Science.gov

Sample records for nitrogen gas n2

  1. Evidence for the direct oxidation of organic nitrogen to N2 gas in the Arabian Sea.

    PubMed

    Trimmer, Mark; Purdy, Kevin J

    2012-09-01

    We performed a suite of (15)N incubations ((15)NO(2)(-), (15)NO(3)(-) and (15)NH(4)(+)) with and without the organic-nitrogen (N) compound allylthiourea (ATU), in the suboxic waters of the Arabian Sea. Production of (29)N(2) in control (-ATU) incubations with either (15)NH(4)(+)+(14)NO(2)(-), or their analogues, (15)NO(2)(-)+(14)NH(4)(+), though small, confirmed the presence of anammox. In contrast, when we added ATU, along with (15)NO(2)(-) and (14)NH(4)(+), there was a much greater production of (29)N(2), with 92% of the (15)N-label being recovered as (29)N(2) on average. Such stimulated production of (29)N(2) could not be due to anammox, as the addition of ATU, along with (15)NH(4)(+)+(14)NO(2)(-), only produced (29)N(2) equivalent to that in the controls. The ratios of (29)N(2) to (30)N(2) produced also precluded stimulation of denitrification. We present this as evidence for a hitherto uncharacterised metabolism potentially capable of oxidising organic-N (e.g. NH(2) groups) directly to N(2) gas at the expense of NO(2)(-).

  2. Exclusion of phospholipases (PLs)-producing bacteria in raw milk flushed with nitrogen gas (N(2)).

    PubMed

    Munsch-Alatossava, Patricia; Gursoy, Oguz; Alatossava, Tapani

    2010-01-01

    Prolonged cold storage of raw milks favors the growth of psychrotrophs, which produce heat-resistant exoenzymes of considerable spoilage potential; the bacterial proteases and lipases affect raw milk quality; among them phospholipases (PLs) may target the milk fat globule. More importantly, bacterial PLs are key virulence factors for numerous species. Two studies examined the use of nitrogen (N(2)) gas and examined its effect on psychrotrophs, proteases and lipase producers when the milk was stored in closed vessels; however, the effect on PLs producers is unknown. Here we show that by considering an open system the PLs producers were sooner or later excluded in raw milk (whereas the PLs producers in the non-treated controls culminated at 10(8)CFU/ml), by effective gas treatments that bring oxygen (O(2)) levels in milk lower than 0.1ppm. No increase of the PLs producers among the anaerobes was noticed during the course of the experiments. In the experiments performed at 6.0 degrees C, the delay after which the PLs producers were no longer detectable seemed independent of the initial level of PLs producers in raw milk (lower than 10(3)CFU/ml). We anticipate that flushing pure N(2) gas in raw milk tanks, considered as open systems, along the cold chain of raw milk storage and transportation, may be an additional technique to control psychrotrophs, and may also constitute an interesting perspective for limiting their spoilage and pathogenic potential in food materials in general.

  3. Influence of Nitrogen-Fixing Biological Soil Crusts on Nitrogen Gas Fluxes (NO, N2O + N2) in Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Barger, N. N.; Belnap, J.; Ojima, D. S.

    2001-12-01

    Biological soil crusts (also known as microbiotic, microphytic, or cryptobiotic crusts) are communities of fungi, lichens, cyanobacteria, and mosses that colonize soil surfaces in arid and semi-arid ecosystems. Associated cyanobacteria and bacteria species within biological soil crusts fix atmospheric N2 and are an important source of nitrogen [N] in desert ecosystems. On the Colorado Plateau, estimates of N fixation rates by biological soil crusts are high and range from 4-37 kg N/ha/yr depending on biological crust composition. However estimates of N accumulation within these ecosystems are generally < 1 kg N/ha/yr, leading to considerable uncertainties regarding the fate of the fixed N by biological soil crusts and the dominant N loss pathways in desert ecosystems. To examine whether N gas losses increase with increasing N fixation potential of the biological crust community, we measured nitric oxide [NO] emissions and denitrification (nitrous oxide [N2O] + dinitrogen [N2 ]) from three biological soil crust communities. Coloration in biological soil crusts is a good indicator of crust community composition and N fixation rates which generally increase with increasing darkness of the biological soil crust. Based on coloration we chose light, medium and dark crusts to represent different N fixation potentials. NO fluxes were measured in the field during June and July 2001. We simulated a 5 mm rainfall event and measured NO fluxes from field chambers over several hours. In July only, we measured N2O fluxes on soil cores maintained at field capacity. Immediately after N2O fluxes were measured from soil cores, we injected 10 KPa C2H2 into each chamber. C2H2 at 10 KPa blocks the reduction of N2O to N2 in the denitrification process while simultaneously inhibiting nitrification. NO fluxes from dark crusts were 4 fold higher relative to light crusts, and 2 fold higher relative to medium crusts in June. By July the pattern was not as strong but dark crusts still had 42

  4. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

    PubMed Central

    Dabundo, Richard; Lehmann, Moritz F.; Treibergs, Lija; Tobias, Craig R.; Altabet, Mark A.; Moisander, Pia H.; Granger, Julie

    2014-01-01

    We report on the contamination of commercial 15-nitrogen (15N) N2 gas stocks with 15N-enriched ammonium, nitrate and/or nitrite, and nitrous oxide. 15N2 gas is used to estimate N2 fixation rates from incubations of environmental samples by monitoring the incorporation of isotopically labeled 15N2 into organic matter. However, the microbial assimilation of bioavailable 15N-labeled N2 gas contaminants, nitrate, nitrite, and ammonium, is liable to lead to the inflation or false detection of N2 fixation rates. 15N2 gas procured from three major suppliers was analyzed for the presence of these 15N-contaminants. Substantial concentrations of 15N-contaminants were detected in four Sigma-Aldrich 15N2 lecture bottles from two discrete batch syntheses. Per mole of 15N2 gas, 34 to 1900 µmoles of 15N-ammonium, 1.8 to 420 µmoles of 15N-nitrate/nitrite, and ≥21 µmoles of 15N-nitrous oxide were detected. One 15N2 lecture bottle from Campro Scientific contained ≥11 µmoles of 15N-nitrous oxide per mole of 15N2 gas, and no detected 15N-nitrate/nitrite at the given experimental 15N2 tracer dilutions. Two Cambridge Isotopes lecture bottles from discrete batch syntheses contained ≥0.81 µmoles 15N-nitrous oxide per mole 15N2, and trace concentrations of 15N-ammonium and 15N-nitrate/nitrite. 15N2 gas equilibrated cultures of the green algae Dunaliella tertiolecta confirmed that the 15N-contaminants are assimilable. A finite-differencing model parameterized using oceanic field conditions typical of N2 fixation assays suggests that the degree of detected 15N-ammonium contamination could yield inferred N2 fixation rates ranging from undetectable, <0.01 nmoles N L−1 d−1, to 530 nmoles N L−1 d−1, contingent on experimental conditions. These rates are comparable to, or greater than, N2 fixation rates commonly detected in field assays. These results indicate that past reports of N2 fixation should be interpreted with caution, and demonstrate that the purity of commercial 15N2

  5. Nitrogen gas flushing can be bactericidal: the temperature-dependent destiny of Bacillus weihenstephanensis KBAB4 under a pure N2 atmosphere.

    PubMed

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2014-01-01

    Gram-negative Pseudomonas and Gram-positive Bacillus are the most common spoilage bacteria in raw and pasteurized milk, respectively. In previous studies, nitrogen (N2) gas flushing treatments of raw and pasteurized milk at cold chain-temperatures inhibited bacterial spoilage and highlighted different susceptibilities to the N2 treatment with the exclusion of certain bacterial types. Here, we investigated the effects of pure N2 gas flushing on representative strains of these genera grown in mono- or co-cultures at 15 and 25°C. Bacillus weihenstephanensis, a frequent inhabitant of fluid dairy products, is represented by the genome-sequenced KBAB4 strain. Among Pseudomonas, P. tolaasii LMG 2342(T) and strain C1, a raw milk psychrotroph, were selected. The N2 gas flushing treatment revealed: (1) temperature-dependent responses; (2) inhibition of the growth of both pseudomonads; (3) emergence of small colony variants (SCVs) for B. weihenstephanensis strain KBAB4 at 15°C induced by the N2 treatment or when grown in co-culture with Pseudomonas strains; (4) N2 gas flushing modulates (suppressed or stimulated) bacterial antagonistic reactions in co-cultures; (5) most importantly, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that at 25°C the majority of the KBAB4 cells were killed by pure N2 gas flushing. This observation constitutes the first evidence that N2 gas flushing has bactericidal effects.

  6. Potential of Nitrogen Gas (N2) Flushing to Extend the Shelf Life of Cold Stored Pasteurised Milk

    PubMed Central

    Munsch-Alatossava, Patricia; Ghafar, Abdul; Alatossava, Tapani

    2013-01-01

    For different reasons, the amount of food loss for developing and developed countries is approximately equivalent. Altogether, these losses represent approximately 1/3 of the global food production. Significant amounts of pasteurised milk are lost due to bad smell and unpleasant taste. Currently, even under the best cold chain conditions, psychrotolerant spore-forming bacteria, some of which also harbour virulent factors, limit the shelf life of pasteurised milk. N2 gas-based flushing has recently been of interest for improving the quality of raw milk. Here, we evaluated the possibility of addressing bacterial growth in pasteurised milk during cold storage at 6 °C and 8 °C. Clearly, the treatments hindered bacterial growth, in a laboratory setting, when N2-treated milk were compared to the corresponding controls, which suggests that N2-flushing treatment constitutes a promising option to extend the shelf life of pasteurised milk. PMID:23478439

  7. Potential of nitrogen gas (n2) flushing to extend the shelf life of cold stored pasteurised milk.

    PubMed

    Munsch-Alatossava, Patricia; Ghafar, Abdul; Alatossava, Tapani

    2013-03-11

    For different reasons, the amount of food loss for developing and developed countries is approximately equivalent. Altogether, these losses represent approximately 1/3 of the global food production. Significant amounts of pasteurised milk are lost due to bad smell and unpleasant taste. Currently, even under the best cold chain conditions, psychrotolerant spore-forming bacteria, some of which also harbour virulent factors, limit the shelf life of pasteurised milk. N2 gas-based flushing has recently been of interest for improving the quality of raw milk. Here, we evaluated the possibility of addressing bacterial growth in pasteurised milk during cold storage at 6 °C and 8 °C. Clearly, the treatments hindered bacterial growth, in a laboratory setting, when N2-treated milk were compared to the corresponding controls, which suggests that N2-flushing treatment constitutes a promising option to extend the shelf life of pasteurised milk.

  8. Picosecond-TALIF and VUV absorption measurements of absolute atomic nitrogen densities from an RF atmospheric pressure plasma jet with He/O2/N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    West, Andrew; Niemi, Kari; Schröter, Sandra; Bredin, Jerome; Gans, Timo; Wagenaars, Erik

    2015-09-01

    Reactive Oxygen and Nitrogen species (RONS) from RF atmospheric pressure plasma jets (APPJs) are important in biomedical applications as well as industrial plasma processing such as surface modification. Atomic oxygen has been well studied, whereas, despite its importance in the plasma chemistry, atomic nitrogen has been somewhat neglected due to its difficulty of measurement. We present absolute densities of atomic nitrogen in APPJs operating with He/O2/N2 gas mixtures in open air, using picosecond Two-photon Absorption Laser Induced Fluorescence (ps-TALIF) and vacuum ultra-violet (VUV) absorption spectroscopy. In order to apply the TALIF technique in complex, He/O2/N2 mixtures, we needed to directly measure the collisional quenching effects using picosecond pulse widths (32ps). Traditional calculated quenching corrections, used in nanosecond TALIF, are inadequate due to a lack of quenching data for complex mixtures. Absolute values for the densities were found by calibrating against a known density of Krypton. The VUV absorption experiments were conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Atomic nitrogen densities were on the order of 1020 m-3 with good agreement between TALIF and VUV absorption. UK EPSRC grant EP/K018388/1.

  9. Selective Encaging of N2O in N2O-N2 Binary Gas Hydrates via Hydrate-Based Gas Separation.

    PubMed

    Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho

    2017-02-22

    The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N2O-N2) binary gas hydrates formed from N2O/N2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N2O-N2 binary gas hydrates is identified as the structure I (sI) hydrate. Raman spectra for N2O-N2 binary gas hydrate formed from N2O/N2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N2O molecules occupy both large and small cages of the sI hydrate. In contrast, there is a single Raman band of N2O molecules for N2O-N2 binary gas hydrate formed from N2O/N2 (20/80 mol %) gas mixture, indicating that N2O molecules are trapped in only large cages of sI hydrate. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N2O-N2 binary gas hydrates in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N2O molecules rather than N2 molecules in the hydrate cages, leading to a possible process for separating N2O from gas mixtures via hydrate formation. The phase equilibrium conditions, pseudo pressure-composition (P-x) diagram, and gas storage capacity of N2O-N2 binary gas hydrates are discussed in detail.

  10. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  11. Modeling greenhouse gas emissions (CO2, N2O, CH4) from managed arable soils with a fully coupled hydrology-biogeochemical modeling system simulating water and nutrient transport and associated carbon and nitrogen cycling at catchment scale

    NASA Astrophysics Data System (ADS)

    Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent

    2014-05-01

    , organic matter mineralisation, nitrification, denitrification, chemodenitrification and methanogenesis producing and consuming soil based greenhouse gases. The model application will present first validation results of the coupled model to simulate soil based greenhouse gas emissions as well as nitrate discharge from the Yanting catchment. The model application will also present the effects of different management practices (fertilization rates and timings, tilling, residues management) on the redistribution of N surplus within the catchment causing biomass productivity gradients and different levels of indirect N2O emissions along topographical gradients.

  12. Effect of adduct formation with molecular nitrogen on the measured collisional cross sections of transition metal-1,10-phenanthroline complexes in traveling wave ion-mobility spectrometry: N2 is not always an "inert" buffer gas.

    PubMed

    Rijs, Nicole J; Weiske, Thomas; Schlangen, Maria; Schwarz, Helmut

    2015-10-06

    The number of separations and analyses of molecular species using traveling wave ion-mobility spectrometry-mass spectrometry (TWIMS-MS) is increasing, including those extending the technique to analytes containing metal atoms. A critical aspect of such applications of TWIMS-MS is the validity of the collisional cross sections (CCSs) measured and whether they can be accurately calibrated against other ion-mobility spectrometry (IMS) techniques. Many metal containing species have potential reactivity toward molecular nitrogen, which is present in high concentration in the typical Synapt-G2 TWIMS cell. Here, we analyze the effect of nitrogen on the drift time of a series of cationic 1,10-phenanthroline complexes of the late transition metals, [(phen)M](+), (M = Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, and Hg) in order to understand potential deviations from expected drift time behaviors. These metal complexes were chosen for their metal open-coordination site and lack of rotameric species. The target species were generated via electrospray ionization (ESI), analyzed using TWIMS in N2 drift gas, and the observed drift time trends compared. Theoretically derived CCSs for all species (via both the projection approximation and trajectory method) were also compared. The results show that, indeed, for metal containing species in this size regime, reaction with molecular nitrogen has a dramatic effect on measured drift times and must not be ignored when comparing and interpreting TWIMS arrival time distributions. Density-functional theory (DFT) calculations are employed to analyze the periodic differences due to the metal's interaction with nitrogen (and background water) in detail.

  13. Bridging the low nitrogen Pacific with the high nitrogen Atlantic using Arctic N2/Ar and N* measurements

    NASA Astrophysics Data System (ADS)

    Reeve, J.; Hamme, R. C.

    2016-02-01

    The Pacific and Atlantic Oceans can easily be considered opposites with regards to their role in the marine nitrogen cycle. The Atlantic Ocean acts as a net source of fixed nitrogen, while the Pacific Ocean acts as a net sink. The Arctic Ocean allows Pacific water to flow across several major denitrifying shelves and into the North Atlantic. We present new N2/Ar and N* measurements from the subarctic North Pacific, Beaufort Sea, Canadian Archipelago, and Labrador Sea focusing on the Pacific water layer. N2/Ar and N* work well together as they both describe the net state of the nitrogen cycle in a water mass, but they approach the question from opposite sides of the cycle and have different inherent sources of error. N2/Ar considers the saturation of N2 gas in comparison with a physical proxy, and is increased by the addition of N2 by fixed nitrogen removal processes. The primary concerns with this tracer are the variabilities caused by air-sea gas exchange, and the difficulty of measuring it. As a result, the N2/Ar data presented here are the first measurements of their kind, to our knowledge, from the Arctic. N* is easy to measure and focuses on fixed nitrogen availability in comparison with phosphate availability. Its primary downside is that it can be affected by variations in the Redfield ratio and therefore is not always an accurate proxy for the net state of the nitrogen cycle.This study presents new data from two complimentary methods describing the role of the Arctic Ocean in the global nitrogen cycle.

  14. Quantifying N2O reduction to N2 based on N2O isotopocules - validation with independent methods (helium incubation and 15N gas flux method)

    NASA Astrophysics Data System (ADS)

    Lewicka-Szczebak, Dominika; Augustin, Jürgen; Giesemann, Anette; Well, Reinhard

    2017-02-01

    Stable isotopic analyses of soil-emitted N2O (δ15Nbulk, δ18O and δ15Nsp = 15N site preference within the linear N2O molecule) may help to quantify N2O reduction to N2, an important but rarely quantified process in the soil nitrogen cycle. The N2O residual fraction (remaining unreduced N2O, rN2O) can be theoretically calculated from the measured isotopic enrichment of the residual N2O. However, various N2O-producing pathways may also influence the N2O isotopic signatures, and hence complicate the application of this isotopic fractionation approach. Here this approach was tested based on laboratory soil incubations with two different soil types, applying two reference methods for quantification of rN2O: helium incubation with direct measurement of N2 flux and the 15N gas flux method. This allowed a comparison of the measured rN2O values with the ones calculated based on isotopic enrichment of residual N2O. The results indicate that the performance of the N2O isotopic fractionation approach is related to the accompanying N2O and N2 source processes and the most critical is the determination of the initial isotopic signature of N2O before reduction (δ0). We show that δ0 can be well determined experimentally if stable in time and then successfully applied for determination of rN2O based on δ15Nsp values. Much more problematic to deal with are temporal changes of δ0 values leading to failure of the approach based on δ15Nsp values only. For this case, we propose here a dual N2O isotopocule mapping approach, where calculations are based on the relation between δ18O and δ15Nsp values. This allows for the simultaneous estimation of the N2O-producing pathways' contribution and the rN2O value.

  15. Laboratory experiments for Titan's ionosphere : the chemistry of N2+, N+, and N2++ nitrogen ions

    NASA Astrophysics Data System (ADS)

    Thissen, R.; Alcaraz, C.; Dutuit, O.; Nicolas, C.; Soldi-Lose, H.; Zabka, J.; Franceschi, P.

    Laboratory experiments for Titan's ionosphere : the chemistry of N+ , N+ , and N2+ nitrogen ions 2 2 R. Thissen (1), C. Alcaraz (1), O. Dutuit (1), C. Nicolas (2), H. Soldi-Lose (3), J. Zabka (4), P. Franceschi (5) (1) LCP, Bât. 350, Centre Universitaire Paris-Sud, F-91405 Orsay Cedex, France, (2) Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France, (3) Institut für Chemie, Fachgruppe Organische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, (4) J. Heyrovsky Institute of Physical Chemistry, Dolejskova 3, CZ 18223 Praha 8 - Kobylisy, Czech Republik, (5) Dept. of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy (christian.alcaraz@lcp.u-psud.fr) N2 is the major neutral componant of Titan's atmosphere, its ionisation by solar radiation and by magnetospheric electron impact is the most important production of ions in Titan's ionosphere. These primary processes not only lead to N+ molecular 2 monocations but also to N+ atomic ions and to N2+ molecular dications, which can 2 pertain some internal or translational excitation. This contribution will summarize our efforts to caracterize in gaz phase laboratory experiments the reactivity of the nitrogen ions with the most important neutral targets of the Titan's atmosphere [1-3]: • N+ + CH4 , C2 H2 , and C2 H6 2 • N+ (3 P, 1 D) + CH4 , and C2 H4 • N2+ + N2 , CH4 , and C2 H4 2 In this work, particular attention has been paid on the effect of internal and/or translational excitation of the primary nitrogen ions on the rate constant and branching ratio of these ion-molecule reactions. The results from these studies have been compared to the literature values when available and some significant differences have been found. These new values have been used as input data in 1D models of the Titan's ionosphere to show the effect on the final density profiles of the main ions [4] and to demonstrate the existence of a N2+2 dication

  16. Nitrogen fertiliser formulation: The impact on N2O emissions

    NASA Astrophysics Data System (ADS)

    Harty, Mary; Krol, Dominika; Carolan, Rachael; McNeill, Gavin; McGeough, Karen; Laughlin, Ronnie; Watson, Catherine; Richards, Karl; Lanigan, Gary; Forrestal, Patrick

    2015-04-01

    Agriculture was responsible for 31% of Ireland's Agricultural Greenhouse Gas (GHG) emissions in 2012, with 39% of these emissions arising from chemical/organic fertilizers in the form of nitrous oxide (N2O). Switching from calcium ammonium nitrate (CAN) to a urea based fertiliser limits the soil residence period of nitrate, the major substrate for denitrification loss in the N2O form. However, urea is susceptible to ammonia (NH3) volatilisation but this risk can be managed using urease inhibitors. The aim of this study was to evaluate the effect of switching from CAN to urea, urea with the urease inhibitor N- (n-butyl) thiophosphoric triamide (trade name Agrotain®) and/or the nitrification inhibitor dicyandiamide (DCD on direct and indirect N2O emissions. The experiment is a two year study (commenced March 2013) at six permanent pasture sites located on the island of Ireland, at Johnstown Castle Co. Wexford, Moorepark Co. Cork and Hillsborough Co. Down, covering a range of soil textures and drainage characteristics. The experiment simulated a grazing environment; annual fertiliser N was applied at different rates (0, 100, 200, 300, 400 or 500 kg N ha-1) in five equal splits, with grass harvested prior to fertilizer application. Direct N2O emissions were quantified regularly using static chambers over 1 year and indirect N2O from ammonia volatilisation was measured using wind tunnels and annual emission factors calculated. Switching from CAN to urea dramatically reduced direct N2O emissions, but had little effect on dry-matter yield. However, there was evidence of pollution swapping of direct for indirect N2O from NH3. In the first year, two urea based formulations successfully reduced both direct and indirect N2O emissions at all sites. Fertiliser formulation strategy has the potential to be a solution for reduction of direct and indirect N2O emissions.

  17. Metastable Polymeric Nitrogen From N2H2 Alloys

    DTIC Science & Technology

    2008-12-01

    noble gas component, recently the field has expanded to include purely diatomic mixtures. Structural detenninations of the various solid phases...purity nitrogen (99.99 %) and hydrogen gas (99.990/0) were mixed in the molar ratio of 2: I determined using the virial coefficients. The N:lH2 mixture...pressure gas system described elsewhere [Mao et aI, 1986]. Raman spectra were obtained from an Ar- ion laser operating at 514.5 nm with an optical

  18. Theoretical characterization of stable eta1-N2O-, eta2-N2O-, eta1-N2-, and eta2-N2-bound species: intermediates in the addition reactions of nitrogen hydrides with the pentacyanonitrosylferrate(II) ion.

    PubMed

    Olabe, José A; Estiú, Guillermina L

    2003-08-11

    The addition of nitrogen hydrides (hydrazine, hydroxylamine, ammonia, azide) to the pentacyanonitrosylferrate(II) ion has been analyzed by means of density functional calculations, focusing on the identification of stable intermediates along the reaction paths. Initial reversible adduct formation and further decomposition lead to the eta(1)- and eta(2)-linkage isomers of N(2)O and N(2), depending on the nucleophile. The intermediates (adducts and gas-releasing precursors) have been characterized at the B3LYP/6-31G level of theory through the calculation of their structural and spectroscopic properties, modeling the solvent by means of a continuous approach. The eta(2)-N(2)O isomer is formed at an initial stage of adduct decompositions with the hydrazine and azide adducts. Further conversion to the eta(1)-N(2)O isomer is followed by Fe-N(2)O dissociation. Only the eta(1)-N(2)O isomer is predicted for the reaction with hydroxylamine, revealing a kinetically controlled N(2)O formation. eta(1)-N(2) and eta(2)-N(2) isomers are also predicted as stable species.

  19. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

    PubMed Central

    Harter, Johannes; Guzman-Bustamante, Ivan; Kuehfuss, Stefanie; Ruser, Reiner; Well, Reinhard; Spott, Oliver; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used 15N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio. PMID:28008997

  20. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

    NASA Astrophysics Data System (ADS)

    Harter, Johannes; Guzman-Bustamante, Ivan; Kuehfuss, Stefanie; Ruser, Reiner; Well, Reinhard; Spott, Oliver; Kappler, Andreas; Behrens, Sebastian

    2016-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used 15N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio.

  1. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil.

    PubMed

    Harter, Johannes; Guzman-Bustamante, Ivan; Kuehfuss, Stefanie; Ruser, Reiner; Well, Reinhard; Spott, Oliver; Kappler, Andreas; Behrens, Sebastian

    2016-12-23

    Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used (15)N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio.

  2. Nitrogen Incorporation in CH4-N2 Photochemical Aerosol Produced by Far Ultraviolet Irradiation

    PubMed Central

    Jimenez, Jose L.; Yung, Yuk L.; Toon, Owen B.; Tolbert, Margaret A.

    2012-01-01

    Abstract Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (λ<120 nm) or magnetospheric electrons in the outer reaches of the atmosphere. Far UV radiation (120–200 nm), which is transmitted down to the stratosphere of Titan, is expected to affect hydrocarbon chemistry only and not initiate the formation of nitrogenated species. We examined the chemical properties of photochemical aerosol produced at far UV wavelengths, using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which allows for elemental analysis of particle-phase products. Our results show that aerosol formed from CH4/N2 photochemistry contains a surprising amount of nitrogen, up to 16% by mass, a result of photolysis in the far UV. The proportion of nitrogenated organics to hydrocarbon species is shown to be correlated with that of N2 in the irradiated gas. The aerosol mass greatly decreases when N2 is removed, which indicates that N2 plays a major role in aerosol production. Because direct dissociation of N2 is highly improbable given the immeasurably low cross section at the wavelengths studied, the chemical activation of N2 must occur via another pathway. Any chemical activation of N2 at wavelengths >120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for how we view prebiotic chemistry on early Earth and similar planets. Key Words: Titan—Photochemical aerosol—CH4-N2 photolysis—Far UV—Nitrogen activation. Astrobiology 12, 315–326. PMID:22519972

  3. Relative gas diffusivity as a controller of soil N2 and N2O fluxes

    NASA Astrophysics Data System (ADS)

    Clough, Tim; Balaine, Nimlesh; Beare, Mike; Thomas, Steve

    2015-04-01

    Animal grazing may induce soil compaction and has been shown to enhance emissions of the greenhouse gas nitrous oxide (N2O). The dominant substrate for N2O production is urea, supplied to the soil in ruminant urine. While studies have examined the effects of water-filled pore space on N2O emissions there has been less attention paid to the role of soil physical properties, such as relative gas diffusivity (Dp/Do), on N2O emissions and associated emissions of dinitrogen (N2). Three experiments were performed on soil cores maintained at a range of soil bulk densities (1.1 to 1.5 Mg/m3) and soil matric potentials (-10 to -0.2 kPa). These soil cores received urea at 700 kg N/ha to simulate a urine deposition event. Using the 15N tracer technique we measured N2 and N2O fluxes in order to investigate the role of soil Dp/Do as a controlling factor the magnitude of N2 and N2O fluxes and the reduction of N2O. As soil compaction and soil moisture contents increased soil Dp/Do declined. This in turn resulted in slower rates of nitrification. The mean cumulative fluxes of N2O, as a percentage of N applied, ranged from <1 to 16% after 35 days. Cumulative N2 fluxes as a percentage of N applied, ranged from <1 to 60% after 35 days. Soil compaction and soil matric potential interacted to influence Dp/Do which in turn was seen to be a strong determinant of the magnitude of both N2O and N2 fluxes. As Dp/Do values decreased a critical value was reached where N2O fluxes rapidly switched from being at a maximum to a minimum while at the same time N2 production intensified. This was also reflected in the N2:N2O ratios, based on cumulative fluxes, which ranged from <1 to 25. When compared with water-filled pore space the Dp/Do variable proved to be a better predictor of the switch from N2O production to N2 production.

  4. Nitrogen Incorporation in CH4-N2 Photochemical Aerosol Produced by Far UV Irradiation

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Jimenez, Jose L.; Yung, Yuk L.; Toon, Owen B.; Tolbert, Margaret A.

    2012-01-01

    Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (lambda < 120 nm) or magnetospheric electrons in the outer reaches of the atmosphere. Far UV radiation (120 - 200 nm), which is transmitted down to the stratosphere of Titan, is expected to affect hydrocarbon chemistry only and not initiate the formation of nitrogenated species. We have examined the chemical properties of photochemical aerosol produced at far UV wavelengths using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), which allows for elemental analysis of particle-phase products. Our results show that aerosol formed from CH4/N2 photochemistry contains a surprising amount of nitrogen, up to 16% by mass, a result of photolysis in the far UV. The proportion of nitrogenated organics to hydrocarbon species is shown to be correlated with that of N2 in the irradiated gas. The aerosol mass greatly decreases when N2 is removed, indicating that N2 plays a major role in aerosol production. Because direct dissociation of N2 is highly improbable given the immeasurably low cross-section at the wavelengths studied, the chemical activation of N2 must occur via another pathway. Any chemical activation of N2 at wavelengths > 120 nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH4 photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for prebiotic chemistry on the early Earth and similar planets.

  5. Effect of excited nitrogen atoms on inactivation of spore-forming microorganisms in low pressure N2/O2 surface-wave plasma

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Chang, Xijiang; Tei, Reitou; Nagatsu, Masaaki

    2016-06-01

    Using a vacuum ultraviolet (VUV) absorption spectroscopy with a compact low pressure plasma light source, the absolute nitrogen atom density was measured to study its role in the spore inactivation with low pressure N2/O2 gas mixture surface-wave plasmas (SWPs). Self-absorption effect of the resonance emission lines of nitrogen atoms near 120 nm was minimized by optimizing its discharge conditions of the plasma light source. Experimental results showed that excited nitrogen atom densities monotonically decreased with the decrease of N2 gas percentage in N2/O2 gas mixture SWPs, concomitantly with similar decrease of VUV/UV emission intensities of nitrogen atoms and molecules. In the pure N2 gas SWPs, it was confirmed that a dominant lethal factor was VUV/UV emission generated by N2 plasma, while spore etching occurred via physical and chemical interactions with nitrogen species. With an addition of O2 gas, significant spore etching by excited oxygen atoms made it much easier for the VUV/UV photons emitted by nitrogen atoms, N2 and NO molecules to penetrate through the etched spore coats to the core and cause the fatal DNA damage of the microorganisms. As a result, more rapid inactivation was achieved in the middle region of N2/O2 gas mixture ratio, such as 30-80% O2 gas addition, in the present N2/O2 gas mixture SWPs.

  6. Free-Living Rhizobium Strain Able To Grow on N2 as the Sole Nitrogen Source

    PubMed Central

    Dreyfus, B. L.; Elmerich, C.; Dommergues, Y. R.

    1983-01-01

    A Rhizobium strain isolated from stem nodules of the legume Sesbania rostrata was shown to grow on atmospheric nitrogen (N2) as the sole nitrogen source. Non-N2-fixing mutants isolated directly on agar plates formed nodules that did not fix N2 when inoculated into the host plant. Images PMID:16346220

  7. Regulation of CO2 and N2O fluxes by coupled carbon and nitrogen availability

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Eberwein, J. R.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-03-01

    Carbon (C) and nitrogen (N) interactions contribute to uncertainty in current biogeochemical models that aim to estimate greenhouse gas (GHG, including CO2 and N2O) emissions from soil to atmosphere. In this study, we quantified CO2 and N2O flux patterns and their relationship along with increasing C additions only, N additions only, a C gradient combined with excess N, and an N gradient with excess C via laboratory incubations. Conventional trends, where labile C or N addition results in higher CO2 or N2O fluxes, were observed. However, at low levels of C availability, saturating N amendments reduced soil CO2 flux while with high C availability N amendments enhanced it. At saturating C conditions increasing N amendments first reduced and then increased CO2 fluxes. Similarly, N2O fluxes were initially reduced by adding labile C under N limited conditions, but additional C enhanced N2O fluxes by more than two orders of magnitude in the saturating N environment. Changes in C or N use efficiency could explain the altered gas flux patterns and imply a critical level in the interactions between N and C availability that regulate soil trace gas emissions and biogeochemical cycling. Compared to either N or C amendment alone, the interaction of N and C caused ∼60 and ∼5 times the total GHG emission, respectively. Our findings suggested that the response of CO2 and N2O fluxes along stoichiometric gradients in C and N availability should be accounted for interpreting or modeling the biogeochemistry of GHG emissions.

  8. Nitrogen removal from natural gas

    SciTech Connect

    1997-04-01

    According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

  9. Nitrogen attenuation in the Connecticut River, northeastern USA; a comparison of mass balance and N2 production modeling approaches

    USGS Publications Warehouse

    Smith, T.E.; Laursen, A.E.; Deacon, J.R.

    2008-01-01

    Two methods were used to measure in-stream nitrogen loss in the Connecticut River during studies conducted in April and August 2005. A mass balance on nitrogen inputs and output for two study reaches (55 and 66 km), at spring high flow and at summer low flow, was computed on the basis of total nitrogen concentrations and measured river discharges in the Connecticut River and its tributaries. In a 10.3 km subreach of the northern 66 km reach, concentrations of dissolved N2 were also measured during summer low flow and compared to modeled N2 concentrations (based on temperature and atmospheric gas exchange rates) to determine the measured "excess" N2 that indicates denitrification. Mass balance results showed no in-stream nitrogen loss in either reach during April 2005, and no nitrogen loss in the southern 55 km study reach during August 2005. In the northern 66 km reach during August 2005, however, nitrogen output was 18% less than the total nitrogen inputs to the reach. N2 sampling results gave an estimated rate of N2 production that would remove 3.3% of the nitrogen load in the river over the 10.3 km northern sub-reach. The nitrogen losses measured in the northern reach in August 2005 may represent an approximate upper limit for nitrogen attenuation in the Connecticut River because denitrification processes are most active during warm summer temperatures and because the study was performed during the annual low-flow period when total nitrogen loads are small. ?? 2008 Springer Science+Business Media B.V.

  10. Nitrogen Gas Fluxes in Northeastern Temperate Forests

    NASA Astrophysics Data System (ADS)

    Lafave, S.; Groffman, P. M.; Venterea, R. T.; Lovett, G. M.

    2002-12-01

    Nitrogen gas fluxes are a poorly quantified component of the nitrogen (N) cycle of forest ecosystems and are important to water quality, atmospheric chemistry and forest health. We measured fluxes of nitric oxide (NO), nitrous oxide (N2O) and dinitrogen (N2) in oak and maple stands in the Catskill mountains of New York State. Fluxes of NO and N2O were measured using in situ chambers and N2 flux was measured in intact cores incubated in a helium-oxygen atmosphere closed recirculation system in the laboratory. Fluxes of NO and N2O were higher in maple than in oak stands, which is consistent with previous work showing higher rates of N cycling under maple than oak. NO fluxes averaged 1.7 mg N m-2 d-1 in maple and 0.2 in oak. N2O fluxes averaged 0.10 mg N m-2 d-1 in maple and 0.004 in oak. However, N2 fluxes were higher in oak (2.3 mg N m-2 d-1) than maple (0.15), a surprising result that was supported by independent measurements of denitrification potential. There was marked variability in fluxes between replicate plots that was linked to the presence of understory vegetation and physical characteristics of the forest floor. Results suggest that N gas fluxes in northeastern temperate forests may be more important than previously thought and may be an important regulator of export of N to coastal waters, N-related atmospheric chemistry and forest N saturation.

  11. N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis

    PubMed Central

    Kremer, Timothy A.; LaSarre, Breah; Posto, Amanda L.; McKinlay, James B.

    2015-01-01

    A nascent cellulosic ethanol industry is struggling to become cost-competitive against corn ethanol and gasoline. Millions of dollars are spent on nitrogen supplements to make up for the low nitrogen content of the cellulosic feedstock. Here we show for the first time to our knowledge that the ethanol-producing bacterium, Zymomonas mobilis, can use N2 gas in lieu of traditional nitrogen supplements. Despite being an electron-intensive process, N2 fixation by Z. mobilis did not divert electrons away from ethanol production, as the ethanol yield was greater than 97% of the theoretical maximum. In a defined medium, Z. mobilis produced ethanol 50% faster per cell and generated half the unwanted biomass when supplied N2 instead of ammonium. In a cellulosic feedstock-derived medium, Z. mobilis achieved a similar cell density and a slightly higher ethanol yield when supplied N2 instead of the industrial nitrogen supplement, corn steep liquor. We estimate that N2-utilizing Z. mobilis could save a cellulosic ethanol production facility more than $1 million/y. PMID:25646422

  12. N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis

    DOE PAGES

    Kremer, Timothy A.; LaSarre, Breah; Posto, Amanda L.; ...

    2015-02-02

    A nascent cellulosic ethanol industry is struggling to become cost-competitive against corn ethanol and gasoline. Millions of dollars are spent on nitrogen supplements to make up for the low nitrogen content of the cellulosic feedstock. In this paper, we show for the first time to our knowledge that the ethanol-producing bacterium, Zymomonas mobilis, can use N2 gas in lieu of traditional nitrogen supplements. Despite being an electron-intensive process, N2 fixation by Z. mobilis did not divert electrons away from ethanol production, as the ethanol yield was greater than 97% of the theoretical maximum. In a defined medium, Z. mobilis producedmore » ethanol 50% faster per cell and generated half the unwanted biomass when supplied N2 instead of ammonium. In a cellulosic feedstock-derived medium, Z. mobilis achieved a similar cell density and a slightly higher ethanol yield when supplied N2 instead of the industrial nitrogen supplement, corn steep liquor. Finally, we estimate that N2-utilizing Z. mobilis could save a cellulosic ethanol production facility more than $1 million/y.« less

  13. N2O emissions from a nitrogen-enriched river

    USGS Publications Warehouse

    McMahon, P.B.; Dennehy, K.F.

    1999-01-01

    Nitrous oxide (N2O) emissions from the South Platte River in Colorado were measured using closed chambers in the fall, winter, and summer of 1994- 1995. The South Platte River was enriched in inorganic N (9-800 ??M) derived from municipal wastewater effluent and groundwater return flows from irrigated agricultural fields. River water was as much as 2500% supersaturated with N2O, and median N2O emission rates from the river surface ranged from less than 90 to 32 600 ??g-N m-2 d-1. Seventy-nine percent of the variance in N2O emission rates was explained by concentrations of total inorganic N in river water and by water temperature. The estimated total annual N2O emissions from the South Platte River were 2 x 1013-6 x 1013 ??g-N yr-1. This amount of annual N2O emissions was similar to the estimated annual N2O emissions from all primary municipal wastewater treatment processes in the United States (1). Results from this study indicate that N-enriched rivers could be important anthropogenic sources of N2O to the atmosphere. However, N2O emission measurements from other N-enriched rivers are needed to better quantify this source.Nitrous oxide (N2O) emissions from the South Platte River in Colorado were measured using closed chambers in the fall, winter, and summer of 1994-1995. The South Platte River was enriched in inorganic N (9-800 ??M) derived from municipal wastewater effluent and groundwater return flows from irrigated agricultural fields. River water was as much as 2500% supersaturated with N2O, and median N2O emission rates from the river surface ranged from less than 90 to 32 600 ??g-N m-2 d-1. Seventy-nine percent of the variance in N2O emission rates was explained by concentrations of total inorganic N in river water and by water temperature. The estimated total annual N2O emissions from the South Platte River were 2??1013-6??1013 ??g-N yr-1. This amount of annual N2O emissions was similar to the estimated annual N2O emissions from all primary municipal

  14. Quantifying N2 and N2O production in agricultural streams using open channel methods: a tool for finding missing watershed nitrogen

    NASA Astrophysics Data System (ADS)

    Gardner, J. R.; Jordan, T. E.; Knee, K.; Fisher, T. R.

    2013-12-01

    Anthropogenic nitrogen (N) inputs are altering biogeochemical cycles, impairing aquatic ecosystems, and contributing to climate change. Agricultural watersheds, such as those in our study area on the eastern shore of Maryland, play a significant role as one of the greatest sources of N to coastal waters and N2O to the atmosphere. Denitrification can permanently remove N from the landscape through conversion to N2 and N2O gases, and gaseous N loss from streams and rivers is thought to be an important loss term in watershed N budgets. However, denitrification and fluxes of biogenic gases in streams are poorly understood, especially at ecologically relevant scales. In this study, we applied open channel methods to quantify in-situ N2 and N2O production at the reach scale. We accounted for both in-stream N2 production and watershed-derived N2 delivered to the stream via groundwater influx, and used two naturally present gases, 222Rn and Ar, as tracers for gas transfer velocity (k). We conducted eleven studies, each lasting six hours and repeated approximately quarterly in three different stream branches within a small watershed. Ultimately, these data will be part of a watershed nitrogen budget to assess the role of streams in the fate of Net Anthropogenic Nitrogen Inputs (NANI). Gas transfer velocity using 222Rn was 9-98% greater than k derived from Ar. However, k 222Rn agreed better with previous estimates; thus, the presented rates were estimated using k 222Rn. Biogenic N2 production rates ranged from 0.5 to 63.0 mmol N2-N m-2hr-1 with an average of 12.8. Biogenic N2O production ranged from 1.8 to 484.4 μmol N2O-N m-2hr-1 with an average of 98.0. N2O emissions to the atmosphere varied from 1.2 to 464.9 μmol N2O-N m-2 hr-1. Rates generally increased with temperature and spatial variation was fairly consistent across seasons. N2O will not contribute significantly to the watershed N budget (<2% of NANI); however, N2O was always supersaturated (344-3110%) and

  15. N2O emissions and carbon sequestration in a nitrogen-fertilized Douglas fir stand

    NASA Astrophysics Data System (ADS)

    Jassal, Rachhpal S.; Black, T. Andrew; Chen, Baozhang; Roy, Real; Nesic, Zoran; Spittlehouse, D. L.; Trofymow, J. A.

    2008-12-01

    This study investigated how nitrogen (N) fertilization with 200 kg N ha-1 of a 58-year-old West Coast Douglas fir stand influenced its net greenhouse gas (GHG) global warming potential (GWP) in the first year after fertilization. Effects of fertilization on GHG GWP were calculated considering changes in soil N2O emissions, measured using the static chamber technique and the soil N2O gradient technique; eddy covariance (EC) measured net ecosystem productivity (NEP); and energy requirements of fertilizer production, transport, and its aerial spreading. We found significant N2O losses in fertilized plots compared to a small uptake in nonfertilized plots. Chamber-measured N loss in the fertilized plots was about 16 kg N2O ha-1 in the first year, which is equivalent to 10 kg N ha-1 or 5% of the applied fertilizer N. Soil N2O emissions measured using the gradient technique, however, exceeded the chamber measurements by about 50%. We also compared a polymer-coated slow-release urea with regular urea and found that the former delayed N2O emissions but the year-end total loss was about the same as that from regular urea. Change in NEP due to fertilization was determined by relating annual NEP for the nonfertilized stand to environmental controls using an empirical and a process-based model. Annual NEP increased by 64%, from 326 g C m-2, calculated assuming that the stand was not fertilized, to the measured value of 535 g C m-2 with fertilization. At the end of the year, net change in GHG GWP was -2.28 t CO2 ha-1 compared to what it would have been without fertilization, thereby indicating favorable effect of fertilization even in the first year after fertilization with significant emissions of N2O.

  16. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N 2O

    NASA Astrophysics Data System (ADS)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John; Green, Adrian; Shelton, James

    2011-08-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N 2O, CH 4, and CO 2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N 2O, CH 4 and respiratory CO 2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO 3 equivalent to 1.4 g N m -2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N 2O and CH 4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N 2O in July 2009 averaged -33 μmol N 2O m -2 day -1. However, within 1 h of nutrient additions, N 2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH 4 fluxes were not significantly affected. N 2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N 2O m -2 day -1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N 2O and CH 4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N 2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N 2O and CH 4 fluxes observed, exceeded half

  17. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    USGS Publications Warehouse

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John; Green, Adrian; Shelton, James

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m−2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged −33 μmol N2O m−2 day−1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N2O m−2 day−1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half

  18. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    USGS Publications Warehouse

    Moseman-Valtierra, S.; Gonzalez, R.; Kroeger, K.D.; Tang, J.; Chao, W.C.; Crusius, J.; Bratton, J.; Green, A.; Shelton, J.

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m-2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged -33 ??mol N2O m-2 day-1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 ??mol N2O m-2 day-1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half the magnitude of typical

  19. N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling

    USGS Publications Warehouse

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.

  20. N2O and N2 emissions from contrasting soil environments - interactive effects of soil nitrogen, hydrology and microbial communities

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Elberling, Bo; Ribbons, Relena; Hedo, Javier; José Fernández Alonso, Maria; Krych, Lukasz; Sandris Nielsen, Dennis; Kitzler, Barbara

    2016-04-01

    Reactive nitrogen (N) in the environment has doubled relative to the natural global N cycle with consequences for biogeochemical cycling of soil N. Also, climate change is expected to alter precipitation patterns and increase soil temperatures which in Arctic environments may accelerate permafrost thawing. The combination of changes in the soil N cycle and hydrological regimes may alter microbial transformations of soil N with unknown impacts on N2O and N2 emissions from temperate and Arctic soils. We present the first results of soil N2O and N2 emissions, chemistry and microbial communities over soil hydrological gradients (upslope, intermediate and wet) across a global N deposition gradient. The global gradient covered an N-limited high Arctic tundra (Zackenberg-ZA), a pacific temperate rain forest (Vancouver Island-VI) and an N saturated forest in Austria (Klausenleopoldsdorf-KL). The N2O and N2 emissions were measured from intact cores at field moisture in a He-atmosphere system. Extractable NH4+ and NO3-, organic and microbial C and N and potential enzyme-activities were determined on soil samples. Soil genomic DNA was subjected to MiSeq-based tag-encoded 16S rRNA and ITS gene amplicon sequencing for the bacterial and fungal community structure. Similar soil moisture levels were observed for the upslope, intermediate and wet locations at ZA, VI and KL, respectively. Extractable NO3- was highest at the N rich KL and lowest at ZA and showed no trend with soil moisture similar to NH4+. At ZA and VI soil NH4+ was higher than NO3- indicating a tighter N cycling. N2O emissions increased with soil moisture at all sites. The N2O emissions for the wet locations ranked similarly to NO3- with the largest response to soil moisture at KL. N2 emissions were remarkably similar across the sites and increased with soil wetness. Microbial C and N also increased with soil moisture and were overall lowest at the N rich KL site. The potential activity of protease enzyme was site

  1. Estimate of production of gaseous nitrogen in the human body based on (15)N analysis of breath N2 after administration of [(15)N2]urea.

    PubMed

    Junghans, Peter

    2013-01-01

    After oral administration of [(15)N2]urea (1.5 mmol, 95 atom% (15)N), we found that breath N2 was significantly (15)N-labelled. The result suggests that molecular nitrogen in breath must be partly produced endogenously. Based on a metabolic model, the endogenous N2 production was estimated to be 0.40±0.25 mmol kg(-1) d(-1) or 2.9±1.8 % of the total (urinary and faecal) N excretion in fasted healthy subjects (n=4). In patients infected with Helicobacter pylori (n=5), the endogenous N2 production was increased to 1.24±0.59 mmol kg(-1) d(-1) or 9.0±4.3 % of the total N excretion compared to the healthy controls (p<0.05). We conclude that N balance and gas exchange measurements may be affected by endogenously produced nitrogen, especially in metabolic situations with elevated nitrosation, for instance in oxidative and nitrosative stress-related diseases such as H. pylori infections.

  2. NITROGEN REMOVAL FROM NATURAL GAS

    SciTech Connect

    K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

    1999-12-31

    The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest

  3. [Annual dynamics of CO2, CH4, N2O emissions from freshwater marshes and affected by nitrogen fertilization].

    PubMed

    Song, Chang-chun; Zhang, Li-hua; Wang, Yi-yong; Zhao, Zhi-chun

    2006-12-01

    Annual dynamics of CO2, CH4, N2O emissions from freshwater marshes and affected by nitrogen fertilization were studied in situ in Sanjiang Plain of Northeast China from June 2002 to December 2004, using the static opaque chamber-GC techniques. The results showed that there was significant seasonal and annual variation in the CO2, CH4 and N2O emissions. The ecosystem emission of CO2 reached a maximum of 779.33- 965.40 mg x (mxh)(-1) in July and August, CH4 reached a maximum of 19.19-30.52 mg x (mxh)(-1) in August, N2O reached a maximum of 0.072-0.15 mgx (mxh)(-1) in May and September, respectively. While the minimum of the CO2, CH4, N2O emission was 2.36-18.73 mg x (mxh)(-1), - 0.35 - 0.59 mg x (mxh)(-1), - 0.032- 0.009 mg (mxh)(-1), respectively, which occurs in winter. The freshwater marsh was the sink of N2O in winter. Temperature was a primary factor, controlling greenhouse gas seasonal emissions in freshwater marshes; while the precipitation and floodwater depth were the dominating influencing factors, affecting the greenhouse gas annual variations. Especially, the influence of precipitation on CH4 emissions was more obvious, comparing with the CO2 and N20 emissions. And the summer higher CH4 emission was mainly induced by the ice and snow thawing water in winter. Respiration of the ecosystem and CH4 emission were exponentially dependent on soil temperature of 5cm depth, while the N2O emission was not related to the soil temperature and water depth. The greenhouse gas (CO2, CH4, N2O) emissions were significantly influenced by nitrogen fertilization in Sanjiang Plain. The CO2, CH4, N2O flux of fertilization increased 34% , 145% , 110% , respectively, comparing to the control treatment.

  4. Dissolved N2/Ar Ratios in Sedimentary Pore Waters: A New Twist in Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Berelson, W.; Prokopenko, M. G.; Sigman, D. M.; Hammond, D.

