by 25%, the yield increment was 9.69% and 10.04%, respectively; and when the applied amount of CRF and SCF was decreased by 50%, the yield had less difference with that under CCF application. The field ammonia volatilization rate in treatments CRF and SCF increased slowly, with a peak appeared 7 days later than that in treatment CCF, and the total amount of ammonia volatilization in treatments CRF and SCF was ranged from 0.78 kg N x hm(-2) to 4.43 kg N x hm(-2), with a decrement of 51.34%-91.34% compared to that in treatment CCF. The fertilizer nitrogen use efficiency and agronomic nitrogen use efficiency of CRF and SCF were also significantly higher than those of CCF.

  8. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    PubMed

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Growth response of 35-year-old, site V Douglas-fir to nitrogen fertilizer

    Treesearch

    Donald L. Reukema

    1968-01-01

    During the first 4 years following application, addition of 200 to 600 pounds of nitrogen per acre increased height increment 62 percent and d.b.h. increment 79 to 160 percent. Gross basal area increment was greater with heavier fertilizer applications, but severe snowbreakage wa also increased. Thus, net production tended to be greatest with the addition of 200...

  10. Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah grapeberries.

    PubMed

    Canoura, Carolina; Kelly, Mary T; Ojeda, Hernan

    2018-02-15

    This study reports the effect of different doses of nitrogen applied to soil and/or leaves of Syrah and Chardonnay grapevines in the Languedoc-Roussillon (France) over two years. In 2011, nitrogen treatment involved both foliar urea sprayings and soil application at two different levels, with two controls - irrigated without nitrogen and no irrigation nor nitrogen. In 2012, the same grapevines received either soil or foliar nitrogen using the same controls. Results showed that foliar application increased the amino acid content to a greater extent than soil application, but that a combination of both was the most effective. For the first time, significantly elevated proline levels in response to drought were demonstrated for the grapevine. Increased contents of aromatic compounds and glycosylated precursors closely mirrored the applied nitrogen dose. Wines produced from N-fertilized Syrah grapes in 2011 showed a statistically significant effect of irrigation and fertilization on positive sensorial perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Response of Bareroot Loblolly Pine Seedlings to the Amount and Timing of Nitrogen Fertilization in the Nursery

    Treesearch

    Hans Williams; Karen Woodard; Tim Stewart

    2004-01-01

    A nursery study was conducted to observe the effects of altering the amount of nitrogen fertilizer at each application on bareroot loblolly pine (Pinus taeda L.) seedling morphology, survival and growth. The treatments were an equal amount of fertilizer applied each time, an increasing amount each time, and a schedule characterized by low amounts,...

  12. Reduced rates of controlled-release fertilizer lower potential nitrogen leaching from a Wisconsin bare-root tree nursery

    Treesearch

    Ryosuke Fujinuma; Nick J. Balster; Hyung-Kyung. Lee

    2011-01-01

    Controlled-release fertilizer (CRF) typically increases nitrogen (N) fertilizer uptake and lowers N lost from the rooting zone via leaching. However, questions remain as to whether lower rates of CRF could further increase this efficiency, especially in sandy bare-root nurseries in Wisconsin. We hypothesized that: 1) a reduced CRF application at 60 percent of the...

  13. Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators.

    PubMed

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2015-07-01

    Crop yield, vegetative or reproductive, depends on access to an adequate supply of essential mineral nutrients. At the same time, a crop plant's growth and development, and thus yield, also depend on in situ production of plant hormones. Thus optimizing mineral nutrition and providing supplemental hormones are two mechanisms for gaining appreciable yield increases. Optimizing the mineral nutrient supply is a common and accepted agricultural practice, but the co-application of nitrogen-based fertilizers with plant hormones or plant growth regulators is relatively uncommon. Our review discusses possible uses of plant hormones (gibberellins, auxins, cytokinins, abscisic acid and ethylene) and specific growth regulators (glycine betaine and polyamines) to enhance and optimize crop yield when co-applied with nitrogen-based fertilizers. We conclude that use of growth-active gibberellins, together with a nitrogen-based fertilizer, can result in appreciable and significant additive increases in shoot dry biomass of crops, including forage crops growing under low-temperature conditions. There may also be a potential for use of an auxin or cytokinin, together with a nitrogen-based fertilizer, for obtaining additive increases in dry shoot biomass and/or reproductive yield. Further research, though, is needed to determine the potential of co-application of nitrogen-based fertilizers with abscisic acid, ethylene and other growth regulators. © 2014 Society of Chemical Industry.

  14. Cumulative release characteristics of controlled-release nitrogen and potassium fertilizers and their effects on soil fertility, and cotton growth

    PubMed Central

    Yang, Xiuyi; Geng, Jibiao; Li, Chengliang; Zhang, Min; Tian, Xiaofei

    2016-01-01

    To investigate the interacting effects of polymer coated urea (PCU) and polymer coated potassium chloride (PCPC) on cotton growth, an experiment was conducted with containerized plants in 2014 and 2015. There were two kinds of nitrogen fertilizer, PCU and urea, which were combined with PCPC at three application rates (40, 80 and 120 kg ha−1). The kinds of nitrogen fertilizer formed the main plot, while individual rates of PCPC were the subplots. The results suggested N and K release patterns for PCU and PCPC in the soil were closely matched to the N and K requirements by cotton. Soil inorganic nitrogen contents significantly increased by using PCU instead of urea, and the same trend was observed with soil available potassium contents, which also had increased rates. Meanwhile, the number of bolls and lint yields of cotton in the PCU treatments were 4.9–35.3% and 2.9–40.7% higher than from urea treatments. Lint yields also increased by 9.1–12.7% with PCPC80 and PCPC120 treatments compared with PCPC40 treatment at the same nitrogen type. Hence, application of PCU combined with 80 kg ha−1 of PCPC fertilizer on cotton increased the yields and fertilizer use efficiencies in addition to improving fiber quality and delaying leaf senescence. PMID:27966638

  15. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe.

    PubMed

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; Barberán, Albert; Zhao, Haochun; Yu, Mengjie; Yu, Lu; Brookes, Philip C; Schadt, Christopher W; Chang, Scott X; Xu, Jianming

    2018-04-12

    Long-term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide. © 2018 John Wiley & Sons Ltd.

  16. Uptake of point source depleted 15N fertilizer by neighboring corn plants

    USDA-ARS?s Scientific Manuscript database

    Ground-based active (self-illuminating) sensors make it possible to collect canopy data that are useful for making on-the-go nitrogen (N) fertilizer application decisions. These technologies raise questions about plant-to-plant competition for targeted fertilizer N applications. This study evaluated...

  17. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis.

    PubMed

    Xia, Longlong; Lam, Shu Kee; Chen, Deli; Wang, Jinyang; Tang, Quan; Yan, Xiaoyuan

    2017-05-01

    Knowledge-based nitrogen (N) management, which is designed for a better synchronization of crop N demand with N supply, is critical for global food security and environmental sustainability. Yet, a comprehensive assessment on how these N management practices affect food production, greenhouse gas emission (GHG), and N pollution in China is lacking. We compiled the results of 376 studies (1166 observations) to evaluate the overall effects of seven knowledge-based N management practices on crop productivity, nitrous oxide (N 2 O) emission, and major reactive N (Nr) losses (ammonia, NH 3 ; N leaching and runoff), for staple grain (rice, wheat, and corn) production in China. These practices included the application of controlled-release N fertilizer, nitrification inhibitor (NI) and urease inhibitor (UI), higher splitting frequency of fertilizer N application, lower basal N fertilizer (BF) proportion, deep placement of N fertilizer, and optimal N rate based on soil N test. Our results showed that, compared to traditional N management, these knowledge-based N practices significantly increased grain yields by 1.3-10.0%, which is attributed to the higher aboveground N uptake (5.1-12.1%) and N use efficiency in grain (8.0-48.2%). Moreover, these N management practices overall reduced GHG emission and Nr losses, by 5.4-39.8% for N 2 O emission, 30.7-61.5% for NH 3 emission (except for the NI application), 13.6-37.3% for N leaching, and 15.5-45.0% for N runoff. The use of NI increased NH 3 emission by 27.5% (9.0-56.0%), which deserves extra-attention. The cost and benefit analysis indicated that the yield profit of these N management practices exceeded the corresponding input cost, which resulted in a significant increase of the net economic benefit by 2.9-12.6%. These results suggest that knowledge-based N management practice can be considered an effective way to ensure food security and improve environmental sustainability, while increasing economic return. © 2016 John Wiley & Sons Ltd.

  18. [Effects of fertilization method and nitrogen application rate on soil nitrogen vertical migration in a Populus xeuramericana cv. 'Guariento' plantation].

    PubMed

    Dai, Teng-fei; Xi, Ben-ye; Yan, Xiao-li; Jia, Li-ming

    2015-06-01

    A field experiment was conducted to investigate the effects of fertilization methods, i.e., drip (DF) and furrow fertilization (GF), and nitrogen (N) application rates (25, 50, 75 g N · plant(-1) · time(-1)) on the dynamics of soil N vertical migration in a Populus x euramericana cv. 'Guariento' plantation. The results showed that soil NH4(+)-N and NO3(-)-N contents decreased with the increasing soil depth under different fertilization methods and N application rates. In the DF treatment, soil NH4(+)-N and NO3(-)-N were mainly concentrated in the 0-40 cm soil layer, and their contents ascended firstly and then descended, reaching their maximum values at the 5th day (211.1 mg · kg(-1)) and 10th day (128.8 mg · kg(-1)) after fertilization, respectively. In the GF treatment, soil NH4(+)-N and NO3(-)-N were mainly concentrated in the 0-20 cm layer, and the content of soil NO3(-)-N rose gradually and reached its maximum at the 20th day (175.7 mg · kg(-1)) after fertilization, while the NH4(+)-N content did not change significantly after fertilization. Overall, N fertilizer had an effect within 20 days in the DF treatment, and more than 20 days in the GF treatment. In the DF treatment, the content and migration depth of soil NH4(+)-N and NO3(-)-N increased with the N application rate. In the GF treatment, the NO3(-)-N content increased with the N application rate, but the NH4(+)-N content was not influenced. Under the DF treatment, the hydrolysis rate, nitrification rate and migration depth of urea were higher or larger than that under the GF treatment, and more N accumulated in deep soil as the N application rate increased. Considering the distribution characteristics of fine roots and soil N, DF would be a better fertilization method in P. xeuramericana cv. 'Guariento' plantation, since it could supply N to larger distribution area of fine roots. When the N application rate was 50 g · tree(-1) each time, nitrogen mainly distributed in the zone of fine roots and had no risk of deep leaching, consequently improving the fertilizer utilization efficiency.

  19. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  20. Physiological responses to fertilization recorded in tree rings: isotopic lessons from a long-term fertilization trial - 2008

    EPA Science Inventory

    Nitrogen fertilizer applications are common land-use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree-ring growth patterns and stable isotopes to...

  1. Physiological responses to fertilization recorded in tree rings: Isotopic lessons from a long-term fertilization trial

    EPA Science Inventory

    Nitrogen fertilizer applications are common land use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree ring growth patterns and stable isotopes to ...

  2. Impacts of terrain attributes on economics and the environment: Costs of reducing potential nitrogen pollution in wheat production

    USDA-ARS?s Scientific Manuscript database

    The economic cost of achieving desired environmental outcomes from uniform and variable rate fertilizer application technologies depends both on market forces and agronomic properties. Using spatial econometric methods, we analyze the impact of nitrogen fertilizer supply by terrain attribute on the...

  3. Influence of Long-Term Fertilization on Spore Density and Colonization of Arbuscular Mycorrhizal Fungi in a Brown Soil

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Luo, Peiyu; Yang, Jinfeng

    2017-12-01

    This study aims to explore changes of long-term fertilization on spore density and colonization of AMF (Arbuscular mycorrhizal fungi) under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm,20-40cm,40-60cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen andphosphate fertilizer).Spores were isolated from soils by wet sieving and sucrose density gradient centrifugation; mycorrhizal colonization levels were determined by the gridline intersect. The spore density was highest in the topsoils (0-20 cm), and was decreased with increasing of soil depth in each treatment. The spores density of M2N1P treatment was significantly higher than that of other treatments in each soil layer. Application of inorganic fertilizer (especially inorganic with organic fertilizer) can greatly improve the level of colonization. Our results suggested that long-term fertilization significantly affects spore density and colonization of AMF, however, spore density is not related to colonization rate.

  4. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    NASA Astrophysics Data System (ADS)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distringuishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.

  5. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  6. [Effect of long-term application of nitrogen fertilizer on the diversity of nitrifying genes (amoA and hao) in paddy soil].

    PubMed

    Chen, Chun-lan; Wu, Min-na; Wei, Wen-xue

    2011-05-01

    The aim of this study was to determine the effect of long-term (16 years) application of nitrogen fertilizer on the diversity of nitrifying genes (amoA and hao) in paddy soil on the basis of long-term paddy field experimental station (started in 1990) located in Taoyuan, with the molecular approaches of PCR, constructing libraries and sequencing. The fertilizer was urea and no fertilizer was as control. The Shannon index showed that long-term application of nitrogen fertilizer made the diversity of amoA gene descend while no effect on the diversity of hao gene. The LIBSHUFF statistical analyses demonstrated that both amoA and hao libraries of CK and N treatments were significantly different from each other and the rarefaction curves of libraries failed to meet the plateaus indicating that there were lots kinds of genes haven't been detected. The results of blasting with GenBank and the phylogenetic tree showed that the amoA genes detected in our study had a similarity with the uncultured gene of amoA, which showed some similar to Nitrosospira. Otherwise, the hao genes cloned showed a relationship to the genes of cultured bacteria such as Silicibacteria, Nitrosospira and Methylococcus, and the hao genes found in the N treatment dominated in alpha-Proteobacteria. These results suggest that long-term fertilization of nitrogen had significant impacts on the diversity or community of amoA and hao genes.

  7. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China

    PubMed Central

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-01-01

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m−2 h−1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha−1 and 1.58 kg NO-N ha−1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China. PMID:26848094

  8. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China.

    PubMed

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-02-05

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m(-2) h(-1) for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha(-1) and 1.58 kg NO-N ha(-1), respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China.

  9. 40 CFR 122.42 - Additional conditions applicable to specified categories of NPDES permits (applicable to State...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(5)(ii)(D) of this section, and the amount of any supplemental fertilizer applied during the previous... of land application; and volatilization of nitrogen and mineralization of organic nitrogen. (B) The...

  10. [Nutrient use efficiency and yield-increasing effect of single basal application of rice specific controlled release fertilizer].

    PubMed

    Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng

    2005-10-01

    A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.

  11. Assessing UAS mounted imaging sensors for the evaluation of Zea mays nitrogen status.

    USDA-ARS?s Scientific Manuscript database

    Improved efficiency of Nitrogen (N) fertilizer applications is an important environmental and economic issue for the agricultural community. Considerable research for improving Nitrogen Use Efficiency (NUE) has focused on optimal timing and rate N applications. Remote sensing techniques can detect t...

  12. Effects of nitrogen source and rate and method of fertilizer application on yield and fruit size in 'Bluecrop' highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    A study was done to determine the effects of N source and rate and two common methods of fertilizer application on yield and fruit size in a maturing field of highbush blueberry. Plants were fertilized by drip fertigation or with granular fertilizer using urea or ammonium sulfate applied at a rate o...

  13. [Responses of soil nematode communities to long-term application of inorganic fertilizers in upland red soil].

    PubMed

    Zhang, Wei; Liu, Man-Qiang; He, Yuan-Qiu; Fan, Jian-Bo; Chen, Yan

    2014-08-01

    Soil biota plays a key role in ecosystem functioning of red soil. Based on the long-term inorganic fertilization field experiment (25-year) in an upland red soil, the impacts of different inorganic fertilization managements, including NPK (nitrogen, phosphorus and potassium fertilizers), NPKCaS (NPK plus gypsum fertilizers), NP (nitrogen and phosphorus fertilizers), NK (nitrogen and potassium fertilizers) and PK (phosphorus and potassium fertilizers), on the assemblage of soil nematodes during the growing period of peanut were investigated. Significant differences among the treatments were observed for total nematode abundance, trophic groups and ecological indices (P < 0.01). The total nematode abundance decreased in the order of PK > NPKCaS > NPK > NP > NK. The total number of nematodes was significantly higher in NPKCaS and PK than in NPK, NP and NK except in May. Plant parasitic nematodes were the dominant trophic group in all treatments excepted in NPKCaS, and their proportion ranged between 38% and 65%. The dominant trophic group in NPKCaS was bacterivores and represented 42.1%. Furthermore, the higher values of maturity index, Wasilewska index and structure index in NPKCaS indicated that the combined application of NPK and gypsum could remarkably relieve soil acidification, resulting in a more mature and stable soil food web structure. While, that of the NK had the opposite effect. In conclusion, our study suggested that the application of both gypsum and phosphate is an effective practice to improve soil quality. Moreover, the analysis of nematode assemblage is relevant to reflect the impact of different inorganic fertilizer on the red soil ecosystem.

  14. Response of “Alamo” switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten, Charles T.; Brice, Deanne J.; Castro, Hector F.

    2011-01-01

    Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha -1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P ≤ 0.05) at the highest fertilizer nitrogen treatment (2.16 ±more » 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha -1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Finally, fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.« less

  15. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer.

    PubMed

    Giri, S; Pati, B R

    2004-01-01

    A number of nitrogen fixing bacteria has been isolated from forest phyllosphere on the basis of nitrogenase activity. Among them two best isolates are selected and identified as Corynebacterium sp. AN1 & Flavobacterium sp. TK2 able to reduce 88 and 132 n mol of acetylene (10(8)cells(-1)h(-1)) respectively. They were grown in large amount and sprayed on the phyllosphere of maize plants as a substitute for nitrogenous fertilizer. Marked improvements in growth and total nitrogen content of the plant have been observed by the application of these nitrogen-fixing bacteria. An average 30-37% increase in yield was obtained, which is nearer to chemical fertilizer treatment. Comparatively better effect was obtained by application of Flavobacterium sp.

  16. Use of pharmaceuticals and pesticides to constrain nutrient sources in coastal groundwater of northwestern Long Island, New York, USA

    USGS Publications Warehouse

    Zhao, S.; Zhang, P.; Crusius, John; Kroeger, K.D.; Bratton, J.F.

    2011-01-01

    In developed, non-agricultural, unsewered areas, septic systems and fertilizer application to lawns and gardens represent two major sources of nitrogen to coastal groundwater, in addition to atmospheric input. This study was designed to distinguish between these two possible nitrogen sources by analyzing groundwater samples for pharmaceutical residuals, because fertilizers do not contain any of these pharmaceuticals, but domestic wastewater commonly does. In addition, several herbicides and insecticides used in lawn treatment were analyzed as indicators of nitrogen delivery to groundwater from fertilizers. Groundwater samples were taken through piezometres at shoreline sites in unsewered areas surrounding Northport Harbor and in sewered areas adjacent to Manhasset Bay (hereafter referred to as "Northport" and "Manhasset", respectively), both in northwestern Long Island, USA. Excessive nitrogen loading has led to reduced dissolved oxygen concentrations in Long Island Sound, and the groundwater contribution to the nitrogen budget is poorly constrained. The frequent detection of the anticonvulsant compound carbamazepine in groundwater samples of the Northport Harbor area (unsewered), together with the fact that few pesticides associated with lawn applications were detected, suggests that wastewater input and atmospheric input are the likely sources of nitrogen in the Northport groundwater. High concentrations of nitrogen were also detected in the Manhasset (sewered) groundwater. The low detection frequency and concentration of carbamazepine, however, suggest that the sewer system effectively intercepts nitrogen from wastewater there. The likely sources of nitrogen in the Manhasset groundwater are atmospheric deposition and lawn fertilizers, as this area is densely populated.

  17. Aqueous and gaseous nitrogen losses induced by fertilizer application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Maggi, F.; Riley, W.J.

    2009-01-15

    In recent years concern has grown over the contribution of nitrogen (N) fertilizer use to nitrate (NO{sub 3}{sup -}) water pollution and nitrous oxide (N{sub 2}O), nitric oxide (NO), and ammonia (NH{sub 3}) atmospheric pollution. Characterizing soil N effluxes is essential in developing a strategy to mitigate N leaching and emissions to the atmosphere. In this paper, a previously described and tested mechanistic N cycle model (TOUGHREACT-N) was successfully tested against additional observations of soil pH and N{sub 2}O emissions after fertilization and irrigation, and before plant emergence. We used TOUGHREACT-N to explain the significantly different N gas emissions andmore » nitrate leaching rates resulting from the different N fertilizer types, application methods, and soil properties. The N{sub 2}O emissions from NH{sub 4}{sup +}-N fertilizer were higher than from urea and NO{sub 3}{sup -}-N fertilizers in coarse-textured soils. This difference increased with decreases in fertilization application rate and increases in soil buffering capacity. In contrast to methods used to estimate global terrestrial gas emissions, we found strongly non-linear N{sub 2}O emissions as a function of fertilizer application rate and soil calcite content. Speciation of predicted gas N flux into N{sub 2}O and N{sub 2} depended on pH, fertilizer form, and soil properties. Our results highlighted the need to derive emission and leaching factors that account for fertilizer type, application method, and soil properties.« less

  18. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China.

    PubMed

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in guream(-2)): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419gCkg(-1). Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0-10cm than 10-20cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ruminant urine increases uptake but decreases relative recovery of nitrogen by smooth brome grass

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) fertilizer application and excreta return may contribute to poor nutrient recovery and use efficiencies in pastures. From 2011-2012, we investigated the effects of ruminant urine input (urine and distilled water control) and N fertilizer rate (0, 40, 80, 120, and 160 lb N/acre) on N res...

  20. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants

    PubMed Central

    Fox, Jennifer E.; Gulledge, Jay; Engelhaupt, Erika; Burow, Matthew E.; McLachlan, John A.

    2007-01-01

    Unprecedented agricultural intensification and increased crop yield will be necessary to feed the burgeoning world population, whose global food demand is projected to double in the next 50 years. Although grain production has doubled in the past four decades, largely because of the widespread use of synthetic nitrogenous fertilizers, pesticides, and irrigation promoted by the “Green Revolution,” this rate of increased agricultural output is unsustainable because of declining crop yields and environmental impacts of modern agricultural practices. The last 20 years have seen diminishing returns in crop yield in response to increased application of fertilizers, which cannot be completely explained by current ecological models. A common strategy to reduce dependence on nitrogenous fertilizers is the production of leguminous crops, which fix atmospheric nitrogen via symbiosis with nitrogen-fixing rhizobia bacteria, in rotation with nonleguminous crops. Here we show previously undescribed in vivo evidence that a subset of organochlorine pesticides, agrichemicals, and environmental contaminants induces a symbiotic phenotype of inhibited or delayed recruitment of rhizobia bacteria to host plant roots, fewer root nodules produced, lower rates of nitrogenase activity, and a reduction in overall plant yield at time of harvest. The environmental consequences of synthetic chemicals compromising symbiotic nitrogen fixation are increased dependence on synthetic nitrogenous fertilizer, reduced soil fertility, and unsustainable long-term crop yields. PMID:17548832

  1. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China

    PubMed Central

    Yousaf, Muhammad; Li, Xiaokun; Zhang, Zhi; Ren, Tao; Cong, Rihuan; Ata-Ul-Karim, Syed Tahir; Fahad, Shah; Shah, Adnan N.; Lu, Jianwei

    2016-01-01

    The use of efficient rates of nitrogen (N) fertilizer application is important with regard to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed rape rotations are a mainstay of the economy and food security of China. Therefore, a field experiment was carried out during 2011–2013 in Honghu to identify the most appropriate N application rates for enhancing crop productivity and N use efficiency for rice (Oryza sativa L.)-oilseed rape (Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2, RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with three replicates. ROx represented the N fertilizer application rates (kg ha−1) for rice and oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly increased by 59–71% (rice) and 109–160% (oilseed rape) during the total rotation (2011–2013), as compared to RO1 (control; no application). Furthermore, a similar trend was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB) was positively lowest under R05 (183.4 kg ha−1) followed by R02 (234.2 kg ha−1) and highest under R06 (344.5 kg ha−1) during the total rotation. The results of grain yield, NUE, and ANB indicated that the R02 rate of N application was superior. This information should help to develop a cost-effective and environment-friendly N management strategy for rice-oilseed rape rotation systems of central China. PMID:27746809

  2. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China.

    PubMed

    Yousaf, Muhammad; Li, Xiaokun; Zhang, Zhi; Ren, Tao; Cong, Rihuan; Ata-Ul-Karim, Syed Tahir; Fahad, Shah; Shah, Adnan N; Lu, Jianwei

    2016-01-01

    The use of efficient rates of nitrogen (N) fertilizer application is important with regard to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed rape rotations are a mainstay of the economy and food security of China. Therefore, a field experiment was carried out during 2011-2013 in Honghu to identify the most appropriate N application rates for enhancing crop productivity and N use efficiency for rice ( Oryza sativa L.)-oilseed rape ( Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2, RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with three replicates. RO x represented the N fertilizer application rates (kg ha -1 ) for rice and oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly increased by 59-71% (rice) and 109-160% (oilseed rape) during the total rotation (2011-2013), as compared to RO1 (control; no application). Furthermore, a similar trend was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB) was positively lowest under R05 (183.4 kg ha -1 ) followed by R02 (234.2 kg ha -1 ) and highest under R06 (344.5 kg ha -1 ) during the total rotation. The results of grain yield, NUE, and ANB indicated that the R02 rate of N application was superior. This information should help to develop a cost-effective and environment-friendly N management strategy for rice-oilseed rape rotation systems of central China.

  3. Growth and fruit production of highbush blueberry fertilized with ammonium sulfate and urea applied by fertigation or as granular fertilizer

    USDA-ARS?s Scientific Manuscript database

    The application of granular sources of nitrogen (N) fertilizers, including ammonium sulfate and urea, were compared to fertigation with liquid forms of the fertilizers in northern highbush blueberry during the first 5 years of fruit production. The granular fertilizers were banded on each side of t...

  4. [Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil].

    PubMed

    Sun, Feng-xia; Zhang, Wei-hua; Xu, Ming-gang; Zhang, Wen-ju; Li, Zhao-qiang; Zhang, Jing-ye

    2010-11-01

    In order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratio of carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg x kg(-1) soil, and 148 and 73 mg x kg(-1) soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.0%, significantly higher than that under non-fertilization and inorganic fertilization. Biolog-ECO analysis showed that the average well color development (AWCD) value was in the order of applying organic manure plus inorganic fertilizers = applying organic manure > non-fertilization > inorganic fertilization = inorganic fertilization plus straw incorporation. Under the application of organic manure or of organic manure plus inorganic fertilizers, the microbial utilization rate of carbon sources, including carbohydrates, carboxylic acids, amino acids, polymers, phenols, and amines increased; while under inorganic fertilization plus straw incorporation, the utilization rate of polymers was the highest, and that of carbohydrates was the lowest. Our results suggested that long-term application of organic manure could increase the red soil MBC, MBN, and microbial utilization rate of carbon sources, improve soil fertility, and maintain a better crop productivity.

  5. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai

    Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.« less

  6. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe

    DOE PAGES

    Dai, Zhongmin; Su, Weiqin; Chen, Huaihai; ...

    2018-04-25

    Long-term Elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input and the input of N combined with phosphorus (P) and potassium (K) is still poorly understood. Here, we explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effectmore » of N fertilization on bacterial diversity depends on soil texture and water management, but independent of crop type or N application rate. Both soil pH and organic C content were positively related to changes in bacterial diversity under N fertilization, while soil organic C was the dominant factor determining changes in bacterial diversity under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of copiotrophic bacteria (i.e. Proteobacteria and Actinobacteria), but reduced the abundance of oligotrophic taxa (i.e. Acidobacteria), consistent with the general life history strategy theory for bacteria. The relative abundance of Proteobacteria was also increased by NPK fertilization. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization effect on bacterial diversity and community composition suggests that N input decreases bacterial diversity but favors the growth of copiotrophic bacteria, providing a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.« less

  7. Response of nitrogen and potassium fertigation to "Waris" almond (Prunus dulcis) under northwestern Himalayan Region of India.

    PubMed

    Kumar, Dinesh; Ahmed, N

    2014-01-01

    A field experiment was conducted on almond (Prunus dulcis) to study the effect of N&K fertigation on growth, yields and leaf nutrient status over two seasons (2011 and 2012) in Srinagar, Jammu and Kashmir, India. There were six treatments, namely, T1--100% recommended dose of fertilizers as soil application, T2--100% RDF through fertigations, T3--75% RDF through fertigation, T4--75% RDF through fertigation (split application), T5--50% RDF through fertigation and T6--50% RDF through fertigation (split application) with three replications under randomized block design. The results indicated that the maximum tree height (3.21 m and 3.56 m), nut weight (2.73 g and 1.94 g), nut yield (2.41 kg/tree and 5.98 kg/tree; 2.67 t/ha and 6.64 t/ha), and leaf nutrient content (2.34 and 2.38% N; 0.14 and 0.17% P; 1.37 and 1.41% K) were recorded in T4 treatment, whereas the highest TCSA of main trunk, primary, secondary, and tertiary branches (72.67 and 90.28 cm(2); 16.75 and 24.26 cm(2); 3.83 and 7.49 cm(2); 0.47 and 1.23 cm(2)), canopy volume (7.15 and 8.11 m(3)), and fruit number (990 and 3083/tree) were recorded in T2 in almond variety Waris.

  8. [Effects of nitrogen application on canopy vertical structure, grain-leaf ratio and economic benefit of winter wheat under drip irrigation.

    PubMed

    Zhang, Na; Xu, Wen Xiu; Li, Lan Hai; Wu, Ni Ping; Wu, Pei Jie; Cheng, Xue Feng

    2016-08-01

    To optimize the fertilization rate of winter wheat under drip irrigation in Xinjiang region, a field investigation was carried out to assess effects of nitrogen (N) applications on canopy vertical structure, grain-leaf ratio, yield and economic benefit of winter wheat. Four rates of nitrogen application, 0 kg·hm -2 (N 0 ), 104 kg·hm -2 (N 1 ), 173 kg·hm -2 (N 2 ) and 242 kg·hm -2 (N 3 ) were set in a randomized block experimental design. Meantime, leaf and stem morphological characters, canopy temperature and humidity in flowering stage, grain-leaf area ratio, yield and yield components, economic benefits of winter wheat were observed under different treatments. The results showed that the leaf length and width at different positions of wheat under the nitrogen fertilization treatments were significantly higher than that without nitrogen fertilization (P<0.05), and plant height ranged from 65.57 to 81.58 cm. With an increasing rate of nitrogen fertilization, both leafarea index and stem diameter presented a trend of first increasing and then decreasing, and reached the maximum under N 2 treatment, which was 5.48 and 0.49 cm, respectively. Diurnal variation of canopy temperature and humidity were "convex" and "concave" shape, followed an order of N 0 >N 1 >N 2 >N 3 in temperature, but reversely in canopy humidity. The duration of high temperature higher than 35 ℃ were shorten 1 hour to 3.5 hours as the nitrogen application level increased, and there was significant difference between N 1 and N 3 on grain-leaf ratio. Yield and economic be-nefit decreased initially and then increased with increasing nitrogen application. Yield and economic benefit of treatment N 2 were 32.8% and 77.7% higher than those of treatment N 0 , 12.6% and 5.4% higher than those of treatment N 1 , and 5.2% and 4.2% higher than those of treatment N 3 , respectively. These results indicated that nitrogen application at about 173 kg·hm -2 could be recommended as the optimum rate for winter wheat, which had good leaf and plant morphology, appropriate canopy temperature and humidity, high yield and economic efficiency in the experiment area.

  9. Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington

    USGS Publications Warehouse

    Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.

    2014-01-01

    Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.

  10. Fertilizing Nature: A Tragedy of Excess in the Commons

    PubMed Central

    Good, Allen G.; Beatty, Perrin H.

    2011-01-01

    Globally, we are applying excessive nitrogen (N) fertilizers to our agricultural crops, which ultimately causes nitrogen pollution to our ecosphere. The atmosphere is polluted by N2O and NOx gases that directly and indirectly increase atmospheric warming and climate change. Nitrogen is also leached from agricultural lands as the water-soluble form NO3 −, which increases nutrient overload in rivers, lakes, and oceans, causing “dead zones”, reducing property values and the diversity of aquatic life, and damaging our drinking water and aquatic-associated industries such as fishing and tourism. Why do some countries show reductions in fertilizer use while others show increasing use? What N fertilizer application reductions could occur, without compromising crop yields? And what are the economic and environmental benefits of using directed nutrient management strategies? PMID:21857803

  11. Changes in nitrogen budget and potential risk to the environment over 20years (1990-2010) in the agroecosystems of the Haihe Basin, China.

    PubMed

    Zheng, Mengmeng; Zheng, Hua; Wu, Yingxia; Xiao, Yi; Du, Yihua; Xu, Weihua; Lu, Fei; Wang, Xiaoke; Ouyang, Zhiyun

    2015-02-01

    The nitrogen balance can serve as an indicator of the risk to the environment of nitrogen loss from agricultural land. To investigate the temporal and spatial changes in agricultural nitrogen application and its potential threat to the environment of the Haihe Basin in China, we used a database of county-level agricultural statistics to calculate agricultural nitrogen input, output, surplus intensity, and use efficiency. Chemical fertilizer nitrogen input increased by 51.7% from 1990 to 2000 and by 37.2% from 2000 to 2010, concomitant with increasing crop yields. Simultaneously, the nitrogen surplus intensity increased by 53.5% from 1990 to 2000 and by 16.5% from 2000 to 2010, presenting a continuously increased environmental risk. Nitrogen use efficiency decreased from 0.46 in 1990 to 0.42 in 2000 and remained constant at 0.42 in 2010, partly due to fertilizer composition and type improvement. This level indicates that more than half of nitrogen inputs are lost in agroecosystems. Our results suggest that although the improvement in fertilizer composition and types has partially offset the decrease in nitrogen use efficiency, the environmental risk has still increased gradually over the past 20 years, along with the increase in crop yields and nitrogen application. It is important to achieve a better nitrogen balance through more effective management to significantly reduce the environmental risk, decrease nitrogen surplus intensity, and increase nitrogen use efficiency without sacrificing crop yields. Copyright © 2014. Published by Elsevier B.V.

  12. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

    USDA-ARS?s Scientific Manuscript database

    Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...

  13. Effects of nitrogen rate and application method on early production and fruit quality in highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted to examine the effects of nitrogen (N) rate and method of N fertilizer application on growth, yield, and fruit quality in highbush blueberry (Vaccinium corymbosum L.) during the first 4 years after planting in south-coastal BC. Nitrogen was applied at 0-150% of current pr...

  14. Can δ(15)N in lettuce tissues reveal the use of synthetic nitrogen fertiliser in organic production?

    PubMed

    Sturm, Martina; Kacjan-Maršić, Nina; Lojen, Sonja

    2011-01-30

    The nitrogen isotopic fingerprint (δ(15)N) is reported to be a promising indicator for differentiating between organically and conventionally grown vegetables. However, the effect on plant δ(15)N of split nitrogen fertilisation, which could enable farmers to cover up the use of synthetic fertiliser, is not well studied. In this study the use of δ(15)N in lettuce as a potential marker for identifying the use of synthetic nitrogen fertiliser was tested on pot-grown lettuce (Lactuca sativa L.) treated with synthetic and organic nitrogen fertilisers (single or split application). The effect of combined usage of synthetic and organic fertilisers on δ(15)N was also investigated. The δ(15)N values of whole plants treated with different fertilisers differed significantly when the fertiliser was applied in a single treatment. However, additional fertilisation (with isotopically the same or different fertiliser) did not cause a significant alteration of plant δ(15)N. The findings of the study suggest that the δ(15)N value of lettuce tissues could be used as a rough marker to reveal the history of nitrogen fertilisation, but only in the case of single fertiliser application. However, if the difference in δ(15)N between the applied synthetic and organic nitrogen fertilisers was > 9.1 ‰, the detection of split and combined usage of the fertilisers would have greater discriminatory power. 2010 Society of Chemical Industry.

  15. Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil.

    PubMed

    Bi, Qing-Fang; Chen, Qiu-Hui; Yang, Xiao-Ru; Li, Hu; Zheng, Bang-Xiao; Zhou, Wei-Wei; Liu, Xiao-Xia; Dai, Pei-Bin; Li, Ke-Jie; Lin, Xian-Yong

    2017-11-07

    Soil amended with single biochar or nitrogen (N) fertilizer has frequently been reported to alter soil nitrification process due to its impact on soil properties. However, little is known about the dynamic response of nitrification and ammonia-oxidizers to the combined application of biochar and N fertilizer in intensive vegetable soil. In this study, an incubation experiment was designed to evaluate the effects of biochar and N fertilizer application on soil nitrification, abundance and community shifts of ammonia-oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in Hangzhou greenhouse vegetable soil. Results showed that single application of biochar had no significant effect on soil net nitrification rates and ammonia-oxidizers. Conversely, the application of only N fertilizer and N fertilizer + biochar significantly increased net nitrification rate and the abundance of AOB rather than AOA, and only AOB abundance was significantly correlated with soil net nitrification rate. Moreover, the combined application of N fertilizer and biochar had greater effect on AOB communities than that of the only N fertilizers, and the relative abundance of 156 bp T-RF (Nitrosospira cluster 3c) decreased but 60 bp T-RF (Nitrosospira cluster 3a and cluster 0) increased to become a single predominant group. Phylogenetic analysis indicated that all the AOB sequences were grouped into Nitrosospira cluster, and most of AOA sequences were clustered within group 1.1b. We concluded that soil nitrification was stimulated by the combined application of N fertilizer and biochar via enhancing the abundance and shifting the community composition of AOB rather than AOA in intensive vegetable soil.

  16. Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China.

    PubMed

    Yi, Qiong; Tang, Shuanghu; Fan, Xiaolin; Zhang, Mu; Pang, Yuwan; Huang, Xu; Huang, Qiaoyi

    2017-01-01

    Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China.

  17. Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China

    PubMed Central

    Zhang, Mu; Pang, Yuwan; Huang, Xu; Huang, Qiaoyi

    2017-01-01

    Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China. PMID:28419127

  18. [Regional difference of NPK fertilizers application and environmental risk assessment in Jiangsu Province, China].

    PubMed

    Liu, Qin-pu

    2015-05-01

    It is of great importance to have a deep understanding of the spatial distribution of NPK fertilizers application and the potential threat to the ecological environment in Jiangsu Province, which is helpful for regulating the rational fertilization, strengthening the fertilizer use risk management and guidance, and preventing agricultural non-point pollution. Based on the environmental risk assessment model with consideration of different impacts of N, P, K fertilizers on environment, this paper researched the regional differentiation characteristic and environmental risk of intensity of NPK fertilizer usages in Jiangsu. Analystic hierarchy process ( AHP) was used to determine the weithts of N, P, K. The environmental safety thresholds of N, P, K were made according to the standard of 250 kg · hm(-2) for the construction of ecological counties sponsered by Chinese government and the proportion of 1:0.5:0.5 for N:P:K surposed by some developed countries. The results showed that the intensity of NPK fertilizer application currently presented a gradually increasing trend from south to north of Jiangsu, with the extremum ratio of 3.3, and the extremum ratios of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer were 3.3, 4.5 and 4.4, respectively. The average proportion of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer of 13 cities in Jiangsu was 1:0.39:0.26. Their proportion was relatively in equilibrium in southern Jiangsu, but the nutrient structure disorder was serious in northern Jiangsu. In Jiangsu, the environmental risk index of fertilization averaged at 0.69 and in the middle-range of environmental risk. The environmental risk index of fertilizer application in southern and central Jiangsu was respectively at the low and moderate levels, while that of cities in northern Jiangsu was at the moderate, serious or severe level. In Jiangsu, the regional difference of fertilizer application and environmental risk assessment were affected by many factors, including physical and economic conditions, government policy, management system, technology, and management methods.

  19. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.

  20. Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes

    PubMed Central

    Wang, Lijuan; Zhao, He; Robinson, Brian E.

    2017-01-01

    With the increases of cropland area and fertilizer nitrogen (N) application rate, general N balance characteristics in regional agroecosystems have been widely documented. However, few studies have quantitatively analyzed the drivers of spatial changes in the N budget. We constructed a mass balance model of the N budget at the soil surface using a database of county-level agricultural statistics to analyze N input, output, and proportional contribution of various factors to the overall N input changes in croplands during 2000–2010 in the Yangtze River Basin, the largest basin and the main agricultural production region in China. Over the period investigated, N input increased by 9%. Of this 87% was from fertilizer N input. In the upper and middle reaches of the basin, the increased synthetic fertilizer N application rate accounted for 84% and 76% of the N input increase, respectively, mainly due to increased N input in the cropland that previously had low synthetic fertilizer N application rate. In lower reaches of the basin, mainly due to urbanization, the decrease in cropland area and synthetic fertilizer N application rate nearly equally contributed to decreases in N input. Quantifying spatial N inputs can provide critical managerial information needed to optimize synthetic fertilizer N application rate and monitor the impacts of urbanization on agricultural production, helping to decrease agricultural environment risk and maintain sustainable agricultural production in different areas. PMID:28678841

  1. Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes.

    PubMed

    Wang, Lijuan; Zheng, Hua; Zhao, He; Robinson, Brian E

    2017-01-01

    With the increases of cropland area and fertilizer nitrogen (N) application rate, general N balance characteristics in regional agroecosystems have been widely documented. However, few studies have quantitatively analyzed the drivers of spatial changes in the N budget. We constructed a mass balance model of the N budget at the soil surface using a database of county-level agricultural statistics to analyze N input, output, and proportional contribution of various factors to the overall N input changes in croplands during 2000-2010 in the Yangtze River Basin, the largest basin and the main agricultural production region in China. Over the period investigated, N input increased by 9%. Of this 87% was from fertilizer N input. In the upper and middle reaches of the basin, the increased synthetic fertilizer N application rate accounted for 84% and 76% of the N input increase, respectively, mainly due to increased N input in the cropland that previously had low synthetic fertilizer N application rate. In lower reaches of the basin, mainly due to urbanization, the decrease in cropland area and synthetic fertilizer N application rate nearly equally contributed to decreases in N input. Quantifying spatial N inputs can provide critical managerial information needed to optimize synthetic fertilizer N application rate and monitor the impacts of urbanization on agricultural production, helping to decrease agricultural environment risk and maintain sustainable agricultural production in different areas.

  2. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  4. [Effect of water-nitrogen coupling on photosynthesis and ultrastructure of cucumber leaves under CO2 enrichment].

    PubMed

    Cui, Qing Qing; Dong, Yan Hong; Li, Man; Zhang, Wen Dong; Liu, Bin Bin; Ai, Xi Zhen; Bi, Huan Gai; Li, Qing Ming

    2017-04-18

    Using split plot and then-split plot design, effects of water-nitrogen coupling on photosynthesis and ultrastructure of cucumber (Cucumis sativus) (Jinyou No.35) under CO 2 enrichment were investigated. The main plot had two CO 2 concentrations: ambient CO 2 concentration (400 μmol·mol -1 , A) and doubled CO 2 concentration (800±20 μmol·mol -1 , E). The split plot had two treatments: no drought stress (95% of field capacity, W) and drought stress (75% of field capacity, D). The then-split plot contained low nitrogen treatment (450 kg·hm -2 , N 1 ) and high nitrogen treatment (900 kg·hm -2 , N 2 ). The results showed that under the condition of drought and high nitrogen, increasing CO 2 enhanced the cucumber plant height, and no matter what kinds of water treatment, CO 2 enrichment increased the leaf area significantly under high nitrogen. Under the condition of normal irrigation, the photosynthetic rate, stomatal conductance and transpiration rate of high nitrogen treatment were higher than low nitrogen treatment, while it was under the drought condition. Elevated CO 2 enhanced the water use efficiency of cucumber leaf which increased with increasing nitrogen application rate. Under drought stress, cucumber adaxial surface porosity density was increased, and the CO 2 enrichment and high nitrogen significantly reduced the stomatal density. Increasing nitrogen application improved the number of chloroplast, and reduced that of starch grains. Drought stress decreased the number of chloroplast, but tended to promote the number of starch grains. Drought stress increased the chloroplast length and width, and the size of the starch grains, while high nitrogen reduced the length and width of the chloroplast and starch grains. CO 2 enrichment and high nitrogen increased grana thickness and layers (except ADN 2 ), and the slice layer of EDN 2 was significantly higher than that of ADN 2 . In conclusion, CO 2 enrichment and suitable water and nitrogen could promote the development of chloroplast thylakoid membrane system, significantly increase the thickness of grana and the number of grana lamella, and effectively improve the chloroplast structure of cucumber, which would benefit the photosynthesis of cucumber plants and ability to utilize CO 2 and water and nitrogen.

  5. Soil Fertility Map for Food Legumes Production Areas in China

    NASA Astrophysics Data System (ADS)

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-05-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser.

  6. Soil Fertility Map for Food Legumes Production Areas in China

    PubMed Central

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-01-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser. PMID:27212262

  7. Preliminary assessment of sources of nitrogen in groundwater at a biosolids-application area near Deer Trail

    USGS Publications Warehouse

    Yager, Tracy J.B.; McMahon, Peter B.