    2008-12-01

    The nitrogen cycle is comprised predominantly of biologically mediated pathways, leading to a series of negative feedbacks that stabilize the cycle. Sedimentary denitrification, the major sink in the nitrogen budget, is regulated by the rate of organic carbon rain to the sea floor, as well as oxygen concentrations in overlying bottom waters. The sensitivity of sedimentary denitrification as a negative feedback can be expressed as a ratio between total denitrification (including nitrification sub-cycle) rates integrated over depth (fluxes) and fluxes of remineralized organic carbon out of the sediments, Ndenitr/Coxid_total. We have investigated benthic nitrogen cycling in three, semi-enclosed basins of the California Borderlands: Santa Monica, San Pedro and Santa Barbara located in the regime of seasonal coastal upwelling. Deep water in these basins is separated from the open ocean by sills of various depths, contributing to the low [O2], <1 to10 uM. In this study, we developed a method to sample pore waters for dissolved gas analysis. Ratios between O2, Ar and N2 were determined on extracted pore waters with 1) offline cryogenic extraction and subsequent analysis on Finnigan Delta Plus IRMS with 8 collectors; 2) Membrane Inlet Mass Spectrometery (MIMS). Vertical profiles of pore water N2/Ar in the three basins indicate N2 production at depth horizons which exceed by a factor of 5 to 20 the depth of nitrate penetration supported solely by diffusive flux. At depths of maximum subsurface N2 production, we discovered large pools of intracellular nitrate. The relationship between δ15N and δ18O of nitrate are consistent with the activity of a membrane-bound nitrate reductase affecting the measured isotopic composition of the nitrate pool (Granger et al., 2008, in press). In addition, increases in δ15N of pore water NH4 at this depth suggests that at least some of the nitrate might be used for anaerobic ammonium oxidation. Our model estimates up to 25 % of the measured

  5. Gas amplification factor in neon-nitrogen filled proportional counters

    NASA Astrophysics Data System (ADS)

    Othman, A.

    1988-07-01

    The gas amplification factor in a cylindrical proportional counter filled with NeN 2 Penning mixtures has been measured (over the range 1 < A < 6.4 × 10 3) to verify the validity of the gas gain formulae of Rose and Korff, Khristov, Williams and Sara, Diethorn and Zastawny. This factor has been found to obey Zastawny's formula over the range of variables studied. The formula of Diethorn can be fitted only for small nitrogen concentrations (below 5 × 10 -4). Constants appropriate to the Zastawny and Diethorn formulae have been determined over a wide range of N 2 concentrations from spectroscopically pure Ne up to 11.1% N 2.

  6. Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil.

    PubMed

    Feng, Zhengjun; Zhu, Lizhong

    2017-04-15

    Biochar amendment has been proposed as a potential solution for improving soil quality and suppressing greenhouse gas emission. Considering the serious nitrogen fertilizer overuse problem in China, it is important to investigate the effect of biochar on soil with excess nitrogen fertilizer. Therefore, two sets of soil column experiments were conducted to explore the effect of biochar on N2O emission from nitrogen fertilizer-overused soil. Three types of biochar (biochars pyrolzed at 300, 500 and 700°C, respectively) and one type of nitrogen fertilizer (ammonium sulfate) were investigated at varying application rates. It was found that N2O emission was related to both biochar and N-fertilizer application rates, and increased N2O emission was negatively correlated with the TC/IN ratio (the ratio of total carbon to inorganic nitrogen) after biochar application. The soil TC/IN ratio determined the ammonium utilization pathway, affecting the intensity of nitrification and N2O emission. When the TC/IN ratio was relatively high (>60), suppressed nitrification led to the suppression of N2O emission. Conversely, enhanced nitrification when the TC/IN ratio was relatively low (<45) caused the promotion of N2O emission. In conclusion, biochar's suppression of soil N2O emission was conditional and biochar should be applied in a proper ratio to nitrogen fertilizer to avoid excessive N2O emission. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Effects of typical herbicides on soil respiration and N2O emissions from soil added with different nitrogen fertilizers].

    PubMed

    Sun, Qing; Shi, Chun-Xing; Shi, Kun; Yan, Ru-Bin; Jiang, Jing-Yan; Wu, Yi-Zhong

    2012-06-01

    To investigate the effects of typical herbicides on soil respiration and N2O emissions from soil added with different nitrogen fertilizers, a laboratory incubation experiment was carried out using a modified gas chromatograph (Agilent 4890D) method. The results showed that with (NH4)2SO4 amendment, soil respiration and N2O emissions from the Atrazine and Paraquat treatments had no significant difference in comparison to the control (P > 0.05). Glyphosate significantly inhibited soil respiration by 21.5% (P < 0.05) and had no obvious influence on N2O emissions (P > 0.05). Tribenuron-methyl significantly promoted soil respiration with the increase of 14.3% (P < 0.05) and also had no obvious influence on N2O emissions (P > 0.05). Acetochlor significantly increased soil respiration and N2O emissions (P < 0.05) with the increase of 6.1% and 45.1%, respectively. With urea application, Atrazine and Acetochlor had no significant influence on soil respiration and N2O emissions (P > 0.05). Paraquat increased N2O emissions significantly (P < 0.05)with the increase of 43.5% and had no significant influence on soil respiration ( P > 0.05). Glyphosate significantly inhibited soil respiration by 17.5% (P < 0.05), and had no significant influence on N2O emissions (P > 0.05). Tribenuron-methyl enhanced soil respiration and N2O emissions significantly (P < 0.05), and its soil respiration and N2O emissions were 1.3 and 1.6 times higher than those from the control. Due to the complexity of effects of different herbicides on microbial physiological metabolism, long-term in-situ studies need to be carried out to better understand the effect of various herbicides on greenhouse gas emissions.

  8. Preparation of SiN x film by pulsed laser ablation in nitrogen gas ambient

    NASA Astrophysics Data System (ADS)

    Umezu, I.; Yamaguchi, T.; Kohno, K.; Inada, M.; Sugimura, A.

    2002-09-01

    Silicon nitride films were synthesized by reactive pulsed laser ablation (PLA) of a Si target in N 2 gas atmosphere. At different laser fluences and N 2 gas pressures the infrared absorption peak attributed to Si-N bond was evaluated. The nitrogen concentration in the film increased with the increasing fluence. Nitrogen concentration depended also on N 2 gas pressure; it increased as N 2 pressure increase up to 10 Pa and then it decreased with further increasing N 2 gas pressure. These results indicate that decomposition of N 2 molecules and collisions of SiN x clusters with N 2 molecules are essential to prepare silicon nitride films by PLA method. The PLA is a promising method to fabricate nitrogen rich silicon nitride films without using poisonous gases such as silane and ammonia.

  9. A Termolecular Reaction Mechanism for Nitrogen Incorporation in Aerosol Produced by Far UV Irradiation of CH4-N2 Atmospheres

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Trainer, M. G.; Jimenez, J. L.; Yung, Y. L.; Toon, O. B.; Tolbert, M. A.

    2012-12-01

    Results from the Aerosol Collector and Pyrolyser located onboard the Huygens lander reveal the presence of carbon and nitrogen in Titan's aerosols. Nitrogen incorporation is thought to be initiated by energy sources strong enough to break the N-N triple bond of molecular nitrogen (9.8eV). Such energy sources include extreme UV photons (λ <120 nm) and electrons from Saturn's magnetosphere. Less energetic photons in the far UV (120-200 nm) penetrate to the stratosphere of Titan and are only expected to affect hydrocarbon photochemistry there. However, recent results from our laboratory indicate a surprising amount of nitrogen incorporation- up to 16% by mass- in Titan aerosol analog produced by photochemistry initiated by far UV irradiation of CH4/N2 mixtures. The termolecular reaction CH + N2 + M --> HCN2 has been proposed to account for this observation. Here, we test this hypothesis by using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the mass loading and chemical composition of aerosol produced at a range of pressures from roughly 0.1 to 1 atm. Even though these gas mixtures spanned an order of magnitude in pressure, they experienced the same residence time in the photochemical chamber and had the same methane optical depth. We report a 150% increase in aerosol mass loading across the range of pressures studied, indicating that the mechanism controlling the total mass produced depends on pressure. We also report an overall increase with pressure in the ratio of nitrogen-bearing organic species to hydrocarbon-only species. These observations support the hypothesis that the termolecular reaction above is responsible for the incorporation of nitrogen into Titan aerosol analog produced from CH4/N2 gas mixtures irradiated in the far UV. These findings have implications for our understanding of the evolution of Titan's atmosphere, and the atmospheric synthesis of biologically relevant N-containing molecules.

  10. N2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor--a simulation study.

    PubMed

    Van Hulle, S W H; Callens, J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P

    2012-01-01

    This contribution deals with NO and N2O emissions during autotrophic nitrogen removal in a granular sludge reactor. Two possible model scenarios describing this emission by ammonium- oxidizing biomass have been compared in a simulation study of a granular sludge reactor for one-stage partial nitritation--Anammox. No significant difference between these two scenarios was noticed. The influence of the bulk oxygen concentration, granule size, reactor temperature and ammonium load on the NO and N2O emissions has been assessed. The simulation results indicate that emission maxima of NO and N2O coincide with the region for optimal Anammox conversion. Also, most of the NO and N2O are present in the off-gas, owing to the limited solubility of both gases. The size of granules needs to be large enough not to limit optimal Anammox activity, but not too large as this implies an elevated production of N2O. Temperature has a significant influence on N2O emission, as a higher temperature results in a better N-removal efficiency and a lowered N2O production. Statistical analysis of the results showed that there is a strong correlation between nitrite accumulation and N2O production. Further, three regions of operation can be distinguished: a region with high N2O, NO and nitrite concentration; a region with high N2 concentrations and, as such, high removal percentages; and a region with high oxygen and nitrate concentrations. There is some overlap between the first two regions, which is in line with the fact that maximum emission of NO and N2O coincides with the region for optimal Anammox conversion.

  11. A new method combining soil oxygen concentration measurements with the quantification of gross nitrogen turnover rates and associated formation of N2O and N2 emissions

    NASA Astrophysics Data System (ADS)

    Gütlein, Adrian; Dannenmann, Michael; Sörgel, Christoph; Meier, Rudi; Meyer, Astrid; Kiese, Ralf

    2014-05-01

    Climate change and the expansion of land use have led to significant changes in terrestrial ecosystems. These include changes in the biogeochemical cycle of nitrogen and therewith implications for biodiversity, water cycle and pedosphere-atmosphere exchange. To understand these impacts detailed research on nitrogen turnover and fluxes are conducted at various (semi-) natural and managed ecosystems in the Mt. Kilimanjaro region. In this context, we execute 15N tracing analyses on soil samples in our stable isotope laboratory including a new experimental setup. The soils were sampled from different forest ecosystems of Mt. Kilimanjaro varying in altitude (1600 - 4500 m) and will be analyzed for gross rates of ammonification and nitrification, gross rates of microbial inorganic N uptake as well as for the gaseous losses of ^15N2 and ^15N2O using ^15NH4+ and ^15NO3- tracing and pool dilution approaches. Since nitrogen turnover of nitrification and denitrification is dependent on soil oxygen concentrations we developed an incubation method which allows to adjust soil samples to different oxygen concentrations. For this purpose, soil is incubated in glass bottles with side tubes to ensure a constant gas flow over the whole incubation time. To adjust the oxygen levels in the laboratory experiment as close as possible to the natural conditions, we started to monitor soil oxygen concentrations with a FirestingO2 Sensor (Pyroscience) connected to a timer and a datalogger (MSR 145 IP 60 E3333) at a Mt. Kilimanjaro rainforest site. The equipment is complemented with soil temperature, moisture and pressure sensors (MSR 145 IP 60). A solar panel connected to an energy source guarantees a working time for over 2 years by a measuring frequency of 20 seconds each 30 minutes. The new laboratory incubation method together with in-situ oxygen concentration measurements in soils will facilitate laboratory incubations with realistic oxygen concentrations and thus will allow for a better

  12. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Ziebis, Wiebke; Buchwald, Carolyn; Charoenpong, Chawalit; de Beer, Dirk; Dentinger, Jane; Xu, Zhenjiang; Zengler, Karsten

    2017-06-01

    Although increasing atmospheric nitrous oxide (N2O) has been linked to nitrogen loading, predicting emissions remains difficult, in part due to challenges in disentangling diverse N2O production pathways. As coastal ecosystems are especially impacted by elevated nitrogen, we investigated controls on N2O production mechanisms in intertidal sediments using novel isotopic approaches and microsensors in flow-through incubations. Here we show that during incubations with elevated nitrate, increased N2O fluxes are not mediated by direct bacterial activity, but instead are largely catalysed by fungal denitrification and/or abiotic reactions (e.g., chemodenitrification). Results of these incubations shed new light on nitrogen cycling complexity and possible factors underlying variability of N2O fluxes, driven in part by fungal respiration and/or iron redox cycling. As both processes exhibit N2O yields typically far greater than direct bacterial production, these results emphasize their possibly substantial, yet widely overlooked, role in N2O fluxes, especially in redox-dynamic sediments of coastal ecosystems.

  13. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments

    PubMed Central

    Wankel, Scott D.; Ziebis, Wiebke; Buchwald, Carolyn; Charoenpong, Chawalit; de Beer, Dirk; Dentinger, Jane; Xu, Zhenjiang; Zengler, Karsten

    2017-01-01

    Although increasing atmospheric nitrous oxide (N2O) has been linked to nitrogen loading, predicting emissions remains difficult, in part due to challenges in disentangling diverse N2O production pathways. As coastal ecosystems are especially impacted by elevated nitrogen, we investigated controls on N2O production mechanisms in intertidal sediments using novel isotopic approaches and microsensors in flow-through incubations. Here we show that during incubations with elevated nitrate, increased N2O fluxes are not mediated by direct bacterial activity, but instead are largely catalysed by fungal denitrification and/or abiotic reactions (e.g., chemodenitrification). Results of these incubations shed new light on nitrogen cycling complexity and possible factors underlying variability of N2O fluxes, driven in part by fungal respiration and/or iron redox cycling. As both processes exhibit N2O yields typically far greater than direct bacterial production, these results emphasize their possibly substantial, yet widely overlooked, role in N2O fluxes, especially in redox-dynamic sediments of coastal ecosystems. PMID:28580932

  14. Study of underground gas storage using nitrogen as cushion gas

    SciTech Connect

    Obro, H.

    1988-01-01

    This paper gives an overview of the investigations carried out in order to evaluate the feasibility of using nitrogen as cushion gas for a gas storage project in Denmark. Two potential storage zones have been studied, a nitrogen gas reservoir and a deeper aquifer. In both cases, it seems to be feasible to use nitrogen as part of the cushion gas, thereby reducing the storage costs considerably.

  15. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen

    PubMed Central

    Shcherbak, Iurii; Millar, Neville; Robertson, G. Philip

    2014-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas (GHG) that also depletes stratospheric ozone. Nitrogen (N) fertilizer rate is the best single predictor of N2O emissions from agricultural soils, which are responsible for ∼50% of the total global anthropogenic flux, but it is a relatively imprecise estimator. Accumulating evidence suggests that the emission response to increasing N input is exponential rather than linear, as assumed by Intergovernmental Panel on Climate Change methodologies. We performed a metaanalysis to test the generalizability of this pattern. From 78 published studies (233 site-years) with at least three N-input levels, we calculated N2O emission factors (EFs) for each nonzero input level as a percentage of N input converted to N2O emissions. We found that the N2O response to N inputs grew significantly faster than linear for synthetic fertilizers and for most crop types. N-fixing crops had a higher rate of change in EF (ΔEF) than others. A higher ΔEF was also evident in soils with carbon >1.5% and soils with pH <7, and where fertilizer was applied only once annually. Our results suggest a general trend of exponentially increasing N2O emissions as N inputs increase to exceed crop needs. Use of this knowledge in GHG inventories should improve assessments of fertilizer-derived N2O emissions, help address disparities in the global N2O budget, and refine the accuracy of N2O mitigation protocols. In low-input systems typical of sub-Saharan Africa, for example, modest N additions will have little impact on estimated N2O emissions, whereas equivalent additions (or reductions) in excessively fertilized systems will have a disproportionately major impact. PMID:24927583

  16. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen.

    PubMed

    Shcherbak, Iurii; Millar, Neville; Robertson, G Philip

    2014-06-24

    Nitrous oxide (N2O) is a potent greenhouse gas (GHG) that also depletes stratospheric ozone. Nitrogen (N) fertilizer rate is the best single predictor of N2O emissions from agricultural soils, which are responsible for ∼ 50% of the total global anthropogenic flux, but it is a relatively imprecise estimator. Accumulating evidence suggests that the emission response to increasing N input is exponential rather than linear, as assumed by Intergovernmental Panel on Climate Change methodologies. We performed a metaanalysis to test the generalizability of this pattern. From 78 published studies (233 site-years) with at least three N-input levels, we calculated N2O emission factors (EFs) for each nonzero input level as a percentage of N input converted to N2O emissions. We found that the N2O response to N inputs grew significantly faster than linear for synthetic fertilizers and for most crop types. N-fixing crops had a higher rate of change in EF (ΔEF) than others. A higher ΔEF was also evident in soils with carbon >1.5% and soils with pH <7, and where fertilizer was applied only once annually. Our results suggest a general trend of exponentially increasing N2O emissions as N inputs increase to exceed crop needs. Use of this knowledge in GHG inventories should improve assessments of fertilizer-derived N2O emissions, help address disparities in the global N2O budget, and refine the accuracy of N2O mitigation protocols. In low-input systems typical of sub-Saharan Africa, for example, modest N additions will have little impact on estimated N2O emissions, whereas equivalent additions (or reductions) in excessively fertilized systems will have a disproportionately major impact.

  17. Titan's interior ocean: a thermo-chemical assessment suggests N2 gas driven cryovolcanism

    NASA Astrophysics Data System (ADS)

    Howard, W. M.; Bastea, S.; Khare, B. N.; McKay, C. P.

    2010-04-01

    We use a chemical equilibrium approach to model the composition of a subsurface ocean on Titan. The chemical equilibrium model includes an exponential exp-6 equation of state for fluids and a Murnaghan form for solids, the parameters for which are fitted to experimental shock Hugoniot data, isotropic compression and sound speed data from pressures of a few hundred kPa to that of a few hundred GPa. We also allow for solid phases of CO, CO2, NH3, N2 and CH4. In addition, the models allows for a variety of mixtures. We follow the equilibrium condensation of these elements from high to low temperature. For the pressures associated with Titan's interior (~1 GPa) we find that a pure ammonia-water ocean maybe stable. However we find that carbon present in the ocean destabilizes the ammonia to form N2. For an ocean with a C/N ratio equal to solar composition virtually all the nitrogen is in the form of N2. We suggest that the exsolution of N2 could power gas-driven cryovolcanism on Titan and possibly Triton. This would be consistent with the evidence for an ocean and for cryovolcanism, and with the absence of ammonia. Our results also provide an alternative explanation for the source of atmospheric N2. We also study the effects of tholins being introduced into the surface layers of Titan. Organic material (tholin) under pressure in the interior of Titan forms graphite, CH4 and N2 or if graphite is kinetically suppressed it forms benzene and N2. This could be an explanation for the benzene detected in the surface materials at the Huygens Probe landing site. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. The effects of nitrogen fertilization on N2O emissions from a rubber plantation

    NASA Astrophysics Data System (ADS)

    Zhou, Wen-Jun; Ji, Hong-Li; Zhu, Jing; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhang, Xiang; Zhao, Wei; Dong, Yu-Xin; Bai, Xiao-Long; Lin, You-Xin; Zhang, Jun-Hui; Zheng, Xun-Hua

    2016-06-01

    To gain the effects of N fertilizer applications on N2O emissions and local climate change in fertilized rubber (Hevea brasiliensis) plantations in the tropics, we measured N2O fluxes from fertilized (75 kg N ha-1 yr-1) and unfertilized rubber plantations at Xishuangbanna in southwest China over a 2-year period. The N2O emissions from the fertilized and unfertilized plots were 4.0 and 2.5 kg N ha-1 yr-1, respectively, and the N2O emission factor was 1.96%. Soil moisture, soil temperature, and the area weighted mean ammoniacal nitrogen (NH4+-N) content controlled the variations in N2O flux from the fertilized and unfertilized rubber plantations. NH4+-N did not influence temporal changes in N2O emissions from the trench, slope, or terrace plots, but controlled spatial variations in N2O emissions among the treatments. On a unit area basis, the 100-year carbon dioxide equivalence of the fertilized rubber plantation N2O offsets 5.8% and 31.5% of carbon sink of the rubber plantation and local tropical rainforest, respectively. When entire land area in Xishuangbanna is considered, N2O emissions from fertilized rubber plantations offset 17.1% of the tropical rainforest’s carbon sink. The results show that if tropical rainforests are converted to fertilized rubber plantations, regional N2O emissions may enhance local climate warming.

  19. The effects of nitrogen fertilization on N2O emissions from a rubber plantation.

    PubMed

    Zhou, Wen-Jun; Ji, Hong-Li; Zhu, Jing; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhang, Xiang; Zhao, Wei; Dong, Yu-Xin; Bai, Xiao-Long; Lin, You-Xin; Zhang, Jun-Hui; Zheng, Xun-Hua

    2016-06-21

    To gain the effects of N fertilizer applications on N2O emissions and local climate change in fertilized rubber (Hevea brasiliensis) plantations in the tropics, we measured N2O fluxes from fertilized (75 kg N ha(-1) yr(-1)) and unfertilized rubber plantations at Xishuangbanna in southwest China over a 2-year period. The N2O emissions from the fertilized and unfertilized plots were 4.0 and 2.5 kg N ha(-1) yr(-1), respectively, and the N2O emission factor was 1.96%. Soil moisture, soil temperature, and the area weighted mean ammoniacal nitrogen (NH4(+)-N) content controlled the variations in N2O flux from the fertilized and unfertilized rubber plantations. NH4(+)-N did not influence temporal changes in N2O emissions from the trench, slope, or terrace plots, but controlled spatial variations in N2O emissions among the treatments. On a unit area basis, the 100-year carbon dioxide equivalence of the fertilized rubber plantation N2O offsets 5.8% and 31.5% of carbon sink of the rubber plantation and local tropical rainforest, respectively. When entire land area in Xishuangbanna is considered, N2O emissions from fertilized rubber plantations offset 17.1% of the tropical rainforest's carbon sink. The results show that if tropical rainforests are converted to fertilized rubber plantations, regional N2O emissions may enhance local climate warming.

  20. The effects of nitrogen fertilization on N2O emissions from a rubber plantation

    PubMed Central

    Zhou, Wen-Jun; Ji, Hong-li; Zhu, Jing; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhang, Xiang; Zhao, Wei; Dong, Yu-xin; Bai, Xiao-Long; Lin, You-Xin; Zhang, Jun-Hui; Zheng, Xun-Hua

    2016-01-01

    To gain the effects of N fertilizer applications on N2O emissions and local climate change in fertilized rubber (Hevea brasiliensis) plantations in the tropics, we measured N2O fluxes from fertilized (75 kg N ha−1 yr−1) and unfertilized rubber plantations at Xishuangbanna in southwest China over a 2-year period. The N2O emissions from the fertilized and unfertilized plots were 4.0 and 2.5 kg N ha−1 yr−1, respectively, and the N2O emission factor was 1.96%. Soil moisture, soil temperature, and the area weighted mean ammoniacal nitrogen (NH4+-N) content controlled the variations in N2O flux from the fertilized and unfertilized rubber plantations. NH4+-N did not influence temporal changes in N2O emissions from the trench, slope, or terrace plots, but controlled spatial variations in N2O emissions among the treatments. On a unit area basis, the 100-year carbon dioxide equivalence of the fertilized rubber plantation N2O offsets 5.8% and 31.5% of carbon sink of the rubber plantation and local tropical rainforest, respectively. When entire land area in Xishuangbanna is considered, N2O emissions from fertilized rubber plantations offset 17.1% of the tropical rainforest’s carbon sink. The results show that if tropical rainforests are converted to fertilized rubber plantations, regional N2O emissions may enhance local climate warming. PMID:27324813

  1. Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique.

    PubMed

    Liao, Tingting; Wang, Rui; Zheng, Xunhua; Sun, Yang; Butterbach-Bahl, Klaus; Chen, Nuo

    2013-11-01

    The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2μgN or Ch(-1)kg(-1)ds, or 17, 0.3, 1.8, 82, and 6μgN or Cm(-2)h(-1), for N2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification. Copyright © 2013. Published by Elsevier Ltd.

  2. Effect of dissolved oxygen and nitrogen on emission of N2O from rivers in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianing; Chen, Nengwang; Yan, Weijin; Wang, Bei; Yang, Libiao

    2015-02-01

    Six rivers from three watersheds in China were chosen to study the temporal and spatial variations in nitrous oxide (N2O) concentrations and emissions in order to examine the link between N2O production and dissolved oxygen (DO) and nitrogen levels. These rivers can generally be divided into two types: runoff rivers with significant natural and agricultural runoff, and urban rivers with significant urban effluents. The results showed that N2O concentrations were 0.15-1.07 (mean 0.51) and 0.22-22.7 (mean 4.10) ug N L-1 in runoff rivers and an urban river, respectively. N2O was oversaturated in almost all the rivers, suggesting that the rivers were sources of atmospheric N2O. N2O emissions in the urban river (range from 1.53 to 2453, mean 529 ug N m-2h-1) were significantly higher than those in runoff rivers (range from 0.51 to 80.9, mean 18.0 ug N m-2h-1). We found a significant positive correlation of N2O production with NO3- (r2 = 0.30, p < 0.001) and a negative correlation of N2O production with DO concentrations (r2 = 0.22, p < 0.001) in runoff rivers. Particularly, there existed a significant positive relationship (r2 = 0.21, p < 0.001) between NH4+ and N2O production in an urban river. By using stepwise regression analysis, we found N2O production can be predicted by the dynamics of DO and N levels: for runoff rivers, NO3- and DO explained 47% variability in N2O production, while for the urban river, NH4+ and DO explained 64% variability in N2O production. We suggest that the IPCC method to calculate N2O emission factors should be revised in view of the importance of these multiple factors.

  3. Nitrogen oxides and carbon chain oxides formed after ion irradiation of CO:N2 ice mixtures

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Ioppolo, S.; Vindigni, T.; Baratta, G. A.; Palumbo, M. E.

    2012-07-01

    Context. High CO depletion as well as depletion of N-bearing species is observed in dense pre-stellar cores. It is generally accepted that depleted species freeze out onto dust grains to form icy mantles and that these ices suffer energetic processing due to cosmic ion irradiation and ion-induced UV photons. Aims: The aim of this work is to study the chemical and structural effects induced by ion irradiation on different CO:N2 mixtures at low temperature (16 K) to simulate the effects of cosmic ion irradiation of icy mantles. Methods: Different CO:N2 mixtures and pure CO and pure N2 were irradiated with 200 keV H+ at 16 K. Infrared transmittance spectra of the samples were obtained in situ before and after irradiation. The samples were warmed up and spectra were taken at different temperatures. The residues left over on the substrate at room temperature were analysed ex situ by micro Raman spectroscopy. Results: Several new absorption features are present in the infrared spectra after irradiation, indicating that new species are formed. The most abundant are nitrogen oxides (such as NO, NO2 and N2O), carbon chain oxides (such as C2O, C3O and C3O2), carbon chains (such as C3 and C6), O3 and N3. A refractory residue is also formed after ion irradiation and is clearly detected by Raman spectroscopy. Conclusions: We suggest that carbon chains and nitrogen oxides observed in the gas phase towards star-forming regions are formed in the solid phase after cosmic ion irradiation of icy grain mantles and are released into the gas phase after desorption of grain mantles. We expect that the Atacama Large Millimeter/submillimeter Array (ALMA), thanks to its high sensitivity and resolution, will increase the number of nitrogen oxides and carbon chain oxides detected towards star-forming regions.

  4. Rapid deactivation of N(2D) by O - Impact on thermospheric and mesospheric odd nitrogen

    NASA Technical Reports Server (NTRS)

    Fesen, C. G.; Rusch, D. W.; Gerard, J.-C.

    1989-01-01

    One- and two-dimensional models of thermospheric odd nitrogen are used to explore the consequences of the recently measured fast quenching of N(2D) by O. A large rate coefficient for this reaction profoundly affects the odd-nitrogen chemistry by removing N(2D) as a source of NO and increasing the concentration of N(4S), which destroys NO. The model calculations show that, as the quenching rate increases, the NO and N(2D) densities decrease, while N(4S) densities increase. Comparisons with Atmosphere Explorer and Solar Mesosphere Explorer satellite observations are made. Use of the fast quenching rate in the models causes the NO peak altitude, typically observed near 110 km, to rise to 140 km.

  5. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    We used 15N2 gas to trace nitrogen (N) from biological N2-fixation to vascular plant uptake in an Alberta bog in order to determine if neighboring bog plants acquire recently fixed N from diazotrophs associating with Sphagnum mosses. Recent evidence indicates high rates of N2-fixation in Sphagnum mosses of Alberta bogs (Vile et al. 2013). Our previous work has shown that mosses can assimilate fixed N from associated diazotrophs as evidenced by the high N content of mosses despite minimal inputs from atmospheric deposition, retranslocation, and N mineralization. Therefore, the potential exists for vascular plants to obtain N from ';leaky' tissues of live mosses, however, this phenomenon has not been tested previously. Here we document the potential for relatively rapid transfer to vascular plants of N fixed by Sphagnum moss-associated diazotrophs. We utilized the novel approach of incubating mosses in 15N2 to allow the process of diazotrophic N2-fixation to mechanistically provide the 15N label, which is subsequently transferred to Sphagnum mosses. The potential for vascular bog natives to tap this N was assessed by planting the vascular plants in the labeled moss. Sphagnum mosses (upper 3 cm of live plants) were incubated in the presence of 98 atom % 15N2 gas for 48 hours. Two vascular plants common to Alberta bogs; Picea mariana and Vaccinium oxycoccus were then placed in the labeled mosses, where the mosses served as the substrate. Tissue samples from these plants were collected at three time points during the incubation; prior to 15N2 exposure (to determine natural abundance 15N), and at one and two months after 15N2 exposure. Roots and leaves were separated and run separately on a mass spectrometer to determine 15N concentrations. Sphagnum moss capitula obtained N from N2-fixation (δ15N of -2.43 × 0.40, 122.76 × 23.78, 224.92 × 68.37, 143.74 × 54.38 prior to, immediately after, and at 1 and 2 months after exposure to 15N2, respectively). Nitrogen was

  6. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    PubMed

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  7. DMPP-added nitrogen fertilizer affects soil N2O emission and microbial activity in Southern Italy

    NASA Astrophysics Data System (ADS)

    Vitale, Luca; De Marco, Anna; Maglione, Giuseppe; Polimeno, Franca; Di Tommasi, Paul; Magliulo, Vincenzo

    2014-05-01

    Arable sites contributes to global N2O emission due to massive utilization of nitrogen fertilizers. N2O derives from the biological processes such as nitrification and denitrification influenced by soil nitrogen availability. The use of nitrogen fertilizers added with nitrification inhibitors represents one among the proposed strategy to reduce soil N2O emission form arable sites. The aim of this work was to evaluate the effects of 3,4-dimethylphyrazole phosphate (DMPP), a nitrification inhibitor, on N2O emission and microbial activity of a soil cropped to potato in Southern Italy. The experiment was a randomized block design with two treatments applied and three replicates: control (C) and DMPP (Entec®, K+S Nitrogen) plots, both supplied with the same amount of ammonium nitrate. The nitrogen fertilizer was supplied in three events: at 0 Day After Sowing (DAS; 100 kg N ha-1), at 57 DAS (30 kg N ha-1), and at 71 DAS (30 kg N ha-1). Soil N2O emission was monitored by both dynamic and static chambers. Static chambers were located both on hills and furrows whereas dynamic chambers were located on furrows. Air samples were collected from chambers at different times and analysed by a gas chromatograph (SRI 8610C, Gas Chromatograph). Fluxes were estimated as a linear interpolation of N2O changes over a 30 min time. Microbial biomass and basal respiration were determined as CO2 evolution, analysed by means of an IRGA (Li6200, Licor), on 2 g of fresh soil over a 4h incubation time. Microbial biomass was determined by Substrate Induced Respiration method. Data show no statistical differences in N2O fluxes measured with either dynamic chambers between C and DMPP plots in studied period. However, after the first fertilization event, when the fertilizer was applied as 100 kg N ha-1, the average N2O fluxes measured with static chambers were higher in DMPP plots compared to C plots. In the same period, the microbial biomass significantly decreased in DMPP plots as compared to C

  8. Soil N2O fluxes along an elevation gradient of tropical montane forests under experimental nitrogen and phosphorus addition

    NASA Astrophysics Data System (ADS)

    Müller, Anke; Matson, Amanda; Corre, Marife; Veldkamp, Edzo

    2015-10-01

    Nutrient deposition to tropical forests is increasing, which could affect soil fluxes of nitrous oxide (N2O), a powerful greenhouse gas. We assessed the effects of 35-56 months of moderate nitrogen (N) and phosphorus (P) additions on soil N2O fluxes and net soil N-cycling rates, and quantified the relative contributions of nitrification and denitrification to N2O fluxes. In 2008, a nutrient manipulation experiment was established along an elevation gradient (1000, 2000 and 3000 m) of montane forests in southern Ecuador. Treatments included control, N, P and N+P addition (with additions of 50 kg N ha-1 yr-1 and 10 kg P ha-1 yr-1). Nitrous oxide fluxes were measured using static, vented chambers and N cycling was determined using the buried bag method. Measurements showed that denitrification was the main N2O source at all elevations, but that annual N2O emissions from control plots were low, and decreased along the elevation gradient (0.57 ± 0.26 to 0.05 ± 0.04 kg N2O-N ha-1 yr-1). We attributed the low fluxes to our sites’ conservative soil N cycling as well as gaseous N losses possibly being dominated by N2. Contrary to the first 21 months of the experiment, N addition did not affect N2O fluxes during the 35-56 month period, possibly due to low soil moisture contents during this time. With P addition, N2O fluxes and mineral N concentrations decreased during Months 35-56, presumably because plant P limitations were alleviated, increasing plant N uptake. Nitrogen plus phosphorus addition showed similar trends to N addition, but less pronounced given the counteracting effects of P addition. The combined results from this study (Months 1-21 and 35-56) showed that effects of N and P addition on soil N2O fluxes were not linear with time of exposure, highlighting the importance of long-term studies.

  9. Pure SF6 and SF6-N2 mixture gas hydrates equilibrium and kinetic characteristics.

    PubMed

    Lee, Eun Kyung; Lee, Ju Dong; Lee, Hyun Ju; Lee, Bo Ram; Lee, Yoon Seok; Kim, Soo Min; Park, Hye Ok; Kim, Young Seok; Park, Yeong-Do; Kim, Yang Do

    2009-10-15

    Sulfur hexafluoride (SF6), whether pure or mixed with inexpensive inert gas, has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate and/or collect it from waste gas streams. In this study, we investigated the pure SF6 and SF6-N2 mixture gas hydrates formation equilibrium aswell asthe gas separation efficiency in the hydrate process. The equilibrium pressure of SF6-N2 mixture gas was higher than that of pure SF6 gas. Phase equilibrium data of SF6-N2 mixture gas was similar to SF6 rather than N2. The kinetics of SF6-N2 mixture gas was controlled by the amount of SF6 at the initial gas composition as well as N2 gas incorporation into the S-cage of structure-II hydrate preformed by the SF6 gas. Raman analysis confirmed the N2 gas incorporation into the S-cage of structure-II hydrate. The compositions in the hydrate phase were found to be 71, 79, 80, and 81% of SF6 when the feed gas compositions were 40, 65, 70, and 73% of SF6, respectively. The present study provides basic information for the separation and purification of SF6 from mixed SF6 gas containing inert gases.

  10. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification.

    PubMed

    Pan, Yuting; Ni, Bing-Jie; Yuan, Zhiguo

    2013-10-01

    Competition for electrons among different steps of denitrification has previously been shown to occur, and to play an important role in the accumulation and emission of N2O in wastewater treatment. However, this electron competition is not recognized in the current denitrification models, limiting their ability to predict N2O accumulation during denitrification. In this work, a new denitrification model is developed for wastewater treatment processes. It describes electron competition among the four steps of denitrification, through modeling the carbon oxidation and nitrogen reduction processes separately, in contrast to the existing models that directly couple these two types of processes. Electron carriers are introduced to link carbon oxidation, which donates electrons to carriers, and nitrogen oxides reduction, which receives electrons from these carriers. The relative ability of each denitrification step to compete for electrons is modeled through the use of different affinity constants with reduced carriers. Model calibration and validation results demonstrate that the developed model is able to reasonably describe the nitrate, nitrite, and N2O reduction rates of a methanol-utilizing denitrifying culture under various carbon and nitrogen oxides supplying conditions. The model proposed, while subject to further validation, is expected to enhance our ability to predict N2O accumulation in denitrification.

  11. High-Precision Measurements of 15N15N, 14N15N, and 14N2 in N2 and Potential Applications to Oceanic Nitrogen Cycle Research

    NASA Astrophysics Data System (ADS)

    Li, S.; Yeung, L.; Young, E. D.; Ostrom, N. E.; Haslun, J. A.

    2016-02-01

    The balance of nitrogen fixation and nitrogen loss in the oceans is uncertain. For example, anaerobic ammonia oxidation could account for 50% or more of marine N2 production, although its global importance is still poorly known. Isotopic ratios in fixed nitrogen species (e.g., δ15N and δ18O values of NO2- and NO3-) are widely used to trace preservation and removal of N-bearing compounds and/or isotopic variations of their different sources. However, these approaches in general probe only one side of the nitrogen mass balance—the "fixed" nitrogen reservoir—so they offer few constraints on the ultimate loss of nitrogen from that pool as N2. The rare isotopologue ratio 15N15N/14N2 in N2may provide information about those nitrogen-loss processes directly. We will report the first measurements of Δ30 (the abundance of 15N15N relative to that predicted by chance alone), made on a unique high-resolution mass spectrometer (the Nu Instruments Panorama), and we will discuss the potential utility of Δ30 as an independent tracer of the nitrogen cycle. The parameter Δ30 is insensitive to the bulk 15N/14N isotopic ratio of the reservoir; instead, it reflects isotopic ordering in N2, which is altered when N-N bonds are made or broken. Our preliminary measurements of N2 from denitrifying soils and pure cultures of denitrifiers indicate large kinetic isotopic effects during N-N bond formation that favor 15N15N production during denitrification. We also observed a nonstochastic excess of 15N15N in tropospheric N2 [Δ30 = +19.05 ± 0.12‰ (1σ)]. This excess likely comes from fixed-nitrogen loss processes in the biosphere. Variations in Δ30 of N2 from pure culture experiments (+16.96 to +18.95‰) probably reflect the different isotopic signatures of the enzymes that catalyze denitrification. So, enzyme-specific Δ30 values of dissolved N2 should provide information about the importance of different biochemical pathways of fixed-nitrogen loss (e.g., denitrification vs

  12. Modelling of the temporal evolution of the gas temperature in N2 discharges

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2017-05-01

    The time-dependent evolution of the energy transfer to gas heating in a pure N2 discharge produced in a cylindrical tube at low pressures (1-10 Torr) is studied for different fixed values of the reduced electric field and electron density. We consider a model based on the self-consistent solutions to the time-dependent gas thermal balance equation coupled to the electron, vibrational, and chemical kinetic equations for the most important heavy species produced in N2 plasma discharges. The results of this model provide the temporal variation of the radially averaged value of the gas temperature, as well as the corresponding gas heating mechanisms. It is shown that the pooling reactions N2(A) + N2(A) → N2(B) + N2 and N2(A) + N2(A) → N2(C) + N2 are responsible for a smooth increase in the gas temperature before the first millisecond. For longer times, gas heating is found to be mainly caused by vibrational energy exchanges from non-resonant vibration-vibration (V-V) processes between N2 molecules and by vibration-translation (V-T) N2-N collisions. The heating rates of these different gas heating mechanisms and the gas temperature are calculated for a reduced electric field of 50 and 100 Td (1 Td = 10-17 Vcm2), an electron density of 1010 and 1011 cm-3, and a pressure of 1 and 10 Torr. The fractional power converted to gas heating from electronic and vibrational excitation is also calculated for these parameters, being respectively ˜2% and in the range 10%-35%. The effect of having a contribution of non-resonant V-V processes to gas cooling within the time interval 0.1-1 ms is analysed. The role of the gas temperature on the temporal evolution of the vibrational distribution of N2(X, v) molecules is also discussed.

  13. Equation of state of nitrogen (N2) at high pressures and high temperatures: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Krukowski, Stanisław; Strąk, Paweł

    2006-04-01

    Nitrogen equation of state at pressures up to 30GPa (300kbars) and temperatures above 800K was studied by molecular dynamics (MD) simulations. The dynamics of the N2 molecules is treated in hard rotor approximation, i.e., it accounts both translational and rotational degrees of freedom. The rotational motion of the N2 molecule is treated assuming constant moment of inertia of the nitrogen molecule. The new MD program fully accounts anisotropic molecular nitrogen interaction. The N2-N2 interaction potential has been derived by van der Avoird et al. [J. Chem. Phys. 84, 1629 (1986)] using the results of high precision Hartree-Fock ab initio quantum mechanical calculations. The potential, fully accounts rotational symmetry of the N2-N2 system, by employing 6-j Wigner symbols, i.e., preserving full rotational symmetry of the system. Various numerical algorithms were tested, in order to achieve the energy preservation during the simulation. It has been demonstrated that the standard Verlet algorithm was not preserving the energy for the standard MD time step, equal to 5×10-16s. Runge-Kutta fourth order method was able to preserve the energy within 10-4 relative error, but it requires calculation of the force four times for each time step and therefore it is highly inefficient. A predictor-corrector method of the fifth order (PC5) was found to be efficient and precise and was therefore adopted for the simulation of the molecular nitrogen properties at high pressure. Singer and Fincham algorithms were tested and were found to be as precise as PC5 algorithm and they were also used in the simulation of the equation of state. Results of MD simulations are in very good agreement with the experimental data on nitrogen equation of state at pressures below 1GPa (10kbars). For higher pressures, up to 30GPa (300kbars), i.e., close to molecular nitrogen stability limit, determined by Nellis et al. [Phys. Rev. Lett. 85, 1262 (1984)], the obtained numerical results provide new data

  14. Mechanism of N2 dissociation and kinetics of N(4S) atoms in pure nitrogen plasma

    NASA Astrophysics Data System (ADS)

    Volynets, A. V.; Lopaev, D. V.; Popov, N. A.

    2016-10-01

    This work deals with kinetics of the ground state nitrogen atoms N(4S) and N2 dissociation mechanism in pure nitrogen plasma. The experiment was carried out in positive column of DC glow discharge at a range of parameters p = 5 - 50 Torr, J = 20 - 100 mA. The use of axial homogeneous glow discharge allowed considering N(4S) balance for spatially uniform conditions controlled by only two terms: source (characterized by effective production rate k diss eff ) and loss (characterized by effective loss time τN l oss ). Analysis of these parameters gains considerably better understanding of N2 dissociation mechanism in pure nitrogen plasma that was the main goal of the given work. So N/N2 dissociation rate as function of discharge parameters was obtained using two independent emission optical methods: actinometry on Ar atoms and N2 2+ band emission decay at discharge modulation. Measurements of N/N2 radial profiles allowed estimating N atom surface loss probability γN l oss and correspondingly τN l oss . It was revealed that γN l oss depends on N(4S) concentration and thereby discharge conditions through the sorption balance of physisorbed N atoms. Simple phenomenological model taking into account basic surface processes provides γN l oss data in good agreement with experiment. Finally, k diss eff was obtained as function of reduced electric field E/N and it was shown that even EEDF self-consistently calculated with accounting for N2 vibrational excitation is unable to provide observed values of k diss eff . Reasons of that fact are discussed in detail.

  15. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates

    PubMed Central

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-01-01

    Colonies of N2-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. 15N-isotope labelling experiments and nutrient analyses revealed that N2 fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N2 were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO3−-depleted, fully oxygenated (surface) waters. In NO3−-enriched (>1.5 μM), O2-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes. PMID:25575306

  16. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    PubMed

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO(3)(-)-depleted, fully oxygenated (surface) waters. In NO(3)(-)-enriched (>1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  17. Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil

    PubMed Central

    Geng, Shicong; Chen, Zhijie; Han, Shijie; Wang, Fang; Zhang, Junhui

    2017-01-01

    Soil is a significant source of atmospheric N2O, and soil N2O emissions at a global scale are greatly affected by environment changes that include continuous deposition of atmospheric nitrogen and changing precipitation distribution. However, to date, field simulations of multiple factors that control the interaction between nitrogen deposition and precipitation on forest soil N2O emissions are scarce. In this study, we conducted a 2-year continuous assessment of N2O emissions from November 2012 to October 2014 at a nitrogen addition and rainfall reduction manipulation platform in an old broad-leaved Korean pine mixed forest at Changbai Mountain in northeastern China. We found that N2O emissions from control plots were 1.25 ± 0.22 kg N2O-N ha−1 a−1. Nitrogen addition significantly increased N2O emissions, with the emission factor of 1.59%. A 30% reduction in rainfall decreased N2O emissions by 17–45%. However, in combination, nitrogen addition and rainfall reduction increased N2O emissions by 58–140%, with the emission factor of 3.19%, and had a larger promotional effect than the addition of nitrogen alone. Our results indicated that drought slightly decreases forest soil N2O emission; however, with increasing deposition of atmospheric N in temperate forest soils, the effect of drought might become altered to increase N2O emission. PMID:28233839

  18. Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil

    NASA Astrophysics Data System (ADS)

    Geng, Shicong; Chen, Zhijie; Han, Shijie; Wang, Fang; Zhang, Junhui

    2017-02-01

    Soil is a significant source of atmospheric N2O, and soil N2O emissions at a global scale are greatly affected by environment changes that include continuous deposition of atmospheric nitrogen and changing precipitation distribution. However, to date, field simulations of multiple factors that control the interaction between nitrogen deposition and precipitation on forest soil N2O emissions are scarce. In this study, we conducted a 2-year continuous assessment of N2O emissions from November 2012 to October 2014 at a nitrogen addition and rainfall reduction manipulation platform in an old broad-leaved Korean pine mixed forest at Changbai Mountain in northeastern China. We found that N2O emissions from control plots were 1.25 ± 0.22 kg N2O-N ha‑1 a‑1. Nitrogen addition significantly increased N2O emissions, with the emission factor of 1.59%. A 30% reduction in rainfall decreased N2O emissions by 17–45%. However, in combination, nitrogen addition and rainfall reduction increased N2O emissions by 58–140%, with the emission factor of 3.19%, and had a larger promotional effect than the addition of nitrogen alone. Our results indicated that drought slightly decreases forest soil N2O emission; however, with increasing deposition of atmospheric N in temperate forest soils, the effect of drought might become altered to increase N2O emission.

  19. Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage

    NASA Astrophysics Data System (ADS)

    Shiba, Yuji; Morishita, Yukinaga; Kaneko, Shuhei; Okabe, Shigemitsu; Mizoguchi, Hitoshi; Yanabu, Satoru

    Global warming caused by CO2 etc. is a field where the concern is very high. Especially, automobile emissions are problem for it. Therefore, the hybrid car is widely development and used recently. Hybrid car used electric power and gasoline. So, the car reduces CO2. Hybrid car has engine and motor. To rotate the motor, hybrid car has battery. This battery is large capacity. Therefore, the relay should interrupt high DC current for the switch of the motor and the engine. So, hybrid car used hydrogen gas filling relay We studied interruption test for the research of a basic characteristic of hydrogen gas. DC current has not current zero point. So, it is necessary to make the current zero by high arc voltage and forcible current zero point. The loss coefficient and arc voltage of hydrogen is high. Therefore, we studied interruption test for used high arc voltage. We studied interruption test and dielectric breakdown test of air, pure Hydrogen, and Hydrogen- nitrogen mixture gas. As a result, we realized H2-N2(80%-20%) is the best gas.

  20. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil.

    PubMed

    Dai, Yu; Di, Hong J; Cameron, Keith C; He, Ji-Zheng

    2013-11-01

    Ammonia oxidizers, including ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) are important drivers of a key step of the nitrogen cycle - nitrification, which affects the production of the potent greenhouse gas, nitrous oxide (N2O). A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of AOB and AOA and on N2O emissions in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha(-1) and animal urine at 300 and 600 kg N ha(-1). DCD was applied to some of the N treatments at 10 kg ha(-1). The results showed that the AOB amoA gene copy numbers were greater than those of AOA. The highest ratio of the AOB to AOA amoA gene copy numbers was 106.6 which occurred in the urine-N 600 treatment. The AOB amoA gene copy numbers increased with increasing nitrogen application rates. DCD had a significant impact in reducing the AOB amoA gene copy numbers especially in the high nitrogen application rates. N2O emissions increased with the N application rates. DCD had the most significant effect in reducing the daily and total N2O emissions in the highest nitrogen application rate. The greatest reduction of total N2O emissions by DCD was 69% in the urine-N 600 treatment. The reduction in the N2O emission factor by DCD ranged from 58% to 83%. The N2O flux and NO3(-)-N concentrations were significantly correlated to the growth of AOB, rather than AOA. This study confirms the importance of AOB in nitrification and the effect of DCD in inhibiting AOB growth and in decreasing N2O emissions in grazed pasture soils under field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effect of different agronomic practises on greenhouse gas emissions, especially N2O and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2014-05-01

    In order to achieve a reduction of greenhouse gas emissions, management practises need to be adapted by implementing sustainable land use. At first, reliable field data are required to assess the effect of different farming practises on greenhouse gas budgets. The conducted field experiment covers and compares two main aspects of agricultural management, namely an organic farming system and an integrated farming system, implementing additionally the effects of diverse tillage systems and fertilisation practises. Furthermore, the analysis of the alterable biological, physical and chemical soil properties enables a link between the impact of different management systems on greenhouse gas emissions and the monitored cycle of matter, especially the nitrogen cycle. Measurements were carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then, parcels in a field (each around 0,2-0,4 ha) with a particular interior plot set-up have been conducted. So the 20 years impacts of different tillage and fertilisation practises on soil properties including trace gases were examined. Fluxes of CH4, N2O and CO2 are monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (per point: 4 chambers, each covering 0,4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit (Flessa et al. 2002). Each chamber is sampled 3-4 times in 24 hours. The main outcomes are the analysis of temporal and spatial dynamics of greenhouse gas fluxes as influenced by management practice events (fertilisation and tillage) and weather effects (drying-rewetting, freezing-thawing, intense rainfall and dry periods

  2. Antipollution system to remove nitrogen dioxide gas

    NASA Technical Reports Server (NTRS)

    Metzler, A. J.; Slough, J. W.