    2012-01-01

    Concentrations of dissolved nitrite plus nitrate increased fairly steadily in samples from four shallow groundwater monitoring wells after biosolids applications to nonirrigated farmland began in 1993. The U.S. Geological Survey began a preliminary assessment of sources of nitrogen in shallow groundwater at part of the biosolids-application area near Deer Trail, Colorado, in 2005 in cooperation with the Metro Wastewater Reclamation District. Possible nitrogen sources in the area include biosolids, animal manure, inorganic fertilizer, atmospheric deposition, and geologic materials (bedrock and soil). Biosolids from the Metro Wastewater Reclamation District plant in Denver and biosolids, cow manure, geologic materials (bedrock and soil), and groundwater from the study area were sampled to measure nitrogen content and nitrogen isotopic compositions of nitrate or total nitrogen. Biosolids also were leached, and the leachates were analyzed for nitrogen content and other concentrations. Geologic materials from the study area also were sampled to determine mineralogy. Estimates of nitrogen contributed from inorganic fertilizer and atmospheric deposition were calculated from other published reports. The nitrogen information from the study indicates that each of the sources contain sufficient nitrogen to potentially affect groundwater nitrate concentrations. Natural processes can transform the nitrogen in any of the sources to nitrate in the groundwater. Load calculations indicate that animal manure, inorganic fertilizer, or atmospheric deposition could have contributed the largest nitrogen load to the study area in the 13 years before biosolids applications began, but biosolids likely contributed the largest nitrogen load to the study area in the 13 years after biosolids applications began. Various approaches provided insights into sources of nitrate in the groundwater samples from 2005. The isotopic data indicate that, of the source materials considered, biosolids and (or) animal manure were the most likely sources of nitrate in the wells at the time of sampling (2005), and that inorganic fertilizer, atmospheric deposition, and geologic materials were not substantial sources of nitrate in the wells in 2005. The large total nitrogen content of the biosolids and animal-manure samples and biosolids leachates also indicates that the biosolids and animal manure had potential to leach nitrogen and produce large dissolved nitrate concentrations in groundwater. The available data, however, could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the nitrogen isotopic composition of the two materials is similar. Major-ion data also could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the major-ion composition (as well as the isotopic composition) of the two materials is similar. Without additional data, chloride/bromide mass ratios do not necessarily support or refute the hypothesis that biosolids and (or) animal manure were the primary sources of nitrate in water from the study-area wells in 2005. Concentrations of water-extractable nitrate in the soil indicate that biosolids could be an important source of nitrate in the groundwater recharge. Nitrogen inventories in the soil beneath biosolids-application areas and the nitrogen-input estimates for the study area both support the comparisons of isotopic composition, which indicate that some type of human waste (such as biosolids) and (or) animal manure was the source of nitrate in groundwater sampled from the wells in 2005. The nitrogen-load estimates considered with the nitrogen isotopic data and the soil-nitrogen inventories indicate that biosolids applications likely are a major source of nitrogen to the shallow groundwater at these monitoring wells.

  8. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Riddick, S. N.; Ward, D. S.; Hess, P.; Mahowald, N.; Massad, R. S.; Holland, E. A.

    2015-09-01

    Nitrogen applied to the surface of the land for agricultural purposes represents a significant source of reactive nitrogen (Nr) that can be emitted as a gaseous Nr species, be denitrified to atmospheric nitrogen (N2), run-off during rain events or form plant useable nitrogen in the soil. To investigate the magnitude, temporal variability and spatial heterogeneity of nitrogen pathways on a global scale from sources of animal manure and synthetic fertilizer, we developed a mechanistic parameterization of these pathways within a global terrestrial model. The parameterization uses a climate dependent approach whereby the relationships between meteorological variables and biogeochemical processes are used to calculate the volatilization of ammonia (NH3), nitrification and run-off of Nr following manure or fertilizer application. For the year 2000, we estimate global NH3 emission and Nr dissolved during rain events from manure at 21 and 11 Tg N yr-1, respectively; for synthetic fertilizer we estimate the NH3 emission and Nr run-off during rain events at 12 and 5 Tg N yr-1, respectively. The parameterization was implemented in the Community Land Model from 1850 to 2000 using a transient simulation which predicted that, even though absolute values of all nitrogen pathways are increasing with increased manure and synthetic fertilizer application, partitioning of nitrogen to NH3 emissions from manure is increasing on a percentage basis, from 14 % of nitrogen applied (3 Tg NH3 yr-1) in 1850 to 18 % of nitrogen applied in 2000 (22 Tg NH3 yr-1). While the model confirms earlier estimates of nitrogen fluxes made in a range of studies, its key purpose is to provide a theoretical framework that can be employed within a biogeochemical model, that can explicitly respond to climate and that can evolve and improve with further observation.

  9. Evaluation of Physical Strength of Wheat Straw Under Different Fertilizer Treatments and Rates

    USDA-ARS?s Scientific Manuscript database

    Application of nitrogen (N) fertilizer as urea ammonium nitrate and N plus sulfur fertilizer as ammonium thiosulfate as a mist on crop residue to stimulate microbial activity and subsequent decomposition of the residue is often debated, particularly for its potential to solve stand establishment iss...

  10. [Ammonia volatilization loss of nitrogen fertilizer from rice field and wet deposition of atmospheric nitrogen in rice growing season].

    PubMed

    Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong

    2003-11-01

    Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.

  11. [Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].

    PubMed

    Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun

    2013-04-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.

  12. Optimizing irrigation and nitrogen for wheat through empirical modeling under semi-arid environment.

    PubMed

    Saeed, Umer; Wajid, Syed Aftab; Khaliq, Tasneem; Zahir, Zahir Ahmad

    2017-04-01

    Nitrogen fertilizer availability to plants is strongly linked with water availability. Excessive or insufficient use of nitrogen can cause reduction in grain yield of wheat and environmental issues. The per capita per annum water availability in Pakistan has reduced to less than 1000 m 3 and is expected to reach 800 m 3 during 2025. Irrigating crops with 3 or more than 3 in. of depth without measuring volume of water is not a feasible option anymore. Water productivity and economic return of grain yield can be improved by efficient management of water and nitrogen fertilizer. A study was conducted at post-graduate agricultural research station, University of Agriculture Faisalabad, during 2012-2013 and 2013-2014 to optimize volume of water per irrigation and nitrogen application. Split plot design with three replications was used to conduct experiment; four irrigation levels (I 300  = 300 mm, I 240  = 240 mm, I 180  = 180 mm, I 120  = 120 mm for whole growing season at critical growth stages) and four nitrogen levels (N 60  = 60 kg ha -1 , N 120  = 120 kg ha -1 , N 180  = 180 kg ha -1 , and N 240  = 240 kg ha -1 ) were randomized as main and sub-plot factors, respectively. The recorded data on grain yield was used to develop empirical regression models. The results based on quadratic equations and economic analysis showed 164, 162, 158, and 107 kg ha -1 nitrogen as economic optimum with I 300 , I 240 , I 180 , and I 120 mm water, respectively, during 2012-2013. During 2013-2014, quadratic equations and economic analysis showed 165, 162, 161, and 117 kg ha -1 nitrogen as economic optimum with I 300 , I 240 , I 180 , and I 120 mm water, respectively. The optimum irrigation level was obtained by fitting economic optimum nitrogen as function of total water. Equations predicted 253 mm as optimum irrigation water for whole growing season during 2012-2013 and 256 mm water as optimum for 2013-2014. The results also revealed that reducing irrigation from I 300 to I 240 mm during 2012-2013 and 2013-2014 did not reduce crop yield significantly (P < 0.01). The excessive nitrogen application ranged from 31.2 to 55.4% at N 180 and N 240 kg ha -1 for different levels of irrigation. It is concluded from study that irrigation and nitrogen relationship can be used for efficient management of irrigation and nitrogen and to reduce nitrogen losses. The empirical equations developed in this study can help farmers of semi-arid environment to calculate optimum level of irrigation and nitrogen for maximum economic return from wheat.

  13. Long-term fate of nitrate fertilizer in agricultural soils.

    PubMed

    Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André

    2013-11-05

    Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere-hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three-decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61-65% of the applied fertilizers N were taken up by plants, whereas 12-15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8-12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of (15)N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils.

  14. Long-term fate of nitrate fertilizer in agricultural soils

    PubMed Central

    Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André

    2013-01-01

    Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere–hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three–decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61–65% of the applied fertilizers N were taken up by plants, whereas 12–15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8–12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of 15N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils. PMID:24145428

  15. Exploring the effects of nitrogen fertilization management alternatives on nitrate loss and crop yields in tile-drained fields in Illinois.

    PubMed

    Jeong, Hanseok; Bhattarai, Rabin

    2018-05-01

    It is vital to manage the excessive use of nitrogen (N) fertilizer in corn production, the single largest consumer of N fertilizer in the United States, in order to achieve more sustainable agroecosystems. This study comprehensively explored the effects of N fertilization alternatives on nitrate loss and crop yields using the Root Zone Water Quality Model (RZWQM) in tile-drained fields in central Illinois. The RZWQM was tested for the prediction of tile flow, nitrate loss, and crop yields using eight years (1993-2000) of observed data and showed satisfactory model performances from statistical and graphical evaluations. Our model simulations demonstrated the maximum return to nitrogen (MRTN) rate (193 kgha -1 ), a newly advised N recommendation by the Illinois Nutrient Loss Reduction Strategy (INLRS), can be further reduced. Nitrate loss was reduced by 10.3% and 29.8%, but corn yields decreased by 0.3% and 1.9% at 156 and 150 kgha -1 of N fertilizer rate in the study sites A and E, respectively. Although adjustment of N fertilization timing presented a further reduction in nitrate loss, there was no optimal timing to ensure nitrate loss reduction and corn productivity. For site A, 100% spring application was the most productive and 40% fall, 10% pre-plant, and 50% side dress application generated the lowest nitrate loss. For site E, the conventional N application timing was verified as the best practice in both corn production and nitrate loss reduction. Compared to surface broadcast placement, injected N fertilizer in spring increased corn yield, but may also escalate nitrate loss. This study presented the need of an adaptive N fertilizer management due to the heterogeneity in agricultural systems, and raised the importance of timing and placement of N fertilizer, as well as further reduction in fertilizer rate to devise a better in-field N management practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Effects of different fertilization measures on N2O emission in oil sunflower field in irrigation area of upper Yellow River].

    PubMed

    Chen, Zhe; Chen, Yuan-yuan; Gao, Ji; Liu, Ru-liang; Yang, Zheng-li; Zhang, Ai-ping

    2015-01-01

    Agricultural soil has become the largest anthropogenic source of atmospheric nitrous oxide (N20). To estimate the impacts of long-term combined application of organic and inorganic fertilizers on N20 emission in a typical winter wheat-oil sunflower cropping system in the Ningxia irrigation area, we measured N20 fluxes using the static opaque chamber-gas chromatograph method and monitored the seasonal dynamics of related factors. Our results showed that nitrogen addition in the previous crop field significantly stimulated N2O emissions during the following oil-sunflower cultivation, and the mean fluxes of N300-OM, N240-OM1/2, N300 and N240 were (34.16 ± 9.72), (39.69 ±10.70), (27.75 ±9.57) and (26.30 ± 8.52) µg . m-2 . h-1, respectively, which were 4.09, 4.75, 3.32 and 3.15 times of the control groups. The total cumulative N2O emissions of fertilizer treatments in growing season was as high as 796.7 to 1242.5 g . hm-2, which was 2.99 to 4.67 times of the control groups. During the growing season, the rates of N2O emission in each month organic and inorganic fertlizers combined treatments were similar at high levels. N2O emission in chemical fertilizer treatments gradually decreased, and the main period of N2O emission occurred at the beginning of growing season. Taking July for example, N2O emission accounted for 41.3% to 41. 8% of total cumulative amount. The amounts of N20 emission under organic and inorganic fertilizers combined treatments were significantly higher than under chemical fertilizer treatments. The N2O emissions were not significantly different between conventional and optimized applications of nitrogen fertilizer under the same fertilizing method, either between N300-OM and N240-OM1/2, or between N300 and N240. On account of the drought, N2O emission in each treatment was mainly affected by soil moisture. N2O emission had a significant positive correlation with soil ammonium nitrogen content under combined applications of organic and inorganic fertilizers, but was not correlated with soil nitrate nitrogen content under all treatments. This showed that adding organic fertilizer could stimulate the NO2 production via increasing the soil ammonium nitrogen content.

  17. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste.

    PubMed

    Liedl, B E; Bombardiere, J; Chaffield, J M

    2006-01-01

    Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.

  18. Short-term responses of soil water chemistry to nitrogen reduction in a subtropical forest ecosystem in southwest China

    NASA Astrophysics Data System (ADS)

    Duan, L.; Xie, D.; Zhang, T.; Huang, Y.

    2017-12-01

    Reactive nitrogen emission and deposition has been greatly reduced in recent years in China. To study the responses of soil water chemistry to decreasing nitrogen deposition, a field manipulating experiment was carried out in Tieshanping, a nitogen-saturated forest near Chongqing city in southwest China. After ten-year application of NH4NO3 or NaNO3 to simulate doubling nitrogen deposition with different nitrogen forms during 2005-2014, the nitrogen fertilizers were stopped applying at the end of 2014 to simulate decrease in nitrogen deposition. The continuous observing results on the changes of soil water chemistry in the next two years (2015 and 2016) showed very quick decrease in NO3- (the major form of inorganic nitrogen in soil water, because almost all NH4+ added being nitrified) concentration at the nitrogen fertilizing plots, to similar level at the reference plots without N fertilizer application. The NO3- concentrations of soil water at the NH4NO3 plots were even lower than those at the NaNO3 plots. The previous experiment on the effects of nitrogen addition had showed that NH4+ deposition, instead of NO3- deposition, increased N retention in the forest ecosystem, and led to lower NO3- concentration in soil water. The nitrogen sink seemed remained in the two years after the cease of N addition. Although the total NO3- leaching decreased after nitrogen reduction, the pH of soil water had not showed significantly increasing trend. Therefore, the recovery of Tieshanping forest ecosystem from acidification was slow, which requiring further emission abatement of reactive nitrogen in the future.

  19. Nitrogen source and application method impact on corn yield and nutrient uptake

    USDA-ARS?s Scientific Manuscript database

    Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...

  20. [Effects of phosphorus fertilization on yield of winter wheat and utilization of soil nitrogen].

    PubMed

    Xing, Dan; Li, Shu-wen; Xia, Bo; Wen, Hong-da

    2015-02-01

    In order to evaluate the threshold of phosphorus (P) application rate and improve the utilization efficiency of fertilizers in Baoding region of Hebei Province, a field experiment was conducted to examine the impacts of P fertilization on wheat yield, soil NO(3-)-N and nitrogen use efficiency. Results showed that, compared with the CK (P0), all treatments with P application (P1, 120 kg · hm(-2); P2, 240 kg · hm(-2) and P3, 480 kg · hm(-2)) increased the plant height, flag leaf areas and total leaf areas per plant of winter wheat, which was conducive to the accumulation of photosynthetic products. In addition, P application increased the spike number, kernels per spike and yield of winter wheat but slightly decreased the grain mass per 1000 seeds. Of the P-fertilized treatments, P2 had the highest wheat yield of 6102 kg · hm(-2), which was similar to P1 but significantly greater than those of P0 and P3. Furthermore, P fertilization reduced the NO(3-)-N content in top soil layer although the total accumulation of NO3- was still rather high. The N grain production efficiencies (GPE(N)) and N uptake efficiencies (UE(N)) of P1 and P2 were similar but greater than the other treatments. The use efficiency (UR(P)) , agronomic efficiency (AE(P)) and partial productivity of P fertilizer (PFP(P)) in P1 were significantly greater than P2 and P3. In conclusion, the P application rate of 120 kg · hm(-2) (P1) in this study could be an appropriate threshold in Baoding, Hebei, from the aspects of wheat yield, nitrogen and phosphate use efficiencies and accumulation of soil NO3-.

  1. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region.

    PubMed

    Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang

    2016-03-01

    Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.

  2. Greenhouse gas emissions from solid and liquid organic fertilizers applied to lettuce

    USDA-ARS?s Scientific Manuscript database

    Excessive and improper application of nitrogen (N) fertilizer, and environmental factors can cause the loss of carbon dioxide (CO2) and nitrous oxide (N2O) to the environment. Also, different types of fertilizers may have different effects on the environment. The focus of this study was to evaluate ...

  3. Longleaf pine flowering in response to nitrogen fertilization, branch girdling, growth substances, and cultivation

    Treesearch

    R.C. Hare; E.B. Snyder; R.C. Schmidtling

    1977-01-01

    Biweekly applications of 400 µg GA4/7 plus 25 µg NAA per bud from June 1 to August 10 promoted male and female flowering in longleaf pine (Pinus palustris Mill.), especially when combined with partial branch girdling and NH4N03 fertilization. Fertilization was the...

  4. Effect of potassium fertilizer application on the yield and quality of current sugarcane varieties in Louisiana

    USDA-ARS?s Scientific Manuscript database

    For many sugarcane producers in Louisiana the only fertilizer that is routinely applied to their crop is nitrogen that is side-dressed in the spring. This is due, primarily to the high cost of potassium and phosphorus fertilizers. Recent cooperative research conducted between the USDA/ARS Sugarcane ...

  5. Ionic composition and nitrate in drainage water from fields fertilized with different nitrogen sources, middle swamp watershed, North Carolina, August 2000-August 2001

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2004-01-01

    A study was conducted from August 2000 to August 2001 to characterize the influence of fertilizer use from different nitrogen sources on the quality of drainage water from 11 subsurface tile drains and 7 surface field ditches in a North Carolina Coastal Plain watershed. Agricultural fields receiving commercial fertilizer (conventional sites), swine lagoon effluent (spray sites), and wastewater-treatment plant sludge (sludge site) in the Middle Swamp watershed were investigated. The ionic composition of drainage water in tile drains and ditches varied depending on fertilizer source type. The dominant ions identified in water samples from tile drains and ditches include calcium, magnesium, sodium, chloride, nitrate, and sulfate, with tile drains generally having lower pH, low or no bicarbonates, and higher nitrate and chloride concentrations. Based on fertilizer source type, median nitrate-nitrogen concentrations were significantly higher at spray sites (32.0 milligrams per liter for tiles and 8.2 milligrams per liter for ditches) relative to conventional sites (6.8 milligrams per liter for tiles and 2.7 milligrams per liter for ditches). The median instantaneous nitrate-nitrogen yields also were significantly higher at spray sites (420 grams of nitrogen per hectare per day for tile drains and 15.6 grams of nitrogen per hectare per day for ditches) relative to conventional sites (25 grams of nitrogen per hectare per day for tile drains and 8.1 grams of nitrogen per hectare per day for ditches). The tile drain site where sludge is applied had a median nitrate-nitrogen concentration of 10.5 milligrams per liter and a median instantaneous nitrate-nitrogen yield of 93 grams of nitrogen per hectare per day, which were intermediate to those of the conventional and spray tile drain sites. Results from this study indicate that nitrogen loadings and subsequent edge-of-field nitrate-nitrogen yields through tile drains and ditches were significantly higher at sites receiving applications of swine lagoon effluent compared to sites receiving commercial fertilizer.

  6. Inoculation of Bacillus sphaericus UPMB-10 to Young Oil Palm and Measurement of Its Uptake of Fixed Nitrogen Using the 15N Isotope Dilution Technique

    PubMed Central

    Zakry, Fitri Abdul Aziz; Shamsuddin, Zulkifli H.; Rahim, Khairuddin Abdul; Zakaria, Zin Zawawi; Rahim, Anuar Abdul

    2012-01-01

    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N2 fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the 15N isotope dilution method. Eight months after 15N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower 15N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N2 fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field. PMID:22446306

  7. County-level estimates of nitrogen and phosphorus from commercial fertilizer for the Conterminous United States, 1987–2006

    USGS Publications Warehouse

    Gronberg, Jo Ann M.; Spahr, Norman E.

    2012-01-01

    The U.S. Geological Survey’s National Water-Quality Assessment program requires nutrient input for analysis of the national and regional assessment of water quality. Detailed information on nutrient inputs to the environment are needed to understand and address the many serious problems that arise from excess nutrients in the streams and groundwater of the Nation. This report updates estimated county-level farm and nonfarm nitrogen and phosphorus input from commercial fertilizer sales for the conterminous United States for 1987 through 2006. Estimates were calculated from the Association of American Plant Food Control Officials fertilizer sales data, Census of Agriculture fertilizer expenditures, and U.S. Census Bureau county population. A previous national approach for deriving farm and nonfarm fertilizer nutrient estimates was evaluated, and a revised method for selecting representative states to calculate national farm and nonfarm proportions was developed. A national approach was used to estimate farm and nonfarm fertilizer inputs because not all states distinguish between farm and nonfarm use, and the quality of fertilizer reporting varies from year to year. For states that distinguish between farm and nonfarm use, the spatial distribution of the ratios of nonfarm-to-total fertilizer estimates for nitrogen and phosphorus calculated using the national-based farm and nonfarm proportions were similar to the spatial distribution of the ratios generated using state-based farm and nonfarm proportions. In addition, the relative highs and lows in the temporal distribution of farm and nonfarm nitrogen and phosphorus input at the state level were maintained—the periods of high and low usage coincide between national- and state-based values. With a few exceptions, nonfarm nitrogen estimates were found to be reasonable when compared to the amounts that would result if the lawn application rates recommended by state and university agricultural agencies were used. Also, states with higher nonfarm-to-total fertilizer ratios for nitrogen and phosphorus tended to have higher urban land-use percentages.

  8. Effects of soil and foliar applications of nitrogen fertilizers on a 20-year-old Douglas-fir stand

    Treesearch

    Richard E. Miller; Steve. Wert

    1979-01-01

    We compared growth and cone production of Douglas-fir treated 4 years earlier with ISO pounds N per acre applied as urea prill by hand and as a 32-percent N solution applied by helicopter. Nitrogen fertilization increased growth by 3 88 ft per acre during the 4 years after treatment; this 3S-percent gain was similar for both soil (prill) and foliar (solution)...

  9. Using insurance to enhance nitrogen fertilizer application to reduce nitrogen losses to the environment.

    PubMed

    Huang, W Y; Heifner, R G; Taylor, H; Uri, N D

    2001-05-01

    The advantage of using insurance to help a farmer adopt a best nitrogen management plan (BNMP) that reduces the impact of agricultural production on the environment is analytically and empirically demonstrated. Using an expected value analysis, it is shown that an insurance program can be structured so as to reduce a farmer's cost of bearing the adoption risk associated with changing production practices and, thus, to improve the farmer's certainty equivalent net return thereby promoting the adoption of a BNMP. Using the adoption of growing-season only N fertilizer application in Iowa as a case study, it is illustrated how insurance may be used to promote the adoption of this practice to reduce N fertilizer use. It is shown that it is possible for a farmer and an insurance company both to have an incentive to develop an insurance adoption program that will benefit both the farmer and the insurance company, increasing net social welfare and improving environmental quality in Iowa.

  10. Partitioning of applied nitrogen in corn and switchgrass in soils of variable depths in Central Missouri, USA

    USDA-ARS?s Scientific Manuscript database

    Deployment of biomass feedstock production systems in marginal lands with minimal external inputs is being recommended for sustainable feedstock supply. While nitrogen is critical for plant growth, injudicious application of fertilizer nitrogen in such marginal lands could magnify the existing non-p...

  11. Environmental impact of irrigation in La Violada District (Spain): II. Nitrogen fertilization and nitrate export patterns in drainage water.

    PubMed

    Isidoro, D; Quílez, D; Aragüés, R

    2006-01-01

    Fertilizer leaching affects farm profitability and contributes to nonpoint-source pollution of receiving waters. This work aimed to establish nitrate nitrogen export from La Violada Gully in relation to nitrogen fertilization practices in its basin (La Violada Gully watershed, VGW, 19,637 ha) and especially in La Violada Irrigation District (VID, 5282 ha). Nitrogen (N) fertilization in VID (and VGW) was determined through interviews with local farmers for the hydrologic years 1995 and 1996 and NO3-N load in the gully was monitored from 1995 to 1998. The N fertilizer applied in VGW was 2175 Mg in 1995 and 2795 Mg in 1996. About 43% was applied in VID (945 Mg in 1995 and 1161 Mg in 1996). The most fertilized crop was corn: 398 kg N ha-1 (665 Mg) in 1995 and 453 kg N ha-1 (911 Mg) in 1996. Nitrogen fertilization was higher than N uptake for irrigated crops, especially for corn and rice. Nitrate N load in La Violada Gully averaged 427.4 Mg yr-1. Seventy-five percent of the exports took place during the irrigation season (321.8 Mg). During the non-irrigation season maximum NO3-N loads (3.1 Mg NO3-N d-1) were found after heavy rains following the N side-dressing of wheat in the rain-fed area of VGW (February). During the irrigation season NO3-N load was determined by outflow from the district (caused by irrigation) and to a lesser extent by changes in NO3 concentration (caused by fertilization), showing peaks in April (pre-sowing corn N fertilization and first irrigations) and June to August (highest irrigation months and corn side-dress N applications, maximum 6.3 Mg NO3-N d-1 in July). Adjusting N fertilization to crops' needs, improving irrigation efficiencies, and better scheduling N fertilization and irrigation in corn could reduce N export from VID.

  12. Ground-water flow and effects of agricultural application of sewage sludge and other fertilizers on the chemical quality of sediments in the unsaturated zone and ground water near Platteville, Colorado, 1985-89

    USGS Publications Warehouse

    Gaggiani, N.G.

    1995-01-01

    From fall 1985 through 1989, 6,431 dry tons of anaerobic, digested, sewage sludge were applied as a fertilizer on about 1 square mile of sandy farm- land near Platteville, Colorado. Mean nitrite plus nitrate as nitrogen concentrations in the surficial aquifer increased during the period of sewage- sludge application. However, the effects of municipal sewage sludge applied to the soil in section 16 are difficult to ascertain because anhydrous ammonia and cattle and chicken manure were applied to section 16 prior to sewage-sludge application and anhydrous ammonia was applied during the period of sewage-sludge application. Mostly ammonia plus organic nitrogen was detected in the unsaturated zone while nitrite plus nitrate as nitrogen predominated in the surficial aquifer. The areas of largest concentrations of nitrite plus nitrate as nitrogen were in the northeastern and southwestern quarter sections os section 16. Changes in nitrite plus nitrate as nitrogen concentrations with depth and time were detected in water samples from the multilevel ground-water sampling devices in the surficial aquifer. Nitrogen probably entered the saturated zone in the irrigated areas and low temporarily ponded areas and moved to the northeast with water in the surficial aquifer.

  13. Reducing Soil CO2 Emission and Improving Upland Rice Yield with no-Tillage, Straw Mulch and Nitrogen Fertilization in Northern Benin

    NASA Astrophysics Data System (ADS)

    Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.

    2015-12-01

    To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.

  14. Comparison of clinical outcomes between in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in IVF-ICSI split insemination cycles.

    PubMed

    Lee, Sun Hee; Lee, Jae Hyun; Park, Yong-Seog; Yang, Kwang Moon; Lim, Chun Kyu

    2017-06-01

    This study aimed to compare the clinical outcomes between in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in sibling oocytes. Additionally, we evaluated whether the implementation of split insemination contributed to an increase in the number of ICSI procedures. A total of 571 cycles in 555 couples undergoing split insemination cycles were included in this study. Among them, 512 cycles (89.7%) were a couple's first IVF cycle. The patients were under 40 years of age and at least 10 oocytes were retrieved in all cycles. Sibling oocytes were randomly allocated to IVF or ICSI. Total fertilization failure was significantly more common in IVF cycles than in ICSI cycles (4.0% vs. 1.4%, p <0.05), but the low fertilization rate among retrieved oocytes (as defined by fertilization rates greater than 0% but <30%) was significantly higher in ICSI cycles than in IVF cycles (17.2% vs. 11.4%, p <0.05). The fertilization rate of ICSI among injected oocytes was significantly higher than for IVF (72.3%±24.3% vs. 59.2%±25.9%, p <0.001), but the fertilization rate among retrieved oocytes was significantly higher in IVF than in ICSI (59.2%±25.9% vs. 52.1%±22.5%, p <0.001). Embryo quality before embryo transfer was not different between IVF and ICSI. Although the sperm parameters were not different between the first cycle and the second cycle, split insemination or ICSI was performed in 18 of the 95 cycles in which a second IVF cycle was performed. The clinical outcomes did not differ between IVF and ICSI in split insemination cycles. Split insemination can decrease the risk of total fertilization failure. However, unnecessary ICSI is carried out in most split insemination cycles and the use of split insemination might make ICSI more common.

  15. Comparison of clinical outcomes between in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in IVF-ICSI split insemination cycles

    PubMed Central

    Lee, Sun Hee; Lee, Jae Hyun; Park, Yong-Seog; Yang, Kwang Moon

    2017-01-01

    Objective This study aimed to compare the clinical outcomes between in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in sibling oocytes. Additionally, we evaluated whether the implementation of split insemination contributed to an increase in the number of ICSI procedures. Methods A total of 571 cycles in 555 couples undergoing split insemination cycles were included in this study. Among them, 512 cycles (89.7%) were a couple's first IVF cycle. The patients were under 40 years of age and at least 10 oocytes were retrieved in all cycles. Sibling oocytes were randomly allocated to IVF or ICSI. Results Total fertilization failure was significantly more common in IVF cycles than in ICSI cycles (4.0% vs. 1.4%, p<0.05), but the low fertilization rate among retrieved oocytes (as defined by fertilization rates greater than 0% but <30%) was significantly higher in ICSI cycles than in IVF cycles (17.2% vs. 11.4%, p<0.05). The fertilization rate of ICSI among injected oocytes was significantly higher than for IVF (72.3%±24.3% vs. 59.2%±25.9%, p<0.001), but the fertilization rate among retrieved oocytes was significantly higher in IVF than in ICSI (59.2%±25.9% vs. 52.1%±22.5%, p<0.001). Embryo quality before embryo transfer was not different between IVF and ICSI. Although the sperm parameters were not different between the first cycle and the second cycle, split insemination or ICSI was performed in 18 of the 95 cycles in which a second IVF cycle was performed. Conclusion The clinical outcomes did not differ between IVF and ICSI in split insemination cycles. Split insemination can decrease the risk of total fertilization failure. However, unnecessary ICSI is carried out in most split insemination cycles and the use of split insemination might make ICSI more common. PMID:28795049

  16. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years.

    PubMed

    Sigurnjak, I; Vaneeckhaute, C; Michels, E; Ryckaert, B; Ghekiere, G; Tack, F M G; Meers, E

    2017-12-01

    Following changes over recent years in fertilizer legislative framework throughout Europe, phosphorus (P) is taking over the role of being the limiting factor in fertilizer application rate of animal manure. This results in less placement area for spreading animal manure. As a consequence, more expensive and energy demanding synthetic fertilizers are required to meet crop nutrient requirements despite existing manure surpluses. Anaerobic digestion followed by mechanical separation of raw digestate, results in liquid fraction (LF) of digestate, a product poor in P but rich in nitrogen (N) and potassium (K). A 3-year field experiment was conducted to evaluate the impact of using the LF of digestate as a (partial) substitute for synthetic N fertilizer. Two different fertilization strategies, the LF of digestate in combination with respectively animal manure and digestate, were compared to the conventional fertilization regime of raw animal manure with synthetic fertilizers. Results from the 3-year trial indicate that the LF of digestate may substitute synthetic N fertilizers without crop yield losses. Through fertilizer use efficiency assessment it was observed that under-fertilization of soils with a high P status could reduce P availability and consequently the potential for P leaching. Under conditions of lower K application, more sodium was taken up by the crop. In arid regions, this effect might reduce the potential risk of salt accumulation that is associated with organic fertilizer application. Finally, economic and ecological benefits were found to be higher when LF of digestate was used as a synthetic N substitute. Future perspectives indicate that nutrient variability in bio-based fertilizers will be one of the greatest challenges to address in the future utilization of these products. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    PubMed

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter and Rhodospirillaceae, were found to be the significantly increased by the BOF addition and the genus Lysobacter may identify members of this group effective in biological control-based plant disease management and the members of family Rhodospirillaceae had an important role in fixing molecular nitrogen. These results strengthen the understanding of responses to the BOF and possible interactions within bacterial communities in soil that can be associated with disease suppression and the accumulation of carbon and nitrogen. The increase of apple yields after the application of BOF might be attributed to the fact that the application of BOF increased SOM, and soil total nitrogen, and changed the bacterial community by enriching Rhodospirillaceae, Alphaprotreobateria, and Proteobacteria.

  18. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    NASA Astrophysics Data System (ADS)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  19. [Effects of nitrogen and sulfur combined application on nutritional components and active components of Isatis indigotica at seedling stage].

    PubMed

    Miao, Yu-Jing; Guan, Jia-Li; Zeng, Jia-le; Xu, Jing; Tang, Xiao-Qing

    2018-04-01

    Using split plot design, a pot experiment with sand culture was conducted to investigate the effects ofnitrogen and sulfur combined application on nutritional components and active component of Isatis indigotica at seedling stage under different N (5,15,25 mmol·L⁻¹)and S(0.00,1.25,2.50,5.00,7.50 mmol·L⁻¹) levels. The results showed thatthe two elements had obvious effects and the leaf and root dry weights of I. indigotica seedlings increased greatly at N₂ level. Under the same nitrogen concentration, the leaf and root dry weights increased firstly and decreased with the rising of sulfur concentrations in which S₂ was conducive to the growth and biomass accumulation. Soluble sugar, soluble protein, soluble amino acids contents were the highest in N₁, N₂ and N₃ treatments, respectively. The influence of sulfur concentrations on nutritional components was same as biomass, but the peak of different nutritional components was diversity in different nitrogen levels. The effects on secondary metabolites (total flavones, indigo, indriubin, epigotrin contents) were not obvious significantly, in which these indexes by N₁S₃,N₁S₂,N₃S₀,N₃S₁were the highest, respectively. In conclusion, the combination of nitrogen and sulfur of N₂S₂(N 15 mmol·L⁻¹ and S 2.5 mmol·L⁻¹) was beneficial to the growth and secondary metabolites accumulation of I. indigotica. These results could provide a theoretical basis for rational fertilization and cultivation of I. indigotica seedling. Copyright© by the Chinese Pharmaceutical Association.

  20. Emission Factors of Nitrous Oxide by Organic Manure Fertilizers in Japanese Upland Fields

    NASA Astrophysics Data System (ADS)

    Sudo, S.

    2011-12-01

    Preliminary data of field experiments which were conducted to estimate emission factors of nitrous oxide by organic manure fertilizers in 10 Japan-wide experiment sites, 2010 was reported. We compared nitrous oxide emission from urea as chemical fertilizers and cow manure as organic applications, in 1o Japanese prefectures of Yamagata, Fukushima, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto and Kagoshima. Same amounts of nitrogen were applied in organic and inorganic fertilizers in each field. In each site, 3 replication plots were organized in randomized block design with zero-nitrogen application plots. N2O gas fluxes were measured every one week or more during cultivation seasons. We also measured several soil physical and chemical parameters of inorganic nitrogen species, soil moisture contents or WFPS (Water Filled Pore Space), soil temperatures, bulk densities etc. Gas fluxes ware measured by automated Shimadzu GC-2014 ECD gas chromatograph. Soil moistures were measured by Camplel's Hydrosense in each site. Vegetation of conducting fields were cabbage in 7 fields, wheat in 1, pear orchard and onion in 1. Microorganisms' abundance was also considered to clarify N2O emission processes by the PCR-DGGE method.

  1. How inhibiting nitrification affects nitrogen cycle and reduces ...

    EPA Pesticide Factsheets

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI along with nitrogen (N) fertilizer increased crop nitrogen use efficiency, crop yield, and altered the pathways and the amount of N loss to environment. NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9% of the total N loss. The cost and benefit analysis showed that the economic benefit of reducing N’s environmental impacts offset the cost of NI. NI application could bring additional revenue of $163.72 ha-1 for a maize farm. Taken together, our findings show that NI application may create a win-win scenario that increases agricultural output, while reducing the negative impact on the environment. Policies that encourage NI application would reduce N’s environmental impacts. A group from Chinese Academy of Sciences, US EPA-ORD and North Carolina examined the net environmental and economic effects of nitrification inhibitors to reduce nitrate leaching associated with farm fertilizers. They conducted a meta-analysis of studies examining nitrification inhibitors, and found that NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9

  2. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates

    PubMed Central

    Zhang, Zhiyong; Zhang, Xiaoke; Mahamood, Md.; Zhang, Shuiqing; Huang, Shaomin; Liang, Wenju

    2016-01-01

    A long-term fertilization experiment was conducted to examine the effects of different fertilization practices on nematode community composition within aggregates in a wheat-maize rotation system. The study was a randomized complete block design with three replicates. The experiment involved the following four treatments: no fertilizer, inorganic N, P and K fertilizer (NPK), NPK plus manure (NPKM) and NPK plus maize straw (NPKS). Soil samples were taken at 0–20 cm depth during the wheat harvest stage. Based on our results, NPKS contributed to soil aggregation and moisture retention, with a positive effect on soil total nitrogen accumulation, particularly within small macroaggregates (0.25–1 mm) and microaggregates (<0.25 mm). The C/N ratio was correlated to the distribution of the soil nematode community. Both manure application and straw incorporation increased the nematode functional metabolic footprints within all aggregates. Additionally, the functional metabolic footprints decreased with a decline in aggregate size. The accumulation of total nitrogen within <1 mm aggregates under NPKS might play a key role in maintaining the survival of soil nematodes. In our study, both crop straw incorporation and inorganic fertilizer application effectively improved soil physicochemical properties and were also beneficial for nematode survival within small aggregate size fractions. PMID:27502433

  3. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates.

    PubMed

    Zhang, Zhiyong; Zhang, Xiaoke; Mahamood, Md; Zhang, Shuiqing; Huang, Shaomin; Liang, Wenju

    2016-08-09

    A long-term fertilization experiment was conducted to examine the effects of different fertilization practices on nematode community composition within aggregates in a wheat-maize rotation system. The study was a randomized complete block design with three replicates. The experiment involved the following four treatments: no fertilizer, inorganic N, P and K fertilizer (NPK), NPK plus manure (NPKM) and NPK plus maize straw (NPKS). Soil samples were taken at 0-20 cm depth during the wheat harvest stage. Based on our results, NPKS contributed to soil aggregation and moisture retention, with a positive effect on soil total nitrogen accumulation, particularly within small macroaggregates (0.25-1 mm) and microaggregates (<0.25 mm). The C/N ratio was correlated to the distribution of the soil nematode community. Both manure application and straw incorporation increased the nematode functional metabolic footprints within all aggregates. Additionally, the functional metabolic footprints decreased with a decline in aggregate size. The accumulation of total nitrogen within <1 mm aggregates under NPKS might play a key role in maintaining the survival of soil nematodes. In our study, both crop straw incorporation and inorganic fertilizer application effectively improved soil physicochemical properties and were also beneficial for nematode survival within small aggregate size fractions.

  4. Off-site transport of nitrogen fertilizer with runoff from golf course fairway turf: A comparison of creeping bentgrass with a fine fescue mixture

    USDA-ARS?s Scientific Manuscript database

    Maintaining quality golf course turf often requires irrigation and application of fertilizer. The transport of excess nutrients with runoff water from highly managed and fertilized biological systems to surrounding surface waters has been shown to result in enhanced algal blooms and promotion of eut...

  5. Cotton Physiological Responses to Application of Urea with NBPT and DCD Under Normal and High Temperature Conditions

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilization is one the most expensive agricultural practices and crops are known to recover only about a third of the N fertilizer applied. A practice commonly recommended to improve N use efficiency is the incorporation of urease and/or nitrification inhibitor into N fertilizers. The ob...

  6. Demand impact and policy implications from taxing nitrogen fertilizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, J.C.

    1992-12-01

    Recent concern has focused on nitrogen fertilizer as a potential contaminant of groundwater. A demand function for fertilizer was developed using the quantity of fertilizer purchased, corn yield, real price of nitrogen fertilizer, lagged fertilizer purchases, a land value variable and the real price of corn as explanatory variables. Short and long-run price elasticities of demand were estimated to be inelastic. Support was found for the hypothesis that demand for nitrogen fertilizer has become more price inelastic over time. From a policy standpoint, a tax on nitrogen fertilizer may not be the most effective method to reduce consumption.

  7. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    PubMed

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  8. Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, E.

    1994-12-01

    The global distribution of nitrogen input via application of chemical nitrogenous fertilizers to agricultural ecosystems is presented. The suite of 1{degrees} (latitude/longitude) resolution data bases includes primary data on fertilizer consumption, as well as supporting data sets defining the distribution and intensity of agriculture associated with fertilizer use. The data were developed from a variety of sources and reflect conditions for the mid-1980s. East Asia, where fertilizer use is increasing at {approximately}10%/year, accounted for {approximately}37% of the total, while North America and western Europe, where fertilizer use is leveling off, accounted for 40% of the world`s total in the mid-1980s.more » While almost every country consumes urea, {approximately}75% of the large East Asian fertilizer use is supplied by this one fertilizer. Ammonium nitrate, used primarily in the former centrally planned economies of Europe, in West Asia, and in Africa, accounted for about one quarter of global consumption. These data were used to estimate distributions of the annual emission of nitrous oxide (N{sub 2}O) and ammonia (NH{sub 3}) associated with the use of fertilizers. Applying published ranges of emission coefficients for fertilizer types in the data base yields a median emission of 0.1 Tg N{sub 2}O-N, with lower and upper values of 0.03 and 2.0 Tg N{sub 2}O-N in 1984. This equals <1% to {approximately}3% of the total nitrogen applied via commercial fertilizers and represents ,=<1% to 15% of the annual emission of N{sub 2}O from terrestrial sources. Assuming that the {approximately}4% annual increase in consumption of nitrogenous fertilizers during the 1980s corresponds to a {approximately}4% rise in the release of N{sub 2}O-N, yearly increases in emissions from fertilizer use are <0.01 to 0.08 Tg N{sub 2}O-N equal to <1% to 3% of the current growth of atmospheric nitrous oxide. 98 refs., 3 figs., 5 tabs.« less

  9. Soil nitrogen balance assessment and its application for sustainable agriculture and environment.

    PubMed

    Roy, Rabindra Nath; Misra, Ram Vimal

    2005-12-01

    Soil nitrogen balance assessment (SNBA) serves as an effective tool for estimating the magnitude of nitrogen loss/gain of the agro-eco systems and to appraise their sustainability. SNBA brings forth awareness of soil fertility problems, besides providing information relating to the resultant release of nitrogen into the environment consequent to agricultural practices. Quantitative information relating to nitrogen escape into the environment through such exercises can be gainfully utilized for identification of causative factors, enhancing fertilizer use efficiency and formulating programmes aimed at plugging N leakages. An overview of nitrogen balance approaches and methodologies is presented. A deeper understanding and insight into the agro-eco systems provided by the SNBA exercises can lay the basis for the formulation of effective agronomic interventions and policies aimed at promoting sustainable agriculture and a benign environment.

  10. Soil nitrogen balance assessment and its application for sustainable agriculture and environment.

    PubMed

    Roy, Rabindra Nath; Misra, Ram Vimal

    2005-09-01

    Soil nitrogen balance assessment (SNBA) serves as an effective tool for estimating the magnitude of nitrogen loss/gain of the agro-eco systems and to appraise their sustainability. SNBA brings forth awareness of soil fertility problems, besides providing information relating to the resultant release of nitrogen into the environment consequent to agricultural practices. Quantitative information relating to nitrogen escape into the environment through such exercises can be gainfully utilized for identification of causative factors, enhancing fertilizer use efficiency and formulating programmes aimed at plugging N leakages. An overview of nitrogen balance approaches and methodologies is presented. A deeper understanding and insight into the agro-eco systems provided by the SNBA exercises can lay the basis for the formulation of effective agronomic interventions and policies aimed at promoting sustainable agriculture and a benign environment.

  11. Nitrogen requirements at bulb initiation for production of intermediate-day onions

    USDA-ARS?s Scientific Manuscript database

    The effect of nitrogen application on growth, nitrogen (N) uptake, yield, and quality of intermediate-day onion (Allium cepa L. ‘Guimar’) was evaluated in the field in southern Portugal. Plants were fertilized with 30 kg/ha N at transplanting, 10 kg/ha N at 29 days after transplanting (DAT) during ...

  12. Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application

    NASA Astrophysics Data System (ADS)

    Sun, Wenjuan; Huang, Yao; Chen, Shutao; Zou, Jianwen; Zheng, Xunhua

    2007-02-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency ( E ncf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient ( R a). Results from the pot experiments revealed a linear relationship between R a and tissue N content as R a = 4.74N-1.45 ( R 2 = 0.85, P < 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the E ncf declined as the N application rate increased.

  13. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China.

    PubMed

    Zhang, Xianxian; Yin, Shan; Li, Yinsheng; Zhuang, Honglei; Li, Changsheng; Liu, Chunjiang

    2014-02-15

    Rice is one of the major crops of southern China and Southeast Asia. Rice paddies are one of the largest agricultural greenhouse gas (GHG) sources in this region because of the application of large quantities of nitrogen (N) fertilizers to the plants. In particular, the production of methane (CH4) is a concern. Investigating a reasonable amount of fertilizers to apply to plants is essential to maintaining high yields while reducing GHG emissions. In this study, three levels of fertilizer application [high (300 kg N/ha), moderate (210 kg N/ha), and low (150 kg N/ha)] were designed to examine the effects of variation in N fertilizer application rate on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the paddy fields in Chongming Island, Shanghai, China. The high level (300 kg N/ha) represented the typical practice adopted by the local farmers in the area. Maximum amounts of CH4 and N2O fluxes were observed upon high-level fertilizer application in the plots. Cumulative N2O emissions of 23.09, 40.10, and 71.08 mg N2O/m(2) were observed over the growing season in 2011 under the low-, moderate-, and high-level applications plots, respectively. The field data also indicated that soil temperatures at 5 and 10 cm soil depths significantly affected soil respiration; the relationship between Rs and soil temperature in this study could be described by an exponential model. Our study showed that reducing the high rate of fertilizer application is a feasible way of attenuating the global-warming potential while maintaining the optimum yield for the studied paddy fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Maisotsenko cycle applications in multi-stage ejector recycling module for chemical production

    NASA Astrophysics Data System (ADS)

    Levchenko, D. O.; Artyukhov, A. E.; Yurko, I. V.

    2017-08-01

    The article is devoted to the theoretical bases of multistage (multi-level) utilization modules as part of chemical plants (on the example of the technological line for obtaining nitrogen fertilizers). The possibility of recycling production waste (ammonia vapors, dust and substandard nitrogen fertilizers) using ejection devices and waste heat using Maisotsenko cycle technology (Maisotsenko heat and mass exchanger (HMX), Maisotsenko power cycles and recuperators, etc.) is substantiated. The principle of operation of studied recycling module and prospects for its implementation are presented. An improved technological scheme for obtaining granular fertilizers and granules with porous structure with multistage (multi-level) recycling module is proposed.

  15. [Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat].

    PubMed

    Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin

    2015-08-01

    A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.

  16. Determination of kjeldahl nitrogen in fertilizers by AOAC official methods 978.02: effect of copper sulfate as a catalyst.

    PubMed

    Abrams, Dean; Metcalf, David; Hojjatie, Michael

    2014-01-01

    In AOAC Official Method 955.04, Nitrogen (Total) in Fertilizers, Kjeldahl Method, fertilizer materials are analyzed using mercuric oxide or metallic mercury HgO or Hg) as a catalyst. AOAC Official Methods 970.02, Nitrogen (Total) in Fertilizers is a comprehensive total nitrogen (including nitrate nitrogen) method adding chromium metal. AOAC Official Method 978.02, Nitrogen (Total) in Fertilizers is a modified comprehensive nitrogen method used to measure total nitrogen in fertilizers with two types of catalysts. In this method, either copper sulfate or chromium metal is added to analyze for total Kjeldahl nitrogen. In this study, the part of AOAC Official Method 978.02 that is for nitrate-free fertilizer products was modified. The objective was to examine the necessity of copper sulfate as a catalyst for the nitrate-free fertilizer products. Copper salts are not environmentally friendly and are considered pollutants. Products such as ammonium sulfate, diammonium phosphate, monoammonium phosphate, urea-containing fertilizers such as isobutylene diurea (IBDU), and urea-triazone fertilizer solutions were examined. The first part of the study was to measure Kjeldahl nitrogen as recommended by AOAC Official Method 978.02. The second part of the study was to exclude the addition of copper sulfate from AOAC Official Method 978.02 to examine the necessity of copper sulfate as a catalyst in nitrate-free fertilizers, which was the primary objective. Our findings indicate that copper sulfate can be eliminated from the method with no significant difference in the results for the nitrogen content of the fertilizer products.

  17. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems

    PubMed Central

    Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; Kucharik, Christopher J.; Jackson, Randall D.

    2016-01-01

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3-) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha-1 in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3- concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization. PMID:26991790

  18. Historical Agricultural Nitrogen Fertilizer Management in the Contiguous United States during 1850-2015.

    NASA Astrophysics Data System (ADS)

    Lu, C.; Cao, P.; Yu, Z.

    2017-12-01

    The United States has a century-long history of managing anthropogenic nitrogen (N) fertilizer to booster the crop production. Accurate characterization of N fertilizer use history could provide essential implications for N use efficiency (NUE) enhancement and N loss reduction. However, a spatially explicit time-series data remains lacking to describe how N fertilizer use varied among crop types, regions, and time periods. In this study, we therefore developed long-term gridded N management maps depicting N fertilizer application rate, timing, and ratio of fertilizer forms in nine major crops (i.e. corn, soybean, winter wheat, spring wheat, cotton, sorghum, rice, barley, and durum wheat) in the contiguous U.S. at a resolution of 1 km × 1 km during 1850-2015. We found that N application rates of the U.S. increased by approximately 34 times since 1940. Nonetheless, spatial analysis revealed that N-use hotspots have shifted from the West and Southeast to the Midwest and the Great Plains since 1900. Specifically, corn of the Corn Belt region received the most intensive N input in spring, followed by large N application amount in fall, implying a high N loss risk in this region. Moreover, spatiotemporal patterns of NH4+/NO3- ratio varied largely among regions. Generally, farmers have increasingly favored NH4+-form fertilizers over NO3- fertilizers since the 1940s. The N fertilizer use data developed in this study could serve as an essential input for modeling communities to fully assess the N addition impacts, and improve N management to alleviate environmental problems.

  19. Commercial fertilizers: Total US fertilizer consumption 44.9 million tons in 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargett, N.L.; Berry, J.T.; McKinney, S.L.

    1989-12-31

    US fertilizer consumption for the 1988--1989 year was 44.9 million tons of material-an increase of less than one percent from the previous year. The average plant nutrient content of all fertilizers decreased slightly as total plant nutrient consumption declined from 19.61 million to 19.59 million tons of N, P{sub 2}O{sub 5}, and K{sub 2}O. Total nitrogen consumption increased one percent to 10.63 million tons, while P{sub 2}O{sub 5} use decreased by less than one percent to 4.12 million tons. Potash consumption declined from 4.97 million tons to 4.83 million tons K{sub 2}O-a 2.8 percent decrease. Consumption patterns varied widely frommore » state to state as weather conditions adversely affected fertilizer application even with significant increases in total planted crop acreage. Illinois, Indiana, Iowa, Minnesota, and Ohio reported a decline in total plant nutrient application while several of the southeastern states registered an increase in consumption. Nutrient levels in mixed fertilizers remained unchanged as slight gains in the nitrogen and P{sub 2}O{sub 5} content were offset by a decline in K{sub 2}O. Consumption of ammonium polyphosphate solution (10-34-0) and monoammonium phosphates increased 9.2 percent and 12.8 percent respectively, while diammonium phosphate (18-46-0) use was 2.4 percent below last year. A general increase in the use of nitrogen materials was reported with the exception of nitrogen solutions which declined 2.1 percent from 1987--1988. Urea consumption rose almost 2 percent. ammonium nitrate was up 8.1 percent, and ammonium sulfate recorded a 9.5 percent gain in consumption. Anhydrous ammonia use was only 35,000 tons above last year. This document contains a state by state listing of individual fertilizer consumption rates, numerical data only.« less

  20. Commercial fertilizers: Total US fertilizer consumption 44. 9 million tons in 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargett, N.L.; Berry, J.T.; McKinney, S.L.

    1989-01-01

    US fertilizer consumption for the 1988--1989 year was 44.9 million tons of material-an increase of less than one percent from the previous year. The average plant nutrient content of all fertilizers decreased slightly as total plant nutrient consumption declined from 19.61 million to 19.59 million tons of N, P[sub 2]O[sub 5], and K[sub 2]O. Total nitrogen consumption increased one percent to 10.63 million tons, while P[sub 2]O[sub 5] use decreased by less than one percent to 4.12 million tons. Potash consumption declined from 4.97 million tons to 4.83 million tons K[sub 2]O-a 2.8 percent decrease. Consumption patterns varied widely frommore » state to state as weather conditions adversely affected fertilizer application even with significant increases in total planted crop acreage. Illinois, Indiana, Iowa, Minnesota, and Ohio reported a decline in total plant nutrient application while several of the southeastern states registered an increase in consumption. Nutrient levels in mixed fertilizers remained unchanged as slight gains in the nitrogen and P[sub 2]O[sub 5] content were offset by a decline in K[sub 2]O. Consumption of ammonium polyphosphate solution (10-34-0) and monoammonium phosphates increased 9.2 percent and 12.8 percent respectively, while diammonium phosphate (18-46-0) use was 2.4 percent below last year. A general increase in the use of nitrogen materials was reported with the exception of nitrogen solutions which declined 2.1 percent from 1987--1988. Urea consumption rose almost 2 percent. ammonium nitrate was up 8.1 percent, and ammonium sulfate recorded a 9.5 percent gain in consumption. Anhydrous ammonia use was only 35,000 tons above last year. This document contains a state by state listing of individual fertilizer consumption rates, numerical data only.« less

  1. Application of food industry waste to agricultural soils mitigates green house gas emissions.

    PubMed

    Rashid, M T; Voroney, R P; Khalid, M

    2010-01-01

    Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1).

  2. Assessing variable rate nitrogen fertilizer strategies within an extensively instrument field site using the MicroBasin model

    NASA Astrophysics Data System (ADS)

    Ward, N. K.; Maureira, F.; Yourek, M. A.; Brooks, E. S.; Stockle, C. O.

    2014-12-01

    The current use of synthetic nitrogen fertilizers in agriculture has many negative environmental and economic costs, necessitating improved nitrogen management. In the highly heterogeneous landscape of the Palouse region in eastern Washington and northern Idaho, crop nitrogen needs vary widely within a field. Site-specific nitrogen management is a promising strategy to reduce excess nitrogen lost to the environment while maintaining current yields by matching crop needs with inputs. This study used in-situ hydrologic, nutrient, and crop yield data from a heavily instrumented field site in the high precipitation zone of the wheat-producing Palouse region to assess the performance of the MicroBasin model. MicroBasin is a high-resolution watershed-scale ecohydrologic model with nutrient cycling and cropping algorithms based on the CropSyst model. Detailed soil mapping conducted at the site was used to parameterize the model and the model outputs were evaluated with observed measurements. The calibrated MicroBasin model was then used to evaluate the impact of various nitrogen management strategies on crop yield and nitrate losses. The strategies include uniform application as well as delineating the field into multiple zones of varying nitrogen fertilizer rates to optimize nitrogen use efficiency. We present how coupled modeling and in-situ data sets can inform agricultural management and policy to encourage improved nitrogen management.

  3. [Phosphorus use efficiency of wheat on three typical farmland soils under long-term fertilization].

    PubMed

    Gao, Jing; Zhang, Shu-xiang; Xu, Ming-gang; Huang, Shao-min; Yang, Xue-yun

    2009-09-01

    Field experiments were conducted on three typical farmland soils (loess soil, fluvo-aquic soil, and cinnamon fluvo-aquic soil) in Northern China to study the grain yield, phosphorus agronomic efficiency (PAE), and phosphorus use efficiency (PUE) of wheat under effects of long-term fertilizations. Seven treatments were installed, i.e., non-fertilization (CK), nitrogen fertilization (N), nitrogen-potassium fertilization (NK), nitrogen-phosphorus fertilization (NP), nitrogen-phosphorus-potassium fertilization (NPK), NPK plus straw returning (NPKS), and NPK plus manure application (NPKM). The averaged wheat grain yields under long-term P fertilizations (treatments NP, NPK, NPKS, and NPKM) ranged from 2914 kg x hm(-2) to 6219 kg x hm(-2), being 200%-400% higher than those under no P fertilizations (treatments CK, N, and NK), and no significant differences were observed between the P fertilizations. In the early years of the experiment, the PAE in treatment NPK on the loess soil, fluvo-aquic soil, and cinnamon fluvo-aquic soil was 17.0 kg x kg(-1), 20.3 kg x kg(-1), and 13.3 kg x kg(-1), and the PUE was 15.3%, 31.2%, and 23.8%, respectively. After 15-year fertilization, the PAE and PUE in treatment NPK increased annually by 3.9 kg x kg(-1) and 1.3% on loess soil, 2.5 kg x kg(-1) and 0.9% on fluvo-aquic soil, and 2.8 kg x kg(-1) and 1.0% on cinnamon fluvo-aquic soil, respectively. There were no significant differences in the PAE and PUE among the P treatments for the same soils. In Northern China, long-term P fertilization could increase the wheat grain yield and PUE significantly, and the mean annual increase of PAE and PUE in treatment NPKM was higher on loess soil than on fluvo-aquic soil and cinnamon fluvo-aquic soil.

  4. Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols.

    PubMed

    Ma, Mingchao; Jiang, Xin; Wang, Qingfeng; Ongena, Marc; Wei, Dan; Ding, Jianli; Guan, Dawei; Cao, Fengming; Zhao, Baisuo; Li, Jun

    2018-03-23

    How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant-fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. The Effects of Manure and Nitrogen Fertilizer Applications on Soil Organic Carbon and Nitrogen in a High-Input Cropping System

    PubMed Central

    Ren, Tao; Wang, Jingguo; Chen, Qing; Zhang, Fusuo; Lu, Shuchang

    2014-01-01

    With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn't increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure. PMID:24830463

  6. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed.

    PubMed

    Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia

    2014-01-01

    Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.

  7. Nitrogen input from residential lawn care practices in suburban watersheds in Baltimore county, MD

    Treesearch

    Neely L. Law; Lawrence E. Band; J. Morgan Grove

    2004-01-01

    A residential lawn care survey was conducted as part of the Baltimore Ecosystem Study, a Long-term Ecological Research project funded by the National Science Foundation and collaborating agencies, to estimate the nitrogen input to urban watersheds from lawn care practices. The variability in the fertilizer N application rates and the factors affecting the application...

  8. Response of Nitrogen and Potassium Fertigation to “Waris” Almond (Prunus dulcis) under Northwestern Himalayan Region of India

    PubMed Central

    Ahmed, N.

    2014-01-01

    A field experiment was conducted on almond (Prunus dulcis) to study the effect of N&K fertigation on growth, yields and leaf nutrient status over two seasons (2011 and 2012) in Srinagar, Jammu and Kashmir, India. There were six treatments, namely, T1—100% recommended dose of fertilizers as soil application, T2—100% RDF through fertigations, T3—75% RDF through fertigation, T4—75% RDF through fertigation (split application), T5—50% RDF through fertigation and T6—50% RDF through fertigation (split application) with three replications under randomized block design. The results indicated that the maximum tree height (3.21 m and 3.56 m), nut weight (2.73 g and 1.94 g), nut yield (2.41 kg/tree and 5.98 kg/tree; 2.67 t/ha and 6.64 t/ha), and leaf nutrient content (2.34 and 2.38% N; 0.14 and 0.17% P; 1.37 and 1.41% K) were recorded in T4 treatment, whereas the highest TCSA of main trunk, primary, secondary, and tertiary branches (72.67 and 90.28 cm2; 16.75 and 24.26 cm2; 3.83 and 7.49 cm2; 0.47 and 1.23 cm2), canopy volume (7.15 and 8.11 m3), and fruit number (990 and 3083/tree) were recorded in T2 in almond variety Waris. PMID:24587708

  9. Organically fertilized tea plantation stimulates N2O emissions and lowers NO fluxes in subtropical China

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Wei, Y.; Liu, C.; Zheng, X.; Xie, B.

    2015-07-01

    Tea plantations are rapidly expanding in China and other countries in the tropical and subtropical zones, but so far there are very few studies including direct measurements on nitrogenous gases fluxes from tea plantations. On the basis of 2 year field measurements from 2012 to 2014, we provided an insight into the assessment of annual nitrous oxide (N2O) and nitric oxide (NO) fluxes from Chinese subtropical tea plantations under three practices of conventional urea application, alternative oilcake incorporation and no nitrogen fertilization. Clearly, the N2O and NO fluxes exhibited large intra- and inter-annual variations, and furthermore their temporal variability could be well described by a combination of soil environmental factors including soil mineral N, water-filled pore space and temperature, based on a revised "hole-in-the-pipe" model. Averaged over 2 years, annual background N2O and NO emissions were approximately 4.0 and 1.6 kg N ha-1 yr-1, respectively. Compared to no nitrogen fertilization, both urea and oilcake application significantly stimulated annual N2O and NO emissions, amounting to 14.4-32.7 kg N2O-N ha-1 yr-1 and at least 12.3-19.4 kg NO-N ha-1 yr-1. In comparison with conventional urea treatment, on average, the application of organic fertilizer significantly increased N2O emission by 71 % but decreased NO emission by 22 %. Although the magnitude of N2O and NO fluxes was substantially influenced by N source, the annual direct emission factors of fertilizer N were estimated to be 2.8-5.9, 2.7-4.0 and 6.8-9.1 % for N2O, NO and N2O + NO, respectively, which are significantly higher than those defaults for global upland croplands. This indicated that the rarely determined N2O and NO formation appeared to be a significant pathway in the nitrogen cycle of tea plantations, which are a potential source of national nitrogenous gases inventory.

  10. Organically fertilized tea plantation stimulates N2O emissions and lowers NO fluxes in subtropical China

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Wei, Y.; Liu, C.; Zheng, X.; Xie, B.

    2015-10-01

    Tea plantations are rapidly expanding in China and other countries in the tropical and subtropical zones, but so far there are very few studies including direct measurements of nitrogenous gas fluxes from tea plantations. On the basis of 2-year field measurements from 2012 to 2014, we provided an insight into the assessment of annual nitrous oxide (N2O) and nitric oxide (NO) fluxes from Chinese subtropical tea plantations under three practices of conventional urea application, alternative oilcake incorporation and no nitrogen fertilization. Clearly, the N2O and NO fluxes exhibited large intra- and inter-annual variations, and furthermore, their temporal variability could be well described by a combination of soil environmental factors including soil mineral N, water-filled pore space and temperature, based on a revised "hole-in-the-pipe" model. Averaged over a 2-year study, annual background N2O and NO emissions were approximately 4.0 and 1.6 kg N ha-1 yr-1, respectively. Compared to no nitrogen fertilization, both urea and oilcake application significantly stimulated annual N2O and NO emissions, amounting to 14.4-32.7 kg N2O-N ha-1 yr-1 and at least 12.3-19.4 kg NO-N ha-1 yr-1, respectively. In comparison with conventional urea treatment, on average, the application of organic fertilizer significantly increased N2O emission by 71 % but decreased NO emission by 22 %. Although the magnitude of N2O and NO fluxes was substantially influenced by the source of N, the annual direct emission factors of N fertilizer were estimated to be 2.8-5.9, 2.7-4.0 and 6.8-9.1 % for N2O, NO and N2O+NO, respectively, which are significantly higher than those defaults for global upland croplands. This indicated that the rarely determined N2O and NO formation appeared to be a significant pathway in the nitrogen cycle of tea plantations, which are a potential source of national nitrogenous gases inventory.

  11. Understanding the Variability in Soybean Nitrogen Fixation across Agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Conventional farming practices have uncoupled carbon (C) and nitrogen (N) cycles through the application of inorganic N fertilizers applied in plant available forms at levels that saturate the system. As a result, extensive N losses via leaching and denitrification are having significant environment...

  12. Nitrate, ascorbic acid, mineral and antioxidant activities of Cosmos caudatus in response to organic and mineral-based fertilizer rates.

    PubMed

    Hassan, Siti Aishah; Mijin, Salumiah; Yusoff, Umi Kalsom; Ding, Phebe; Wahab, Puteri Edaroyati Megat

    2012-06-28

    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer.

  13. The response of ammonia-oxidizer activity and community structure to fertilizer amendment of orchard soils

    USDA-ARS?s Scientific Manuscript database

    Soil microorganisms have the potential to dramatically alter the nitrogen (N) availability in agricultural systems, and therefore affect the efficiency of fertilizer application. Data regarding the effects of cereal management systems on the soil microbiology functional to N cycling have yielded var...

  14. N fertilization for improved forage yields has little impact on nutritive value

    USDA-ARS?s Scientific Manuscript database

    Applications of soil amendments or fertilizers containing nitrogen are a routine part of most grass forage management strategies, with the primary goal of improving forage yields. But an increase in yield is usually accompanied by a decrease in nutritive value. In order to better evaluate this trade...

  15. Interaction of potato production systems and the environment: a case of waste water irrigation in central Washington.

    PubMed

    Wang, H Holly; Tan, Tih Koon; Schotzko, R Thomas

    2007-02-01

    Potato production and processing are very important activities in the agricultural economy of the Pacific Northwest. Part of the reason for the development of this industry has been the availability of water for both growing and processing. A great amount of water is used in processing potato products, such as frozen French fries, and the waste water is a pollutant because it contains high levels of nitrate and other nutrients. Using this waste water to irrigate the fields can be a suitable disposal method. Field application will reduce potato fertilizer costs, but it can also cause underground water contamination if over-applied to the field. In this econometric study, we used field data associated with current waste water applications in central Washington to examine the yield response as well as the soil nitrogen content response to waste water applications. Our results from the production model show that both water and nitrogen positively affect crop yields at the current levels of application, but potassium has been over applied. This implies that replacing some waste water with fresh water and nitrogen fertilizer will increase production. The environmental model results show that applying more nitrogen to the soil leads to more movement below the root zone. The results also suggest that higher crop yields lead to less nitrogen in the soil, and applying more water increases crop yields, which can reduce the nitrogen left in the soil. Therefore, relative to the current practice, waste water application rates should be reduced and supplemented with fresh water to enhance nitrogen use by plants and reduce residual nitrogen in the soil.

  16. Modeling water flow and nitrate dynamics in a plastic mulch vegetable cultivation system using HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.

    2016-04-01

    Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation/irrigation due the absence of soil cover. Contrary, in the MULCH plots most of the nitrate applied was still left in the upper soil layer at the end of simulations. Numerical modeling revealed a large influence of plastic mulch cover on water and nutrient outflow and distribution in soil. Results suggest that under this management practice the nitrogen amounts applied via fertigation can be lowered and optimized (higher application frequencies) to reduce possible negative influence of the nitrogen based fertilizer such as leaching of nitrates to groundwater. Keywords: Plastic mulch cover; Vegetable cultivation; Water flow; Nitrate dynamics; HYDRUS-2D

  17. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization.

    PubMed

    Romero-Perdomo, Felipe; Abril, Jorge; Camelo, Mauricio; Moreno-Galván, Andrés; Pastrana, Iván; Rojas-Tapias, Daniel; Bonilla, Ruth

    The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Influence on bacterial communities under the condition of organic manure substituting nitrogen fertilizer in a 36-year field experiment of Chinese Mollisols

    NASA Astrophysics Data System (ADS)

    Ma, M.; Jiang, X.; Li, J.

    2016-12-01

    In recent years, the black soil of northeastern China has been degenerated over time owing to intensive farming practices and inappropriate uses of fertilizer. The objective of this research was to evaluate the impacts of long-term organic manure substituting inorganic nitrogen fertilizer on bacterial communities in Chinese Mollisols. Four treatments were sampled as follows, CK (without fertilizer), PK (inorganic fertilizers PK), NPK (inorganic fertilizers NPK) and MPK (inorganic fertilizers PK with manure). Quantitative PCR analysis of microbial community size and Illumina platform-based analysis of the V4 16S rRNA gene region were followed. The results showed, long term MPK application had no significant effect on soil pH, while NPK and PK application decreased it significantly. Soil OM showed the same trend with soil pH. Compared with CK, NPK treatment decreased gene copy numbers, whereas PK and MPK treatments increased them with a significant difference for MPK (P<0.05). There was no difference on ACE between samples, but long term NPK application significantly decreased CHAO and Shannon index. When comes to bacterial community, all samples were dominated by phyla Proteobacteria, which were represented by 29.59 to 35.73% of the sequences, followed by Acidobacteria (13.23-16.39%), Actinobacteria (9.26-10.83%), Verrucomicrobia (8.62-9.92%) and Planctomycetes (7.03-8.04%). Long term fertilization regimes had a significantly effect on bacterial β-diversity with the bacterial communities. Compared to the other treatments, long term application of NPK changed the bacterial communities conspicuously. Soil pH (F=8.6, P=0.002) and the concentration of OM (F=2.2, P=0.008) were the two most important contributors to the variation in bacterial communities. Our findings suggested that, long-term inorganic fertilizer regimes reduced the biodiversity and abundance of bacteria, and inorganic fertilizer plus manure increased microbial diversity and improved microbial composition.

  19. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    PubMed

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.

  20. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    PubMed

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  1. Chesapeake Bay nutrient pollution: contribution from the land application of sewage sludge in Virginia.

    PubMed

    Land, Lynton S

    2012-11-01

    Human health concerns and the dissemination of anthropogenic substances with unknown consequences are the reasons most often given why disposal of municipal sewage sludge in landfills or using the organic waste as biofuel is preferable to land application. But no "fertilizer" causes more nitrogen pollution than sludge when applied according to Virginia law. Poultry litter is the only other "fertilizer" that causes more phosphorus pollution than sludge. Cost savings by the few farmers in Virginia who use sludge are far less than the costs of the nitrogen pollution they cause. A ban on the land application of all forms of animal waste is very cost-effective and would reduce Chesapeake Bay nutrient pollution by 25%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Modeling residential lawn fertilization practices: integrating high resolution remote sensing with socioeconomic data.

    PubMed

    Zhou, Weiqi; Troy, Austin; Grove, Morgan

    2008-05-01

    This article investigates how remotely sensed lawn characteristics, such as parcel lawn area and parcel lawn greenness, combined with household characteristics, can be used to predict household lawn fertilization practices on private residential lands. This study involves two watersheds, Glyndon and Baisman's Run, in Baltimore County, Maryland, USA. Parcel lawn area and lawn greenness were derived from high-resolution aerial imagery using an object-oriented classification approach. Four indicators of household characteristics, including lot size, square footage of the house, housing value, and housing age were obtained from a property database. Residential lawn care survey data combined with remotely sensed parcel lawn area and greenness data were used to estimate two measures of household lawn fertilization practices, household annual fertilizer nitrogen application amount (N_yr) and household annual fertilizer nitrogen application rate (N_ha_yr). Using multiple regression with multi-model inferential procedures, we found that a combination of parcel lawn area and parcel lawn greenness best predicts N_yr, whereas a combination of parcel lawn greenness and lot size best predicts variation in N_ha_yr. Our analyses show that household fertilization practices can be effectively predicted by remotely sensed lawn indices and household characteristics. This has significant implications for urban watershed managers and modelers.

  3. Nitrogen Fertilization Elevated Spatial Heterogeneity of Soil Microbial Biomass Carbon and Nitrogen in Switchgrass and Gamagrass Croplands

    NASA Astrophysics Data System (ADS)

    Jian, S.; Li, J.; Guo, C.; Hui, D.; Deng, Q.; Yu, C. L.; Dzantor, K. E.; Lane, C.

    2017-12-01

    Nitrogen (N) fertilizers are widely used to increase bioenergy crop yield but intensive fertilizations on spatial distributions of soil microbial processes in bioenergy croplands remains unknown. To quantify N fertilization effect on spatial heterogeneity of soil microbial biomass carbon (MBC) and N (MBN), we sampled top mineral horizon soils (0-15cm) using a spatially explicit design within two 15-m2 plots under three fertilization treatments in two bioenergy croplands in a three-year long fertilization experiment in Middle Tennessee, USA. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha-1 in urea) and high N input (HN: 168 kg N ha-1 in urea). The two crops were switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.). Results showed that N fertilizations little altered central tendencies of microbial variables but relative to LN, HN significantly increased MBC and MBC:MBN (GG only). HN possessed the greatest within-plot variances except for MBN (GG only). Spatial patterns were generally evident under HN and LN plots and much less so under NN plots. Substantially contrasting spatial variations were also identified between croplands (GG>SG) and among variables (MBN, MBC:MBN > MBC). No significant correlations were identified between soil pH and microbial variables. This study demonstrated that spatial heterogeneity is elevated in microbial biomass of fertilized soils likely by uneven fertilizer application, the nature of soil microbial communities and bioenergy crops. Future researchers should better match sample sizes with the heterogeneity of soil microbial property (i.e. MBN) in bioenergy croplands.

  4. Seasonal temperatures have more influence than nitrogen fertilizer rates on cucumber yield and nitrogen uptake in a double cropping system.

    PubMed

    Guo, Ruiying; Li, Xiaolin; Christie, Peter; Chen, Qing; Zhang, Fusuo

    2008-02-01

    Two-year greenhouse cucumber experiments were conducted to investigate seasonal effects on fruit yield, dry matter allocation, and N uptake in a double-cropping system with different fertilizer management. Seasonal effects were much greater than fertilizer effects, and winter-spring (WS) cucumber attained higher fruit yields and N uptake than autumn-winter (AW) cucumber due to lower cumulative air temperatures during fruit maturation in the AW season. Fertilizer N application and apparent N loss under recommended N management (Nmr) decreased by 40-78% and 33-48% without yield loss compared to conventional N management (Nmt) over four growing seasons. However, there were no seasonal differences in N recommendations, taking into consideration seasonal differences in crop N demand, critical nutrient supply in the root zone and N mineralization rate.

  5. Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome

    NASA Astrophysics Data System (ADS)

    Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara

    2016-04-01

    Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation in association with rice roots.

  6. Carbon and nitrogen isotopic signatures and nitrogen profile to identify adulteration in organic fertilizers.

    PubMed

    Verenitch, Sergei; Mazumder, Asit

    2012-08-29

    Recently it has been shown that stable isotopes of nitrogen can be used to discriminate between organic and synthetic fertilizers, but the robustness of the approach is questionable. This work developed a comprehensive method that is far more robust in identifying an adulteration of organic nitrogen fertilizers. Organic fertilizers of various types (manures, composts, blood meal, bone meal, fish meal, products of poultry and plant productions, molasses and seaweed based, and others) available on the North American market were analyzed to reveal the most sensitive criteria as well as their quantitative ranges, which can be used in their authentication. Organic nitrogen fertilizers of known origins with a wide δ(15)N range between -0.55 and 28.85‰ (n = 1258) were characterized for C and N content, δ(13)C, δ(15)N, viscosity, pH, and nitrogen profile (urea, ammonia, organic N, water insoluble N, and NO3). A statistically significant data set of characterized unique organic nitrogen fertilizers (n = 335) of various known origins has been assembled. Deliberately adulterated samples of different types of organic fertilizers mixed with synthetic fertilizers at a wide range of proportions have been used to develop the quantitative critical characteristics of organic fertilizers as the key indicators of their adulteration. Statistical analysis based on the discriminant functions of the quantitative critical characteristics of organic nitrogen fertilizers from 14 different source materials revealed a very high average rate of correct classification. The developed methodology has been successfully used as a source identification tool for numerous commercial nitrogen fertilizers available on the North American market.

  7. [Effects of long-term fertilization on organic nitrogen fractions in aquic brown soil].

    PubMed

    Ren, Jin Feng; Zhou, Hua; Ma, Qiang; Xu, Yong Gang; Jiang, Chun Ming; Pan, Fei Fei; Yu, Wan Tai

    2017-05-18

    The purpose of present research was to investigate how different fertilization regimes altered soil organic nitrogen fractions and their inter-annual dynamics based on a series of long-term experiment (initiated at 1990), including: CK (non-fertilization); M (recycled pig manure); NPK (chemical fertilizer NPK); NPK + M (recycled pig manure with chemical fertilizer NPK). The results showed that soil organic nitrogen components under the different fertilization treatments presented contrastive patterns from the establishment the experiments to 2015. Generally, acid hydrolysable organic nitrogen content increased year by year. The amino acid nitrogen content under CK and NPK treatments consistently declined, although amino acid nitrogen for M and NPK+M treatments showed a increasing trend. These phenomena were probably ascribed to the utilization of soil amino acids by microbes. From 1990 to 2015, NPK treatment substantially elevated the content of acid-released ammonium nitrogen by 31.1% compared with CK (mean value across the experiment), and for the treatments using organic manure (M and NPK+M), the contents of all fractions of soil organic nitrogen increased. Notably, the increase magnitudes for NPK+M were more dramatic than those of M. These results demonstrated that combined use of organic and inorganic fertilizers could more effectively elevate soil organic nitrogen, subsequently helping to improve the capacity of soil nitrogen supply and enhance the soil fertility.

  8. A Precision Nitrogen Management Approach to Minimize Impacts

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer is a crucial input for crop production but contributes to agriculture’s environmental footprint via CO2 emissions, N2O emissions, and eutrophication of coastal waters. The low-cost way to minimize this impact is to eliminate over-application of N. This is more difficult than it s...

  9. Operational characteristics of commercial crop canopy sensors for nitrogen application in maize

    USDA-ARS?s Scientific Manuscript database

    Crop canopy reflectance sensing can be used to assess in-season nitrogen (N) health for automatic control of N fertilization, and several systems are commercially available. Because data comparing the performance of the different sensor designs is lacking, the objective of this research was to evalu...

  10. Influence of forage sorghum systems under different tillage practices on microbial biomass and soil C/N pools

    USDA-ARS?s Scientific Manuscript database

    Sorghum has become a popular annual forage and silage crop in the Southern Great Plains. Most sorghum hybrids require higher nitrogen fertilization for sustainable biomass production and subsequent removal for grazing or hay. Higher nitrogen application and monoculture sorghum systems can negatively...

  11. Crop sensors for automation of in-season nitrogen application

    USDA-ARS?s Scientific Manuscript database

    Crop canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for automatic control of N fertilization. Typically, sensor data are processed to an established index, such as the Normalized Difference Vegetative Index (NDVI) and differences in that index from a well-fertili...

  12. Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer

    USDA-ARS?s Scientific Manuscript database

    Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...

  13. Net effects of nitrogen fertilization on the nutritive value and digestibility of oat forages

    USDA-ARS?s Scientific Manuscript database

    Applications of soil amendments containing N are part of routine forage management strategies for grasses, with a primary goal of increasing forage yield. However, the effects of N fertilization on forage nutritive value, estimates of energy density, and in-vitro DM or NDF disappearance often have b...

  14. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords:Chemical fertilizer, Nitrogen, Phosphorus, Paddy field, Non-point source pollution.

  15. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  16. Nitrogen Use Efficiency of Coffee at the Vegetative Stage as Influenced by Fertilizer Application Method

    PubMed Central

    Salamanca-Jimenez, Alveiro; Doane, Timothy A.; Horwath, William R.

    2017-01-01

    Nitrogen (N) is the most limiting nutrient for coffee production in Colombia. An adequate supply is especially important during the vegetative period of growth, since any deficiency during this short period is known to have lasting effects on subsequent coffee bean production. Urea fertilizer is commonly applied on the soil surface since steep slopes hamper incorporation into soil, a practice which increases the risk of N volatilization. Little information is available on N recovery during early growth stages under different fertilizer application practices. The aim of this study was therefore to provide a comparison of 15N uptake during the early vegetative growth stage under surface-applied and incorporation practices at two contrasting locations. The highest proportion of plant N derived from fertilizer (Ndff) occurred 60 days following application at the site with greater precipitation and soil organic matter, where surface application also increased the Ndff in roots and stems after 120 days. Although fertilizer N supplied approximately 20–29% of total plant N after 4 months, this fertilizer-derived N corresponded on average to only 5% of the total application, indicating that very little fertilizer (relative to how much is applied) reaches plants during this time. Apart from the difference in Ndff observed at the wetter site, there was no effect of application method on dry weight and macronutrient content in different plant components, root to shoot ratio, and leaf 13C content. However, site effects were registered for most of these measurements, with the exception of total nutrient uptake. Similarly to Ndff trends, lower root/shoot ratio and higher concentrations of N, K, and Mg in aboveground biomass were found in the site with higher rainfall and soil organic matter, likely resulting from higher soil water and N availability. These findings provide new information useful as a direction for further research looking toward increasing NUE during the vegetative stage in Colombian coffee crops. PMID:28303142

  17. [Contents of nutrient elements in NH4(+)-N fertilizer and urea].

    PubMed

    Wang, Zheng-Rui; Qu, Gui-Qin; Rui, Yu-Kui; Shen, Jian-Bo; Zhang, Fu-Suo

    2009-03-01

    Fertilizer contains not only one compound or one element, so it is important to determine the contents of other elements necessitous and beneficial to plant. All the other nutrient elements for plant, including necessitous elements and beneficial elements in ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2, were analyzed by method of ICP-MS. The results showed that ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2 both contain many necessitous elements, Mg, P, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo, thereinto the contents of Mg, P, K, Ca, Mn and Fe were on microg x g(-1) the level, and Ni, Cu, Zn and Mo were on the ng x g(-1) level; compared with CO(NH2)2, ammonia nitrogen fertilizer ((NH4)2SO4) contains more necessitous elements and beneficial elements except Mo and Si. All the above elements could influence the results of nitrogen fertilizer efficiency experiments, so pure fertilizer should be used in the future nitrogen fertilizer efficiency experiments and the comparative experiments of different form nitrogen fertilizer.

  18. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates* #

    PubMed Central

    Hussain, Nazim; Li, Hui; Jiang, Yu-xiao; Jabeen, Zahra; Shamsi, Imran Haider; Ali, Essa; Jiang, Li-xi

    2014-01-01

    Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important seed oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increased α-, γ-, and total Toc (T-Toc) more than did ammonium nitrate. N3 was proven as the most efficient application rate, which yielded high contents of γ-Toc and T-Toc. Highly significant correlations were observed between Toc isomers, T-Toc, and α-/γ-Toc ratio. These results clearly demonstrate that N sources and application rates significantly affect seed Toc contents in oilseed rape. PMID:24510711

  19. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield

    PubMed Central

    Gai, Zhijia; Zhang, Jingtao; Li, Caifeng

    2017-01-01

    The objective of this study was to examine the impact of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis, grain yield and their relationship. To achieve this objective, field experiments were conducted in 2013 and 2014, using a randomized complete block design, with three replications. Nitrogen was applied at planting at rates of 0, 25, 50, and 75 kg N ha-1. In both years, starter nitrogen fertilizer benefited root activity, leaf photosynthesis, and consequently its yield. Statistically significant correlation was found among root activity, leaf photosynthetic rate, and grain yield at the developmental stage. The application of N25, N50, and N75 increased grain yield by 1.28%, 2.47%, and 1.58% in 2013 and by 0.62%, 2.77%, and 2.06% in 2014 compared to the N0 treatment. Maximum grain yield of 3238.91 kg ha-1 in 2013 and 3086.87 kg ha-1 in 2014 were recorded for N50 treatment. Grain yield was greater for 2013 than 2014, possibly due to more favorable environmental conditions. This research indicated that applying nitrogen as starter is necessary to increase soybean yield in Sangjiang River Plain in China. PMID:28388620

  20. Surplus N in US maize production: Informing data-driven policies using the Adapt-N model

    NASA Astrophysics Data System (ADS)

    Sela, Shai; van-Es, Harold; McLellan, Eileen; Margerison, Rebecca; Melkonian, Jeff

    2016-04-01

    Maize (Zea mays L.) production accounts for the largest share of crop land area in the U.S, and is the largest consumer of nitrogen (N) fertilizers of all US crops. Over-application of N fertilizer in excess of crop needs often lead to surplus of N in the soil, resulting in well-documented environmental problems and social costs associated with high reactive N losses. There is a potential to reduce these costs through better application timing, use of enhanced efficiency products, and more precise rate calculations. However, promoting management changes by means of environmental policies requires robust analysis of the possible environmental outcomes associated with these policies. This research gap is addressed using Adapt-N, a computational tool that combines soil, crop and management information with near-real-time weather data to estimate optimum N application rates for maize. Using results from a large synthetic dataset of 8100 simulations spanning 6 years (2010-2015), we have explored the total applied N rates, surplus of N (total N applied minus N removed by the crop) and the environmental losses resulting from seven N management scenarios applied in the top 5 US maize production states - IL, IN, IA, MN and NE. To cover a wide range of weather and production environments, all scenarios were applied at five randomly selected locations in each state, using combinations of three soil texture classes and two organic matter contents. The results indicate that fall applications typically lead to the highest total amount of N applied, highest N surplus and substantial amounts of environmental N losses. Nitrification inhibitors were found to have a marginal benefits for fall applied N. Spring pre-plant N applications were found to have lower N surplus than fall applications, but could still lead to high N losses under wet spring conditions. These losses were reduced (12%) when nitrification and urease inhibitors were applied. Out of all simulated N management scenarios, applying a split application of a modest starter followed by the majority of N applied at sidedress was found to have on average the lowest total N applied amount and N surplus. A split application was found to reduce environmental losses by 46% and 17% compared with fall and spring pre-plant N applications (respectively). These results could be used to inform environmental policies and business models to reduce environmental costs associated with maize production in the U.S.

  1. Impacts of Farmers' Knowledge Increase on Farm Profit and Watershed Water Quality

    NASA Astrophysics Data System (ADS)

    Ding, D.; Bennett, D. A.

    2013-12-01

    This study explores the impact that an increase in real-time data might have on farmers' nitrogen management, on-farm profit, and watershed water quality in the Midwestern US. In this study, an agent-based model (ABM) is used to simulate farmers' decisions about nitrogen application rate and timing in corn fields. SWAT (soil-water assessment tool) is used to generate a database that characterizes the response of corn yields to nitrogen fertilizer application and the dynamics of nitrogen loss under different scenarios of rainfall events. The database simulates a scenario where farmers would receive real-time feedback about the fate and impact of nitrogen applied to their fields from in-situ sensors. The ability to transform these data into optimal actions is simulated at multiple levels for farmer agents. In a baseline scenario, the farmer agent is only aware of the yield potential of the land field and single values of N rates for achieving the yield potential and is not aware of N loss from farm fields. Knowledge increase is represented by greater accuracy in predicting rainfall events, and the increase of the number of discrete points in a field-specific quadratic curve that captures crop yield response to various levels of nitrogen perceived by farmer agents. In addition, agents perceive N loss from farm fields at increased temporal resolutions. Correspondingly, agents make adjustments to the rate of N application for crops and the timing of fertilizer application given the rainfall events predictions. Farmers' decisions simulated by the ABM are input into SWAT to model nitrogen concentration in impacted streams. Farm profit statistics and watershed-level nitrogen loads are compared among different scenarios of knowledge increase. The hypothesis that the increase of farmers' knowledge benefits both farm profits and watershed water quality is tested through the comparison.

  2. The nitrogen efficiency of MSW composts as measured by triticale uptake in a 3-year field experiment

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Licznar, Michal; Bekier, Jakub; Drozd, Jerzy; Jamroz, Elzbieta; Kocowicz, Andrzej; Parylak, Danuta; Kordas, Leszek; Licznar, Stanislawa

    2010-05-01

    This paper presents results of three year field experiment, where two different composts produced from municipal solid wastes were applied to sandy soil. The experiment was established on soil developed from loam sand, according to U.S.D.A. textural classes (81% of sand, 12% of silt, and 7% of clay), of a slightly acidic reaction (pH KCl 6.05 - 6.44). The plough layer (0 - 25 cm) contained about 5.0 g/kg of organic carbon. Both composts were alkaline in reaction and contained high amounts of plant available forms of phosphorus, potassium and magnesium. Composts were used non-recurrently in rates of 18, 36, and 72 t/ha, calculated on dry matter basis. Control objects (0 and NPK) were plots without fertilization, as well as plots fertilized each year with mineral forms of NPK. Field experiment was conducted in 15 m2 plots, using five replications in a randomized block design. Spring triticale (x Triticosecale Wittm.) cultivated in a 3-year monoculture was used as the experiment plant. Soil samples were collected each year after harvesting. Changes in triticale yield were considered in relation to soil properties and nitrogen content in triticale straw and grain. Application of composts caused beneficial changes in soil fertility, connected mainly with an increase of soil organic matter and content of available forms of P, K, and Mg. These effects were observed throughout three years of the experiment. However, significantly higher values of organic carbon - as compared to control (0 and NPK) - were observed only in plots with medium and highest compost doses. This effect was very clear in the first year, while significant differences in soil carbon content were still observed in next two years. The yield of triticale straw and grain depended significantly on fertilization with composts, but beneficial effect of compost was observed only in the first year. Yield similar to NPK control was found only on plots where the highest dose of compost was applied. Next two years, all compost amended plots indicated distinctly lower yield than that on NPK control. Decrease of yield was accompanied by decreased level of nitrogen in triticale straw and grain, although soil of compost amended and NPK fertilized plots indicated the same level of total nitrogen. In the third year dramatic decrease of soil total nitrogen was observed in (0) control, as result of exhausting available nitrogen, while soil amended with composts still contained nitrogen present in non-mineralized organic matter. The yield of triticale grown on soil amended with compost produced from municipal solid wastes was limited by not sufficient amount of plant available nitrogen. Nitrogen efficiency measured as amount of N taken up by triticale grain and straw - after depriving N uptake by triticale grown on control (0) - was very low, around 3 % in the first year and around 1% in the third year. Application of MSW composts is a good alternative for mineral fertilization, however supplementary fertilization with mineral nitrogen is necessary, depending on compost dose and quality.

  3. [Effects of combined application of nitrogen and phosphorus on diurnal variation of photosynthesis at grain-filling stage and grain yield of super high-yielding wheat].

    PubMed

    Zhao, Hai-bo; Lin, Qi; Liu, Yi-guo; Jiang, Wen; Liu, Jian-jun; Zhai, Yan-ju

    2010-10-01

    Taking super high-yielding wheat cultivar Jimai 22 as test material, a field experiment was conducted to study the effects of combined application of nitrogen (N) and phosphorus (P) on the diurnal variation of photosynthesis at grain-filling stage and the grain yield of the cultivar. In treatments CK (without N and P application) and low N/P application (225 kg N x hm(-2) and 75 kg P x hm(-2)), the diurnal variation of net photosynthetic rate (Pn) was presented as double-peak curve, and there existed obvious midday depression of photosynthesis. Under reasonable application of N/P (300 kg N x hm(-2) and 150 kg P x hm(-2), treatment N2P2), the midday depression of photosynthesis weakened or even disappeared. Stomatal and non-stomatal limitations could be the causes of the midday depression. Increasing N and P supply increased the Pn, stomatal conductance (Gs), stomatal limitation value (Ls), and transpiration rate (Tr). Fertilizer P had less effects on the photosynthesis, compared with fertilizer N. When the P supply was over 150 kg x hm(-2), the increment of Pn was alleviated and even decreased. Among the fertilization treatments, treatment N2P2 had the highest Pn, Gs, and water use efficiency, being significantly different from CK. It appeared that fertilizer N had greater regulatory effect on the diurnal variation of photosynthesis, compared with fertilizer P, while the combined application of N and P had significant co-effect on the Pn, Gs, and Tr. A combined application of 300 kg N x hm(-2) and 150 kg P x hm(-2) benefited the enhancement of Pn and grain yield.

  4. Biexciton emission from single isoelectronic traps formed by nitrogen-nitrogen pairs in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Kengo; Fukushima, Toshiyuki; Yagi, Shuhei

    2013-12-04

    We have studied photoluminescence (PL) from individual isoelectronic traps formed by nitrogen-nitrogen (NN) pairs in GaAs. Sharp emission lines due to exciton and biexciton were observed from individual isoelectronic traps in nitrogen atomic-layer doped (ALD) GaAs. The binding energy of biexciton bound to individual isoelectronic traps was approximately 8 meV. Both the exciton and biexciton luminescence lines show completely random polarization and no fine-structure splitting. These results are desirable to the application to the quantum cryptography used in the field of quantum information technology.

  5. An investigation into the potential use of nutrients recovered from urine diversion on a summer housing site: self-sufficiency based on nitrogen balance.

    PubMed

    Allar, Ayse D; Beler Baykal, Bilsen

    2016-01-01

    ECOSAN is a recent domestic wastewater management concept which suggests segregation at the source. One of these streams, yellow water (human urine) has the potential to be used as fertilizer, directly or indirectly, because of its rich content of plant nutrients. One physicochemical method for indirect use is adsorption/ion exchange using clinoptilolite. This paper aims to present the results of a scenario focusing on possible diversion of urine and self-sufficiency of nutrients recovered on site through the use of this process, using actual demographic and territorial information from an existing summer housing site. Specifically, this paper aims to answer the questions: (i) how much nitrogen can be recovered to be used as fertilizer by diverting urine? and (ii) is this sufficient or in surplus within the model housing site? This sets an example of resource-oriented sanitation using stream segregation as a wastewater management strategy in a small community. Nitrogen was taken as the basis of calculations/predictions and the focus was placed on whether nitrogen is self-sufficient or in excess as fertilizer for use within the premises. The results reveal that the proposed application makes sense and that urine coming from the housing site is self-sufficient as fertilizer within the housing site itself.