    1971-01-01

    Gas phase reaction system using anhydrous ammonia removes nitrogen dioxide. System consists of ammonia injection and mixing section, reaction section /reactor/, and scrubber section. All sections are contained in system ducting.

  3. Dehydrogenation of N2HX (X=2-4) by nitrogen atoms: thermochemical and kinetics.

    PubMed

    Spada, Rene Felipe Keidel; Ferrão, Luiz Fernando de Araujo; Roberto-Neto, Orlando; Machado, Francisco Bolivar Correto

    2013-11-21

    Thermochemical and kinetics of sequential hydrogen abstraction reactions from hydrazine by nitrogen atoms were studied. The dehydrogenation was divided in three steps, N2H4 + N, N2H3 + N, and N2H2 + N. The thermal rate constants were calculated within the framework of canonical variational theory, with zero and small curvature multidimensional tunnelling corrections. The reaction paths were computed with the BB1K/aug-cc-pVTZ method and the thermochemical properties were improved with the CCSD(T)/CBS//BB1K/aug-cc-pVTZ approach. The first dehydrogenation step presents the lowest rate constants, equal to 1.22 × 10(-20) cm(3) molecule(-1) s(-1) at 298 K.

  4. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath.

    PubMed

    Sutka, R L; Ostrom, N E; Ostrom, P H; Gandhi, H; Breznak, J A

    2003-01-01

    The relative importance of individual microbial pathways in nitrous oxide (N(2)O) production is not well known. The intramolecular distribution of (15)N in N(2)O provides a basis for distinguishing biological pathways. Concentrated cell suspensions of Methylococcus capsulatus Bath and Nitrosomonas europaea were used to investigate the site preference of N(2)O by microbial processes during nitrification. The average site preference of N(2)O formed during hydroxylamine oxidation by M. capsulatus Bath (5.5 +/- 3.5 per thousand) and N. europaea (-2.3 +/- 1.9 per thousand) and nitrite reduction by N. europaea (-8.3 +/- 3.6 per thousand) differed significantly (ANOVA, f((2,35)) = 247.9, p = 0). These results demonstrate that the mechanisms for hydroxylamine oxidation are distinct in M. capsulatus Bath and N. europaea. The average delta(18)O-N(2)O values of N(2)O formed during hydroxylamine oxidation for M. capsulatus Bath (53.1 +/- 2.9 per thousand) and N. europaea (-23.4 +/- 7.2 per thousand) and nitrite reduction by N. europaea (4.6 +/- 1.4 per thousand) were significantly different (ANOVA, f((2,35)) = 279.98, p = 0). Although the nitrogen isotope value of the substrate, hydroxylamine, was similar in both cultures, the observed fractionation (delta(15)N) associated with N(2)O production via hydroxylamine oxidation by M. capsulatus Bath and N. europaea (-2.3 and 26.0 per thousand, respectively) provided evidence that differences in isotopic fractionation were associated with these two organisms. The site preferences in this study are the first measured values for isolated microbial processes. The differences in site preference are significant and indicate that isotopomers provide a basis for apportioning biological processes producing N(2)O.

  5. Mineralization of RDX-derived nitrogen to N2 via denitrification in coastal marine sediments.

    PubMed

    Smith, Richard W; Tobias, Craig; Vlahos, Penny; Cooper, Christopher; Ballentine, Mark; Ariyarathna, Thivanka; Fallis, Stephen; Groshens, Thomas J

    2015-02-17

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common constituent of military explosives. Despite RDX contamination at numerous U.S. military facilities and its mobility to aquatic systems, the fate of RDX in marine systems remains largely unknown. Here, we provide RDX mineralization pathways and rates in seawater and sediments, highlighting for the first time the importance of the denitrification pathway in determining the fate of RDX-derived N. (15)N nitro group labeled RDX ((15)N-[RDX], 50 atom %) was spiked into a mesocosm simulating shallow marine conditions of coastal Long Island Sound, and the (15)N enrichment of N2 (δ(15)N2) was monitored via gas bench isotope ratio mass spectrometry (GB-IRMS) for 21 days. The (15)N tracer data were used to model RDX mineralization within the context of the broader coastal marine N cycle using a multicompartment time-stepping model. Estimates of RDX mineralization rates based on the production and gas transfer of (15)N2O and (15)N2 ranged from 0.8 to 10.3 μmol d(-1). After 22 days, 11% of the added RDX had undergone mineralization, and 29% of the total removed RDX-N was identified as N2. These results demonstrate the important consideration of sediment microbial communities in management strategies addressing cleanup of contaminated coastal sites by military explosives.

  6. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas.

    PubMed

    Truscott, Benjamin S; Kelly, Mark W; Potter, Katie J; Ashfold, Michael N R; Mankelevich, Yuri A

    2016-11-03

    , and [CN]ns of other reactive nitrogen-containing species by up to an order of magnitude. The ratio [N]ns/[CH3]ns scales proportionally with (but is 10(2)-10(3) times smaller than) the ratio of the N2 to CH4 input mole fractions for the given values of p and P, but [N]ns/[CN]ns decreases (and thus the potential importance of CN in contributing to N-doped diamond growth increases) as p and P increase. Possible insights regarding the well-documented effects of trace N2 additions on the growth rates and morphologies of diamond films formed by CVD using MW-activated CH4/H2 gas mixtures are briefly considered.

  7. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas

    PubMed Central

    2016-01-01

    , and [CN]ns of other reactive nitrogen-containing species by up to an order of magnitude. The ratio [N]ns/[CH3]ns scales proportionally with (but is 102–103 times smaller than) the ratio of the N2 to CH4 input mole fractions for the given values of p and P, but [N]ns/[CN]ns decreases (and thus the potential importance of CN in contributing to N-doped diamond growth increases) as p and P increase. Possible insights regarding the well-documented effects of trace N2 additions on the growth rates and morphologies of diamond films formed by CVD using MW-activated CH4/H2 gas mixtures are briefly considered. PMID:27718565

  8. Fluid simulation of species concentrations in capacitively coupled N2/Ar plasmas: Effect of gas proportion

    NASA Astrophysics Data System (ADS)

    Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian

    2017-05-01

    A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.

  9. Nitrogen and Phosphorus Addition Affects Biological N2 Fixation and Sphagnum Moss in an Ombrotrophic Bog

    NASA Astrophysics Data System (ADS)

    Zivkovic, T.; Ardichvili, A.; Moore, T. R.

    2016-12-01

    Most of the 18 Pg nitrogen (N) accumulated in northern nutrient-poor and Sphagnum-dominated peatlands (bogs and fens) can be attributed to N2 fixation by diazotrophs either associated with the live Sphagnum or non-symbiotically in the deeper peat. Where atmospheric N deposition is low (< 0.2 g m-2 y-1), ombrotrophic bogs rely on N2 fixation as the primary source of N that sustains primary production. The industrial revolution and anthropogenic impacts in the last 200 years have resulted in larger atmospheric N deposition as ammonium (NH4) and nitrate (NO3). One effect of increased N deposition in Sphagnum is a switch from N to phosphorus (P) limitation suggested by the increase in tissue N:P>16. It is unclear how Sphagnum hosted diazotrophic activity may be affected by N deposition and thus changes in N:P ratio. We investigated the effects of long-term addition of different sources of nitrogen (0, 1.6, 3.2 and 6.4 g N m-2 y-1 as NH4Cl and NaNO3), and phosphorus (5 g P m-2 y-1 as KH2PO4) on Sphagnum nutrient status (N, P and N:P), net primary productivity (NPP) and Sphagnum-associated N2 fixation at Mer Bleue, a temperate ombrotrophic bog. Our study shows that N concentration in Sphagnum tissue increased with larger rates of N addition, with a stronger effect on Sphagnum from NH4 than NO3. The addition of P created a 3.5 fold increase in Sphagnum P content compared to controls. Sphagnum NPP decreased linearly with the rise in N:P ratio, while linear growth declined exponentially with increase in Sphagnum N content. N2 fixation significantly decreased in response to even the smallest addition of both N species. In contrast, the addition of P increased N2 fixation by up to 100 times compared to N treatments and up to 5-30 times compared to controls. The change in N2 fixation was best modeled by the N:P ratio, across all experimental treatments. Although elevated N deposition substantially decreases N2 fixation, the N:P ratio in Sphagnum may be a good predictor, likely

  10. Comparative Genomic Analysis of N2-Fixing and Non-N2-Fixing Paenibacillus spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes

    PubMed Central

    Xie, Jian-Bo; Du, Zhenglin; Bai, Lanqing; Tian, Changfu; Zhang, Yunzhi; Xie, Jiu-Yan; Wang, Tianshu; Liu, Xiaomeng; Chen, Xi; Cheng, Qi; Chen, Sanfeng; Li, Jilun

    2014-01-01

    We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe–S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation. PMID:24651173

  11. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil.

    PubMed

    Hawthorne, Iain; Johnson, Mark S; Jassal, Rachhpal S; Black, T Andrew; Grant, Nicholas J; Smukler, Sean M

    2017-05-01

    Nitrogen (N) fertilization of forests for increasing carbon sequestration and wood volume is expected to influence soil greenhouse gas (GHG) emissions, especially to increase N2O emissions. As biochar application is known to affect soil GHG emissions, we investigated the effect of biochar application, with and without N fertilization, to a forest soil on GHG emissions in a controlled laboratory study. We found that biochar application at high (10%) application rates increased CO2 and N2O emissions when applied without urea-N fertilizer. At both low (1%) and high biochar (10%) application rates CH4 consumption was reduced when applied without urea-N fertilizer. Biochar application with urea-N fertilization did not increase CO2 emissions compared to biochar amended soil without fertilizer. In terms of CO2-eq, the net change in GHG emissions was mainly controlled by CO2 emissions, regardless of treatment, with CH4 and N2O together accounting for less than 1.5% of the total emissions.

  12. Electron beam dispersion measurements in nitrogen using two-dimensional imaging of N2(+) fluorescence

    NASA Technical Reports Server (NTRS)

    Clapp, L. H.; Twiss, R. G.; Cattolica, R. J.

    1991-01-01

    Experimental results are presented related to the radial spread of fluorescence excited by 10 and 20 KeV electron beams passing through nonflowing rarefied nitrogen at 293 K. An imaging technique for obtaining species distributions from measured beam-excited fluorescence is described, based on a signal inversion scheme mathematically equivalent to the inversion of the Abel integral equation. From fluorescence image data, measurements of beam radius, integrated signal intensity, and spatially resolved distributions of N2(+) first-negative-band fluorescence-emitting species have been made. Data are compared with earlier measurements and with an heuristic beam spread model.

  13. Gas Phase Model of Surface Reactions for N{2} Afterglows

    NASA Astrophysics Data System (ADS)

    Marković, V. Lj.; Petrović, Z. Lj.; Pejović, M. M.

    1996-07-01

    The adequacy of the homogeneous gas phase model as a representation of the surface losses of diffusing active particles in gas phase is studied. As an example the recent data obtained for the surface recombination coefficients are reanalyzed. The data were obtained by the application of the breakdown delay times which consists of the measurements of the breakdown delay times t_d as a function of the afterglow period tau. It was found that for the conditions of our experiment, the diffusion should not be neglected as the final results are significantly different when obtained by approximate gas phase representation and by exact numerical solution to the diffusion equation. While application of the gas phase effective coefficients to represent surface losses gives an error in the value of the recombination coefficient, it reproduces correctly other characteristics such as order of the process which can be obtained from simple fits to the experimental data. Dans cet article, nous étudions la validité du modèle approximatif représentant les pertes superficielles des particules actives qui diffusent de la phase gazeuse comme pertes dans la phase homogène du gaz. Les données actuelles du coefficient de recombination en surface sont utilisées par cette vérification . Les données experimentales sont obtenues en utilisant la technique qui consiste en la mesure du temps de retard du début de la décharge en fonction de la période de relaxation. Nous avons trouvé que, pour nos conditions expérimentales, la diffusion ne peut être négligée. Aussi, les résultats finals sont considérablement différents quand ils sont obtenus en utilisant le modèle approximatif par comparaison aves les résultats obtenus par la solution numérique exacte de l'équation de la diffusion. L'application des coefficients effectifs dans la phase gaseuse pour la présentation des pertes superficielles donne, pour les coefficients de la recombinaison, des valeurs qui diffèrent en

  14. Mineral Enhanced Archaea-mediated co-production of CH4 and N2O: A missing link in interactions between Earth's Carbon and Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Harvey, O. R.; Lazzarino, P. B.; Whitman, W. B.; Qafoku, N. P.

    2016-12-01

    We report, to our knowledge, the first evidence for archaea-mediated co-production of CH4 and N2O. Experiments were conducted with the model methanogenic archaea, Methanococcus maripaludis in the presence and absence of different nitrogen sources and sulfide minerals. Highest N2O production was observed at the lowest rate of methane production (rmeth) and was much enhanced in methanogenic treatments containing sulfide minerals; indicative of the involvement of archaea-mineral interactions. Among the minerals studied, N2O production followed the trend pyrite2O, 2) reasons for differences in the apparent "catalytic" activity among sulfide minerals and 3) implications for archaea ecology, greenhouse gas dynamics and biogeochemical cycling of nitrogen in deep and near-surface geologic environments.

  15. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...

  16. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...

  17. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...

  18. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer. (a) Identification. A nitrogen gas analyzer is a device intended to measure the concentration of nitrogen in...

  19. Effects of nitrogen fertilization on soil N2O emissions and soil respiration in temperate grassland in Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Qi, Y.; Peng, Q.

    2012-04-01

    Nitrogen addition to soil can play a vital role in influencing nitrogen balance and the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN:200 kg N ha-1y-1, MN:100 kg N ha-1y-1 and LN:50 kg N ha-1y-1) on soil N2O emissions and soil respiration compared with non-fertilization(CK, 0 kg N ha-1y-1), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Several N fertilizer forms were included(CAN:calcium ammonium nitrate, AS:ammonium sulphate and NS:sodium nitrate) and a static closed chamber method was used as gas fluxes measurement. Our data showed that peak N2O fluxes induced by N treatments were concentrated in short periods (2 to 3 weeks) after fertilization in summer and in soil thawing periods in early spring; there were similarly low N2O fluxes from all treatments in the remaining seasons of the year. The three N levels increased annual N2O emissions significantly(P<0.05) in the order of MN>HN>LN compared with the CK(control) treatment in year 1; in year 2, the elevation of annual N2O emissions was significant (P<0.05) by HN and MN treatments but was insignificant by LN treatments (P>0.05). The three N forms also had strong effects on N2O emissions. Significantly (P<0.05) higher annual N2O emissions were observed in the soils of CAN and AS fertilizer treatments than in the soils of NS fertilizer treatments in both measured years, but the difference between CAN and AS was not significant (P>0.05). Annual N2O emission factors (EF) ranged from 0.060 to 0.298% for different N fertilizer treatments in the two observed years, with an overall EF value of 0.125%. The EF values were by far less than the mean default EF proposed by the Intergovernmental Panel on Climate Change(IPCC). Our results also showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil

  20. Effects of exogenous nitrogen on freshwater marsh plant growth and N2O fluxes in Sanjiang Plain, Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Song, Changchun; Wang, Dexuan; Wang, Yiyong

    Field management strongly affected the emission of N2O and plant growth from freshwater marshes. Nitrous oxide ( N2O) fluxes, leaf area, plant height and above ground biomass were investigated under four N treatments (0, 6, 12 and 24 g NH4NO3- Nm-2) in the freshwater marshes of Sanjiang Plain, Northeast China. The average growing season N2O flux was 0.065±0.037, 0.086±0.111, 0.141±0.186, 0.445±0.491mgm-2h-1, respectively, the above-ground biomass was 201±49, 252±40, 290±47, 954±115gm-2, respectively, the plant height was 66.25±20.99, 71.91±16.18, 73.55±16.59, 84.14±27.07cm, respectively. Exogenous nitrogen had a significant impact on N2O fluxes and plant growth. Compared to the non-fertilization treatment, the average growing season N2O flux in fertilization increased by 32%, 113%, 581%, respectively, the above-ground biomass increased by 26%, 44%, 375%, respectively, while the plant height increased by 8.5%, 11% and 27%, respectively. A quadratic relationship between the nitrogen applied rate and N2O fluxes, and a non-linear positive correlation between the nitrogen and above-ground biomass were found, while the relationship between the N2O flux and the above-ground biomass was significantly linear positive correlated after nitrogen application, so was the plant height. It was proposed that the exogenous nitrogen gives rise to considerable N2O emissions from freshwater marshes and a large fraction of N2O was emitted to the atmosphere via the transpiration stream within the Deyeuxia angustifolia plants, which provides some quantificational data on the relationship between the nitrogen, N2O fluxes and marsh plant growth.

  1. Dissociation degree of nitrogen molecule in low-pressure microwave-discharge nitrogen plasma with various rare-gas admixtures

    NASA Astrophysics Data System (ADS)

    Kuwano, Kei; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2016-08-01

    The dissociation degree of nitrogen molecules is examined in a microwave discharge nitrogen-rare gas mixture plasma with a total discharge pressure of 1 Torr, by actinometry measurement. Although the spectral line from the excited nitrogen atoms is overlapped by the band spectrum of the N2 first positive system (1PS), the subtraction of the 1PS spectrum fitted theoretically can successfully extract the atomic nitrogen line, which enables actinometry measurement. The nitrogen dissociation degree decreases with increasing mixture ratio of Ar to Kr, whereas it increases with He, which is attributed to the variations in the electron temperature and density. When we dilute the nitrogen with neon, however, we find an anomalous increase in the nitrogen dissociation degree by several orders of magnitude even at a downstream region in the discharge tube. The reason for the dissociation enhancement upon adding neon is discussed in terms of atomic and molecular processes in the plasma.

  2. More About N2O-Based Propulsion and Breathable-Gas Systems

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Mungas, Greg; Caviezel, K. Mark

    2010-01-01

    A concept was evaluated of using nitrous oxide as (1) a monopropellant in thrusters for space suits and spacecraft and (2) a source of breathable gas inside space suits and spacecraft, both by exploiting the controlled decomposition of N2O into N2 and O2. Relative to one prior monopropellant hydrazine, N2O is much less toxic, yet offers comparable performance. N2O can be stored safely as a liquid at room temperature and unlike another prior monopropellant hydrogen peroxide does not decompose spontaneously. A prototype N2O-based thruster has been demonstrated. It has also been proposed to harness N2O-based thrusters for generating electric power and to use the N2 + O2 decomposition product as a breathable gas. Because of the high performance, safety, and ease of handling of N2O, it can be expected to be economically attractive to equip future spacecraft and space suits with N2O-based thrusters and breathable-gas systems.

  3. Plant species diversity reduces N2O but not CH4 emissions from constructed wetlands under high nitrogen levels.

    PubMed

    Han, Wenjuan; Shi, Mengmeng; Chang, Jie; Ren, Yuan; Xu, Ronghua; Zhang, Chongbang; Ge, Ying

    2017-02-01

    Constructed wetlands (CWs) have been widely used for treating wastewater. CWs also are the sources of greenhouse gas (GHG) due to high pollutant load. It has been reported that plant species diversity can enhance nitrogen (N) removal efficiency in CWs for treating wastewater. However, the influence of plant species diversity on GHG emissions from CWs in habitats with high N levels still lack research. This study established four species richness levels (1, 2, 3, 4) and 15 species compositions by using 75 simulated vertical flow CWs microcosms to investigate the effects of plant species diversity on the GHG emissions and N removal efficiency of CWs with a high N level. Results showed plant species richness reduced nitrous oxide (N2O) emission and N (NO3(-)-N, NH4(+)-N, and TIN) concentrations in wastewater, but had no effect on methane (CH4) emission. Especially, among the 15 compositions of plant species, the four-species mixture emitted the lowest N2O and had under-depletion of N (DminTIN < 0). The presence of Oenanthe javanica had a significantly negative effect on the N2O emission but had no effect on N removal efficiency. The presence of Rumex japonicus significantly reduced the N (NO3(-)-N and TIN) concentrations in wastewater but had no effect on the N2O and CH4 emissions. The N concentrations and GHG emissions in the community of R. japonicus × Phalaris arundinacea were as low as those in the four-species mixture. Assembling plant communities with relatively high species richness (four-species mixture) or particular composition (R. japonicus × P. arundinacea) could enhance the N removal efficiency and reduce the GHG emissions from CWs for treating wastewater with a high N level.

  4. Potential use of the N2/Ar ratio as a constraint on the oceanic fixed nitrogen loss

    NASA Astrophysics Data System (ADS)

    Shigemitsu, M.; Gruber, N.; Oka, A.; Yamanaka, Y.

    2016-04-01

    Using a global ocean biogeochemical model, we investigate the suitability of the N2/Ar supersaturation ratio (ΔN2/Ar) as a tracer of marine nitrogen fixation and denitrification, i.e., the main biological processes that add or remove fixed nitrogen to or from the ocean. In a series of factorial simulations, we demonstrate that, in regions away from the oxygen minimum zones (OMZs), the ΔN2/Ar characteristics are mostly determined by benthic denitrification occurring in the deep ocean with minor contributions from benthic and water column denitrification at shallower depths. In the OMZs, the subsurface maxima of ΔN2/Ar are mainly determined by water column denitrification. In contrast, nitrogen fixation has little impact on ΔN2/Ar owing to the rapid loss of the N2 supersaturation signal through air-sea exchange. We thus conclude that ΔN2/Ar can act as a powerful constraint on water column and benthic denitrification occurring in intermediate to deep waters, but it cannot be used to estimate nitrogen fixation. A comparison between the currently very limited observations of the ΔN2/Ar with our model results shows an acceptable level of agreement, suggesting that the model's prescribed rates and distributions of benthic and water column denitrification (i.e., 140 and 52 Tg N yr-1, respectively) are reasonable and confirm the results derived from other constraints.

  5. Nitrogen biogeochemistry in tropical peatlands: nitrogen gas emissions and metagenomic insights into related microbial groups

    NASA Astrophysics Data System (ADS)

    Kasak, Kuno; Espenberg, Mikk; Oopkaup, Kristjan; Ligi, Teele; Truu, Marika; Truu, Jaak; Maddison, Martin; Järveoja, Järvi; Teemusk, Alar; Mander, Ülo

    2017-04-01

    Tropical peatlands constitute considerable amount of global peatland areas and are one of the most important and vulnerable terrestrial ecosystems in terms of impact on the atmospheric greenhouse gas composition. Anthropogenic actions, especially drainage and agriculture, are transforming biochemical cycles in tropical peatlands substantially. It is well known that drainage of tropical peatlands will result in huge amount of carbon loss, however a comprehensive study of the nitrogen cycling genetic potential in tropical areas is still less known. In the current study, nitrogen gas (N2, N2O) emissions from tropical peatlands (French Guiana, South America) were measured and their relationships with the soil chemical parameters, water regime, and abundances and diversity of genes in nitrogen cycle was assessed. The measurements and soil sampling were carried out in October 2013 in two sites (undisturbed and drainage influenced) of the northern part of French Guiana. At both sampling sites, N2O emissions were measured in six sessions during three days using static closed chambers. N2 and N2O emission from the top soil samples were measured in the laboratory applying He-O (N2) method. Soil pHKCl, NO3-N, NH4-N, soluble P, K, Ca and Mg, totN and soil organic matter content were determined from the collected samples. The bacterial and archaeal 16S rRNA genes and functional genes involved in nitrogen cycle (nirS, nirK, nosZI, nosZII, bacterial and archaeal amoA, nifH, nrfA, ANAMMOX bacteria specific 16S rRNA genes) in soil were quantified by using quantitative PCR method. DNA extracted from soil samples was sequenced on Illumina NextSeq system. Metagenomes were used for microbial profiling, identifying functional genes and relating them to biogeochemical cycles and biological processes. N2O emissions were significantly lower and N2 emissions higher (p<0.05 in both cases) in natural site (mean values -0.3 and 9.9 μg m-2 h-1 for N2O, and 1477.3 and 637.2 μg m-2 h-1 for N2

  6. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?

    PubMed

    Paerl, Hans W; Xu, Hai; Hall, Nathan S; Zhu, Guangwei; Qin, Boqiang; Wu, Yali; Rossignol, Karen L; Dong, Linghan; McCarthy, Mark J; Joyner, Alan R

    2014-01-01

    Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China's third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible.

  7. Controlling Cyanobacterial Blooms in Hypertrophic Lake Taihu, China: Will Nitrogen Reductions Cause Replacement of Non-N2 Fixing by N2 Fixing Taxa?

    PubMed Central

    Paerl, Hans W.; Xu, Hai; Hall, Nathan S.; Zhu, Guangwei; Qin, Boqiang; Wu, Yali; Rossignol, Karen L.; Dong, Linghan; McCarthy, Mark J.; Joyner, Alan R.

    2014-01-01

    Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China’s third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible. PMID:25405474

  8. Hydrodynamic and Environmental Controls on the Nitrogen Isotope Effect of Benthic N2 Production

    NASA Astrophysics Data System (ADS)

    Rooze, J.; Meile, C. D.

    2016-02-01

    Isotopic signatures of nitrogen (N) pools, together with knowledge on fractionation during the conversion between different forms of N, can be used to constrain marine N budgets. However, the reported extent of N isotope fractionation during benthic N2 production has differed substantially between studies, leading to uncertainty in the estimate of the global benthic N2 production rate. To assess the range and identify mechanisms underlying such observations, we developed a reactive transport model and ran simulations evaluating the impact of nitrification, denitrification, and anaerobic ammonium oxidation on the isotopic composition of in-situ N/2 production. Different hydrodynamic regimes were taken into account, including advective flow induced by bioirrigation and purely diffusive transport. The effects of the benthic mineralization rate and the composition of the overlying water were also quantified. The benthic redox conditions were found to control the N isotope effect, which under reducing conditions is driven by fractionation during nitrification and anaerobic ammonium oxidation and under oxidizing conditions by fractionation during denitrification. The mineralization rate, the bioirrigation intensity, and chemical composition of the overlying water affect the benthic redox zonation and therefore also the benthic N isotope effect. With increasing water-depth the mineralization rate and the advective nitrate supply to the sediment both decrease, constraining most benthic N cycling to the continental shelf. Simulations that reproduce observed trends of sediment O2 uptake and N2 fluxes with water depth, combined with ocean bathymetry yield an average benthic N isotope effect of -3‰, in line with independent estimates from global circulation models coupled to N cycle models (Somes et al., 2013. Biogeosciences 10, 5889-5910).

  9. Nitrogen fixation in boreal peatlands: the effects of increased N deposition on N2-fixation

    NASA Astrophysics Data System (ADS)

    Popma, J. M.; Wieder, R.; Lamers, L.; Vile, M. A.

    2013-12-01

    Boreal peatlands are of great importance to global carbon and nitrogen cycling. While covering only 3-4 % of the terrestrial surface, they account for 25-30 % of the world's soil C and 9-15 % of the world's soil N. In Western Canada atmospheric dry deposition rates are extremely low: approximately 1 kg N ha-1 yr-1. Though these systems have been functioning as net sinks over the past 11,000 years, natural and anthropogenic disturbances might compromise the historical balance of C and N. Biological N2-fixation has recently been shown to represent a very significant input of N into these systems, contributing to 62% of total N in Western Canada. Interactions between N deposition and biological N2-fixation are as yet, unknown, but the impact of elevated deposition of N-compounds from increased industrial expansion of oil sands mining to peatlands, is concerning. Given that nitrogenase, the enzyme responsible for catalyzing N2-fixation, is energetically costly when active, enhanced inputs of atmospheric N deposition could be a major determinant for enzyme activity and rates of biological N input to these bogs. Understanding interactions between N deposition and N2 fixation in boreal peatlands can aid in predicting the consequences of increased N deposition and setting critical loads. We conducted a field-fertilization experiment in a poor fen in Alberta, Canada, to determine the effects of enhanced N deposition on a dominant fen species Sphagnum angustifolium. The experiment consisted of seven N treatments: Control, 0, 5, 10, 15, 20 and 25 kg N ha-1 y1, n=3. N2-fixation was measured during summer 2012 and 2013 using the acetylene reduction assay (ARA). ARA rates were converted to rates of N2-fixation by calibrating ARA with paired 15N2-incubations. In both 2012 and 2013, with increasing N deposition from 0 kg N ha-1 yr-1 to 25 kg N ha-1 yr-1, rates of N2 fixation decreased, with highest rates in the 0 kg N ha-1 yr-1 treatment mosses (54.2 × 1.40; 48.58 × 7.12 kg N ha

  10. Stabilization of methane hydrate by pressurization with He or N2 gas.

    PubMed

    Lu, Hailong; Tsuji, Yoshihiro; Ripmeester, John A

    2007-12-27

    The behavior of methane hydrate was investigated after it was pressurized with helium or nitrogen gas in a test system by monitoring the gas compositions. The results obtained indicate that even when the partial pressure of methane gas in such a system is lower than the equilibrium pressure at a certain temperature, the dissociation rate of methane hydrate is greatly depressed by pressurization with helium or nitrogen gas. This phenomenon is only observed when the total pressure of methane and helium (or nitrogen) gas in the system is greater than the equilibrium pressure required to stabilize methane hydrate with just methane gas. The following model has been proposed to explain the observed phenomenon: (1) Gas bubbles develop at the hydrate surface during hydrate dissociation, and there is a pressure balance between the methane gas inside the gas bubbles and the external pressurizing gas (methane and helium or nitrogen), as transmitted through the water film; as a result the methane gas in the gas bubbles stabilizes the hydrate surface covered with bubbles when the total gas pressure is greater than the equilibrium pressure of the methane hydrate at that temperature; this situation persists until the gas in the bubbles becomes sufficiently dilute in methane or until the surface becomes bubble-free. (2) In case of direct contact of methane hydrate with water, the water surrounding the hydrate is supersaturated with methane released upon hydrate dissociation; consequently, methane hydrate is stabilized when the hydrostatic pressure is above the equilibrium pressure of methane hydrate at a certain temperature, again until the dissolved gas at the surface becomes sufficiently dilute in methane. In essence, the phenomenon is due to the presence of a nonequilibrium state where there is a chemical potential gradient from the solid hydrate particles to the bulk solution that exists as long as solid hydrate remains.

  11. Coupled effects of straw and nitrogen management on N2O and CH4 emissions of rainfed agriculture in Northwest China

    NASA Astrophysics Data System (ADS)

    Htun, Yin Min; Tong, Yanan; Gao, Pengcheng; Xiaotang, Ju

    2017-05-01

    Straw incorporation is a common agricultural practice, but the additional carbon source may increase greenhouse gas emissions by stimulating microbial activity in soil, particularly when straw is applied at the same time as nitrogen (N) fertilizer. We investigated the coupled effects of straw and N fertilizer on greenhouse gas emissions in a rainfed winter wheat-summer fallow system in Northwest China. Simultaneous applications of straw and N fertilizer increased N2O emissions by up to 88%, net greenhouse gas (NGHG) emission and net greenhouse gas intensity (NGHGI) by over 90%, and the N2O emission factor by over 2-fold. When straw was applied before N fertilizer, the emission factor (0.22%) decreased by approximately one-half compared with that for simultaneous applications (0.45%). In addition, early straw incorporation decreased N2O emissions, NGHG, and NGHGI by 35% (0.62 kg N2O-N ha-1 yr-1), 40% (242 kg CO2-eq ha-1 yr-1), and 38% (42 kg CO2-eq t-1 grain), respectively. We identified the period 30-35 days after N fertilization as a crucial period for evaluating the effectiveness of management practices on N2O emissions. The time between straw and fertilizer applications was negatively related to N2O emission (R2 = 0.8031; p < 0.01) but positively related to soil CH4 uptake (R2 = 0.7662; p < 0.01). Therefore, early straw incorporation can effectively mitigate greenhouse gas emissions by reducing N2O flux and increasing soil CH4 uptake without significantly decreasing grain yield.

  12. Sources and sinks of atmospheric N2O and the possible ozone reduction due to industrial fixed nitrogen fertilizers

    NASA Technical Reports Server (NTRS)

    Liu, S. C.; Cicerone, R. J.; Donahue, T. M.; Chameides, W. L.

    1977-01-01

    The terrestrial and marine nitrogen cycles are examined in an attempt to clarify how the atmospheric content of N2O is controlled. We review available data on the various reservoirs of fixed nitrogen, the transfer rates between the reservoirs, and estimate how the reservoir contents and transfer rates can change under man's influence. It is seen that sources, sinks and lifetime of atmospheric N2O are not understood well. Based on our limited knowledge of the stability of atmospheric N2O we conclude that future growth in the usage of industrial fixed nitrogen fertilizers could cause a 1% to 2% global ozone reduction in the next 50 years. However, centuries from now the ozone layer could be reduced by as much as 10% if soils are the major source of atmospheric N2O.

  13. Sources and sinks of atmospheric N2O and the possible ozone reduction due to industrial fixed nitrogen fertilizers

    NASA Technical Reports Server (NTRS)

    Liu, S. C.; Cicerone, R. J.; Donahue, T. M.; Chameides, W. L.

    1977-01-01

    The terrestrial and marine nitrogen cycles are examined in an attempt to clarify how the atmospheric content of N2O is controlled. We review available data on the various reservoirs of fixed nitrogen, the transfer rates between the reservoirs, and estimate how the reservoir contents and transfer rates can change under man's influence. It is seen that sources, sinks and lifetime of atmospheric N2O are not understood well. Based on our limited knowledge of the stability of atmospheric N2O we conclude that future growth in the usage of industrial fixed nitrogen fertilizers could cause a 1% to 2% global ozone reduction in the next 50 years. However, centuries from now the ozone layer could be reduced by as much as 10% if soils are the major source of atmospheric N2O.

  14. Nitrogen gas exchange in the human knee

    SciTech Connect

    Weathersby, P.K.; Meyer, P.; Flynn, E.T.; Homer, L.D.; Survanshi, S.

    1986-10-01

    Human decompression sickness is presumed to result from excess inert gas in the body when ambient pressure is reduced. Although the most common symptom is pain in the skeletal joints, no direct study of nitrogen exchange in this region has been undertaken. For this study, nitrogen tagged with radioactive 13N was prepared in a linear accelerator. Nine human subjects rebreathed this gas from a closed circuit for 30 min, then completed a 40- to 100-min washout period breathing room air. The isotope 13N was monitored continuously in the subject's knee during the entire period using positron detectors. After correction for isotope decay (half-life = 9.96 min), the concentration in most knees continued to rise for at least 30 min into the washout period. Various causes of this unexpected result are discussed, the most likely of which is an extensive redistribution of gas within avascular knee tissues.

  15. Impacts of Nitrogen Removal and Re-Application on N2O fluxes from Narragansett Bay: Contrasting Turfgrasses, Salt Marshes, and Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Brannon, E.; Moseman-Valtierra, S.; Quinn, R. K.; Amador, J.; Brown, R.; Lancellotti, B.; Glennon, K.; Celeste, G.; Craver, V.

    2016-12-01

    Narragansett Bay in Rhode Island is characterized by a substantial, historic bay-wide nitrogen (N) gradient. Centralized wastewater treatment plants (WWTPs) are a major anthropogenic N source. Onsite wastewater treatments systems (OWTS), which serve 1/3 of all households in the state, are another anthropogenic N source. Recent state regulation has prompted upgrades to both WWTPs and OWTS to increase N removal capacities. Although this should lower N loads to Narragansett Bay, it has the potential to increase the flux of nitrous oxide (N2O), a potent greenhouse gas. We measured summer-time (2016) N2O fluxes of a major WWTP (biological N removal system at Field's Point in Providence) and three of the most common advanced OWTS in the Narragansett Bay watershed (Orenco Advantex AX20, BioMicrobics FAST, SeptiTech D Series). We also tested impacts of application of recovered N (biosolids from wastewater sludge) on N2O fluxes from a turfgrass (Schedonerus arundinaceus) and dominant native coastal cordgrass (Spartina alterniflora) in mesocosm experiments. Preliminary results indicate that the largest N2O fluxes (245 ± 72 µmol N2O m-2 h-1) were from the Field's Point WWTP. Significant, but smaller N2O fluxes (6 ± 3 µmol N2O m-2 h-1 were also measured from the OWTS. In contrast, N2O fluxes from the N-enriched native coastal cordgrass and turfgrass mesocosms were often non-detectable. However, fluxes from a few mesocosms (max. of 25 µmol N2O m-2 h-1) were on the same order of magnitude as fluxes from the OWTS. A state-wide budget of N2O emissions from turfgrasses, intertidal marshes, and OWTS will be estimated to determine their significance as sources relative to the Field's Point WWTP. This data will be used to identify areas where N2O fluxes can be minimized in the state of RI.

  16. Modeling nitrogen-gas, -liquid, -solid chemistries at low temperatures (173-298 K) with applications to Titan

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Kargel, J. S.; Catling, D. C.; Lunine, J. I.

    2014-07-01

    Molecular diatomic nitrogen (henceforth, “nitrogen”) is a major gas on Venus, Earth, Mars, Titan, Triton, and Pluto; a major condensed liquid component on Titan; and major condensed ices on Triton and Pluto. Nitrogen also occurs as a component of air gas hydrates in Earth’s polar ice sheets. The Solar System’s nitrogen originally might have been produced by condensation of nitrogen ice in the outer Solar Nebula disk, or it might have first condensed as and then decomposed from nitrogen gas hydrate or ammonia. The specific objectives of this study were to add nitrogen into the FREZCHEM model (which already included ammonia) and explore some roles of nitrogen on planetary satellites, especially Titan, where nitrogen is a major atmospheric gas and a component of Titan’s hydrocarbon-rich lakes and rain. Nitrogen gases, aqueous phases, and gas hydrates were added to FREZCHEM. Nitrogen, methane, and carbon dioxide gas hydrates were parallel with respect to temperature, which allowed extensions to 173 K, including for mixed N2-CH4 and N2-CO2 gas hydrates. Simulations from 273 to 173 K used a surface Titan pressure of 1.467 bars with a major mixing gas of nitrogen at 1.394 bars (95%) and methane at 0.073 bars (5%). These gas concentrations eventually led to formation of N2-CH4 gas hydrate at 178 K, which suggests that these gas hydrates could be forming on the surface of Titan today (at 94 K) and in sub-surfaces with higher temperatures. On Earth, air gas hydrates are common deep within polar ice sheets and are dominated by atmospheric N2/O2 gas compositions; and as a consequence, gas hydrates do not control, but are controlled by, atmospheric N2/O2 gas compositions. Given that Earth and Titan have similar atmospheric nitrogen (0.78 vs. 1.39 bars) and icy environments, on neither body are gas hydrates likely the main source of atmospheric nitrogen; but rather, atmospheric gases are likely the source of minor amounts of nitrogen in gas hydrates on Earth and Titan.

  17. Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China

    NASA Astrophysics Data System (ADS)

    Dou, Xiaolin; Zhou, Wei; Zhang, Quanfa; Cheng, Xiaoli

    2016-02-01

    The effects of afforestation are of great importance for terrestrial carbon sequestration. However, the consequences of afforestation for greenhouse gas (GHG, CO2, CH4 and N2O) fluxes remain poorly quantified. We investigate the temporal variations in CO2, CH4 and N2O fluxes in afforested soils (implementing woodland and shrubland) and the adjacent uncultivated area in the Danjiangkou Reservoir area of central China. We examined the effects of soil factors [e.g. soil temperature, soil moisture, soil pH, soil organic carbon (SOC), soil organic nitrogen (SON)], litter exclusion and vegetation types on GHG fluxes. Our results revealed that afforestation lead to a higher average CO2 flux from soils by 63.96% and a higher N2O flux by 54.53% in the observed year. The peak CO2 and CH4 fluxes from afforested soils occurred in summer, while the peak N2O flux occurred in winter. Afforestation also enhanced CH4 flux from soil with the largest increase by 247.94% in woodland and by 188.18% in shrubland in spring compared with the open area. On average, surface litter exclusion reduced soil CO2 fluxes by 18.84% and N2O fluxes by 27.93% in the woodland. The surface litter exclusion did not significantly affect CH4 flux from the afforested soils. The CO2, CH4 and N2O fluxes from soils were strongly influenced by soil temperature, moisture and SOC content across seasons. The N2O flux was also strongly affected by SON content in our experimental field. Our results suggested that afforestation enhanced GHG fluxes from soils; however, the magnitude of the GHG fluxes should also be considered from various environmental conditions and vegetation types.

  18. Responses of CH(4), CO(2) and N(2)O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains.

    PubMed

    Li, Kaihui; Gong, Yanming; Song, Wei; He, Guixiang; Hu, Yukun; Tian, Changyan; Liu, Xuejun

    2012-06-01

    To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH(4), CO(2) and N(2)O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH(4) uptake, CO(2) and N(2)O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO(2) and N(2)O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO(2) and N(2)O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO(2) and N(2)O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration.

    PubMed

    Merbold, Lutz; Eugster, Werner; Stieger, Jacqueline; Zahniser, Mark; Nelson, David; Buchmann, Nina

    2014-06-01

    The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open-path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous-wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20-50 nmol m(-2) s(-1) compared with a <5 nmol m(-2) s(-1) background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re-sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m(-2) s(-1)). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi-species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source.

  20. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China

    PubMed Central

    Wang, Faming; Li, Jian; Wang, Xiaoli; Zhang, Wei; Zou, Bi; Neher, Deborah A.; Li, Zhian

    2014-01-01

    Nutrient availability greatly regulates ecosystem processes and functions of tropical forests. However, few studies have explored impacts of N addition (aN), P addition (aP) and N×P interaction on tropical forests N2O fluxes. We established an N and P addition experiment in a tropical forest to test whether: (1) N addition would increase N2O emission and nitrification, and (2) P addition would increase N2O emission and N transformations. Nitrogen and P addition had no effect on N mineralization and nitrification. Soil microbial biomass was increased following P addition in wet seasons. aN increased 39% N2O emission as compared to control (43.3 μgN2O-N m−2h−1). aP did not increase N2O emission. Overall, N2O emission was 60% greater for aNP relative to the control, but significant difference was observed only in wet seasons, when N2O emission was 78% greater for aNP relative to the control. Our results suggested that increasing N deposition will enhance soil N2O emission, and there would be N×P interaction on N2O emission in wet seasons. Given elevated N deposition in future, P addition in this tropical soil will stimulate soil microbial activities in wet seasons, which will further enhance soil N2O emission. PMID:25001013

  1. XPS Depth Profile Analysis of Zn3N2 Thin Films Grown at Different N2/Ar Gas Flow Rates by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Haider, M. Baseer

    2017-01-01

    Zinc nitride thin films were grown on fused silica substrates at 300 °C by radio frequency magnetron sputtering. Films were grown at different N2/Ar flow rate ratios of 0.20, 0.40, 0.60, 0.80, and 1.0. All the samples have grain-like surface morphology with an average surface roughness ranging from 4 to 5 nm and an average grain size ranging from 13 to16 nm. Zn3N2 samples grown at lower N2/Ar ratio are polycrystalline with secondary phases of ZnO present, whereas at higher N2/Ar ratio, no ZnO phases were found. Highly aligned films were achieved at N2/Ar ratio of 0.60. Hall effect measurements reveal that films are n-type semiconductors, and the highest carrier concentration and Hall mobility was achieved for the films grown at N2/Ar ratio of 0.60. X-ray photoelectron study was performed to confirm the formation of Zn-N bonds and to study the presence of different species in the film. Depth profile XPS analyses of the films reveal that there is less nitrogen in the bulk of the film compared to the nitrogen on the surface of the film whereas more oxygen is present in the bulk of the films possibly occupying the nitrogen vacancies.

  2. XPS Depth Profile Analysis of Zn3N2 Thin Films Grown at Different N2/Ar Gas Flow Rates by RF Magnetron Sputtering.

    PubMed

    Haider, M Baseer

    2017-12-01

    Zinc nitride thin films were grown on fused silica substrates at 300 °C by radio frequency magnetron sputtering. Films were grown at different N2/Ar flow rate ratios of 0.20, 0.40, 0.60, 0.80, and 1.0. All the samples have grain-like surface morphology with an average surface roughness ranging from 4 to 5 nm and an average grain size ranging from 13 to16 nm. Zn3N2 samples grown at lower N2/Ar ratio are polycrystalline with secondary phases of ZnO present, whereas at higher N2/Ar ratio, no ZnO phases were found. Highly aligned films were achieved at N2/Ar ratio of 0.60. Hall effect measurements reveal that films are n-type semiconductors, and the highest carrier concentration and Hall mobility was achieved for the films grown at N2/Ar ratio of 0.60. X-ray photoelectron study was performed to confirm the formation of Zn-N bonds and to study the presence of different species in the film. Depth profile XPS analyses of the films reveal that there is less nitrogen in the bulk of the film compared to the nitrogen on the surface of the film whereas more oxygen is present in the bulk of the films possibly occupying the nitrogen vacancies.

  3. Effects of nitrogen loading on greenhouse gas emissions in salt marshes

    NASA Astrophysics Data System (ADS)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.

    2014-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.

  4. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    NASA Astrophysics Data System (ADS)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  5. Nitrogen Losses as N2O and NO After Non-tillage Agricultural Practice in a Tropical Corn Field at Guarico State, Venezuela.

    NASA Astrophysics Data System (ADS)

    Perez, T. J.; Gil, J. A.; Marquina, S.; Donoso, L. E.; Trumbore, S. E.; Tyler, S. C.

    2005-12-01

    Historically, the most common agricultural practice in Northern Guárico, one of Venezuelan largest cereal production regions, has been mono cropping, with extensive tillage operations that usually causes rapid soil degradation and nitrogen losses. Alternative production systems, such as non-tillage agricultural practices, have been extensively implemented during the last few years. However, studies of the nitrogen losses associated with these alternative practices are not widely available. This study was conducted at "Fundo Tierra Nueva", Guárico State (9°23'33" N, 66° 38'30" W) in a corn field under the non-tillage agricultural practice, during the growing season June-August 2005. The soils are Vertisols (Typic Haplusterts). The area has two well defined precipitation seasons: wet (May-October) and dry (November-April). The mean annual precipitation of the area is 622±97.3 mm (last 5 years). Because the irrigation of the crop depends on precipitation, the planting is scheduled during the months of highest precipitation in June-July. We measured nitrogenous gas emissions (N2O and NO), concentrations of total nitrogen (NT), NH4+ and NO3- in soil (0-100 cm) after fertilization to estimate the nitrogen losses. We also measured CO2 emissions to evaluate the relationship of microbial respiration to the emissions of nitrogenous trace gases. Soils were fertilized with 54 kgN/ha (NPK 12:24:12, nitrogen as NH4Cl) and planted simultaneously by a planting machine provided with a furrow opener where the fertilizer and seeds are incorporated between 0-10 cm depth. Thirty days later, soils were fertilized by broadcast addition of 18 kgN/ha (as ammonium nitrate). Nitrous oxide emissions were highly dependant on the water content. Prior to fertilization N2O emissions were very low. Right after fertilization the emissions increased by a factor of 5 compared to pre-fertilization levels and increased to 100 times larger after the first heavy rain. NO emissions did not increase

  6. Measurement of N2, N2O, NO, and CO2 emissions from soil with the gas-flow-soil-core technique.

    PubMed

    Wang, Rui; Willibald, Georg; Feng, Qi; Zheng, Xunhua; Liao, Tingting; Brüggemann, Nicolas; Butterbach-Bahl, Klaus

    2011-07-15

    Here we describe a newly designed system with three stand-alone working incubation vessels for simultaneous measurements of N(2), N(2)O, NO, and CO(2) emissions from soil. Due to the use of a new micro thermal conductivity detector and the redesign of vessels and gas sampling a so-far unmatched sensitivity (0.23 μg N(2)-N h(-1) kg(-1) ds or 8.1 μg N(2)-N m(-2) h(-1)) for detecting N(2) gas emissions and repeatability of experiments could be achieved. We further tested different incubation methods to improve the quantification of N(2) emission via denitrification following the initialization of soil anaerobiosis. The best results with regard to the establishment of a full N balance (i.e., the changes in mineral N content being offset by simultaneous emission of N gases) were obtained when the anaerobic soil incubation at 25 °C was preceded by soil gas exchange under aerobic conditions at a lower incubation temperature. The ratios of N and C gas emission changed very dynamically following the initialization of anaerobiosis. For soil NO(3)(-) contents of 50 mg N kg(-1) dry soil (ds) and dissolved organic carbon (DOC) concentrations of approximately 300 mg C kg(-1) ds, the cumulative emissions of N(2), N(2)O, and NO were 24.3 ± 0.1, 12.6 ± 0.4, and 10.1 ± 0.3 mg N kg(-1) ds, respectively. Thus, N gas emissions accounted (on average) for 46.2% (N(2)), 24.0% (N(2)O), and 19.2% (NO) of the observed changes in soil NO(3)(-). The maximum N(2) emission reached 1200 μg N h(-1) kg(-1) ds, whereas the peak emissions of N(2)O and NO were lower by a factor of 2-3. The overall N(2):N(2)O and NO:N(2)O molar ratios were 1.6-10.0 and 1.6-2.3, respectively. The measurement system provides a reliable tool for studying denitrification in soil because it offers insights into the dynamics and magnitude of gaseous N emissions due to denitrification under various incubation conditions.

  7. Novel method for online monitoring of dissolved N2O concentrations through a gas stripping device.

    PubMed

    Mampaey, Kris E; van Dongen, Udo G J M; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2015-01-01

    Nitrous oxide emissions from wastewater treatment plants are currently measured by online gas phase analysis or grab sampling from the liquid phase. In this study, a novel method is presented to monitor the liquid phase N2O concentration for aerated as well as non-aerated conditions/reactors, following variations both in time and in space. The monitoring method consists of a gas stripping device, of which the measurement principle is based on a continuous flow of reactor liquid through a stripping flask and subsequent analysis of the N2O concentration in the stripped gas phase. The method was theoretically and experimentally evaluated for its fit for use in the wastewater treatment context. Besides, the influence of design and operating variables on the performance of the gas stripping device was addressed. This method can easily be integrated with online off-gas measurements and allows to better investigate the origin of the gas emissions from the treatment plant. Liquid phase measurements of N2O are of use in mitigation of these emissions. The method can also be applied to measure other dissolved gasses, such as methane, being another important greenhouse gas.