  6. Effect of different fertilization measures on soil CO2 emissions of spring corn in Northeast China

    NASA Astrophysics Data System (ADS)

    Xu, Shicai; Qiao, Shaoqing

    2018-04-01

    To research the sustainability of efficient utilization approaches and modes of nitrogen in spring corns. Taking different fertilization measures to research the influence on soil respiration and microbial biomass carbon and nitrogen; the experiment takes the spring corns and black soil of Harbin in Northeast China as research objects. It researches the influence of 4 different fertilization measures by using field long-term located experiment on soil respiration of the spring corns and analyzes the yield. The four measures are as follows: farmer's fertilization practice FP; Tl mode of decreasing 20% of nitrogenous fertilizer on the basis of FP; T2 mode of 20% of Tl nitrogenous fertilizer replaced by organic fertilizer and other 20% replaced by slow-release nitrogen fertilizer; T3 mode of adding 2t/hm2 of corn stalk carbon on the basis of T2. There are significant differences of CO2 emission flux in spring corn soil with four fertilization measures (P<0.05). The rank of CO2 emission flux is: T3>Tl>T2>FP and the yield rank of spring corns is: T3>T2>Tl>FP. (1) The rational nitrogen-decrease fertilization measure has no obvious influence on spring corn yield and the replacement of organic fertilizer and slow-release nitrogen fertilizer and the addition of active carbon can improve the spring corn yield. (2) Utilization of organic fertilizer can accelerate the emission of CO2 from the soil. (3) Addition of biological carbon can promote the emission of CO2 from soil during the growing period of spring corns.

  7. Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes ( Zea mays L.). Part 1: Nitrogen Fertilization.

    PubMed

    Giordano, Debora; Beta, Trust; Vanara, Francesca; Blandino, Massimo

    2018-05-02

    In this study, the influence of nitrogen (N) fertilization (170 versus 300 kg of N/ha) on the content of bioactive compounds of whole-meal flour of 10 different colored corn genotypes was investigated. Considerable differences in antioxidant capacity and phytochemical concentrations were observed among genotypes. Higher N fertilization rates significantly ( p < 0.05) increased the content of both total cell-wall-bound phenolics and xanthophylls (lutein and zeaxanthin). Nevertheless, the main phenolic acids (ferulic, p-coumaric, and sinapic acids) as well as the antioxidant capacity and content of β-cryptoxanthin, β-carotene, and total anthocyanins did not show significant differences as far as the N fertilization rate is concerned. For corn cultivation, the application of high N fertilization rates, generally carried out to obtain higher grain yields, could positively influence the content of some bioactives particularly in years characterized by high rainfall levels responsible for N leaching from the soil.

  8. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    PubMed

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Rapid indices of potential nitrogen mineralization for intensively managed hardwood plantations

    Treesearch

    D. Andrew Scott; Alixanna McLearen Norris; James A. Burger

    2005-01-01

    Short-rotation hardwood plantations generally require repeated applications of nitrogen (N) fertilizer to maintain desired growth and are being installed on two previous land uses: agricultural fields and cutover forest lands. Because the soil organic matter chemistry is different between agricultural field and cutover soils, indices of N availability developed for one...

  10. A new nitrogen index to elvaluate nitrogen losses in intensive forage systems in Mexico

    USDA-ARS?s Scientific Manuscript database

    Though intensive dairy systems, such as the one established in the Comarca Lagunera region in Mexico, help societies maintain a reliable supply of food products for the expanding population of humans, the high applications of manure and fertilizer traditionally applied by these operations in this re...

  11. Linking watershed nitrogen sources with nitrogen dynamics in rivers of western Oregon, USA

    EPA Science Inventory

    We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than percent of agricultural area in the watershed. Low watershed N yields reflect...

  12. Assessment of microbial biomass carbon and nitrogen of native and non-native perennial pasture soils using hyperspectral data

    USDA-ARS?s Scientific Manuscript database

    Soil microbial biomass carbon (MBC) and nitrogen (MBN) are integral parts to soil organic matter. Increased production costs and chemical runoff can result from excessive application of fertilizer if these measurements are not used in total nutrient calculations. More timely and cost-effective me...

  13. A public-industry partnership for enhancing corn nitrogen research and datasets: project description, methodology, and outcomes

    USDA-ARS?s Scientific Manuscript database

    Due to economic and environmental consequences of nitrogen (N) lost from fertilizer applications in corn (Zea mays L.), considerable public and industry attention has been devoted to development of N decision tools. Now a wide variety of tools are available to farmers for managing N inputs. However,...

  14. Overview of a public-industry partnership for enhancing corn nitrogen research and datasets

    USDA-ARS?s Scientific Manuscript database

    Due to economic and environmental consequences of nitrogen (N) lost from fertilizer applications in corn (Zea mays L.), considerable public and industry attention has been devoted to development of N decision tools. Now a wide variety of tools are available to farmers for managing N inputs. However,...

  15. Response of thinned White fir stands to fertilization with nitrogen plus sulphur.

    Treesearch

    P.H. Cochran

    1991-01-01

    A single application of 200 pounds nitrogen (N) plus 33 pounds of sulphur (S) per acre to white fir (Abies concolor (Gord. & Glen.) Lindl.) increased periodic annual increments of basal area and volume by 1.7 ft2acre-1year-1 and 43 to 68 ft3acre

  16. Nitrogen fertilization and plant growth promoting rhizobacteria treatments affected amino acid content of cabbage

    NASA Astrophysics Data System (ADS)

    Dursun, Atilla; Yildirim, Ertan; Ekinci, Melek; Turan, Metin; Kul, Raziye; Karagöz, Fazilet P.

    2017-04-01

    This study was designed to determine the influence of a nitrogen fixing plant growth promoting rhizobacteria (PGPR) inoculation (seed coating and seedling dipping) and 6 doses of nitrogen (0, 40, 80, 120, 160, 200 kg ha-1) application on amino acid contents of cabbage. Coating and seedling dipping applications caused a significant increase in values histidine, glycine, thionin, arginine and alanine of cabbage. Highest glutamate, serine, asparagines and glutamine contents were obtained from 160-200 kg ha-1 nitrogen dose applied plants. As a result, the use of bacteria treatments provides means of improving amino acid contents in cabbage.

  17. Phenolics, flavonoids, antioxidant activity and cyanogenic glycosides of organic and mineral-base fertilized cassava tubers.

    PubMed

    Omar, Nur Faezah; Hassan, Siti Aishah; Yusoff, Umi Kalsom; Abdullah, Nur Ashikin Psyquay; Wahab, Puteri Edaroyati Megat; Sinniah, Umarani

    2012-02-27

    A field study was conducted to determine the effect of organic and mineral-based fertilizers on phytochemical contents in the tubers of two cassava varieties. Treatments were arranged in a split plot design with three replicates. The main plot was fertilizer source (vermicompost, empty fruit bunch compost and inorganic fertilizer) and sub-plot was cassava variety (Medan and Sri Pontian). The amount of fertilizer applied was based on 180 kg K(2)O ha-1. The tubers were harvested and analyzed for total flavonoids, total phenolics, antioxidant activity and cyanogenic glucoside content. Total phenolic and flavonoid compounds were determined using the Folin-Ciocalteu assay and aluminium chloride colorimetric method, respectively. Different sources of fertilizer, varieties and their interactions were found to have a significant effect on phytochemical content. The phenolic and flavonoid content were significantly higher (p < 0.01) in the vermicompost treatment compared to mineral fertilizer and EFB compost. The total flavonoids and phenolics content of vermicompost treated plants were 39% and 38% higher, respectively, than those chemically fertilized. The antioxidant activity determined using the DPPH and FRAP assays were high with application of organic fertilizer. Cyanogenic glycoside levels were decreased with the application of organic fertilizer. Among the two types of compost, vermicompost resulted in higher nutritional value of cassava tubers. Medan variety with application of vermicompost showed the most promising nutritional quality. Since the nutritional quality of cassava can be improved by organic fertilization, organic fertilizer should be used in place of chemical fertilizer for environmentally sustainable production of better quality cassava.

  18. fusing regional and weather variability with site-specific canopy reflectance for improved in-season N fertilizer recommendation

    USDA-ARS?s Scientific Manuscript database

    Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N ...

  19. Long-term growth of eight legumes introduced at three forest locations in southwest Oregon

    Treesearch

    Richard E. Miller; Ray Zalunardo

    1979-01-01

    Using nitrogen-fixing plants in forestry becomes financially more attractive as the costs of fertilizers and their application continue to increase. Eight legume cultivars were screened for suitability in Douglas-fir forests of southwest Oregon. The legumes were sown on concurrently fertilized and unfertilized plots within deer exclosures in three logged and burned...

  20. Organic versus conventional fertilization effects on sweet basil (Ocimum basilicum L.) growth in a greenhouse system

    USDA-ARS?s Scientific Manuscript database

    Ocimum basilicum L. (sweet basil) is an essential oil producing crop used in culinary and fragrance applications. The objective of this controlled environment study was to evaluate the effects of organic and conventional fertilization, (applied at two nitrogen rates, 150 and 250 kg N/ha), on plant g...

  1. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil.

    PubMed

    Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng

    2016-08-01

    Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community.

  2. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850-2015: application rate, timing, and fertilizer types

    NASA Astrophysics Data System (ADS)

    Cao, Peiyu; Lu, Chaoqun; Yu, Zhen

    2018-06-01

    A tremendous amount of anthropogenic nitrogen (N) fertilizer has been applied to agricultural lands to promote crop production in the US since the 1850s. However, inappropriate N management practices have caused numerous ecological and environmental problems which are difficult to quantify due to the paucity of spatially explicit time-series fertilizer use maps. Understanding and assessing N fertilizer management history could provide important implications for enhancing N use efficiency and reducing N loss. In this study, we therefore developed long-term gridded maps to depict crop-specific N fertilizer use rates, application timing, and the fractions of ammonium N (NH4+-N) and nitrate N (NO3--N) used across the contiguous US at a resolution of 5 km × 5 km during the period from 1850 to 2015. We found that N use rates in the US increased from 0.22 g N m-2 yr-1 in 1940 to 9.04 g N m-2 yr-1 in 2015. Geospatial analysis revealed that hotspots for N fertilizer use have shifted from the southeastern and eastern US to the Midwest, the Great Plains, and the Northwest over the past century. Specifically, corn in the Corn Belt region received the most intensive N input in spring, followed by the application of a large amount of N in fall, implying a high N loss risk in this region. Moreover, spatial-temporal fraction of NH4+-N and NO3--N varied largely among regions. Generally, farmers have increasingly favored ammonia N fertilizers over nitrate N fertilizers since the 1940s. The N fertilizer use data developed in this study could serve as an essential input for modeling communities to fully assess N addition impacts, and improve N management to alleviate environmental problems. Datasets used in this study are available at https://doi.org/10.1594/PANGAEA.883585.

  3. Accumulation and distribution characteristics of biomass and nitrogen in bitter gourd (Momordica charantia L.) under different fertilization strategies.

    PubMed

    Zhang, Baige; Li, Mingzhu; Li, Qiang; Cao, Jian; Zhang, Changyuan; Zhang, Fusuo; Song, Zhao; Chen, Xinping

    2018-05-01

    The elemental uptake and allocation patterns of crops create insight for nutrient management. Two-year field experiments were conducted to determine the growth and nitrogen (N) uptake patterns of bitter gourd and to evaluate different N management strategies. Two N practices during the nursery stage, namely the conventional fertilizer method (Scon) and the controlled-release fertilizer management method (Scrf), combined with three N management strategies after transplanting, namely zero N fertilizer application (Nno), the conventional strategy (Ncon) and the systematic N management strategy (Nopt), were assessed. Averaged over two years, the Scrf-Nopt treatment performed best, producing 33.1 t ha -1 fruit yield with 310 kg N ha -1 , indicating that the yield was 22.6% greater by using 18.8% less fertilizer N than in the Scon-Ncon treatment. The Scrf-Nopt treatment facilitated plant growth by accumulating 20.0% more total dry weight and prioritized its allocation to productive organs (57.2%), while the Scon-Ncon strategy was biased toward leaves (56.3%) over fruits (43.8%). Nitrogen uptake and distribution closely followed the pattern of biomass. The Scrf-Nopt fertilization strategy coordinated the important role that N plays in total accumulation and well proportion of biomass and N in bitter gourd developmental processes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. [Development and evaluation of fertilizers cemented and coated with organic-inorganic materials].

    PubMed

    Xiao, Qiang; Wang, Jia-Chen; Zuo, Qiang; Zhang, Lin; Liu, Bao-Cun; Zhao, Tong-Ke; Zou, Guo-Yuan; Xu, Qiu-Ming

    2010-01-01

    Four kinds of organic-inorganic cementing and coating materials were prepared by a coating method using water as the solvent, and the corresponding cemented and coated fertilizers (B2, PS, F2, and F2F) were produced by disc pelletizer. The tests on the properties of these fertilizers showed that the granulation rate, compression strength, and film-forming rate were B2 > PS > F2 > F2F. Soil column leaching experiment showed that the curve of accumulated nitrogen-dissolving rate was the gentlest for B2. In 48 days, the accumulated nitrogen-dissolving rate was in the order of B2, 54.65% < PS, 56.16% < F2, 59.47%, < F2F, 63.12%. Field experiment showed that compared with the same application amount of NPK, all the test fertilizers had better effects on corn yield, among which, B2 was the best, with the corn yield and fertilizer use efficiency increased by 19.72% and 20.30%, respectively. The yield-increasing effect of other test fertilizers was in the order of PS > F2 > F2F.

  5. [Ammonia volatilization of slow release compound fertilizer in different soils water conditions].

    PubMed

    Hu, Xiao-feng; Wang, Zheng-yin; You, Yuan; Li, Jing-chao

    2010-08-01

    By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency.

  6. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System.

    PubMed

    Cai, Andong; Xu, Hu; Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1) yr(-1), respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000-250, 250-53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000-250 μm > 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.

  7. Spatial and Temporal Variations of Crop Fertilization and Soil Fertility in the Loess Plateau in China from the 1970s to the 2000s

    PubMed Central

    Wang, Xiaoying; Tong, Yanan; Gao, Yimin; Gao, Pengcheng; Liu, Fen; Zhao, Zuoping; Pang, Yan

    2014-01-01

    Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole. PMID:25380401

  8. County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985

    USGS Publications Warehouse

    Alexander, Richard B.; Smith, Richard A.

    1990-01-01

    Estimates of nitrogen and phosphorus fertilizer use were made for counties in the United States for the period 1945 to 1985. County fertilizer use estimates were obtained through the disaggregation of state-level fertilizer use in proportion to the amount of state fertilized acreage reported to exist in counties. Numerical values of nitrogen and phosphorus fertilizer use by county are not presented in the text of this report because of the size of the data file, but are available in machine-readable form upon request. Graphical summaries of national, state, and county nitrogen and phosphorus fertilizer use are presented to briefly describe the spatial and temporal variability that exist in the data.

  9. Application of N-modified lignite and activated biochar to increase growth of summer wheat on nutrient-poor sandy soil

    NASA Astrophysics Data System (ADS)

    Schillem, Steffi; Schneider, Bernd-Uwe; Zeihser, Uwe; Hüttl, Reinhard F.

    2017-04-01

    Land degradation is recognized as the main environmental problem that adversely depletes soil organic carbon (SOC) and nitrogen (SON) stocks, which in turn directly affects the fertility and productivity of soils. Degraded soils and marginal lands are characterized by low fertility, poor physicochemical and biological properties and are almost free of soil organic matter (SOM), limiting their functional properties and, hence, their productivity. To enhance or restore the fertility of these soils, natural soil amendments such as biochar, lignite or humic acids can be added. A greenhouse experiment was carried out to investigate the effect of different application rates (5, 7.5, 11, 15, 28 t ha-1) of N-modified lignite (NL) incorporated in a nutrient-poor sandy soil from a recultivation site on plant growth, water use and nitrogen use efficiency of summer wheat. Additionally activated biochar (BC) was tested to see whether any differences exist between N-modified lignite and activated biochar at the same C-application rates. All variants with soil amendments displayed a much higher grain and straw yield and water use efficiency compared to the control sample. The differences were significant for the 28 t ha-1variant followed by the variant with 5 t ha-1 NL. With the 7.5 t ha-1 NL higher biomasses, water and nitrogen use efficiency could be achieved compared to the variant treated with BC at the same C-content. This study shows that even small amounts of N-modified lignite can increase growth, water and nitrogen use efficiency of summer wheat on marginal lands.

  10. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems

    DOE PAGES

    Duran, Brianna E. L.; Duncan, David S.; Oates, Lawrence G.; ...

    2016-03-18

    Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N 2O) emissions and nitrate (NO 3 -) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18- species restored prairie responded to annual fertilizermore » applications of 56 kg N ha -1 in a fieldscale agronomic trial in south-central Wisconsin over a 2-year period.We observed greater fertilizer-induced N 2O emissions and sub-rooting zone NO 3 - concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. In conclusion, our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.« less

  11. Ecological effects on streams from forest fertilization; literature review and conceptual framework for future study in the western Cascades

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2002-03-19

    Studies of the responses of stream biota to fertilization have been rare and have targeted either immediate, toxicity-based responses or used methods insensitive to ongoing ecological processes. This report reviews water-quality studies following forest fertilizations, emphasizing Cascade streams in the Pacific Northwest and documented biological responses in those streams. A conceptual model predicting potential ecological response to fertilization, which includes effects on algal growth and primary production, is presented. In this model, applied fertilizer nitrogen reaching streams is mostly exported during winter. However, some nitrogen retained in soils or stream and riparian areas may become available to aquatic biota during spring and summer. Biological responses may be minimal in small streams nearest to application because of light limitation, but may be elevated downstream where light is sufficient to allow algal growth. Ultimately, algal response could be greatest in downstream reaches, although ambient nutrient concentrations remain low due to uptake and benthic nutrient recycling. Ground-water flow paths and hyporheic processing could be critical in determining the fate of applied nitrogen. A framework is provided for testing this response in the Little River watershed, a tributary to the North Umpqua River, Oregon, at basic and intensive levels of investigation.

  12. Nutrient loss with runoff from fairway turf: an evaluation of core cultivation practices and their environmental impact.

    PubMed

    Rice, Pamela J; Horgan, Brian P

    2011-11-01

    The presence of excess nutrients in surface waters can result in undesirable environmental and economic consequences, including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems has raised questions concerning the contribution of nutrients to surrounding surface waters. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from turf plots maintained as a golf course fairway to identify which cultural practice, solid tine (ST) or hollow tine (HT) core cultivation, maximized phosphorus and nitrogen retention at the site of fertilizer application. Simulated precipitation and collection of resulting runoff were completed 26 ± 13 h following granular fertilizer application (18-3-18: N-P₂O₅-K₂O) and 63 d and 2 d following core cultivation. Runoff volumes were reduced in fairway turf plots aerated with HT relative to ST (63 d: 10%, 2 d: 55% reduction). Analysis of the runoff revealed a reduction in soluble phosphorus, ammonium nitrogen, and nitrate nitrogen losses with runoff from plots managed with HT; a 5 to 27% reduction after 63 d; and a 39 to 77% reduction at 2 d. Golf course runoff-to-surface water scenarios were used to calculate estimated environmental concentrations (EECs) of nitrogen and phosphorus in surface water receiving runoff from turf managed with ST or HT core cultivation. Surface water concentrations of phosphorus remained above the U.S. Environmental Protection Agency's water quality criteria to limit eutrophication, with the exception of concentrations associated with HT core cultivation at 2 d. Regardless of management practice (ST or HT) and time between core cultivation and runoff (63 d or 2 d), all EECs of nitrogen were below levels associated with increased algal growth. Understanding nutrient transport with runoff and identifying strategies that reduce off-site transport will increase their effectiveness at intended sites of application and minimize undesirable effects to surrounding surface water resources. Copyright © 2011 SETAC.

  13. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    NASA Astrophysics Data System (ADS)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  14. [Nitrogen leaching and associated environmental health effect in sloping cropland of purple soil].

    PubMed

    Chen, Wei-Liang; Gao, Yang; Lin, Yong-Ming; Zhu, Bo; Xu, Ya-Juan; Yu, Gui-Rui; Wu, Cheng-Zhen

    2014-06-01

    In this paper, we monitored different forms of nitrogen (N) transported by the subsurface flow under three different natural rainfall events and different fertilizations and conducted an associated risk evaluation on environmental health, which provides scientific basis for controlling N non-point pollution and establishing a reasonable fertilization system in purple soil area. The results showed that there were different forms of N transport by subsurface flow under different rainfall events, where in dissolved nitrogen (DN) accounted for about 53.74% - 99.21%, and nitrate (NO3(-) -N) accounted for about 35.70% - 93.65% of DN, and especially under the moderate rainfall, NO3(-) -N could reach 84.09% - 93.65% of DN. The different N fluxes were the highest under moderate rainfall among different rainfall events, in which the flux of total nitrogen (TN), DN, particle nitrogen (PN), ammonia (NH4(+) -N) and nitrite (NO2(-) -N) reached 737.17, 711.12, 26.06, 12.70 and 0.46 mg x m(-2), respectively, and the NO3(-)-N flux was as high as 686.12 mg x m(-2), showing a huge potential threat on groundwater health. Through the risk assessment on N pollution for groundwater quality, we concluded that the straw returning could be used to effectively alleviate the N leaching and groundwater N pollution; especially, the combined application of organic and chemical fertilizer could effectively mitigate the groundwater pollution, improve soil fertility and increase crop yield.

  15. SOURCE ASSESSMENT: NITROGEN FERTILIZER INDUSTRY WATER EFFLUENTS

    EPA Science Inventory

    The report describes a study of waterborne pollutants from the manufacture of nitrogen fertilizers. It includes an evaluation of the ammonia, ammonium nitrate, urea, and nitric acid manufacturing processes. Water effluents in a nitrogen fertilizer plant originate from a variety o...

  16. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    NASA Astrophysics Data System (ADS)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  17. A Loblolly Pine Management Guide: When and Where to Apply Fertilizer

    Treesearch

    Carol G. Wells; Lee Allen

    1985-01-01

    Growth rates in loblolly pine (Pinus taeda L.) stands can often be increased markedly by applying phosphorus, nitrogen, or nitrogen and phosphorus fertilizers. On phosphorus-deficient Lowe Coastal Plain sites, the growth improvement from phosphorus fertilization of loblolly pine often amounts to an increase in site index (age 25) of 15 feet.Nitrogen and nitrogen plus...

  18. The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth. under high CO2 and nitrogen fertilization.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Rahmat, Asmah; Rahman, Zaharah Abdul

    2010-12-29

    A factorial split plot 4 × 3 experiment was designed to examine and characterize the relationship among production of secondary metabolites (total phenolics, TP; total flavonoids, TF), carbohydrate content and photosynthesis of three varieties of the Malaysian medicinal herb Labisia pumila Benth. namely the varieties alata, pumila and lanceolata under CO(2) enrichment (1,200 µmol mol(-1)) combined with four levels of nitrogen fertilization (0, 90, 180 and 270 kg N ha(-1)). No varietal differences were observed, however, as the levels of nitrogen increased from 0 to 270 kg N ha(-1), the production of TP and TF decreased in the order leaves>roots>stems. The production of TP and TF was related to increased total non structural carbohydrate (TNC), where the increase in starch content was larger than that in sugar concentration. Nevertheless, the regression analysis exhibited a higher influence of soluble sugar concentration (r(2) = 0.88) than starch on TP and TF biosynthesis. Photosynthesis, on the other hand, displayed a significant negative relationship with TP and TF production (r(2) = -0.87). A decrease in photosynthetic rate with increasing secondary metabolites might be due to an increase in the shikimic acid pathway that results in enhanced production of TP and TF. Chlorophyll content exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.

  19. Decreasing reliance on mineral nitrogen--yet more food.

    PubMed

    Roy, Rabindra N; Misra, Ram V; Montanez, Adriana

    2002-03-01

    Higher crop production normally demands higher nutrient application rates and consequently increased mineral nitrogen use. With food demand for 2030 estimated around 2800 mill. tonnes (t) yr-1, the corresponding mineral N consumption figure is 96 mill. t (78 mill. t yr-1 in 1995/1997). Global-level mineral N losses to the environment from mineral fertilizer use are currently 36 mill. t yr-1, worth USD 11,700 mill. and with adverse environmental impacts. However, innovative fertilizer-use efficiency (FUE) technologies enable increased production with a less than a proportionate increase in mineral-N use. Moreover, nitrogen-nutrient supplies can be augmented through improvements in agricultural production systems and in the exploitation of alternative sources such as biological nitrogen fixation (BNF). By 2030, with adequate policy, technology transfer, research and investment support, the on-farm adoption of BNF and FUE technologies could generate savings of 10 mill. t yr-1 of mineral N, worth USD 3300 mill.

  20. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil.

    PubMed

    Zhang, Ran-Ran; Liu, Yue; Xue, Wan-Lei; Chen, Rong-Xin; Du, Shao-Ting; Jin, Chong-Wei

    2016-12-01

    Cadmium (Cd) pollution in vegetable crops has become a serious problem in recent years. Owing to the limited availability of arable land resources, large areas of Cd-contaminated lands are inevitably being used for the production of vegetables, posing great risks to human health via the food chain. However, strategies to improve yield and reduce Cd concentration in crops grown in contaminated soils are being developed. In the present study, using pot experiments, we investigated the effects of two slow-release nitrogen fertilizers (SRNFs), resin-coated ammonium nitrate (Osmocote 313s ), and resin-coated urea (urea 620 ), on the growth and Cd concentration of the Cd-contaminated pakchoi. The results showed that pakchoi grown in soil containing 5 mg kg -1 of Cd-induced oxidative stress (indicated by malondialdehyde (MDA), H 2 O 2 , and O 2 ·- ) and photosynthesis inhibition, which in turn was restored with the application of SRNFs. However, pakchoi grown in Cd-contaminated soil supplied with Osmocote 313s and urea 620 showed 103 and 203 % increase in fresh weight and 51-55 % and 44-56 % decrease in Cd concentration, respectively, as compared with their controls (pakchoi treated with instant soluble nitrogen fertilizers). On the basis of an increase in their tolerance index (47-238 %) and a decrease in their translocation factor (7.5-21.6 %), we inferred that the plants treated with SRNFs have a stronger tolerance to Cd and a lower efficiency of Cd translocation to edible parts than those treated with instant soluble nitrogen fertilizers. Therefore, in terms of both crop production and food safety, application of SRNFs could be an effective strategy for improving both biomass production and quality in pakchoi grown under Cd stress.

  1. Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji

    2017-02-01

    Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This new map can be utilized as input data to global model studies and bring new insights for the assessment of historical terrestrial N cycling changes. Datasets available at doi:10.1594/PANGAEA.861203.

  2. [Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field].

    PubMed

    Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei

    2015-03-01

    A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.

  3. Preparation and properties of a double-coated slow-release and water-retention urea fertilizer.

    PubMed

    Liang, Rui; Liu, Mingzhu

    2006-02-22

    A double-coated, slow-release, and water-retention urea fertilizer (DSWU) was prepared by cross-linked poly(acrylic acid)-containing urea (PAAU) (the outer coating), polystyrene (PS) (the inner coating), and urea granule (the core). Elemental analysis results showed that the nitrogen content of the product was 33.6 wt %. The outer coating (PAAU) regulated the nitrogen release rate and protected the inner coating from damage. The slow-release property of the product was investigated in water and in soil. The possible mechanism of nitrogen release was proposed. The influences of PS coating percentage, temperature, water absorbency, and pH on the release of nitrogen were also investigated. It was found that PS coating percentage, temperature, and water absorbency had a significant influence on the release of nitrogen. However, the pH had no effect. The water-retention property of the product was also investigated. The results showed that the product not only had a good slow-release property but also excellent water-retention capacity, which could effectively improve the utilization of fertilizer and water resources. The results of the present work indicated that the DSWU would find good application in agriculture and horticulture, especially in drought-prone areas where the availability of water is insufficient.

  4. Corn Yield and Soil Nitrous Oxide Emission under Different Fertilizer and Soil Management: A Three-Year Field Experiment in Middle Tennessee.

    PubMed

    Deng, Qi; Hui, Dafeng; Wang, Junming; Iwuozo, Stephen; Yu, Chih-Li; Jima, Tigist; Smart, David; Reddy, Chandra; Dennis, Sam

    2015-01-01

    A three-year field experiment was conducted to examine the responses of corn yield and soil nitrous oxide (N2O) emission to various management practices in middle Tennessee. The management practices include no-tillage + regular applications of urea ammonium nitrate (NT-URAN); no-tillage + regular applications of URAN + denitrification inhibitor (NT-inhibitor); no-tillage + regular applications of URAN + biochar (NT-biochar); no-tillage + 20% applications of URAN + chicken litter (NT-litter), no-tillage + split applications of URAN (NT-split); and conventional tillage + regular applications of URAN as a control (CT-URAN). Fertilizer equivalent to 217 kg N ha(-1) was applied to each of the experimental plots. Results showed that no-tillage (NT-URAN) significantly increased corn yield by 28% over the conventional tillage (CT-URAN) due to soil water conservation. The management practices significantly altered soil N2O emission, with the highest in the CT-URAN (0.48 mg N2O m(-2) h(-1)) and the lowest in the NT-inhibitor (0.20 mg N2O m(-2) h(-1)) and NT-biochar (0.16 mg N2O m(-2) h(-1)) treatments. Significant exponential relationships between soil N2O emission and water filled pore space were revealed in all treatments. However, variations in soil N2O emission among the treatments were positively correlated with the moisture sensitivity of soil N2O emission that likely reflects an interactive effect between soil properties and WFPS. Our results indicated that improved fertilizer and soil management have the potential to maintain highly productive corn yield while reducing greenhouse gas emissions.

  5. Corn Yield and Soil Nitrous Oxide Emission under Different Fertilizer and Soil Management: A Three-Year Field Experiment in Middle Tennessee

    PubMed Central

    Deng, Qi; Hui, Dafeng; Wang, Junming; Iwuozo, Stephen; Yu, Chih-Li; Jima, Tigist; Smart, David; Reddy, Chandra; Dennis, Sam

    2015-01-01

    Background A three-year field experiment was conducted to examine the responses of corn yield and soil nitrous oxide (N2O) emission to various management practices in middle Tennessee. Methodology/Principal Findings The management practices include no-tillage + regular applications of urea ammonium nitrate (NT-URAN); no-tillage + regular applications of URAN + denitrification inhibitor (NT-inhibitor); no-tillage + regular applications of URAN + biochar (NT-biochar); no-tillage + 20% applications of URAN + chicken litter (NT-litter), no-tillage + split applications of URAN (NT-split); and conventional tillage + regular applications of URAN as a control (CT-URAN). Fertilizer equivalent to 217 kg N ha-1 was applied to each of the experimental plots. Results showed that no-tillage (NT-URAN) significantly increased corn yield by 28% over the conventional tillage (CT-URAN) due to soil water conservation. The management practices significantly altered soil N2O emission, with the highest in the CT-URAN (0.48 mg N2O m-2 h-1) and the lowest in the NT-inhibitor (0.20 mg N2O m-2 h-1) and NT-biochar (0.16 mg N2O m-2 h-1) treatments. Significant exponential relationships between soil N2O emission and water filled pore space were revealed in all treatments. However, variations in soil N2O emission among the treatments were positively correlated with the moisture sensitivity of soil N2O emission that likely reflects an interactive effect between soil properties and WFPS. Conclusion/Significance Our results indicated that improved fertilizer and soil management have the potential to maintain highly productive corn yield while reducing greenhouse gas emissions. PMID:25923716

  6. Effect of inorganic nitrogenous fertilizer on productivity of recently reclaimed saline sodic soils with and without biofertilizer.

    PubMed

    Mehdi, S M; Sarfraz, M; Shabbir, G; Abbas, G

    2007-07-15

    Saline sodic soils after reclamation become infertile due to leaching of most of the nutrients along with salts from the rooting medium. Microbes can play a vital role in the productivity improvement of such soils. In this study a saline sodic field having EC, 6.5 dS m(-1), pH, 9.1 and gypsum requirement (GR) 3.5 tons acre(-1) was reclaimed by applying gypsum at the rate of 100% GR. Rice and wheat crops were transplanted/sown for three consecutive years. Inorganic nitrogenous fertilizer was used with and without biofertilizers i.e., Biopower (Azospirillum) for rice and diazotroph inoculums for wheat. Nitrogen was applied at the rate of 0, 75% of recommended dose (RD), RD, 125% of RD and 150% of RD. Recommended dose of P without K was applied to all the plots. Biopower significantly improved Paddy and straw yield of rice over inorganic nitrogenous fertilizer. In case of wheat diazotroph inoculum improved grain and straw yield significantly over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for rice and wheat production in recently reclaimed soils. Nitrogen concentration and its uptake by paddy, grain and straw were also increased by biopower and diazotroph inoculum over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for nitrogen concentration and its uptake by paddy, grain and straw. Total soil N, available P and extractable K were increased while salinity/sodicity parameters were decreased with the passage of time. The productivity of the soil was improved more by biofertilizers over inorganic N fertilizers.

  7. Integrating soil and weather information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    USDA-ARS?s Scientific Manuscript database

    Corn production can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing ...

  8. Modeling Spatial and Temporal Variability in Ammonia Emissions from Agricultural Fertilization

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2013-12-01

    Ammonia (NH3), is an important component of the reactive nitrogen cycle and a precursor to formation of atmospheric particulate matter (PM). Predicting regional PM concentrations and deposition of nitrogen species to ecosystems requires representative emission inventories. Emission inventories have traditionally been developed using top down approaches and more recently from data assimilation based on satellite and ground based ambient concentrations and wet deposition data. The National Emission Inventory (NEI) indicates agricultural fertilization as the predominant contributor (56%) to NH3 emissions in Midwest USA, in 2002. However, due to limited understanding of the complex interactions between fertilizer usage, farm practices, soil and meteorological conditions and absence of detailed statistical data, such emission estimates are currently based on generic emission factors, time-averaged temporal factors and coarse spatial resolution. Given the significance of this source, our study focuses on developing an improved NH3 emission inventory for agricultural fertilization at finer spatial and temporal scales for air quality modeling studies. Firstly, a high-spatial resolution 4 km x 4 km NH3 emission inventory for agricultural fertilization has been developed for Illinois by modifying spatial allocation of emissions based on combining crop-specific fertilization rates with cropland distribution in the Sparse Matrix Operator Kernel Emissions model. Net emission estimates of our method are within 2% of NEI, since both methods are constrained by fertilizer sales data. However, we identified localized crop-specific NH3 emission hotspots at sub-county resolutions absent in NEI. Secondly, we have adopted the use of the DeNitrification-DeComposition (DNDC) Biogeochemistry model to simulate the physical and chemical processes that control volatilization of nitrogen as NH3 to the atmosphere after fertilizer application and resolve the variability at the hourly scale. Representative temporal factors are being developed to capture crop-specific NH3 emission variability by combining knowledge of local crop management practices with high resolution cropland and soil maps. This improved spatially and temporally dependent NH3 emission inventory for agricultural fertilization is being prepared as a direct input to a state of the art air quality model to evaluate the effects of agricultural fertilization on regional air quality and atmospheric deposition of reactive nitrogen species.

  9. Greenhouse Gas Emissions from Solid and Liquid Organic Fertilizers Applied to Lettuce.

    PubMed

    Toonsiri, Phasita; Del Grosso, Stephen J; Sukor, Arina; Davis, Jessica G

    2016-11-01

    Improper application of nitrogen (N) fertilizer and environmental factors can cause the loss of nitrous oxide (NO) to the environment. Different types of fertilizers with different C/N ratios may have different effects on the environment. The focus of this study was to evaluate the effects of environmental factors and four organic fertilizers (feather meal, blood meal, fish emulsion, and cyano-fertilizer) applied at different rates (0, 28, 56, and 112 kg N ha) on NO emissions and to track CO emissions from a lettuce field ( L.). The study was conducted in 2013 and 2014 and compared preplant-applied solid fertilizers (feather meal and blood meal) and multiple applications of liquid fertilizers (fish emulsion and cyano-fertilizer). Three days a week, NO and CO emissions were measured twice per day in 2013 and once per day in 2014 using a closed-static chamber, and gas samples were analyzed by gas chromatography. Preplant-applied solid fertilizers significantly increased cumulative NO emissions as compared with control, but multiple applications of liquid fertilizers did not. Emission factors for NO ranged from 0 to 0.1% for multiple applications of liquid fertilizers and 0.6 to 11% for preplant-applied solid fertilizers, which could be overestimated due to chamber placement over fertilizer bands. In 2014, solid fertilizers with higher C/N ratios (3.3-3.5) resulted in higher CO emissions than liquid fertilizers (C/N ratio, 0.9-1.5). Therefore, organic farmers should consider the use of multiple applications of liquid fertilizers as a means to reduce soil greenhouse gas emissions while maintaining high yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Impacts of agricultural management and climate change on future soil organic carbon dynamics in North China Plain.

    PubMed

    Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang

    2014-01-01

    Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km × 10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) - and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha-1 yr-1. With a moderate rate of manure application (i.e., 2000 kg ha-1 yr-1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha-1 yr-1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha-1 yr-1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha-1 during 2010s to the current worldwide average of ∼ 55 Mg ha-1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.

  11. Impacts of Agricultural Management and Climate Change on Future Soil Organic Carbon Dynamics in North China Plain

    PubMed Central

    Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang

    2014-01-01

    Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km×10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) – and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha−1 yr−1. With a moderate rate of manure application (i.e., 2000 kg ha−1 yr−1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha−1 yr−1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha−1 yr−1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha−1 during 2010s to the current worldwide average of ∼55 Mg ha−1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration. PMID:24722689

  12. [Fertility and Environmental Impacts of Urban Scattered Human Feces Used as Organic Granular Fertilizer for Leaf Vegetables].

    PubMed

    Lü, Wen-zhou; Qiao, Yu-xiang; Yu, Ning; Shi, Rong-hua; Wang, Guang-ming

    2015-09-01

    The disposal of urban scattered human feces has become a difficult problem for the management of modern city. In present study, the scattered human feces underwent the collection, scum removal, flocculation and dehydration, finally became the granular fertilizer; the effects of the ratio of fertilizer to soil on the growth of the pakchoi and the quality of soil and leaching water were evaluated, and the feasibility of granular fertilizer manuring the pakchoi was discussed by pot experiments. The results showed that the granular fertilizer significantly enhanced the production of the pakchoi which were not polluted by the intestinal microorganisms under the experiment conditions; meanwhile, at the proper ratio of fertilizer to soil, the concentration of these microorganisms in the leaching water was lower than that in the control check. Chemical analyses of soil revealed that the nutrient content of nitrogen, phosphorus, potassium and organic matters in soil became much richer in all treatments. In addition, the granular fertilizer improved the physical- chemical properties of soil, including raising the level of soil porosity and reducing the volume weight of soil. Application of granular fertilizer won't pollute the soil or leaching water; instead, it can also prevent nitrogen, potassium and intestinal microorganisms from leaching inio ground water at the proper ratio of granular fertilizer to soil.

  13. Nitrogen losses, uptake and abundance of ammonia oxidizers in soil under mineral and organo-mineral fertilization regimes.

    PubMed

    Florio, Alessandro; Felici, Barbara; Migliore, Melania; Dell'Abate, Maria Teresa; Benedetti, Anna

    2016-05-01

    A laboratory incubation experiment and greenhouse studies investigated the impact of organo-mineral (OM) fertilization as an alternative practice to conventional mineral (M) fertilization on nitrogen (N) uptake and losses in perennial ryegrass (Lolium perenne) as well as on soil microbial biomass and ammonia oxidizers. While no significant difference in plant productivity and ammonia emissions between treatments could be detected, an increase in soil total N content and an average 17.9% decrease in nitrates leached were observed in OM fertilization compared with M fertilization. The microbial community responded differentially to treatments, suggesting that the organic matter fraction of the OM fertilizer might have influenced N immobilization in the microbial biomass in the short-medium term. Furthermore, nitrate contents in fertilized soils were significantly related to bacterial but not archaeal amoA gene copies, whereas in non-fertilized soils a significant relationship between soil nitrates and archaeal but not bacterial amoA copies was found. The application of OM fertilizer to soil maintained sufficient productivity and in turn increased N use efficiency and noticeably reduced N losses. Furthermore, in this experiment, ammonia-oxidizing bacteria drove nitrification when an N source was added to the soil, whereas ammonia-oxidizing archaea were responsible for ammonia oxidation in non-fertilized soil. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field.

    PubMed

    He, Tiehu; Liu, Deyan; Yuan, Junji; Luo, Jiafa; Lindsey, Stuart; Bolan, Nanthi; Ding, Weixin

    2018-07-01

    The effects of biochar combined with the urease inhibitor, hydroquinone, and nitrification inhibitor, dicyandiamide, on gaseous nitrogen (N 2 O, NO and NH 3 ) emissions and wheat yield were examined in a wheat crop cultivated in a rice-wheat rotation system in the Taihu Lake region of China. Eight treatments comprised N fertilizer at a conventional application rate of 150kgNha -1 (CN); N fertilizer at an optimal application rate of 125kgNha -1 (ON); ON+wheat-derived biochar at rates of 7.5 (ONB1) and 15tha -1 (ONB2); ON+nitrification and urease inhibitors (ONI); ONI+wheat-derived biochar at rates of 7.5 (ONIB1) and 15tha -1 (ONIB2); and, a control. The reduced N fertilizer application rate in the ON treatment decreased N 2 O, NO, and NH 3 emissions by 45.7%, 17.1%, and 12.3%, respectively, compared with the CN treatment. Biochar application increased soil organic carbon, total N, and pH, and also increased NH 3 and N 2 O emissions by 32.4-68.2% and 9.4-35.2%, respectively, compared with the ON treatment. In contrast, addition of urease and nitrification inhibitors decreased N 2 O, NO, and NH 3 emissions by 11.3%, 37.9%, and 38.5%, respectively. The combined application of biochar and inhibitors more effectively reduced N 2 O and NO emissions by 49.1-49.7% and 51.7-55.2%, respectively, compared with ON and decreased NH 3 emission by 33.4-35.2% compared with the ONB1 and ONB2 treatments. Compared with the ON treatment, biochar amendment, either alone or in combination with inhibitors, increased wheat yield and N use efficiency (NUE), while addition of inhibitors alone increased NUE but not wheat yield. We suggest that an optimal N fertilizer rate and combined application of inhibitors+biochar at a low application rate, instead of biochar application alone, could increase soil fertility and wheat yields, and mitigate gaseous N emissions. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of Fertilizer Nitrogen on Tree Growth, Foliar Nitrogen, and Herbage in Eastern Cottonwood Plantations

    Treesearch

    B. G. Blackmon

    1977-01-01

    When five rates of nitrogen fertilizer (0 to 672 kg/ha) were tested in two eastern cottonwood (Populus deltoides Bartr.) plantations 7 and 10 years old in the Mississippi River floodplain , first season volume growth was more than doubled by fertilization . By the end of the third season, the direct effect of fertilization had apparently disappeared although a volume...

  16. Mean age distribution of inorganic soil-nitrogen

    NASA Astrophysics Data System (ADS)

    Woo, Dong K.; Kumar, Praveen

    2016-07-01

    Excess reactive nitrogen in soils of intensively managed landscapes causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a model to characterize the "age" of inorganic soil-nitrogen (nitrate, and ammonia/ammonium). We use the general theory of age, which provides an assessment of the time elapsed since inorganic nitrogen has been introduced into the soil system. We analyze a corn-corn-soybean rotation, common in the Midwest United States, as an example application. We observe two counter-intuitive results: (1) the mean nitrogen age in the topsoil layer is relatively high; and (2) mean nitrogen age is lower under soybean cultivation compared to corn although no fertilizer is applied for soybean cultivation. The first result can be explained by cation-exchange of ammonium that retards the leaching of nitrogen, resulting in an increase in the mean nitrogen age near the soil surface. The second result arises because the soybean utilizes the nitrogen fertilizer left from the previous year, thereby removing the older nitrogen and reducing mean nitrogen age. Estimating the mean nitrogen age can thus serve as an important tool to disentangle complex nitrogen dynamics by providing a nuanced characterization of the time scales of soil-nitrogen transformation and transport processes.

  17. The use of biochar substrates for soil reclamation - results of experiments in Northeastern Germany

    NASA Astrophysics Data System (ADS)

    Lukas, Stefan; Haubold-Rosar, Michael

    2017-04-01

    After the model of the very fertile "Terra preta do Indio" in Amazonia, the joint project "LaTerra" has been taken up a new technology for the production of organic substrates using biochar as admixture to the composting and fermentation of biomass to test its application for soil improvement, reclamation and remediation purposes. Processing organic materials or residues and the creation of high quality organic soil improving materials will close material cycles and contribute to the value added on a regional scale. This should be an essential part of a sustainable material flow management. The presentation will focus on the application of biochar substrates for the reclamation of sandy soils in Northeastern Germany. Lignite mining activities leave raw soils without humus on dumps and tips. The rapid formation and maintenance of a balanced humus and nutrient budget is of great importance. Field, lysimeter and pot experiments were part of the research program in order to find out the impact of biochar substrate application on soil functions and plant growth and to derive quality criteria and recommendations for practice. The results of the experiments show that application of biochar substrates (BCS) improved soil properties like nutrient supply, organic carbon content, water storage and cation exchange capacity. However, crop yields did not increase in the year of BCS application on the test sites or even decreased on the dumped soil with rising amounts of BCS. This is a consequence of nitrogen immobilization and sorption in the soils treated with BCS. Therefore, BCS applications should be combined with mineral fertilization of nitrogen and BCS production should be modified aiming to improve contents and release of plant available nitrogen. In the third year after BCS application variants treated with 60 t BCS ha-1 (15 Vol.-% biochar) showed highest yields, exceeding the variants with mineral fertilization. On the dumped soil, in the fourth and fifth year after application all variants exceeded yields of mineral fertilization by 5 to 15 % with maximum in variants treated with 90 t BCS (15 Vol.-% biochar) ha-1.