  8. Time-dependent coupled kinetics and gas temperature in N2-NO pulsed discharges

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Welzel, Stefan

    2016-10-01

    A self-consistent time-dependent kinetic model coupled to the gas thermal balance equation is presented for a N2-1%NO millisecond pulsed DC discharge at a pressure of 266 Pa (2 Torr) and a current of 35 mA. The model provides the temporal evolution of the most important heavy species of interest to this work such as N2(X1Σg+, v), NO(X2Π), N2(A3Σu+), N2(a'1Σu-), N(4S) and O(3P), simultaneously with the time-dependent variation of the gas temperature. Predicted results for NO number densities during the pulse are compared to experimental ones measured by time-resolved quantum cascade laser absorption spectroscopy (QCLAS). The agreement between experiment and modelling predictions is very reasonable, mainly until a pulse duration of 2 ms, revealing the temporal evolution of the most important creation and loss mechanisms of NO(X). Simulations show a slow gas heating during the first millisecond. Thereafter, gas heating is accelerated and levels off at a time ~ 40 ms. These effects are explained and discussed in detail, together with the analysis of the fraction of the discharge power transferred to gas heating.

  9. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. I. N2/H2 and NH3/H2 Plasmas.

    PubMed

    Truscott, Benjamin S; Kelly, Mark W; Potter, Katie J; Johnson, Mack; Ashfold, Michael N R; Mankelevich, Yuri A

    2015-12-31

    We report a combined experimental/modeling study of microwave activated dilute N2/H2 and NH3/H2 plasmas as a precursor to diagnosis of the CH4/N2/H2 plasmas used for the chemical vapor deposition (CVD) of N-doped diamond. Absolute column densities of H(n = 2) atoms and NH(X(3)Σ(-), v = 0) radicals have been determined by cavity ring down spectroscopy, as a function of height (z) above a molybdenum substrate and of the plasma process conditions, i.e., total gas pressure p, input power P, and the nitrogen/hydrogen atom ratio in the source gas. Optical emission spectroscopy has been used to investigate variations in the relative number densities of H(n = 3) atoms, NH(A(3)Π) radicals, and N2(C(3)Πu) molecules as functions of the same process conditions. These experimental data are complemented by 2-D (r, z) coupled kinetic and transport modeling for the same process conditions, which consider variations in both the overall chemistry and plasma parameters, including the electron (Te) and gas (T) temperatures, the electron density (ne), and the plasma power density (Q). Comparisons between experiment and theory allow refinement of prior understanding of N/H plasma-chemical reactivity, and its variation with process conditions and with location within the CVD reactor, and serve to highlight the essential role of metastable N2(A(3)Σ(+)u) molecules (formed by electron impact excitation) and their hitherto underappreciated reactivity with H atoms, in converting N2 process gas into reactive NHx (x = 0-3) radical species.

  10. Soil trace gas emissions (CH4 and N2O) offset the CO2 uptake in poplar short rotation coppice

    NASA Astrophysics Data System (ADS)

    Zenone, Terenzio; Zona, Donatella; Gelfand, Iya; Gielen, Bert; camino serrano, Marta; Ceulemans, Reinhart

    2015-04-01

    The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast-growing biomass crops across Europe. Among them poplar (Populus spp) is the most widely planted as short rotation coppice (SRC) and an increase in the surface area of large-scale SRC poplar plantations might thus be expected. In this study we report the greenhouse gas fluxes (GHG) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) measured using the eddy covariance technique in a SRC plantation for bioenergy production during the period 2010-2013. The plantation was established in April 2010 on 18.4 ha of former agricultural land with a density of 8000 plants ha-1; the above-ground biomass was harvested on February 2012 and 2014.The whole GHG balance of the four years of the study was 1.90 (± 1.37) Mg CO2eq ha-1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O almost equally contributed to offset the CO2 uptake of -5.28 (±0.67) Mg CO2eq ha-1 with an overall emission of 3.56 (± 0.35) Mg CO2eq ha-1 of N2O and of 3.53 (± 0.85) Mg CO2eq ha-1 of CH4. N2O emissions mostly occurred during a single peak a few months after the site was converted into SRC and represented 44% of the entire N2O loss during the entire study. Accurately capturing these emission events proved to be critical for correct estimates of the GHG balance. The self-organizing map (SOM) technique graphically showed the relationship between the CO2 fluxes and the principal environmental variables but failed to explain the variability of the soil trace gas emissions. The nitrogen content in the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4 respectively. This study underlines the importance of the "non-CO2 GHG" on the overall balance as well as the impact of the harvest on the CO2 uptake rate. Further long-term investigations of soil trace gas emissions should also monitor the N

  11. Effects of flooding cycles in the Pantanal on the turnover of soil nitrogen pools and emission of N2O

    NASA Astrophysics Data System (ADS)

    Liengaard, L.; Nielsen, L. P.; Revsbech, N. P.; Elberling, B.; Priemé, A.; Prast, A. E.; Kühl, M.

    2011-06-01

    The global nitrous oxide (N2O) budget remains unbalanced. Currently, ~25 % of the global N2O emission is ascribed to uncultivated tropical soils, but the exact locations and controlling mechanisms are not clear. In this study, we present the first detailed study of the dynamics of soil nitrogen pools and flux of N2O from the world's largest wetland Pantanal, South America. At three long-term measurement sites we measured porewater pH, NO3-, NH4+ , N2O and O2 as well as N2O dynamics in soil slurry, and in situ fluxes of N2O and CO2. The pool of inorganic nitrogen changed (7.1-92 μg NH4+-N g dw-1, and 0.1-201 μg NO3--N g dw-1) with the seasonal flooding and drying cycles, indicating dynamic shifts between ammonification, nitrification and denitrification. In the field, O2 penetrated to a depth of 60 cm in dry soil, but O2 was rapidly depleted in response to precipitation. Soil pH fluctuated from pH 7-7.5 in flooded soil to pH 3.5-4.5 in the same drained soil. Microsensor measurements showed rapid N2O accumulation reaching >500-1000 Pa in soil slurries due to incomplete denitrification. In situ fluxes of N2O were comparable to heavily fertilized forest or agricultural soils. The dominating parameter affecting N2O emission rate was precipitation inducing peak emissions of >3 mmol N2O m-2 d-1, while the mean daily flux was 0.43 mmol N2O m-2 d-1. Single measurement based screening of in situ activity at 10 Pantanal sites during dry conditions averaged 0.39 mmol N2O m-2 d-1. The in situ N2O fluxes were only weakly correlated (r2 = 0.177) with NO3- and pH value, showing a tendency (p = 0.063) for NO3- concentration to be positively correlated with the in situ N2O flux and a weaker tendency (p = 0.138) for the pH value to be negatively correlated with the in situ N2O flux. Over 170 days of the drained period we estimated non-wetted drained soil to contribute 70.0 mmol N2O m-2, while rain induced peak events contributed 9.2 mmol N2O m-2, resulting in a total N2O emission

  12. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  13. Effects of Elevated CO2 on Soil Trace Gas (CH4, N2O and NO) Fluxes in a Scrub Oak Ecosystem at Kennedy Space Center, FL, USA

    NASA Astrophysics Data System (ADS)

    Hartley, A. E.; Bracho, R. G.; Stover, D.

    2008-05-01

    Rising atmospheric CO2 concentrations increase the plant demand for soil nutrients, which in turn can impose a nitrogen limitation on unmanaged ecosystems. The microbial responses to CO2 enrichment are complex and difficult to predict. Some studies suggest that CO2 enrichment increases microbial mineralization of nitrogen, making nitrogen more available through a carbon priming effect. Alternatively, microbes may contribute to nitrogen limitation through accelerated soil nitrogen losses. In this study, we examined the effects of CO2 enrichment on trace gases that are released or taken up during soil microbial reactions: nitrification, denitrification and methane consumption. Ambient and approximately twice-ambient CO2 treatments were applied to a coastal scrub oak community at Kennedy Space Center, FL, via open-top chambers since May 1996. The CO2 treatments ended in July 2007 before an aboveground harvest took place inside the chambers. Nitrous oxide (N2O), nitric oxide (NO) and methane (CH4) fluxes were measured in the field from 2006-2008. Soil N2O losses from the study site were low (< 1 ng N2O-N cm-2 h-1) with no CO2 treatment effect. Soil NO losses were similarly low (< 1 ng N2O-N cm-2 h-1), but fluxes were consistently lower in elevated CO2 than in ambient CO2. NO production was higher for 3 months post-harvest in ambient CO2. Methane consumption was lower in elevated vs. ambient CO2 in 2006, although this trend was not significant. Over a decade of CO2 enrichment has reduced soil nitrogen availability, which could explain the low overall rates of nitrogen trace gas emission. Reduced soil carbon stores in elevated CO2 measured at this site could also explain the lower nitrification rates, measured as NO efflux. Trace gas emissions in this sandy, nutrient-poor scrub oak forest are comparable to published rates in desert ecosystems.

  14. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    PubMed

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N2O) and methane (CH4) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH4 and N2O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N2O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N2O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N2O or CH4 in biofilter effluent appears relatively low.

  15. A 15N-aided artificial atmosphere gas flow technique for online determination of soil N2 release using the zeolite Köstrolith SX6.

    PubMed

    Spott, Oliver; Russow, Rolf; Apelt, Bernd; Stange, C Florian

    2006-01-01

    N2 is one of the major gaseous nitrogen compounds released by soils due to N-transformation processes. Since it is also the major constituent of the earth's atmosphere (78.08% vol.), the determination of soil N2 release is still one of the main methodological challenges with respect to a complete evaluation of the gaseous N-loss of soils. Commonly used approaches are based either on a C2H2 inhibition technique, an artificial atmosphere or a 15N-tracer technique, and are designed either as closed systems (non-steady state) or gas flow systems (steady state). The intention of this work has been to upgrade the current gas flow technique using an artificial atmosphere for a 15N-aided determination of the soil N2 release simultaneously with N2O. A 15N-aided artificial atmosphere gas flow approach has been developed, which allows a simultaneous online determination of N2 as well as N2O fluxes from an open soil system (steady state). Fluxes of both gases can be determined continuously over long incubation periods and with high sampling frequency. The N2 selective molecular sieve Köstrolith SX6 was tested successfully for the first time for dinitrogen collection. The presented paper mainly focuses on N2 flux determination. For validation purposes soil aggregates of a Haplic Phaeozem were incubated under aerobic (21 and 6 vol.% O2) and anaerobic conditions. Significant amounts of N2 were released only during anaerobic incubation (0.4 and 640.2 pmol N2 h(-1) g(-1) dry soil). However, some N2 formation also occurred during aerobic incubation. It was also found that, during ongoing denitrification, introduced [NO3]- will be more strongly delivered to microorganisms than the original soil [NO3]-.

  16. Field and laboratory studies of the nitrogen and oxygen isotopic composition of N2O: Corona discharge production, biomass burning, and ocean and "Arctic hot spot" emissions

    NASA Astrophysics Data System (ADS)

    Boering, K. A.

    2016-12-01

    While inverse modeling studies of atmospheric nitrous oxide (N2O) concentrations have narrowed uncertainties in the magnitudes, geographic distribution, and timing of N2O fluxes to the atmosphere that are needed to understand and to mitigate the rising concentration of this greenhouse gas and ozone depleting substance in the atmosphere, significant uncertainties remain, including accounting for the return of N2O-depleted air from the stratosphere. Measurements of the average and site-specific nitrogen and the oxygen isotopic compositions of N2O can provide an additional means to attribute observed N2O variations to its various sources or stratospheric sink [e.g., Park et al., 2012]. In this presentation, we will highlight recent laboratory work determining the isotopic composition of N2O produced in a corona discharge (the process that produces N2O in thunderstorms), showing it has an isotopic fingerprint that is distinct from that for soil and ocean emissions, for biomass burning, and for the return of air from the stratosphere. Although N2O produced by lightning is only a small fraction of the global annual source of N2O to the atmosphere, the large and unique isotopic signature of corona discharge N2O now characterized completes the array needed to identify the origin, for example, of the unexplained N2O enhancements measured in the tropical and subtropical upper troposphere during the 2009 HIPPO mission [Wofsy 2011]. Such N2O enhancements may also be consistent with inverse modeling studies [e.g., Hirsch et al., 2006; Huang et al., 2008] suggesting tropical N2O source(s) must be larger than expected from bottom-up inventories, so identifying the source of these enhancements is critical. Isotope compositions of N2O in a biomass burning plume in the tropical upper troposphere, from a Southern Ocean ship cruise, and from an Arctic peat circle `hot spot' will also be briefly compared and contrasted with the corona discharge results. Hirsch, A.I., et al., Glob

  17. Nitrogen deposition and greenhouse gas emissions from grasslands: uncertainties and future directions

    USDA-ARS?s Scientific Manuscript database

    Increases in atmospheric nitrogen deposition (Ndep) can strongly affect the greenhouse gas (GHG; CO2, CH4 and N2O) sink capacity of terrestrial ecosystems. Grasslands play an important role in determining the concentration of GHGs in the atmosphere. Robust predictions of the net GHG sink strength of...

  18. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOEpatents

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  19. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions.

    PubMed

    Case, Sean D C; Gómez-Muñoz, Beatriz; Magid, Jakob; Jensen, Lars Stoumann

    2016-07-01

    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be of importance for the value of the biosolids when used to fertilise crops. We sourced AD biosolids from a Danish waste water treatment plant (WWTP) and dried it in the laboratory at 70, 130, 190 or 250 °C to >95 % dry matter content. Also, we sourced biosolids from the WWTP dried using its in-house thermal drying process (input temperature 95 °C, thermal fluid circuit temperature 200 °C, 95 % dry matter content). The drying process reduced the ammonium content of the biosolids and reduced it further at higher drying temperatures. These findings were attributed to ammonia volatilisation. The percentage of mineralisable organic N fraction (min-N) in the biosolids, and nitrous oxide (N2O) and carbon dioxide (CO2) production were analysed 120 days after addition to soil. When incubated at soil field capacity (pF 2), none of the dried biosolids had a greater min-N than the AD biosolids (46.4 %). Min-N was lowest in biosolids dried at higher temperatures (e.g. 19.3 % at 250 °C vs 35.4 % at 70 °C). Considering only the dried biosolids, min-N was greater in WWTP-dried biosolids (50.5 %) than all of the laboratory-dried biosolids with the exception of the 70 °C-dried biosolids. Biosolid carbon mineralisation (CO2 release) and N2O production was also the lowest in treatments of the highest drying temperature, suggesting that this material was more recalcitrant. Overall, thermal drying temperature had a significant influence on N availability from the AD biosolids, but drying did not improve the N availability of these biosolids in any case.

  20. Endohedral nitrogen storage in carbon fullerene structures: physisorption to chemisorption transition with increasing gas pressure.

    PubMed

    Barajas-Barraza, R E; Guirado-López, R A

    2009-06-21

    We present extensive pseudopotential density functional theory (DFT) calculations in order to analyze the structural properties and chemical reactivity of nitrogen molecules confined in spheroidal (C(82)) and tubelike (C(110)) carbon fullerene structures. For a small number of encapsulated nitrogens, the N(2) species exist in a nonbonded state within the cavities and form well defined molecular conformations such as linear chains, zigzag arrays, as well as both spheroidal and tubular configurations. However, with increasing the number of stored molecules, the interaction among the confined nitrogens as well as between the N(2) species and the fullerene wall is not always mainly repulsive. Actually, at high densities of the encapsulated gas, we found both adsorption of N(2) to the inner carbon surface together with the formation of (N(2))(m) molecular clusters. Total energy DFT calculations reveal that the shape of the interaction potential of a test molecule moving within the carbon cavities strongly varies with the number and proximity of the coadsorbed N(2) from being purely repulsive to having short-range attractive contributions close to the inner wall. In particular, the latter are always found when a group of closely spaced nitrogens is located near the carbon cage (a fact that will naturally occur at high densities of the encapsulated gas), inducing the formation of covalent bonds between the N(2) and the fullerene network. Interestingly, in some cases, the previous nitrogen adsorption to the inner surface is reversible by reducing the gas pressure. The calculated average density of states of our considered carbon compounds reveals the appearance of well defined features that clearly reflect the occurring structural changes and modifications in the adsorption properties in the systems. Our results clearly underline the crucial role played by confinement effects on the reactivity of our endohedral compounds, define this kind of materials as nonideal

  1. Processing of N2O ice by fast ions: implications on nitrogen chemistry in cold astrophysical environments

    NASA Astrophysics Data System (ADS)

    Almeida, G. C.; Pilling, S.; de Barros, A. L. F.; da Costa, C. A. P.; Pereira, R. C.; da Silveira, E. F.

    2017-10-01

    Nitrous oxide, N2O, is found in the interstellar medium associated with dense molecular clouds and its abundance is explained by active chemistry occurring on N2 rich ice surfaces of dust grains. Such regions are being constantly exposed to ionizing radiation that triggers chemical processes which change molecular abundances with time. Due to its non-zero dipole moment, N2O can be used as an important tracer for the abundance of N2 in such regions as well as for characterization of nitrogen content of ices in outer bodies of Solar system. In this work, we experimentally investigate the resistance of frozen N2O molecules against radiation in attempt to estimate their half-life in astrophysical environments. All the radiolysis products, such as NO2 and NO, were identified by Fourier transform infrared spectroscopy. The infrared absorbance as a function of fluence is modified by ice compaction and by radiolysis, the compaction being dominant at the beginning of the ice processing. The N2O destruction cross-section as well the formation cross-sections of the products NxOy (x = 1-2 and y = 1-5) oxides and ozone (O3) by 1.5 MeV 14N+ ion beam are determined. The characterization of radiation resistance of N2O in cold astrophysical environments is relevant since it yields limits for the nitrogen abundance where the N2O molecule is used to indirectly derive its concentration. The half-life of solid N2O molecules dissociated by medium-mass cosmic rays at Pluto's orbit and at the interstellar medium is estimated.

  2. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  3. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  4. Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: I. Gas temperature and vibrational distribution function of N2 and O2

    NASA Astrophysics Data System (ADS)

    Lo, A.; Cessou, A.; Boubert, P.; Vervisch, P.

    2014-03-01

    Reliable experimental data on nanosecond discharge plasmas in air become more and more crucial considering their interest in a wide field of applications. However, the investigations on such nonequilibrium plasmas are made difficult by the spatial non-homogeneities, in particular under atmospheric pressure, the wide range of time scales, and the complexity of multi-physics processes involved therein. In this study, we report spatiotemporal experimental analysis on the gas temperature and the vibrational excitation of N2 and O2 in their ground electronic state during the post-discharge of an overvoltage nanosecond-pulsed discharge generated in a pin-to-plane gap of air at atmospheric pressure. The gas temperature during the pulsed discharge is measured by optical emission spectroscopy related to the rotational bands of the 0-0 vibrational transition N2(C 3 Πu, v = 0) → N2(B3 Πg, v = 0) of nitrogen. The results show a rapid gas heating up to 700 K in tens of nanoseconds after the current rise. This fast gas heating leads to a high gas temperature up to 1000 K measured at 150 ns in the first stages of the post-discharge using spontaneous Raman scattering (SRS). The spatiotemporal measurements of the gas temperature and the vibrational distribution function of N2 and O2, also obtained by SRS, over the post-discharge show the spatial expansion of the high vibrational excitation of N2, and the gas heating during the post-discharge. The present measurements, focused on thermal and energetic aspect of the discharge, provide a base for spatiotemporal analysis of gas number densities of N2, O2 and O atoms and hydrodynamic effects achieved during the post-discharge in part II of this investigation. All these results provide space and time database for the validation of plasma chemical models for nanosecond-pulsed discharges at atmospheric pressure air.

  5. 21 CFR 868.1690 - Nitrogen gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gas chromatography or mass spectrometry. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen gas analyzer. 868.1690 Section 868.1690...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1690 Nitrogen gas analyzer....

  6. Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure

    NASA Astrophysics Data System (ADS)

    Abdallah, B.; Naddaf, M.; A-Kharroub, M.

    2013-03-01

    Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).

  7. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China.

    PubMed

    Wang, Yongsheng; Cheng, Shulan; Fang, Huajun; Yu, Guirui; Xu, Minjie; Dang, Xusheng; Li, Linsen; Wang, Lei

    2014-01-01

    To date, few studies are conducted to quantify the effects of reduced ammonium (NH4+) and oxidized nitrate (NO3-) on soil CH4 uptake and N2O emission in the subtropical forests. In this study, NH4Cl and NaNO3 fertilizers were applied at three rates: 0, 40 and 120 kg N ha(-1) yr(-1). Soil CH4 and N2O fluxes were determined twice a week using the static chamber technique and gas chromatography. Soil temperature and moisture were simultaneously measured. Soil dissolved N concentration in 0-20 cm depth was measured weekly to examine the regulation to soil CH4 and N2O fluxes. Our results showed that one year of N addition did not affect soil temperature, soil moisture, soil total dissolved N (TDN) and NH4+-N concentrations, but high levels of applied NH4Cl and NaNO3 fertilizers significantly increased soil NO3(-)-N concentration by 124% and 157%, respectively. Nitrogen addition tended to inhibit soil CH4 uptake, but significantly promoted soil N2O emission by 403% to 762%. Furthermore, NH4+-N fertilizer application had a stronger inhibition to soil CH4 uptake and a stronger promotion to soil N2O emission than NO3(-)-N application. Also, both soil CH4 and N2O fluxes were driven by soil temperature and moisture, but soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the subtropical plantation soil sensitively responses to atmospheric N deposition, and inorganic N rather than organic N is the regulator to soil CH4 uptake and N2O emission.

  8. Simulated Nitrogen Deposition Reduces CH4 Uptake and Increases N2O Emission from a Subtropical Plantation Forest Soil in Southern China

    PubMed Central

    Wang, Yongsheng; Cheng, Shulan; Fang, Huajun; Yu, Guirui; Xu, Minjie; Dang, Xusheng; Li, Linsen; Wang, Lei

    2014-01-01

    To date, few studies are conducted to quantify the effects of reduced ammonium (NH4+) and oxidized nitrate (NO3−) on soil CH4 uptake and N2O emission in the subtropical forests. In this study, NH4Cl and NaNO3 fertilizers were applied at three rates: 0, 40 and 120 kg N ha−1 yr−1. Soil CH4 and N2O fluxes were determined twice a week using the static chamber technique and gas chromatography. Soil temperature and moisture were simultaneously measured. Soil dissolved N concentration in 0–20 cm depth was measured weekly to examine the regulation to soil CH4 and N2O fluxes. Our results showed that one year of N addition did not affect soil temperature, soil moisture, soil total dissolved N (TDN) and NH4+-N concentrations, but high levels of applied NH4Cl and NaNO3 fertilizers significantly increased soil NO3−-N concentration by 124% and 157%, respectively. Nitrogen addition tended to inhibit soil CH4 uptake, but significantly promoted soil N2O emission by 403% to 762%. Furthermore, NH4+-N fertilizer application had a stronger inhibition to soil CH4 uptake and a stronger promotion to soil N2O emission than NO3−-N application. Also, both soil CH4 and N2O fluxes were driven by soil temperature and moisture, but soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the subtropical plantation soil sensitively responses to atmospheric N deposition, and inorganic N rather than organic N is the regulator to soil CH4 uptake and N2O emission. PMID:24714387

  9. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    NASA Technical Reports Server (NTRS)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  10. Induction of indirect N2O and NO emissions by atmospheric nitrogen deposition in (semi-)natural ecosystems in Switzerland

    NASA Astrophysics Data System (ADS)

    Bühlmann, Tobias; Hiltbrunner, Erika; Körner, Christian; Rihm, Beat; Achermann, Beat

    2015-02-01

    During the past century atmospheric nitrogen deposition increased dramatically due to human activities worldwide. Currently, it exceeds the critical load for nitrogen (CLN) in over 90% of the Swiss forest area and raised bogs, in 80% of all fens and in 30% of species-rich grassland areas in Switzerland. Indirect gaseous nitrogen losses (HNO2, NO, N2O, N2) from these soils induced by atmospheric nitrogen deposition are likely to be substantial. However, the approaches to estimate these indirect N emissions provided by the international organisations (UNFCCC, IPCC; UNECE, EMEP/EEA) are based on agricultural data only. They may not be suitable to estimate the indirect emissions from (semi-)natural ecosystems such as forests, extensively used grassland, and wetlands. The present study aims at calculating ecosystem-specific annual indirect N2O and NO emissions of (semi-)natural ecosystems in Switzerland for the years 1990, 2000, 2007 and 2010 using a simple linear model similar to the international guidelines. The approach here is based on empirical data for (semi-)natural ecosystems, derived from a literature survey, is driven by atmospheric nitrogen deposition and is ecosystem-specific with a high spatial resolution of 100 m × 100 m. Our results show that such ecosystems represent a strong source of indirect N emissions induced by atmospheric nitrogen deposition and emitted 1.61 ± 0.32 Gg N2O-N and 2.51 ± 0.53 Gg NO-N into the atmosphere in Switzerland in the year 2010, corresponding to 21% of the total Swiss N2O emissions and 10% of the NOx emissions. Thanks to the reduction of N emissions and thereby reduced atmospheric N deposition, the indirect N2O and NO emissions from (semi-)natural ecosystems are estimated to have been both reduced by c. 20% from 1990 to 2010. We conclude that the source strength for N2O and NO emissions of (semi-)natural ecosystems have been underestimated by the current approaches of IPCC and EMEP/EEA by a factor of 4.4 and 17

  11. N2 Gas Plasma Inactivates Influenza Virus by Inducing Changes in Viral Surface Morphology, Protein, and Genomic RNA

    PubMed Central

    Shimizu, Naohiro; Imanishi, Yuichiro

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma. PMID:24195077

  12. N 2 gas plasma inactivates influenza virus by inducing changes in viral surface morphology, protein, and genomic RNA.

    PubMed

    Sakudo, Akikazu; Shimizu, Naohiro; Imanishi, Yuichiro; Ikuta, Kazuyoshi

    2013-01-01

    We have recently treated with N2 gas plasma and achieved inactivation of bacteria. However, the effect of N2 gas plasma on viruses remains unclear. With the aim of developing this technique, we analyzed the virucidal effect of N2 gas plasma on influenza virus and its influence on the viral components. We treated influenza virus particles with inert N2 gas plasma (1.5 kpps; kilo pulses per second) produced by a short high-voltage pulse generated from a static induction thyristor power supply. A bioassay using chicken embryonated eggs demonstrated that N2 gas plasma inactivated influenza virus in allantoic fluid within 5 min. Immunochromatography, enzyme-linked immunosorbent assay, and Coomassie brilliant blue staining showed that N2 gas plasma treatment of influenza A and B viruses in nasal aspirates and allantoic fluids as well as purified influenza A and B viruses induced degradation of viral proteins including nucleoprotein. Analysis using the polymerase chain reaction suggested that N2 gas plasma treatment induced changes in the viral RNA genome. Scanning electron microscopy analysis showed that aggregation and fusion of influenza viruses were induced by N2 gas plasma treatment. We believe these biochemical changes may contribute to the inactivation of influenza viruses by N2 gas plasma.

  13. The influence of metastable molecular nitrogen N2(A3Σu+) on the electronic kinetics of CO molecules

    NASA Astrophysics Data System (ADS)

    Kirillov, A. S.; Werner, R.; Guineva, V.

    2017-10-01

    The simulation of N2(A3Σu+) and CO(a3Π) vibrational populations at the altitudes of Titan's upper atmosphere and for conditions of a laboratory discharge in the N2-CO mixture is made. The influence of metastable molecular nitrogen N2(A3Σu+) on the electronic excitation of CO molecules in inelastic collisions is studied. It is shown that the increase in the density of the Titan's atmosphere and of the discharge mixture leads to more significant excitation of lowest vibrational levels of CO(a3Π) by intermolecular electron energy transfers from N2(A3Σu+) in comparison with direct excitation of the a3Π state by free electrons.

  14. Nitrogen removal from natural gas using two types of membranes

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  15. [Raman spectroscopic studies on CO2-CH4-N2 mixed-gas hydrate system].

    PubMed

    Zhang, Bao-yong; Liu, Chuan-hai; Wu, Qiang; Gao, Xia

    2014-06-01

    Accurate determination of coal mine gas separation product characteristics is the key for gas separation application based on hydrate technology. Gas hydrate was synthesized from two types of gas compositions (CO2-CH4-N2). The separation products were measured by in situ Raman spectroscopy. The crystal structure of mixed-gas hydrate was determined, and the cavity occupancy and hydration index were calculated, based on the object molecular various vibrational mode, "loose cage-tight cage" model and the Raman bands area ratio, combined with the model of van der Waals-Platteeuw. The results show that the mixed-gas hydrates are both structure I for the two gas samples; Large cages of mixed-gas hydrate are nearly occupied by guest molecules, and the large cavity occupancies are 98.57% and 98.52%, respectively; but small cages are not easy to be occupied, and the small cavity occupancies are 29.93% and 33.87%, respectively; hydration index of the two gas samples hydrate is 7.14 and 6.98, respectively, which is greater than the theoretical value of structure I.

  16. N2O analysis in the atmosphere via electron capture-gas chromatography

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Krasnec, J.; Pierotti, D.

    1976-01-01

    The potential of commercially available pulse-modulated electron capture detector (ECD)-equipped gas chromatographs for direct measurement of ambient levels of N2O is assessed. Since the sensitivity of ECD to N2O is directly proportional to the detector operating temperature and detector standing current, it is necessary to use a 'hot' ECD (250-350 C). The method is shown to be very precise with a standard error not exceeding 1% for automated analysis of ambient air samples. The technology is available to permit highly accurate routine direct analysis of N2O in the troposphere and stratosphere. Both captured air samples or direct real-time measurement from research vessels or airborne platforms are possible.

  17. Characterization of nanocrystalline nitrogen-containing titanium oxide obtained by N2/O2/Ar low-field helicon plasma sputtering

    NASA Astrophysics Data System (ADS)

    Sarra-Bournet, C.; Haberl, B.; Charles, C.; Boswell, R.

    2011-11-01

    TiO2 and nitrogen-containing TiO2 thin films were deposited on glass and silicon wafer substrates using a helicon-assisted reactive plasma sputtering process in a gas mixture of Ar/O2/N2. The growth mechanism, chemical composition and crystalline structure were probed by x-ray photoelectron spectroscopy, x-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy. The presence of nitrogen in the film induces the formation of some Ti3+ defects states, which introduces oxygen vacancies in the TiOxNy structure. It is also observed that nitrogen substitution selectively hinders the formation of the crystalline rutile phase and promotes the growth of a polycrystalline anatase phase film. Moreover, the film exhibits a red-shift in light absorption from UV to visible spectrum as a function of the nitrogen doping. This work shows that crystalline TiO2 thin films can be obtained with a low temperature process and also shows that using nitrogen can control the desired crystalline structure.

  18. Low contribution of N2 fixation to new production and excess nitrogen in the subtropical northeast Atlantic margin

    NASA Astrophysics Data System (ADS)

    Benavides, Mar; Arístegui, Javier; Agawin, Nona S. R.; Álvarez-Salgado, Xosé Antón; Álvarez, Marta; Troupin, Charles

    2013-11-01

    We used 15N-labeled substrates to measure dinitrogen (N2) fixation, nitrate (NO3-) and ammonium () uptake, regeneration and associated dissolved organic nitrogen (DON) release in a coastal upwelling system (Cape Ghir, ˜31°N) and an open ocean grid (bounded between 25°-42°N and 20°W) in the Canary Current region during the summer of 2009. New production (Pnew=NO3-uptake+N2 fixation+DON released from NO3uptake-NO3- regeneration) was higher in the upwelling than in the open ocean zone (0.126 and 0.014 µmol N L-1 h-1, respectively), while regenerated production (Preg=NH4+ uptake+DON released from NH4+uptake+NH4+ regeneration) was similar in both zones (0.157 and 0.133 µmol N L-1 h-1, respectively). The resulting f-ratio (Pnew/Pnew+Preg) for the open ocean and upwelling zones was 0.08 and 0.48, respectively. The availability of nitrogen in excess of that expected from Redfield stoichiometry is generally attributed to N2 fixation. A previous study indicated that our open ocean grid zone had an excess nitrogen production rate of 40±22×1010 mol N yr-1. We revisited this budget including new dissolved organic matter and NO3-fluxes through the Strait of Gibraltar and estimated a revised nitrogen excess rate of 22±19×1010 mol N yr-1. The average volumetric rate of N2 fixation for this zone was only 1.3×10-3 nmol N L-1 d-1, indicating that its influence in Pnew and nitrogen excess production in this part of the Atlantic is negligible.

  19. Oxygen-poor microzones as potential sites of microbial n(2) fixation in nitrogen-depleted aerobic marine waters.

    PubMed

    Paerl, H W; Prufert, L E

    1987-05-01

    The nitrogen-deficient coastal waters of North Carolina contain suspended bacteria potentially able to fix N(2). Bioassays aimed at identifying environmental factors controlling the development and proliferation of N(2) fixation showed that dissolved organic carbon (as simple sugars and sugar alcohols) and particulate organic carbon (derived from Spartina alterniflora) additions elicited and enhanced N(2) fixation (nitrogenase activity) in these waters. Nitrogenase activity occurred in samples containing flocculent, mucilage-covered bacterial aggregates. Cyanobacterium-bacterium aggregates also revealed N(2) fixation. In all cases bacterial N(2) fixation occurred in association with surficial microenvironments or microzones. Since nitrogenase is oxygen labile, we hypothesized that the aggregates themselves protected their constituent microbes from O(2). Microelectrode O(2) profiles revealed that aggregates had lower internal O(2) tensions than surrounding waters. Tetrazolium salt (2,3,5-triphenyl-3-tetrazolium chloride) reduction revealed that patchy zones existed both within microbes and extracellularly in the mucilage surrounding microbes where free O(2) was excluded. Triphenyltetrazolium chloride reduction also strongly inhibited nitrogenase activity. These findings suggest that N(2) fixation is mediated by the availability of the appropriate types of reduced microzones. Organic carbon enrichment appears to serve as an energy and structural source for aggregate formation, both of which were required for eliciting N(2) fixation responses of these waters.

  20. Oxygen-Poor Microzones as Potential Sites of Microbial N2 Fixation in Nitrogen-Depleted Aerobic Marine Waters

    PubMed Central

    Paerl, Hans W.; Prufert, Leslie E.

    1987-01-01

    The nitrogen-deficient coastal waters of North Carolina contain suspended bacteria potentially able to fix N2. Bioassays aimed at identifying environmental factors controlling the development and proliferation of N2 fixation showed that dissolved organic carbon (as simple sugars and sugar alcohols) and particulate organic carbon (derived from Spartina alterniflora) additions elicited and enhanced N2 fixation (nitrogenase activity) in these waters. Nitrogenase activity occurred in samples containing flocculent, mucilage-covered bacterial aggregates. Cyanobacterium-bacterium aggregates also revealed N2 fixation. In all cases bacterial N2 fixation occurred in association with surficial microenvironments or microzones. Since nitrogenase is oxygen labile, we hypothesized that the aggregates themselves protected their constituent microbes from O2. Microelectrode O2 profiles revealed that aggregates had lower internal O2 tensions than surrounding waters. Tetrazolium salt (2,3,5-triphenyl-3-tetrazolium chloride) reduction revealed that patchy zones existed both within microbes and extracellularly in the mucilage surrounding microbes where free O2 was excluded. Triphenyltetrazolium chloride reduction also strongly inhibited nitrogenase activity. These findings suggest that N2 fixation is mediated by the availability of the appropriate types of reduced microzones. Organic carbon enrichment appears to serve as an energy and structural source for aggregate formation, both of which were required for eliciting N2 fixation responses of these waters. Images PMID:16347337

  1. Microbial Ecological Niche Partitioning Affects N2 gas Production in the Largest Marine Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Fuchsman, C. A.; Penn, J. L.; Devol, A.; Palevsky, H. I.; Deutsch, C. A.; Keil, R.; Ward, B. B.; Rocap, G.

    2016-02-01

    Up to half of oceanic N2 production occurs in oxygen minimum zones (OMZs). In the Eastern Tropical North Pacific OMZ in April 2012, we measured a nine station coast to open ocean transect of N2 gas in the heart of the ETNP OMZ. Depth profiles of excess N2 gas had dual maxima located at the top of the OMZ and at 300m. An ecosystem biogeochemical model of the ETNP was also found to produce dual maxima at stations with a shallow OMZ. The model indicated that high N2 production rates caused the upper N2 maxima while long water residence time caused the deeper maxima. At a low productivity open ocean station where dual N2 maxima were observed, we obtained a depth profile of metagenomic sequences from both free living and >30 μm fractions to determine which N2 producing microbes were living in these three ecological niches. We use a phylogenetically-aware approach to identify metagenomic sequences by placing them on reference trees, which allows us to utilize them in a semi-quantitative manner. Overall, genes for denitrification (napA, nirS, nirK, qnor, nosZ) were enriched on particles while anammox was free-living. However, separation of genes into phylotypes indicated that the system is more complicated. For example, 4 out of 5 N2O reductase denitrifier phylotypes were actually free-living, while the fifth, most abundant phylotype was particle-attached. In the water column, denitrifier and anammox genes were spatially separated with depth with denitrifiers focused on the top section of the OMZ and with anammox becoming abundant slightly deeper and being more dominant at the deep N2 maxima. Interestingly, different phylotypes of denitrifiers have different depth profiles, implying individual adaptations and niches. The presence of measurable ammonia (>200 nM) at the top 20m of the OMZ along with the very low numbers of anammox bacteria is consistent with recent shoaling of the OMZ at the time of sampling. Thus the spatial separation of denitrifiers and anammox at the

  2. Partial discharge and breakdown mechanisms in ultra-dilute SF6 and PFC gases mixed with N2 gas

    NASA Astrophysics Data System (ADS)

    Okubo, H.; Yamada, T.; Hatta, K.; Hayakawa, N.; Yuasa, S.; Okabe, S.

    2002-11-01

    Because of the high global warming potential of SF6 gas, research on alternative gases for electrical insulation with a lower environmental impact is essential. Gas mixtures composed of electronegative gases and N2 gas have the advantage of the reduction of the amount of SF6 gas and of utilizing the synergistic effect in electrical insulation performance. We investigated the partial discharge (PD) and breakdown (BD) characteristics of SF6/N2 and PFC (C3F8/N2 and C2F6/N2) gas mixtures under non-uniform electric field conditions, by changing the dilute content of electronegative gases. As a result, the synergistic effect in SF6/N2 gas mixtures was verified to be higher than that in PFC/N2 gas mixtures. The physical mechanism from PD inception to BD was discussed with consideration of the difference in electronegativity of SF6 and PFC gases. Furthermore, we found that PD inception and PD-to-BD mechanisms changed at a content of 10 ppm for SF6 due to the electron attachment activity of SF6 gas. The change in the PD and BD mechanisms in C3F8/N2 and C2F6/N2 gas mixtures appeared at 0.1% content for C3F8 and at 1% content for C2F6.

  3. Single-pulse broad-band rotational CARS thermometry of cold N2 gas

    NASA Technical Reports Server (NTRS)

    Chang, R. K.; Murphy, D. V.

    1981-01-01

    Coherent anti Stokes Raman scattering (CARS) from the pure rotational Raman lines of N2 was employed to measure the instantaneous (10 nsec) rotational temperature of the gas at room temperature and below. An entire rotational CARS spectrum was generated by a single laser pulse using a broad bandwidth dye laser and was recorded on an optical multichannel analyzer. A best fit temperature obtained for individual experimental spectra by comparison with calculated spectra. Good agreement between CARS temperatures and thermocouple temperatures was observed.

  4. Reduction of the Powerful Greenhouse Gas N2O in the South-Eastern Indian Ocean.

    PubMed

    Raes, Eric J; Bodrossy, Levente; Van de Kamp, Jodie; Holmes, Bronwyn; Hardman-Mountford, Nick; Thompson, Peter A; McInnes, Allison S; Waite, Anya M

    2016-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a key catalyst of stratospheric ozone depletion. Yet, little data exist about the sink and source terms of the production and reduction of N2O outside the well-known oxygen minimum zones (OMZ). Here we show the presence of functional marker genes for the reduction of N2O in the last step of the denitrification process (nitrous oxide reductase genes; nosZ) in oxygenated surface waters (180-250 O2 μmol.kg(-1)) in the south-eastern Indian Ocean. Overall copy numbers indicated that nosZ genes represented a significant proportion of the microbial community, which is unexpected in these oxygenated waters. Our data show strong temperature sensitivity for nosZ genes and reaction rates along a vast latitudinal gradient (32°S-12°S). These data suggest a large N2O sink in the warmer Tropical waters of the south-eastern Indian Ocean. Clone sequencing from PCR products revealed that most denitrification genes belonged to Rhodobacteraceae. Our work highlights the need to investigate the feedback and tight linkages between nitrification and denitrification (both sources of N2O, but the latter also a source of bioavailable N losses) in the understudied yet strategic Indian Ocean and other oligotrophic systems.

  5. Reduction of the Powerful Greenhouse Gas N2O in the South-Eastern Indian Ocean

    PubMed Central

    Raes, Eric J.; Bodrossy, Levente; Van de Kamp, Jodie; Holmes, Bronwyn; Hardman-Mountford, Nick; Thompson, Peter A.; McInnes, Allison S.; Waite, Anya M.

    2016-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a key catalyst of stratospheric ozone depletion. Yet, little data exist about the sink and source terms of the production and reduction of N2O outside the well-known oxygen minimum zones (OMZ). Here we show the presence of functional marker genes for the reduction of N2O in the last step of the denitrification process (nitrous oxide reductase genes; nosZ) in oxygenated surface waters (180–250 O2 μmol.kg-1) in the south-eastern Indian Ocean. Overall copy numbers indicated that nosZ genes represented a significant proportion of the microbial community, which is unexpected in these oxygenated waters. Our data show strong temperature sensitivity for nosZ genes and reaction rates along a vast latitudinal gradient (32°S-12°S). These data suggest a large N2O sink in the warmer Tropical waters of the south-eastern Indian Ocean. Clone sequencing from PCR products revealed that most denitrification genes belonged to Rhodobacteraceae. Our work highlights the need to investigate the feedback and tight linkages between nitrification and denitrification (both sources of N2O, but the latter also a source of bioavailable N losses) in the understudied yet strategic Indian Ocean and other oligotrophic systems. PMID:26800249

  6. Nitrogen cycling and N2O production in the water column of the ferruginous meromictic Lake La Cruz (Spain)

    NASA Astrophysics Data System (ADS)

    Tischer, Jana; Zopfi, Jakob; Frame, Caitlin H.; Jegge, Corinne; Kirsten, Oswald; Andreas, Brand; Miracle, Maria R.; Vicente, Eduardo; Lehmann, Moritz F.

    2016-04-01

    Ferruginous meromictic lakes are rare systems, considered potential modern analogues for an ancient Archean ferruginous Ocean. They may therefore represent valuable model ecosystems to study biogeochemical processes of early Earth history, in particular, the interaction between the iron (Fe) and other element cycles such as the complex nitrogen (N) cycle. In context of its exceptional water chemistry, we studied the N-cycling in the meromictic, ferruginous Lake La Cruz in the Central Iberian Ranges in Spain, combining i) general water column chemistry and detailed N speciation ii) stable isotope composition and intramolecular 15N distributions (site preference) of dissolved N2O and iii) 15N-isotope label incubation experiments, to identify and quantify biotic and abiotic N2O and N2 production pathways. Nitrification was identified as the main N2O production mechanism in the oxic zone, based on the N2O concentration profile and the isomeric composition of N2O (site preference = 24.7) at the depth of maximum concentration relative to the surface water. A second N2O peak of 23 nmol/L was observed within the chemocline, and relatively low values for the δ15N-N2O (-1.1) and a site preference of 16.1‰ with respect to the oxic water column suggest that here incomplete (nitrifier) denitrification is the dominant N2O production pathway. However, based on the bulk dual N-versus-O isotope signature, other production mechanisms cannot be excluded at this point. Within the anoxic water column, N2O is consumed quantitiatively to N2, consistent with 15N-NO3- incubation experiments, showing denitrification (and anammox) activity below the redox transition zone. The overlap of Fe and N-species (N2O, NO2-) in the water column is small, therefore abiotic N2O production is most likely negligible. The planned analysis of the NO3- and NH4+ isotopic signatures will provide further insight into the origin of N2O. Additionally, molecular biological analyses will provide information on

  7. Cryogenic nitrogen as a transonic wind-tunnel test gas

    NASA Technical Reports Server (NTRS)

    Adcock, J. B.; Kilgore, R. A.; Ray, E. J.

    1975-01-01

    The test gas for the Langley Pilot Transonic Cryogenic Tunnel is nitrogen. Results from analytical and experimental studies that have verified cryogenic nitrogen as an acceptable test gas are reviewed. Real-gas isentropic and normal-shock flow solutions for nitrogen are compared to the ideal diatomic gas solutions. Experimental data demonstrate that for temperatures above the liquefaction boundaries there are no significant real-gas effects on two-dimensional airfoil pressure distributions. Results of studies to determine the minimum operating temperatures while avoiding appreciable effects due to liquefaction are included.

  8. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    PubMed

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. © 2013.

  9. Process modeling of controls on nitrogen trace gas emissions from soils worldwide

    NASA Astrophysics Data System (ADS)

    Potter, Christopher S.; Matson, Pamela A.; Vitousek, Peter M.; Davidson, Eric A.

    1996-01-01

    We report on an ecosystem modeling approach that integrates global satellite, climate, vegetation, and soil data sets to (1) examine conceptual controls on nitrogen trace gas (NO, N2O, and N2) emissions from soils and (2) identify weaknesses in our bases of knowledge and data for these fluxes. Nitrous and nitric oxide emissions from well-drained soils were estimated by using an expanded version of the Carnegie-Ames-Stanford (CASA) Biosphere model, a coupled ecosystem production and soil carbon-nitrogen model on a 1° global grid. We estimate monthly production of NO, N2O, and N2 based on predicted rates of gross N mineralization, together with an index of transient water-filled pore space in soils. Analyses of model performance along selected climate gradients support the hypothesis that low temperature restricts predicted N mineralization and trace gas emission rates in moist northern temperate and boreal forest ecosystems, whereas in tropical zones, seasonal patterns in N mineralization result in emission peaks for N2O that coincide with wetting and high soil moisture content. The model predicts the annual N2O:NO flux ratio at a mean value of 1.2 in wet tropical forests, decreasing to around 0.6 in the seasonally dry savannas. Global emission estimates at the soil surface are 6.1 Tg N and 9.7 Tg N yr-1 for N2O and NO, respectively. Tropical dry forests and savannas are identified by using this formulation as important source areas for nitrogen trace gas emissions. Because humans continue to alter these ecosystems extensively for agricultural uses, our results suggest that more study is needed in seasonally dry ecosystems of the tropics in order to understand the global impacts of land use change on soil sources for N2O and NO.

  10. Method and composition for generating nitrogen gas

    SciTech Connect

    Pietz, J.F.

    1988-01-26

    A solid composition is described for generating nitrogen gas substantially free of noxious and toxic impurities for inflating an air cushion in a vehicle passenger restraint system and capable of substantially fully inflating such cushion in the elapsed time between the occurrence of a primary collision of the vehicle with another object and secondary collisions occurring as a result thereof; comprising a mixture of alkali metal azide and at least a stoichiometric amount of a metal oxide selected from the group consisting of iron, titanium and copper oxides and mixtures thereof. The metal oxide is capable of reacting exothermically with the alkaki metal azide and wherein the metal of the oxide is lower in the electromotive series than the alkali metal of the azide and is a metal other than (the) an alkali metal.

  11. Band Gap Tailoring of TiO2 Nanowires by Nitrogen Doping Under N2/Ar Plasma Environment.

    PubMed

    Dhar, J C; Mondal, A; Bhattacharya, S; Singh, N K; Ngangbam, C; Chattopadhyay, K K

    2015-05-01

    Glancing angle deposited TiO2 nanowires (NWs) were doped with nitrogen (N) using plasma-enhanced chemical vapour deposition technique, under the treatment of N2/Ar plasma. A red shift (- 0.51 eV) in the main band transition and oxygen defect related transition (-2.1 eV) was observed for the N doped TiO2 nanowires. The interstitial nitrogen introduces mid-gap levels N (2P) above the O (2P) in the TiO2 forbidden gap. The photoluminescence measurement revealed a small red shift of -7 nm of anatase band gap from N doped TiO2 nanowires due to radiative recombination of carriers from conduction band to the N (2P) trap state. The low frequency Raman peaks at 304 cm(-1) (acoustical phonons with LA mode), 618 cm(-1) (optical phonons with LO modes) and the high frequency peak at 832 cm(-1) was observed from Ti-O-N due to the partial replacement of oxygen molecules by nitrogen into TiO2, during the doping process.

  12. Benefit to N2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption.

    PubMed

    Tateno, Masaki

    2003-11-01

    This study examines the adaptive role of not resorbing N in N(2)-fixing deciduous trees in terms of their energy balance. The autumnal growth of N(2)-fixing Alnus firma Sieb. et Zucc. (alder) was compared with that of the non-N(2)-fixing Morus bombycis Koizumi (mulberry), which resorbs leaf N. The freezing resistance of leaves of both species was -2 degrees C. Mulberry seedlings lost their photosynthetic ability in mid-October, although the minimum temperature was still above 0 degrees C. Thereafter, their leaves turned yellow and were gradually shed. In contrast, seedlings of the alder maintained their photosynthetic ability until mid-November, when the minimum temperature fell to the freezing resistance limit. Thereafter, their leaves were shed quickly without an autumn tint. The mulberry resorbed 48.9% of leaf N, whereas the alder resorbed hardly any. These results show that, compared with the mulberry tree, the alder extended its growth period for 1 month in return for losing leaf N without resorption. The amount of energy assimilated by the alder in the extended growth period was about six times that required for compensating for the nitrogen loss, if the compensation is dependent only on the tree's own nitrogen fixation. This surplus energy balance has probably allowed N(2)-fixing deciduous trees to evolve their non-N-resorbing trait.

  13. Calculation of the thermal conductivity of low-density CH4-N2 gas mixtures using an improved kinetic theory approach.