  18. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions

    NASA Astrophysics Data System (ADS)

    Feng, Xiaogeng; Bo, Xiangjie; Guo, Liping

    2018-06-01

    Rational synthesis and development of earth-abundant materials with efficient electrocatalytic activity and stability for water splitting is a critical but challenging step for sustainable energy application. Herein, a family of bimetal (CoFe, CoCu, CoNi) embedded nitrogen-doped carbon frameworks is developed through a facile and simple thermal conversion strategy of metal-doped zeolitic imidazolate frameworks. Thanks to collaborative superiorities of abundant M-N-C species, modulation action of secondary metal, cobalt-based electroactive phases, template effect of MOFs and unique porous structure, bimetal embedded nitrogen-doped carbon frameworks materials manifest good oxygen and hydrogen evolution catalytic activity. Especially, after modulating the species and molar ratio of metal sources, optimal Co0.75Fe0.25 nitrogen-doped carbon framework catalyst just requires a low overpotential of 303 mV to achieve 10 mA cm-2 with a low Tafel slope (39.49 mV dec-1) for oxygen evolution reaction, which even surpasses that of commercial RuO2. In addition, the optimal catalyst can function as an efficient bifunctional electrocatalyst for overall water splitting with satisfying activity and stability. This development offers an attractive direction for the rational design and fabrication of porous carbon materials for electrochemical energy applications.

  19. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    PubMed Central

    Nivelle, Elodie; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates. Overall, the lack of N fertilization in the 6 past years combined with the highest glyphosate application rate (100FR) induced the highest values of AWCD, functional diversity, NO3-, PO43- and nitrification. We concluded that the intensive use of N fertilization for 6 years may change the non-target effects of glyphosate application on enzyme activities. The functional activities, nitrification and nutrient contents were increased by glyphosate only when applied at 100 times the field application rate. PMID:28552945

  20. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    PubMed

    Nivelle, Elodie; Verzeaux, Julien; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates. Overall, the lack of N fertilization in the 6 past years combined with the highest glyphosate application rate (100FR) induced the highest values of AWCD, functional diversity, NO3-, PO43- and nitrification. We concluded that the intensive use of N fertilization for 6 years may change the non-target effects of glyphosate application on enzyme activities. The functional activities, nitrification and nutrient contents were increased by glyphosate only when applied at 100 times the field application rate.

  1. [Nitrogen status diagnosis and yield prediction of spring maize after green manure incorporation by using a digital camera].

    PubMed

    Bai, Jin-Shun; Cao, Wei-Dong; Xiong, Jing; Zeng, Nao-Hua; Shimizu, Katshyoshi; Rui, Yu-Kui

    2013-12-01

    In order to explore the feasibility of using the image processing technology to diagnose the nitrogen status and to predict the maize yield, a field experiment with different nitrogen rates with green manure incorporation was conducted. Maize canopy digital images over a range of growth stages were captured by digital camera. Maize nitrogen status and the relationships between image color indices derived by digital camera for maize at different growth stages and maize nitrogen status indicators were analyzed. These digital camera sourced image color indices at different growth stages for maize were also regressed with maize grain yield at maturity. The results showed that the plant nitrogen status for maize was improved by green manure application. The leaf chlorophyll content (SPAD value), aboveground biomass and nitrogen uptake for green manure treatments at different maize growth stages were all higher than that for chemical fertilization treatments. The correlations between spectral indices with plant nitrogen indicators for maize affected by green manure application were weaker than that affected by chemical fertilization. And the correlation coefficients for green manure application were ranged with the maize growth stages changes. The best spectral indices for diagnosis of plant nitrogen status after green manure incorporation were normalized blue value (B/(R+G+B)) at 12-leaf (V12) stage and normalized red value (R/(R+G+B)) at grain-filling (R4) stage individually. The coefficients of determination based on linear regression were 0. 45 and 0. 46 for B/(R+G+B) at V12 stage and R/(R+G+B) at R4 stage respectively, acting as a predictor of maize yield response to nitrogen affected by green manure incorporation. Our findings suggested that digital image technique could be a potential tool for in-season prediction of the nitrogen status and grain yield for maize after green manure incorporation when the suitable growth stages and spectral indices for diagnosis were selected.

  2. Fertilizer Nutrient Leaching and Nutrient Mobility: A Simple Laboratory Exercise.

    ERIC Educational Resources Information Center

    Owens, D. S.; Johnson, G. V.

    1996-01-01

    Describes an exercise developed to demonstrate the degree to which nitrogen, phosphorus, and potassium fertilizers move through different soils. The results support the common practices of broadcasting nitrogen fertilizer and banding phosphorus and potassium fertilizers. (DDR)

  3. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    PubMed

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.

  4. Nutrients discharged to the Mississippi River from eastern Iowa watersheds, 1996-1997

    USGS Publications Warehouse

    Becher, Kent D.; Schnoebelen, Douglas J.; Akers, Kimberlee K.

    2000-01-01

    The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row-crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row-crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area.

  5. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance

    NASA Astrophysics Data System (ADS)

    Lu, Chaoqun; Tian, Hanqin

    2017-03-01

    In addition to enhancing agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically alters global nutrient budget, water quality, greenhouse gas balance, and their feedback to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system and land surface modeling studies have to ignore or use oversimplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long periods. In this study, we therefore develop global time series gridded data of annual synthetic N and P fertilizer use rate in agricultural lands, matched with HYDE 3.2 historical land use maps, at a resolution of 0.5° × 0.5° latitude-longitude during 1961-2013. Our data indicate N and P fertilizer use rates on per unit cropland area increased by approximately 8 times and 3 times, respectively, since the year 1961 when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) surveys of country-level fertilizer input became available. Considering cropland expansion, the increase in total fertilizer consumption is even larger. Hotspots of agricultural N fertilizer application shifted from the US and western Europe in the 1960s to eastern Asia in the early 21st century. P fertilizer input shows a similar pattern with an additional current hotspot in Brazil. We found a global increase in fertilizer N / P ratio by 0.8 g N g-1 P per decade (p < 0.05) during 1961-2013, which may have an important global implication for human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global models to assess the impacts of nutrient enrichment on climate system, water resources, food security, etc. Datasets available at doi:10.1594/PANGAEA.863323.

  6. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    PubMed

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)).

  7. Effect of fertilizers on faba bean (V. faba) growth and soil pH

    NASA Astrophysics Data System (ADS)

    Angel, C.

    2013-12-01

    The purpose of this experiment was to see the effect of fertilizers on faba bean (V. faba) growth and soil pH. This experiment is important because of the agriculture here in California and the damage fertilizers are doing to the soil. Three Broad Fava Windsor beans (Vicia faba) were planted per pot, with at least three pots per treatment. There were four treatments: soil with phosphorus (P) fertilizer, soil with nitrogen (N) fertilizer, soil with both N and P fertilizer, and soil without any fertilizers (control). The soil pH was 7.7, and it had 26.6mg/kg Olsen-P, 2.2mg/kg ammonium-N and no nitrate-N (Data from UCD Horwath Lab). All pots were put in a greenhouse with a stable temperature of 80 degrees. I watered them 2-3 times a week. After two months I measured the soil pH using a calibrated pHep HI 98107 pocket-sized pH meter. After letting the plants dry I weighed the shoots and roots separately for dry biomass. From testing pH of the soil of the faba bean plants with and without fertilizer I found that only the nitrogen fertilizer made the soil more acidic than the other ones. The other ones became more basic. Also the N-fertilized plants weighed more than the other ones. This shows how the nitrogen fertilizer had a greater impact on the plants. I think the reason why the nitrogen and the phosphorus fertilizers didn't work as well is because there was an interaction between the fertilizers and the nitrogen one made the soil more acidic because of the way nitrogen is made.

  8. Sustainable agriculture and protection of the environment

    NASA Astrophysics Data System (ADS)

    Siemianowska, Ewa; Wesołowski, Andrzej; Skibniewska, Krystyna A.; Tyburski, Józef; Gurzyński, Marcin

    2017-10-01

    The economic, environmental and social development should not degrade the environment but it should leave it for the next generations in the state that it is presently or even better. The principle of sustainable agriculture is to cover the human needs for food without damage to the environment. The aim of the article was to research the farmers' awareness of the principle of sustainable agriculture and balanced fertilization and their influence on the environment. Among 100 farmers of the Tczew district (Poland) there was done questionnaire research on the determination rates of nitrogen fertilizers and on the regulation of fertilizers usage in Poland. Most of farmers declared a good knowledge of good agricultural practices and of balanced fertilization and the awareness of threats issuing from their activities. At the same time in Poland since the announcement of the Nitrate Directive of the former European Common Market (1992) up till now (2013) the application of nitrogen fertilizers doubled and the yield of wheat increased only by 15%, which means the increase of environmental burden with this chemical element.

  9. Influence of nitrogen fertilization on tropical-grass silage assessed by ensiling process monitoring using chemical and microbial community analyses.

    PubMed

    Namihira, T; Shinzato, N; Akamine, H; Maekawa, H; Matsui, T

    2010-06-01

    Utilization of silage in livestock farming is expected to increase in developing countries in the tropical and subtropical parts of the world. The aim of this study was to investigate the influence of nitrogen fertilization on the chemical composition of herbage, ensiling process and silage quality, and to contribute to the improvement of tropical-grass silage preparation. Guinea grass grown under two different nitrogen-fertilizer application conditions [1.5 kg N a(-1) (high-N) and 0.5 kg N a(-1) (low-N)] was packed in plastic bags, and its ensiling process was investigated by chemical and microbial-community analyses. Relatively well-preserved silage was obtained from high-N herbage, which accumulated a high nitrate concentration. Denaturing gradient gel electrophoresis analysis revealed that Lactobacillus plantarum dominated throughout the ensiling of high-N herbage and in the early phase of that of low-N herbage. In low-N silages prepared from ammonium sulfate- and urea-fertilized herbage, Lact. plantarum was replaced by clostridia after 40 and 15 days of ensiling, respectively. Nitrate content of herbage is an important factor that influences silage quality, and careful fertilization management can facilitate stable and successful fermentation of tropical-grass silage without any pretreatment. The positive effect of nitrate on the ensiling process of tropical-grass was proved by microbial-community analysis.

  10. Representing growth response to fertilization in the Prognosis Model for Stand Development

    Treesearch

    Albert R. Stage; Nicholas L. Crookston; Bahman Shafii; James A. Moore; John Olson

    1990-01-01

    Capability to represent effects of fertilization has been added to the Prognosis Model for Stand Development. As implemented in version 6, the extension is calibrated only for applications of 200 lb nitrogen applied in the form of urea. Direct and indirect effects are based on growth 10 years after treatment for diameter effects, and 6 years after treatment for height...

  11. Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice

    PubMed Central

    Siddikee, Md. Ashaduzzaman; Zereen, Mst Israt; Li, Cai-Feng; Dai, Chuan-Chao

    2016-01-01

    Microbial community structure and functions of rhizosphere soil of rice were investigated after applying low and high doses of nitrogenous fertilizer and Phomopsis liquidambari. Average well color development, substrate richness, catabolic diversity and soil enzymes activities varied after applying N-fertilizer and P. liquidambari and were greater in P. liquidambari treated soil than only N-fertilization. Multivariate analysis distinctly separated the catabolic and enzymes activity profile which statistically proved alteration of microbial functional diversity. Nitrogen fertilizer altered microbial community structure revealed by the increased content of total PLFAs, specific subgroup marker PLFAs except fungal PLFAs and by the decreased ratio of G+/G−, sat/monunsat, iso/anteiso, F/B except trans/cis while P. liquidambari inoculation enhanced N-fertilization effect except increased fungal PLFA and decreased trans/cis. PCA using identified marker PLFAs revealed definite discrimination among the treatments which further statistically confirmed structural changed of microbial community. Nitrogenase activity representative of N-fixing community decreased in N-fertilizer treatment while P. liquidambari inoculation increased. In short, application of P. liquidambari with low doses of N-fertilizer improved rice growth and reduced N-fertilizer requirement by increasing enzymes activities involved in C, N and P cycling, structural and functional diversity of microbes, nitrogenase activity involved in N2 fixation and accumulation of total-N. PMID:27596935

  12. Effects of Applied Nitrogen Amounts on the Functional Components of Mulberry (Morus alba L.) Leaves.

    PubMed

    Sugiyama, Mari; Takahashi, Makoto; Katsube, Takuya; Koyama, Akio; Itamura, Hiroyuki

    2016-09-21

    This study investigated the effects of applied nitrogen amounts on specific functional components in mulberry (Morus alba L.) leaves. The relationships between mineral elements and the functional components in mulberry leaves were examined using mulberry trees cultivated in different soil conditions in four cultured fields. Then, the relationships between the nitrogen levels and the leaf functional components were studied by culturing mulberry in plastic pots and experimental fields. In the common cultured fields, total nitrogen was negatively correlated with the chlorogenic acid content (R(2) = -0.48) and positively correlated with the 1-deoxynojirimycin content (R(2) = 0.60). Additionally, differences in nitrogen fertilizer application levels affected each functional component in mulberry leaves. For instance, with increased nitrogen levels, the chlorogenic acid and flavonol contents significantly decreased, but the 1-deoxynojirimycin content significantly increased. Selection of the optimal nitrogen application level is necessary to obtain the desired functional components from mulberry leaves.

  13. Environmental analysis of sunflower production with different forms of mineral nitrogen fertilizers.

    PubMed

    Spinelli, D; Bardi, L; Fierro, A; Jez, S; Basosi, R

    2013-11-15

    Environmental profiles of mineral nitrogen fertilizers were used to evaluate the environmental disturbances related to their use in cultivation systems in Europe. Since the production of mineral fertilizers requires a large amount of energy, the present study of bioenergy systems is relevant in order to achieve crop yields less dependent on fossil fuels and to reduce the environmental impact due to fertilization. In this study, the suitability of the LCA methodology to analyze the environmental impact of sunflower cultivation systems with different forms of mineral nitrogen fertilizers urea and ammonium nitrate was investigated. Effects on climate change were estimated by the use of Ecoinvent 2.2 database default value for soil N2O emission factor (1%) and local emission data (0.8%) of mineral nitrogen applied to soils. LCA analysis showed a higher impact on environmental categories (human health and ecosystem quality) for the system in which urea was used as a nitrogen source. Use of urea fertilizer showed a higher impact on resource consumption due to fossil fuel consumption. Use of mineral nitrogen fertilizers showed a higher environmental burden than other inputs required for sunflower cultivation systems under study. Urea and ammonium nitrate showed, respectively, a 7.8% and 4.9% reduced impact of N2O as greenhouse gas by using direct field data of soil N2O emission factor compared to the default soil emission factor of 2006 IPCC Guidelines. Use of ammonium nitrate as mineral nitrogen fertilizer in sunflower cultivation would have a lower impact on environmental categories considered. Further environmental analysis of available technologies for fertilizer production might be also evaluated in order to reduce the environmental impacts of each fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Coupled effects of straw and nitrogen management on N2O and CH4 emissions of rainfed agriculture in Northwest China

    NASA Astrophysics Data System (ADS)

    Htun, Yin Min; Tong, Yanan; Gao, Pengcheng; Xiaotang, Ju

    2017-05-01

    Straw incorporation is a common agricultural practice, but the additional carbon source may increase greenhouse gas emissions by stimulating microbial activity in soil, particularly when straw is applied at the same time as nitrogen (N) fertilizer. We investigated the coupled effects of straw and N fertilizer on greenhouse gas emissions in a rainfed winter wheat-summer fallow system in Northwest China. Simultaneous applications of straw and N fertilizer increased N2O emissions by up to 88%, net greenhouse gas (NGHG) emission and net greenhouse gas intensity (NGHGI) by over 90%, and the N2O emission factor by over 2-fold. When straw was applied before N fertilizer, the emission factor (0.22%) decreased by approximately one-half compared with that for simultaneous applications (0.45%). In addition, early straw incorporation decreased N2O emissions, NGHG, and NGHGI by 35% (0.62 kg N2O-N ha-1 yr-1), 40% (242 kg CO2-eq ha-1 yr-1), and 38% (42 kg CO2-eq t-1 grain), respectively. We identified the period 30-35 days after N fertilization as a crucial period for evaluating the effectiveness of management practices on N2O emissions. The time between straw and fertilizer applications was negatively related to N2O emission (R2 = 0.8031; p < 0.01) but positively related to soil CH4 uptake (R2 = 0.7662; p < 0.01). Therefore, early straw incorporation can effectively mitigate greenhouse gas emissions by reducing N2O flux and increasing soil CH4 uptake without significantly decreasing grain yield.

  15. Corn response and soil nutrient concentration from subsurface application of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer management is vital to corn (Zea mays L.) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally surface broadcast, potentially causing volatilization of NH3. Recently a new application method was devel...

  16. [Study on High-yield Cultivation Measures for Arctii Fructus].

    PubMed

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  17. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.).

    PubMed

    Nguyen, Phuong M; Niemeyer, Emily D

    2008-09-24

    Many herbs and spices have been shown to contain high levels of polyphenolic compounds with potent antioxidant properties. In the present study, we explore how nutrient availability, specifically nitrogen fertilization, affects the production of polyphenolic compounds in three cultivars (Dark Opal, Genovese, and Sweet Thai) of the culinary herb, basil ( Ocimum basilicum L.). Nitrogen fertilization was found to have a significant effect on total phenolic levels in Dark Opal ( p < 0.001) and Genovese ( p < 0.001) basil with statistically higher phenolic contents observed when nutrient availability was limited at the lowest (0.1 mM) applied nitrogen treatment. Similarly, basil treated at the lowest nitrogen fertilization level generally contained significantly higher rosmarinic ( p = 0.001) and caffeic ( p = 0.001) acid concentrations than basil treated at other nitrogen levels. Nitrogen fertilization also affected antioxidant activity ( p = 0.002) with basil treated at the highest applied nitrogen level, 5.0 mM, exhibiting lower antioxidant activity than all other nitrogen treatments. The anthocyanin content of Dark Opal basil was not affected by applied nitrogen level, but anthocyanin concentrations were significantly impacted by growing season ( p = 0.001). Basil cultivar was also determined to have a statistically significant effect on total phenolic levels, rosmarinic and caffeic acid concentrations, and antioxidant activities.

  18. [Influences of biochar and nitrogen fertilizer on soil nematode assemblage of upland red soil].

    PubMed

    Lu, Yan-yan; Wang, Ming-wei; Chen, Xiao-vun; Liu, Man-qiang; Chen, Xiao-min; Cheng, Yan-hong; Huang, Qian-ru; Hu, Feng

    2016-01-01

    The use of biochar as soil remediation amendment has received more and more concerns, but little attention has been paid to its effect on soil fauna. Based on the field experiment in an upland red soil, we studied the influences of different application rates of biochar (0, 10, 20, 30, 40 t · hm⁻²) and nitrogen fertilizer (60, 90, 120 kg N · hm⁻²) on soil basic properties and nematode assemblages during drought and wet periods. Our results showed that the biochar amendment significantly affect soil moisture and pH regardless of drought or wet period. With the increasing of biochar application, soil pH significantly increased, while soil moisture increased first and then decreased. Soil microbial properties (microbial biomass C, microbial biomass N, microbial biomass C/N, basal respiration) were also significantly affected by the application of biochar and N fertilizer. Low doses of biochar could stimulate the microbial activity, while high doses depressed microbial activity. For example, averaged across different N application rates, biochar amendment at less than 30 t · hm⁻² could increase microbial activity in the drought and wet periods. Besides, the effects of biochar also depended on wet or drought period. When the biochar application rate higher than 30 t · hm⁻², the microbial biomass C was significantly higher in the drought period than the control, but no differences were observed in the wet period. On the contrary, microbial biomass N showed a reverse pattern. Dissolved organic matter and mineral N were affected by biochar and N fertilizer significantly in the drought period, however, in the wet period they were only affected by N fertilizer rather than biochar. There was significant interaction between biochar and N fertilizer on soil nematode abundance and nematode trophic composition independent of sampling period. Combined high doses of both biochar and N fertilization promoted soil nematode abundance. Moreover, the biochar amendment increased the proportion of fungivores especially in the drought period, suggesting the biochar was the preferred fungal energy channel in comparison to soil without biochar addition. In summary, complex patterns occurred not only due to the application rate of biochar as well as their interactions with N fertilization but also due to the drought and wet periods. It is, therefore, necessary to consider different ecological factors when evaluating the effects of biochar in future.

  19. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System

    PubMed Central

    Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V.

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient. PMID:27031697

  20. The dynamics of nitrogen derived from a chemical nitrogen fertilizer with treated swine slurry in paddy soil-plant systems

    PubMed Central

    Lee, Joonhee

    2017-01-01

    A well-managed chemical nitrogen (N) fertilization practice combined with treated swine slurry (TSS) is necessary to improve sustainability and N use efficiency in rice farming. However, little is known about the fate of N derived from chemical N fertilizer with and without TSS in paddy soil-plant systems. The objectives of this study were (1) to estimate the contribution of applied N fertilizer to N turnover in rice paddy soil with different N fertilization practices that were manipulated by the quantity of treated swine slurry and chemical N fertilizer (i.e., HTSS+LAS, a high amount of TSS with a low amount of ammonium sulfate; LTSS+HAS, a low amount of TSS with a high amount of ammonium sulfate; AS, ammonium sulfate with phosphorus and potassium; C, the control) and (2) to compare the rice response to applied N derived from each N fertilization practice. Rice biomass yield, 15N recovery in both rice grain and stems, soil total N (TN), soil inorganic N, and soil 15N recovery were analyzed. Similar amounts of 15N uptake by rice in the TSS+AS plots were obtained, indicating that the effects of the different quantities of TSS on chemical fertilizer N recovery in rice during the experimental period were not significant. The soil 15N recoveries of HTSS+LAS, LTSS+HAS, and AS in each soil layer were not significantly different. For the HTSS+LAS, LTSS+HAS and AS applications, total 15N recoveries were 42%, 43% and 54%, respectively. Because the effects of reducing the use of chemical N fertilizer were attributed to enhancing soil quality and cost-effectiveness, HTSS+LAS could be an appropriate N fertilization practice for improving the long-term sustainability of paddy soil-plant systems. However, N losses, especially through the coupled nitrification-denitrification process, can diminish the benefits that HTSS+LAS offers. PMID:28339491

  1. The dynamics of nitrogen derived from a chemical nitrogen fertilizer with treated swine slurry in paddy soil-plant systems.

    PubMed

    Lee, Joonhee; Choi, Hong L

    2017-01-01

    A well-managed chemical nitrogen (N) fertilization practice combined with treated swine slurry (TSS) is necessary to improve sustainability and N use efficiency in rice farming. However, little is known about the fate of N derived from chemical N fertilizer with and without TSS in paddy soil-plant systems. The objectives of this study were (1) to estimate the contribution of applied N fertilizer to N turnover in rice paddy soil with different N fertilization practices that were manipulated by the quantity of treated swine slurry and chemical N fertilizer (i.e., HTSS+LAS, a high amount of TSS with a low amount of ammonium sulfate; LTSS+HAS, a low amount of TSS with a high amount of ammonium sulfate; AS, ammonium sulfate with phosphorus and potassium; C, the control) and (2) to compare the rice response to applied N derived from each N fertilization practice. Rice biomass yield, 15N recovery in both rice grain and stems, soil total N (TN), soil inorganic N, and soil 15N recovery were analyzed. Similar amounts of 15N uptake by rice in the TSS+AS plots were obtained, indicating that the effects of the different quantities of TSS on chemical fertilizer N recovery in rice during the experimental period were not significant. The soil 15N recoveries of HTSS+LAS, LTSS+HAS, and AS in each soil layer were not significantly different. For the HTSS+LAS, LTSS+HAS and AS applications, total 15N recoveries were 42%, 43% and 54%, respectively. Because the effects of reducing the use of chemical N fertilizer were attributed to enhancing soil quality and cost-effectiveness, HTSS+LAS could be an appropriate N fertilization practice for improving the long-term sustainability of paddy soil-plant systems. However, N losses, especially through the coupled nitrification-denitrification process, can diminish the benefits that HTSS+LAS offers.

  2. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping.

    PubMed

    Zhou, Shiwei; Liu, Jing; Xu, Minggang; Lv, Jialong; Sun, Nan

    2015-10-01

    Fertilization is important to increase crop yields, but long-term application of fertilizers probably aggravated the risk of heavy metals in acidic soils. In this study, the effect of 22-year fertilization and cropping on accumulation, availability, and uptake of heavy metals in red soil was investigated. The results showed that pig manure promoted significantly cadmium (Cd) accumulation (average 1.1 mg kg(-1)), nearly three times higher than national soil standards and, thus, increased metal availability. But the enrichment of heavy metals decreased remarkably by 50.5 % under manure fertilization, compared with CK (control without fertilization). On the contrary, chemical fertilizers increased greatly lead (Pb) availability and Cd activity; in particular, exceeding 85 % of soil Cd became available to plant under N (nitrogen) treatment during 9-16 years of fertilization, which correspondingly increased their enrichment by 29.5 %. Long-term application of chemical fertilizers caused soil acidification and manure fertilization led to the increase in soil pH, soil organic matter (SOM), and available phosphorus (Olsen P), which influenced strongly metal behavior in red soil, and their effect had extended to deeper soil layer (20∼40 cm). It is advisable to increase application of manure alone with low content of heavy metals or in combination with chemical fertilizers to acidic soils in order to reduce toxic metal risk.

  3. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shengmu; Xue, Kai; He, Zhili

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNAmore » from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.« less

  4. Importance of Nitrogen Availability on Land Carbon Sequestration in Northern Eurasia during the 21st Century

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Melillo, J. M.; Monier, E.; Sokolov, A. P.; Lu, X.; Zhuang, Q.

    2015-12-01

    Atmospheric nitrogen deposition, nitrogen fixation, and the application of nitrogen fertilizers provide subsidies to land ecosystems that can increase nitrogen availability for vegetation production and thereby influence land carbon dynamics. In addition, enhanced decomposition of soil organic matter (SOM) from warming soils and permafrost degradation may also increase nitrogen availability in Northern Eurasia. Here, we examine how changes in nitrogen availability may influence land carbon dynamics in Northern Eurasia during the 21st century by comparing results for a "business as usual" scenario (the IPCC Representative Concentration Pathways or RCP 8.5) and a stabilization scenario (RCP 4.5) between a version of the Terrestrial Ecosystem Model that does not consider the effects of atmospheric nitrogen deposition, nitrogen fixation and soil thermal dynamics on land carbon dynamics (TEM 4.4) and a version that does consider these dynamics (TEM 6.0). In these simulations, atmospheric nitrogen deposition, nitrogen fixation, and fertilizer applications provide an additional 3.3 Pg N (RCP 4.5) to 3.9 Pg N (RCP 8.5) to Northern Eurasian ecosystems over the 21st century. Land ecosystems retain about 38% (RCP4.5) to 48% (RCP 8.5) of this nitrogen subsidy. Net nitrogen mineralization estimated by TEM 6.0 provide an additional 1.0 Pg N to vegetation than estimated by TEM 4.4 over the 21st century from enhanced decomposition of SOM including SOM formerly protected by permafrost. The enhanced nitrogen availability in TEM 6.0 allows Northern Eurasian ecosystems to sequester 1.8x (RCP 8.5) to 2.4x (RCP 4.5) more carbon over the 21st century than estimated by TEM 4.4. Our results indicate that consideration of nitrogen subsidies and soil thermal dynamics have a large influence on how simulated land carbon dynamics in Northern Eurasia will respond to future changes in climate, atmospheric chemistry, and disturbances.

  5. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water

    USGS Publications Warehouse

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.

    2000-01-01

    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  6. Efficacies of biochar and biochar-based amendment on vegetable yield and nitrogen utilization in four consecutive planting seasons.

    PubMed

    Wang, Hefang; Zheng, Hao; Jiang, Zhixiang; Dai, Yanhui; Liu, Guocheng; Chen, Lei; Luo, Xianxiang; Liu, Minhui; Wang, Zhenyu

    2017-09-01

    Biochar has been suggested as a potential tailored technology for mediating soil conditions and improving crop yields. However, the efficacies of biochar and biochar-based amendments (e.g., composted biochar) in agricultural soils under a rotation system remain uncertain. In this study, an arable soil was subjected to peanut shell biochar (PBC) and biochar-based amendment (PAD) combined with or without nitrogen (N) fertilizer to evaluate their effects on vegetable yield, N bioavailability, and their relative contribution to vegetable biomass in four consecutive planting seasons. PBC alone or in co-application with N fertilizer had little effect on vegetable yield, while PAD co-application with N fertilizer decreased vegetable biomass because of the inhibition of root morphology by excessive nutrient supply. PBC and PAD applications increased rhizosphere soil pH due to OH - and HCO 3 - release and NO 3 - -N uptake. Although the addition of PAD increased soil N contents due to its high contents in PAD, it had little effects on N utilization efficiency (NUE) in the four seasons. The relative contribution of PBC, PAD, and their interaction with N fertilizer to biomass yield was maintained at a low level. Our results indicated that a biochar-based amendment (e.g., PAD) was a potential alternative to N fertilizer, but the ratio of biochar to additives should be managed carefully to generate optimal benefits. Notably, the efficacy of PAD on plant growth was closely associated with plant species, and further related research on different plants is encouraged. Copyright © 2017. Published by Elsevier B.V.

  7. A novel mobile dual-wavelength laser altimetry system for improved site-specific Nitrogen fertilizer applications

    NASA Astrophysics Data System (ADS)

    Eitel, J.; Magney, T. S.; Vierling, L. A.; Brown, T. T.; Huggins, D. R.

    2012-12-01

    Reducing fertilizer inputs while maintaining yield would increase farmer's profits and similarly lessen the adverse environmental effects of production agriculture. The development of technologies that allow precise, site-specific application of Nitrogen (N) fertilizer has thus been an important research goal over the past decades. Remote sensing of foliar crop properties and function with tractor-mountable optical sensors has thought to be useful to optimize N fertilizer applications. However, on-the-go sensing of foliar crop properties and function has proven difficult, particularly during early crop growth stages when fertilizer decisions are often made. This difficulty arises from the fact that the spectral signal measured by on-the-go sensors is dominated by soil reflectance during early crop growth stages. Here, we present the basic principles behind a novel, dual-wavelength, tractor mountable laser altimetry system that measures the laser return intensity of the reflected green and red laser light. The green (532 nm) and the red (660 nm) wavelength combination allows calculation of a modified Photochemical Reflectance Index (mPRI) that have shown to be sensitive to both crop function and foliar chemistry. The small field of view of the laser points (diameter: 4 mm) combined with its high sampling rate (1000 points sec-1) allows vegetation returns to be isolated from ground returns by using simple thresholds. First tests relating foliar N of winter wheat (Triticum aestivum L.) with laser derived mPRI are promising (r2 = 0.72). Further research is needed to test the relationship between laser derived spectral indices and crop function.

  8. Response of Douglas-fir seedlings to nitrogen, sulfur, and phosphorus fertilizers.

    Treesearch

    M.A. Radwan; J.S. Shumway

    1985-01-01

    Effects of nitrogen, sulfur, and phosphorus fertilizers on growth and nutrient content of Douglas-fir seedlings potted in Grove and Bunker forest soils were determined. Growth was primarily stimulated with nitrogen in the Grove soil and with phosphorus in the Bunker soil. Fertilization influenced nutrient levels in the seedlings. Growth results agree with observed...

  9. Corn grain and nutrient uptake response to different swine manure application methods

    USDA-ARS?s Scientific Manuscript database

    Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...

  10. Influence of nitrogen rate and drip application method on pomegranate fruit yield and quality

    USDA-ARS?s Scientific Manuscript database

    Currently, 98% of domestic commercial pomegranate fruit (Punica granatum L.) are produced in California on over 13,000 ha. Developing more efficient methods of water and fertilizer application are important in reducing production costs. In 2012, a pomegranate orchard established in 2010 with a den...

  11. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan

    2016-08-01

    Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG and Nr releases, especially for CH4 emission and NH3 volatilization, from rice production in the TLR could be further reduced, considering the current incorporation pattern of wheat straw and N fertilizer.

  12. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  13. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Golden, Dadigamuwage C. (Inventor); Allen, Earl R. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  14. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems

    USDA-ARS?s Scientific Manuscript database

    Improving soil fertility/productivity and reducing environmental impact of nitrogen (N) fertilization in intensive farming systems are essential for sustainable agriculture and food security around the world. The objective of this study was to determine the long-term effects of various fertilization...

  15. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  16. Assessment of soil nitrogen variability related to N doses applied through fertirrigation system.

    NASA Astrophysics Data System (ADS)

    Castellanos, M. T.; Tarquis, A. M.; Ribas, F.; Cabello, M. J.; Arce, A.; Cartagena, M. C.

    2009-04-01

    The knowledge of water and nitrogen dynamics in soils under drip irrigation and fertilizer application is essential to optimizing water and nitrogen management. Recent studies of water and nitrogen distribution in the soil under drip irrigation focus on water and inorganic nitrogen distribution around the drip emitters. Results of the studies are not verified with field experimental data. Reasons might include difficulties in obtaining field experimental data under irrigation and nitrogen fertilization [1]. N is an element which produces a stronger crop response, accelerates vegetative growth, plant development and yield increase. Accumulation and redistribution of N within the soil varies depending on management practices, soil characteristics, and growing season precipitation. Soil N high content at post-harvest is usually provided as evidence that N fertilizer had been applied in excess. The aim of this study is to characterize mineral N distribution in the soil profile measured at 5, 15, 25, 35, 45 and 55 cm of depth at the end of melon crop that received three N treatments: 93 (N93), 243 (N243) and 393 kg N ha-1(N393). The agronomic practices created a higher variability in soil Nitrogen content. NH4- N reduction in the soil profile can also be explained by the nitrification process. The high absorption and rapid nitrification of NH4+ ions in the plot layer are the main reason of a reduce movement downstream. NO3- ions present higher mobility in the soil profile. [1] Rahil, M.H.; Antonopoulos, V.Z. 2007. Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater. Agricultural Water Management 92, 142 - 150. Acknowledgements: This project has been supported by INIA-RTA04-111

  17. Effects of manure history and nitrogen fertilizer rate on sugarbeet production in the northwest U.S.

    USDA-ARS?s Scientific Manuscript database

    Past manure applications effects on sugarbeet production needs to be assessed in the areas where manure applications to crop land are common. A study was conducted in Kimberly, Idaho in 2014 and 2016 to assess the effects of manure application history and N rates on sugarbeet production on a Portneu...

  18. Management, regulation and environmental impacts of nitrogen fertilization in Northwestern Europe under the Nitrates Directive; a benchmark study

    NASA Astrophysics Data System (ADS)

    van Grinsven, H. J. M.; ten Berge, H. F. M.; Dalgaard, T.; Fraters, B.; Durand, P.; Hart, A.; Hofman, G.; Jacobsen, B. H.; Lalor, S. T. J.; Lesschen, J. P.; Osterburg, B.; Richards, K. G.; Techen, A.-K.; Vertès, F.; Webb, J.; Willems, W. J.

    2012-06-01

    Implementation of the Nitrates Directive (NiD) and its environmental impacts were compared for member states in the Northwest of the European Union (Ireland, UK, Denmark, The Netherlands, Belgium, Northern France and Germany). The main sources of data were national reports for the third reporting period for the NiD (2004-2007) and results of the MITERRA-EUROPE model. Implementation of the NiD in the considered member states is fairly comparable regarding restrictions for where and when to apply fertilizer and manure, but very different regarding application limits for N fertilization. Issues of concern and improvement of the implementation of the NiD are accounting for the fertilizer value of nitrogen in manure, and relating application limits for total nitrogen (N) to potential crop yield and N removal. The most significant environmental effect of the implementation of the NiD since 1995 is a major contribution to the decrease of the soil N balance (N surplus), particularly in Belgium, Denmark, Ireland, The Netherlands and the UK. This decrease is accompanied by a modest decrease of nitrate concentrations since 2000 in fresh surface waters in most countries. This decrease is less prominent for groundwater in view of delayed response of nitrate in deep aquifers. In spite of improved fertilization practices, the southeast of The Netherlands, the Flemish Region and Brittany remain to be regions of major concern in view of a combination of a high nitrogen surplus, high leaching fractions to groundwater and tenacious exceedance of the water quality standards. On average the gross N balance in 2008 for the seven member states in EUROSTAT and in national reports was about 20 kg N ha-1 lower than by MITERRA. The major cause is higher estimates of N removal in national reports which can amount to more than 50kg N ha-1. Differences between procedures in member states to assess nitrogen balances and water quality and a lack of cross boundary policy evaluations are handicaps when benchmarking the effectiveness of the NiD. This provides a challenge for the European Commission and its member states as the NiD remains an important piece of legislation for protecting drinking water quality in regions with many private or small public production facilities and controlling aquatic eutrophication from agricultural sources.

  19. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study

    NASA Astrophysics Data System (ADS)

    van Grinsven, H. J. M.; ten Berge, H. F. M.; Dalgaard, T.; Fraters, B.; Durand, P.; Hart, A.; Hofman, G.; Jacobsen, B. H.; Lalor, S. T. J.; Lesschen, J. P.; Osterburg, B.; Richards, K. G.; Techen, A.-K.; Vertès, F.; Webb, J.; Willems, W. J.

    2012-12-01

    Implementation of the Nitrates Directive (NiD) and its environmental impacts were compared for member states in the northwest of the European Union (Ireland, United Kingdom, Denmark, the Netherlands, Belgium, Northern France and Germany). The main sources of data were national reports for the third reporting period for the NiD (2004-2007) and results of the MITERRA-EUROPE model. Implementation of the NiD in the considered member states is fairly comparable regarding restrictions for where and when to apply fertilizer and manure, but very different regarding application limits for N fertilization. Issues of concern and improvement of the implementation of the NiD are accounting for the fertilizer value of nitrogen in manure, and relating application limits for total nitrogen (N) to potential crop yield and N removal. The most significant environmental effect of the implementation of the NiD since 1995 is a major contribution to the decrease of the soil N balance (N surplus), particularly in Belgium, Denmark, Ireland, the Netherlands and the United Kingdom. This decrease is accompanied by a modest decrease of nitrate concentrations since 2000 in fresh surface waters in most countries. This decrease is less prominent for groundwater in view of delayed response of nitrate in deep aquifers. In spite of improved fertilization practices, the southeast of the Netherlands, the Flemish Region and Brittany remain to be regions of major concern in view of a combination of a high nitrogen surplus, high leaching fractions to groundwater and tenacious exceedance of the water quality standards. On average the gross N balance in 2008 for the seven member states in EUROSTAT and in national reports was about 20 kg N ha-1 yr-1 lower than by MITERRA. The major cause is higher estimates of N removal in national reports which can amount to more than 50 kg N ha-1 yr-1. Differences between procedures in member states to assess nitrogen balances and water quality and a lack of cross-boundary policy evaluations are handicaps when benchmarking the effectiveness of the NiD. This provides a challenge for the European Commission and its member states, as the NiD remains an important piece of legislation for protecting drinking water quality in regions with many private or small public production facilities and controlling aquatic eutrophication from agricultural sources.

  20. [Effect of long-term application of NPK fertilizer on maize yield and yellow soil nutrients sustainability in Guizhou, China].

    PubMed

    Liu, Yan Ling; Li, Yu; Zhang, Ya Rong; Huang, Xing Cheng; Zhang, Wen An; Jiang, Tai Ming

    2017-11-01

    A long-term fertilization field experiment was conducted to investigate the effect of nitrogen (N), phosphorus (P), and potassium (K) fertilizer on maize relative yield, yield-increasing effect and the changes of nutrients in yellow soil in Guizhou Province. Five fertilizer combinations were evaluated, including balanced fertilization (NPK) and nutrient deficiency treatments (N, NK, NP, and PK). The maize relative yield, contribution efficiency of N, P, K fertilizer application, sustainability index of soil N, P, K nutrients, and other indicators were measured. The results revealed that the balanced fertilization (NPK) significantly increased maize yield, and the average yield under each treatment ranked as: NPK>NP>NK>PK>CK. The contribution efficiency and agronomic efficiency of N, P, K fertilizer application was N>P>K. The fertilization dependence was ranked as: combined application of N, P and K>N>P>K. But in the lack of P treatment (NK), the maize relative yield significantly decreased at a speed of 1.4% per year, with the contribution efficiency and fertilization dependence of applied P significantly increasing at a speed of 2.3% per year and 1.4% per year, respectively. Over time, the effect of P fertilizer on maize yield gradually became equal to that of N fertilizer. The pH and soil organic matter content were the lowest in the P-lack treatment (NK), while they were higher in the N-lack treatment (PK). The application of chemical P significantly improved the sustainability index of soil P, but the application of chemical N and K did not significantly change the sustainability index of soil N and K nutrients compared to the N- and K-lack treatments, respectively. In summary, the use of balanced fertilizer application is critical for achieving high maize yield in typical yellow soil regions in Guizhou Province. P and N fertilizers are equally important for improving maize yield, and long-term application of unbalanced chemical fertilizer, especially the lack of P, would not benefit the sustainable use of nutrients in yellow soil.

  1. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Gao, Yang; Yu, Qiang

    2017-09-01

    Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the downstream regions, followed by fertilizer application optimization.

  2. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    NASA Astrophysics Data System (ADS)

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great potential to increase the soil fertility of marginal substrates and produce substantial biomass yields.

  3. Management of the first in vitro fertilization cycle for unexplained infertility: a cost-effectiveness analysis of split in vitro fertilization-intracytoplasmic sperm injection

    PubMed Central

    Vitek, Wendy S.; Galárraga, Omar; Klatsky, Peter C.; Robins, Jared C.; Carson, Sandra A.; Blazar, Andrew S.

    2015-01-01

    Objective To determine the cost-effectiveness of split IVF-intracytoplasmic sperm injection (ICSI) for the treatment of couples with unexplained infertility. Design Adaptive decision model. Setting Academic infertility clinic. Patient(s) A total of 154 couples undergoing a split IVF-ICSI cycle and a computer-simulated cohort of women <35 years old with unexplained infertility undergoing IVF. Intervention(s) Modeling insemination method in the first IVF cycle as all IVF, split IVF-ICSI, or all ICSI, and adapting treatment based on fertilization outcomes. Main Outcome Measure(s) Live birth rate, incremental cost-effectiveness ratio (ICER). Result(s) In a single cycle, all IVF is preferred as the ICER of split IVF-ICSI or all ICSI ($58,766) does not justify the increased live birth rate (3%). If two cycles are needed, split IVF/ICSI is preferred as the increased cumulative live birth rate (3.3%) is gained at an ICER of $29,666. Conclusion(s) In a single cycle, all IVF was preferred as the increased live birth rate with split IVF-ICSI and all ICSI was not justified by the increased cost per live birth. If two IVF cycles are needed, however, split IVF/ICSI becomes the preferred approach, as a result of the higher cumulative live birth rate compared with all IVF and the lesser cost per live birth compared with all ICSI. PMID:23876534

  4. Management of the first in vitro fertilization cycle for unexplained infertility: a cost-effectiveness analysis of split in vitro fertilization-intracytoplasmic sperm injection.

    PubMed

    Vitek, Wendy S; Galárraga, Omar; Klatsky, Peter C; Robins, Jared C; Carson, Sandra A; Blazar, Andrew S

    2013-11-01

    To determine the cost-effectiveness of split IVF-intracytoplasmic sperm injection (ICSI) for the treatment of couples with unexplained infertility. Adaptive decision model. Academic infertility clinic. A total of 154 couples undergoing a split IVF-ICSI cycle and a computer-simulated cohort of women <35 years old with unexplained infertility undergoing IVF. Modeling insemination method in the first IVF cycle as all IVF, split IVF-ICSI, or all ICSI, and adapting treatment based on fertilization outcomes. Live birth rate, incremental cost-effectiveness ratio (ICER). In a single cycle, all IVF is preferred as the ICER of split IVF-ICSI or all ICSI ($58,766) does not justify the increased live birth rate (3%). If two cycles are needed, split IVF/ICSI is preferred as the increased cumulative live birth rate (3.3%) is gained at an ICER of $29,666. In a single cycle, all IVF was preferred as the increased live birth rate with split IVF-ICSI and all ICSI was not justified by the increased cost per live birth. If two IVF cycles are needed, however, split IVF/ICSI becomes the preferred approach, as a result of the higher cumulative live birth rate compared with all IVF and the lesser cost per live birth compared with all ICSI. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Effects of different forms of plant-derived organic matter on nitrous oxide emissions.

    PubMed

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-07-13

    To investigate the impact of different forms of plant-derived organic matter on nitrous oxide (N2O) emissions, an incubation experiment with the same rate of total nitrogen (N) application was carried out at 25 °C for 250 days. Soils were incorporated with maize-derived organic matter (i.e., maize residue-derived dissolved organic matter and maize residues with different C/N ratios) and an inorganic N fertilizer (urea). The pattern and magnitude of nitrous oxide (N2O) emissions were affected by the form of N applied. Single application of maize-derived organic matter resulted in a higher N2O emission than single application of the inorganic N fertilizer or combined application of the inorganic N fertilizer and maize-derived organic matter. The positive effect of maize residue-derived dissolved organic matter (DOM) addition on N2O emissions was relatively short-lived and mainly occurred at the early stage following DOM addition. In contrast, the positive effect induced by maize residue addition was more pronounced and lasted for a longer period. Single application of maize residues resulted in a substantial decrease in soil nitric nitrogen (NO3(-)-N), but it did not affect the production of N2O. No significant relationship between N2O emission and NO3(-)-N and ammonium nitrogen (NH4(+)-N) suggested that the availability of soil N was not limiting the production of N2O in our study. The key factors affecting soil N2O emission were the soil dissolved organic carbon (DOC) content and metabolism quotient (qCO2). Both of them could explain 87% of the variation in cumulative N2O emission. The C/N ratio of maize-derived organic matter was a poor predictor of N2O emission when the soil was not limited by easily available C and the available N content met the microbial N demands for nitrification and denitrification. The results suggested that the magnitude of N2O emission was determined by the impact of organic amendments on soil C availability and microbial activity rather than on soil N availability. In agricultural management practices, if the N inputs from organic and inorganic N fertilizers are equivalent, addition of organic N fertilizers that contain high amounts of available C will result in a higher N2O emission.

  6. Growth and yield of patchouli (Pogostemon cablin, Benth) due to mulching and method of fertilizer on rain-fed land

    NASA Astrophysics Data System (ADS)

    Nasruddin; Harahap, E. M.; Hanum, C.; Siregar, L. A. M.

    2018-02-01

    The drought stress that occurs during growth results in a drastic reduction in growth and yield. This study was aimed to study the effect of mulching and method of fertilizer application in reducing the impact of drought stress on patchouli plants. The experiment was conducted from July to December 2016 using a split plot design into three replications with two treatment factors. The first factor was mulch factor with three levels, i.e. M0 (without mulch), M1 (rice straw mulch) and M2 (silver black plastic mulch). The second factor was the method of fertilizer application consisting of three stages: C1 (once), C2 (twice), C3 (three times). The parameters included plant height, number of branches, number of leaves, root length, wet weight of plant, root canopy ratio, total of chlorophyll, soil temperature and soil moisture content. The results showed the use of straw mulch reduce the impact of drought stress on patchouli plants. Two times fertilizer application gave better growth and yield. The use of straw mulch produced lower temperature degrees and maintained soil moisture content.