    PubMed

    Hellmann, Robert; Bich, Eckard; Vesovic, Velisa

    2016-04-07

    The thermal conductivity of low-density CH4-N2 gas mixtures has been calculated by means of the classical trajectory method using state-of-the-art intermolecular potential energy surfaces for the CH4-CH4, N2-N2, and CH4-N2 interactions. Results are reported in the temperature range from 70 K to 1200 K. Since the thermal conductivity is influenced by the vibrational degrees of freedom of the molecules, which are not included in the rigid-rotor classical trajectory computations, a new correction scheme to account for vibrational degrees of freedom in a dilute gas mixture is presented. The calculations show that the vibrational contribution at the highest temperature studied amounts to 46% of the total thermal conductivity of an equimolar mixture compared to 13% for pure nitrogen and 58% for pure methane. The agreement with the available experimental thermal conductivity data at room temperature is good, within ±1.4%, whereas at higher temperatures, larger deviations up to 4.5% are observed, which can be tentatively attributed to deteriorating performance of the measuring technique employed. Results are also reported for the magnitude and temperature dependence of the rotational collision number, Z(rot), for CH4 relaxing in collisions with N2 and for N2 relaxing in collisions with CH4. Both collision numbers increase with temperature, with the former being consistently about twice the value of the latter.

  14. Calculation of the thermal conductivity of low-density CH4-N2 gas mixtures using an improved kinetic theory approach

    NASA Astrophysics Data System (ADS)

    Hellmann, Robert; Bich, Eckard; Vesovic, Velisa

    2016-04-01

    The thermal conductivity of low-density CH4-N2 gas mixtures has been calculated by means of the classical trajectory method using state-of-the-art intermolecular potential energy surfaces for the CH4-CH4, N2-N2, and CH4-N2 interactions. Results are reported in the temperature range from 70 K to 1200 K. Since the thermal conductivity is influenced by the vibrational degrees of freedom of the molecules, which are not included in the rigid-rotor classical trajectory computations, a new correction scheme to account for vibrational degrees of freedom in a dilute gas mixture is presented. The calculations show that the vibrational contribution at the highest temperature studied amounts to 46% of the total thermal conductivity of an equimolar mixture compared to 13% for pure nitrogen and 58% for pure methane. The agreement with the available experimental thermal conductivity data at room temperature is good, within ±1.4%, whereas at higher temperatures, larger deviations up to 4.5% are observed, which can be tentatively attributed to deteriorating performance of the measuring technique employed. Results are also reported for the magnitude and temperature dependence of the rotational collision number, Zrot, for CH4 relaxing in collisions with N2 and for N2 relaxing in collisions with CH4. Both collision numbers increase with temperature, with the former being consistently about twice the value of the latter.

  15. The Answer to Rising Gas Prices...Nitrogen?

    ERIC Educational Resources Information Center

    Lee, Frank; Batelaan, Herman

    2010-01-01

    It is claimed by the company NitroFill and the GetNitrogen Institute that filling car tires with nitrogen improves gas mileage considerably. The reason given is that oxygen leaks out of tires so that the increased rolling friction causes a reduced gas mileage. Because it is hard to do an actual road test, we report on a simple visual test of…

  16. The Answer to Rising Gas Prices...Nitrogen?

    ERIC Educational Resources Information Center

    Lee, Frank; Batelaan, Herman

    2010-01-01

    It is claimed by the company NitroFill and the GetNitrogen Institute that filling car tires with nitrogen improves gas mileage considerably. The reason given is that oxygen leaks out of tires so that the increased rolling friction causes a reduced gas mileage. Because it is hard to do an actual road test, we report on a simple visual test of…

  17. Synthesis of Fuels and Value-Added Nitrogen-Containing Compounds from N2

    DTIC Science & Technology

    2014-11-24

    The Haber - Bosch ammonia synthesis is one of the great technological achievements of the 20th century, having revolutionized agriculture and hence the... ammonia and hydrazine with its elements, N2 and H2. If successful, such research would be transformative as these important fuels and energy storage...catalysis concepts to be explored in developing and understanding the molecular dynamics of catalysis involving N2, hydrazine and ammonia . Summary of

  18. Phosphorus removal and greenhouse gas N2O emission in a lime-induced aerobic sludge granule process.

    PubMed

    Wu, X L; Guan, Y T; Zhang, X; Huang, X; Qian, Y

    2002-06-01

    Aerobic sludge granulation was achieved in an activated sludge process continuously fed with lime (Ca2+ 100 mg l(-1) influent) every other day. Eighteen days after lime addition, activated sludge granules with the size of 0.5-2.2 mm were formed, which occupied 10-25% of total sludge volume. Sludge volume index (SVI) was reduced to an average of 50 ml g(-1), which increased average sludge concentration to 3.6-5.0 g VSS l(-1), 1.6-2.1 times of that of control. Greenhouse gas N2O emission was also significantly reduced: N2O concentration from the lime-addition reactor was 5-15 ppmv, 47-61% of that of control, Effluent PO4-P concentration was generally lower than 1 mg l(-1) when average influent PO4-P concentration was 6.07-6.37 mg l(-1). Total phosphorus (TP) and total nitrogen (TN) removal efficiencies were around 89.6% and 14.5-16.1%, over 3.5 and 1 times higher than those of control, respectively. COD removal rate in the lime-addition reactor was 2.05-2.48 kg COD m(-3) d(-1), higher than 1.34-1.61 kg COD m(-3) d(-1) in the control.

  19. [Observation for CH4 and N2O emissions under different rates of nitrogen and phosphate fertilization in double rice fields].

    PubMed

    Shi, Sheng-Wei; Li, Yu-E; Wan, Yun-Fan; Qin, Xiao-Bo; Gao, Qing-Zhu

    2011-07-01

    Two non-CO2 greenhouse gas emissions (methane and nitrous oxide) and related environmental factors were measured within rice growing season under five treatments including non-fertilization (CK), balanced fertilization (BF), decreased nitrogen and phosphate 1 (DNP1), decreased nitrogen and phosphate 2 (DNP2) and increased nitrogen and phosphate 1 (INP) in double rice fields of red clay soil in 2009, using the method of static chamber-gas chromatograph techniques. The results showed that the average CH4 emission fluxes for treatments of BF, DNP1, DNP2 and INP were 4.57, 5.42, 4.70 and 4.65 mg x (m2 x h)(-1) during early rice growing period, which increased by 39%, 49%, 41% and 40% compared with non-fertilizer treatment, respectively. The average CH4 emission fluxes in late rice growing season was higher than preseason's. Compared to CK, CH4 emission increased by 11%, 1%, 26% and - 4% in treatments of BF, DNP1, DNP2 and INP within late rice growing season. Applying nitrogen and phosphate enhanced CH4 emission in turning green period for early and late rice. No significant difference was observed between the CH4 emissions of five treatments during early and late rice growing season (p > 0.05). N2O emission was very little during mid-seasonal drainage period. In contrast, N2O emission peaks were observed in period of alternation of wetting and drying after mid-seasonal drainage in this experiment. N2O emission was, on average, equivalent to 0.18% of the nitrogen applied in double rice growing season. Statistically, air temperature, soil Eh and soil moisture (water-filled pore space, WFPS) at 0-10cm depth significantly affected the fluctuations of the seasonal CH4 flux, but no significant correlationship has been found between N2O flux and related environmental factors. CH4 was the dominated greenhouse gas in double rice fields which contributed approximately 90% for the integrated global warming potential of CH4 and N2O released during the rice growing season

  20. Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983

  1. Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983

  2. Spin-polarized atomic nitrogen and the 7Sigma + u state of N2

    NASA Technical Reports Server (NTRS)

    Ferrante, R. F.; Stwalley, W. C.

    1983-01-01

    The first self-consistent field (SCF) calculation of the repulsive 7Sigma + u state of molecular nitrogen is presented. This calculation is used with attractive dispersion to provide a model potential for electron spin-polarized atomic nitrogen N appropriate in the range of 2.5-20A(O). Potential parameters obtained from the calculation are used to provide estimates of equilibrium thermodynamic properties of spin-polarized N in the quantum theorem of corresponding states framework. Consideration is given to increased stability of spin-polarized N with respect to single electron spin-flip processes, as compared to spin-polarized H.

  3. Nitrogen and carbon interactions in controlling terrestrial greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Ineson, Phil; Toet, Sylvia; Christiansen, Jesper

    2016-04-01

    The increased input of N to terrestrial systems may have profound impacts on net greenhouse gas (GHGs) fluxes and, consequently, our future climate; however, fully capturing and quantifying these interactions under field conditions urgently requires new, more efficient, measurement approaches. We have recently developed and deployed a novel system for the automation of terrestrial GHG flux measurements at the chamber and plot scales, using the approach of 'flying' a single measurement chamber to multiple points in an experimental field arena. As an example of the value of this approach, we shall describe the results from a field experiment investigating the interactions between increasing inorganic nitrogen (N) and carbon (C) additions on net ecosystem exchanges of N2O, CH4 and CO2, enabling the simultaneous application of 25 treatments, replicated five times in a fully replicated block field design. We will describe how the ability to deliver automated GHG flux measurements, highly replicated in space and time, has revealed hitherto unreported findings on N and C interactions in field soil. In our experiments we found insignificant N2O fluxes from bare field soil, even at very high inorganic N addition rates, but the interactive addition of even small amounts of available C resulted in very large and rapid N2O fluxes. The SkyGas experimental system enabled investigation of the underlying interacting response surfaces on the fluxes of the major soil-derived GHGs (CO2, CH4 and N2O) to increasing N and C inputs, and revealed unexpected interactions. In addition to these results we will also discuss some of the technical problems which have been overcome in developing these 'flying' systems and the potential of the systems for automatically screening the impacts of large numbers of treatments on GHG fluxes, and other ecosystem responses, under field conditions. We describe here technological advances that can facilitate the development of more robust GHG mitigation

  4. Transport properties of N2 gas at cryogenic temperatures. [computation of viscosity and thermal conductivity

    NASA Technical Reports Server (NTRS)

    Pearson, W. E.

    1974-01-01

    The viscosity and thermal conductivity of nitrogen gas for the temperature range 5 K - 135 K have been computed from the second Chapman-Enskog approximation. Quantum effects, which become appreciable at the lower temperatures, are included by utilizing collision integrals based on quantum theory. A Lennard-Jones (12-6) potential was assumed. The computations yield viscosities about 20 percent lower than those predicted for the high end of this temperature range by the method of corresponding states, but the agreement is excellent when the computed values are compared with existing experimental data.

  5. Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates: implications for landfill gas hydrates.

    PubMed

    Lee, Hyeong-Hoon; Ahn, Sook-Hyun; Nam, Byong-Uk; Kim, Byeong-Soo; Lee, Gang-Woo; Moon, Donghyun; Shin, Hyung Joon; Han, Kyu Won; Yoon, Ji-Ho

    2012-04-03

    Landfill gas (LFG), which is primarily composed of CH(4), CO(2), and N(2), is produced from the anaerobic digestion of organic materials. To investigate the feasibility of the storage and transportation of LFG via the formation of hydrate, we observed the phase equilibrium behavior of CO(2)-CH(4)-N(2) mixture hydrates. When the specific molar ratio of CO(2)/CH(4) was 40/55, the equilibrium dissociation pressures were gradually shifted to higher pressures and lower temperatures as the mole fraction of N(2) increased. X-ray diffraction revealed that the CO(2)-CH(4)-N(2) mixture hydrate prepared from the CO(2)/CH(4)/N(2) (40/55/5) gas mixture formed a structure I clathrate hydrate. A combination of Raman and solid-state (13)C NMR measurements provided detailed information regarding the cage occupancy of gas molecules trapped in the hydrate frameworks. The gas storage capacity of LFG hydrates was estimated from the experimental results for the hydrate formations under two-phase equilibrium conditions. We also confirmed that trace amounts of nonmethane organic compounds do not affect the cage occupancy of gas molecules or the thermodynamic stability of LFG hydrates.

  6. Determination of shear viscosity of molecular nitrogen (N2): molecular dynamic hard rotor methodology and the results.

    PubMed

    Strak, Paweł; Krukowski, Stanisław

    2011-04-21

    Determination of shear viscosity of molecular nitrogen (N(2)) by molecular dynamics (MD) in the high density range needs explicit incorporation of the rotational motion and therefore precise knowledge of angular dependence of N(2)-N(2) intermolecular potential. Newly designed Couette flow nonequilibrium molecular dynamic (NEMD) simulation procedure employs corrugated moving boundary, coupling the moving walls to translational and rotational motion exactly. Low density data on nitrogen viscosity show good agreement between MD data and experiment, confirming the radial dependence of the potential derived from quantum mechanical (QM) high precision calculations (coupled-cluster singles-and-doubles with a perturbative triples corrections [CCSD(T)]). Additionally, the angular dependence of the potential is verified using shear viscosity data for high density region, obtained from newly developed molecular dynamics (MD) simulations. It was demonstrated that the corrugated wall flow simulations provide results that are independent of the details of wall potential, fulfilling a basic requirement for application of MD simulations. These results are in good agreement with the equilibrium molecular dynamics (EMD) viscosity, derived from the Green-Kubo formula. Derived analytical dependence of the shear viscosity on the density and temperature shows that the MD data are in good agreement with experiment. Thus, MD simulations indicate that the CCSD(T) potential angular form is sufficiently precise for determination of the viscosity in a wide range of temperature and pressure.

  7. Comparison of MOVPE-based Zn diffusion into InGaAsP/InP using H 2 and N 2 carrier gas

    NASA Astrophysics Data System (ADS)

    Schroeter-Janssen, H.; Roehle, H.; Franke, D.; Bochnia, R.; Harde, P.; Grote, N.

    2000-12-01

    The indiffusion of Zn into InGaAsP layers was studied using a MOVPE-based diffusion process. Hydrogen and nitrogen were alternatively employed as carrier gas to compare their effect on the diffusion behaviour. Using nitrogen, larger diffusion coefficients of Zn were obtained under comparable conditions. Whereas in InGaAs, maximum hole concentration levels of >1×10 20 cm -3 were obtained for both N 2 and H 2, i.e. a factor of 3-4 higher than achievable with MOVPE doping, there proved to be no enhanced doping effect in InP. As to the lateral diffusion uniformity superior results were obtained with nitrogen.

  8. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle.

    PubMed

    Maalcke, Wouter J; Reimann, Joachim; de Vries, Simon; Butt, Julea N; Dietl, Andreas; Kip, Nardy; Mersdorf, Ulrike; Barends, Thomas R M; Jetten, Mike S M; Keltjens, Jan T; Kartal, Boran

    2016-08-12

    Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Helium tube separates nitrogen gas from liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1964-01-01

    To prevent a boiloff problem, liquid nitrogen flowing from a storage tank to a container, is separated into liquid and gaseous components. This is accomplished by centrifugal and venting action, using a section of perforated helical aluminum tubing.

  10. Improvements in nitrogen technology prove economical for natural gas streams

    SciTech Connect

    Butts, R.C.; Chou, K.

    1996-12-31

    A substantial quantity of high nitrogen gas reserves found throughout the US are not developed due to the cost and complexity involved in reducing the nitrogen content to acceptable pipeline specifications. Although technology to remove nitrogen has been available for several years, utilization has primarily been economical for volumes of gas 30 MMscfd or larger. BCCK has developed and patented a new process technology, Nitech, that provides an economic, efficient solution for removing high concentrations of nitrogen. Advantages the Nitech process offers include process flexibility, uncomplicated equipment design, simplified operation and maintenance, minimal electrical requirements, low recompression horsepower demands and high CO{sub 2} tolerance.

  11. Impacts of Application of Methane Fermentation Digested Liquid on Green House Gas Emissions and Nitrogen Leaching from Upland Field

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Fujikawa, Tomonori; Yuyama, Yoshito; Maeda, Morihiro; Yamaoka, Masaru

    Nitrogen uptake by crops, green-house gas emissions and nitrogen leaching were studied by using monolith lysimeters applied with digested liquid or ammonium sulfate to evaluate the environmental impacts of applications of methane fermentation digested liquid on Andosol upland field. A two-year experiment indicated the percentages of nitrogen uptake, leached nitrogen and nitrous oxide (N2O) emissions to each material-derived nitrogen were 27%, 44% and 0.41% in the digested liquid plot and 32%, 46% and 0.11% in the ammonium sulfate plot. The results show that digested liquid is readily release fertilizer like ammonium sulfate, and nitrogen is leached as easily from the digested liquid as from the ammonium sulfate and the N2O emissions from the digested liquid plot are higher than from the ammonium sulfate plot.

  12. Experimental study on a new sterilization process using plasma source ion implantation with N2 gas

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tanaka, T.; Watanabe, S.; Takagi, T.; Shinohara, M.; Fujii, S.

    2003-07-01

    Plasma source ion implantation (PSII) with negative high voltage pulses has been applied to the sterilization process as a technique suitable for sterilization of three-dimensional work pieces. Pulsed high negative voltage (0-10 μs pulse width, 900 pulses/s, -9 to -16 kV) was applied to the electrode in this process at a gas pressure of 2-7 Pa of N2. This process has been found to be capable of generating glow discharge plasma around a stainless electrode, on which quartz glass samples with biological materials are placed. We found that the PSII process reduced the numbers of active Bacillus pumilus cells using N2 gas plasma generated by pulsed dc voltages. The number of bacteria survivors was reduced by 105×with 5-10 min exposure. The state of cells on quartz glass was observed by scanning electron microscopy with and without exposure. We found that the ion energy is the most important processing parameter. The technique is demonstrated to be an effective means of low-temperature surface sterilization, with very little damage to the target.

  13. Co-Regulations of Spartina alterniflora Invasion and Exogenous Nitrogen Loading on Soil N2O Efflux in Subtropical Mangrove Mesocosms.

    PubMed

    Jia, Dai; Qi, Fei; Xu, Xia; Feng, Jianxiang; Wu, Hao; Guo, Jiemin; Lu, Weizhi; Peng, Ronghao; Zhu, Xiaoshan; Luo, Yiqi; Lin, Guanghui

    2016-01-01

    Both plant invasion and nitrogen (N) enrichment should have significant impact on mangrove ecosystems in coastal regions around the world. However, how N2O efflux in mangrove wetlands responds to these environmental changes has not been well studied. Here, we conducted a mesocosm experiment with native mangrove species Kandelia obovata, invasive salt marsh species Spartina alterniflora, and their mixture in a simulated tide rotation system with or without nitrogen addition. In the treatments without N addition, the N2O effluxes were relatively low and there were no significant variations among the three vegetation types. A pulse loading of exogenous ammonium nitrogen increased N2O effluxes from soils but the stimulatory effect gradually diminished over time, suggesting that frequent measurements are necessary to accurately understand the behavior of N-induced response of N2O emissions. With the N addition, the N2O effluxes from the invasive S. alterniflora were lower than that from native K. obovata mesocosms. This result may be attributed to higher growth of S. alterniflora consuming most of the available nitrogen in soils, and thus inhibiting N2O production. We concluded that N loading significantly increased N2O effluxes, while the invasion of S. alterniflora reduced N2O effluxes response to N loading in this simulated mangrove ecosystem. Thus, both plant invasion and excessive N loading can co-regulate soil N2O emissions from mangrove wetlands, which should be considered when projecting future N2O effluxes from this type of coastal wetland.

  14. Breadboard gas filter correlation spectrometer for atmospheric measurement of hydrazines and nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Dick, R.

    1981-10-01

    This report describes the efforts to build a breadboard Gas Filter Correlation Spectrometer (GFSC) for the atmospheric measurement of hydrazines and nitrogen dioxide. The instrument was configured for use as an ambient monitor, with the possibility of conversion to a remote sensor by addition of a telescope. The final detection limits for the gases were: N2H4 = .3 ppm, UDHM = .23 ppm, MMH = .22 ppm, and N02 = 9 ppm.

  15. Experimental studies on power frequency breakdown voltage of CF3I/N2 mixed gas under different electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Xiao, Song; Han, Yefei; Cressault, Yann

    2016-02-01

    To verify the feasibility of replacing SF6 by CF3I/N2, we compared their power frequency breakdown performance with the influence of gas pressure, mixing ratio, and electric field utilization coefficient. Under different electric fields and mixing ratios, the power frequency breakdown voltage of CF3I/N2 increases linearly along with gas pressure. Besides, with the rise of the electric field utilization coefficient, the linear growth rate of breakdown voltage along with gas pressure gradually rises. The sensitivity of pure CF3I to electric field is particularly high and can be improved by the addition of N2. The mixture 30% CF3I/70% N2 at 0.3 MPa could replace pure SF6 in equipment requiring a low insulation, but the gas pressure or the content of CF3I need to be increased for higher insulation requirements.

  16. Effect of Tillage and Non-tillage Agricultural Practice on Nitrogen Losses as NO and N2O in Tropical Corn Fields at Guarico State, Venezuela.

    NASA Astrophysics Data System (ADS)

    Marquina, S.; Rojas, A.; Donoso, L.; Rasse, R.; Giuliante, A.; Corona, O.; Perez, T.

    2007-12-01

    comparison to the forest values for the 60-day evaluation period for NT and T, respectively. On the other hand, NO soil emissions were 1.5 and 5 times larger in NT and T fields, respectively, in comparison to forest values. The fertilizer-induced emissions factors (FEI) for NO and N2O show that the nitrogen gaseous losses are mostly in the form of N2O for NT (NO-FEI = 0.2% and N2O-FEI=3.6%) and T (NO-FEI=1.7% and N2O- FEI=2.8%) practices. However, NO losses are higher in T than NT soils, probably due to the higher porosity in the former that promotes NO production under aerobic conditions. These results imply that tillage agricultural practice leads to a higher stimulation of these nitrogen gaseous emissions than non-tillage agricultural practice. Our N2O-FEI values for direct emissions are higher than the proposed by the IPPC national guidelines 2006 (FEI = 1%, Volume 4, Chapter 11). This implies that tropical agroecosystems are more susceptible to increase emissions after fertilization than temperate regions. Our results will be used to produce better estimates of direct N2O emissions from tropical agriculture and improve the current Venezuelan national greenhouse gas inventory.

  17. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  18. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  19. Nitrogen isotopes determination in natural gas: analytical method and first results on magmatic, hydrothermal and soil gas samples.

    PubMed

    Grassa, Fausto; Capasso, Giorgio; Oliveri, Ygor; Sollami, Aldo; Carreira, Paula; Rosario Carvalho, M; Marques, Jose M; Nunes, Joao C

    2010-06-01

    A continuous-flow GC/IRMS technique has been developed to analyse delta(15)N values for molecular nitrogen in gas samples. This method provides reliable results with accuracy better than 0.15 per thousand and reproducibility (1sigma) within+/-0.1 per thousand for volumes of N(2) between 1.35 (about 56 nmol) and 48.9 muL (about 2 mumol). The method was tested on magmatic and hydrothermal gases as well as on natural gas samples collected from various sites. Since the analysis of nitrogen isotope composition may be prone to atmospheric contamination mainly in samples with low N(2) concentration, we set the instrument to determine also N(2) and (36)Ar contents in a single run. In fact, based on the simultaneously determined N(2)/(36)Ar ratios and assuming that (36)Ar content in crustal and mantle-derived fluids is negligible with respect to (36)Ar concentration in the atmosphere, for each sample, the degree of atmospheric contamination can be accurately evaluated. Therefore, the measured delta(15)N values can be properly corrected for air contamination.

  20. Efficiency of Nitrogen Assimilation by N2-Fixing and Nitrate-Grown Soybean Plants (Glycine max [L.] Merr.)

    PubMed Central

    Finke, Robert L.; Harper, James E.; Hageman, Richard H.

    1982-01-01

    Nodulated and non-nodulated (not inoculated) soybeans (Glycine max [L.] Merr. cv Wells) were grown in controlled environments with N2 or nonlimiting levels of NO3−, respectively, serving as sole source of nitrogen. The efficiency of the N2-fixing plants was compared with that of the nitrate-supplied plants on the basis of both plant age and plant size. Efficiency evaluations of the plants were expressed as the ratio of moles of carbon respired by the whole plant to the moles of nitrogen incorporated into plant material. Continuous 24-hour CO2 exchange measurements on shoot and root systems made at the beginning of flowering (28 days after planting) indicated that N2-fixing plants respired 8.28 moles of carbon per mole of N, fixed from dinitrogen, while nitrate-supplied plants respired only 4.99 moles of carbon per mole of nitrate reduced. Twenty-one-day-old nitrate-supplied plants were even more efficient, respiring only 3.18 moles of carbon per mole of nitrate reduced. The decreased efficiency of the N2-fixing plants was not due to plant size since, on a dry weight basis, the 28-day-old N2-fixing plants were intermediate between the 28- and 21-day-old nitrate-supplied plants. The calculated efficiencies were predominantly a reflection of root-system respiration. N2-fixing plants lost 25% of their daily net photosynthetic input of carbon through root-system respiration, compared with 16% for 28-day-old nitrate-supplied plants and 12% for 21-day-old nitrate-supplied plants. Shoot dark respiration was similar for all three plant groups, varying between 7.9% and 9.0% of the apparent photosynthate. The increased respiratory loss by the roots of the N2-fixing plants was not compensated for by increased net photosynthetic effectiveness. Canopy photosynthesis expressed on a leaf area basis was similar for 28-day-old N2-fixing plants (15.5 milligrams CO2 square decimeter per hour) and 21-day-old nitrate-supplied plants (14.5 milligrams CO2 square decimeter per hour

  1. Selective Transformation of Various Nitrogen-Containing Exhaust Gases toward N2 over Zeolite Catalysts.

    PubMed

    Zhang, Runduo; Liu, Ning; Lei, Zhigang; Chen, Biaohua

    2016-03-23

    In this review we focus on the catalytic removal of a series of N-containing exhaust gases with various valences, including nitriles (HCN, CH3CN, and C2H3CN), ammonia (NH3), nitrous oxide (N2O), and nitric oxides (NO(x)), which can cause some serious environmental problems, such as acid rain, haze weather, global warming, and even death. The zeolite catalysts with high internal surface areas, uniform pore systems, considerable ion-exchange capabilities, and satisfactory thermal stabilities are herein addressed for the corresponding depollution processes. The sources and toxicities of these pollutants are introduced. The important physicochemical properties of zeolite catalysts, including shape selectivity, surface area, acidity, and redox ability, are described in detail. The catalytic combustion of nitriles and ammonia, the direct catalytic decomposition of N2O, and the selective catalytic reduction and direct catalytic decomposition of NO are systematically discussed, involving the catalytic behaviors as well as mechanism studies based on spectroscopic and kinetic approaches and molecular simulations. Finally, concluding remarks and perspectives are given. In the present work, emphasis is placed on the structure-performance relationship with an aim to design an ideal zeolite-based catalyst for the effective elimination of harmful N-containing compounds.

  2. 71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ON SLC-3W LIQUID OXYGEN APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Nitrogen loss from high N-input vegetable fields: a) Direct N2O emissions b) Spatiotemporal variability of N species (N2O, NH4+, NO3-) in soils

    NASA Astrophysics Data System (ADS)

    Palmer, I.; Pfab, H.; Ruser, R.; Fiedler, S.

    2009-04-01

    Nitrous oxide (N2O) is a greenhouse gas contributing to stratospheric ozone depletion. Soils are considered to be the major (70%) source for atmospheric N2O. Agriculture in general accounts for about 85% of the anthropogenic N2O emissions. Whereas 80% of these, are emitted from ag-riculturally used soils. Such estimations of N2O fluxes are associated with a high degree of uncertainties. Uncertainty of source strength estimates mainly results from local scale variability of known and unknown sources. It is not known how much uncertainty is due to unmeasured sources. For example, considerations of N2O fluxes from soils used for intensive vegetable production within inventories are still missing. We speculate that these types of arable soils act as ‚hot spots' for N2O. Given conditions (1) high N-input due to fertilization in concert with (2) easily mineralizable harvest residues should pro-mote disproportional high reaction rates in N-cycling and enhance N2O production as a by-product of nitrification and denitrification. Our investigation focused on the influence of: (1) N-input level (Ammonium Sulfate Nitrate (ASN)) below and above common N doses used for "good agricultural practice". (2) Application of modified fertilizers including nitrification inhibitor DMPP (Dimethylpyrazolphosphate, ENTEC®) and depot fertilization (pseudo-CULTAN) in comparison to non-fertilized control and common ASN application. (3) Effects of plant residues on N-cycling and (4) the deduction of mitigation strategies to reduce the potential N-loss from theses sites. The study was carried out during summer and autumn 2008 on a field cropped with cauliflower, located at the "Heidfeldhof" (South-West Germany; MAT 10.5°C, MAP 660 mm). Three different N-species (N2O; within gaseous soil phase, ammonium (NH4+) and nitrate (NO3-) extracted from bulk soil) were measured weekly in three different soil depths (0-25 cm; 25-50 cm and 50-75 cm) in a fully randomized field design. At same depths water

  4. Application of herbicides is likely to reduce greenhouse gas (N2O and CH4) emissions from rice-wheat cropping systems

    NASA Astrophysics Data System (ADS)

    Jiang, Jingyan; Chen, Linmei; Sun, Qing; Sang, Mengmeng; Huang, Yao

    2015-04-01

    Herbicides have been widely used to control weeds in croplands; however, their effects on greenhouse gas emissions remain unclear. The effects of three wheat herbicides (acetochlor, AC; tribenuron-methyl, TBM; fenoxaprop-p-ethyl, FE) and two rice herbicides (butachlor, BC; bensulfuron-methyl, BSM) on N2O and CH4 emissions were investigated in this study. In the wheat growing season, applications of AC and FE + TBM significantly reduced N2O emissions by 31% compared with no herbicide use (p = 0.001). In the rice growing season, the application of BC significantly reduced CH4 emissions by 58% (p = 0.022), and BSM significantly reduced N2O emissions by 27% (p = 0.040); however, no significant difference among treatments with regard to the aggregate emissions of N2O and CH4 in the CO2 equivalent for the 100-year horizon was observed (p > 0.05). Relative to control plots, which were not treated with herbicides, the combined application of the herbicides FE and TBM in the wheat season led to a significant decrease in greenhouse gas intensity (GHGI) by ∼41% (p = 0.002), and the application of BC together with BSM reduced GHGI by 22% in the rice season, although this reduction was not statistically significant (p = 0.158). Further investigation suggested that the inhibitory effect of herbicides on N2O emissions in the wheat field could be ascribed to low soil ammonium nitrogen and less abundance of denitrifying bacteria. The inhibitory effects of separate applications of BC on CH4 emissions in rice fields, in contrast, were linked to high soil nitrate nitrogen and urease activity.

  5. Effects of temperature on the carbonation of flue gas desulphurization gypsum using a CO2/N2 gas mixture.

    PubMed

    Lee, Myung Gyu; Ryu, Kyung Won; Chae, Soo Chun; Jang, Young Nam

    2015-01-01

    The carbonation of flue gas desulphurization (FGD) gypsum using a CO2/N2 gas mixture was investigated to study the feasibility of using the flue gas directly in the gypsum carbonation. The effect of the reaction temperature on the carbonation reaction and the carbonation conversion efficiency of the samples were considered. In this study, the carbonation conversion efficiency was calculated using a new method for decreasing the error range from a sample containing unreacted gypsum. The carbonation reaction at 40°C was nearly twice as fast as the reaction at room temperature. In addition, the carbonation conversion efficiency at 40°C (96%) was nearly the same as that at room temperature. However, the efficiency decreased significantly with temperature, especially above 60°C. It can, therefore, be concluded that the direct use of flue gas in gypsum carbonation is most feasible at 40°C. The temperature of carbonation strongly affected the CaCO3 polymorphs and the morphological characteristics. Calcite with various shapes was the dominant (40-90%) phase at all temperatures. At temperatures below 40°C, spherical-shaped vaterite was pronounced, while needle-flower-shaped aragonite was dominant at temperatures above 80°C.

  6. Transport Properties of He-N2 Binary Gas Mixtures for CBC Space Applications

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-01

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N2 and the binary mixtures of He-N2. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  7. The fate of nitrogen fertilizer added to soy-maize agriculture in the Amazon basin: Quantifying N2O flux and losses to groundwater

    NASA Astrophysics Data System (ADS)

    Jankowski, K. J.; Neill, C.; Davidson, E. A.; Macedo, M.; Costa, C., Jr.; Galford, G. L.; Coe, M. T.; O'Connell, C.; Brando, P. M.; Lefebvre, P.; Maracahipes, L.; Nunes, D.; McHorney, R.

    2015-12-01

    Deforestation and agricultural intensification are rapidly changing the landscape of southeastern Amazonia. With international pressure to reduce deforestation, many Brazilian farms have opted to intensify agriculture to a system of soybean-maize double cropping, and it has expanded rapidly in the last 10 years. Maize agriculture requires additional nitrogen (N) fertilizers, whose downstream fate is currently unknown. Typical fertilizer application rates range from 30-120 kg N ha-1, and have the potential to introduce large amounts of N to ecosystems of the Amazon basin, which can alter greenhouse gas flux and nutrient transport to groundwater and streams. Little data on the fate of added fertilizers are available in the tropics in general, especially in this critical region of agricultural expansion. Therefore, we established a field-scale experiment to evaluate the fate of N fertilizer on Tanguro Ranch in Mato Grosso, Brazil, a region of rapidly expanding soy-maize double cropping. We measured greenhouse gas fluxes (N2O, CO2, and CH4), soil N content, losses to groundwater, and corn productivity across five levels of fertilizer addition (0-200 kg N ha-1) throughout an entire growing season. We found that N2O flux increased with fertilizer addition, but was only significantly higher at 200 kg N ha-1. Surface soil N content increased after fertilizer addition, but decreased within weeks, and was quickly observed in subsurface soil water. Modeling results that scale these findings to the state of Mato Grosso suggest that this land use transition could create a substantial new source of N2O and CO2 to the atmosphere and has the potential to leach N fertilizer into groundwater and downstream. It is important to maintain forest code policies that minimize these impacts.

  8. Ligand field photofragmentation spectroscopy of [Ag(L)N]2+ complexes in the gas phase: experiment and theory.

    PubMed

    Guan, Jingang; Puskar, Ljiljana; Esplugas, Ricardo O; Cox, Hazel; Stace, Anthony J

    2007-08-14

    Experiments have been undertaken to record photofragmentation spectra from a series of [Ag(L)N]2+ complexes in the gas phase. Spectra have been obtained for silver(II) complexed with the ligands (L): acetone, 2-pentanone, methyl-vinyl ketone, pyridine, and 4-methyl pyridine (4-picoline) with N in the range of 4-7. A second series of experiments using 1,1,1,3-fluoroacetone, acetonitrile, and CO2 as ligands failed to show any evidence of photofragmentation. Interpretation of the experimental data has come from time-dependent density functional theory (TDDFT), which very successfully accounts for trends in the spectra in terms of subtle differences in the properties of the ligands. Taking a sample of three ligands, acetone, pyridine, and acetonitrile, the calculations show all the spectral transitions to involve ligand-to-metal charge transfer, and that wavelength differences (or lack of spectra) arise from small changes in the energies of the molecular orbitals concerned. The calculations account for an absence in the spectra of any effects due to Jahn-Teller distortion, and they also reveal structural differences between complexes where the coordinating atom is either oxygen or nitrogen that have implications for the stability of silver(II) compounds. Where possible, comparisons have also been made with the physical properties of condensed phase silver(II) complexes.

  9. Solid molecular nitrogen (δ-N2) inclusions in Juina diamonds: Exsolution at the base of the transition zone

    NASA Astrophysics Data System (ADS)

    Navon, Oded; Wirth, Richard; Schmidt, Christian; Jablon, Brooke Matat; Schreiber, Anja; Emmanuel, Simon

    2017-04-01

    Diamonds originating from the transition zone or lower mantle were previously identified based on the chemistry of their silicate or oxide mineral inclusions. Here we present data for such a super-deep origin based on the internal pressure of nitrogen in sub-micrometer inclusions in diamonds from Juina, Brazil. Infrared spectroscopy of four diamonds, rich in such inclusions revealed high concentrations of fully aggregated nitrogen (average of 900 ppm, all in B centers) and almost no platelets. Raman spectroscopy indicated the presence of solid, cubic δ-N2 at 10.9 ± 0.2 GPa (corresponding to a density of 1900 kg/m3). Transmission electron microscopy of two diamonds found two generations of octahedral inclusions: microinclusions (average size: 150 nm, average concentration: 100 ppm) and nanoinclusions (20-30 nm, 350 ppm). EELS detected nitrogen and a diffraction pattern of one nanoinclusion yielded a tetragonal phase, which resembles γ-N2 with a density of 1400 kg/m3 (internal pressure = 2.7 GPa). We also observed up-warping of small areas (∼150 nm in size) on the polished surface of one diamond. The ∼2 nm rise can be explained by a shallow subsurface microinclusion, pressurized internally to more than 10 GPa. Using available equations of state for nitrogen and diamond, we calculated the pressures and temperatures of mechanical equilibrium of the inclusions and their diamond host at the mantle geotherm. The inclusions originated at the deepest part of the transition zone at pressures of ∼22 GPa (630 km) and temperatures of ∼1640 °C. We suggest that both generations are the result of exsolution of nitrogen from B centers and that growth took a few million years in a subducting mantle current. The microinclusions nucleated first, followed by the nanoinclusions. Shortly after the exsolution events, the diamonds were trapped in a plume or an ascending melt and were transported to the base of the lithosphere and later to the surface.

  10. Heterotrophic 15N2 Fixation and Distribution of Newly Fixed Nitrogen in a Rice-Flooded Soil System 1

    PubMed Central

    Eskew, David L.; Eaglesham, Allan R. J.; App, A. A.

    1981-01-01

    Rice (Oryza sativa L.) plants growing in pots of flooded soil were exposed to a 15N2-enriched atmosphere for 3 to 13 days in a gas-tight chamber. The floodwater and soil surface were shaded with a black cloth to reduce the activity of phototrophic N2-fixing micro-organisms. The highest 15N enrichments were consistently observed in the roots, although the total quantity of 15N incorporated into the soil was much greater. The rate of 15N incorporation into roots was much higher at the heading than at the tillering stage of growth. Definite enrichments were also found in the basal node and in the lower outer leaf sheath fractions after 3 days of exposure at the heading stage. Thirteen days was the shortest time period in which definite 15N enrichment was observed in the leaves and panicle. When plants were exposed to 15N2 for 13 days just before heading and then allowed to mature in a normal atmosphere, 11.3% of the total 15N in the system was found in the panicles, 2.3% in the roots, and 80.7% in the subsurface soil. These results provide direct evidence of heterotrophic N2 fixation associated with rice roots and the flooded soil and demonstrate that part of the newly fixed N is available to the plant. PMID:16661887

  11. The Answer to Rising Gas Prices...Nitrogen?

    NASA Astrophysics Data System (ADS)

    Lee, Frank; Batelaan, Herman

    2010-03-01

    It is claimed by the company NitroFill and the GetNitrogen Institute that filling car tires with nitrogen improves gas mileage considerably. The reason given is that oxygen leaks out of tires so that the increased rolling friction causes a reduced gas mileage. Because it is hard to do an actual road test, we report on a simple visual test of leakage from oxygen- and nitrogen-filled balloons. This experiment can be repeated in classrooms to address a controversial and topical issue, while at the same time highlighting hypothesis formulation, verification, and falsification in scientific experiments.

  12. Denitrification nitrogen gas formation and gene expression in alpine grassland soil as affected by climate change conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Wang, Changhui; Gschwendtner, Silvia; Schloter, Michael; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2013-04-01

    Due to methodological problems, reliable data on soil dinitrogen (N2) emission by denitrification are extremely scarce, and the impacts of climate change on nitrogen (N) gas formation by denitrification and N gas product ratios as well as the underlying microbial drivers remain unclear. We combined the helium-gas-flow-soil-core technique for simultaneously quantification of nitrous oxide (N2O) and N2 emission with the reverse transcript qPCR technology. Our goals were to characterize denitrification dynamics and N gas product ratios in alpine grassland soil as affected by climate change conditions and to evaluate relationships between denitrification gene expression and N gas emission. We used soils from the pre-alpine grassland Terrestrial Environmental Observatory (TERENO), exposed to ambient temperature and precipitation (control treatment), or three years of simulated climate change conditions (increased temperature, reduction of summer precipitation and reduced snow cover). Soils were amended with glucose and nitrate and incubated subsequently at 1) 5°C and 20% oxygen; 2) 5°C and 0% oxygen; 3) 20°C and 0% oxygen until stabilization of N gas emissions in each incubation step. After switching incubation conditions to 0% oxygen and 20°C, N2O emission peaked immediately and declined again, followed by a delayed peak in N2 emission. The dynamics of cnorB gene expression, encoding the reduction of nitric oxide (NO) to N2O, followed the N2O emission pattern, while nosZ gene expression, encoding N2O reduction to N2 followed the course of N2 emission. The mean N2O:N2 ratios were 1.31 + 0.10 and 1.56 + 0.16 for control and climate change treatment respectively, but the denitrification potential was overall lower in climate change treatment. Hence, simulated climate change promoted N2O but lessened N2 emission. This stimulation of N2O was in accordance with increased cnorB gene expression in soil of the climate change treatment. N mass balance calculations revealed

  13. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    PubMed

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  14. Fast Nitrogen Atoms from Dissociative Excitation of N2 by Electron Impact

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ciocca, Marco

    1996-01-01

    The Doppler profiles of one of the fine structure lines of the N I (1200 A) g (sup 4)S(sup 0)-(sup 4)P multiplet and of the N II (1085 A) g (sup 3)p(sup O)-(sup 3)D multiplet have been measured. Excitation of the multiplets is produced by electron impact dissociative excitation of N2. The experimental line profiles are evaluated by fast Fourier transform (FFT) techniques and analysis of the profiles yields the kinetic energy distribution of fragments. The full width at half maximum (FWHM) of N I (1200 A) increases from 27+/-6 mA at 30 eV to 37+/-4 mA at 100 eV as the emission cross section of the dissociative ionization excitation process becomes more important relative to the dissociative excitation process. The FWHM of the N II (1085 A) line is 36+/-4 mA at 100 eV. For each multiplet the kinetic energy distribution function of each of the two fragment N atoms (ions) is much broader than thermal with a mean energy above 1.0 eV. The dissociation process with the largest cross section is predissociation and predominantly produces N atoms with kinetic energy distributions having mean energies above 0.5 eV. Dissociative processes can lead to a substantial escape flux of N I atoms from the satellites, Titan and Triton of the outer planets.

  15. Spatial variations of nitrogen trace gas emissions from tropical mountain forests in Nyungwe, Rwanda

    NASA Astrophysics Data System (ADS)

    Gharahi Ghehi, N.; Werner, C.; Cizungu Ntaboba, L.; Mbonigaba Muhinda, J. J.; Van Ranst, E.; Butterbach-Bahl, K.; Kiese, R.; Boeckx, P.

    2012-04-01

    Globally, tropical forest soils represent the second largest source of N2O and NO. However, there is still considerable uncertainty on the spatial variability and soil properties controlling N trace gas emission. Therefore, we carried out an incubation experiment with soils from 31 locations in the Nyungwe tropical mountain forest in southwestern Rwanda. All soils were incubated at three different moisture levels (50, 70 and 90 % water filled pore space (WFPS)) at 17 °C. Nitrous oxide emission varied between 4.5 and 400 μg N m-2 h-1, while NO emission varied from 6.6 to 265 μg N m-2 h-1. Mean N2O emission at different moisture levels was 46.5 ± 11.1 (50 %WFPS), 71.7 ± 11.5 (70 %WFPS) and 98.8 ± 16.4 (90 %WFPS) μg N m-2 h-1, while mean NO emission was 69.3 ± 9.3 (50 %WFPS), 47.1 ± 5.8 (70 %WFPS) and 36.1 ± 4.2 (90 %WFPS) μg N m-2 h-1. The latter suggests that climate (i.e. dry vs. wet season) controls N2O and NO emissions. Positive correlations with soil carbon and nitrogen indicate a biological control over N2O and NO production. But interestingly N2O and NO emissions also showed a positive correlation with free iron and a negative correlation with soil pH (only N2O). The latter suggest that chemo-denitrification might, at least for N2O, be an important production pathway. In conclusion improved understanding and process based modeling of N trace gas emission from tropical forests will benefit from spatially explicit trace gas emission estimates linked to basic soil property data and differentiating between biological and chemical pathways for N trace gas formation.

  16. Use of Nitrogen Budgets and N2 Flux Measurements to Estimate the Role of Denitrification in Brownfield Stormwater Wetlands

    NASA Astrophysics Data System (ADS)

    Palta, M. M.; Groffman, P. M.; Findlay, S.

    2012-12-01

    Wetlands are constructed or restored in urban and agricultural areas to reduce inorganic nitrogen (N) contamination of surface water runoff. Few studies, however, have examined the performance of unrestored but highly impacted wetlands within an urban context. These wetlands tend to be the primary recipient of nitrate (NO3-)-enriched storm and rainwater due to their ubiquity in low-lying portions of the urban landscape. Wetland studies anticipate high rates of NO3- removal via the microbial process of denitrification when labile carbon (C) and NO3- are high and O2 is low. The ability to quantify and predict the role of denitrification within particular systems is limited, however, and denitrification estimates are compromised by our inability to accurately measure N2 flux. In this study, we calculated loading rates of inorganic N and used measurements of N2/Ar, O2/Ar, and NO3- flux in sediments to generate inorganic N budgets for brownfield stormwater wetland sites. Loading of inorganic N via rain and stormwater ranged from 4-533 mg N/m2/d, and large amounts of NH4+ were additionally created from mineralization of decomposing organic matter, leading to high fluxes of NH4+ out of sediment into water (2-117 mg N/m2/d). Hydrology was a strong driving force of N2 flux; lowering of the water table allowed surface sediments to oxidize, leading to production of NO3-, which fueled N2 production lower in the sediment profile. Overall, the wetlands are denitrifying NO3- at a rate of around 620-2,580 μg N/m2/day. Flux of NO3- out of sediments was higher in some cases (630-1,900 μg N/m2/day), likely due to plant uptake. These wetlands appeared to be serving as a sink for NO3-, but were net sources of NH4+; periodic drainage of the wetlands to promote oxidation of NH4+ may be a strategy for promoting higher inorganic nitrogen removal from these sites.

  17. Nitrogen addition using a gas blow in an ESR process

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Momoi, Y.; Kajikawa, K.

    2016-07-01

    A new nitrogen method for adding in an ESR process using nitrogen gas blown in through the electrode was investigated. Nitrogen gas blown through a center bore of the electrode enabled contact between the nitrogen gas and the molten steel directly underneath the electrode tip. A ɸ 145mm diameter, laboratory-sized PESR furnace was used for the study on the reaction kinetics. Also, we carried out a water-model experiment in order to check the injection depth of the gas blown in the slag. The water model showed that the gas did not reach the upper surface of the molten metal and flowed on the bottom surface of the electrode only. An EPMA was carried out for a droplet remaining on the tip of the electrode after melting. The molten steel from the tip of the electrode shows that nitrogen gas absorption occurred at the tip of the electrode. The mass transfer coefficient was around 1.0x10-2 cm/sec in the system. This value is almost the same as the coefficient at the molten steel free surface.

  18. Chemical pathways and kinetic rates of the N(4S) + N2 → N3 solid phase reaction: could the N3 radical be a temperature sensor of nitrogen ices in dense molecular clouds?

    NASA Astrophysics Data System (ADS)

    Mencos, Alejandro; Nourry, Sendres; Krim, Lahouari

    2017-05-01

    Even though the N3 radical has not yet been detected in the interstellar medium, its formation still remains a challenge. For a long time, bombardments of N2 ices by energetic particles were the only way to from the azide radical as it was thought that ultraviolet (UV) photons were not strong enough to fragment the molecular nitrogen into N atoms. Consequently, it had been suggested that N3 could be used as discriminator between ice radiolysis and ice photolysis until a very recent study that has shown that photodecomposition of molecular nitrogen by UV photons might also be a source of the azide radical. In contrast to all these nitrogen ice bombarding experiments, only two laboratory studies have investigated the N3 formation where the reactants N and N2 mixed in the gas phase were co-condensed at 12 K, and this raised a new question concerning whether N + N2 → N3 took place in the solid phase or in the gas phase. The experimental results of these two studies are contradictory and the problem of the characterization of N3 formation by co-condensing atomic N and molecular N2 has persisted to the present day. In this paper, we give a clear answer to this question, by investigating the kinetic rates of the N(4S) + N2 → N3 reaction in the solid phase in the temperature range of 3-35 K. We find a rate constant of 7.7 × 10-23 s-1 molecule-1 cm3 for the azide radical formation in the solid phase and we provide new information on the N3 infrared signature, which could be used to characterize the temperature and the structure of nitrogen ices.

  19. Effect of influent C/N ratio on N2O emissions from anaerobic/anoxic/oxic biological nitrogen removal processes.

    PubMed

    Yan, Xu; Zheng, Jiaxi; Han, Yunping; Liu, Jianwei; Sun, Jianhui

    2017-09-01

    The problem of producing strong greenhouse gas of nitrous oxide (N2O) from biological nitrogen removal (BNR) process in wastewater treatment plants (WWTP) has elicited great concern from various sectors. In this study, three laboratory-scale wastewater treatment systems, with influent C/N ratios of 3.4, 5.4, and 7.5, were set up to study the effect of influent C/N ratio on N2O generation in anaerobic/anoxic/oxic (A(2)O) process. Results showed, with the increased influent C/N ratio, N2O generation from both nitrification and denitrification process was decreased, and the N2O-N conversion ratio of the process was obviously reduced from 2.23 to 0.05%. Nitrification rate in oxic section was reduced, while denitrification rate in anaerobic and anoxic section was elevated and the removal efficiency of COD, NH4(+)-N, TN, and TP was enhanced in different extent. As the C/N ratio increased from 3.4 to 7.5, activities of three key denitrifying enzymes of nitrate reductase, nitrite reductase, and nitrous oxide reductase were increased. Moreover, microorganism analysis indicated that the relative abundance of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were positively correlated with N2O generation, which was reduced from (8.42 ± 3.65) to (3.61 ± 1.66)% and (10.38 ± 4.12) to (4.67 ± 1.62)%, respectively. NosZ gene copy numbers of the A(2)O system were increased from (1.19 ± 0.49) × 10(7) to (2.84 ± 0.54) × 10(8) copies/g MLSS with the influent C/N ratio elevated from 3.4 to 7.5. Hence, appropriate influent C/N condition of A(2)O process could optimize the microbial community structure that simultaneously improve treatment efficiency and decrease the N2O generation.

  20. [Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils].

    PubMed

    Ma, Fen; Ma, Hong-liang; Qiu, Hong; Yang, Hong-yu

    2015-02-01

    An incubation experiment was conducted to investigate the effects of the additions of different nitrogen forms on nitrogen transformation in red soils of subtropical forest under soil moisture conditions with 40%, 70% and 110% of water holding capacity (WHC). The results showed that soil net mineralization and ammonification rates were maximum at 70% WHC and minimum at 40% WHC. Compared with the control, the addition of NO(3-)-N decreased the soil net mineralization and ammonification rates by 56.1% and 43.0% under 70% WHC condition, and decreased by 68.2% and 19.0% under 110% WHC, respectively. However, the proportion of ammonification to mineralization increased at 70% and 110% WHC, which suggested that nitrate addition inhibited the nitrification. With addition of NO(3-)-N at 110% WHC, the net nitrification rate was lowest while N20 emission was highest with the concomitant decrease of nitrate content, indicating that N2O emission was largely derived from denitrification. However, at 40% WHC and 70% WHC, the maximum N20 flux was found at the early stage of incubation. Even with addition of NH(4+)-N and NO(3-)-N, N2O flux did not change much at the latter stage of incubation, indicating that autotrophic nitrification was dominant for N20 production at the early stage of incubation. Under 40% WHC condition, soluble organic carbon increased more and it increased largely with NH(4+)-N addition, which meant NH(4+)-N addition could enhance the mineralization of soil organic matter. Under 40% and 110% WHC conditions, the addition of NH(4+)-N increased significantly the soil soluble organic nitrogen (SON) by 73.6% and 176.6% compared with the control, respectively. A significant increase of 78.7% for SON was only found at 40% WHC under addition of NO(3-)-N compared with the control. These results showed that high soil moisture condition and addition of NH(4+)-N were of benefit to SON formation.

  1. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  2. Efficient total nitrogen removal in an ammonia gas biofilter through high-rate OLAND.

    PubMed

    De Clippeleir, Haydée; Courtens, Emilie; Mosquera, Mariela; Vlaeminck, Siegfried E; Smets, Barth F; Boon, Nico; Verstraete, Willy

    2012-08-21

    Ammonia gas is conventionally treated in nitrifying biofilters; however, addition of organic carbon to perform post-denitrification is required to obtain total nitrogen removal. Oxygen-limited autotrophic nitrification/denitrification (OLAND), applied in full-scale for wastewater treatment, can offer a cost-effective alternative for gas treatment. In this study, the OLAND application thus was broadened toward ammonia loaded gaseous streams. A down flow, oxygen-saturated biofilter (height of 1.5 m; diameter of 0.11 m) was fed with an ammonia gas stream (248 ± 10 ppmv) at a loading rate of 0.86 ± 0.04 kg N m(-3) biofilter d(-1) and an empty bed residence time of 14 s. After 45 days of operation a stable nitrogen removal rate of 0.67 ± 0.06 kg N m(-3) biofilter d(-1), an ammonia removal efficiency of 99%, a removal of 75-80% of the total nitrogen, and negligible NO/N(2)O productions were obtained at water flow rates of 1.3 ± 0.4 m(3) m(-2) biofilter section d(-1). Profile measurements revealed that 91% of the total nitrogen activity was taking place in the top 36% of the filter. This study demonstrated for the first time highly effective and sustainable autotrophic ammonia removal in a gas biofilter and therefore shows the appealing potential of the OLAND process to treat ammonia containing gaseous streams.

  3. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  4. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  5. Kinetics of organic molecules in pulsed plasmas of nitrogen or N2/O2 mixtures at near atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pasquiers, S.; Blin-Simiand, N.; Magne, L.

    2013-12-01

    In plasmas of atmospheric gases, the kinetics of some aliphatic organic molecules belonging to the hydrocarbons (propene, propane), aldehydes (acetaldehyde) and ketones (acetone) families were studied using a photo-triggered discharge (homogeneous plasma). It was shown that quenchings of N2 metastable states, A\\,^{3}\\Sigma_{u}^{+} and the group of singlets a'\\,^{1}\\Sigma_{u}^{-} , a 1Πg and w 1Δu, are important processes for the decomposition of such molecules. It plays a fundamental role in the nitrogen plasma, but it is also present in air. At low temperature, the oxidation reactions by the oxygen atom or by the hydroxyl radical are not always sufficiently effective to induce an increase of the molecule decomposition when oxygen is added to the nitrogen/organic mixture. For most cases, quenching processes appear purely dissociative. However, recent results obtained for propene lead to the conclusion that a non-dissociative exit route could exist. The quenching of the singlet states induces a break of the double bound C = O for the acetaldehyde and acetone molecules. Some kinetic analogies appear between filamentary and homogeneous plasmas, which could be very useful to get a comprehensive understanding of the physico-chemical processes in dielectric barriers or corona discharges used for various applications.

  6. Transformation pathways in high-pressure solid nitrogen: from molecular N2 to polymeric cg-N.

    PubMed

    Plašienka, Dušan; Martoňák, Roman

    2015-03-07

    The transformation pathway in high-pressure solid nitrogen from N2 molecular state to polymeric cg-N phase was investigated by means of ab initio molecular dynamics and metadynamics simulations. In our study, we observed a transformation mechanism starting from molecular Immm phase that initiated with formation of trans-cis chains. These chains further connected within layers and formed a chain-planar state, which we describe as a mixture of two crystalline structures--trans-cis chain phase and planar phase, both with Pnma symmetry. This mixed state appeared in molecular dynamics performed at 120 GPa and 1500 K and in the metadynamics run at 110 GPa and 1500 K, where the chains continued to reorganize further and eventually formed cg-N. During separate simulations, we also found two new phases--molecular P2(1)/c and two-three-coordinated chain-like Cm. The transformation mechanism heading towards cg-N can be characterized as a progressive polymerization process passing through several intermediate states of variously connected trans-cis chains. In the final stage of the transformation chains in the layered form rearrange collectively and develop new intraplanar as well as interplanar bonds leading to the geometry of cg-N. Chains with alternating trans and cis conformation were found to be the key entity--structural pattern governing the dynamics of the simulated molecular-polymeric transformation in compressed nitrogen.

  7. Co-Regulations of Spartina alterniflora Invasion and Exogenous Nitrogen Loading on Soil N2O Efflux in Subtropical Mangrove Mesocosms

    PubMed Central

    Jia, Dai; Qi, Fei; Xu, Xia; Feng, Jianxiang; Wu, Hao; Guo, Jiemin; Lu, Weizhi; Peng, Ronghao; Zhu, Xiaoshan; Luo, Yiqi; Lin, Guanghui

    2016-01-01

    Both plant invasion and nitrogen (N) enrichment should have significant impact on mangrove ecosystems in coastal regions around the world. However, how N2O efflux in mangrove wetlands responds to these environmental changes has not been well studied. Here, we conducted a mesocosm experiment with native mangrove species Kandelia obovata, invasive salt marsh species Spartina alterniflora, and their mixture in a simulated tide rotation system with or without nitrogen addition. In the treatments without N addition, the N2O effluxes were relatively low and there were no significant variations among the three vegetation types. A pulse loading of exogenous ammonium nitrogen increased N2O effluxes from soils but the stimulatory effect gradually diminished over time, suggesting that frequent measurements are necessary to accurately understand the behavior of N-induced response of N2O emissions. With the N addition, the N2O effluxes from the invasive S. alterniflora were lower than that from native K. obovata mesocosms. This result may be attributed to higher growth of S. alterniflora consuming most of the available nitrogen in soils, and thus inhibiting N2O production. We concluded that N loading significantly increased N2O effluxes, while the invasion of S. alterniflora reduced N2O effluxes response to N loading in this simulated mangrove ecosystem. Thus, both plant invasion and excessive N loading can co-regulate soil N2O emissions from mangrove wetlands, which should be considered when projecting future N2O effluxes from this type of coastal wetland. PMID:26727205

  8. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    PubMed Central

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate-induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH-control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils. PMID:24249526

  9. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Köhn, C.; Chanrion, O.; Neubert, T.

    2017-01-01

    Streamers are ionization filaments of electric gas discharges. Negative polarity streamers propagate primarily through electron impact ionization, whereas positive streamers in air develop through ionization of oxygen by UV photons emitted by excited nitrogen; however, experiments show that positive streamers may develop even for low oxygen concentrations. Here we explore if bremsstrahlung ionization facilitates positive streamer propagation. To discriminate between effects of UV and bremsstrahlung ionization, we simulate the formation of a double headed streamer at three different oxygen concentrations: no oxygen, 1 ppm O2 and 20% O2, as in air. At these oxygen levels, UV-relative to bremsstrahlung ionization is zero, small, and large. The simulations are conducted with a particle-in-cell code in a cylindrically symmetric configuration at ambient electric field magnitudes three times the conventional breakdown field. We find that bremsstrahlung induced ionization in air, contrary to expectations, reduces the propagation velocity of both positive and negative streamers by about 15%. At low oxygen levels, positive streamers stall; however, bremsstrahlung creates branching sub-streamers emerging from the streamer front that allow propagation of the streamer. Negative streamers propagate more readily forming branching sub-streamers. These results are in agreement with experiments. At both polarities, ionization patches are created ahead of the streamer front. Electrons with the highest energies are in the sub-streamer tips and the patches.

  10. Effect of nitrogen gas packaging on the quality and microbial growth of fresh-cut vegetables under low temperatures.

    PubMed

    Koseki, Shigenobu; Itoh, Kazuhiko

    2002-02-01

    Nitrogen (N2) gas packaging for fresh-cut vegetables (lettuce and cabbage) has been examined as a means of modified atmosphere packaging (MAP) for extending the shelf life of cut vegetables. Gas composition in enclosed packages that contained cut vegetables and were filled with 100% N2 had an oxygen (O2) concentration of 1.2 to 5.0% and a carbon dioxide (CO2) concentration of 0.5 to 3.5% after 5 days of storage. An atmosphere of low concentrations of O2 and high CO2 conditions occurred naturally in the package filled with N2 gas. Degradation of cut vegetables in terms of appearance was delayed by N2 gas packaging. Because of this effect, the appearance of fresh-cut vegetables packaged with N2 gas remained acceptable at temperatures below 5 degrees C after 5 days. Treatment with acidic electrolyzed water (AcEW) contributed to the acceptability of the vegetables' appearance at 5 and 10 degrees C in the air-packaging system. N2 gas packaging did not significantly affect the growth of microbial populations (total aerobic bacteria, coliform bacteria, Bacillus cereus, and psychrotrophic bacteria) in or on cut vegetables at 1, 5, and 10 degrees C for 5 days. Microbial growth in or on the cut vegetables was inhibited at 1 degrees C for 5 days regardless of atmospheric conditions.

  11. Porewater Profiles of Dissolved N2/Ar Gas Ratios in Sediments From the Gulf of Mexico Continental Margin

    NASA Astrophysics Data System (ADS)

    Hartnett, H.; Devol, A.; Brandes, J.; Sobolev, D.; Chang, B.

    2004-12-01

    Dissolved gases in sediment porewaters are useful tracers of the biogeochemical processes that consume organic matter. In autumn of 2003, we collected cores from three stations off the Gulf coast of Texas. The stations ranged from 200 to 1300 meters water depth and represent a range in oxygen exposure time, organic carbon flux to the seafloor, and sediment redox conditions. Porewater profiles of O2, NO3, NH4, and the N2/Ar gas ratio were determined at each station. Porewater dissolved O2 concentrations decreased rapidly at shallow stations and more slowly at deeper stations; penetration depths ranged from ˜5mm at the 200 m station to ˜40 mm at the 1300 m station. Nitrate concentrations showed a similar pattern (although over a longer depth scale) with penetration depths ranging from 1.25 cm at the shallow station to 40 cm at the deepest station. We present high-resolution profiles of the porewater N2/Ar gas ratio measured in the field by membrane-inlet mass spectrometry (MIMS) using a probe-style inlet. Changes in the N2/Ar gas ratio reflect the production of N2 gas due to denitrification in the sediments. At all stations the N2/Ar gas ratios increased significantly with depth in the sediments and were oversaturated relative to the bottom water N2/Ar ratio. The gas ratio profiles increased rapidly with depth as oxygen concentrations went to zero, and maximum values of N2/Ar oversaturation occurred at the depth range where NO3 concentrations decreased rapidly and thus NO3 consumption rates were highest. The maximum in the N2/Ar gas ratio occurred at 25 mm at the 200 m station and at more than 70 mm at the 1300 m station, similar to the patterns in the O2 and NO3 penetration depths. These porewater dissolved gas ratio profiles provide an additional estimate of the total denitrification rate in sediments that can be compared to rates determined from benthic chamber fluxes and NO3 profiles.

  12. Differences in the Spatial Variability Among CO2, CH 4, and N 2O Gas Fluxes from an Urban Forest Soil in Japan.

    PubMed

    Bellingrath-Kimura, Sonoko Dorothea; Kishimoto-Mo, Ayaka Wenhong; Oura, Noriko; Sekikawa, Seiko; Yonemura, Seichiro; Sudo, Shigeto; Hayakawa, Atsushi; Minamikawa, Kazunori; Takata, Yusuke; Hara, Hiroshi

    2015-02-01

    The spatial variability of carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) fluxes from forest soil with high nitrogen (N) deposition was investigated at a rolling hill region in Japan. Gas fluxes were measured on July 25th and December 5th, 2008 at 100 points within a 100 × 100 m grid. Slope direction and position influenced soil characteristics and site-specific emissions were found. The CO(2) flux showed no topological difference in July, but was significantly lower in December for north-slope with coniferous trees. Spatial dependency of CH(4) fluxes was stronger than that of CO(2) or N(2)O and showed a significantly higher uptake in hill top, and emissions in the valley indicating strong influence of water status. N(2)O fluxes showed no spatial dependency and exhibited high hot spots at different topology in July and December. The high N deposition led to high N(2)O fluxes and emphasized the spatial variability.

  13. [Raman spectroscopic investigation of hydrogen storage in nitrogen gas hydrates].

    PubMed

    Meng, Qing-guo; Liu, Chang-ling; Ye, Yu-guang; Li, Cheng-feng

    2012-08-01

    Recently, hydrogen storage using clathrate hydrate as a medium has become a hotspot of hydrogen storage research In the present paper, the laser Raman spectroscopy was used to study the hydrogen storage in nitrogen hydrate. The synthetic nitrogen hydrate was reacted with hydrogen gas under relatively mild conditions (e.g., 15 MPa, -18 degrees C). The Raman spectra of the reaction products show that the hydrogen molecules have enclathrated the cavities of the nitrogen hydrate, with multiple hydrogen cage occupancies in the clathrate cavities. The reaction time is an important factor affecting the hydrogen storage in nitrogen hydrate. The experimental results suggest that nitrogen hydrates are expected to be an effective media for hydrogen storage.

  14. Stable isotope profiles of nitrogen gas indicate denitrification in oxygen-stratified humic lakes.

    PubMed

    Tiirola, Marja A; Rissanen, Antti J; Sarpakunnas, Miika; Arvola, Lauri; Nykänen, Hannu

    2011-06-15

    Mid-summer N(2) profiles were analyzed from nine oxygen-stratified, humic-acid-rich lakes using a continuous flow isotope ratio mass spectrometer and a Gasbench II device. Sample preparation steps were performed under water to avoid air contamination. The instrument precision for the δ(15)N measurement was high (0.03‰), but for the whole sampling and analysis procedure the mean deviation between replicate samples was 0.13‰ for the δ(15)N measurements and 5.5% for the N(2) gas concentration analysis. The results show that the Gasbench peripheral was suitable for measurement of the (15)N natural abundance of dissolved nitrogen gas, with denitrification indicated by the oversaturation and slightly (<1‰) depleted δ(15)N values of the dissolved N(2) gas in the suboxic zones of some of the study lakes. Calculated values for the denitrified (excess) N(2) varied between -5.3 and 0.7‰. The denitrification potential was determined using the (15)N tracer method, with results showing nitrate-inducible denitrification and no signs of anaerobic ammonium oxidation (anammox). Copyright © 2011 John Wiley & Sons, Ltd.

  15. Removal of nitrogen oxides from gas streams by biofiltration

    SciTech Connect

    Barrett, K.B.; Barnes, J.M.; Apel, W.A.

    1994-12-31

    Nitrogen oxides (NO{sub x}) are primary air pollutants and, as such, there is considerable interest in the development of efficient, cost effective technologies to remediate NO{sub x} containing emissions. Biofiltration involves the venting of contaminated gas streams through biologically active material such as soil or compost. This technology has been used successfully to control odors as well as volatile organic compounds from a variety of industrial and public sources. The purpose of this study was to evaluate the feasibility of using biofiltration to convert NO{sub x} to nitrogen gas.

  16. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  17. Some possible channels for the N2 formation and their probable effects on the interstellar elemental nitrogen partitioning: A computational study

    NASA Astrophysics Data System (ADS)

    Bhasi, Priya; Nhlabatsi, Zanele P.; Sitha, Sanyasi

    2017-08-01

    Nitrogen content of the interstellar regions is undergoing a re-evaluation based on some recent comet data and some excellent researches in this area. Finding of secondary channels for the formation of N2 will definitely have significant effect in accounting the elemental nitrogen partitioning and also the active nitrogen chemistry of the interstellar medium. In this work, computational calculations of potential energy surface for the reaction between NS and NSi has been carried out. We were able to locate many dissociation channels leading to the formation of N2 from some of these isomers, both in singlet as well as the triplet potential energy surfaces. Based on the analysis of the dissociation paths, it has been argued that such dissociation reactions leading to the formation of N2 will be possible not only in hot-cores, but also in the cold interstellar clouds of the interstellar medium.

  18. Photon emissions from N2·+ ion beam-target gas collisions in a modified commercial sector mass spectrometer

    NASA Astrophysics Data System (ADS)

    Holmes, H. L.; Mayer, P. M.; Mommers, A. A.

    1994-08-01

    Experiments are reported in which radiative emissions from 8 keV N2·+ projectile ion--target gas (He, N2, O2 and CO2) collisions in the third field-free region of a modified VG ZAB-2F mass spectrometer (BEE geometry) were detected and analyzed using a scanning grating monochromator. The emission spectra between 180 and 680 nm were characterized by the N2·+ (B2[Sigma]u+ --> X2[Sigma]g+) electronic transition and, when N2 and O2 were the targets, the C 3[Pi]u --> B 3[Pi]g second positive system in N2. Fragment N+ emissions were also observed. In addition to the projectile emissions, ionized target gas and even target fragment emissions were present with all targets except helium. Observations made 0.05-0.17 [mu]s after the collision event were similar to those described above, but lacking target gas emissions. Qualitative information concerning the trends in post-collission emission, studied with 18 target gases, was obtained using wavelength cut-off filters. The results were consistent with the above spectral assignments and trends observed in collision induced dissociation mass spectrometry.

  19. Vibrational Spectroscopy of Mass Selected [UO2(ligand)n]2+ Complexes in the Gas Phase

    SciTech Connect

    Gary S. Groenewold; Anita Gianotto; Michael Vanstipdonk; Kevin C. Cossel; David T. Moore,; Nick Polfer; Jos Oomens

    2006-03-01

    The gas-phase infrared spectra of discrete uranyl ([UO2]2+) complexes ligated with acetone and/or acetonitrile were used to evaluate systematic trends of ligation on the position of the O=U=O stretch, and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric O=U=O stretching frequency was measured at 1017 cm-1 for [UO2(CH3COCH3)2]2+, and was systematically red shifted to 1000 and 988 cm-1 by the addition of a third and fourth acetone ligands, respectively, which was consistent with more donation of electron density to the uranium center in complexes with higher coordination number. The experimental measurements were in good agreement with values generated computationally using LDA, B3LYP, and ZORA-PW91 approaches. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from 2 to 4, and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)n]2+ complexes although the magnitude of the red shift in the uranyl frequency upon addition more acetonitrile ligands was smaller than for acetone, consistent with the more modest nucleophilic nature of acetonitrile. This conclusion was amplified by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3 to 6 cm-1.

  20. Insulation Characteristics and its Evaluation Method of N2 Gas for Non-standard Lightning Impulse Waveforms

    NASA Astrophysics Data System (ADS)

    Kaneko, Shuhei; Okabe, Shigemitsu

    Until recently, SF6 gas has widely been used as the best insulating medium in substation equipment. However, SF6 gas was specified to be a greenhouse gas at COP3 in 1997 because of its high global warming potential (GWP), alternative insulation gases to SF6 have been looked for since long time in the past. Alternatives using the natural gases are considered to be suitable substitute but none of them show better properties for insulation as well as good environmental compatibility. Therefore, it is necessary to rationalize the equipment insulation level and reduce the test voltage of electric power apparatus as low as possible. The actual lightning surge waveform (so-called non-standard lightning impulse waveform) occurring in the actual field is different from the standard lightning impulse waveform (1.2/50μs). There are many cases what the actual lightning surge waveform has steeply rising and large decay of overvoltage, and the insulation requirements are not as severe as those of the standard lightning impulse waveform. In this paper, we focused our research on N2 gas as SF6 substitute and investigated the insulation characteristics of N2 gas for single-frequency oscillatory waveform with various frequencies from 2.7 to 20.0MHz and damping ratios. From experimental results, it might be possible to reduce the test voltage of N2 gas insulation by evaluating the crest value of actual lightning surge waveform that was converted into an equivalent standard lightning impulse waveform.

  1. Variable Nitrogen Isotope Effects Associated With N2O Isotopologue Production: Towards an Understanding of Denitrification Mechanism

    NASA Astrophysics Data System (ADS)

    Thompson, A. E.; Park, S.; Firestone, M.; Amundson, R.; Boering, K.

    2004-12-01

    There is much current interest in the use of the isotopic composition of N2O, including site-specific δ 15N (i.e., the 15N/14N ratios of the central or terminal positions, expressed as δ 15Nα and δ 15Nβ respectively) and δ 15Nbulk (the integrated N isotope value) to understand biological sources of this important greenhouse gas. However, mechanisms driving the variability of δ 15Nbulk, δ 15Nα , and δ 15Nβ values of biologically produced N2O need to be better understood for the effective interpretation of field observations. In denitrification, a major source of N2O, the formation of the N=N bond is generally understood to occur via NO + NO. However evidence suggests that enzyme-bound NO+ + NO2- may also form N2O (Ye et al. 1994), generating potentially significant differences in relative values of δ 15Nbulk, δ 15Nα , and δ 15Nβ depending on production pathways. A useful way to explore reaction mechanism is to determine whether an isotope effect is dependent on substrate concentration, in this case nitrate. Nitrate concentrations are also highly variable in terrestrial and aquatic environments where denitrification occurs. We investigated the δ 15N values of N2O produced by the denitrifier P. aureofaciens at nitrate concentrations ranging from 0.03 mg/L to 2000 mg/L at which the total conversion was < 15 % of the initial nitrate. The bulk 15N enrichment factor (ɛ ) increased with production rate when [NO3-]init varied between 25 mg/L to 844 mg/L, but was constant below this [NO3-]init range (here referred to as low nitrate). The maximum production rate and observed enrichment factors were reached at [NO3-]init = ˜1000 mg/L and remained constant up to 2000 mg/L (here referred to as high nitrate). Results were ɛ = -22.7 ± 2.6 ‰ (n=18) at low nitrate, ɛ = -33.2 ± 3.3 ‰ (n=4) at [NO3-]init = 250 mg/L, and constant at ɛ = -42.3 ± 0.3 ‰ (n=10) at high nitrate. δ 15Nα and δ 15Nβ values relative to tropospheric N2O were respectively -36

  2. Using monatomic nitrogen induced by a pulsed arc to remove nitrogen oxides from a gas stream

    SciTech Connect

    Ng, H.K.; Novick, V.J.; Sekar, R.R.

    1995-12-01

    The effectiveness of monatomic nitrogen, induced by a pulsed electric arc, in reducing nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) was studied. The goal for this research is the reduction of nitrogen oxides (NO{sub x}) from automobile emissions by this alternative technique, which can be cost-effective (to be demonstrated in the near future) and has the potential to reduce NO{sub x} in exhaust containing up to 10% oxygen. The initial tests with 100, 500, and 1,000 ppm NO in pure nitrogen have shown that a greater than 50% reduction of NO/NO{sub x} is readily achievable. Different flow rates of the monatomic nitrogen and the gas stream were tested. The flow rate of the monatomic nitrogen did not have a significant effect on the reduction efficiency, unlike the flow rate of the gas stream. The cross-sectional flow area of the gas stream was varied in order to assess whether the proximity of the gas stream to the arc would affect NO/NO{sub x} reduction. Results of the tests revealed that the smallest cross-sectional area gave the best reduction, but it also had the greatest chance of contacting the arc. The composition of the gas stream was also varied to elucidate the effects of NO{sub 2} and O{sub 2} on the NO/NO{sub x} reduction efficiency. When NO{sub 2} and O{sub 2} are present in the gas stream, both gases lower the reduction efficiency significantly by creating more NO or NO{sub 2}. Experiments are continuing to improve the reduction efficiency. The electrical power, a function of pulse frequency, voltage, and current, was treated as a key parameter in the investigation. The power consumption of the high-voltage pulser apparatus for a 100-kW engine was estimated to be 3 kW.

  3. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.

    PubMed

    Park, Min; Shim, Sung Hoon; Jeong, Sang Hyun; Oh, Kwang-Joong; Lee, Sang-Sup

    2017-04-01

    The nitrogen oxides (NOx) reduction technology by combustion modification which has economic benefits as a method of controlling NOx emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NOx reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NOx in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N2), carbon dioxide (CO2) and steam (H2O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NOx concentration greatly.

  4. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  5. Degradation and inactivation of Shiga toxins by nitrogen gas plasma.

    PubMed

    Sakudo, Akikazu; Imanishi, Yuichiro

    2017-12-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) leads to food poisoning by causing hemorrhagic colitis and hemolytic uremic syndrome. Some STEC produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2), a relatively stable protein toxin, necessitating the development of an efficient inactivation method. Here we applied a nitrogen gas plasma apparatus to the inactivation of Stx. Samples of Stx1 and Stx2 were treated with a nitrogen gas plasma generated by a plasma device using a short high-voltage pulse applied by a static induction thyristor power supply at 1.5 kpps (kilo pulse per second). The recovered Stx samples were then analyzed for immunological and biological activities. Immunochromatography demonstrated that Stx1 and Stx2 were degraded by the gas plasma. Quantification by enzyme-linked immunosorbent assay (ELISA) showed that both toxins were efficiently degraded to less than 1/10th of their original concentration within 5 min of treatment. Western blotting further showed the gas plasma treatment degraded the A subunit, which mediates the toxicity of Stx. Moreover, an assay using HEp-2 cells as an index of cytotoxicity showed that gas plasma treatment reduced the toxic activity of Stx. Therefore, nitrogen gas plasma might be an efficient method for the inactivation of Stx.

  6. Laboratory Investigations of Titan Haze Formation: Characterization of Gas Phase and Particle Phase Nitrogen

    NASA Astrophysics Data System (ADS)

    Horst, Sarah; Yoon, Heidi; Li, Rui; deGouw, Joost; Tolbert, Margaret

    2014-11-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan’s atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, the discovery of very heavy ions, coupled with Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation measurements that show haze absorption up to 1000 km altitude (Liang et al., 2007), indicates that haze formation initiates in the thermosphere. The energy environment of the thermosphere is significantly different from the stratosphere; in particular there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2, in the upper atmosphere. The discovery of previously unpredicted nitrogen species in measurements of Titan’s atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini (Vuitton et al., 2007). Additionally, measurements obtained by the Aerosol Collector Pyrolyzer (ACP) carried by Huygens to Titan’s surface may indicate that Titan’s aerosols contain significant amounts of nitrogen (Israël et al., 2005, 2006). The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan’s atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase

  7. Continuous analysis of nitrogen dioxide in gas streams of plants

    NASA Technical Reports Server (NTRS)

    Durkin, W. T.; Kispert, R. C.

    1969-01-01

    Analyzer and sampling system continuously monitors nitrogen dioxide concentrations in the feed and tail gas streams of a facility recovering nitric acid. The system, using a direct calorimetric approach, makes use of readily available equipment and is flexible and reliable in operation.

  8. Simple approach for the preparation of (15-15)N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations.

    PubMed

    Klawonn, Isabell; Lavik, Gaute; Böning, Philipp; Marchant, Hannah K; Dekaezemacker, Julien; Mohr, Wiebke; Ploug, Helle

    2015-01-01

    Recent findings revealed that the commonly used (15)N2 tracer assay for the determination of dinitrogen (N2) fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared (15-15)N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of (15-15)N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add (15-15)N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥ 5 min). Optionally, water can be degassed at low-pressure (≥950 mbar) for 10 min prior to the (15-15)N2 gas addition to indirectly enhance the (15-15)N2 concentration. This preparation of (15-15)N2-enriched water can be done within 1 h using standard laboratory equipment. The final (15)N-atom% excess was 5% after replacing 2-5% of the incubation volume with (15-15)N2-enriched water. Notably, the addition of (15-15)N2-enriched water can alter levels of trace elements in the incubation water due to the contact of (15-15)N2-enriched water with glass, plastic and rubber ware. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn) increased by up to 0.1 nmol L(-1) in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with (15-15)N2. The (15-15)N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the (15-15)N2 equilibration. This approach achieved a (15)N-atom% excess of 6.6 ± 1.7% when adding 2 mL (15-15)N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the (15)N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments.

  9. Simple approach for the preparation of 15−15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations

    PubMed Central

    Klawonn, Isabell; Lavik, Gaute; Böning, Philipp; Marchant, Hannah K.; Dekaezemacker, Julien; Mohr, Wiebke; Ploug, Helle

    2015-01-01

    Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2) fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15−15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15−15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15−15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥ 5 min). Optionally, water can be degassed at low-pressure (≥950 mbar) for 10 min prior to the 15−15N2 gas addition to indirectly enhance the 15−15N2 concentration. This preparation of 15−15N2-enriched water can be done within 1 h using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15−15N2-enriched water. Notably, the addition of 15−15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15−15N2-enriched water with glass, plastic and rubber ware. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn) increased by up to 0.1 nmol L−1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15−15N2. The 15−15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15−15N2 equilibration. This approach achieved a 15N-atom% excess of 6.6 ± 1.7% when adding 2 mL 15−15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments. PMID:26300853

  10. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  11. Single-stage EHD thruster response to several simulation conditions in nitrogen gas

    NASA Astrophysics Data System (ADS)

    Granados, Victor H.; Pinheiro, Mario J.; Sá, Paulo A.

    2017-09-01

    We use a numerical model to investigate the influence of pressure from 0.5 Torr (66.7 Pa) to 100 Torr (13.3 kPa) and temperature (190-400 K) on the performance (thrust, fluid velocity, and thrust-to-power-ratio) of a single stage electrohydrodynamic thruster made of a rod anode and funnel-like cathode geometry, using nitrogen as the working gas. The model includes the following nitrogen species: N, N+, N2, N2+ , and N4+ . Additional factors are investigated: (i) the ballast resistance, (ii) the secondary electron emission from the cathode (in the range of 10-5 -10°), and (iii) the influence of the gap between electrodes on the discharge. As expected, higher pressures increase the net thrust, thrust efficiency, and peak gas velocity; however, with increasing temperatures, the trend reverses. We notice that gas flow velocity diminishes for the increasing values of the secondary emission coefficient, and it is possible to identify two working regimes presenting different behaviors: in the first region, for values of the secondary electron emission coefficient between 10-5 and 10-2 , thrust was not affected, and in the second region, between 10-2 and 1, a clear decrease in thrust is observed, accompanied by an increase in the discharge current, an undesired effect for the purpose of thrust production.

  12. Fast gas heating in N2/O2 mixtures under nanosecond surface dielectric barrier discharge: the effects of gas pressure and composition

    PubMed Central

    Nudnova, M. M; Kindysheva, S. V; Aleksandrov, N. L; Starikovskii, A. Yu

    2015-01-01

    The fractional electron power quickly transferred to heat in non-equilibrium plasmas was studied experimentally and theoretically in N2/O2 mixtures subjected to high electric fields. Measurements were performed in and after a nanosecond surface dielectric barrier discharge at various (300–750 Torr) gas pressures and (50–100%) N2 percentages. Observations showed that the efficiency of fast gas heating is almost independent of pressure and becomes more profound when the fraction of O2 in N2/O2 mixtures increases. The processes that contribute towards the fast transfer of electron energy to thermal energy were numerically simulated under the conditions considered. Calculations were compared with measurements and the main channels of fast gas heating were analysed at the gas pressures, compositions and electric fields under study. It was shown that efficient fast gas heating in the mixtures with high fraction of O2 is due to a notable contribution of heat release during quenching of electronically excited N2 states in collisions with O2 molecules and to ion–ion recombination. The effect of hydrocarbon addition to air on fast gas heating was numerically estimated. It was concluded that the fractional electron power transferred to heat in air, as a first approximation, could be used to estimate this effect in lean and stoichiometric hydrocarbon–air mixtures. PMID:26170431

  13. Reaction of arylium ions with the collision gas N2 in electrospray ionization mass spectrometry.

    PubMed

    Liang, Yuxue; Neta, Pedatsur; Simón-Manso, Yamil; Stein, Stephen E

    2015-04-15

    The tandem mass spectra of many compounds contained peaks which could not have arisen from the precursor ion. Such peaks were found to be due to reaction of arylium ions with N2 in the collision cell. Therefore, this reaction was studied in detail with representative compounds. Various classes of compounds were dissolved in acetonitrile/water/formic acid and studied by electrospray ionization mass spectrometry to record their MS(2) and pseudo-MS(3) spectra in a QqQ mass spectrometer and their accurate m/z values in an Orbitrap Elite instrument. Arylium ions were found to react with N2 in the collision cell. The reaction was confirmed by pseudo-MS(3) studies, by comparison with authentic diazonium ions, and by the pressure dependence of the product ion survival yield. Reactions of arylium ions with N2 were observed with p-toluenesulfonic acid, o-toluenesulfonamide, phenylphosphonic acid, phenol, aniline, aminonaphthalenes, benzoic acid, benzophenone, and other compounds. By using a QqQ mass spectrometer, we observed that the protonated compounds produce arylium ions, which then react with N2 to form diazonium ions. The diazonium ion was produced with N2 but not with Ar in the collision cell, and its abundance increased with increasing N2 pressure. Arylium ions generated from a wide variety of compounds in electrospray ionization tandem mass spectrometry may react with N2 to form diazonium ions. The abundance of the diazonium ions is affected by collision energy and N2 pressure. This reaction should be considered when annotating peaks in MS/MS libraries. Published in 2015. This article is a U.S. Government work and is in the public domain in the USA. Published in 2015. This article is a U.S. Government work and is in the public domain in the USA.

  14. Riverine N2O concentrations, exports to estuary and emissions to atmosphere from the Changjiang River in response to increasing nitrogen loads

    NASA Astrophysics Data System (ADS)

    Yan, Weijin; Yang, Libiao; Wang, Fang; Wang, Jianing; Ma, Pei

    2012-12-01

    This study investigated the variations of dissolved N2O and emissions over diurnal and seasonal temporal scales in 2009, as well as the time series of riverine N2O export to estuary and emission to atmosphere in response to increasing anthropogenic nitrogen loads in the Changjiang River. For the diurnal study, N2O concentrations ranged from 0.26 to 0.34 and from 0.44 to 0.52 μg N-N2O L-1 in August and October 2009, respectively. The dissolved N2O was supersaturated with a mean value of 197%. Studies on N2O emissions, also taken in August and October, ranged from 2.67 to 11.6 and from 6.72 to 15.2 μg N-N2O m-2 h-1, respectively. For the seasonal study (June through December 2009), N2O concentrations ranged from 0.34 to 0.72 μg N-N2O L-1 and were supersaturated in all the samples (average 212%). N2O emissions ranged from 1.87 to 40.8 μg N-N2O m-2 h-1. Our study found no significant differences in diurnal patterns of N2O saturation but detected significant difference in seasonal patterns of N2O saturation: higher during summer while lower during autumn and winter. We found a significant relationship between dissolved N2O and river nitrate, which can predict the variation of N2O concentrations in the River. The net production of N2 ranged from 0.01 to 0.47 mg N-N2 L-1. These excess N2 values were significantly correlated to the N2O production and are suggestive of denitrification in the river. Applying the Global News model to the river system using measures taken during the 1970 to 2002 period, we estimated N2O emissions to atmosphere increased from 330 to 3650 ton N-N2O yr-1. During that same 1970-2002 period, N2O exports to estuary increased from 91 to 470 ton N-N2O yr-1. Taken together, the findings reported here suggest that both the river N2O concentrations and emissions would increase in response to rising anthropogenic nitrogen loads. Our study showed that the mean emission factor based on the ratio of the total N2O flux to NO3- flux is four times greater

  15. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    EPA Science Inventory

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  16. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    EPA Science Inventory

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  17. The influence of microbial-based inoculants on N2O emissions from soil planted to corn under greenhouse conditions with different nitrogen fertilizer regimens

    USDA-ARS?s Scientific Manuscript database

    Nitrous oxide (N2O) emissions are increasing at an unprecedented rate due to increased nitrogen (N) fertilizers use. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation st...

  18. Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments.

    PubMed

    Larriba-Andaluz, Carlos; Fernández-García, Juan; Ewing, Michael A; Hogan, Christopher J; Clemmer, David E

    2015-06-14

    A pending issue in linking ion mobility measurements to ion structures is that the collisional cross section (CCS, the measured structural parameter in ion mobility spectrometry) of an ion is strongly dependent upon the manner in which gas molecules effectively impinge on and are reemitted from ion surfaces (when modeling ions as fixed structures). To directly examine the gas molecule impingement and reemission processes and their influence, we measured the CCSs of positively charged ions of room temperature ionic liquids 1-ethyl-3-methylimidazolium dicyanamide (EMIM-N(CN)2) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) in N2 using a differential mobility analyzer-mass spectrometer (DMA-MS) and in He using a drift tube mobility spectrometer-mass spectrometer (DT-MS). Cluster ions, generated via electrosprays, took the form (AB)N(A)z, spanning up to z = 20 and with masses greater than 100 kDa. As confirmed by molecular dynamics simulations, at the measurement temperature (∼300 K), such cluster ions took on globular conformations in the gas phase. Based upon their attained charge levels, in neither He nor N2 did the ion-induced dipole potential significantly influence gas molecule-ion collisions. Therefore, differences in the CCSs measured for ions in the two different gases could be primarily attributed to differences in gas molecule behavior upon collision with ions. Overwhelmingly, by comparison of predicted CCSs with selected input impingement-reemission laws to measurements, we find that in N2, gas molecules collide with ions diffusely--they are reemitted at random angles relative to the gas molecule incoming angle--and inelastically. Meanwhile, in He, gas molecules collide specularly and elastically and are emitted from ion surfaces at determined angles. The results can be rationalized on the basis of the momentum transferred per collision; in the case of He, individual gas molecule collisions minimally perturb the atoms within a cluster ion

  19. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, F.; Ullah, S.; Stott, A.

    2015-08-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilised agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps, a copper based reduction furnace, and allows the analysis of small gas injection volumes (4 μL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Pre-concentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N Gas-Flux method was adapted for application in natural and semi-natural land use types (peatlands, forests and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. For our chamber design (volume / surface = 8:1) and a 20 h incubation period, the minimum detectable flux rates were 4 μg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. The N2 flux ranged between 2.4 and 416.6 μg N m-2 h-1, and the grassland soils showed on average 3 and 14 times higher denitrification rates than the woodland and organic soils respectively. The N2O flux was on average 20 to 200 times lower than the N2 flux, while the denitrification product ratio (N2O/N2 + N2O) was low, ranging between 0.03 and 13 %. Total denitrification rates measured by the acetylene inhibition technique under the same field conditions

  20. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  1. Spatial variations of nitrogen trace gas emissions from tropical mountain forests in Nyungwe, Rwanda

    NASA Astrophysics Data System (ADS)

    Gharahi Ghehi, N.; Werner, C.; Cizungu Ntaboba, L.; Mbonigaba Muhinda, J. J.; van Ranst, E.; Butterbach-Bahl, K.; Kiese, R.; Boeckx, P.

    2011-12-01

    Globally, tropical forest soils represent the second largest source of N2O and NO. However, there is still considerable uncertainty on the spatial variability and soil properties controlling N trace gas emission. To investigate how soil properties affect N2O and NO emission, we carried out an incubation experiment with soils from 31 locations in the Nyungwe tropical mountain forest in southwestern Rwanda. All soils were incubated at three different moisture levels (50, 70 and 90% water filled pore space (WFPS)) at 17 °C. Nitrous oxide emission varied between 4.5 and 400 μg N m-2 h-1, while NO emission varied from 6.6 to 265 μg N m-2 h-1. Mean N2O emission at different moisture levels was 46.5 ± 11.1 (50% WFPS), 71.7 ± 11.5 (70% WFPS) and 98.8 ± 16.4 (90% WFPS) μg N m-2 h-1, while mean NO emission was 69.3 ± 9.3 (50% WFPS), 47.1 ± 5.8 (70% WFPS) and 36.1 ± 4.2 (90% WFPS) μg N m-2 h-1. The latter suggests that climate (i.e. dry vs. wet season) controls N2O and NO emissions. Positive correlations with soil carbon and nitrogen indicate a biological control over N2O and NO production. But interestingly N2O and NO emissions also showed a negative correlation (only N2O) with soil pH and a positive correlation with free iron. The latter suggest that chemo-denitrification might, at least for N2O, be an important production pathway. In conclusion improved understanding and process based modeling of N trace gas emission from tropical forests will not only benefit from better spatial explicit trace gas emission and basic soil property monitoring, but also by differentiating between biological and chemical pathways for N trace gas formation.

  2. Anthropogenic effects on greenhouse gas (CH4 and N2O) emissions in the Guadalete River Estuary (SW Spain).

    PubMed

    Burgos, M; Sierra, A; Ortega, T; Forja, J M

    2015-01-15

    Coastal areas are subject to a great anthropogenic pressure because more than half of the world's population lives in its vicinity causing organic matter inputs, which intensifies greenhouse gas emissions into the atmosphere. Dissolved concentrations of CH4 and N2O have been measured seasonally during 2013 in the Guadalete River Estuary, which flows into the Cadiz Bay (southwestern Spanish coast). It has been intensely contaminated since 1970. Currently it receives wastewater effluents from cities and direct discharges from nearby agriculture crop. Eight sampling stations have been established along 18 km of the estuary. CH4 and N2O were measured using a gas chromatograph connected to an equilibration system. Additional parameters such as organic matter, dissolved oxygen, nutrients and chlorophyll were determinate as well, in order to understand the relationship between physicochemical and biological processes. Gas concentrations increased from the River mouth toward the inner part, closer to the wastewater treatment plant discharge. Values varied widely within 21.8 and 3483.4 nM for CH4 and between 9.7 and 147.6 nM for N2O. Greenhouse gas seasonal variations were large influenced by the precipitation regime, masking the temperature influence. The Guadatete Estuary acted as a greenhouse gas source along the year, with mean fluxes of 495.7 μmol m(-2)d(-1) and 92.8 μmol m(-2)d(-1) for CH4 and N2O, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    PubMed

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-08-24

    A highly selective method for transforming ammonia nitrogen to N2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl(-)). Under illumination, photoholes from WO3 promote the oxidation of Cl(-) to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N2 (79.9%) and NO3(-) (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl(-)) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl(-)/Cl and the reaction intermediates (NH2, NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N2, which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Effect of NaCl on growth, N2 fixation (acetylene reduction), and percentage total nitrogen in Leucaena leucocephala (Leguminosae) var. K-8.

    PubMed

    Anthraper, Annie; Dubois, John D

    2003-05-01

    Leucaena leucocephala var. K-8 is a fast-growing, tropical leguminous tree that has multiple economic uses. This study was conducted to evaluate the effect(s) of varying NaCl concentrations on growth, N(2) fixation, and percentage of total tissue nitrogen in different organs in L. leucocephala. Seeds were germinated and grown for 10 wk with a nitrogen-free fertilizer applied every 2 wk. At 10 wk, plants were treated for either 0, 7, 14, 21, or 28 wk with either deionized water (control), 0.00625 mol/L, 0.0125 mol/L, 0.025 mol/L, 0.05 mol/L, or 0.1 mol/L NaCl in addition to the fertilizer every 2 wk. Growth was measured as plant height, nodule number and mass, and dry tissue mass. N(2) fixation was measured by the acetylene reduction assay. Percentage of tissue nitrogen was determined using Kjeldahl analysis. In younger plants (7-wk treatment), major fluctuations in NaCl tolerance were observed in the different plant organs. As plants matured (14- and 21-wk treatment) NaCl concentrations of 0.025 mol/L and higher caused the greatest reduction in growth and tissue nitrogen. We conclude that NaCl concentrations of 0.025 mol/L and greater caused a major decrease in growth, N(2) fixation, and percentage of tissue nitrogen in L. leucocephala plants that were less than 1 yr old.

  5. Effects of nitrogen conversion and environmental factors on landfill CH4 oxidation and N2O emissions in aged refuse.

    PubMed

    Zhang, Houhu; Zhao, Keqiang; Yan, Xiaofei; Sun, Qinfang; Li, Yi; Zhang, Yi; Zun, Zhao; Ke, Fan

    2013-09-15

    We determined the effects of nitrification capacity and environmental factors on landfill methane oxidation potential (MOP) using an aged refuse in laboratory batch assays and compared it with two different types of soils. The nitrogen conversion in the three experimental materials after 120 h incubation yielded first-order reaction kinetics at an initial concentration of 200 mg kg(-1) NH4(+)-N. The net nitrification rate for the aged refuse was 1.50 (p < 0.05) and 2.08 (p < 0.05) times that of the clay soil and the sandy soil, respectively. The net NO3(-)-N generation rate by the aged refuse was 1.93 (p < 0.05) and 2.57 (p < 0.05) times that of the clay soil and the sandy soil, respectively. When facilitated by ammonia-oxidizing bacteria during CH4 co-oxidation, the average value of the MOP in the aged refuse at a temperature range of 4-45 °C was 2.34 (p < 0.01) and 4.71 (p < 0.05) times greater than that of the clay soil and the sandy soil, respectively. When the moisture content ranged from 8 to 32% by mass, the average values for the MOP in the aged refuse were 2.08 (p < 0.01) and 3.15 (p < 0.01) times greater than that of the clay soil and the sandy soil, respectively. The N2O fluxes in the aged refuse at 32% moisture content were 5.33 (p < 0.05) and 12.00 (p < 0.05) times more than in the clay and the sandy soil, respectively. The increase in N2O emissions from a municipal solid waste landfill can be neglected after applying an aged refuse bio-cover because of the much higher MOP in the aged refuse. The calculated maximum MOP value in the aged refuse was 12.45 μmol g(-1) d.w. h(-1), which was much higher than the documented data.

  6. Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China.

    PubMed

    Zhang, Lihua; Hou, Longyu; Guo, Dufa; Li, Linghao; Xu, Xiaofeng

    2017-02-01

    Nitrogen and water are two important factors influencing GHG (primarily CO2 - carbon dioxide; CH4 - methane, and N2O - nitrous oxide) fluxes in semiarid grasslands. However, the interactive effects of nitrogen and water on GHG fluxes remain elusive. A 3-year (2010-2012) manipulative experiment was conducted to investigate the individual and interactive effects of nitrogen and water additions on GHG fluxes during growing seasons (May to September) in a semiarid grassland in Northern China. Accumulated throughout growing seasons, nitrogen input stimulated CO2 uptake by 3.3±1.0gCm(-2) (gN)(-1), enhanced N2O emission by 1.2±0.3mgNm(-2) (gN)(-1), and decreased CH4 uptake by 5.2±0.9mgNm(-2) (gN)(-1); water amendment stimulated CO2 uptake by 0.2±0.1gCm(-2) (mmH2O)(-1) and N2O emission by 0.2±0.02mgNm(-2) (mmH2O)(-1), decreased CH4 uptake by 0.3±0.1mgCm(-2) (mmH2O)(-1). A synergistic effect between nitrogen and water was found on N2O flux in normal year while the additive effects of nitrogen and water additions were found on CH4 and CO2 uptakes during all experiment years, and on N2O emission in dry years. The nitrogen addition had stronger impacts than water amendment on stimulating CH4 uptake in the normal year, while water was the dominant factor affecting CH4 uptake in dry years. For N2O emission, the N-stimulating impact was stronger in un-watered than in watered plots, and the water-stimulating impact was stronger in non-fertilized than in fertilized treatments in dry years. The interactive impacts of nitrogen and water additions on GHG fluxes advance our understanding of GHG fluxes in responses to multiple environmental factors. This data source could be valuable for validating ecosystem models in simulating GHG fluxes in a multiple factors environment.

  7. Recovery of methane from gas hydrates intercalated within natural sediments using CO(2) and a CO(2)/N(2) gas mixture.

    PubMed

    Koh, Dong-Yeun; Kang, Hyery; Kim, Dae-Ok; Park, Juwoon; Cha, Minjun; Lee, Huen

    2012-08-01

    The direct recovery of methane from massive methane hydrates (MHs), artificial MH-bearing clays, and natural MH-bearing sediments is demonstrated, using either CO(2) or a CO(2)/N(2) gas mixture (20 mol % of CO(2) and 80 mol % of N(2), reproducing flue gas from a power plant) for methane replacement in complex marine systems. Natural gas hydrates (NGHs) can be converted into CO(2) hydrate by a swapping mechanism. The overall process serves a dual purpose: it is a means of sustainable energy-source exploitation and greenhouse-gas sequestration. In particular, scant attention has been paid to the natural sediment clay portion in deep-sea gas hydrates, which is capable of storing a tremendous amount of NGH. The clay interlayer provides a unique chemical-physical environment for gas hydrates. Herein, for the first time, we pull out methane from intercalated methane hydrates in a clay interlayer using CO(2) and a CO(2)/N(2) gas mixture. The results of this study are expected to provide an essential physicochemical background required for large-scale NGH production under the seabed.

  8. Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Song, Changchun; Zheng, Xunhua; Wang, Dexuan; Wang, Yiyong

    2007-04-01

    Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m -2 h -1, respectively, in 2004, and 898.59 and 2,154.17 mg m -2 h -1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m -2 h -1 and 0.72 and 1.88 mg m -2 h -1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 +CH4 +N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.