  7. Soil Macronutrient Sensing for Precision Agriculture

    USDA-ARS?s Scientific Manuscript database

    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destru...

  8. Plantation management intensity affects belowground carbon and nitrogen storage in northern California

    Treesearch

    K. J. McFarlane; S. H. Schoenholtz; R. F. Powers

    2009-01-01

    Belowground C and N storage is important in maintaining forestproductivity and to CO2 sequestration. How these pools respondto management is poorly understood. We investigated effectsof repeated applications of complete fertilizer and competing...

  9. Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.

    PubMed

    Wang, Yiyao; Li, Huaizheng; Xu, Zuxin

    2016-01-01

    Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.

  10. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil.

    PubMed

    Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue

    2018-02-01

    Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.

  11. Effect of nitrogen fertilization and residue management practices on ammonia emissions from subtropical sugarcane production

    NASA Astrophysics Data System (ADS)

    mudi, Sanku Datta; Wang, Jim J.; Dodla, Syam Kumar; Arceneaux, Allen; Viator, H. P.

    2016-08-01

    Ammonia (NH3) emission from soil is a loss of nitrogen (N) nutrient for plant production as well as an issue of air quality, due to the fact that it is an active precursor of airborne particulate matters. Ammonia also acts as a secondary source of nitrous oxide (N2O) emission when present in the soil. In this study, the impacts of different sources of N fertilizers and harvest residue management schemes on NH3 emissions from sugarcane production were evaluated based on an active chamber method. The field experiment plots consisting of two sources of N fertilizer (urea and urea ammonium nitrate (UAN)) and two common residue management practices, namely residue retained (RR) and residue burned (RB), were established on a Commerce silt loam. The NH3 volatilized following N fertilizer application was collected in an impinger containing diluted citric acid and was subsequently analyzed using ion chromatography. The NH3 loss was primarily found within 3-4 weeks after N application. Average seasonal soil NH3 flux was significantly greater in urea plots with NH3-N emission factor (EF) twice or more than in UAN plots (2.4-5.6% vs. 1.2-1.7%). The RR residue management scheme had much higher NH3 volatilization than the RB treatment regardless of N fertilizer sources, corresponding to generally higher soil moisture levels in the former. Ammonia-N emissions in N fertilizer-treated sugarcane fields increased with increasing soil water-filled pore space (WFPS) up to 45-55% observed in the field. Both N fertilizer sources and residue management approaches significantly affected NH3 emissions.

  12. The effects of nitrogen fertilization on N2O emissions from a rubber plantation

    NASA Astrophysics Data System (ADS)

    Zhou, Wen-Jun; Ji, Hong-Li; Zhu, Jing; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhang, Xiang; Zhao, Wei; Dong, Yu-Xin; Bai, Xiao-Long; Lin, You-Xin; Zhang, Jun-Hui; Zheng, Xun-Hua

    2016-06-01

    To gain the effects of N fertilizer applications on N2O emissions and local climate change in fertilized rubber (Hevea brasiliensis) plantations in the tropics, we measured N2O fluxes from fertilized (75 kg N ha-1 yr-1) and unfertilized rubber plantations at Xishuangbanna in southwest China over a 2-year period. The N2O emissions from the fertilized and unfertilized plots were 4.0 and 2.5 kg N ha-1 yr-1, respectively, and the N2O emission factor was 1.96%. Soil moisture, soil temperature, and the area weighted mean ammoniacal nitrogen (NH4+-N) content controlled the variations in N2O flux from the fertilized and unfertilized rubber plantations. NH4+-N did not influence temporal changes in N2O emissions from the trench, slope, or terrace plots, but controlled spatial variations in N2O emissions among the treatments. On a unit area basis, the 100-year carbon dioxide equivalence of the fertilized rubber plantation N2O offsets 5.8% and 31.5% of carbon sink of the rubber plantation and local tropical rainforest, respectively. When entire land area in Xishuangbanna is considered, N2O emissions from fertilized rubber plantations offset 17.1% of the tropical rainforest’s carbon sink. The results show that if tropical rainforests are converted to fertilized rubber plantations, regional N2O emissions may enhance local climate warming.

  13. Nitrogen Losses as N2O and NO After Non-tillage Agricultural Practice in a Tropical Corn Field at Guarico State, Venezuela.

    NASA Astrophysics Data System (ADS)

    Perez, T. J.; Gil, J. A.; Marquina, S.; Donoso, L. E.; Trumbore, S. E.; Tyler, S. C.

    2005-12-01

    Historically, the most common agricultural practice in Northern Guárico, one of Venezuelan largest cereal production regions, has been mono cropping, with extensive tillage operations that usually causes rapid soil degradation and nitrogen losses. Alternative production systems, such as non-tillage agricultural practices, have been extensively implemented during the last few years. However, studies of the nitrogen losses associated with these alternative practices are not widely available. This study was conducted at "Fundo Tierra Nueva", Guárico State (9°23'33" N, 66° 38'30" W) in a corn field under the non-tillage agricultural practice, during the growing season June-August 2005. The soils are Vertisols (Typic Haplusterts). The area has two well defined precipitation seasons: wet (May-October) and dry (November-April). The mean annual precipitation of the area is 622±97.3 mm (last 5 years). Because the irrigation of the crop depends on precipitation, the planting is scheduled during the months of highest precipitation in June-July. We measured nitrogenous gas emissions (N2O and NO), concentrations of total nitrogen (NT), NH4+ and NO3- in soil (0-100 cm) after fertilization to estimate the nitrogen losses. We also measured CO2 emissions to evaluate the relationship of microbial respiration to the emissions of nitrogenous trace gases. Soils were fertilized with 54 kgN/ha (NPK 12:24:12, nitrogen as NH4Cl) and planted simultaneously by a planting machine provided with a furrow opener where the fertilizer and seeds are incorporated between 0-10 cm depth. Thirty days later, soils were fertilized by broadcast addition of 18 kgN/ha (as ammonium nitrate). Nitrous oxide emissions were highly dependant on the water content. Prior to fertilization N2O emissions were very low. Right after fertilization the emissions increased by a factor of 5 compared to pre-fertilization levels and increased to 100 times larger after the first heavy rain. NO emissions did not increase as much as N2O emissions after the first fertilization. Right after the second fertilization both gases increased their emissions and concentrations in soil profile dramatically. These results suggest that broadcast fertilizer addition with ammonium nitrate stimulates the nitrogenous gas emissions due to enhanced nitrification and denitrification at the soil surface. Estimates of percentage of nitrogen losses and fertilizer-induced emission factors (FEI) for both gases are provided.

  14. [Effect of long-term fertilizing regime on soil microbial diversity and soil property].

    PubMed

    Li, Chenhua; Zhang, Caixia; Tang, Lisong; Xiong, Zhengqin; Wang, Baozhan; Jia, Zhongjun; Li, Yan

    2014-03-04

    To evaluate the effect of long-term fertilization on soil microbial community and soil chemical and physical properties. Using a high-throughput pyrosequencing technique, we studied microbial community in the 0-300 cm soil samples covering a 20-year field-experiment with different fertilization applications including inorganic fertilizer alone (N 300 kg/hm2, P2O5 150 kg/hm2 and K2O 60 kg/hm2) and inorganic fertilizer combined with straw (same application rate of N and P fertilizer combined with 5.4 t straw). Actinobacteria and alpha-proteobacteria were the predominant groups in the topsoil (0-20 cm). As the soil depth increased, the relative abundance of actinobacteria decreased whereas that of proteobacteria, especially gamma-proteobacteria and beta-proteobacteria increased and gradually became the dominant groups in the subsoil (20-300 cm). Long-term fertilizing applications significantly affected soil microbial communities throughout the soil profile, and increased the relative abundance of ammonia-oxidizing archaea at 0-40 cm depth. In addition, agriculture management, e. g. irrigation may be an important driving factor for the distribution of ammonia-oxidizing bacteria in soil profile. Total nitrogen and organic carbon contents were the most influential factors on microbial community in the topsoil and in the subsoil, respectively. Long-term fertilizer applications altered soil nutrient availability within the soil profile, which was likely to result in the different microbial community structure between the fertilizer treatments, especially for the subsoil.

  15. Autoregulation of Nodulation Interferes with Impacts of Nitrogen Fertilization Levels on the Leaf-Associated Bacterial Community in Soybeans ▿ †

    PubMed Central

    Ikeda, Seishi; Anda, Mizue; Inaba, Shoko; Eda, Shima; Sato, Shusei; Sasaki, Kazuhiro; Tabata, Satoshi; Mitsui, Hisayuki; Sato, Tadashi; Shinano, Takuro; Minamisawa, Kiwamu

    2011-01-01

    The diversities leaf-associated bacteria on nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans were evaluated by clone library analyses of the 16S rRNA gene. To analyze the impact of nitrogen fertilization on the bacterial leaf community, soybeans were treated with standard nitrogen (SN) (15 kg N ha−1) or heavy nitrogen (HN) (615 kg N ha−1) fertilization. Under SN fertilization, the relative abundance of Alphaproteobacteria was significantly higher in Nod− and Nod++ soybeans (82% to 96%) than in Nod+ soybeans (54%). The community structure of leaf-associated bacteria in Nod+ soybeans was almost unaffected by the levels of nitrogen fertilization. However, differences were visible in Nod− and Nod++ soybeans. HN fertilization drastically decreased the relative abundance of Alphaproteobacteria in Nod− and Nod++ soybeans (46% to 76%) and, conversely, increased those of Gammaproteobacteria and Firmicutes in these mutant soybeans. In the Alphaproteobacteria, cluster analyses identified two operational taxonomic units (OTUs) (Aurantimonas sp. and Methylobacterium sp.) that were especially sensitive to nodulation phenotypes under SN fertilization and to nitrogen fertilization levels. Arbuscular mycorrhizal infection was not observed on the root tissues examined, presumably due to the rotation of paddy and upland fields. These results suggest that a subpopulation of leaf-associated bacteria in wild-type Nod+ soybeans is controlled in similar ways through the systemic regulation of autoregulation of nodulation, which interferes with the impacts of N levels on the bacterial community of soybean leaves. PMID:21239540

  16. Controlling nitrogen migration through micro-nano networks

    NASA Astrophysics Data System (ADS)

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.

  17. Controlling nitrogen migration through micro-nano networks.

    PubMed

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G; Chu, Paul K; Yu, Zengliang

    2014-01-14

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.

  18. Controlling nitrogen migration through micro-nano networks

    PubMed Central

    Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang

    2014-01-01

    Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium. PMID:24419037

  19. How to help woody plants to overcome drought stress?-a control study of four tree species in Northwest China.

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Zhang, Shuoxin

    2010-05-01

    Water is essential for plants and involves most physical and chemical processes within their lifecycles. Drought stress is a crucial limiting factor for plant growth and production. 48% of the land in China is arid and semi-arid, and non-irrigated land occupies approximately 51.9% of the total cultivated areas. Therefore, studies on plant drought resistant mechanisms have great significance for improving water use efficiency and thus increasing productivity of economical plants. Prior research has shown that the application of nitrogenous fertilizer affects the drought-resistant characteristics of plants. This study aimed to reveal the effect of nitrogenous fertilizer on physiological aspects and its impact on the drought resistance of four tree species (Robinia pseudoacacia L., Ligustrum lucidum Ait., Acer truncatum Bge. and Ulmus pumila L. ) in northwest China. Three levels of nitrogen fertilization (46% N based of urea adjusted to: 5g/15g soil, 15g/15g soil and 25g/15g soil) and an additional control study were applied to 2-year-old well-grown seedlings under drought conditions (30% field moisture capacity). Stomatal conductance, transpiration rate and net photosynthetic rate were measured by a LI-6400 photosynthesis system, while water use efficiency was calculated from net photosynthesis rate and transpiration rate. The results revealed that as the amount of urea applied was raised, stomatal conductance, transpiration rate and net photosynthetic rate decreased significantly, and thus water use efficiency significantly increased. It is therefore concluded that the application of nitrogenous fertilizer regulated physiological parameters by reducing stomata conductance to improve water use efficiency. In addition, among the four tree species, U. pumila had the maximum value of water use efficiency under the same drought condition. The outcome of this study provides a guided option for forest management in arid and semi-arid areas of northwest China.

  20. Effects of a controlled release fertilizer on the nitrogen dynamics of mid-rotation loblolly pine plantation in the Piedmont, Virginia

    Treesearch

    J. Rob Elliot; Thomas R. Fox

    2006-01-01

    Nitrogen deficiency is characteristic of many mid-rotation loblolly pine (Pinus taeda L.) plantations in the Piedmont region of the Southeast. Fertilization with urea is the most common method used to correct this deficiency. Previous studies show that urea fertilization produces a rapid pulse of available nitrogen (N) with only a portion being...

  1. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    PubMed

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the treatments of 40%-80% CRF, 100% CRF reduced the soil nitrate content of 20-40 cm soil layer in wheat significantly suggesting it could reduce the loss of nitrogen.

  2. Development of lucerne (Medicago sativa L.) treated with mineral fertilizer and manure at optimal and water deficit conditions.

    PubMed

    Vasileva, V; Kostov, O; Vasilev, E

    2006-01-01

    A study on the effect of different rates of mineral fertilizer and manure on yield parameters of lucerne under optimal and water deficit conditions was carried out. Leached chernozem soil and lucerne cultivar Victoria were used. The soil was treated with ammonium nitrate and fully matured cattle manure. The plants were grown under optimum moisture content of 80% and 40% of field capacity. The water deficit stress decreased top and root biomass by 11-75% and 3-29% at mineral and organic fertilization, respectively. The applied mineral and organic N strongly depressed nodules development. Both mineral fertilizer and organic manure at dose of 210 mg N kg(-1) soil completely inhibited the appearance of nodules. Next to nitrogen, water deficit stress further inhibited the development of nodules. Nitrogen fertilization increased seed productivity in the two experimental moisture conditions. The water deficit stress decreased seed productivity by 18 to 33% as compared to optimum conditions. The plant treatments with manure were much more resistant to water deficit and recovering ability of plants was faster as compared to treatments with mineral fertilizer. The application of manure stimulates development of drought-stress tolerance in lucerne. However, the results obtained can be considered for the soil type and experimental conditions used.

  3. Model-Based Analysis of the Long-Term Effects of Fertilization Management on Cropland Soil Acidification.

    PubMed

    Zeng, Mufan; de Vries, Wim; Bonten, Luc T C; Zhu, Qichao; Hao, Tianxiang; Liu, Xuejun; Xu, Minggang; Shi, Xiaojun; Zhang, Fusuo; Shen, Jianbo

    2017-04-04

    Agricultural soil acidification in China is known to be caused by the over-application of nitrogen (N) fertilizers, but the long-term impacts of different fertilization practices on intensive cropland soil acidification are largely unknown. Here, we further developed the soil acidification model VSD+ for intensive agricultural systems and validated it against observed data from three long-term fertilization experiments in China. The model simulated well the changes in soil pH and base saturation over the last 20 years. The validated model was adopted to quantify the contribution of N and base cation (BC) fluxes to soil acidification. The net NO 3 - leaching and NO 4 + input accounted for 80% of the proton production under N application, whereas one-third of acid was produced by BC uptake when N was not applied. The simulated long-term (1990-2050) effects of different fertilizations on soil acidification showed that balanced N application combined with manure application avoids reduction of both soil pH and base saturation, while application of calcium nitrate and liming increases these two soil properties. Reducing NH 4 + input and NO 3 - leaching by optimizing N management and increasing BC inputs by manure application thus already seem to be effective approaches to mitigating soil acidification in intensive cropland systems.

  4. The impact of application of biocar on peanuts growing

    NASA Astrophysics Data System (ADS)

    Gao, Mengyu; Liu, Xiaohua; Li, Na; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng

    2017-12-01

    The object of this study was to investigate the impact of application biocar on peanuts growing. It was based on a long-term fertilization experiment which researched the effect of applying different amounts of biochar and BBF when continuously cropping peanuts for 5 years. There were five treatments: no fertilizer, low level of biochar (C15), high level of biochar (C50), chemical nitrogen-phosphorus-potassium (NPK) fertilizer and biochar-based fertilization (BBF).We determined peanuts stem and leaf weight, root weight, plant and the relative content of chlorophyll at every growth stages in 2016. The results showed that all fertilization can increase these indexes and in application of NPK improve them the most which close to BBF. The peanuts stem and leaf weight, root weight, plant and the relative content of chlorophyll was higher than the same level carbon treatment (C15) 62.85%, 6.67%, 18.73% and 25.58%, respectively. Expect stem and leaf weight, plant height, root weight and chlorophyll were higher when high level biochar (C50) applied than the low one (C15).

  5. Corn response to long-term applications of cattle manure, swine effluent, and inorganic nitrogen fertilizer

    USDA-ARS?s Scientific Manuscript database

    Cattle (Bos taurus) manure and swine (Sus scrofa) effluent are applied to cropland to recycle nutrients, build soil quality, and increase crop productivity. The objective of this study was to determine the long-term effects of land application of cattle manure and swine effluent using the Kansas Nut...

  6. Forage response to nitrogen and phosphorus fertilization in a 25-year-old plantation of slash pine

    Treesearch

    Ralph H. Hughes; George W. Bengston; Thaddeus a. Harrington

    1971-01-01

    In a 25-year-old plantation of slash pine near Olustee, Florida, a single application of 200 lb. of nitrogen and 44 lb. of phosphorus per acre increased production of herbaccous understory (primarily native bluestem grasses) to more than a ton per acre the first year, a fifefold increase. Production declined sharply the second year, and the response disappeared in the...

  7. Modeling of the absorption properties of Ga1-xInxAs1-yNy/GaAs quantum well structures for photodetection applications

    NASA Astrophysics Data System (ADS)

    Aissat, A.; Bestam, R.; Alshehri, B.; Vilcot, J. P.

    2015-06-01

    This work reports on theoretical studies on the GaInNAs material properties (bandgap, lattice mismatch, absorption coefficient) as grown on GaAs substrate. The Band Anti-Crossing (BAC) kṡp 8 × 8 model has been used to determine the influence of indium and nitrogen concentrations on the position of conduction and valence bands. The incorporation of nitrogen at a level lower than 5% causes the split of the conduction band. For indium and nitrogen concentrations of 38% and 3.5%, respectively, the strained bandgap energy is 0.70 eV and the absorption coefficient of indium and nitrogen-rich compounds increases significantly.

  8. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

    PubMed

    Meier, Elizabeth A; Thorburn, Peter J

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha(-1) per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level.

  9. Effects of different sources of fertilizer nitrogen on growth and nutrition of western hemlock seedlings.

    Treesearch

    M.A. Radwan; Dean S. DeBell

    1980-01-01

    Twelve different nitrogen (N) fertilizer treatments were tested on potted western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings. Fertilizers affected soil N and pH, and growth and foliar chemical composition of seedlings. Urea plus N-Serve and sulfur-coated urea appear more promising for promoting growth than other fertilizers tested. Results...

  10. Influence of family and nitrogen fertilizer on growth and nutrition of western hemlock seedlings.

    Treesearch

    M.A. Radwan; D.S. DeBell; J.E. Wilcox

    1990-01-01

    Effects of genotype and nitrogen fertilizer on growth and shoot nutrients of western hemlock seedlings were determined by using 11 open-pollinated families from coastal Oregon and Washington. The families differed significantly in growth, initially and after one growing season after treatment. All seedlings responded well to fertilizer, and fertilization significantly...

  11. [Effects of different concentrations of nitrogen and phosphorus on growth and active components of Salvia miltiorrhiza].

    PubMed

    Xia, Gui-Hui; Wang, Qiu-Ling; Wang, Wen-Quan; Hou, Jun-Ling; Song, Qing-Yan; Luo, Lin; Zhang, Dou-Dou; Yang, Xiang

    2016-11-01

    With annual Salvia miltiorrhiza seedlings as experimental material, using "3414" optimal regression design recommended by the Ministry of Agriculture and regularly watered with nutrient solution, through the dynamic sampling of S. miltiorrhiza in different growing stages, and the growth index, dry weight of plant root and content of active components were measured. The potted experiments were applied to study the effects of different nitrogen and phosphorus ratios on the growth, dry matter accumulation and accumulation of active components of S. miltiorrhiza, in order to explore a compatible fertilization method of nitrogen and phosphorus ratio that are suitable for production and quality of S. miltiorrhiza. The results reported as follows:①High concentrations of nitrogen fertilizer was beneficial to dry matter accumulation of S. miltiorrhiza aerial parts, and low concentration of nitrogen fertilizer transferred the dry matter accumulation to underground, and N1P1 could make the transfer ahead of time;②Regression analysis showed that in the early growth stage (before early July), we could use the nitrogen and phosphorus as basic fertilizer at a concentration of 1.521,0.355 g•L⁻¹ respectively to promote the growth of S. miltiorrhiza and at a concentration of 2.281,0.710 g•L⁻¹ respectively to promote the dry matter accumulation of root (after mid-August);③Five kinds of active components of S. miltiorrhiza decreased with the increase of nitrogen concentration, and increased with the increase of the concentration of phosphate fertilizer. Nitrogenous fertilizer, phosphate fertilizer in N-P=2∶3 ratio was more suitable for the accumulation of salvianolic acids, in N-P=1∶2 ratio was more suitable for the accumulation of tanshinone. Copyright© by the Chinese Pharmaceutical Association.

  12. Size and Electronic Modulation of Iridium Nanoparticles on Nitrogen Functionalized Carbon toward Advanced Electrocatalysts for Alkaline Water Splitting.

    PubMed

    Wang, Hua; Ming, Mei; Hu, Min; Xu, Caili; Wang, Yi; Zhang, Yun; Gao, Daojiang; Bi, Jian; Fan, Guangyin; Hu, Jin-Song

    2018-06-14

    Developing efficient catalytic materials for electrochemical water splitting is important. Herein, uniformly dispersed and size-controllable iridium (Ir) nanoparticles (NPs) were prepared using a nitrogen-functionalized carbon (Ir/CN) as the support. We found that nitrogen function can simultaneously modulate the size of Ir NPs to substantially enhance the catalytically active sites and adjust the electronic structure of Ir, thereby promoting electrocatalytic activity for water splitting. Consequently, the as-synthesized Ir/CN shows excellent electrocatalytic performance with overpotentials of 12 and 265 mV for hydrogen and oxygen evolution reactions in basic medium, respectively. These findings may pave a way for designing and synthesizing other similar materials as efficient catalysts for electrochemical water splitting.

  13. Nitrous Oxide and Methane Fluxes Following Ammonium Sulfate and Vinasse Application on Sugar Cane Soil.

    PubMed

    Paredes, Debora da S; Alves, Bruno J R; dos Santos, Marco A; Bolonhezi, Denizart; Sant'Anna, Selenobaldo A C; Urquiaga, Segundo; Lima, Magda A; Boddey, Robert M

    2015-09-15

    This study aimed to quantify nitrous oxide (N2O) and methane (CH4) emission/sink response from sugar cane soil treated with fertilizer nitrogen (N) and vinasse applied separately or in sequence, the latter being investigated with regard to the time interval between applications for a possible effect on emissions. The study was carried out in a traditional area of unburned sugar cane in São Paulo state, Brazil. Two levels of N fertilization (0 and 100 kg N ha(-1)) with no added vinasse and combined with vinasse additions at different times (100 m(-3) ha(-1) at 3 and 15 days after N fertilization) were evaluated. Methane and N2O fluxes were monitored for 211 days. On average, the soil was a sink for CH4, which was not affected by the treatments. Emissions of N2O were induced by N fertilizer and vinasse applications. For ammonium sulfate, 0.6% of the added N was emitted as N2O, while for vinasse, this ranged from 1.0 to 2.2%. Changes in N2O fluxes were detected the day after application of vinasse on the N fertilized areas, but although the emission factor (EF) was 34% greater, the EF was not significantly different from fertilizer N alone. Nevertheless, we recommend to not apply vinasse after N fertilization to avoid boosting N2O emissions.

  14. Nitrate behaviors and its transportation time scale in unsaturated zone under farmlands with different fertilization log in Kumamoto region, southern Japan

    NASA Astrophysics Data System (ADS)

    Okumura, Azusa; Hosono, Takahiro; Shimada, Jun

    2017-04-01

    An application of fertilizers and manure often caused an increase of nitrate concentration in groundwater in the agricultural area. The study area, Kumamoto, is the field facing this type of problem. Previous studies using nitrogen-oxygen isotope ratios in nitrate showed that accumulation of chemical fertilizers is the major factor for observed nitrate contamination. However, once it loaded nitrogen compounds may change its form and isotopic composition during transportation within unsaturation zone prior to reach the aquifer. However, such kind of knowledge is still rarely accumulated. To clarify the behavior and transportation manner of nitrogen in the unsaturated zone, we analyzed the nitrogen-oxygen isotope ratios of the extracted soil water of the unsaturated zone soils from the farmland having different fertilization logs. In addition, we attempted to verify the origin of nitrate in soil water by comparing with previous isotopic results. The plateaus-like topography of the study area is consists of the pyroclastic flow deposits. Land use is mainly farmland and this area is a major source of nitrogen load and transport route into the aquifer. Nitrate concentration in groundwater at terraces recharge area has been reported about 40 mg/L. Drilling survey carried out in the unsaturated zone soil on 4 farmlands with the different land use logs in such terraces. Drilling points S1 and S2 were treated by both slurry and chemical fertilizers, on the other hand, point C1 and C2 were applied chemical fertilizers only. The drilling depth was up to 14-15 m, and soil samples were kept on evacuated condition after sectioning into 10 cm interval. The soil water was extracted using a centrifuge machine. The extracted soil water was measured for the nitrogen-oxygen isotope ratios in nitrate and major ions concentrations. All cores showed high nitrate concentrations in the surface layer (260, 440, 172 and 244 mg/L for S1, S2, C1, and C2 respectively). The concentrations became lower downwards for all cores. However, the concentrations were still high even at the point of 10 m (about 100-200 mg/L) for all cores. In the S1 and S2 cores nitrogen and oxygen isotopic results indicated occurrence of volatilization and nitrification in the surface layer, but in the C1 and C2 cores this signature was not clearly shown. The isotope compositions become homogenized downwards to have specific values depending on fertilization logs. This result is consistent with the previous studies. In the presentation, we will present detailed discussions regarding the behaviors of the isotope ratios in nitrate.

  15. A review of nitrous oxide mitigation by farm nitrogen management in temperate grassland-based agriculture.

    PubMed

    Li, Dejun; Watson, Catherine J; Yan, Ming Jia; Lalor, Stan; Rafique, Rashid; Hyde, Bernard; Lanigan, Gary; Richards, Karl G; Holden, Nicholas M; Humphreys, James

    2013-10-15

    Nitrous oxide (N2O) emission from grassland-based agriculture is an important source of atmospheric N2O. It is hence crucial to explore various solutions including farm nitrogen (N) management to mitigate N2O emissions without sacrificing farm profitability and food supply. This paper reviews major N management practices to lower N2O emission from grassland-based agriculture. Restricted grazing by reducing grazing time is an effective way to decrease N2O emissions from excreta patches. Balancing the protein-to-energy ratios in the diets of ruminants can also decrease N2O emissions from excreta patches. Among the managements of synthetic fertilizer N application, only adjusting fertilizer N rate and slow-released fertilizers are proven to be effective in lowering N2O emissions. Use of bedding materials may increase N2O emissions from animal houses. Manure storage as slurry, manipulating slurry pH to values lower than 6 and storage as solid manure under anaerobic conditions help to reduce N2O emissions during manure storage stage. For manure land application, N2O emissions can be mitigated by reducing manure N inputs to levels that satisfy grass needs. Use of nitrification inhibitors can substantially lower N2O emissions associated with applications of fertilizers and manures and from urine patches. N2O emissions from legume based grasslands are generally lower than fertilizer-based systems. In conclusion, effective measures should be taken at each step during N flow or combined options should be used in order to mitigate N2O emission at the farm level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Maize Yield Response to Water Supply and Fertilizer Input in a Semi-Arid Environment of Northeast China

    PubMed Central

    Yin, Guanghua; Gu, Jian; Zhang, Fasheng; Hao, Liang; Cong, Peifei; Liu, Zuoxin

    2014-01-01

    Maize grain yield varies highly with water availability as well as with fertilization and relevant agricultural management practices. With a 311-A optimized saturation design, field experiments were conducted between 2006 and 2009 to examine the yield response of spring maize (Zhengdan 958, Zea mays L) to irrigation (I), nitrogen fertilization (total nitrogen, urea-46% nitrogen,) and phosphorus fertilization (P2O5, calcium superphosphate-13% P2O5) in a semi-arid area environment of Northeast China. According to our estimated yield function, the results showed that N is the dominant factor in determining maize grain yield followed by I, while P plays a relatively minor role. The strength of interaction effects among I, N and P on maize grain yield follows the sequence N+I >P+I>N+P. Individually, the interaction effects of N+I and N+P on maize grain yield are positive, whereas that of P+I is negative. To achieve maximum grain yield (10506.0 kg·ha−1) for spring maize in the study area, the optimum application rates of I, N and P are 930.4 m3·ha−1, 304.9 kg·ha−1 and 133.2 kg·ha−1 respectively that leads to a possible economic profit (EP) of 10548.4 CNY·ha−1 (CNY, Chinese Yuan). Alternately, to obtain the best EP (10827.3 CNY·ha−1), the optimum application rates of I, N and P are 682.4 m3·ha−1, 241.0 kg·ha−1 and 111.7 kg·ha−1 respectively that produces a potential grain yield of 10289.5 kg·ha−1. PMID:24465896

  17. Soil and solid poultry waste nutrient management and water quality.

    PubMed

    Chapman, S L

    1996-07-01

    Concerns about the impacts of nitrogen, phosphorus, and pathogens on surface and ground water quality has forced the poultry industry to implement voluntary waste management guidelines for use by growers. In some states, animal waste guidelines are being enforced by regulatory agencies. Strategies that growers may use to properly dispose of poultry waste include: 1) local land application as a fertilizer; 2) offsite marketing for use as a fertilizer or soil amendment, feed additive, or energy source; and 3) chemical additives that will immobilize nitrogen and phosphorus in the manure or litter. If properly followed, these and other innovative strategies should be adequate to protect surface and ground water quality without adversely affecting the economics of poultry production.

  18. Nitrogen Cycling in the Mycorrhizosphere: Multipartite Interactions and Plant Nitrogen Uptake Vary with Fertilization Legacy

    NASA Astrophysics Data System (ADS)

    Hestrin, R.; Lehmann, J.

    2017-12-01

    Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.

  19. Effect of different nitrogen sources on plant characteristics and yield of common bean (Phaseolus vulgaris L.).

    PubMed

    Fernández-Luqueño, F; Reyes-Varela, V; Martínez-Suárez, C; Salomón-Hernández, G; Yáñez-Meneses, J; Ceballos-Ramírez, J M; Dendooven, L

    2010-01-01

    Wastewater sludge can be used to fertilize crops, especially after vermicomposting (composting with earthworms to reduce pathogens). How wastewater sludge or vermicompost affects bean (Phaseolus vulgaris L.) growth is still largely unknown. In this study the effect of different forms of N fertilizer on common bean plant characteristics and yield were investigated in a Typic Fragiudepts (sandy loam) soil under greenhouse conditions. Beans were fertilized with wastewater sludge, or wastewater sludge vermicompost, or urea, or grown in unamended soil, while plant characteristics and yield were monitored (the unamended soil had no fertilization). Yields of common bean plants cultivated in unamended soil or soil amended with urea were lower than those cultivated in wastewater sludge-amended soil. Application of vermicompost further improved plant development and increased yield compared with beans cultivated in wastewater amended soil. It was found that application of organic waste products improved growth and yield of bean plants compared to those amended with inorganic fertilizer.

  20. Tillage, Mulch and N Fertilizer Affect Emissions of CO2 under the Rain Fed Condition

    PubMed Central

    Tanveer, Sikander Khan; Wen, Xiaoxia; Lu, Xing Li; Zhang, Junli; Liao, Yuncheng

    2013-01-01

    A two year (2010–2012) study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage), T2: (zero-tillage), T3: (rotary tillage) and T4: (mold board plow tillage), 2 mulch levels i.e., M0 (no corn residue mulch) and M1 (application of corn residue mulch) and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha). A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010–11 relative to the year 2011–12. During cropping year 2010–11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011–12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options. PMID:24086256

  1. Managing Nitrogen in the anthropocene: integrating social and ecological science

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Mauzerall, D. L.; Davidson, E. A.; Kanter, D.; Cai, R.; Searchinger, T.

    2014-12-01

    Human alteration of the global nitrogen cycle by agricultural activities has provided nutritious food to society, but also poses increasing threats to human and ecosystem health through unintended pollution. Managing nitrogen more efficiently in crop production is critical for addressing both food security and environmental challenges. Technologies and management practices have been developed to increase the uptake of applied nitrogen by crops. However, nitrogen use efficiency (NUE, yield per unit nitrogen input) is also affected by social and economic factors. For example, to maximize profit, farmers may change crop choice or their nitrogen application rate, both of which lead to a change in NUE. To evaluate such impacts, we use both theoretical and empirical approaches on micro (farm) and macro (national) scales: 1) We developed a bio-economic model (NUE3) on a farm scale to investigate how market signals (e.g. fertilizer and crop prices), government policies, and nitrogen-efficient technologies affect NUE. We demonstrate that if factors that influence nitrogen inputs (e.g. fertilizer-to-crop price ratios) are not considered, NUE projections will be poorly constrained. The impact of nitrogen-efficient technologies on NUE not only depends on how technology changes the production function, but also relies on the prices of the technologies, fertilizers, and crops. 2) We constructed a database of the nitrogen budget in crop production for major crops and major crop producing countries from 1961 to 2010. Using this database, we investigate historical trends of NUE and its relationship to agronomic, economic, social, and policy factors. We find that NUE in most developed countries follows a "U-shape" relationship with income level, consistent with the Environmental Kuznets Curve theory. According to the dynamics revealed in the NUE3 model, we propose three major pathways by which economic development affects NUE, namely consumption, technology, and public policy. Overall, our research suggests that it is critical to include social and economic processes when studying perturbations of the global nitrogen cycle and crafting environmental and food security policy. Better collaboration across disciplines is essential to improve nitrogen management in the anthropocene.

  2. Microcosm experiments approach to quantify nitrogen leaching from mineral and organic fertilized soil

    NASA Astrophysics Data System (ADS)

    Severus Sandor, Mignon; Sandor, Valentina; Mihai Onica, Bogdan; Brad, Traian

    2017-04-01

    The use of nitrogen inputs to improve agricultural soils fertility is a common practice in arable lands. Depending of nitrogen forms only a part of introduced nitrogen will be effectively used by the crops while another part can be leached from soil with negative impact on the environment. In temperate climate these losses are greater during spring time when rains are frequent and crop plants are in the early growth stage. In a microcosm experiments we simulated this kind of conditions in order to assess nitrogen losses from two different soils (Chernozem, Luvisol) fertilized with mineral (ammonium nitrate) and organic (mustard as green manure, slurry manure and cattle manure) fertilizers. From each microcosms we obtained 100 ml of leachate which was filtered and analyzed from N-NO3 and N-NH4. The leachate was obtained by adding distillate water at the microcosm surface two times during the experiment at a ten days interval. Preliminary results showed that only small quantity of ammonium was leached from fertilized soils, mainly after 20 days of incubation. These amounts were higher in Chernozem soil than in Luvisol and registered the highest amount in cattle manure fertilized soils. In general, the nitrate was leached from soils in high quantities. The highest value was measured in Chernozem soil when cattle manure was used as fertilizer (1200 mg/l) and represents a cumulative amount. For most of the treatments the cumulative loss of nitrate nitrogen was double in Chernozem soil than in Luvisol. The highest quantity of leaching nitrate was measured for both soils in manure fertilized soil.

  3. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.

  4. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    PubMed Central

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  5. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    PubMed

    Ma, Ningning; Zhang, Lili; Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.

  6. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  7. TThe role of nitrogen availability in land-atmosphere interactions: a systematic evaluation of carbon-nitrogen coupling in a global land surface model using plot-level nitrogen fertilization experiments

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Goodale, C. L.; Bonan, G. B.; Mahowald, N. M.; Ricciuto, D. M.; Thornton, P. E.

    2010-12-01

    Recent research from global land surface models emphasizes the important role of nitrogen cycling on global climate, via its control on the terrestrial carbon balance. Despite the implications of nitrogen cycling on global climate predictions, the research community has not performed a systematic evaluation of nitrogen cycling in global models. Here, we present such an evaluation for one global land model, CLM-CN. In the evaluation we simulated 45 plot-scale nitrogen-fertilization experiments distributed across 33 temperate and boreal forest sites. Model predictions were evaluated against field observations by comparing the vegetation and soil carbon responses to the additional nitrogen. Aggregated across all experiments, the model predicted a larger vegetation carbon response and a smaller soil carbon response than observed; the responses partially offset each other, leading to a slightly larger total ecosystem carbon response than observed. However, the model-observation agreement improved for vegetation carbon when the sites with observed negative carbon responses to nitrogen were excluded, which may be because the model lacks mechanisms whereby nitrogen additions increase tree mortality. Among experiments, younger forests and boreal forests’ vegetation carbon responses were less than predicted and mature forests (> 40 years old) were greater than predicted. Specific to the CLM-CN, this study used a systematic evaluation to identify key areas to focus model development, especially soil carbon- nitrogen interactions and boreal forest nitrogen cycling. Applicable to the modeling community, this study demonstrates a standardized protocol for comparing carbon-nitrogen interactions among global land models.

  8. Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: A lysimeter study.

    PubMed

    Fan, Jianling; Xiao, Jiao; Liu, Deyan; Ye, Guiping; Luo, Jiafa; Houlbrooke, David; Laurenson, Seth; Yan, Jing; Chen, Lvjun; Tian, Jinping; Ding, Weixin

    2017-08-15

    Dairy farm manure and effluent are applied to cropland in China to provide a source of plant nutrients, but there are concerns over its effect on nitrogen (N) leaching loss and groundwater quality. To investigate the effects of land application of dairy manure and effluent on potential N leaching loss, two lysimeter trials were set up in clayey fluvo-aquic soil in a winter wheat-summer maize rotation cropping system on the North China Plain. The solid dairy manure trial included control without N fertilization (CK), inorganic N fertilizer (SNPK), and fresh (RAW) and composted (COM) dairy manure. The liquid dairy effluent trial consisted of control without N fertilization (CF), inorganic N fertilizer (ENPK), and fresh (FDE) and stored (SDE) dairy effluent. The N application rate was 225kgNha -1 for inorganic N fertilizer, dairy manure, and effluent treatments in both seasons. Annual N leaching loss (ANLL) was highest in SNPK (53.02 and 16.21kgNha -1 in 2013/2014 and 2014/2015, respectively), which were 1.65- and 2.04-fold that of COM, and 1.59- and 1.26-fold that of RAW. In the effluent trial (2014/2015), ANLL for ENPK and SDE (16.22 and 16.86kgNha -1 , respectively) were significantly higher than CF and FDE (6.3 and 13.21kgNha -1 , respectively). NO 3 - contributed the most (34-92%) to total N leaching loss among all treatments, followed by dissolved organic N (14-57%). COM showed the lowest N leaching loss due to a reduction in NO 3 - loss. Yield-scaled N leaching in COM (0.35kgNMg -1 silage) was significantly (P<0.05) lower than that in the other fertilization treatments. Therefore, the use of composted dairy manure should be increased and that of inorganic fertilizer decreased to reduce N leaching loss while ensuring high crop yield in the North China Plain. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nitrogen fertility and abiotic stresses management in cotton crop: a review.

    PubMed

    Khan, Aziz; Tan, Daniel Kean Yuen; Afridi, Muhammad Zahir; Luo, Honghai; Tung, Shahbaz Atta; Ajab, Mir; Fahad, Shah

    2017-06-01

    This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.

  10. Impact of Canopy Nitrogen Deposition on Forest Carbon Storage: Initial Results from a manipulative Experiment at the Howland AmeriFlux Site

    NASA Astrophysics Data System (ADS)

    Hollinger, D. Y.; Aber, J.; Dail, B.; Davidson, E.; Fernandez, I.; Goltz, S.; LeClerc, M.; Sievering, H.

    2001-12-01

    We are conducting a large-scale ecosystem manipulation experiment to evaluate the hypothesis that anthropogenic nitrogen (N) deposition is enhancing forest ecosystem carbon sequestration. About 21 ha of spruce-hemlock forest in central Maine was fertilized at a rate of 18 kg N/ha/y in 2001 with additional applications planned in 2002-3. The N application is in liquid form to the canopy to more closely duplicate actual N deposition processes than previous studies that have applied fertilizer to the forest floor. The impact of this treatment on net ecosystem CO2 exchange (NEE) is being evaluated with the eddy covariance technique. Model simulations suggest that with low-moderate N uptake efficiency (20-50 percent), canopy photosynthesis (GEE) and NEE will each increase in the experimental treatment by readily detectable amounts (7-17 percent and 12-33 percent) after the first year of N addition, with further increases possible in subsequent years. We are using 15N labeled fertilizer on subplots in the treatment area and biomass measurements to independently assess C sequestration changes and partitioning following N addition.

  11. Manure incorporation reduces environmental nitrogen loss while sustaining crop productivity in the subtropical wheat-maize rotation system: A comprehensive study of nitrogen cycling and balance

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Zhu, Bo; Butterbach-Bahl, klaus; Brüggemann, Nicolas

    2016-04-01

    Balancing nitrogen (N) budgets of agricultural systems is essential for sustaining yields at lower environmental costs. The knowledge, however, of total N budgets of agricultural systems including all N fluxes is still rare in the literature. Here, we applied a combination of monitoring in situ N fluxes and field 15N tracer and 15N isotope dilution techniques to investigate the effects of different N fertilizers (control, synthetic fertilizer, 60% synthetic fertilizer N plus 40% pig manure N, pig manure only applied at the same N rate 280 kg N ha-1 yr-1) on N pools, cycling processes, fluxes and total N balances in a subtropical wheat-maize rotation system of China. Nitrate leaching and NH3 volatilization were main hydrological and gaseous N loss pathways, respectively. The warm and wet maize season was associated with significantly larger environmental N losses than the cooler and drier wheat season. The field 15N tracing experiment showed that the wheat system had high N retention capacity (˜50% of 15N application) but with short residence time. I.e. 90% of soil residual 15N labelled fertilizer in the wheat system were utilized by plants or lost to the environment in the subsequent maize season. Our annual total N balances of the different treatments revealed that combined synthetic and organic fertilization or manure only maintained the same level of yields and led to significantly lower N losses and higher N retention, even though larger NH3 volatilization losses were caused by manure incorporation. Thus, our study suggests that a combination of synthetic and organic N fertilizers is suitable for sustaining agricultural productivity while reducing environmental N losses through fostering interactions between the soil C and N cycle.

  12. Effect of nitrogen and fish manure fertilization on growth and chemical composition of lettuce

    NASA Astrophysics Data System (ADS)

    Yildirim, Ertan; Kul, Raziye; Turan, Metin; Ekinci, Melek; Alak, Gonca; Atamanalp, Muhammet

    2016-04-01

    Present experiment was designed to determine the response of various dozes of fish manure (FM) and commercial fertilizers on plant growth, yield and nutrient content of lettuce. The treatments consisted of fish manure, commercial fertilizer and the combination of fish manure and commercial fertilizer with four dozes of nitrogen (0 kg/ha, 100 kg/ha, 150 kg/ha and 200 kg/ha). The results of the study showed that treatments significantly affected the growth and chemical characteristics of lettuce. The best results in regard to plant growth and yield were obtained from 100 and 150 kg kg/ha nitrogen dozes of the combination of fish manure and commercial fertilizer.

  13. Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned?

    PubMed

    Larrainzar, Estíbaliz; Gil-Quintana, Erena; Arrese-Igor, Cesar; González, Esther M; Marino, Daniel

    2014-12-01

    Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels. © 2014 Institute of Botany, Chinese Academy of Sciences.

  14. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Tropical legume crop rotation and nitrogen fertilizer effects on agronomic and nitrogen efficiency of rice.

    PubMed

    Rahman, Motior M; Islam, Aminul M; Azirun, Sofian M; Boyce, Amru N

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m(-2) preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m(-2). No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m(-2) achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13-23% higher grain yield than rice after fallow rotation with 8 g N m(-2). The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m(-2) can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m(-2). The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.

  16. Comparison of plasma generated nitrogen fertilizer to conventional fertilizers ammonium nitrate and sodium nitrate for pre-emergent and seedling growth

    NASA Astrophysics Data System (ADS)

    Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.

    2014-10-01

    Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.

  17. The fate of nitrogen affected by biochar and fertilizer source

    USDA-ARS?s Scientific Manuscript database

    Continuous improvement of nitrogen (N) use efficiency (NUE) and minimizing environmental loss is necessary to address the issues related to N fertilizer use in agronomic systems. The objective of this research was to determine the effectiveness of biochar amendment and fertilizer source on NUE impro...

  18. Nitrogen transformation in maize soil after application of different organic manures.

    PubMed

    Dong, Yu-hong; Ouyang, Zhu; Liu, Shi-liang

    2005-01-01

    The nitrogen transformation in maize soil after application of different organic manure was studied. The nitrogen mineralization in surface soil, NO3- -N dynamics and distribution in soil profile, and N2O emission were investigated. Eight treatments were laid out randomizing with three replications in 24 plots: maize plantation without fertilizer (CK1), bare soil without maize plantation and fertilization (CK2), swine manure (S1, S2), poultry manure (P1, P2), and cattle manure (C1, C2). Three manures were applied at two application levels (15 t/hm2 and 30 t/hm2). The results indicated that NH+ -N in surface soil showed the same temporal pattern without much variation among different treatments. But NO3- -N in the same layer exhibited large temporal pattern in all treatments, which was mainly due to its easy eluviations of NO3- -N in soil, its transformation to N2O and the influence of precipitation. The distribution of NO3- -N in the soil profile during maize growing season showed the leaching tendency from surface soil to subsoil, which was different among the treatments. The poultry treatments showed the largest leaching tendency. The study also revealed that the emissions of N2O were affected by the application of organic manures in the order of P2 > S2 > C2 > P1 > S1 > Cl > CK1 > CK2. All these results showed that organic manure applications significantly affect nitrogen transformation and distribution in maize soil. Considering N2O emission and NO3- -N leaching, the management of organic manure in the agriculture needs further studies.

  19. [Characteristics of paddy field nitrogen leakage and runoff in rice-duck farming system].

    PubMed

    Yu, Xiang; Wang, Qiang-sheng; Wang, Shao-hua; Liu, Zheng-hui; Wang, Xia-wen; Ding, Yan-feng

    2009-01-01

    A field experiment was conducted to study the characteristics of paddy field nitrogen (N) leakage and runoff under rice-duck farming (MRD), conventional farming (MR), and conventional farming with flooding (CK). Comparing with that under MR, the paddy field under MRD had a notable decrease of N (especially NO3- -N) concentration in its leaked liquid; but this concentration was tended to be increased, compared with that under CK. After 7-9 days of fertilization, the NH4+ -N and NO3- -N concentrations in paddy field surface water were higher under MRD than under MR. However, owing to the no draining and the higher band, the paddy field under MRD had a notable reduction of drainage, resulting in a marked decrease of N runoff than that under MR. Comparing with MR, the paddy field under MRD had an addition of nitrogen supply from duck dung, a reduction of N leakage and runoff, a lesser application of chemical nitrogen fertilizer, and more nitrogen uptake by rice plant. Both the reduction of N input and that of N output in rice-duck farming system were nearly equal in quantity.

  20. Discovery of Fungal Denitrification Inhibitors by Targeting Copper Nitrite Reductase from Fusarium oxysporum.

    PubMed

    Matsuoka, Masaki; Kumar, Ashutosh; Muddassar, Muhammad; Matsuyama, Akihisa; Yoshida, Minoru; Zhang, Kam Y J

    2017-02-27

    The efficient application of nitrogenous fertilizers is urgently required, as their excessive and inefficient use is causing substantial economic loss and environmental pollution. A significant amount of applied nitrogen in agricultural soils is lost as nitrous oxide (N 2 O) in the environment due to the microbial denitrification process. The widely distributed fungus Fusarium oxysporum is a major denitrifier in agricultural soils and its denitrification activity could be targeted to reduce nitrogen loss in the form of N 2 O from agricultural soils. Here, we report the discovery of first small molecule inhibitors of copper nitrite reductase (NirK) from F. oxysporum, which is a key enzyme in the fungal denitrification process. The inhibitors were discovered by a hierarchical in silico screening approach consisting of pharmacophore modeling and molecular docking. In vitro evaluation of F. oxysporum NirK activity revealed several pyrimidone and triazinone based compounds with potency in the low micromolar range. Some of these compounds suppressed the fungal denitrification in vivo as well. The compounds reported here could be used as starting points for the development of nitrogenous fertilizer supplements and coatings as a means to prevent nitrogen loss by targeting fungal denitrification.

  1. Intensive management of loblolly pine during establishment influences nutrition and productivity through 15 growing seasons

    Treesearch

    James D. Haywood; Mary Anne Sword Sayer; Allan E. Tiarks

    2006-01-01

    Three cultural treatments in a 23 (yes or no) factorial combination were applied during establishment of a loblolly pine (Pinus taeda L.) plantation: phosphorus and nitrogen fertilization at planting, herbicide applications in the first 3 years, and litter application in the first year. Both the herbicide and litter treatments...

  2. Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA

    USGS Publications Warehouse

    Rowden, R.D.; Liu, H.; Libra, R.D.

    2001-01-01

    Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.

  3. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents.

    PubMed

    Siciliano, Alessio

    2016-03-01

    Leachates generated in methanogenic landfills contain high strength of ammonium nitrogen which removal is hard to be accomplished by means of conventional techniques. The chemical precipitation of struvite, which is a mineral that could be reused as a slow-release fertilizer, is an effective process in the removal and recovery of NH4 amount of high-concentrated wastewaters. In this paper, a struvite precipitation process using unconventional reagents is proposed for a sustainable recovery of nitrogen content. In particular, seawater bittern, a by-product of marine salt manufacturing, and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. The process enables the removal of more than 98 % ammonia load, the recovery about 99 and 95 % of phosphorus and magnesium, respectively, and the production of a precipitate containing struvite crystals. Heavy metals concentrations of produced precipitate were below the threshold values specified by the EC Directive for use of sewage sludges as fertilizers. Specific agronomic tests were conducted to investigate the fertilizing value of precipitate recovered from landfill leachate. The fertilizing effect of struvite deposit in cultivating Spinacia oleracea was compared with that of vegetable soil and commercial fertilizer. The growth of selected vegetable in the pots with struvite precipitate resulted significantly greater in both than those in the control pots and in the pots with the complex fertilizer. Furthermore, the struvite application as fertilizer did not result in more heavy metals in the vegetables respect those from soil and model fertilizer.

  4. Effect of nitrogen, phosphorous, and their interaction on coral reef algal succession in Glover's Reef, Belize.

    PubMed

    McClanahan, T R; Carreiro-Silva, M; DiLorenzo, M

    2007-12-01

    Nitrogen and phosphorous fertilizers were used to determine their short-term summer effects on algal colonization, abundance, and species composition in moderate herbivory treatments. Secondary succession of algae on coral skeletons was examined in four treatments: an untreated control, a pure phosphate fertilizer, a pure nitrogen fertilizer, and an equal mix of the two fertilizers. Turf algae cover was the only measure of algae abundance to respond significantly to fertilization. Turf cover was three times higher in treatments with added nitrogen when compared with the pure phosphorus treatment. These turfs were dominated by green and cyanobacteria taxa, namely Enteromorpha prolifera, Lyngbya confervoides, and two species of Cladophora. The phosphate treatment was dominated by encrusting corallines and the cyanobacteria L. confervoides, while the controls had the highest cover of frondose brown algae, namely Padina sanctae-crucis and two species of Dictyota. Results indicate that turf algae were co-limited by nitrogen and phosphorus but enrichment appeared to inhibit brown frondose algae that currently dominate these reefs. Number of species was lowest on the pure phosphorus and nitrogen treatments, highest in the controls and intermediate in the mixed treatments, which suggests that diversity is reduced most by an imbalanced nutrient ratio.

  5. Nitrogen Runoff Losses during Warm-Season Turfgrass Sod Establishment.

    PubMed

    Wherley, Benjamin G; Aitkenhead-Peterson, Jacqueline A; Stanley, Nina C; Thomas, James C; Fontanier, Charles H; White, Richard H; Dwyer, Phil

    2015-07-01

    Concern exists over the potential loss of nitrogen (N) and phosphorus (P) in runoff from newly established and fertilized lawns. Nutrient losses can be higher from turf when shoot density and surface cover are low and root systems are not fully developed. This study was conducted to evaluate fertilizer source and timing effects on nutrient losses from newly sodded lawns of St. Augustinegrass [ (Walt.) Kuntze]. For each study, 12 33.6-m plots were established on an undisturbed Alfisol having a 3.7% slope. Each plot was equipped with a runoff collection system, instrumentation for runoff flow rate measurement, and automated samplers. A 28-d establishment study was initiated on 8 Aug. 2012 and repeated on 9 Sept. 2012. Treatments included unfertilized plots, fertilized plots receiving 4.88 g N m as urea 6 d after planting, fertilized plots receiving 4.88 g N m as sulfur-coated urea 6 d after planting, and fertilized plots receiving 4.88 g N m as urea 19 d after planting. Runoff events were created by irrigating with 17 mm of water over 27 min. Runoff water samples were collected after every 37.8 L and analyzed for NO-N, NH-N, dissolved organic N (DON), and PO-P. Increases of approximately 2 to 4 mg L NO-N and 8 to 12 mg L PO-P occurred in runoff 1 d after fertilization, which returned to background levels within 7 d. Total fertilizer N lost to runoff was 0.6 to 4.2% of that applied. Delaying fertilizer application until 19 d after planting provided no reduction in nutrient loss compared with a similar application 6 d after planting. Approximately 33% of the N lost in runoff was as DON. This large amount of DON suggests significant N loss from decomposing organic matter may occur during sod establishment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    PubMed Central

    Wang, Hong; Min, Shixiong; Ma, Chun; Liu, Zhixiong; Zhang, Weiyi; Wang, Qiang; Li, Debao; Li, Yangyang; Turner, Stuart; Han, Yu; Zhu, Haibo; Abou-hamad, Edy; Hedhili, Mohamed Nejib; Pan, Jun; Yu, Weili; Huang, Kuo-Wei; Li, Lain-Jong; Yuan, Jiayin; Antonietti, Markus; Wu, Tom

    2017-01-01

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting. PMID:28051082

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahid, Ahmad Nazrul Abd, E-mail: a-nazrul@nuclearmalaysia.gov.my; Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor; Rahim, Sahibin Abd, E-mail: haiyan@ukm.edu.my

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be usedmore » in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.« less

  8. The economic and environmental consequences of implementing nitrogen-efficient technologies and management practices in agriculture.

    PubMed

    Zhang, Xin; Mauzerall, Denise L; Davidson, Eric A; Kanter, David R; Cai, Ruohong

    2015-03-01

    Technologies and management practices (TMPs) that reduce the application of nitrogen (N) fertilizer while maintaining crop yields can improve N use efficiency (NUE) and are important tools for meeting the dual challenges of increasing food production and reducing N pollution. However, because farmers operate to maximize their profits, incentives to implement TMPs are limited, and TMP implementation will not always reduce N pollution. Therefore, we have developed the NUE Economic and Environmental impact analytical framework (NUE) to examine the economic and environmental consequences of implementing TMPs in agriculture, with a specific focus on farmer profits, N fertilizer consumption, N losses, and cropland demand. Our analytical analyses show that impact of TMPs on farmers' economic decision-making and the environment is affected by how TMPs change the yield ceiling and the N fertilization rate at the ceiling and by how the prices of TMPs, fertilizer, and crops vary. Technologies and management practices that increase the yield ceiling appear to create a greater economic incentive for farmers than TMPs that do not but may result in higher N application rates and excess N losses. Nevertheless, the negative environmental impacts of certain TMPs could be avoided if their price stays within a range determined by TMP yield response, fertilizer price, and crop price. We use a case study on corn production in the midwestern United States to demonstrate how NUE can be applied to farmers' economic decision-making and policy analysis. Our NUE framework provides an important tool for policymakers to understand how combinations of fertilizer, crop, and TMP prices affect the possibility of achieving win-win outcomes for farmers and the environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Response of highbush blueberry to nitrogen fertilizer during field establishment. I. Accumulation and allocation of fertilizer nitrogen and biomass

    USDA-ARS?s Scientific Manuscript database

    The effects of N fertilizer rate on plant growth, N uptake, and biomass and N partitioning was studied in highbush blueberry during the first 2 years after planting. Plants were grown without N fertilizer or with either 50, 100, or 150 kg/ha N applied each year using 15N-depleted ammonium sulfate t...

  10. Modelling of catchment nitrogen concentrations response to observed varying fertilizer application intensities

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    Eutrophication is a serious environmental problem. Despite numerous experimental and modelling efforts, understanding of the effect of land use and agriculture practices on in-stream nitrogen fluxes is still not fully achieved. This study combined intensive field monitoring and numerical modelling using 30 years of surface water quality data of a drinking water reservoir catchment in central Germany. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% of agricultural land use with significant changes in agricultural practices within the investigation period. The geology of the Weida catchment is characterized by clay schists and eruptive rocks, where rocks have low permeability. The semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was used to reproduce the measured data. First, the model was calibrated for discharge and nitrate-N concentrations (NO3-N) during the period 1997-2000. Then, the HYPE model was validated successfully for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates (with lowest discharge prediction performance of NSE = 0.78 and PBIAS = 3.74%, considering calibration and validation periods). Results showed that the measured as well as simulated in-stream nitrate-N concentration respond quickly to fertilizer application changes (increase/decrease). This rapid response can be explained with short residence times of interflow and baseflow runoff components due to the hardrock geological properties of the catchment. Results revealed that the surface runoff and interflow are the most dominant runoff components. HYPE model could reproduce reasonably well the NO3-N daily loads for varying fertilizer application, when detailed input data in terms of crop management (field-specific survey) are considered.

  11. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...

  12. Novel slow release nanocomposite nitrogen fertilizers: the impact of polymers on nanocomposite properties and function

    USDA-ARS?s Scientific Manuscript database

    Efficient use of fertilizers, especially nitrogen, is essential and strategic to agricultural production. Among the technologies that can contribute to efficient use of fertilizers are slow or controlled release products. This paper describes the impact on structure, urea release rate and function i...

  13. Water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia; effects of agricultural activities on, and distribution of, nitrate and other inorganic constituents in the surficial aquifer

    USGS Publications Warehouse

    Hamilton, P.A.; Denver, J.M.; Phillips, P.J.; Shedlock, R.J.

    1993-01-01

    Agricultural applications of inorganic fertilizers and manure have changed the natural chemical com- position of water in the surficial aquifer through- out the Delmarva Peninsula. Nitrate, derived from nitrification of ammonia in inorganic fertilizers and manure, is the dominant anion in agricultural areas. Concentrations of nitrate in 185 water samples collected in agricultural areas ranged from 0.4 to 48 mg/L as nitrogen, with a median concen- tration of 8.2 mg/L as nitrogen. Nitrate concen- trations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water of 10 mg/L as nitrogen in about 33% of the 185 water samples. Groundwater affected by agricultural activities contains significantly higher concentrations of dissolved constituents than does natural groundwater. Concentrations of calcium and magnesium are higher because of liming of soils, and concentrations of potassium and chloride are higher because of applications of potash, a supple- ment to the nitrogen-based fertilizers. Alkalinity concentrations commonly are decreased because the bicarbonate ion is consumed in buffering reactions with acid that is produced during nitrification. Effects of agricultural activities on groundwater quality are not limited to the near-surface parts of the aquifer underlying farm fields. Elevated concentrations are common in aerobic water at or near the base of the aquifer, 80 to 100 ft below land surface. The median concentration of nitrate in water beneath agricultural areas collected from 24 wells deeper than 80 ft below land surface was 8.5 mg/L as nitrogen, and concentrations in 9 of these water samples exceeded the maximum contaminant level. Regional variations in concentrations of nitrate and other agriculture related constituents in the surficial aquifer in the Delmarva Peninsula depend on a number of factors that include geomorphology, geology, soils, land use, and groundwater-flow patterns. (USGS)

  14. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    EPA Science Inventory

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  15. Validation testing of a soil macronutrient sensing system

    USDA-ARS?s Scientific Manuscript database

    Rapid on-site measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for site-specific crop management, where fertilizer nutrient application rates are adjusted spatially based on local requirements. This study reports on validation testing of a previously develop...

  16. Irrigated mountain meadow fertilizer application timing effects on overland flow water quality.

    PubMed

    White, Shawn K; Brummer, Joe E; Leininger, Wayne C; Frasier, Gary W; Waskom, Reagan M; Bauder, Troy A

    2003-01-01

    Nonpoint-source pollution from agricultural activities is currently the leading cause of degradation of waterways in the United States. Applying best management practices to flood-irrigated mountain meadows may improve agricultural runoff and return flow water quality. Prior research has focused on fertilizer use for increased hay yields, while few studies have investigated the environmental implications of this practice. We examined the effects of fertilizer application timing on overland flow water quality from an irrigated mountain meadow near Gunnison, Colorado. Application of 40 kg phosphorus (P) and 19 kg nitrogen (N) ha(-1) using monoammonium phosphate (11-52-0, N-P-K) fertilizer to plots in the fall significantly reduced concentrations of reactive P and ammonium N in irrigation overland flow compared with early or late spring fertilization. Reactive P loading was 9 to almost 16 times greater when fertilizer was applied in the early or late spring, respectively, compared with in the fall. Ammonium N followed a similar trend with early spring loading more than 18 times greater and late spring loading more than 34 times greater than loads from fall-fertilized plots. Losses of 45% of the applied P and more than 17% of the N were measured in runoff when fertilizer was applied in the late spring. These results, coupled with those from previous studies, suggest that mountain meadow hay producers should apply fertilizer in the fall, especially P-based fertilizers, to improve hay yields, avoid economic losses from loss of applied fertilizers, and reduce the potential for impacts to water quality.

  17. Responses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times

    PubMed Central

    Zhao, Jun; Ni, Tian; Li, Yong; Xiong, Wu; Ran, Wei; Shen, Biao; Shen, Qirong; Zhang, Ruifu

    2014-01-01

    Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005) and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter) rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production. PMID:24465530

  18. Effects of agricultural practices and vadose zone stratigraphy on nitrate concentration in ground water in Kansas, USA

    USGS Publications Warehouse

    Townsend, M.A.; Sleezer, R.O.; Macko, S.A.; ,

    1996-01-01

    Differences in nitrate-N concentrations in,around water in Kansas can be explained by variations in agricultural practices and vadose-zone stratigraphy. In northwestern Kansas, past use of a local stream for tailwater runoff from irrigation and high fertilizer applications for sugar-beet farming resulted in high nitrate-N concentrations (12-60 mg L-1; in both soil and ground water. Nitrogen isotope values from the soil and ground water range from +4 to +8? which is typical for a fertilizer source. In parts of south-central Kansas, the use of crop rotation and the presence of both continuous fine-textured layers and a reducing ground-water chemistry resulted in ground-water nitrate-N values of 10 mg L-1; in both soil and grounwater. Nitrogen isotope values of +3 to +7? indicate a fertilizer source. Crop rotation decreased nitrate-N values in the shallow ground water (9 m). However, deeper ground water showed increasing nitrate-N concentrations as a result of past farming practices.

  19. A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data

    NASA Astrophysics Data System (ADS)

    Kaivosoja, Jere; Pesonen, Liisa; Kleemola, Jouko; Pölönen, Ilkka; Salo, Heikki; Honkavaara, Eija; Saari, Heikki; Mäkynen, Jussi; Rajala, Ari

    2013-10-01

    Different remote sensing methods for detecting variations in agricultural fields have been studied in last two decades. There are already existing systems for planning and applying e.g. nitrogen fertilizers to the cereal crop fields. However, there are disadvantages such as high costs, adaptability, reliability, resolution aspects and final products dissemination. With an unmanned aerial vehicle (UAV) based airborne methods, data collection can be performed cost-efficiently with desired spatial and temporal resolutions, below clouds and under diverse weather conditions. A new Fabry-Perot interferometer based hyperspectral imaging technology implemented in an UAV has been introduced. In this research, we studied the possibilities of exploiting classified raster maps from hyperspectral data to produce a work task for a precision fertilizer application. The UAV flight campaign was performed in a wheat test field in Finland in the summer of 2012. Based on the campaign, we have classified raster maps estimating the biomass and nitrogen contents at approximately stage 34 in the Zadoks scale. We combined the classified maps with farm history data such as previous yield maps. Then we generalized the combined results and transformed it to a vectorized zonal task map suitable for farm machinery. We present the selected weights for each dataset in the processing chain and the resultant variable rate application (VRA) task. The additional fertilization according to the generated task was shown to be beneficial for the amount of yield. However, our study is indicating that there are still many uncertainties within the process chain.

  20. Nitrous oxide emission from highland winter wheat field after long-term fertilization

    NASA Astrophysics Data System (ADS)

    Wei, X. R.; Hao, M. D.; Xue, X. H.; Shi, P.; Wang, A.; Zang, Y. F.; Horton, R.

    2010-06-01

    Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, M slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.78 and 1.98 kg N2O ha-1 increases, while manure + phosphorous offset 0.67 and 1.64 kg N2O ha-1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and less N2O flux and annual emission in M than in N.

  1. Nitrous oxide emission from highland winter wheat field after long-term fertilization

    NASA Astrophysics Data System (ADS)

    Wei, X. R.; Hao, M. D.; Xue, X. H.; Shi, P.; Horton, R.; Wang, A.; Zang, Y. F.

    2010-10-01

    Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.50 and 1.26 kg N2O-N ha-1 increases, while manure + phosphorous offset 0.43 and 1.04 kg N2O-N ha-1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and lower N2O flux and annual emission in m than in N.

  2. Effect of composted sewage sludge on morpho-physiological growth parameters, grain yield and selected functional compounds of barley.

    PubMed

    Pasqualone, Antonella; Summo, Carmine; Centomani, Isabella; Lacolla, Giovanni; Caranfa, Gianraffaele; Cucci, Giovanna

    2017-03-01

    Several studies have evaluated the effects of composted sewage sludge on barley and found a positive influence on crop productivity. No studies have investigated the effects of composted sewage sludge on functional compounds of the caryopsis, such as phenolics and β-glucans. The former play a role in plant defence mechanisms and both could be influenced by variations of kernel size related to fertilization intensity. The present study aimed to evaluate the effect of different doses (3-12 mg ha -1 ) of composted sewage sludge applied alone or in combination with mineral fertilization on morpho-physiological and yield qualitative parameters, especially phenolics and β-glucans contents of grains, in barley. Increasing fertilization rates, irrespective of fertilizer type, improved morpho-physiological and yield parameters, whereas the phenolic compounds and the related antioxidant activity significantly decreased (P < 0.05). The β-glucans and the main color indices did not show significant differences. The combined application of 6 mg ha -1 sewage sludge and nitrogen was not significantly different from mineral fertilization. Morpho-physiological and qualitative parameters, as well as bioactive compounds, were all significantly correlated with nutrient levels, with higher r values for nitrogen. Composted sewage sludge had a similar effect compared to mineral fertilization. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. [Effects of controlled release nitrogen fertilizer on surface water N dynamics and its runoff loss in double cropping paddy fields in Dongtinghu Lake area].

    PubMed

    Ji, Xiong-Hui; Zheng, Sheng-Xian; Lu, Yan-Hong; Liao, Yu-Lin

    2007-07-01

    By using leakage pond to simulate the double cropping paddy fields in Dongtinghu Lake area, this paper studied the effects of urea (CF) and controlled release nitrogen fertilizer (CRNF) on the dynamics of surface water pH, electrical conductivity (EC), total nitrogen (TN), ammonia nitrogen (NH4(+)-N) and nitrate nitrogen (NO3(-)-N) and the runoff loss of TN in alluvial sandy loamy paddy soil and purple calcareous clayed paddy soil, the two main paddy soils in this area. The results showed that after applying urea, the surface water TN and NH4(+)-N concentrations reached the peak at the 1st and 3rd day, respectively, and decreased rapidly then. Surface water NO3(-)-N concentration was very low, though it showed a little raise at the 3rd to 7th day after applying urea in purple calcareous clayed paddy soil. In early rice field, surface water pH rose gradually within 15 days after applying urea, while in late rice field, it did within 3 days. EC kept consistent with the dynamics of NH4(+)-N. CRNF, especially 70% N CRNF, gave rise to distinctly lower surface water pH, EC, and TN and NH4(+)-N concentrations within 15 days after application, but NO3- concentration rose slightly at late growth stages, compared with urea application. The monitoring of TN runoff loss indicated that during double cropping rice growth season, the loss amount of TN under urea application was 7.70 kg x hm(-2), accounting for 2.57% of applied urea-N. The two runoff events occurred within 20 days after urea application contributed significantly to the TN runoff loss. CRNF application resulted in a significantly lower TN concentration in runoff water from the 1st runoff event occurred within 10 days of its application, and thereafter, the total TN runoff loss for CRNF and 70% N CRNF application was decreased by 24.5% and 27.2%, respectively, compared with urea application.

  4. Enhancement of Carbon Sequestration in west coast Douglas-fir Forests with Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Chen, B.; Jassal, R.; Black, A.; Brummer, C.; Spittlehouse, D.; Nesic, Z.

    2008-12-01

    Fertilization is one of the eligible management practices for C sequestering and hence reducing CO2 emissions under Article 3.4 of the Kyoto Protocol. In the coastal regions of British Columbia, which have very little nitrogen (N) deposition from pollution sources owing to their remote location, and soils deficient in N (Hanley et al., 1996), Douglas-fir stands respond to N fertilization (Brix, 1981; Fisher and Binkley, 2000; Chapin et al., 2002). However, a major concern with N fertilization is the potential loss from the soil surface of the highly potent greenhouse gas N2O, and little is known about such losses in N-fertilized forest soils. While it is necessary to determine and quantify the effects of N fertilization on stand C sequestration, it is also important to address environmental concerns by measuring N2O emissions to determine the net greenhouse gas (GHG) global warming potential (GWP). The GWP of N2O is 296 times (100-year time horizon) greater than that of CO2 (Ehhalt and Prather, 2001), yet there is little information on its net radiative forcing as a result of forest fertilization. We report two years of results on the effects of N fertilization in a chronosequence of three Douglas-fir stands (7, 19 and 58 years old, hereafter referred to as HDF00, HDF88 and DF49, respectively) on net C sequestration or net primary productivity measured using the eddy-covariance technique. DF49 (110 ha) and HDF88 (20 ha) were aerially fertilized with urea at 200 kg N ha-1 on Jan 13 and Feb 17, 2007, respectively, while due to its young age and competing understory, fertilizer to HDF00 (5 ha) was manually applied at 80 g urea/tree (60 kg N ha-1) along the tree drip line on Feb 13-14, 2007. Additionally, we calculate the net change in GHG GWP resulting from fertilization of DF49 by accounting for N2O emissions and energy costs of fertilizer production, transport, and application. We also compare polymer-coated slow-release urea (Environmentally Smart Nitrogen (ESN), Agrium Inc., Calgary, AB, Canada) with regular urea for its potential effectiveness in reducing N2O emissions from the forest-floor.

  5. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China.

    PubMed

    Xun, Weibing; Zhao, Jun; Xue, Chao; Zhang, Guishan; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-06-01

    Different fertilization managements of red soil, a kind of Ferralic Cambisol, strongly affected the soil properties and associated microbial communities. The association of the soil microbial community and functionality with long-term fertilization management in the unique low-productivity red soil ecosystem is important for both soil microbial ecology and agricultural production. Here, 454 pyrosequencing analysis of 16S recombinant ribonucleic acid genes and GeoChip4-NimbleGen-based functional gene analysis were used to study the soil bacterial community composition and functional genes involved in soil organic carbon degradation. Long-term nitrogen-containing chemical fertilization-induced soil acidification and fertility decline and significantly altered the soil bacterial community, whereas long-term organic fertilization and fallow management improved the soil quality and maintained the bacterial diversity. Short-term quicklime remediation of the acidified soils did not change the bacterial communities. Organic fertilization and fallow management supported eutrophic ecosystems, in which copiotrophic taxa increased in relative abundance and have a higher intensity of labile-C-degrading genes. However, long-term nitrogen-containing chemical fertilization treatments supported oligotrophic ecosystems, in which oligotrophic taxa increased in relative abundance and have a higher intensity of recalcitrant-C-degrading genes but a lower intensity of labile-C-degrading genes. Quicklime application increased the relative abundance of copiotrophic taxa and crop production, although these effects were utterly inadequate. This study provides insights into the interaction of soil bacterial communities, soil functionality and long-term fertilization management in the red soil ecosystem; these insights are important for improving the fertility of unique low-productivity red soil. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. The importance of potassium in resistance to crown rot disease in alfalfa

    USDA-ARS?s Scientific Manuscript database

    Nitrogen, phosphate, and potassium (potash, K2O) are the three most important nutrients in alfalfa growth and development. Nitrogen fertilization is not required because alfalfa has a high rate of biological nitrogen fixation. Phosphorus and potassium are frequently applied as fertilizer, but potass...

  7. Nitrogen Fertilizer Dependency and Its Contradictions: A Theoretical Exploration of Social-Ecological Metabolism

    ERIC Educational Resources Information Center

    Mancus, Philip

    2007-01-01

    The global agro-food system relies heavily on inorganic nitrogenous fertilizers. In addition to consuming enormous amounts of energy, this manufactured input contributes to the accumulation of reactive nitrogen in the biosphere and undermines the biological basis of agricultural production itself. While technological inefficiency and population…

  8. Decoupling of soil carbon and nitrogen turnover partly explains increased net ecosystem production in response to nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Ehtesham, Emad; Bengtson, Per

    2017-04-01

    During the last decade there has been an ongoing controversy regarding the extent to which nitrogen fertilization can increase carbon sequestration and net ecosystem production in forest ecosystems. The debate is complicated by the fact that increased nitrogen availability caused by nitrogen deposition has coincided with increasing atmospheric carbon dioxide concentrations. The latter could further stimulate primary production but also result in increased allocation of carbon to root exudates, which could potentially ‘prime’ the decomposition of soil organic matter. Here we show that increased input of labile carbon to forest soil caused a decoupling of soil carbon and nitrogen cycling, which was manifested as a reduction in respiration of soil organic matter that coincided with a substantial increase in gross nitrogen mineralization. An estimate of the magnitude of the effect demonstrates that the decoupling could potentially result in an increase in net ecosystem production by up to 51 kg C ha-1 day-1 in nitrogen fertilized stands during peak summer. Even if the effect is several times lower on an annual basis, the results still suggest that nitrogen fertilization can have a much stronger influence on net ecosystem production than can be expected from a direct stimulation of primary production alone.

  9. Effects of liquid fertilizer application on the morphology and outplanting success of container longleaf pine seedlings

    Treesearch

    D. Paul Jackson; R. Kasten Dumroese; James P. Barnett; William B. Patterson

    2010-01-01

    Of a range of fertilization rates (0.5, 1.0, 2.0, 3.0, and 4.0 mg nitrogen (N) per seedling per week) applied for 20 weeks, the 2.0-N and 3.0-N seedlings produced good root collar diameter (RCD) growth (6.9 and 7.1 mm, respectively) and needle length ≤ 30 cm. Root collar development did not differ significantly in seedlings receiving the 4.0-mg-N treatment from those...

  10. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.

    PubMed

    Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin

    2015-03-01

    Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1)  yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully considered before large-scale application. © 2014 John Wiley & Sons Ltd.

  11. Impact of organic and inorganic fertilizers application on the phytochemical and antioxidant activity of Kacip Fatimah (Labisia pumila Benth).

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Karimi, Ehsan; Ghasemzadeh, Ali

    2013-09-05

    A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P₂O₅:10% K₂O) and inorganic fertilizer (NPK green; 15% N, 15% P₂O₅, 15% K₂O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.

  12. Unintended consequences of biofuels production?The effects of large-scale crop conversion on water quality and quantity

    USGS Publications Warehouse

    Welch, Heather L.; Green, Christopher T.; Rebich, Richard A.; Barlow, Jeannie R.B.; Hicks, Matthew B.

    2010-01-01

    In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The Biofuels Initiative in the Mississippi Delta resulted in a 47-percent decrease in cotton acreage with a concurrent 288-percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation than for cotton, this widespread shift in crop type has implications for water quantity and water quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged because of concerns about sustainability of the groundwater resource. Results from a mathematical model calibrated to existing conditions in the Delta indicate that increased fertilizer application on corn also likely will increase the extent of nitrate-nitrogen movement into the alluvial aquifer. Preliminary estimates based on surface-water modeling results indicate that higher application rates of nitrogen increase the nitrogen exported from the Yazoo River Basin to the Mississippi River by about 7 percent. Thus, the shift from cotton to corn may further contribute to hypoxic (low dissolved oxygen) conditions in the Gulf of Mexico.

  13. A GIS-based fuzzy classification for mapping the agricultural soils for N-fertilizers use.

    PubMed

    Assimakopoulos, J H; Kalivas, D P; Kollias, V J

    2003-06-20

    Special attention should be paid to the choice of the proper N-fertilizer, in order to avoid a further acidification and degradation of acid soils and at the same time to improve nitrogen use efficiency and to limit the nitrate pollution of the ground waters. Therefore, the risk of leaching of the fertilizer and of the acidification of the soils must be considered prior to any N-fertilizer application. The application of N-fertilizers to the soil requires a good knowledge of the soil-fertilizer relationship, which those who are planning the fertilization policy and/or applying it might not have. In this study, a fuzzy classification methodology is presented for mapping the agricultural soils according to the kind and the rate of application of N-fertilizer that should be used. The values of pH, clay, sand and carbonates soil variables are estimated at each point of an area by applying geostatistical techniques. Using the pH values three fuzzy sets: "no-risk-acidification"; "low-risk-acidification"; and "high-risk-acidification" are produced and the memberships of each point to the three sets are estimated. Additionally, from the clay and sand values the membership grade to the fuzzy set "risk-of-leaching" is calculated. The parameters and their values, which are used for the construction of the fuzzy sets, are based on the literature, the existing knowledge and the experimentation, of the soil-fertilizer relationships and provide a consistent mechanism for mapping the soils according to the type of N-fertilizers that should be applied and the rate of applications. The maps produced can easily be interpreted and used by non-experts in the application of the fertilization policy at national, local and farm level. The methodology is presented through a case study using data from the Amfilochia area, west Greece.

  14. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice

    PubMed Central

    Rahman, Motior M.; Islam, Aminul M.; Azirun, Sofian M.; Boyce, Amru N.

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility. PMID:24971378

  15. PHOSPHORUS AND NITRATE NITROGEN IN RUNOFF FOLLOWING FERTILIZER APPLICATION TO TURFGRASS. (R828007)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Normalized difference vegetation index (NDVI) variation among cultivars and environments

    USDA-ARS?s Scientific Manuscript database

    Although Nitrogen (N) is an essential nutrient for crop production, large preplant applications of fertilizer N can result in off-field loss that causes environmental concerns. Canopy reflectance is being investigated for use in variable rate (VR) N management. Normalized difference vegetation index...

  17. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input.

    PubMed

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-02-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. A Wheat CCAAT Box-Binding Transcription Factor Increases the Grain Yield of Wheat with Less Fertilizer Input1

    PubMed Central

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. PMID:25489021

  19. [Anthropogenic ammonia emission inventory and characteristics in the Pearl River Delta Region].

    PubMed

    Yin, Sha-sha; Zheng, Jun-yu; Zhang, Li-jun; Zhong, Liu-ju

    2010-05-01

    Based on the collected activity data and emission factors of anthropogenic ammonia sources, a 2006-based anthropogenic ammonia emission inventory was developed for the Pearl River Delta (PRD) region by source categories and cities with the use of appropriate estimation methods. The results show: (1) the total NH3 emission from anthropogenic sources in the PRD region was 194. 8 kt; (2) the agriculture sources were major contributors of anthropogenic ammonia sources, in which livestock sources shared 62.1% of total NH3 emission and the contribution of application of nitrogen fertilizers was 21.7%; (3) the broiler was the largest contributor among the livestock sources, accounting for 43.4% of the livestock emissions, followed by the hog with a contribution of 32.1%; (4) Guangzhou was the largest ammonia emission city in the PRD region, and then Jiangmen, accounting for 23.4% and 19.1% of total NH3 emission in the PRD region respectively, with major sources as livestock sources and application of nitrogen fertilizers.

  20. [Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems].

    PubMed

    Wang, Xiao-Chun; Yang, Wen-Yu; Deng, Xiao-Yan; Zhang, Qun; Yong, Tai-Wen; Liu, Wei-Guo; Yang, Feng; Mao, Shu-Ming

    2014-10-01

    A large amount of nitrogen (N) fertilizers poured into the fields severely pollute the environment. Reasonable application of N fertilizer has always been the research hotpot. The effects of N management on maize N utilization and residual nitrate N in soil under maize/soybean and maize/ sweet potato relay strip intercropping systems were reported in a field experiment in southwest China. It was found that maize N accumulation, N harvest index, N absorption efficiency, N contribution proportion after the anthesis stage in maize/soybean relay strip intercropping were increased by 6.1%, 5.4%, 4.3%, and 15.1% than under maize/sweet potato with an increase of 22.6% for maize yield after sustainable growing of maize/soybean intercropping system. Nitrate N accumulation in the 0-60 cm soil layer was 12.9% higher under maize/soybean intercropping than under maize/sweet potato intercropping. However, nitrate N concentration in the 60-120 cm soil layer when intercropped with soybean decreased by 10.3% than when intercropped with sweet potato, indicating a decrease of N leaching loss. Increasing of N application rate enhanced N accumulation of maize and decreased N use efficiency and significantly increased nitrate concentration in the soil profile except in the 60-100 cm soil layer, where no significant difference was observed with nitrogen application rate at 0 to 270 kg · hm(-2). Further application of N fertilizer significantly enhanced nitrate leaching loss. Postponing N application increased nitrate accumulation in the 60-100 cm soil layer. The results suggested that N application rates and ratio of base to top dressing had different influences on maize N concentration and nitrate N between maize/soybean and maize/sweet potato intercropping. Maize N concentration in the late growing stage, N harvest index and N use efficiency under maize/soybean intercropping increased (with N application rate at 180-270 kg · hm(-2) and ratio of base to top dressing = 3:2:5) and decreased nitrate leaching loss with yield reaching 7757 kg · hm(-2) on average. However, for maize/sweet potato, N concentration and use efficiency and maize yield increased significantly with N application rate at 180 kg · hm(-2) and ratio of base to top dressing = 5:5 than that under other treatments with yield reaching 6572 kg · hm(-2). Under these circumstances, it would be possible to realize maize high yield, high efficiency and safety of N man- agement under maize/soybean and maize/sweet potato relay strip intercropping systems.

  1. Additional potassium did not decrease aflatoxin or fumonisin nor increase corn yields

    USDA-ARS?s Scientific Manuscript database

    Potassium (K) aids in maintaining the water status of corn (Zea mays L) and helps plants to resist infection by some fungal pathogens. Two experiments involving muriate of potash fertilizer treatments of 0 lbs/A K2O, 60 lbs/A K2O, 120 lbs/A K2O, or a split application of 60 lbs/A K2O pre-plant follo...

  2. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    USGS Publications Warehouse

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  3. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize

    USDA-ARS?s Scientific Manuscript database

    The composition and function of microbial communities present in the rhizosphere of crops has been linked to edaphic factors and root exudate composition. In this paper, we examined the effect of N fertilizer rate on maize root exudation, the associated rhizosphere community, and nitrogen-use-effici...

  4. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments

    PubMed Central

    Meier, Elizabeth A.; Thorburn, Peter J.

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha–1 per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level. PMID:27462340

  5. Modeling greenhouse gas emissions (CO2, N2O, CH4) from managed arable soils with a fully coupled hydrology-biogeochemical modeling system simulating water and nutrient transport and associated carbon and nitrogen cycling at catchment scale

    NASA Astrophysics Data System (ADS)

    Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent

    2014-05-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in a small catchment at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification, chemodenitrification and methanogenesis producing and consuming soil based greenhouse gases. The model application will present first validation results of the coupled model to simulate soil based greenhouse gas emissions as well as nitrate discharge from the Yanting catchment. The model application will also present the effects of different management practices (fertilization rates and timings, tilling, residues management) on the redistribution of N surplus within the catchment causing biomass productivity gradients and different levels of indirect N2O emissions along topographical gradients.

  6. Recent Genetic Gains in Nitrogen Use Efficiency in Oilseed Rape

    PubMed Central

    Stahl, Andreas; Pfeifer, Mara; Frisch, Matthias; Wittkop, Benjamin; Snowdon, Rod J.

    2017-01-01

    Nitrogen is essential for plant growth, and N fertilization allows farmers to obtain high yields and produce sufficient agricultural commodities. On the other hand, nitrogen losses potentially cause adverse effects to ecosystems and to human health. Increasing nitrogen use efficiency (NUE) is vital to solve the conflict between productivity, to secure the demand of a growing world population, and the protection of the environment. To ensure this, genetic improvement is considered to be a paramount aspect toward ecofriendly crop production. Winter oilseed rape (Brassica napus L.) is the second most important oilseed crop in the world and is cultivated in many regions across the temperate zones. To our knowledge, this study reports the most comprehensive field-based data generated to date for an empirical evaluation of genetic improvement in winter oilseed rape varieties under two divergent nitrogen fertilization levels (NFLs). A collection of 30 elite varieties registered between 1989 and 2014, including hybrids and open pollinated varieties, was tested in a 2-year experiment in 10 environments across Germany for changes in seed yield and seed quality traits. Furthermore, NUE was calculated. We observed a highly significant genetics-driven increase in seed yield per-se and, thus, increased NUE at both NFLs. On average, seed yield from modern open-pollinated varieties and modern hybrids was higher than from old open-pollinated varieties and old hybrids. The annual yield progress across all tested varieties was ~35 kg ha−1 year−1 at low nitrogen and 45 kg ha−1 year−1 under high nitrogen fertilization. Furthermore, in modern varieties an increased oil concentration and decreased protein concentration was observed. Despite, the significant effects of nitrogen fertilization, a surprisingly low average seed yield gap of 180 kg N ha−1 was noted between high and low nitrogen fertilization. Due to contrary effects of N fertilization on seed yield per-se and seed oil concentration an oil yield of 2.04 t ha−1 was measured at both N levels. Collectively, the data reveal that genetic improvement through modern breeding techniques in conjunction with reduced N fertilizer inputs has a tremendous potential to increase NUE of oilseed rape. PMID:28638399

  7. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  8. Fertilizer value of nitrogen captured using ammonia scrubbers attached to animal production facilities

    USDA-ARS?s Scientific Manuscript database

    Over half of the nitrogen (N) excreted from broiler chickens is lost to the atmosphere before the manure is removed from the barns, resulting in air and water pollution and the loss of a valuable fertilizer resource. The objective of this study was to determine the fertilizer efficiency of N, which...

  9. Effect of Fertilization on Western Spruce Budworm Feeding in Young Western Larch Stands

    Treesearch

    Robert L. Talerico; Michael Montgomery; [Tech. Coords

    1983-01-01

    This study evaluated effects of fertilization of young western larch stands on western spruce budworm feeding in Montana. Various combinations of nitrogen, phosphorus, and potassium resulted in nearly double the amount of feeding by western spruce budworm larvae, with nitrogen eliciting the most response. Larch growth response to fertilization can be negated by...

  10. Seasonal differences in relationships between nitrate concentration and denitrification rates in ditch sediments vegetated with rice cutgrass (Leersia oryzoides)

    USDA-ARS?s Scientific Manuscript database

    Increased application of nitrogen (N) fertilizers in agricultural systems contributes to significant environmental impacts, including eutrophication of fresh and coastal waters. Rice cutgrass (Leersia oryzoides) can significantly enhance denitrification potential in agricultural ditch sediments and ...

  11. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China.

    PubMed

    Zhang, Man; Cheng, Gong; Feng, Hao; Sun, Benhua; Zhao, Ying; Chen, Haixin; Chen, Jing; Dyck, Miles; Wang, Xudong; Zhang, Jianguo; Zhang, Afeng

    2017-04-01

    Soil from the Loess Plateau of China is typically low in organic carbon and generally has poor aggregate stability. Application of organic amendments to these soils could help to increase and sustain soil organic matter levels and thus to enhance soil aggregate stability. A field experiment was carried out to evaluate the effect of the application of wheat straw and wheat straw-derived biochar (pyrolyzed at 350-550 °C) amendments on soil aggregate stability, soil organic carbon (SOC), and enzyme activities in a representative Chinese Loess soil during summer maize and winter wheat growing season from 2013 to 2015. Five treatments were set up as follows: no fertilization (CK), application of inorganic fertilizer (N), wheat straw applied at 8 t ha -1 with inorganic fertilizer (S8), and wheat straw-derived biochar applied at 8 t ha -1 (B8) and 16 t ha -1 (B16) with inorganic fertilizer, respectively. Compared to the N treatment, straw and straw-derived biochar amendments significantly increased SOC (by 33.7-79.6%), microbial biomass carbon (by 18.9-46.5%), and microbial biomass nitrogen (by 8.3-38.2%), while total nitrogen (TN) only increased significantly in the B16 plot (by 24.1%). The 8 t ha -1 straw and biochar applications had no significant effects on soil aggregation, but a significant increase in soil macro-aggregates (>2 mm) (by 105.8%) was observed in the B16 treatment. The concentrations of aggregate-associated SOC increased by 40.4-105.8% in macro-aggregates (>2 mm) under straw and biochar amendments relative to the N treatment. No significant differences in invertase and alkaline phosphatase activity were detected among different treatments. However, urease activity was greater in the biochar treatment than the straw treatment, indicating that biochar amendment improved the transformation of nitrogen in the soil. The carbon pool index and carbon management index were increased with straw and biochar amendments, especially in the B16 treatment. In conclusion, application of carbonized crop residue as biochar, especially at a rate of 16 t ha -1 , could be a potential solution to recover the depleted SOC and enhance the formation of macro-aggregates in Loess Plateau soils of China.

  12. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  13. Study of Application of Vinasse from Bio-ethanol Production to Farmland

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Shinogi, Yoshiyuki

    During bio-ethanol production from sugarcane molasses, large amounts of vinasse, which is strongly acidic with high COD and BOD, is produced as a by-product. Disposal of vinasse is one restrictive problem for sustainable bio-ethanol production. In this study, possible application of vinasse to farmland was investigated. First, the staple characteristics of vinasse were determined. Second, availability of nutrients such as nitrogen and potassium to crops and dynamics in the soil environment were studied in the laboratory, and crop growth experiments were carried out in the field. Farmland application of vinasse as a substitute for one third of the potassium showed no significant damage to the growth of red-radishes and tomatoes. When large amounts of vinasse are applied to farmland as a substitution for the nitrogen in traditional chemical fertilizers, nitrogen-hunger especially immediately after application is expected. In addition, it is necessary to take into consideration the leaching of ions and the dark material in the vinasse for proper timing of application and soil conditions.

  14. Effect of repeated applications of buprofezin and acephate on soil cellulases, amylase, and invertase.

    PubMed

    Raju, M Naga; Venkateswarlu, K

    2014-10-01

    The impact of repeated applications of buprofezin and acephate, at concentrations ranging from 0.25 to 1.0 kg ha(-1), on activities of cellulases, amylase, and invertase in unamended and nitrogen, phosphorous, and potassium (NPK) fertilizer-amended soil planted with cotton was studied. The nontarget effect of selected insecticides, when applied once, twice, or thrice on soil enzyme activities, was dose-dependent; the activities decreased with increasing concentrations of insecticides. However, there was a rapid decline in activities of enzymes after three repeated applications of insecticides in unamended or NPK-amended soil. Our data clearly suggest that insecticides must be applied judiciously in pest management in order to protect the enzymes largely implicated in soil fertility.

  15. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China.