  9. [Effects of dicyandiamide combined with nitrogen fertilizer on N2O emission and economic benefit in winter wheat and summer maize rotation system].

    PubMed

    Wang, Yan-qun; Li, Ying-chun; Peng, Zheng-ping; Wang, Chao-dong; Liu, Ya-nan

    2015-07-01

    Aiming at the problems of excessive and unreasonable fertilizer application, lower nitrogen use efficiency, increasing N2O emission from soil and fertilizer in current intensified agricultural productions, a field experiment was conducted to study the effects of dicyandiamide (DCD) combined with nitrogen fertilizer application at different levels, i.e., 150, 225, 300 kg . hm-2, on N20 emission and relevant economic benefit in a typical winter wheat-summer maize rotation system in North China Plain. The results showed that DCD application decreased N2O emission fluxes and cumulative emissions by 25.6%-32.1% and 23.1%-31.1% in the year-round. There was a significant positive exponential correlation between N2O flux and soil surface temperature or soil moisture content. The effect of soil moisture on N2O emission was stronger in wheat season than in maize season, while the effect of temperature on N2O emission was on the contrary. The yields of winter wheat and summer maize with DCD addition were increased by 16.7%-24.6% and 29.8%-34.5%, respectively, and the average economic income of two seasons was increased by 7973.2 yuan . hm-2. Therefore, appropriate rate of N fertilizer combined with DCD could not only increase crop yield and economic income, but also reduce N2O emission. Considering environmental and economic benefit under this experimental condition, DCD combined with nitrogen of moderate level (total N amount 225 kg . hm-2) was a good nitrogen management mode in North China.

  10. Production of nitrogen-free, hyperpolarized 129Xe gas

    NASA Astrophysics Data System (ADS)

    Ruth, U.; Hof, T.; Schmidt, J.; Fick, D.; Jänsch, H. J.

    129Xe with a nuclear polarization far above the thermal equilibrium value (hyperpolarized) is used in NMR studies to increase sensitivity. Gaseous, adsorbed, or dissolved xenon is utilized in physical, chemical, and medical applications. With the aim in mind to study single-crystal surfaces by NMR of adsorbed hyperpolarized 129Xe, three problems have to be solved. The reliable production of 129Xe with highest nuclear polarization possible, the separation of the xenon gas from the necessary quench gas nitrogen without polarization loss, and the dosing/delivery of small amounts of polarized xenon gas to a sample surface. Here we describe an optical pumping setup that regularly produces xenon gas with a 129Xe nuclear polarization of 0.7(+/-0.07). We show that a freeze-pump-thaw separation of xenon and nitrogen is feasible without a significant loss in xenon polarization. The nitrogen partial pressure can be suppressed by a factor of 400 in a single separation cycle. Dosing is achieved by using the low vapor pressure of a frozen hyperpolarized xenon sample.

  11. Application of the 15N gas-flux method for measuring in situ N2 and N2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

    NASA Astrophysics Data System (ADS)

    Sgouridis, Fotis; Stott, Andrew; Ullah, Sami

    2016-03-01

    Soil denitrification is considered the most un-constrained process in the global N cycle due to uncertain in situ N2 flux measurements, particularly in natural and semi-natural terrestrial ecosystems. 15N tracer approaches can provide in situ measurements of both N2 and N2O simultaneously, but their use has been limited to fertilized agro-ecosystems due to the need for large 15N additions in order to detect 15N2 production against the high atmospheric N2. For 15N-N2 analyses, we have used an "in-house" laboratory designed and manufactured N2 preparation instrument which can be interfaced to any commercial continuous flow isotope ratio mass spectrometer (CF-IRMS). The N2 prep unit has gas purification steps and a copper-based reduction furnace, and allows the analysis of small gas injection volumes (4 µL) for 15N-N2 analysis. For the analysis of N2O, an automated Tracegas Preconcentrator (Isoprime Ltd) coupled to an IRMS was used to measure the 15N-N2O (4 mL gas injection volume). Consequently, the coefficient of variation for the determination of isotope ratios for N2 in air and in standard N2O (0.5 ppm) was better than 0.5 %. The 15N gas-flux method was adapted for application in natural and semi-natural land use types (peatlands, forests, and grasslands) by lowering the 15N tracer application rate to 0.04-0.5 kg 15N ha-1. The minimum detectable flux rates were 4 µg N m-2 h-1 and 0.2 ng N m-2 h-1 for the N2 and N2O fluxes respectively. Total denitrification rates measured by the acetylene inhibition technique in the same land use types correlated (r = 0.58) with the denitrification rates measured under the 15N gas-flux method, but were underestimated by a factor of 4, and this was partially attributed to the incomplete inhibition of N2O reduction to N2, under a relatively high soil moisture content, and/or the catalytic NO decomposition in the presence of acetylene. Even though relatively robust for in situ denitrification measurements, methodological

  12. Real-Time N2O Gas Detection System for Agricultural Production Using a 4.6-μm-Band Laser Source Based on a Periodically Poled LiNbO3 Ridge Waveguide

    PubMed Central

    Tokura, Akio; Asobe, Masaki; Enbutsu, Koji; Yoshihara, Toshihiro; Hashida, Shin-nosuke; Takenouchi, Hirokazu

    2013-01-01

    This article describes a gas monitoring system for detecting nitrous oxide (N2O) gas using a compact mid-infrared laser source based on difference-frequency generation in a quasi-phase-matched LiNbO3 waveguide. We obtained a stable output power of 0.62 mW from a 4.6-μm-band continuous-wave laser source operating at room temperature. This laser source enabled us to detect atmospheric N2O gas at a concentration as low as 35 parts per billion. Using this laser source, we constructed a new real-time in-situ monitoring system for detecting N2O gas emitted from potted plants. A few weeks of monitoring with the developed detection system revealed a strong relationship between nitrogen fertilization and N2O emission. This system is promising for the in-situ long-term monitoring of N2O in agricultural production, and it is also applicable to the detection of other greenhouse gases. PMID:23921829

  13. Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management

    NASA Astrophysics Data System (ADS)

    Yao, Zhisheng; Zheng, Xunhua; Wang, Rui; Dong, Haibo; Xie, Baohua; Mei, Baoling; Zhou, Zaixing; Zhu, Jianguo

    2013-06-01

    synthetic nitrogen fertilizers play an important role in increasing cereal grain yields, there have been increased concerns about their intensive utilization and environmental consequences. The overall goal of this study is to gain an insight into the integrated evaluation of greenhouse gas emission and nitric oxide (NO) release and grain yield as affected by nitrogen fertilization in a subtropical rice-wheat rotation system. The assessment was based on four consecutive yearly measurements of the fluxes of methane (CH4), nitrous oxide (N2O) and ecosystem respiration (CO2), and the simultaneous observation of NO emissions in nonrice seasons under three fertilization practices (i.e., the conventional farmers' practice with common nitrogen application rate, an alternative practice with reduced nitrogen input, and no nitrogen application as a control). Clearly, these trace gas fluxes showed largely intra-annual and interannual variations, highlighting the importance of entire year measurement for multiple years to achieve representative annual estimates. The annual mean CH4 fluxes varied from 95 kg C ha-1 (7.8 kg C t-1 grain) for the farmers' practice to 205 kg C ha-1 (25.7 kg C t-1 grain) for the control, indicating that nitrogen fertilization inhibited CH4 emissions. Across all the years, the annual N2O emissions increased exponentially with an increasing nitrogen rate and harvested aboveground biomass. The annual N2O emission averaged 1.3-5.3 kg N ha-1(159-444 g N t-1 grain) for all treatments. The annual direct emission factors of N2O-N tended to increase with increasing nitrogen rate and averaged 0.61% and 0.85% for the alternative and farmers' practices, respectively. Over all nonrice seasons, the seasonal mean NO emissions ranged from 0.15 to 1.4 kg N ha-1(58-253 g N t-1 grain), and were equivalent to 0.43% to 0.54% of the applied nitrogen. Averaging across the 4 years, the annual aggregate emissions of CH4 and N2O were 7.4 t CO2-eq ha-1(928 kg CO2-eq t-1grain

  14. Rapid N2O fluxes at high level of nitrate nitrogen addition during freeze-thaw events in boreal peatlands of Northeast China

    NASA Astrophysics Data System (ADS)

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Wang, Lili; Guo, Yuedong

    2016-06-01

    Freeze-thaw (FT) events and increasing nitrogen (N) availability may alter N turnover and nitrous oxide (N2O) emissions in permafrost peatlands. However, the responses of N2O emissions to different N levels and additions during FT events are far from clear. We conducted an incubation study to investigate the impacts of different N addition levels (LN: 0.07 mg N g-1, HN: 0.14 mg N g-1) and N addition forms (AC: ammonium chloride, NS: sodium nitrate) on the emissions of N2O under FT and non-freeze-thaw (NFT) conditions in boreal peatlands of Northeast China. Results indicated that the FT condition significantly increased N2O emissions compared with the NFT condition and peaks occurred during thawing. Compared with AC treatments, NS treatments significantly elevated the accumulation of N2O emissions under the FT condition, exhibiting significant differences in different NS levels. N2O emissions were also positively dependent on soil NO3- concentrations to supply nitrate for denitrification. Nitrate-N addition was mainly responsible for the burst of N2O with denitrification as the main process during FT events. Therefore, these results suggest that N2O emissions potentially increase during FT events with increasing nitrate-N deposition in permafrost peatlands, which would contribute to global climate warming.

  15. Self-consistent simulation of N_2/H2 gas plasma for low-k material etching

    NASA Astrophysics Data System (ADS)

    Shon, Chae-Hwa; Makabe, Toshiaki

    2003-10-01

    We have developed a self-consistent modeling tool for H_2/N2 gas in two-frequency capacitively coupled plasma (2f-CCP) [1], based on the relaxation continuum (RCT) model [2]. As the resistance-capacitance (RC) delay of signals through interconnection materials becomes important, low-k materials have been proposed to solve the probelm. H_2/N2 gas is a promising candidate for the etching of future low-k dielectric materials because of high selectivity and environmentally friendly process. There are many reactions among the vibrationally excited states, electronically excited states, and ionized plasma in the N_2/H2 gas, that have to be considered self-consistently. In this model, plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatiotemporal periodic steady state profile could be obtained. The spatiotemporal profiles and reactions of plasma and neutrals are discussed as a simulation results of the model. [1] C. H. Shon and T. Makabe, Submitted to Phys. Rev. E. [2] T. Makabe, "Advences in Low Temperature RF plasmas" (Elsevier, 2002).

  16. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization

    NASA Astrophysics Data System (ADS)

    Li, Guihua; Jing, Chenrui; Zeng, Bin; Xie, Hongqiang; Yao, Jinping; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-03-01

    Recently, Yao et al. demonstrated the creation of coherent emissions in nitrogen gas with two-color (800 nm + 400 nm) ultrafast laser pulses [J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, New J. Phys. 15, 023046 (2013), 10.1088/1367-2630/15/2/023046]. Based on this two-color scheme, here we report on systematic investigation of temporal characteristics of the radiation emitted at 391 nm [N2+: B2Σu+(ν =0) -X2Σg+(ν =0)] by experimentally examining its temporal profiles with the increase of the plasma channel induced by the intense 800-nm femtosecond laser pulses at a nitrogen-gas pressure of ˜25 mbar. We reveal unexpected temporal profiles of the coherent emissions, which show significant superradiance signatures owing to the cooperation of an ensemble of excited N2+ molecules that are coherently radiating in phase. Our findings shed more light on the mechanisms behind the coherent laserlike emissions induced by strong-field ionization of molecules.

  17. Rotational Energy Transfer and Collisional Induced Raman Linewidths in N2 Gas. 1; Energy Transfer Rates

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotationally inelastic transitions of N2 have been studied in the coupled state (CS) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigidrotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range. The CC and CS cross sections have been obtained both with and without identical molecule exchange symmetry, whereas exchange was neglected in the IOS calculations. The CS results track the CC cross sections rather well; between 113 - 219 cm(exp -1) the average deviation is 14%. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp -1), shows that IOS is sensitive to the amount of inelasticity and the results for large DELTA J transitions are subject to larger errors. It is found that the state-to-state cross sections with even and odd exchange symmetry agree to better than 2% and are well represented as a sum of direct and exchange cross sections for distinguishable molecules, an indication of the applicability of a classical treatment for this system. This result, however, does not apply to partial cross sections for given total J, but arises from a near cancellation in summing over partial waves. In order to use rigid-rotor results for the calculation of effective rotational excitation rates of N2 in the v=1 vibrational level colliding with bath N2 molecules in the v=0 level, it is assumed that exchange scattering between molecules in different vibrational levels is negligible and direct scattering is independent of Y. Good agreement with room temperature experimental data is obtained. The effective rates determined using the IOS and energy corrected sudden (ECS) approximations are also in reasonable agreement with experiment, with the ECS results being somewhat better. The problem with a degeneracy factor in earlier cross section expressions for collisions between identical molecules is pointed out

  18. Rotational Energy Transfer and Collisional Induced Raman Linewidths in N2 Gas. 1; Energy Transfer Rates

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotationally inelastic transitions of N2 have been studied in the coupled state (CS) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigidrotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range. The CC and CS cross sections have been obtained both with and without identical molecule exchange symmetry, whereas exchange was neglected in the IOS calculations. The CS results track the CC cross sections rather well; between 113 - 219 cm(exp -1) the average deviation is 14%. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp -1), shows that IOS is sensitive to the amount of inelasticity and the results for large DELTA J transitions are subject to larger errors. It is found that the state-to-state cross sections with even and odd exchange symmetry agree to better than 2% and are well represented as a sum of direct and exchange cross sections for distinguishable molecules, an indication of the applicability of a classical treatment for this system. This result, however, does not apply to partial cross sections for given total J, but arises from a near cancellation in summing over partial waves. In order to use rigid-rotor results for the calculation of effective rotational excitation rates of N2 in the v=1 vibrational level colliding with bath N2 molecules in the v=0 level, it is assumed that exchange scattering between molecules in different vibrational levels is negligible and direct scattering is independent of Y. Good agreement with room temperature experimental data is obtained. The effective rates determined using the IOS and energy corrected sudden (ECS) approximations are also in reasonable agreement with experiment, with the ECS results being somewhat better. The problem with a degeneracy factor in earlier cross section expressions for collisions between identical molecules is pointed out

  19. Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1980-01-01

    The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.

  20. Thermodynamic properties of nitrogen gas from sound velocity measurements

    NASA Technical Reports Server (NTRS)

    Younglove, B. A.

    1979-01-01

    Thermodynamic properties of nitrogen gas have been calculated from 80 K to 350 K and at pressures to 10 bar from sound velocity measurements and existing P-V-T data using multiproperty fitting techniques. These new data are intended to improve existing predictive capability of the equation of state in the low density region needed for use with the NASA-Langley National Transonics Facility.

  1. Thermodynamic properties of nitrogen gas from sound velocity measurements

    NASA Technical Reports Server (NTRS)

    Younglove, B. A.

    1979-01-01

    Thermodynamic properties of nitrogen gas have been calculated from 80 K to 350 K and at pressures to 10 bar from sound velocity measurements and existing P-V-T data using multiproperty fitting techniques. These new data are intended to improve existing predictive capability of the equation of state in the low density region needed for use with the NASA-Langley National Transonics Facility.

  2. Effect of pendimethalin and quizalofop on N2-fixing bacteria in relation to availability of nitrogen in a Typic Haplustept soil of West Bengal, India.

    PubMed

    Das, Amal C; Nayek, Hemanta; Nongthombam, S Devi

    2012-04-01

    An experiment was conducted under laboratory conditions to investigate the effect of two systemic herbicides viz., pendimethalin and quizalofop, at their recommended field rates (1.0 kg and 50 g active ingredient ha(- 1), respectively) on the growth and activities of non-symbiotic N(2)-fixing bacteria in relation to mineralization and availability of nitrogen in a Typic Haplustept soil. Both the herbicides, either singly or in a combination, stimulated the growth and activities of N(2)-fixing bacteria resulting in higher mineralization and availability of nitrogen in soil. The single application of quizalofop increased the proliferation of aerobic non-symbiotic N(2)-fixing bacteria to the highest extent while that of pendimethalin exerted maximum stimulation to their N(2)-fixing capacity in soil. Both the herbicides, either alone or in a combination, did not have any significant difference in the stimulation of total nitrogen content and availability of exchangeable NH(4)(+) while the solubility of NO(3)(-) was highly manifested when the herbicides were applied separately in soil.

  3. Nitrogen Gas Heating and Supply System for SST-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Ziauddin, Khan; Firozkhan, Pathan; Yuvakiran, Paravastu; Siju, George; Gattu, Ramesh; Hima, Bindu; Dilip, C. Raval; Prashant, Thankey; Kalpesh, Dhanani; Subrata, Pradhan

    2013-02-01

    Steady State Tokamak (SST-1) vacuum vessel baking as well as baking of the first wall components of SST-1 are essential to plasma physics experiments. Under a refurbishment spectrum of SST-1, the nitrogen gas heating and supply system has been fully refurbished. The SST-1 vacuum vessel consists of ultra-high vacuum (UHV) compatible eight modules and eight sectors. Rectangular baking channels are embedded on each of them. Similarly, the SST-1 plasma facing components (PFC) are comprised of modular graphite diverters and movable graphite based limiters. The nitrogen gas heating and supply system would bake the plasma facing components at 350°C and the SST-1 vacuum vessel at 150°C over an extended duration so as to remove water vapour and other absorbed gases. An efficient PLC based baking facility has been developed and implemented for monitoring and control purposes. This paper presents functional and operational aspects of a SST-1 nitrogen gas heating and supply system. Some of the experimental results obtained during the baking of SST-1 vacuum modules and sectors are also presented here.

  4. First detection of gas-phase ammonia in a planet-forming disk. NH3, N2H+, and H2O in the disk around TW Hydrae

    NASA Astrophysics Data System (ADS)

    Salinas, Vachail N.; Hogerheijde, Michiel R.; Bergin, Edwin A.; Cleeves, L. Ilsedore; Brinch, Christian; Blake, Geoffrey A.; Lis, Dariusz C.; Melnick, Gary J.; Panić, Olja; Pearson, John C.; Kristensen, Lars; Yıldız, Umut A.; van Dishoeck, Ewine F.

    2016-06-01

    Context. Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key for understanding the formation of nitrogen-bearing species in early solar system analogs. In dense cores, 10% to 20% of the nitrogen reservoir is locked up in ices such as NH3, NH4+ and OCN-. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. Aims: We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Methods: Using HIFI on the Herschel Space Observatory, we detected for the first time the ground-state rotational emission of ortho-NH3 in a protoplanetary disk around TW Hya. We used detailed models of the disk's physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explored two radial distributions (extended across the disk and confined to <60 au like the millimeter-sized grains) and two vertical distributions (near the midplane and at intermediate heights above the midplane, where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. Results: The NH310-00 line is detected simultaneously with H2O 110-101 at an antenna temperature of 15.3 mK in the Herschel beam; the same spectrum also contains the N2H+ 6-5 line with a strength of 18.1 mK. We use physical-chemical models to reproduce the fluxes and assume that water and ammonia are cospatial. We infer ammonia gas-phase masses of 0.7-11.0 × 1021 g, depending on the adopted spatial distribution, in line with previous literature estimates. For water, we infer gas-phase masses of 0.2-16.0 × 1022 g, improving upon earlier literature estimates This corresponds to NH3/H2O abundance ratios of 7%-84%, assuming that water and ammonia are co-located. The inferred N2H+ gas mass of 4.9 × 1021 g agrees well with earlier

  5. Effects of agricultural practices on greenhouse gas emissions (N2O, CH4 and CO2) from corn fields

    NASA Astrophysics Data System (ADS)

    Hui, D.; Wang, J.; Jima, T.; Dennis, S.; Stockert, C.; Smart, D.; Bhattarai, S.; Brown, K.; Sammis, T.; Reddy, C.

    2012-12-01

    The United States is, by far, the largest producer of corn (Zea mays L.) in the world. Recent increases in fertilizer cost and concerns over global climate change have farmers and others interested in more efficient fertilization management and greenhouse gas emissions reductions. To seek the best management practices, we conducted field experiments during the 2012 growing season at Tennessee State University Agricultural Research and Demonstration Center in Nashville, TN. Six treatments were applied including regular URAN application [2 times], multiple URAN applications [4 times], denitrification inhibitor with regular URAN application, and chicken litter plus regular URAN application in no-tilled plots, and URAN application plus bio-char in tilled plots, all compared to regular URAN application in conventional tilled plots. Each treatment was replicated six times (blocks). We measured N2O, CO2 and CH4 emissions using a closed chamber method after rainfall events, fertilizer applications or every two weeks whichever was shorter. Corresponding soil NH4+-N and NO3--N, soil temperature and moisture were also measured during the gas sampling. Plant physiology and growth were measured about every two weeks. While preliminary results indicate that N2O and CO2 fluxes were significantly influenced by the agricultural practices on some days, particularly after rainfall events, CH4 flux was not influenced by the treatments during most of the days. Plots with bio-char showed significantly lower N2O emissions. We also measured N2O flux in a commercial corn field using the Eddy Covariance (EC) technique to ground verify the chamber based N2O emissions at the field scale. Results obtained with the EC technique seem comparable with the chamber method.

  6. Photoacoustic Spectroscopy for the Quantification of N2O in the Off-Gas of Wastewater Treatment Plants.

    PubMed

    Thaler, Klemens M; Berger, Christoph; Leix, Carmen; Drewes, Jörg; Niessner, Reinhard; Haisch, Christoph

    2017-03-21

    Different configurations of photoacoustic (PA) setups for the online-measurement of gaseous N2O, employing semiconductor lasers at 2.9 and 4.5 μm, were developed and tested. Their performance was assessed with respect to the analysis of N2O emissions from wastewater treatment plants. For this purpose, the local N2O emissions of a wastewater treatment bioreactor was sampled by a dedicated mobile sampling device, and the total N2O emissions were analyzed in the gastight headspace of the bioreactor. We found that the use of a quantum-cascade laser emitting at about 4.53 μm, operated in a wavelength modulation mode, in combination with a conventional longitudinal PA cell yielded the highest sensitivity (<100 ppbv). However, we also observed a strong cross-sensitivity to humidity, which can be explained by increased V-T relaxation. This observation in combination with the limited dynamic range (max conc. ∼ 3000 ppmv) led us to the use of the less-sensitive but spectroscopically more robust 2.9 μm laser. A detection limit below 1 ppmv, a dynamic range of more than 4 orders of magnitude, no influence of humidity or any other substance relevant to the off-gas analysis, as well as a comparable low price of the laser source made it the ideal tool for N2O analyses of the off-gas of a wastewater treatment plant. Such a system was implemented successfully in a full-scale wastewater treatment plant. The results regarding the comparison of different PA setups can be transferred to other systems, and the optimum performance can be selected according to the specific demands.

  7. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  8. N2O Emission and Hydroxylamine Oxidase (HAO) Activity in a Nitrogen Removal Process Based on Activated Sludge with Three COD/NH4(+) Ratios.

    PubMed

    He, Zhi-Xian; Yuan, Lin-Jiang; Wei, Yi-Ni; Nan, Ya-Ping

    2017-05-01

      This study dealt with nitrous oxide (N2O) emission and hydroxylamine oxidase (HAO) activity of waste sludge in a nitrification and denitrification process employing three carbon nitrogen (C/N) ratios in a sequencing batch reactor (SBR). The experimental results indicated that N2O emission increased dramatically after the C/N ratio in the sludge increased from 6.5 to 9.3, which was greater than the N2O emission at two other C/N ratios (3.5, 6.5). The HAO activity in the anoxic period was higher with all three C/N ratios than in the aerobic period. The results suggest that N2O was produced primarily in the aerobic period and the main source of the N2O emission resulted from denitrification by nitrifying bacteria and aerobic hydroxylamine oxidation. When a relatively deficient carbon source existed, the N2O emission under anoxic conditions was affected by the HAO activity and vice versa. When the HAO activity was relatively high, it was found that more N2O was released.

  9. Inactivation of microorganisms and endotoxins by low temperature nitrogen gas plasma exposure.

    PubMed

    Shintani, Hideharu; Shimizu, Naohiro; Imanishi, Yuichiro; Sekiya, Takayuki; Tamazawa, Kahoru; Taniguchi, Akira; Kido, Nobuo

    2007-12-01

    The plasma of several different gases has shown a sporicidal activity. From these gases, nitrogen gas was most difficult to produce atomic nitrogen radicals. However, these radicals have a high energy, indicating that nitrogen gas plasma could be used to sterilize microorganisms and inactivate endotoxins. The sterilization mechanism of nitrogen gas plasma is the synergistic effect of a high rising-up voltage pulse, UV irradiation and atomic nitrogen radicals. Thus, the target cells were damaged by degradation, which resulted in death. The biological indicator (BI) used in this study was Geobacillus stearothermophilus ATCC 7953 at a population of 1 x 10(6) CFU/sheet. Sterility assurance was confirmed by using the BI. Moreover, endotoxins were successfully inactivated. More than 5 log reduction of endotoxins could be attained with 30 minutes of nitrogen gas plasma exposure. Material functionality influenced by nitrogen gas plasma presented a satisfactory result. No deterioration of polymers could be observed by nitrogen gas plasma exposure.

  10. The impact of simulated chronic nitrogen deposition on the biomass and N2-fixation activity of two boreal feather moss–cyanobacteria associations

    PubMed Central

    Gundale, Michael J.; Bach, Lisbet H.; Nordin, Annika

    2013-01-01

    Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems. PMID:24196519

  11. Laser induced aluminiun plasma analysis by optical emission spectroscopy in a nitrogen background gas

    NASA Astrophysics Data System (ADS)

    Chamorro, J. C.; Uzuriaga, J.; Riascos, H.

    2012-06-01

    We studied an Al plasma generated by a Nd:YAG laser with a laser fluence of 4 J/cm2, a wavelength of 1064 nm, energy pulse of 500 mJ and 10 Hz repetition rate. We studied their spectral characteristics at various ambient nitrogen pressures by optical emission spectroscopy (OES). The N2 gas pressure was varied from 20 mTorr to 150 mTorr. In Al plume, both atomic and ionic spectra were observed. The electron temperature and electron number density of the plume as of the function ambient gas pressure were determined. The electron temperature was calculated by using the Boltzmann-plot method and the number density was calculated considering the stark effect as dominating on the emission lines.

  12. Nitrogenous gas emissions induced by abiotic nitrite reactions with soil organic matter of a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Vereecken, Harry; Schloter, Michael; Brüggemann, Nicolas

    2016-04-01

    As an important intermediate of the nitrogen cycle, nitrite is highly reactive to soil organic matter (SOM) in forest soils under acidic conditions. However, there is little knowledge about how much its abiotic reactions with SOM contribute to nitrogen (N) gas emissions of forest soils till now. In this study, we provide data on N gas (N2O, NO, NO2) emissions from abiotic nitrite reactions with different fractions of soil organic matter in spruce forest soil, as well as the mechanisms involved. Soil samples were taken from the Oh layer at the TERENO-Wüstebach catchment, Germany, where Norway spruce (Picea abies) dominates. SOM was fractionated into dissolved organic matter (DOM), fulvic acid (FA), humic acid (HA) and humin (HN) according to their solubility. The dynamics of simultaneous NOx and N2O emissions were analyzed with a dynamic flow-through chamber system, coupled to an infrared laser absorption analyzer for N2O and a chemo-luminescence analyzer for NOx (NO and NO2), which allowed emission measurements with high time resolution. The 15N labelling technique was used for tracing the fate of nitrite-N towards establishment of a total N balance. When nitrite was added to the soil fractions, a large amount of NOx was immediately emitted, mostly in the form of NO. N2O emission was delayed by approximately 0.5-1 h. The NO and N2O emission pattern could be almost perfectly fitted with the Hill equation. The N2O formation rates increased significantly in the following order: DOM, FA, HA and HN, while the total amounts of the gases emitted increased significantly in the opposite order. These results revealed that abiotic reactions of nitrite with SOM in spruce forest soil play an important role in N gas emissions, while the chemical nature of the different SOM fractions determines the rate and amount of N gas emissions.

  13. On the mechanism of the runaway of electrons in a gas: the universal escape curves for He, Xe, N2

    NASA Astrophysics Data System (ADS)

    Yakovlenko, Sergey I.; Tkachev, A. N.

    2004-05-01

    Basing on the simple form of the energy conservation law and taking into account a multiplication of electrons, we show that the Townsend mechanism of electron multiplication in a gas is valid at sufficiently large interelectrode distance even at so large values of an electric field strength, when it is possible to neglect ionization friction. Correspondingly, the runaway electron producing in a gas is determined not by the local criteria accepted presently, but by the ratio of interelectrode distance and the characteristic electron multiplication length. Basing on numerical simulations for nitrogen gas we show that the critical discharge voltage Ucr(pd), at which the runaway electrons begin prevail, is a function of the product of the interelectrode distance by the gas pressure pd. This function (escape curve of Ucr-pd dependence) separates the area of an effective multiplication of electrons and the area, in which electrons escape discharge gap not having time to be multiplied. The curve Ucr(pd) has the upper and lower branches. Using Ucr(pd) we obtain the analog of well-known Paschen curve, which describes additionally the absence of a self-sustained discharge at a high voltages sufficiently rapidly supplied across the electrodes. Escape curves for helium, xenon and nitrogen are presented.

  14. Indigenous nitrogen in the Moon: Constraints from coupled nitrogen-noble gas analyses of mare basalts

    NASA Astrophysics Data System (ADS)

    Füri, Evelyn; Barry, Peter H.; Taylor, Lawrence A.; Marty, Bernard

    2015-12-01

    Nitrogen and noble gas (Ne-Ar) abundances and isotope ratios, determined by step-wise CO2 laser-extraction, static-mass spectrometry analysis, are reported for bulk fragments and mineral separates of ten lunar mare basalts (10020, 10057, 12008, 14053, 15555, 70255, 71557, 71576, 74255, 74275), one highland breccia (14321), and one ferroan anorthosite (15414). The mare basalt sub-samples 10057,183 and 71576,12 contain a large amount of solar noble gases, whereas neon and argon in all other samples are purely cosmogenic, as shown by their 21Ne/22Ne ratios of ≈0.85 and 36Ar/38Ar ratios of ≈0.65. The solar-gas-free basalts contain a two-component mixture of cosmogenic 15N and indigenous nitrogen (<0.5 ppm). Mare basalt 74255 and the olivine fraction of 15555,876 record the smallest proportion of 15Ncosm; therefore, their δ15 N values of -0.2 to + 26.7 ‰ (observed at the low-temperature steps) are thought to well represent the isotopic composition of indigenous lunar nitrogen. However, δ15 N values ≤ - 30 ‰ are found in several basalts, overlapping with the isotopic signature of Earth's primordial mantle or an enstatite chondrite-like impactor. While the lowest δ15 N values allow for nitrogen trapped in the Moon's interior to be inherited from the proto-Earth and/or the impactor, the more 15N-enriched compositions require that carbonaceous chondrites provided nitrogen to the lunar magma ocean prior to the solidification of the crust. Since nitrogen can efficiently be incorporated into mafic minerals (olivine, pyroxene) under oxygen fugacities close to or below the iron-wustite buffer (Li et al., 2013), the mare basalt source region is likely characterized by a high nitrogen storage capacity. In contrast, anorthosite 15414 shows no traces of indigenous nitrogen, suggesting that nitrogen was not efficiently incorporated into the lunar crust during magma ocean differentiation.

  15. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    PubMed

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N2O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of Polysulfone (PSF)-Carbon Molecular Sieve (CMS) Mixed Matrix Membrane (MMM) For O2/N2 Gas Separation

    NASA Astrophysics Data System (ADS)

    Ismail, A. F.; Rahman, W. R.; Aziz, F.

    2009-06-01

    Mixed matrix membranes (MMMs) comprising polysulfone (PSF) Udel® P-1700 and synthesized carbon molecular sieve (CMS) particles (<25 μm) have been fabricated and characterized. CMS were synthesized by using polyacrylonitrile (PAN) as polymer precursor. The casting process was performed at the processing temperature close to Tg of PSF in order to maintain the flexibility of polymer during film formation. This study investigated the effects of CMS loadings (10, 20, 30 and 35 wt%) on the morphology and the gas separation performance of PSF-CMS MMMs. The fabricated MMMs were characterized using TGA, DSC, FESEM and single gas permeation test using high purity O2 and N2. Based on FESEM micrograph, a good polymer-sieve adhesion was achieved in MMMs using the combination of PSF-CMS even at high sieve loading (up to 35 wt%). The formation of `sieve-in-the-cage' morphology in PSF-CMS MMMs has been minimized to a great extend by implementing casting procedure at the operating temperature close to the Tg of polymer matrix. The O2 and N2 permeability for MMMs were increased with increasing CMS loading; while at 20 wt% CMS loading the O2/N2 selectivity attain the highest value which is 5.97 with the O2 permeability of 7.9617 barrers.

  17. Influence of the gas flow rate on the nonchemical equilibrium N2 arc behavior in a model nozzle circuit breaker

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Sun, Hao; Tanaka, Yasunori; Tomita, Kentaro; Rong, Mingzhe; Yang, Fei; Uesugi, Yoshihiko; Ishijima, Tatsuo; Wang, Xiaohua; Feng, Ying

    2016-10-01

    The influence of the gas flow rate on the N2 arc behavior was investigated based on a previously established nonchemical equilibrium (non-CE) model. This numerical non-CE model was adopted in the N2 nozzle arc in a model circuit breaker. The arc behaviors of both the arc burning and arc decay phases were obtained at different gas flow rates in both the non-CE and local thermal equilibrium (LTE) model. To better understand the influence of the gas flow rate, in this work we devised the concept of the nonequilibrium parameter. Additionally, the influences of convection, diffusion, and chemical reactions were examined separately to determine which one contributed most to the non-CE behavior. Finally, laser Thomson scattering (LTS) measurements at different gas flow rates were adopted to further demonstrate the validity of the non-CE model. The results of the macroscopic behaviors indicate that the deviations between the non-CE and LTE models during the arc burning phase are much fewer than those during the arc decay phase. By the nonequilibrium parameters, it clearly indicates that with an increase in the gas flow rate, the non-CE effect will be greatly enhanced. During the arc burning phase, this non-CE effect is mainly caused by radial diffusion of the particles. During the arc decay phase, for the charged particles, the chemical reactions had the greatest effect on the time variations of the particle number densities; however, for the neutral particles the time variations of the number densities were mutually influenced by convections, diffusions, and chemical reactions. Finally, the LTS results further demonstrate the validity of the non-CE model at different gas flow rates.

  18. Global bounds on nitrogen gas emissions from humid tropical forests

    NASA Astrophysics Data System (ADS)

    Brookshire, E. N. J.; Gerber, S.; Greene, W.; Jones, R. T.; Thomas, S. A.

    2017-03-01

    Denitrification and hydrologic leaching are the two major pathways by which nitrogen (N) is lost from the terrestrial biosphere. Humid tropical forests are thought to dominate denitrification losses from unmanaged lands globally, but there is large uncertainty about the range and key drivers of total N gas emissions across the biome. We combined pantropical measures of small watershed stream chemistry with ecosystem modeling to determine total N gas losses and associated uncertainty across humid tropical forests. Our calculations reveal that denitrification in soils and along hydrologic flow paths contributes on average >45% of total watershed N losses. However, when denitrification occurs exclusively in shallow soils, simulations indicate that gas emissions would exceed N inputs and render plants severely N limited, which contradicts observations of widespread N sufficiency in tropical forests. Our analyses suggest an upper bound on soil denitrification of 80% of total external N losses beyond which tropical plant growth would be compromised.

  19. Urbanisation-related land use change from forest and pasture into turf grass modifies soil nitrogen cycling and increases N2O emissions

    NASA Astrophysics Data System (ADS)

    van Delden, Lona; Rowlings, David W.; Scheer, Clemens; Grace, Peter R.

    2016-11-01

    Urbanisation is becoming increasingly important in terms of climate change and ecosystem functionality worldwide. We are only beginning to understand how the processes of urbanisation influence ecosystem dynamics, making peri-urban environments more vulnerable to nutrient losses. Brisbane in South East Queensland has the most extensive urban sprawl of all Australian cities. This research estimated the environmental impact of land use change associated with urbanisation by examining soil nitrogen (N) turnover and subsequent nitrous oxide (N2O) emissions using a fully automated system that measured emissions on a sub-daily basis. There was no significant difference in soil N2O emissions between the native dry sclerophyll eucalypt forest and an extensively grazed pasture, wherefrom only low annual emissions were observed amounting to 0.1 and 0.2 kg N2O ha-1 yr-1, respectively. The establishment of a fertilised turf grass lawn increased soil N2O emissions 18-fold (1.8 kg N2O ha-1 yr-1), with highest emissions occurring in the first 2 months after establishment. Once established, the turf grass lawn presented relatively low N2O emissions for the rest of the year, even after fertilisation and rain events. Soil moisture was significantly higher, and mineralised N accumulated in the fallow plots, resulting in the highest N2O emissions (2.8 kg N2O ha-1 yr-1) and significant nitrate (NO3-) losses, with up to 63 kg N ha-1 lost from a single rain event due to reduced plant cover removal. The study concludes that urbanisation processes creating peri-urban ecosystems can greatly modify N cycling and increase the potential for losses in the form of N2O and NO3-.

  20. Synthesis, crystal structure and phase transition of a Xe-N2 compound at high pressure: experimental indication of orbital interaction between xenon and nitrogen.

    PubMed

    Niwa, K; Matsuzaki, F; Hasegawa, M

    2016-12-21

    The van der Waals compound Xe(N2)2 with a C15 Laves structure was successfully synthesised at pressures greater than 4.4 GPa. We found that, at 10 GPa, the structure reversibly transforms from a cubic to a tetragonal phase. Further compression results in changes of Xe-N compound, which could result in the enhancement of orbital interactions between the xenon and nitrogen atoms.

  1. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures

    SciTech Connect

    Littke, R.; Krooss, B.; Frielingsdorf, J.; Idiz, E.

    1995-03-01

    The occurrence of natural gas accumulations with high percentages (up to 100%) of molecular nitrogen in various hydrocarbon provinces represents a largely unresolved problem and a serious exploration risk. In this context, a geochemical and basin modeling study was performed to evaluate the potential of sedimentary organic matter to generate molecular nitrogen. The masses of nitrogen present in coals - if converted into molecular nitrogen - are sufficient to fill commercial gas reservoirs. A calculation for gas accumulations in northern Germany, where percentages of molecular nitrogen range from less than 5 to greater than 90%, reveals that the molecular nitrogen generated in underlying coal-bearing strata is sufficient to account for the nitrogen gas even in the largest fields. In addition, much of the total nitrogen in clay-rich rock types, such as shales and mudstones, is fixed in sedimentary organic matter and may add to the nitrogen generation capacity of the coals.

  2. Short term responses of nitrogen trace gas emissions to nitrogen fertilization in tropical sugar cane: Variations due to soils and management practices

    NASA Technical Reports Server (NTRS)

    Matson, P. A.; Billow, C.; Hall, S.; Zachariassen, J.

    1994-01-01

    Nitrogen (N) fertilization of agricultural systems is thought to be a major source of the increase in atmospheric N2O; NO emissions from soils have also been shown to increase due to N fertilization. While N fertilizer use is increasing rapidly in the developing world and in the tropics, nearly all of our information on gas emissions is derived from studies of temperate zone agriculture. Using chambers, we measured fluxes of N2O and NO following urea fertilization in tropical sugar cane systems growing on a variety of soil types in the Hawaiian Islands, USA. On the island of Maui, where urea is applied in irrigation lines and soils are mollisols and inceptisols, N2O fluxes were elevated for a week or less following fertilization; maximum average fluxes were typically less than 30 ng cm(exp -2)/ h. NO fluxes were often an order of magnitude less than N2O. Together, N2O and NO represented from 0.01 - 0.5% of the applied N. In fields on the island of Hawaii, where urea is broadcast on the surface and soils are andisols, N2O fluxes were similar in magnitude to Maui but remained elevated for much longer periods after fertilization. NO emissions were 2-5 times higher than N2O through most of the sampling periods. Together the gases loss represented approximately 1. 1 - 3% of the applied N. Laboratory studies indicate that denitrification is a critical source of N2O in Maui, but that nitrification is more important in Hawaii. Experimental studies suggest that differences in the pattern of N2O/NO and the processes producing them are a result of both carbon availability and placement of fertilizer, and that the more information-intensive fertilizer management practice results in lower emissions.

  3. Nitrogen management in a maize-groundnut crop rotation of humid tropics: effect on N2O emission.

    PubMed

    Khalil, M I; Rosenani, A B; Van Cleemput, O; Fauziah, C I; Shamshuddin, J

    2001-12-12

    Development of appropriate land management techniques to attain sustainability and increase the N use efficiency of crops in the tropics has been gaining momentum. The nitrous oxides (N2Os) affect global climate change and its contribution from N and C management systems is of great significance. Thus, N transformations and N2O emission during maize-groundnut crop rotation managed with various N sources were studied. Accumulation of nitrate (NO3- ) and its disappearance happened immediately after addition of various N sources, showing liming effect. The mineral N retained for 2-4 weeks depending on the type and amount of N application. The chicken manure showed rapid nitrification in the first week after application during the fallow period, leading to a maximum N2O flux of 9889 g N2O-N m(-2) day(-1). The same plots showed a residual effect by emitting the highest N2O (4053 microg N2O-N m(-2) day(-1)) during maize cultivation supplied with a half-rate of N fertilizer. Application of N fertilizer only or in combination with crop residues exhibited either lowered fluxes or caused a sink during the groundnut and fallow periods due to small availability of substrates and/or low water-filled pore space (<40%). The annual N2O emission ranged from 1.41 to 3.94 kg N2O-N ha(-1); the highest was estimated from the chicken manure plus crop residues and half-rate of inorganic N-amended plots. Results indicates a greater influence of chicken manure on the N transformations and thereby N2O emission.

  4. Synthesis of boron/nitrogen-incorporated diamond-like carbon films by pulsed laser deposition using nitrogen gas and a boron-containing graphite target

    NASA Astrophysics Data System (ADS)

    Nakazawa, Hideki; Osozawa, Ryoichi; Mohnai, Yusuke; Nara, Yuki

    2017-10-01

    We have deposited boron/nitrogen-incorporated diamond-like carbon (B–N-DLC) films by pulsed laser deposition (PLD) using N2 gas and a B-containing graphite target, and compared the mechanical, tribological, electrical, and surface properties of the B–N-DLC films with those of pure DLC, boron-incorporated DLC (B-DLC), and nitrogen-incorporated DLC (N-DLC) films prepared by PLD. The B-DLC film had a much higher critical load than the pure DLC. The critical load of the B–N-DLC films became maximum at an optimum N2 pressure, which was higher than those of the pure DLC, B-DLC, and N-DLC films. The friction property in air was degraded by the N incorporation, whereas the B incorporation did not have a significant effect on the friction coefficient. The B–N-DLC films deposited at higher N2 pressures exhibited superhydrophilic wetting properties. The B–N-DLC films prepared at moderate N2 pressures had resistivities much less than that of the pure DLC film.

  5. [Effects of nitrogen application on soil greenhouse gas fluxes in Eucalyptus plantations with different soil organic carbon content].

    PubMed

    Li, Rui-Da; Zhang, Kai; Su, Dan; Lu, Fei; Wan, Wu-Xing; Wang, Xiao-Ke; Zheng, Hua

    2014-10-01

    The effects of nitrogen fertilization or nitrogen deposition on soil greenhouse gases fluxes has been well studied, while little has been piloted about the effects of nitrogen application on soil greenhouse gas fluxes and its discrepancy with different soil organic carbon content. In our study, we conducted field control experiment in a young Eucalyptus plantation in Southeast China. We compared the effects of 4 levels of nitrogen fertilization (Control: 0 kg · hm(-2); Low N: 84.2 kg · hm(-2); Medium N: 166.8 kg · hm(-2); High N: 333.7 kg · hm(-2)) on soil GHGs fluxes from 2 sites (LC and HC) with significantly different soil organic carbon (SOC) content (P < 0.05). The results showed: (1) Fertilization had significant priming effect on CO2 and N2O emission fluxes. One month after fertilization, both CO2 and N2O had the flux peak and decreased gradually, and the difference among the treatments disappeared at the end of the growing season. However, fertilization had no significant effect on CH4 oxidation between the 2 sites. (2) Fertilization and SOC were two crucial factors that had significant effects on CO2 and N2O emission. Fertilization had a significant positive effect on CO2 and N2O emission fluxes (P < 0.001). CH4 oxidation rates decreased with the increasing N addition, but there was no statistical difference (P > 0.05). The CO2 and N2O emission fluxes were significantly higher in HC than those in LC (P < 0.01). (3) Fertilization and SOC had great interactive effect on CO2 and N2O emission (P < 0.05). Compared with fluxes in LC, the fluxes in HC were much more sensitive to N input: low N could remarkably stimulate the CO2 and N2O emission. In conclusion, the effects of nitrogen fertilization on soil GHGs fluxes were not only in connection with the intensify of nitrogen, but also closely tied to the SOC content. When we assess the effects of nitrogen on soil GHGs fluxes, the difference induced by SOC should not be ignored.

  6. CO2 + N2O mixture gas hydrate formation kinetics and effect of soil minerals on mixture-gas hydrate formation process

    NASA Astrophysics Data System (ADS)

    Enkh-Amgalan, T.; Kyung, D.; Lee, W.

    2012-12-01

    CO2 mitigation is one of the most pressing global scientific topics in last 30 years. Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by the Kyoto Protocol and its global warming potential (GWP) of one metric ton is equivalent to 310 metric tons of CO2. They have similar physical and chemical properties and therefore, mixture-gas (50% CO2 + 50% N2O) hydrate formation process was studied experimentally and computationally. There were no significant research to reduce N20 gas and we tried to make hydrate to mitigate N20 and CO2 in same time. Mixture gas hydrate formation periods were approximately two times faster than pure N2O hydrate formation kinetic in general. The fastest induction time of mixture-gas hydrate formation observed in Illite and Quartz among various soil mineral suspensions. It was also observed that hydrate formation kinetic was faster with clay mineral suspensions such as Nontronite, Sphalerite and Montmorillonite. Temperature and pressure change were not significant on hydrate formation kinetic; however, induction time can be significantly affected by various chemical species forming under the different suspension pHs. The distribution of chemical species in each mineral suspension was estimated by a chemical equilibrium model, PHREEQC, and used for the identification of hydrate formation characteristics in the suspensions. With the experimental limitations, a study on the molecular scale modeling has a great importance for the prediction of phase behavior of the gas hydrates. We have also performed molecular dynamics computer simulations on N2O and CO2 hydrate structures to estimate the residual free energy of two-phase (hydrate cage and guest molecule) at three different temperature ranges of 260K, 273K, and 280K. The calculation result implies that N2O hydrates are thermodynamically stable at real-world gas hydrate existing condition within given temperature and pressure. This phenomenon proves that mixture-gas could be

  7. Nitrogen loss from high N-input vegetable fields - a) direct N2O emissions b) Spatiotemporal variability of N species (N2O, NH4+, NO3-) in soils

    NASA Astrophysics Data System (ADS)

    Pfab, H.; Ruser, R.; Palmer, I.; Fiedler, S.

    2009-04-01

    Nitrous oxide is a climate relevant trace gas. It contributes 7.9 % to the total anthropogenic greenhouse gas emission and it is also involved in stratospheric ozone depletion. Approximately 85 % of the anthropogenic N2O emissions result from agricultural activities, more than 50 % are produced during microbial N-turnover processes in soils. Especially soils with high N-input (N-fertilizer and high amount of N in plant residues) like vegetable cropped soils are assumed to cause high N2O losses. The aims of the study presented were (i) to quantify the N2O loss from a vegetable field (lettuce-cauliflower crop rotation), (ii) to calculate an emission factor for the study site in Southwest Germany and to compare this factor with the default value provided by the IPCC (2006) and (iii) to test the emission reduction potential (Ammonium Sulfate Nitrate fertilizer, ASN either by reduced N-fertilization) in comparison with common N doses used for good agricultural practice or by the use of a nitrification inhibitor (DMPP), a banded N-application (lettuce) or a depot fertilization measure (pseudo-CULTAN in order to suppress nitrification). N2O fluxes determined with the closed chamber method were highly variable in time with strongly increased flux rates after N-fertilization in combination with rainfall or irrigation measures and after the incorporation of cauliflower crop residues. Using the mean soil nitrate contents of the top soil of our investigated treatments (0-25 cm depth), we could explain approximately 60 % of the variability of the cumulative N2O losses during the vegetation period of lettuce and cauliflower. The cumulative N2O emissions ranged between 0,99 kg N2O-N ha-1 from the unfertilized control plots (vegetation period) and 6,81 kg N2O-N ha-1 from the plots with the highest N-dose. Based on the guidelines of the IPCC (2006), we calculated an emission factor around 0,9 % for the cropping season. This value is in good agreement with the default value of the

  8. A variable conductance gas switch for intermediate temperature operation of liquid He/liquid N2 cryostats

    NASA Technical Reports Server (NTRS)

    Rayner, J. T.; Chuter, T. C.; Mclean, I. S.; Radostitz, J. V.; Nolt, I. G.

    1988-01-01

    A technique for establishing a stable intermediate temperature stage in liquid He/liquid N2 double vessel cryostats is described. The tertiary cold stage, which can be tuned to any temperature between 10 and 60 K, is ideal for cooling IR sensors for use in astronomy and physics applications. The device is called a variable-conductance gas switch. It is essentially a small chamber, located between the cold stage and liquid helium cold-face, whose thermal conductance may be controlled by varying the pressure of helium gas within the chamber. A key feature of this device is the large range of temperature control achieved with a very small (less than 10 mW) heat input from the cryogenic temperature control switch.

  9. Greenhouse Gas (CH4, CO2 and N2O) Emission Levels by Wastewater Treatment Plant (WWTP) Ponds in Brazil

    NASA Astrophysics Data System (ADS)

    Rossete, A. L. M.; Sundefeld Junior, G.; Aparicio, C.; Baldi, G. G.; Montes, C. R.; Piveli, R. P.; Melfi, A. J.