    PubMed

    Hu, Kelin; Li, Yong; Chen, Weiping; Chen, Deli; Wei, Yongping; Edis, Robert; Li, Baoguo; Huang, Yuanfang; Zhang, Yuanpei

    2010-01-01

    Understanding water and N transport through the soil profile is important for efficient irrigation and nutrient management to minimize nitrate leaching to the groundwater, and to promote agricultural sustainable development in desert oases. In this study, a process-based water and nitrogen management model (WNMM) was used to simulate soil water movement, nitrate transport, and crop growth (maize [Zea mays L.]) under desert oasis conditions in northwestern China. The model was calibrated and validated with a field experiment. The model simulation results showed that about 35% of total water input and 58% of the total N input were leached to <1.8 m depth under traditional management practice. Excessive irrigation and N fertilizer application, high nitrate concentration in the irrigation water, together with the sandy soil texture, resulted in large nitrate leaching. Nitrate leaching was significantly reduced under the improved management practice suggested by farm extension personnel; however, the water and nitrate inputs still far exceeded the crop requirements. More than 1700 scenarios combining various types of irrigation and fertilizer practices were simulated. Quantitative analysis was conducted to obtain the best management practices (BMPs) with simultaneous consideration of crop yield, water use efficiency, fertilizer N use efficiency, and nitrate leaching. The results indicated that the BMPs under the specific desert oasis conditions are to irrigate the maize with 600 mm of water in eight times with a single fertilizer application at a rate of 75 kg N ha(-1).

  16. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: Observations, calibrated models, simulations and agro-hydrological conclusions

    NASA Astrophysics Data System (ADS)

    Kurtzman, Daniel; Shapira, Roi H.; Bar-Tal, Asher; Fine, Pinchas; Russo, David

    2013-08-01

    Nitrate contamination of groundwater under land used for intensive-agriculture is probably the most worrisome agro-hydrological sustainability problem worldwide. Vadose-zone samples from 0 to 9 m depth under citrus orchards overlying an unconfined aquifer were analyzed for variables controlling water flow and the fate and transport of nitrogen fertilizers. Steady-state estimates of water and NO3-N fluxes to groundwater were found to vary spatially in the ranges of 90-330 mm yr- 1 and 50-220 kg ha- 1 yr- 1, respectively. Calibration of transient models to two selected vadose-zone profiles required limiting the concentration of NO3-N in the solution that is taken up by the roots to 30 mg L- 1. Results of an independent lysimeter experiment showed a similar nitrogen-uptake regime. Simulations of past conditions revealed a significant correlation between NO3-N flux to groundwater and the previous year's precipitation. Simulations of different nitrogen-application rates showed that using half of the nitrogen fertilizer added to the irrigation water by farmers would reduce average NO3-N flux to groundwater by 70%, decrease root nitrogen uptake by 20% and reduce the average pore water NO3-N concentration in the deep vadose zone to below the Israeli drinking water standard; hence this rate of nitrogen application was found to be agro-hydrologically sustainable. Beyond the investigation of nitrate fluxes to groundwater under citrus orchards and the interesting case-study aspects, this work demonstrates a methodology that enables skillful decisions concerning joint sustainability of both the water resource and agricultural production in a common environmental setting.

  17. A KSC engineer describes the new fertilizer-producing facility near Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Clyde Parrish, a NASA/KSC engineer, explains how the fertilizer scrubber control panel (center) works to turn nitrogen tetroxide vapor into fertilizer, potassium hydroxide. Parrish developed the system, which uses a 'scrubber,' to capture nitrogen tetroxide vapor that develops as a by-product when it is transferred from ground storage tanks into the Shuttle storage tanks. Nitrogen tetroxide is used as the oxidizer for the hypergolic propellant in the Shuttle's on-orbit reaction control system. The scrubber then uses hydrogen peroxide to produce nitric acid, which, after adding potassium hydroxide, converts to potassium nitrate. The resulting fertilizer will be used on the orange groves that KSC leases to outside companies.

  18. Nitrogen fertilizer replacement value of cattle slurry in grassland as affected by method and timing of application.

    PubMed

    Lalor, S T J; Schröder, J J; Lantinga, E A; Oenema, O; Kirwan, L; Schulte, R P O

    2011-01-01

    Slurry application with methods such as trailing shoe (TS) results in reduced emissions of ammonia (NH3) compared with broadcast application using splashplate (SP). Timing the application during cool and wet weather conditions also contributes to low NH3 emissions. From this perspective, we investigated whether reduced NH3 emissions due to improved slurry application method and timing results in an increase in the nitrogen (N) fertilizer replacement value (NFRV). The effects of application timing (June vs. April) and application method (TS vs. SP) on the apparent N recovery (ANR) and NFRV from cattle slurry applied to grassland were examined on three sites over 3 yr in randomized block experiments. The NFRV was calculated using two methods: (i) NFRV(N) based on the ANR of slurry N relative to mineral N fertilizer; and (ii) NFRV(DM) based on DM yield. The TS method increased the ANR, NFRV(N), and NFRV(DM) compared with SP in the 40- to 50-d period following slurry application by 0.09, 0.10, and 0.10 kg kg(-1), respectively. These values were reduced to 0.07, 0.06, and 0.05 kg kg(-1), respectively, when residual harvests during the rest of the year were included. The highest NFRV(DM) for the first harvest period was with application in April using STS (0.30 kg kg(-1)), while application in June with SP had the Slowest (0.12 kg kg(-1)). The highest NFRV(DM) for the cumulative harvest period was with application in April using TS (0.38 kg kg(-1)), while application in June with SP had the lowest (0.17 kg kg(-1)). Improved management of application method, by using TS instead of SP, and timing, by applying slurry in April rather than June, offer potential to increase the NFRV(DM) of cattle slurry applied to grassland.

  19. Sustainable, alternative farming practices as a means to simultaneously secure food production and reduce air pollution in East Asia

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Fung, K. M.; Yong, T.; Liu, X.

    2015-12-01

    Proper agricultural land management is essential for securing food supply and minimizing damage to the environment. Among available farming practices, relay strip intercropping and fertilizer application are commonly used, but to study their wider environmental implications and possible feedbacks we require an Earth system modeling framework. In this study, the effectiveness of a maize-soybean relay strip intercropping system and fertilizer reduction is investigated using a multi-model method. The DNDC (DeNitrification-DeComposition) model is used to simulate agricultural activities and their impacts on the environment through nitrogen emissions and changes in soil chemical composition. Crop yield, soil nutrient content and nitrogen emissions to the atmosphere in major agricultural regions of China are predicted under various cultivation scenarios. The GEOS-Chem global chemical transport model is then used to estimate the effects on downwind particle and ozone air pollution. We show that relay strip intercropping and optimal fertilization not only improve crop productivity, but also retain soil nutrients, reduce ammonia emission and mitigate downwind air pollution. By cutting 25% fertilization inputs but cultivating maize and soybean together in a relay strip intercropping system used with field studies, total crop production was improved slightly by 4.4% compared to monoculture with conventional amount of fertilizers. NH3 volatilization decreases by 29%, equivalent to saving the pollution-induced health damage costs by about US$2.5 billion per year. The possible feedback effects from atmospheric nitrogen deposition onto the croplands are also investigated. We show that careful management and better quantitative understanding of alternative farming practices hold huge potential in simultaneously addressing different global change issues including the food crisis, air pollution and climate change, and calls for greater collaboration between scientists, farmers and policy makers concerning these issues.

  20. Development and evaluation of a full-scale spray scrubber for ammonia recovery and production of nitrogen fertilizer at poultry facilities.

    PubMed

    Hadlocon, Lara Jane S; Manuzon, Roderick B; Zhao, Lingying

    2015-01-01

    Significant ammonia emissions from animal facilities need to be controlled due to its negative impacts on human health and the environment. The use of acid spray scrubber is promising, as it simultaneously mitigates and recovers ammonia emission for fertilizer. Its low pressure drop contribution on axial fans makes it applicable on US farms. This study develops a full-scale acid spray scrubber to recover ammonia emissions from commercial poultry facilities and produce nitrogen fertilizer. The scrubber performance and economic feasibility were evaluated at a commercial poultry manure composting facility that released ammonia from exhaust fans with concentrations of 66-278 ppmv and total emission rate of 96,143 kg yr(-1). The scrubber consisted of 15 spray scrubber modules, each equipped with three full-cone nozzles that used dilute sulphuric acid as the medium. Each nozzle was operated at 0.59 MPa with a droplet size of 113 μm and liquid flow rate of 1.8 L min(-1). The scrubber was installed with a 1.3-m exhaust fan and field tested in four seasons. Results showed that the scrubber achieved high NH3 removal efficiencies (71-81%) and low pressure drop (<25 Pa). Estimated water and acid losses are 0.9 and 0.04 ml m(-3) air treated, respectively. Power consumption rate was between 89.48 and 107.48 kWh d(-1). The scrubber effluents containing 22-36% (m/v) ammonium sulphate are comparable to the commercial-grade nitrogen fertilizer. Preliminary economic analysis indicated that the break-even time is one year. This study demonstrates that acid spray scrubbers can economically and effectively recover NH3 from animal facilities for fertilizer.

  1. Reducing fertilizer-derived N2O emission: Point injection vs. surface application of ammonium-N fertilizer at a loamy sand site

    NASA Astrophysics Data System (ADS)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Kücke, Martin; Flessa, Heinz

    2013-04-01

    N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g-1 soil-1. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N2O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. 15N-ammonium sulphate was used to distinguish between N2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N2O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of 15N in N2O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N2O emissions and the fertilizer turnover in soil. 15N analysis clearly indicated that fertilizer derived N2O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N2O emission from fertilizer depots. One aim was to examine whether the ratio of N2O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. 15N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of 15N were performed on N2O in the gas phase and on ammonium and nitrate extracted from soil samples.

  2. The influence of nitrogen fertilization on the magnitude of rhizosphere effects

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Panke-Buisse, K.; Kao-Kniffin, J.

    2012-12-01

    The labile carbon released from roots to the rhizosphere enhances soil microbial activity and nutrient availability, but factors that regulate such "rhizosphere effects" are poorly understood. Nitrogen fertilization may suppress rhizosphere effects by reducing plant carbon allocation belowground. Here we investigated the impact of nitrogen fertilization (+100 mg NH4NO3-N kg soil-1) on the magnitude of rhizosphere effects of two grass species (Bermuda grass Cynodon dactylon and smooth crabgrass Digitaria ischaemum) grown in a nutrient-poor soil for 80-100 days inside a growth chamber. Rhizosphere effects were estimated by the percentage difference between the planted soil (rhizosphere soil) and the unplanted soil (bulk soil) for several assays. We found that the rhizosphere soil of both plants had higher pH (+ 0.5~0.7 units), similar microbial biomass carbon, but lower microbial biomass nitrogen (- 27~37%) compared to the bulk soil. The rate of net N mineralization and the activity of three soil enzymes that degrade chitin (NAG), protein (LAP) and lignin (peroxidase) and produce mineral nitrogen were generally enhanced by the rhizosphere effects (up to 80%). Although nitrogen fertilization significantly increased plant biomass, it generally affected microbial biomass, activity and net N mineralization rate to a similar extent between rhizosphere soil and bulk soil, and thus did not significantly impact the magnitude of rhizosphere effects. Moreover, the community structure of soil bacteria (indicated by T-RFLP) showed remarkable divergence between the planted and unplanted soils, but not between the control and fertilized soils. Collectively, these results suggest that grass roots affects soil microbial activity and community structure, but short-term nitrogen fertilization may not significantly influence these rhizosphere effects.

  3. [Key techniques for precision cultivation of nitrogenous fertilizer of pollution-free ginseng].

    PubMed

    Guo, Li-Li; Guo, Shuai; Dong, Lin-Lin; Shen, Liang; Li, Xi-Wen; Xu, Jiang; Chen, Shi-Lin

    2018-04-01

    Planting pollution-free farmland is the main mode of industrialization of ginseng cultivation, fine management of nitrogen fertilizer ginseng pollution-free farmland cultivation technology system is one of the key factors. In order to investigate the effect of nitrogenous fertilizer on the accumulation of ginseng biomass and saponins synthesis in vegetative growth stage, two-years-old ginsengs were used as test materials in this study. The test materials were cultivated by Hoagland medium with different nitrogen concentration (0,10,20,40 mg·L⁻¹) for 40 days. During the cultivation, photosynthetic rate was measured four times. After 40 days cultivation, chlorophyll content, stem diameter and the spatiotemporal expression of saponin synthesis related genes PgHMGR and PgSQE were tested. The results showed that there were significant differences in the photosynthetic rate and chlorophyll content among different nitrogen concentrations. The relative expression level of PgHMGR gene and PgSQE gene in root, stem and leaves of ginseng were different. Ginseng seedlings cultivated by 20 mg·L⁻¹ nitrogen possess the highest photosynthetic rate and chlorophyll content, while PgHMGR and PgSE showed the highest gene expression level. The optimal nitrogen concentration for the growth of 2-years-old ginseng might be 20 mg·L⁻¹ with 57.14 g ammonium nitrate each plant or pure 20.00 mg nitrogen each plant. It is concluded that this concentration is the most suitable concentration for the ginsenoside synthesis. Pollution-free ginseng with fine nitrogen fertilizer cultivation is conducive to the production of high quality and efficient ginseng medicinal materials. It lays a theoretical foundation for the rational fertilization and environment-friendly sustainable ecological ginseng planting industry. Copyright© by the Chinese Pharmaceutical Association.

  4. [Effect of DMPP on inorganic nitrogen runoff loss from vegetable soil].

    PubMed

    Yu, Qiao-Gang; Fu, Jian-Rong; Ma, Jun-Wei; Ye, Jing; Ye, Xue-Zhu

    2009-03-15

    The effect of urea with 1% 3,4-dimethyl pyrazole phosphate (DMPP) on inorganic nitrogen runoff loss from agriculture field was determined in an undisturbed vegetable soil by using the simulated artificial rainfall method. The results show that, during the three simulated artificial rainfall period, the ammonium nitrogen content in the runoff water is increased 1.42, 2.82 and 1.95 times with the DMPP application treatment compared to regular urea treatment, respectively. In the urea with DMPP addition treatment, the nitrate nitrogen content is decreased 70.2%, 59.7% and 52.1% in the three simulated artificial rainfall runoff water, respectively. The nitrite nitrogen content is also decreased 98.7%, 90.6% and 85.6% in the three simulated artificial rainfall runoff water, respectively. The nitrate nitrogen and nitrite nitrogen runoff loss are greatly declined with the DMPP addition in the urea. Especially the nitrite nitrogen is in a significant low level and is near to the treatment with no fertilizer application. The inorganic nitrogen runoff loss is declined by 39.0% to 44.8% in the urea with DMPP addition treatment. So DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation, decline the nitrogen runoff loss, lower the nitrogen transformation risk to the waterbody and be beneficial for the ecological environment.

  5. Impact of animal waste application on runoff water quality in field experimental plots.

    PubMed

    Hill, Dagne D; Owens, William E; Tchoounwou, Paul B

    2005-08-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers present after the simulated rainfall events were above 200/100 ml of sample water. It can be concluded that: 1) non-point source pollution has a significant effect on bacterial and nutrients levels in runoff water and in water resources; 2) land application of animal waste for soil fertilization makes a significant contribution to water pollution; 3) the use of tilling can significantly reduce the amount of nutrients available in runoff water.

  6. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots

    PubMed Central

    Hill, Dagne D.; Owens, William E.; Tchounwou, Paul B.

    2005-01-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers present after the simulated rainfall events were above 200/100 ml of sample water. It can be concluded that: 1) non-point source pollution has a significant effect on bacterial and nutrients levels in runoff water and in water resources; 2) land application of animal waste for soil fertilization makes a significant contribution to water pollution; 3) the use of tilling can significantly reduce the amount of nutrients available in runoff water. PMID:16705834

  7. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in substrate utilization will also affect total carbon fluxes over longer time scales.

  8. Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition

    NASA Technical Reports Server (NTRS)

    Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.

    1992-01-01

    Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico, USA. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots did not differ, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Annual net nitrogen mineralization and nitrate production were estimated in soil and forest floor using in situ incubations; fertilized soil mineralized 277 kg/ha/y in contrast to 18 kg/ha/y in control plots. Relative recovery of 15NH4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Despite the elevated nitrous oxide emission resulting from fertilization, we estimate that global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.

  9. Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer is critical to optimize short-term crop yield, but its long-term effect on soil organic C (SOC) is actively debated. Using 60 site-years of maize (Zea mays L.) yield response to a wide range of N fertilizer rates in continuous maize and annually rotated maize-soybean [Glycine max...

  10. Intensive straw harvesting, fertilization, and fertilizer source affect nitrogen mineralization and soil labile carbon of a loblolly pine plantation

    Treesearch

    K. Ellum; H.O. Liechty; M.A. Blazier

    2013-01-01

    Straw harvesting can supplement traditional revenues generated by loblolly pine (Pinus taeda L.) plantation management. However, repeated raking may alter soil properties and nutrition. In northcentral Louisiana, a study was conducted to evaluate the long-term effects of intensive straw raking and fertilizer source (inorganic or organic) on nitrogen...

  11. Urea fertilizer increases growth of 20-year-old, thinned Douglas-fir on poor quality site

    Treesearch

    Richard E. Miller; Donald L. Reukema

    1977-01-01

    In 20-year-old, site V Douglas-fir in southwest Washington, fertilizing with nitrogen increased average 5-year diameter and height growth of concurrently released dominant trees by about 85 percent. There was no additional response when phosphorus, potassium, and sulfur were added with the nitrogen fertilizer. Thinning with no other treatment in this moderately stocked...

  12. Cottonwood Response to Nitrogen Related To Plantation Age and Site

    Treesearch

    B.G. Blackmon

    1977-01-01

    When applied at plantation age 4,336 kg N/ha increased diameter growth of cottonwood on Sharkey clay by 33 percent over unfertilized controls. Fertilizing at ages 2 and 3 resulted in no response, nor was there any benefit from applying nitrogen fertilizer to cottonwood on Commerce silt loam. On both sites, foliar N levels were increased by fertilization regardless of...

  13. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands

    NASA Technical Reports Server (NTRS)

    Mosier, A.; Bronson, K.; Schimel, D.; Valentine, D.; Parton, W.

    1991-01-01

    Measurements of CH4 uptake and N2O emissions in native, nitrogen-fertilized, and wheat-growing prairie soils from spring to late autumn, 1990 are reported. It is found that nitrogen fertilization and cultivation can both decrease CH4 uptake and increase N2O production, thereby contributing to the increasing atmospheric concentrations of these gases.

  14. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands

    NASA Astrophysics Data System (ADS)

    Mosier, A.; Bronson, K.; Schimel, D.; Valentine, D.; Parton, W.

    1991-03-01

    Measurements of CH4 uptake and N2O emissions in native, nitrogen-fertilized, and wheat-growing prairie soils from spring to late autumn, 1990 are reported. It is found that nitrogen fertilization and cultivation can both decrease CH4 uptake and increase N2O production, thereby contributing to the increasing atmospheric concentrations of these gases.

  15. Regional variation in growth response of Coastal Douglas-fir to nitrogen fertilizer in the Pacific Northwest.

    Treesearch

    C.E. Peterson; J.W. Hazard

    1990-01-01

    Hypothesis testing for differences in growth responses among physiographic strata, thinning levels, and fertilizer dosage levels resulted in a set of empirical models for predicting volume increment response of even aged coastal Douglas-fir to nitrogen fertilizer. Absolute and percent responses are estimated for stands both thinned and unthinned, as a function of...

  16. Creeping bentgrass response to a stabilized amine form of nitrogen fertilizer

    USDA-ARS?s Scientific Manuscript database

    PiNT+potassium (PiNT+K) is a newly developed amine form of nitrogen (N) fertilizer that is stabilized by reaction with the potassium cation. The influence of PiNT+K and an analog fertilizer (KNO3 and NH4NO3) on the quality of creeping bentgrass were compared at different N rates (0, 25, 37.5, and 50...

  17. Multi-configuration electromagnetic induction measurements at long term agricultural test sites in Germany with different fertilizer and irrigation managements

    NASA Astrophysics Data System (ADS)

    Kaufmann, Manuela Sarah; von Hebel, Christian; Brogi, Cosimo; Baumecker, Michael; Döring, Thomas; Amelung, Wulf; Vereecken, Harry; van der Kruk, Jan

    2017-04-01

    Electromagnetic induction (EMI) data are often being used to investigate large scale soil properties including clay content, soil water content, and salinity changes for a wide range of applications. For agricultural sites, different management practices such as organic/mineral fertilization, tillage, and/or irrigation are important when interpreting the measured apparent electrical conductivity (ECa). Here, we present EMI data recorded at two long term field experiment (LTFE) agricultural test sites in Thyrow near Berlin (Germany), where different long term fertilizer and irrigation management practices were applied. We used two fixed-boom multi-coil EMI instruments that simultaneously measure over nine different depths of investigation (DOI), recording information ranging between the very shallow (0-0.25 m) ploughing zone including the organic matter and the surface soil (A-Horizon) down to the relatively deep (0-2.7 m) subsoil (B-Horizon) or even substratum (C-Horizon). At both test sites, the prevailing sandy to silty sand in the A- and B-Horizon is underlain by a glacial till C-Horizon resulting in generally low ECa values between 0.5 and 5 mS/m. At one test site, a "static nutrient deficiency experiment" is performed since 1937, where organic fertilizer (farm yard manure) and mineral fertilizers (nitrogen-phosphate-potassium (NPK) and liming) are applied at specific grids. Comparing the fertilizer application grid to the measured EMI data, the lowest ECa values coincide to unfertilized grids whereas the ECa values increase with liming, farm yard manure, and NPK. The visually observed correlation between ECa and the liming treatment was possibly due to the increased pH of the soil, because the fertilizer application increases ion contents that increase the soil electrical conductivity. At the second test site, a "Static Irrigation and Fertilizer Experiment" is conducted, where next to the fertilizer treatment (farm yard manure and nitrogen) part of the field is irrigated with a yearly average of 78 mm. Preliminary results show that for the irrigated area, the ECa values increased up to 80% compared to the non-irrigated zones for the deepest sensing coils, whereas farm yard manure increased ECa up to 10% for coils with intermediate DOI. These results obtained at the two LTFE sites strongly indicate that irrigation and fertilizer treatments influence the ion contents of soils from A- to B-Horizons as reflected by the higher apparent electrical conductivities measured with EMI and should be considered when interpreting ECa measurements to obtain soil properties of interest.

  18. Understanding nitrogen and organic carbon contents of agricultural drainage ditches of the Lower Mississippi Alluvial Valley

    USDA-ARS?s Scientific Manuscript database

    Application of agricultural fertilizers as a means of increasing production have resulted in excessive nutrient loading to agricultural drainage ditches, contributing to the Gulf of Mexico hypoxic zone. Drainage ditches can have wetland characteristics and functionality, including the capacity to re...

  19. Effects of poultry litter injection on ammonia volatilization, nitrogen availability, and nutrient losses in runoff

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is a common organic amendment in agricultural production systems, but nutrient losses can reduce the effectiveness as a fertilizer. Three studies were conducted to determine differences in nutrient availability and loss when comparing injection and surface application. These investi...

  20. Long-term manure applications improve soil productivity and sustain high crop yield for acidic red soils

    USDA-ARS?s Scientific Manuscript database

    Intensive use of chemical nitrogen (N) fertilizers has resulted in severely reduced productivity of red soils (Ferralic Cambisol) due to accelerated acidification. Manure has been shown to be effective in improving soil productivity by preventing or reversing the acidification process, but little in...

  1. Predicting Nitrogen in Streams : A Comparison of Two Estimates of Fertilizer Application

    EPA Science Inventory

    Decision makers frequently rely on water and air quality models to develop nutrient management strategies. Obviously, the results of these models (e.g., SWAT, SPARROW, CMAQ) are only as good as the nutrient source input data and recently the Nutrient Innovations Task Group has ca...

  2. Response of maize yield, nitrate leaching, and soil nitrogen to pig slurry combined with mineral nitrogen.

    PubMed

    Yagüe, María R; Quílez, Dolores

    2010-01-01

    The application of pig (Sus scrofa) slurry (PS) is a common fertilization practice that may affect nitrate concentrations and loads in drainage and receiving water bodies. To protect water resources, many agricultural areas are being designated as vulnerable to nitrate contamination, and there is a need for scientific data aiming at reducing nitrate exports from these vulnerable zones by optimizing N fertilization strategies. The objective of this work, conducted in drainage lysimeters in a 4-yr monoculture maize (Zea mays L.) crop, is to assess the effects of four fertilization strategies combining PS (30, 60, 90, and 120 t ha(-1)) and mineral N on yield, changes in soil mineral N, and concentration and mass of nitrate in drainage waters. Grain yield was not affected by treatments in the four experimental years, nor was the soil mineral N at the end of the experiment. Effects of fertilization strategies on nitrate concentration and mass in drainage waters were detected only after 3 yr of repeated PS applications. The mass of nitrate leached over the 4 yr was positively related to the total amount of N applied, either organic or mineral. In year 2003, precipitation in spring reduced N availability for the crop in treatments with rates > or = 60 t PS ha(-1). The N-budget revealed that the transport pathways for 25% of N inputs to the system are unknown. The presowing application of pig slurry at 30 t ha(-1) complemented with mineral N at side-dressing, was the most efficient from an environmental standpoint (4-yr average of 145 kg grain yield kg(-1) N leached).

  3. Short-term usage of sewage sludge as organic fertilizer to sugarcane in a tropical soil bears little threat of heavy metal contamination.

    PubMed

    Nogueira, Thiago Assis Rodrigues; Franco, Ademir; He, Zhenli; Braga, Vivian Santoro; Firme, Lucia Pittol; Abreu, Cassio Hamilton

    2013-01-15

    A field experiment was carried out to study the effect of application rates of sewage sludge and mineral nitrogen and phosphate fertilizers on As, Ba, Cd, Cr, Cu, Ni, Pb, Se, and Zn concentration in soil, cane plant, and first ratoon (residual effect) in a Typic Hapludult soil. To allow an analysis by means of response surface modeling, four rates of sewage sludge (0, 3.6, 7.2 and 10.8 t ha(-1), dry base), of N (0, 30, 60 and 90 kg ha(-1)) and of P(2)O(5) (0, 60, 120 and 180 kg ha(-1)) were applied in randomized block design, in a 4 × 4 × 4 factorial scheme, with confounded degrees of freedom for triple interaction, with two replications. To evaluate the residual effect of the sludge applied to cane plant on the cane ratoon growth, mineral NK fertilizers were applied at the rates of 120 kg ha(-1) N and 140 kg ha(-1) of K(2)O, on all treatments. The application rates of mineral nitrogen and phosphate fertilizers did not affect statistically the heavy metal concentration in the soil and in the sugarcane plants. Sewage sludge application increased As, Cd, Cu, Ni, Pb, and Zn concentrations in soil, but values did not exceed the quality standard established by legislation for agricultural soils. Although the concentrations of metals in the plants were very low, the uptake of heavy metal by sugarcane plants was generally increased by sewage sludge doses. The use of sewage sludge based on N criteria introduces a small amount of heavy metal into the agricultural system, however it poses no hazard to the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization.

    PubMed

    Wang, Yanan; Ke, Xiubin; Wu, Liqin; Lu, Yahai

    2009-02-01

    Little information is available on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in flooded rice soils. Consequently, a microcosm experiment was conducted to determine the effect of nitrogen fertilizer on the composition of AOB and AOA communities in rice soil by using molecular analyses of ammonia monooxygenase gene (amoA) fragments. Experimental treatments included three levels of N (urea) fertilizer, i.e. 50, 100 and 150 mgNkg(-1) soil. Soil samples were operationally divided into four fractions: surface soil, bulk soil deep layer, rhizosphere and washed root material. NH(4)(+)-N was the dominant form of N in soil porewater and increased with N fertilization. Cloning and sequencing of amoA gene fragments showed that the AOB community in the rice soil consisted of three major groups, i.e. Nitrosomonas communis cluster, Nitrosospira cluster 3a and cluster 3b. The sequences related to Nitrosomonas were predominant. There was a clear effect of N fertilizer and soil depth on AOB community composition based on terminal restriction fragment length polymorphism fingerprinting. Nitrosomonas appeared to be more abundant in the potentially oxic or micro-oxic fractions, including surface soil, rhizosphere and washed root material, than the deep layer of anoxic bulk soil. Furthermore, Nitrosomonas increased relatively in the partially oxic fractions and that of Nitrosospira decreased with the increasing application of N fertilizer. However, AOA community composition remained unchanged according to the denaturing gradient gel electrophoresis analyses.

  5. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China.

    PubMed

    Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao

    2007-03-01

    Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.

  6. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L.

    PubMed

    Oliveira, Rui S; Ma, Ying; Rocha, Inês; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The widespread use of agrochemicals is detrimental to the environment and may exert harmful effects on human health. The consumer demand for organic food plants has been increasing. There is thus a rising need for alternatives to agrochemicals that can foster sustainable plant production. The aim of this study was to evaluate the potential use of an arbuscular mycorrhizal (AM) fungus as an alternative to application of chemical fertilizer for improving growth performance of the medicinal and aromatic plant Coriandrum sativum. Plants were inoculated with the AM fungus Rhizophagus irregularis BEG163 and/or supplemented with a commercial chemical fertilizer (Plant Marvel, Nutriculture Bent Special) in agricultural soil. Plant growth, nutrition, and development of AM fungus were assessed. Plants inoculated with R. irregularis and those supplemented with chemical fertilizer displayed significantly improved growth performances when compared with controls. There were no significant differences in total fresh weight between plants inoculated with R. irregularis or those supplemented with chemical fertilizer. Leaf chlorophyll a + b (82%), shoot nitrogen (44%), phosphorus (254%), and potassium (27%) concentrations increased in plants inoculated with R. irregularis compared to controls. Application of chemical fertilizer inhibited root mycorrhizal colonization and the length of the extraradical mycelium of R. irregularis. Inoculation with R. irregularis was equally or more efficient than application of chemical fertilizer in promoting growth and nutrition of C. sativum. AM fungi may thus contribute to improve biologically based production of food plants and reduce the dependence on agrochemicals in agriculture.

  7. Impacts of enhanced fertilizer applications on tropospheric ozone and crop damage over sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Huang, Yaoxian; Hickman, Jonathan E.; Wu, Shiliang

    2018-05-01

    Fertilizer-induced nitrogen oxides (NOx) emissions in sub-Saharan Africa are expected to increase substantially in the coming decades, driven by increasing application of fertilizers to increase crop yields in an effort to attain food security across the continent. In many parts of sub-Saharan Africa, surface ozone (O3) is sensitive to increasing atmospheric concentrations of NOx. In this study, we employ the GEOS-Chem chemical transport model to conduct a preliminary investigation of the impacts on O3 air quality and the consequential crop damage associated with increasing fertilizer-induced NOx emissions in sub-Saharan Africa. Our simulation results, constrained by field NO flux measurements for the years 2011 and 2012 in response to a variety of fertilizer application rates in western Kenya, show that the enhancements in NO flux with fertilizer application rate of 150 kg N ha-1 can increase surface NOx and O3 concentrations by up to 0.36 and 2.8 ppbv respectively during the growing season. At the same time, accumulated O3 exposure during the crop growing season (expressed as AOT40 values) could increase by up to 496 ppb h, leading to crop yield decline of about 0.8% for O3-sensitive crops. Our results suggest that, when accounting for the consequential impacts on surface O3 air quality and crop damage over sub-Saharan Africa, agricultural intensification is possible without substantial impacts on crop productivity because the relatively small decline of crop yield resulting from O3 damage appears unlikely to outweigh the gain in crop yield from fertilization.

  8. Nitrogen source effects on nitrous oxide emissions from irrigated no-till corn.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J; Francesco, Alluvione

    2010-01-01

    Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. The study objective was to assess the ability of commercially available enhanced-efficiency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-efficiency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-efficiency fertilizers significantly reduced growing-season N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had significantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. The N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having significantly lower losses. Grain production was not reduced by the use of alternative N sources. This work shows that enhanced-efficiency N fertilizers can potentially reduce N2O-N emissions without affecting yields from irrigated NT corn systems in the semiarid central Great Plains.

  9. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment.

    PubMed

    Visioli, Giovanna; Bonas, Urbana; Dal Cortivo, Cristian; Pasini, Gabriella; Marmiroli, Nelson; Mosca, Giuliano; Vamerali, Teofilo

    2018-04-01

    With the increasing demand for high-quality foodstuffs and concern for environmental sustainability, late-season nitrogen (N) foliar fertilization of common wheat is now an important and widespread practice. This study investigated the effects of late-season foliar versus soil N fertilization on yield and protein content of four varieties of durum wheat, Aureo, Ariosto, Biensur and Liberdur, in a three-year field trial in northern Italy. Variations in low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that N applied to the canopy did not improve protein rate compared with N application to the soil (general mean 138 mg g -1 ), but moderately increased productivity in the high-yielding varieties Liberdur and Biensur (three-year means 7.23 vs 7.13 and 7.53 vs 7.09 t ha -1 respectively). Technological quality was mainly related to variety choice, Aureo and Ariosto having higher protein rates and glutenin/gliadin ratios. Also found was a strong 'variety × N application method' interaction in the proportions of protein subunits within each class, particularly LMW-GS and gliadins. A promising result was the higher N uptake efficiency, although as apparent balance, combined with higher HMW/LMW-GS ratio in var. Biensur. Late-season foliar N fertilization allows N fertilizer saving, potentially providing environmental benefits in the rainy climate of the northern Mediterranean area, and also leads to variety-dependent up-regulation of essential LMW-GS and gliadins. Variety choice is a key factor in obtaining high technological quality, although it is currently associated with modest grain yield. This study provides evidence of high quality in the specific high-yielding variety Biensur, suggesting its potential as a mono-varietal semolina for pasta production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Evaluating alternative approaches to modeling terrestrial C and N interactions using observations of ecosystem response to nitrogen deposition and experimental fertilization

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Bonan, G. B.; Goodale, C. L.

    2012-12-01

    In many forest ecosystems, nitrogen deposition is increasing carbon storage and reducing climate warming from fossil fuel emissions. Accurately modeling the forest carbon sequestration response to elevated nitrogen deposition using global biogeochemical models coupled to climate models is therefore important. Here, we use observations of the forest carbon response to both nitrogen fertilization experiments and nitrogen deposition gradients to test and improve a global biogeochemical model (CLM-CN 4.0). We introduce a series of model modifications to the CLM-CN that 1) creates a more closed nitrogen cycle with reduced nitrogen fixation and N gas loss and 2) includes buffering of plant nitrogen uptake and buffering of soil nitrogen available for plants and microbial processes. Overall, the modifications improved the comparison of the model predictions to the observational data by increasing the carbon storage response to historical nitrogen deposition (1850-2004) in temperate forest ecosystems by 144% and reducing the response to nitrogen fertilization. The increased sensitivity to nitrogen deposition was primarily attributable to greater retention of nitrogen deposition in the ecosystem and a greater role of synergy between nitrogen deposition and rising atmospheric CO2. Based on our results, we suggest that nitrogen retention should be an important attribute investigated in model inter-comparisons. To understand the specific ecosystem processes that contribute to the sensitivity of carbon storage to nitrogen deposition, we examined sensitivity to nitrogen deposition in a set of intermediary models that isolate the key differences in model structure between the CLM-CN 4.0 and the modified version. We demonstrate that the nitrogen deposition response was most sensitive to the implementation of a more closed nitrogen cycle and buffered plant uptake of soil mineral nitrogen, and less sensitive to modifications of the canopy scaling of photosynthesis, soil buffering of available nitrogen, and plant buffering of labile nitrogen. By comparing carbon storage sensitivity to observational data from both nitrogen deposition gradients and nitrogen fertilization experiments, we show different observed estimates of sensitivity between these two approaches could be explained by differences in the magnitude and time-scale of nitrogen additions.

  11. Mineral commodity profiles: nitrogen

    USGS Publications Warehouse

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania contributed the remaining 4 percent (International Fertilizer Industry Association, 2003b, p. 1-4). In 2002, world ammonia exports were 13.1 Mt of contained nitrogen. Trinidad and Tobago (22 percent), Russia (18 percent), Ukraine (10 percent), and Indonesia (7 percent) accounted for 57 percent of the world total. The largest importing regions were North America with 36 percent of the total followed by Western Europe with 23 percent and Asia with 22 percent (International Fertilizer Industry Association, 2003b, p. 5L-11). In 2002, world urea production was 51.4 Mt of contained nitrogen, and exports were 12.0 Mt of contained nitrogen. China and India, which were the two largest producing countries, accounted for 48 percent of world production. The United States and Canada produced about 10 percent of the total. Russia and Ukraine together accounted for 28 percent of total urea exports; Central America and South America, 27 percent; and Asia, North America, and Western Europe, 10 percent each. North America accounted for 36 percent of the total urea imports; Western Europe, 23 percent; and Asia, 22 percent (International Fertilizer Industry Association, 2003f, p. 1-15). Ammonia production capacity in North America and Western Europe is projected to decline through 2004, and capacity in other world regions is projected to increase. Fluctuating natural gas prices are mainly responsible for the capacity decline in North America. Ammonia production capacity is continuing to shift to world regions that have abundant sources of natural gas, and away from those where costs (raw material, labor, environmental compliance) are higher.

  12. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    PubMed

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  13. Optimization of fertilization characteristics of urine by addition of Nitrosomonas europaea bio-seed.

    PubMed

    Hashemi, Shervin; Han, Mooyoung; Kim, Tschungil

    2016-10-01

    Because of the high concentration of nutrients in human urine, its utilization as an organic fertilizer has been notable throughout history. However, the nitrogen compounds in urine are not stable. Therefore, to convert urine into a suitable fertilizer, it is important to stabilize and adjust unstable nitrogen compounds such as ammonia. Because nitrification can influence the nitrogen profile, the use of nitrifying microorganisms can be useful for stabilizing the nitrogen profile of urine. This study investigated the changes in nitrogen compounds in pure urine and examined the effect of adding Nitrosomonas europaea bio-seed solution on these changes. It was found that the addition of bio-seed could reduce nitrogen loss as well as the time required to stabilize the nitrogen profile. Furthermore, the optimum concentration of bio-seed (6 × 10(5) N. europaea cells L(-1) ) that not only leads to the least nutrient loss but also results in an adequate nitrate/ammonium ratio and regulates the amount of nitrate produced, thereby preventing over-fertilization, was determined. At this concentration, no dilution or dewatering is required, thus minimizing water and energy consumption. Usage of the optimum of concentration of bio-seed will also eliminate the need for inorganic chemical additives. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer.

    PubMed

    Coelho, Marcia Reed Rodrigues; de Vos, Marjon; Carneiro, Newton Portilho; Marriel, Ivanildo Evódio; Paiva, Edilson; Seldin, Lucy

    2008-02-01

    The diversity of nitrogen-fixing bacteria was assessed in the rhizospheres of two cultivars of sorghum (IS 5322-C and IPA 1011) sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg ha(-1)). The nifH gene was amplified directly from DNA extracted from the rhizospheres, and the PCR products cloned and sequenced. Four clone libraries were generated from the nifH fragments and 245 sequences were obtained. Most of the clones (57%) were closely related to nifH genes of uncultured bacteria. NifH clones affiliated with Azohydromonas spp., Ideonella sp., Rhizobium etli and Bradyrhizobium sp. were found in all libraries. Sequences affiliated with Delftia tsuruhatensis were found in the rhizosphere of both cultivars sown with high levels of nitrogen, while clones affiliated with Methylocystis sp. were detected only in plants sown under low levels of nitrogen. Moreover, clones affiliated with Paenibacillus durus could be found in libraries from the cultivar IS 5322-C sown either in high or low amounts of fertilizer. This study showed that the amount of nitrogen used for fertilization is the overriding determinative factor that influenced the nitrogen-fixing community structures in sorghum rhizospheres cultivated in Cerrado soil.

  15. Optimization of Nitrogen, Phosphorus, and Potassium Fertilization Rates for Overseeded Perennial Ryegrass Turf on Dormant Bermudagrass in a Transitional Climate

    PubMed Central

    Ihtisham, Muhammad; Fahad, Shah; Luo, Tao; Larkin, Robert M.; Yin, Shaohua; Chen, Longqing

    2018-01-01

    Bermudagrass [Cynodon dactylon (L.) Pers.] turf loss due to severe cold in transitional climates is a major concern. To overcome this problem, warm-season grass is often overseeded with a cool-season turfgrass. In this study, modeling and efficient nutrient management were used to evaluate this problem. A three-factor and five-level central composite rotatable design (CCRD) with a simulation of a regression model was used to optimize fertilization rates. The study investigated the combined effects of fertilization with nitrogen (N), phosphorus (P), and potassium (K) on both the morphological and physiological attributes and on the integrated turf performance (ITP) of overseeded perennial ryegrass (Lolium perenne). Fertilization with N and P significantly increased turf height, density, color, fresh and dry weights, while N, P, and K significantly affected turf cover, quality and winter-kill. The Spring transition was delayed by fertilization with N and P, and accelerated by fertilization with K. Photosynthesis (Pn), transpiration (Tr), and stomatal conductance (Gs) were considerably enhanced by fertilization with N, P, and K. Protein levels and total chlorophyll levels were substantially increased by fertilization with N and P and with N, P, and K, respectively, during a 2-year period. During two separate experiments conducted during 2 consecutive years, the optimal combinations of N, P, and K were N: 30, P: 24, K: 9, and N: 30, P: 27, K: 6 g m−2. The major conclusion of this study is that a balanced nutrient application utilizing N, P, and K is key to enhancing the winter performance of perennial ryegrass. PMID:29713331

  16. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems.

    PubMed

    Luo, Liang-Guo; Itoh, Sumio; Zhang, Qing-Wen; Yang, Shi-Qi; Zhang, Qing-Zhong; Yang, Zheng-Li

    2011-06-01

    The leaching behavior of nitrogen was studied in single rice paddy production ecosystems in Tsukuba, Japan after 75 years of consistent fertilization regimes (no fertilizer, ammonium sulfate, a combination of composted rice straw with soybean cake, and fresh clover). During the 75-year period, management was unchanged with respect to rice planting density, irrigation, and net N fertilization for each field to which an N-source was added. Percolation water was collected, from May 2001 to April 2002, using porous suction cups installed in the fields at depths of 15, 40, and 60 cm. All water samples were taken to the laboratory for the measurement of both NH(4) ( + )-N and NO(3) ( - )-N concentrations using a continuous-flow nitrogen analyzer. The result indicated that there were significant differences in N leaching losses between treatments during the rice growing season. Total N leaching was significantly lower with the application of composted rice straw plus soybean cake (0.58 kg N ha( - 1)) than with ammonium sulfate (2.41 kg N ha( - 1)), which resulted in N leaching at a similar level to that with the fresh clover treatment (no significant difference). The majority of this N leaching was not due to NO(3) ( - )-N loss, but to that of NH(4) ( + )-N. The mean N leaching for all fertilizer treatments during the entire rice growing season was 1.58 kg N ha( - 1). Composted rice straw plus soybean cake produced leaching losses which were 65-75% lower than those with the application of fresh clover and ammonium sulfate. N accumulation resulting from nitrification in the fallow season could be a key source of nitrate-N leaching when fields become re-flooded before rice transplanting in the following year; particular attention should be paid to this phenomenon.

  17. Nitrogen fertilization interacts with light to increase Rubus spp. cover in a temperate forest

    Treesearch

    Christopher A. Walter; Devon T. Raiff; Mark B. Burnham; Frank S. Gilliam; Mary Beth Adams; William T. Peterjohn

    2016-01-01

    Nitrogen additions have caused species composition changes in many ecosystems by facilitating the growth of nitrophilic species. After 24 years of nitrogen fertilization in a 40 year-old stand at the Fernow Experimental Forest (FEF) in Central Appalachia, USA, the cover of Rubus spp. has increased from 1 to 19 % of total herbaceous-layer cover....

  18. Effects of irrigation frequency and nitrogen fertilizer rate on water stress, nitrogen uptake, and plant growth of container-grown Rhododendron

    USDA-ARS?s Scientific Manuscript database

    The influence of irrigation frequency (same amount of water per day given at different times) and nitrogen (N) fertilizer rate on water stress (stomatal conductance, gs), N uptake, and growth (biomass) of container-grown evergreen Rhododendron ‘P.J.M. Compact’ and ‘English Roseum’ and deciduous Rhod...

  19. Combined effects of pre-hardening and fall fertilization on nitrogen translocation and storage in Quercus variabilis seedlings

    Treesearch

    Guolei Li; Yan Zhu; Yong Liu; Jiaxi Wang; Jiajia Liu; R. Kasten Dumroese

    2014-01-01

    Maintaining proper seedling nitrogen status is important for outplanting success. Fall fertilization of evergreen conifer seedlings is a well-known technique for averting nitrogen (N) dilution caused by continued seedling growth during hardening. For deciduous seedlings, this technique is much less understood, and regardless of foliage type, the interaction of N status...

  20. Effects of fertilizer on inorganic soil N in East Africa maize systems: vertical distributions and temporal dynamics.

    PubMed

    Tully, Katherine L; Hickman, Jonathan; McKenna, Madeline; Neill, Christopher; Palm, Cheryl A

    2016-09-01

    Fertilizer applications are poised to increase across sub-Saharan Africa (SSA), but the fate of added nitrogen (N) is largely unknown. We measured vertical distributions and temporal variations of soil inorganic N following fertilizer application in two maize (Zea mays L.)-growing regions of contrasting soil type. Fertilizer trials were established on a clayey soil in Yala, Kenya, and on a sandy soil in Tumbi, Tanzania, with application rates of 0-200 kg N/ha/yr. Soil profiles were collected (0-400 cm) annually (for three years in Yala and two years in Tumbi) to examine changes in inorganic N pools. Topsoils (0-15 cm) were collected every 3-6 weeks to determine how precipitation and fertilizer management influenced plant-available soil N. Fertilizer management altered soil inorganic N, and there were large differences between sites that were consistent with differences in soil texture. Initial soil N pools were larger in Yala than Tumbi (240 vs. 79 kg/ha). Inorganic N pools did not change in Yala (277 kg/ha), but increased fourfold after cultivation and fertilization in Tumbi (371 kg/ha). Intra-annual variability in NO - 3 -N concentrations (3-33 μg/g) in Tumbi topsoils strongly suggested that the sandier soils were prone to high leaching losses. Information on soil inorganic N pools and movement through soil profiles can h vulnerability of SSA croplands to N losses and determine best fertilizer management practices as N application rates increase. A better understanding of the vertical and temporal patterns of soil N pools improves our ability to predict the potential environmental effects of a dramatic increase in fertilizer application rates that will accompany the intensification of African croplands. © 2016 by the Ecological Society of America.

Top