    2015-12-01

    This study measured greenhouse gas emissions (GHG) by Facultative Ponds on Wastewater Treatment Plants. The most studied GHGs include CO2, CH4and N2O. The level of GHG (CO2, CH4 and N2O) emissions by WWTPs in Australian-type stabilization ponds was measured in the city of Lins (22º21'S, 49º50'W), state of São Paulo (SP), Brazil. GHG collection was carried outusing a collection chamber installed at the center of the facultative pond's final third. The effluent's pH and temperature (ET) were registered by probes, and meteorological information regarding air temperature (AT) and solar radiation (SR) were obtained from INMET, Brazil. GHG collection was carried out for 72 consecutive hours in June 2014, on an hourly basis, once every 5 minutes, for the first 30 minutes, and once every 10 minutes from 30 to 50 minutesand subsequently analyzed by gas chromatograph (GC).After three days of data collection, the average AT, SR, ET and pH values were, respectively, 18oC, 2583kJm-2, 23oC and 8.2. Average values for GHG emission levels (CH4, CO2 and N2O) were 79.01; 100.65 and 0.0 mg m-2 h-1, respectively. GHG emission levels were divided into light periods (morning, afternoon and evening)in order to verify the periods with the highest GHG emissions.The highest CH4 emission levels were measured between morning and early afternoon. The maximum CO2 emissions were observed from evening to early morning. N2O emissions were constant and values were close to the ones found in the atmosphere, which shows the emission of N2O by facultative ponds does not contribute to greenhouse gases emissions.The results enabled us to characterize and quantify GHG emission levels per Facultative Pond on Wastewater Treatment Plant. Acknowledgment to FAPESP and SABESP, Brazil.

  10. Octahedral Ni-nanocluster (Ni85) for Efficient and Selective Reduction of Nitric Oxide (NO) to Nitrogen (N2)

    PubMed Central

    Mahata, Arup; Rawat, Kuber Singh; Choudhuri, Indrani; Pathak, Biswarup

    2016-01-01

    Nitric oxide (NO) reduction pathways are systematically studied on a (111) facet of the octahedral nickel (Ni85) nanocluster in the presence/absence of hydrogen. Thermodynamic (reaction free energies) and kinetic (free energy barriers, and temperature dependent reaction rates) parameters are investigated to find out the most favoured reduction pathway for NO reduction. The catalytic activity of the Ni-nanocluster is investigated in greater detail toward the product selectivity (N2 vs. N2O vs. NH3). The previous theoretical (catalyzed by Pt, Pd, Rh and Ir) and experimental reports (catalyzed by Pt, Ag, Pd) show that direct N-O bond dissociation is very much unlikely due to the high-energy barrier but our study shows that the reaction is thermodynamically and kinetically favourable when catalysed by the octahedral Ni-nanocluster. The catalytic activity of the Ni-nanocluster toward NO reduction reaction is very much efficient and selective toward N2 formation even in the presence of hydrogen. However, N2O (one of the major by-products) formation is very much unlikely due to the high activation barrier. Our microkinetic analysis shows that even at high hydrogen partial pressures, the catalyst is very much selective toward N2 formation over NH3. PMID:27157072

  11. Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies.

    PubMed

    Liu, Shuai; Wang, Jim J; Tian, Zhou; Wang, Xudong; Harrison, Stephen

    2017-07-01

    Minimizing soil ammonia (NH3) and nitrous oxide (N2O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N2O, carbon dioxide (CO2), and methane (CH4) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH3-N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N2O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH3-N and N2O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO2-C flux but had no effect on CH4-C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH3 and N2O emissions in subtropical wheat production in Southern USA. Copyright © 2017. Published by Elsevier B.V.

  12. Pulsed electron beam propagation in argon and nitrogen gas mixture

    SciTech Connect

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-15

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  13. Metabolic Adaptation, a Specialized Leaf Organ Structure and Vascular Responses to Diurnal N2 Fixation by Nostoc azollae Sustain the Astonishing Productivity of Azolla Ferns without Nitrogen Fertilizer

    PubMed Central

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O. E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P. M.; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg−1 N fixed and 35 t dry biomass. 15N2 fixation peaked at noon, reaching 0.4 mg N g−1 dry weight h−1. Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern’s physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N2-fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants. PMID:28408911

  14. Metabolic Adaptation, a Specialized Leaf Organ Structure and Vascular Responses to Diurnal N2 Fixation by Nostoc azollae Sustain the Astonishing Productivity of Azolla Ferns without Nitrogen Fertilizer.

    PubMed

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A; Tazelaar, Anne O E; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P M; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg(-1) N fixed and 35 t dry biomass. (15)N2 fixation peaked at noon, reaching 0.4 mg N g(-1) dry weight h(-1). Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern's physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N2-fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants.

  15. Impacts of temperature and nitrogen addition on greenhouse gas fluxes from turfgrass and coastal salt marshes

    NASA Astrophysics Data System (ADS)

    Glennon, K.; Moseman-Valtierra, S.; Brown, R.; Quinn, R. K.; Brannon, E.; Amador, J.; Craver, V.

    2016-12-01

    Climate change and nitrogen (N) loading from wastewater and fertilization are both increasingly significant anthropogenic drivers of ecosystem change. Among the ecosystems affected by these drivers are coastal salt marshes, although turf grasses are often direct recipients of N inputs prior to their discharge to the coast. To estimate changes in greenhouse gas emissions from coastal marsh grasses and turfgrasses, we created a mesocosm experiment using a common turfgrass (Schedonorus arundinaceus) and a dominant native coastal cordgrass (Spartina alterniflora) in growth chambers kept under current and projected future temperatures with or without added N inputs. For N fertilization, we used recovered biosolids from wastewater sludge. We measured fluxes of N2O, CO2, and CH4 in the mesocosms through a growing season, the summer of 2016. Above and belowground biomass will be compared between experimental treatments and tested as a potential proxy for CO2 fluxes along with soil properties, including salinity, moisture, and DIN. Preliminary results indicate that there were few significant fluxes of N2O from the mesocosm plots. Both the highest N2O and CO2 emissions (9.6 umol m-2 h-1 and 15.1 m-2 s-1 respectively) were measured from turfgrass mesocosms. The highest CH4 emissions (61.9 umol m-2 h-1) were measured from cordgrass mesocosms. This data will be used to determine if fertilization using recovered biosolids is a sustainable method of fertilizer application.

  16. Effect of Nitrogen Shielding Gas on Laser Weldability of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Katayama, Seiji; Yoshida, Daisuke; Matsunawa, Akira

    YAG and CO2 laser weldability of Type 304 steel in nitrogen (N2) shielding gas was evaluated by investigating melting characteristics, porosity formation tendency, N content, microstructural characteristics and cracking sensitivity. Melting characteristics of weld beads produced below 4 kW were not so much different between YAG and CO2 laser. Porosity was remarkably reduced in any welds produced with nitrogen gas in comparison with normal welds made with Ar or He gas. This was attributed to the decrease in N content in a keyhole due to the reaction with evaporated Cr vapor as well as the absorption in the keyhole molten surface. The N contents absorbed in Type 304 weld fusion zones were larger under any welding conditions with CO2 laser than with YAG laser. On the other hand, in the case of several CO2 laser weld metals, solidification cracks occurred along the grain boundaries of a fully austenitic phase. Primary solidification of delta-ferrite phase normally took place in Type 304 weld metals, but a primary austenite phase was formed owing to the N enrichment, and micro-segregation of P and S increased along the grain boundaries. Consequently, cracking was induced by enhancement of cracking sensitivity due to a wider BTR. It was concluded that a great effect of nitrogen on the weldability of stainless steel was noted more remarkably in CO2 laser weld fusion zones than in YAG laser ones. It must be attributed to the N plasma formation leading to higher temperatures and consequent generation of more active N during CO2 laser welding.

  17. Optical and Electron Spin Resonance Studies of Destruction of Porous Structures Formed by Nitrogen-Rare Gas Nanoclusters in Bulk Superfluid Helium

    NASA Astrophysics Data System (ADS)

    McColgan, Patrick T.; Meraki, Adil; Boltnev, Roman E.; Lee, David M.; Khmelenko, Vladimir V.

    2016-11-01

    We studied optical and electron spin resonance spectra during destruction of porous structures formed by nitrogen-rare gas (RG) nanoclusters in bulk superfluid helium containing high concentrations of stabilized nitrogen atoms. Samples were created by injecting products of a radio frequency discharge of nitrogen-rare gas-helium gas mixtures into bulk superfluid helium. These samples have a high energy density allowing the study of energy release in chemical processes inside of nanocluster aggregates. The rare gases used in the studies were neon, argon, and krypton. We also studied the effects of changing the relative concentrations between nitrogen and rare gas on thermoluminescence spectra during destruction of the samples. At the beginning of the destructions, α -group of nitrogen atoms, Vegard-Kaplan bands of N_2 molecules, and β -group of O atoms were observed. The final destruction of the samples were characterized by a series bright flashes. Spectra obtained during these flashes contain M- and β -bands of NO molecules, the intensities of which depend on the concentration of molecular nitrogen in the gas mixture as well as the type of rare gas present in the gas mixture.

  18. Optical and Electron Spin Resonance Studies of Destruction of Porous Structures Formed by Nitrogen-Rare Gas Nanoclusters in Bulk Superfluid Helium

    NASA Astrophysics Data System (ADS)

    McColgan, Patrick T.; Meraki, Adil; Boltnev, Roman E.; Lee, David M.; Khmelenko, Vladimir V.

    2017-04-01

    We studied optical and electron spin resonance spectra during destruction of porous structures formed by nitrogen-rare gas (RG) nanoclusters in bulk superfluid helium containing high concentrations of stabilized nitrogen atoms. Samples were created by injecting products of a radio frequency discharge of nitrogen-rare gas-helium gas mixtures into bulk superfluid helium. These samples have a high energy density allowing the study of energy release in chemical processes inside of nanocluster aggregates. The rare gases used in the studies were neon, argon, and krypton. We also studied the effects of changing the relative concentrations between nitrogen and rare gas on thermoluminescence spectra during destruction of the samples. At the beginning of the destructions, α -group of nitrogen atoms, Vegard-Kaplan bands of N_2 molecules, and β -group of O atoms were observed. The final destruction of the samples were characterized by a series bright flashes. Spectra obtained during these flashes contain M- and β -bands of NO molecules, the intensities of which depend on the concentration of molecular nitrogen in the gas mixture as well as the type of rare gas present in the gas mixture.

  19. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  20. High-accuracy measurements of N2O concentration and site-specific nitrogen isotopes in small or high concentration samples

    NASA Astrophysics Data System (ADS)

    Palmer, M. R.; Arata, C.; Huang, K.

    2014-12-01

    Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N­2O production in various pathways and N­2O fluxes across different reservoirs is the key to understanding the role of N­2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its site-specific isotopic composition (SP-δ15N), namely δ15Nα and δ15Nβ, is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high precision measurements of [N2O] and SP-δ15N of a continuous gas flow. However, many N­­2O samples are discrete with limited volume (< 500 ml), and/or high [N2O] (> 2 ppm), and are not suitable for direct measurements by CRDS. Here we present results of a Small Sample Isotope Module 2 (SSIM2) which is coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM2 requires 20 ml of sample per analysis, and transfers the sample to the CRDS for high precision measurement. When the sample injection is < 20 ml, a zero gas is optionally filled to make up the volume. We used the SSIM2 to dilute high [N2O] samples and < 20 ml samples, and tested the effect of dilution on the measured SP-δ15N. In addition, we employed and tested a newly developed double injection method for samples adequate for two 20 ml injections. After the SSIM2 and the CRDS cavity was primed with the first injection, the second injection, which has negligible dilution of the sample, can be accurately measured for both [N2O] and SP-δ15N. Results of these experiments indicate that the precision of SSIM2-CRDS is similar to that of the continuous measurements using the CRDS alone, and that dilution has minimal effect on SP-δ15N, as along as the [N2O] is > 300 ppb after dilution. Overall, the precision of SP-δ15N measured using the SSIM2 is < 0.5 ‰.

  1. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low nutrient low chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    NASA Astrophysics Data System (ADS)

    Bonnet, S.; Berthelot, H.; Turk-Kubo, K.; Fawcett, S.; Rahav, E.; l'Helguen, S.; Berman-Frank, I.

    2015-12-01

    N2 fixation rates were measured daily in large (~ 50 m3) mesocosms deployed in the tropical South West Pacific coastal ocean (New Caledonia) to investigate the spatial and temporal dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) in a low nutrient, low chlorophyll ecosystem. The mesocosms were intentionally fertilized with ~ 0.8 μM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of two during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These rates are higher than the upper range reported for the global ocean, indicating that the waters surrounding New Caledonia are particularly favourable for N2 fixation. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon, nitrogen and phosphorus, and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during the bloom of the unicellular diazotroph, UCYN-C, that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 μm) UCYN-C cells into large (100-500 μm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling revealed that 16 ± 6 % of the DDN was released to the dissolved pool

  2. NITROGEN EXPORT FROM FORESTED WATERSHEDS IN THE OREGON COAST RANGE: THE ROLE OF N2-FIXING RED ALDER

    EPA Science Inventory

    Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species influence is the role of N2-fixing red alder (Alnus rubra) in the biogeochemistry of Pacific Northwest forests. T...

  3. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability

    Treesearch

    A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller

    2001-01-01

    We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...

  4. Long-lived plasma and fast quenching of N2(C3Π u ) by electrons in the afterglow of a nanosecond capillary discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Lepikhin, N. D.; Klochko, A. V.; Popov, N. A.; Starikovskaia, S. M.

    2016-08-01

    Quenching of electronically excited nitrogen state, {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u},{{v}\\prime}=0\\right) , in the afterglow of nanosecond capillary discharge in pure nitrogen is studied. It is found experimentally that an additional collisional mechanism appears and dominates at high specific deposited energies leading to the anomalously fast quenching of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) in the afterglow. On the basis of obtained experimental data and of the analysis of possible quenching agents, it is concluded that the anomalously fast deactivation of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) can be explained by quenching by electrons. Long-lived plasma at time scale of hundreds nanoseconds after the end of the pulse is observed. High electron densities, about 1014 cm-3 at 27 mbar, are sustained by reactions of associative ionization. Kinetic 1D numerical modeling and comparison of calculated results with experimentally measured electric fields in the second high-voltage pulse 250 ns after the initial pulse, and electron density measurements in the afterglow confirm the validity of the suggested mechanism.

  5. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2007-03-13

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  6. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2010-08-24

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  7. Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas

    NASA Astrophysics Data System (ADS)

    Ito, Taiki; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Setsuhara, Yuichi

    2017-01-01

    We present the development of a low-frequency nonthermal plasma-jet system, where the surrounding-gas condition of the plasma jet is precisely controlled in open air. By restricting the mixing of the ambient air into the plasma jet, the plasma jet can be selectively changed from a N2 main discharge to an O2 main discharge even in open air. In the plasma-jet system with the controlled surrounding gas, the production of reactive oxygen and nitrogen species is successfully controlled in deionized water: the concentration ratio of NO2 - to H2O2 is tuned from 0 to 0.18, and a high NO2 - concentration ratio is obtained at a N2 gas ratio of 0.80 relative to the total N2/O2 gas mixture in the main discharge gas. We also find that the NO2 - concentration is much higher in the plasma-activated medium than in the plasma-activated deionized water, which is mainly explained by the contribution of amino acids to NO2 - generation in the medium.

  8. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.

    PubMed

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Gas chromatography vs. quantum cascade laser-based N2O flux measurements using a novel chamber design

    NASA Astrophysics Data System (ADS)

    Brümmer, Christian; Lyshede, Bjarne; Lempio, Dirk; Delorme, Jean-Pierre; Rüffer, Jeremy J.; Fuß, Roland; Moffat, Antje M.; Hurkuck, Miriam; Ibrom, Andreas; Ambus, Per; Flessa, Heinz; Kutsch, Werner L.

    2017-03-01

    Recent advances in laser spectrometry offer new opportunities to investigate the soil-atmosphere exchange of nitrous oxide. During two field campaigns conducted at a grassland site and a willow field, we tested the performance of a quantum cascade laser (QCL) connected to a newly developed automated chamber system against a conventional gas chromatography (GC) approach using the same chambers plus an automated gas sampling unit with septum capped vials and subsequent laboratory GC analysis. Through its high precision and time resolution, data of the QCL system were used for quantifying the commonly observed nonlinearity in concentration changes during chamber deployment, making the calculation of exchange fluxes more accurate by the application of exponential models. As expected, the curvature values in the concentration increase was higher during long (60 min) chamber closure times and under high-flux conditions (FN2O > 150 µg N m-2 h-1) than those values that were found when chambers were closed for only 10 min and/or when fluxes were in a typical range of 2 to 50 µg N m-2 h-1. Extremely low standard errors of fluxes, i.e., from ˜ 0.2 to 1.7 % of the flux value, were observed regardless of linear or exponential flux calculation when using QCL data. Thus, we recommend reducing chamber closure times to a maximum of 10 min when a fast-response analyzer is available and this type of chamber system is used to keep soil disturbance low and conditions around the chamber plot as natural as possible. Further, applying linear regression to a 3 min data window with rejecting the first 2 min after closure and a sampling time of every 5 s proved to be sufficient for robust flux determination while ensuring that standard errors of N2O fluxes were still on a relatively low level. Despite low signal-to-noise ratios, GC was still found to be a useful method to determine the mean the soil-atmosphere exchange of N2O on longer timescales during specific campaigns. Intriguingly

  10. N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR.

    PubMed

    Zhao, Bin; An, Qiang; He, Yi Liang; Guo, Jin Song

    2012-07-01

    A heterotrophic nitrifier, strain NR, was isolated from a membrane bioreactor. Strain NR was identified as Alcaligenes faecalis by Auto-Microbic system and 16S rRNA gene sequence analysis. A. faecalis strain NR shows a capability of heterotrophic nitrification and N(2)O and N(2) production as well under the aerobic condition. Further tests demonstrated that neither nitrite nor nitrate could be denitrified aerobically by strain NR. However, when hydroxylamine was used as the sole nitrogen source, nitrogenous gases were detected. With an enzyme assay, a 0.063 U activity of hydroxylamine oxidase was observed, while nitrate reductase and nitrite reductase were undetectable. Thus, nitrogenous gas was speculated to be produced via hydroxylamine. Therefore, two different metabolic pathways might exist in A. faecalis NR. One is heterotrophic nitrification by oxidizing ammonium to nitrite and nitrate. The other is oxidizing ammonium to nitrogenous gas directly via hydroxylamine.

  11. Large Area, High Resolution N2H+ studies of dense gas in the Perseus and Serpens Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Storm, Shaye; Mundy, Lee

    2014-07-01

    Star formation in molecular clouds occurs over a wide range of spatial scales and physical densities. Understanding the origin of dense cores thus requires linking the structure and kinematics of gas and dust from cloud to core scales. The CARMA Large Area Star Formation Survey (CLASSy) is a CARMA Key Project that spectrally imaged five diverse regions of the Perseus and Serpens Molecular Clouds in N2H+ (J=1-0), totaling over 800 square arcminutes. The observations have 7’’ angular resolution (~0.01 pc spatial resolution) to probe dense gas down to core scales, and use combined interferometric and single-dish data to fully recover line emission up to parsec scales. CLASSy observations are complete, and this talk will focus on three science results. First, the dense gas in regions with existing star formation has complex hierarchical structure. We present a non-binary dendrogram analysis for all regions and show that dense gas hierarchy correlates with star formation activity. Second, well-resolved velocity information for each dendrogram-identified structure allows a new way of looking at linewidth-size relations in clouds. Specifically, we find that non-thermal line-of-sight velocity dispersion varies weakly with structure size, while rms variation in the centroid velocity increases strongly with structure size. We argue that the typical line-of-sight depth of a cloud can be estimated from these relations, and that our regions have depths that are several times less than their extent on the plane of the sky. This finding is consistent with numerical simulations of molecular cloud turbulence that show that high-density sheets are a generic result. Third, N2H+ is a good tracer of cold, dense gas in filaments; we resolve multiple beams across many filaments, some of which are narrower than 0.1 pc. The centroid velocity fields of several filaments show gradients perpendicular to their major axis, which is a common feature in filaments formed from numerical

  12. Changes in Trace Gas Nitrogen Emissions as a Response to Ecosystem Type Conversion in a Semi-Arid Climate.

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Eberwein, J. R.; Jenerette, D.

    2016-12-01

    As humans continue to introduce exotic plants and to alter climate and fire regimes in semi-arid ecosystems, many plant communities have begun to shift from perennial forbs and shrubs to annual grasses with different functional traits. Shifts in plant types are also associated with shifts in microclimate, microbial activity, and litter inputs, all of which contribute to the efficiency of nitrogen processing and the magnitude of trace gas emissions (NOx and N2O), which are increasingly important fluxes in water-limited systems. Here, we explored how changes in plant litter impact trace gas emissions, asking the question: How does conversion from a native shrubland to exotic grassland ecosystem alter NOx and N2O fluxes in a semi-arid climate? We posed two hypotheses to explain the impacts of different types of litter on soils disturbed by exotic grasses and those that were still considered shrublands: 1.) Soils that have undergone conversion by exotic grasses release higher amounts of NOx and N2O than do those of unconverted shrublands, due to disruptions of native plant and soil processes by exotic grasses, and 2.) Because litter of exotic grasses has lower C:N than that of shrubs, litter inputs from exotic grasses will increase NOx and N2O emissions from soils more than will litter inputs from shrubs. As a preliminary study, we experimentally wetted mesocosms in a laboratory incubation containing converted and unconverted soils that had been mixed with no litter or either exotic grass or coastal sage scrub (CSS) litter. We measured N2O fluxes from mesocosms over a 48-hour period. 24 hours after wetting, samples with grass litter produced higher amounts of N2O than those with CSS litter; similarly, converted soils produced higher amounts of N2O than unconverted soils. These two effects combined resulted in exotic grassland conditions (converted soils with exotic grass litter) producing 10 times the amount of N2O as those containing native shrubland conditions

  13. N2 Gas Flushing Limits the Rise of Antibiotic-Resistant Bacteria in Bovine Raw Milk during Cold Storage.

    PubMed

    Munsch-Alatossava, Patricia; Jääskeläinen, Susanna; Alatossava, Tapani; Gauchi, Jean-Pierrre

    2017-01-01

    Antibiotic resistance has been noted to be a major and increasing human health issue. Cold storage of raw milk promotes the thriving of psychrotrophic/psychrotolerant bacteria, which are well known for their ability to produce enzymes that are frequently heat stable. However, these bacteria also carry antibiotic resistance (AR) features. In places, where no cold chain facilities are available and despite existing recommendations numerous adulterants, including antibiotics, are added to raw milk. Previously, N2 gas flushing showed real potential for hindering bacterial growth in raw milk at a storage temperature ranging from 6 to 25°C. Here, the ability of N2 gas (N) to tackle antibiotic- resistant bacteria was tested and compared to that of the activated lactoperoxidase system (HT) for three raw milk samples that were stored at 6°C for 7 days. To that end, the mesophiles and psychrotrophs that were resistant to gentamycin (G), ceftazidime (Ce), levofloxacin (L), and trimethoprim-sulfamethoxazole (TS) were enumerated. For the log10 ratio (which is defined as the bacterial counts from a certain condition divided by the counts on the corresponding control), classical Analyses of Variance (ANOVA) was performed, followed by a mean comparison with the Ryan-Einot-Gabriel-Welsch multiple range test (REGWQ). If the storage "time" factor was the major determinant of the recorded effects, cold storage alone or in combination with HT or with N promoted a sample-dependent response in consideration of the AR levels. The efficiency of N in limiting the increase in AR was highest for fresh raw milk and was judged to be equivalent to that of HT for one sample and superior to that of HT for the two other samples; moreover, compared to HT, N seemed to favor a more diverse community at 6°C that was less heavily loaded with antibiotic multi-resistance features. Our results imply that N2 gas flushing could strengthen cold storage of raw milk by tackling the bacterial spoilage

  14. N2 Gas Flushing Limits the Rise of Antibiotic-Resistant Bacteria in Bovine Raw Milk during Cold Storage

    PubMed Central

    Munsch-Alatossava, Patricia; Jääskeläinen, Susanna; Alatossava, Tapani; Gauchi, Jean-Pierrre

    2017-01-01

    Antibiotic resistance has been noted to be a major and increasing human health issue. Cold storage of raw milk promotes the thriving of psychrotrophic/psychrotolerant bacteria, which are well known for their ability to produce enzymes that are frequently heat stable. However, these bacteria also carry antibiotic resistance (AR) features. In places, where no cold chain facilities are available and despite existing recommendations numerous adulterants, including antibiotics, are added to raw milk. Previously, N2 gas flushing showed real potential for hindering bacterial growth in raw milk at a storage temperature ranging from 6 to 25°C. Here, the ability of N2 gas (N) to tackle antibiotic- resistant bacteria was tested and compared to that of the activated lactoperoxidase system (HT) for three raw milk samples that were stored at 6°C for 7 days. To that end, the mesophiles and psychrotrophs that were resistant to gentamycin (G), ceftazidime (Ce), levofloxacin (L), and trimethoprim-sulfamethoxazole (TS) were enumerated. For the log10 ratio (which is defined as the bacterial counts from a certain condition divided by the counts on the corresponding control), classical Analyses of Variance (ANOVA) was performed, followed by a mean comparison with the Ryan-Einot-Gabriel-Welsch multiple range test (REGWQ). If the storage “time” factor was the major determinant of the recorded effects, cold storage alone or in combination with HT or with N promoted a sample-dependent response in consideration of the AR levels. The efficiency of N in limiting the increase in AR was highest for fresh raw milk and was judged to be equivalent to that of HT for one sample and superior to that of HT for the two other samples; moreover, compared to HT, N seemed to favor a more diverse community at 6°C that was less heavily loaded with antibiotic multi-resistance features. Our results imply that N2 gas flushing could strengthen cold storage of raw milk by tackling the bacterial spoilage

  15. Insulating geothermal well casings from thermal stress with nitrogen gas or nitrogen foam

    SciTech Connect

    Dreesen, D.S.; Murphy, H.D.; Zyvoloski, G.; McEligot, D.M.; Dash, Z.; Nicholson, R.N.

    1984-08-26

    Fenton Hill Hot Dry Rock Geothermal Site Well EE-3 was designed and completed to function as a completion of the reservoirs with the injection well, EE-2, progressed it become evident that it would be desirable to fracture in EE-3 as well to obtain a flow connection between the wells. Unfortunately, the 9-5/8'' od production casing in EE-3 had been pretensioned to 885,000 lbs to accommodate its intended service as a hot water production well. Cool-down of the casing was thus limited to only 11/sup 0/C (20/sup 0/F) to keep the stress in the top joints of the casing below the minimum yield stress, or else the pretension had to be released. Before incurring the risk and expense required to release the tension, fracturing experiments were performed to evaluate the use gaseous nitrogen and 75% quality nitrogen-gel foam as insulating media in an annular wellbore configuration, i.e., the nitrogen gas or foam was placed in the annular gap between the tubing string and the casing.

  16. Membrane Separation Of Nitrogen Tetroxide

    NASA Technical Reports Server (NTRS)

    Castro, R. C.; Kaschemekat, J.; Helm, V. D.; Shrock, P. H.; Wijmans, J. G.

    1993-01-01

    Pilot plant reduces N2O4 content to one-hundredth of inlet value. Permeable-membrane process removes nitrogen tetroxide from stream of nitrogen or helium gas. Operates in conjunction with scrubbing process removing N2O4 from He or N2 after He or N2 used as gas blanket in N2O4-storage tank. First stage of separator divided into two steps for efficiency. Permeate from second step of first stage and residue from second stage returned to inlet of first stage. Each module contains spiral-wound interleaved permeable membranes and spacer sheets.

  17. Nitrogen-gas bubbling during the cultivation of Clostridium tetani produces a higher yield of tetanus toxin for the preparation of its toxoid.

    PubMed

    De Luca, M M; Abeiro, H D; Bernagozzi, J A; Basualdo, J A

    1997-01-01

    We investigated the effect of exposing cultures of Clostridium tetani to nitrogen (N2) gas on the recovery of tetanus toxin to be processed for the preparation of its toxoid. N2 was bubbled through nine 10-liter cultures during the growth of the bacteria, while nine parallel control incubations were maintained without bubbling. We found that treatment of the C. tetani anaerobes with an inert gas in this manner during cultivation produced a highly significant increase in the yield of tetanus toxin from them in comparison with the standard procedure.

  18. Sources and sinks for atmospheric N2O

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.; Elkins, J. W.; Wofsy, S. C.; Yung, Y. L.

    1976-01-01

    Observations of the temporal and spatial distribution of N2O in solution are not yet sufficient to permit quantitative assessment of the role of the ocean in the budget of atmospheric N2O. Consideration of the global nitrogen cycle suggests that the land should be the primary source of N2O. The gas is removed in the atmosphere by photolysis and by reaction with O(1D), and there may be additional sinks in the ocean.

  19. Evaluation of photoacoustic infrared spectroscopy for simultaneous measurement of N2 O and CO2 gas concentrations and fluxes at the soil surface.

    PubMed

    Iqbal, Javed; Castellano, Michael J; Parkin, Timothy B

    2013-01-01

    Simultaneous measurement of N2 O and CO2 flux at the soil surface with photoacoustic infrared spectroscopy (PAS) is gaining popularity due to portability, low maintenance, and ease-of-operation. However, the ability of PAS to measure N2 O with accuracy and precision similar to gas chromatography (GC) is uncertain due to overlap in N2 O, CO2 , and H2 O absorbance spectra combined with the large range in analyte concentrations. We tested the ability of six PAS units to simultaneously measure N2 O and CO2 gas concentrations and fluxes with accuracy and precision similar to two GC units. We also evaluated H2 O vapor and CO2 interferences with N2 O measurement. The accuracy and precision of standard gas concentration measurements with PAS and GC were similar. High water vapor (~26 600 ppm) and CO2 concentrations (~4500 ppm) did not interfere with N2 O measurement across the concentration range typically observed in static flux chambers at the soil surface (~0.5-3.0 ppm N2 O). On average, N2 O fluxes measured with the six PAS were 4.7% higher than one GC and 9.9% lower than the second GC. © 2012 Blackwell Publishing Ltd.

  20. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  1. The mechanisms governing low denitrification capacity and high nitrogen oxide gas emissions in subtropical forest soils in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinbo; Yu, Yongjie; Zhu, Tongbin; Cai, Zucong

    2014-08-01

    Previous studies have demonstrated that denitrification rates are low in subtropical forest soils. However, the mechanisms governing this process are not well known. This study seeks to identify the mechanisms responsible for the low denitrification capacity and high nitrogen oxide gas ratio in subtropical forest soils in China. The denitrification capacity and nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2) emission rates were measured using the acetylene inhibition method under conditions of added nitrate and anoxia. The abundance of nitrate reductase (narG), nitrite reductase (nirK), nitric oxide reductase (cnorB), and nitrous oxide reductase (nosZ) was measured using real-time, quantitative polymerase chain reaction, and sequencing of the nirK and norB products was performed to analyze the population structure of denitrifying bacteria. These results showed that the denitrification capacity in subtropical forest soils was lower than in temperate forest soils (p < 0.05). Multiple regression analysis showed that redox potential at the start of incubation (Ehi), rather than soil pH or soil organic C, was the key soil variable influencing denitrification, and Ehi alone could explain 68% of the variations in denitrification capacity. The high Ehi in subtropical soils led to a low abundance of nirK and significant differences in the population structure of denitrifying bacteria between subtropical and temperate soils. Therefore, Ehi was responsible for the low denitrification capacity in subtropical forest soils. The ratio of NO to total denitrification gas products (p < 0.01) and the ratio of NO and N2O to total denitrification gas products (p < 0.05) were significantly higher in subtropical forest soils than in temperate forest soils, while the reverse trend was observed for the ratio of N2 to total denitrification gas products (p < 0.05). A high Ehi reduced the specific reduction activity of each nosZ copy and, in turn, resulted in a large ratio of NO

  2. The influence of microbial-based inoculants on N2O emissions from soil planted with corn (Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens.

    PubMed

    Calvo, Pamela; Watts, Dexter B; Kloepper, Joseph W; Torbert, H Allen

    2016-12-01

    Nitrous oxide (N2O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N2O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N2O and carbon dioxide (CO2) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea - ammonium nitrate with 32% N (UAN-32), and calcium - ammonium nitrate with 17% N (CAN-17). Cumulative N2O fluxes from pots 41 days after planting showed significant reductions in N2O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N2O emissions occurred with urea. Microbial-based inoculants did not affect total CO2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N2O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to

  3. Comparison of Theoretical and Experimental Level Values of the n = 2 Configurations in the Nitrogen Isoelectronic Sequence

    NASA Astrophysics Data System (ADS)

    Edlén, Bengt

    1984-08-01

    Observed level intervals within and between the configurations 2s2 2p3, 2s2p4 and 2p5 of the nitrogen sequence are compared with the corresponding theoretical values derived from the tables of Cheng, Kim and Desclaux. The differences are expressed by suitable functions of Z which give the systematic correction to the theoretical values and reveal the accidental errors in the experimental values. The technique is the same as was used in previous examinations of the Li, Be, B, O and F sequences. The results are summarized in tables of recommended level values (Z = 10-36) and recalculated wavelengths.

  4. High rate of N2 fixation by East Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified with gellan gum.

    PubMed

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V; Hatano, Ryusuke; Tahara, Satoshi

    2009-05-01

    For evaluating N(2) fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N(2)-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N(2) fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N(2)-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N(2) fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil

  5. Woody encroachment impacts on ecosystem nitrogen cycling: fixation, storage and gas loss

    NASA Astrophysics Data System (ADS)

    Soper, F.; Sparks, J. P.

    2016-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs have the potential to alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates vary seasonally, inter-annually and as a function of plant age and abiotic conditions. Applying a small-scale mass balance model to soil N accrual around individual trees (accounting for atmospheric inputs, and gas and hydrologic losses) generated current fixation estimates of 11 kg N ha-1 yr-1, making symbiotic fixation the largest input of N to the ecosystem. However, soil N accrual and increased cycling rates did not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Lab incubations suggested that N2 losses are likely to be low, with field oxygen conditions not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of significant net N accrual, driven by fixation under ongoing encroachment. Given the large scale of woody legume encroachment in the USA, this process is likely to contribute

  6. The influence of woody encroachment on the nitrogen cycle: fixation, storage and gas loss

    NASA Astrophysics Data System (ADS)

    Soper, F.; Sparks, J. P.

    2015-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs potentially alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates increase with tree age and are influenced by abiotic conditions. A model of soil N accrual around individual trees, accounting for atmospheric inputs and gas losses, generates lifetimes N fixation estimates of up to 9 kg for a 100-year-old tree and current rates of 7 kg N ha-1 yr-1. However, these N inputs and increased soil cycling rates do not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions for both land cover types average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Additional lab experiments suggested that N2 losses are low and that field oxygen conditions are not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of net N accrual under ongoing encroachment.

  7. Nitrogen gas emissions and their genetic potential in tropical peatlands of French Guiana

    NASA Astrophysics Data System (ADS)

    Kasak, Kuno; Oopkaup, Kristjan; Järveoja, Järvi; Maddison, Martin; Ligi, Teele; Truu, Marika; Truu, Jaak; Mander, Ülo

    2016-04-01

    In the current study, nitrogen gas (N2, N2O) emissions from tropical peatlands (French Guiana) were measured and their relationships with the soil chemical parameters, water regime, and abundances of genes encoding denitrification associated nitrite and nitrous oxide reductases were analysed. The measurements and soil sampling (from 0-10 cm layer) were carried out in October 2013 in two sites (undisturbed and drainage influenced) of the northern part of French Guiana. In both study sites, three transects along the groundwater depth gradient with three sampling points in each transect were established. At each sampling point, N2O emissions were measured in six sessions during three days using static closed chambers. N2 emission from the top-soil samples were measured in the laboratory applying He-O (N2) method. Soil pHKCl, NO3-N, NH4-N, soluble P, K, Ca and Mg, totN and soil organic matter content were determined from the collected samples. Bacterial 16S rRNA gene, (and marker genes for measuring denitrification potential) nirS, nirK, nosZ clade I and clade II copies were quantified in the soils using qPCR method. Whole genome shotgun sequencing of DNA extracted from soil samples was performed on Illumina NextSeq system. Metagenomes were used for microbial profiling, identifying functional genes and relating them to biogeochemical cycles and biological processes. N2O emissions were significantly lower and N2 emissions higher (p<0.05 in both cases) in natural sites (mean values -0.3 and 10 μg m-2 h-1 for N2O, and 1477 and 637 μg m-2 h-1 for N2 in natural and drained sites, respectively). Results from molecular analyses show that the bacterial community was significantly more abundant (p<0.001) in the natural site while the N2O production potential (by the abundance of nir genes) was not different between the two sites. N2O reduction potential (by the abundance of nosZ genes) was higher (p<0.01) in the natural area where also the lower mineral N content and high

  8. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOEpatents

    Mendelsohn, Marshall H.; Livengood, C. David

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  9. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  10. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  11. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  12. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  13. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  14. Gas analyzers to detect nitrogen and sulfur oxides in the gas effluents from heat and electric power plants

    NASA Astrophysics Data System (ADS)

    Azbukin, Alexander A.; Buldakov, Michail A.; Korolev, Boris V.; Korolkov, Vladimir A.; Matrosov, Ivan I.

    1999-11-01

    Three kinds of gas analyzers designed for continuous monitoring of the sulfer and nitrogen oxides in the exhaust gases of a power plant are described. The operation of gas analyzers is based on use of laserless UV sources and differential absorption method. High efficiency of gas analyzers developed has been demonstrated under industrial conditions.

  15. Abiotic gas formation drives nitrogen loss from a desert ecosystem.

    PubMed

    McCalley, Carmody K; Sparks, Jed P

    2009-11-06

    In arid environments such as deserts, nitrogen is often the most limiting nutrient for biological activity. The majority of the ecosystem nitrogen flux is typically thought to be driven by production and loss of reactive nitrogen species by microorganisms in the soil. We found that high soil-surface temperatures (greater than 50 degrees C), driven by solar radiation, are the primary cause of nitrogen loss in Mojave Desert soils. This abiotic pathway not only enables the balancing of arid ecosystem nitrogen budgets, but also changes our view of global nitrogen cycling and the predicted impact of climate change and increased temperatures on nitrogen bioavailability.

  16. A novel bleb-dependent polysaccharide export system in nitrogen-fixing Azotobacter vinelandii subjected to low nitrogen gas levels.

    PubMed

    Hashimoto, Wataru; Miyamoto, Yukiko; Yamamoto, Mayumi; Yoneyama, Fuminori; Murata, Kousaku

    2013-03-01

    The alginate biofilm-producing bacterium Azotobacter vinelandii aerobically fixes nitrogen by oxygen-sensitive nitrogenases. Here we investigated the bacterial response to nitrogen/oxygen gas mixtures. A. vinelandii cells were cultured in nitrogen-free minimal media containing gas mixtures differing in their ratios of nitrogen and oxygen. The bacteria did not grow at oxygen concentrations >75% but grew well in the presence of 5% nitrogen/25% oxygen. Growth of wild-type and alginate-deficient strains when cultured with 50% oxygen did not differ substantially, indicating that alginate is not required for the protection of nitrogenases from oxygen damage. In response to decreasing nitrogen levels, A. vinelandii produced greater amounts of alginate, accompanied by the formation of blebs on the cell surface. The encystment of vegetative cells occurred in tandem with the release of blebs and the development of a multilayered exine. Immunoelectron microscopy using anti alginate-antibody revealed that the blebs contained alginate molecules. By contrast, alginate-deficient mutants could not form blebs. Taken together, our data provide evidence for a novel bleb-dependent polysaccharide export system in A. vinelandii that is activated in response to low nitrogen gas levels.

  17. Simple Model for Vibration-Translation Exchange at High Temperatures: Effects of Multiquantum Transitions on the Relaxation Of A N2 Gas Flow Behind a Shock

    DTIC Science & Technology

    2011-02-22

    relaxation of a N2 gas flow behind a shock A. Aliat,1,* P. Vedula,1,* and E. Josyula2 1School of Aerospace and Mechanical Engineering, University of...influence on the relaxation of the macroscopic parameters of the gas flow behind the shock, especially on vibrational distributions of high levels. All...simulate hypersonic gas flows are based on the assumption of quasistationary distributions (Boltzmann or Treanor) over vibrational energies [2–5]. These

  18. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission.

    PubMed

    Liu, Lingli; Greaver, Tara L

    2009-10-01

    Anthropogenic nitrogen (N) enrichment of ecosystems, mainly from fuel combustion and fertilizer application, alters biogeochemical cycling of ecosystems in a way that leads to altered flux of biogenic greenhouse gases (GHGs). Our meta-analysis of 313 observations across 109 studies evaluated the effect of N addition on the flux of three major GHGs: CO(2), CH(4) and N(2)O. The objective was to quantitatively synthesize data from agricultural and non-agricultural terrestrial ecosystems across the globe and examine whether factors, such as ecosystem type, N addition level and chemical form of N addition influence the direction and magnitude of GHG fluxes. Results indicate that N addition increased ecosystem carbon content of forests by 6%, marginally increased soil organic carbon of agricultural systems by 2%, but had no significant effect on net ecosystem CO(2) exchange for non-forest natural ecosystems. Across all ecosystems, N addition increased CH(4) emission by 97%, reduced CH(4) uptake by 38% and increased N(2)O emission by 216%. The net effect of N on the global GHG budget is calculated and this topic is reviewed. Most often N addition is considered to increase forest C sequestration without consideration of N stimulation of GHG production in other ecosystems. However, our study indicated that although N addition increased the global terrestrial C sink, the CO(2) reduction could be largely offset (53-76%) by N stimulation of global CH(4) and N(2)O emission from multiple ecosystems.

  19. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

    NASA Astrophysics Data System (ADS)

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F.; Wang, Jian-Ping

    2016-05-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 107 erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25–30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 1017/cm2.

  20. Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2 plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ficek, Mateusz; Sankaran, Kamatchi J.; Ryl, Jacek; Bogdanowicz, Robert; Lin, I.-Nan; Haenen, Ken; Darowicki, Kazimierz

    2016-06-01

    The influence of N2 concentration (1%-8%) in CH4/H2/N2 plasma on structure and optical properties of nitrogen doped diamond (NDD) films was investigated. Thickness, roughness, and optical properties of the NDD films in the VIS-NIR range were investigated on the silicon substrates using spectroscopic ellipsometry. The samples exhibited relatively high refractive index (2.6 ± 0.25 at 550 nm) and extinction coefficient (0.05 ± 0.02 at 550 nm) with a transmittance of 60%. The optical investigation was supported by the molecular and atomic data delivered by Raman studies, bright field transmission electron microscopy imaging, and X-ray photoelectron spectroscopy diagnostics. Those results revealed that while the films grown in CH4/H2 plasma contained micron-sized diamond grains, the films grown using CH4/H2/(4%)N2 plasma exhibited ultranano-sized diamond grains along with n-diamond and i-carbon clusters, which were surrounded by amorphous carbon grain boundaries.

  1. High precision nitrogen isotope measurements in oceanic basalts using a static triple collection noble gas mass spectrometer

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Halldórsson, S. A.; Hahm, D.; Marti, K.

    2012-01-01

    We describe a new system for the simultaneous static triple-collection of nitrogen isotopes at the <10μcm3 STP [N2] (<1 × 10-5 cm3STP; <0.5 nmol) level using a modified VG-5440 noble gas mass spectrometer. The system consists of an internal N2-STD with aδ15N value of -0.11 ± 0.22 ‰ (1σ) calibrated against an air-standard (Air-STD). The N2-STD was measured repeatedly with an average uncertainty on an individualδ15N measurement being 0.03 ‰ (1σ) versus an average single day reproducibility of 0.38 ‰ (1σ). Additional refinements include (1) monitoring of interfering CO contributions at mass 30, allowing a comprehensive CO correction to be applied to all samples, (2) quantification of procedural N2 blanks (n = 22) in both size (4.2 ± 0.5 μcm3 STP) and isotopic composition (δ15N = 12.64 ± 2.04 ‰), allowing consistent blank corrections to all samples, and (3) independent measurement of N2/Ar ratios using a quadrupole mass spectrometer (QMS). The new system was tested by measuring nitrogen isotopes (δ15N), concentrations and N2/Ar ratios on 11 submarine basalt glasses. Results show that the uncertainty on the δ15N data is improved as a consequence of multiple standards being run per day. Reduced analytical times, afforded by triple collection, also minimize sample depletion and memory effects, thus improving measurement statistics. Additionally, we show that CO corrections can be accomplished using mass 30 to monitor CO interferences, leading to substantial improvements in reproducibility and the overall accuracy of results when the contribution of CO is significant.

  2. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    PubMed

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps.

  3. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  4. Shifts and dynamics of greenhouse gas fluxes in coastal marshes: Responses to short- and long-term nitrogen additions (Invited)

    NASA Astrophysics Data System (ADS)

    Moseman-Valtierra, S.; Kroeger, K. D.; Tang, J.; Fisher, K.; Bratton, J. F.; Crusius, J.

    2010-12-01

    Coastal wetlands are estimated to sequester carbon at faster rates than most ecosystems, and thus they are appealing targets for efforts to ameliorate climate change through biological C storage. However, to accurately estimate the climatic impact of such strategies, we must simultaneously consider fluxes of greenhouse gases from these ecosystems, including CH4 and N2O. Coastal salt marshes are currently thought to represent minor sources of greenhouse gases relative to freshwater wetlands, but the few measurements that exist for N2O and CH4 fluxes in these systems have not spanned the range of their dynamic environmental conditions. Further, multiple anthropogenic sources have disproportionately increased nitrogen loads in coastal ecosystems, which we hypothesized may significantly enhance N2O emissions from salt marshes. We tested this hypothesis with short- and long-term manipulative experiments at low to moderate nitrogen loads in pristine temperate Spartina patens marshes at Plum Island (MA). In July 2009, we compared background greenhouse gas fluxes with those measured immediately after either a single addition of nitrate (equivalent to 1.4g N m -2) or a control solution of artificial seawater. Prior to manipulations, the salt marsh sediments represented small sinks of N2O, as fluxes averaged -33 μmol N2O m-2 day-1. Yet, within one hour of manipulations, the plots with nitrate additions became sources of N2O, with fluxes averaging 42 and 108 μmol N2O m-2 day-1 in light and dark chambers, respectively. These exceeded fluxes in control plots by more than an order of magnitude. Respiratory CO2 fluxes were also significantly higher in nitrate-enriched plots (4.4 +/- 1 μmol CO2 m-2 s-1) than in controls (2.4 +/- 0.3 μmol CO2 m-2 s-1) immediately following the nitrate additions. Methane fluxes were not affected by nitrogen, but they varied spatially, ranging from 7.5 to 2200 μmol CH4 m-2 day-1. Although the enhanced N2O fluxes did not persist after 2 days, the

  5. Stable [Pb(ROH)(N)](2+) complexes in the gas phase: softening the base to match the Lewis acid.

    PubMed

    Akibo-Betts, Glen; Barran, Perdita E; Puskar, Ljiljana; Duncombe, Bridgette; Cox, Hazel; Stace, Anthony J

    2002-08-07

    Experiments have been performed in the gas phase to investigate the stability of complexes of the general form [Pb(ROH)(N)](2+). With water as a solvent, there is no evidence of [Pb(H(2)O)(N)](2+); instead [PbOH(H(2)O)(N-1)](+) is observed, where lead is considered to be held formally in a +2 oxidation state by the formation of a hydroxide core. As the polarizability of the solvating ligands is increased through the use of straight chain alcohols, ROH, solvation of Pb(2+) is observed without proton transfer when R >or= CH(3)CH(2)CH(2)-. The relative stabilities of [Pb(ROH)(4)](2+) complexes with respect to proton transfer are further investigated through the application of density functional theory to examples where R = H, methyl, ethyl, and 1-propyl. Of three trial structures examined for [Pb(ROH)(4)](2+) complexes, in all cases those with the lowest energy comprised of three solvent molecules were directly bound to the central cation, with the fourth molecule held in a secondary shell by hydrogen bonds. The implications of this arrangement as a favorable starting structure for proton transfer are discussed. Conditions for the stability of particular Pb(II)/ligand combinations are also discussed in terms of the hard-soft acid-base principle. Charge population densities calculated for the central lead cation and oxygen donor atoms across the ROH range are used to support the proposal that proton transfer occurs when a ligand is hard. Stability of the [Pb(ROH)(4)](2+) unit is commensurate with a decrease in the ionic character of the bond between Pb(2+) and a ligand; this in turn reflects a softening of the ligand as the alkyl chain increases in length. From the calculations, the most favorable protonated product is, in all cases, (ROH)(2)H(+). The trends observed with lead are compared with Cu(II), which is capable of forming stable gas-phase complexes with water and all of the alcohols considered here.

  6. Combining transition state theory with quasiclassical trajectory calculations: application to the nitrogen exchange reaction N+N 2( v)

    NASA Astrophysics Data System (ADS)

    Frost, Robert J.; Smith, Ian W. M.

    1987-10-01

    The dynamics of collisions between N atoms and vibrationally excited N 2( v⩽ 15) have been studied using a new method in which quasiclassical trajectories are initiated at suitably chosen transition states. The transition state for a particular vibrational level v is determined by first finding PODSs (periodic orbiting dividing surfaces) on fixed-angle potential energy surfaces for which the action over one cycle of the PODS motion is ( v+ 1/2) h. The complete transition state is defined by joining these PODSs together and its phase space is sampled pseudorandomly to select starting points for quasiclassical trajectories. The results of the calculations are compared with those from conventional quasiclassical trajectory calculations on the same LEPS potential energy surface, using the adiabatic reactive sudden version of transition state theory to estimate absolute rate constants from our results. The agreement is good and the combined method brings about a great saving in computing time by eliminating trajectories which do not reach the strong interaction zone.

  7. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations.

    PubMed

    Knauth, David C; Andersson, B-G; McCandliss, Stephan R; Moos, H Warren

    2004-06-10

    The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.

  8. Use of the new Nitrogen Index tier zero to assess the effects of nitrogen fertilizer on N2O emissions from cropping systems in Mexico

    USDA-ARS?s Scientific Manuscript database

    Mexico is one of the largest users of N fertilizer in the world, and the 2nd largest user in Latin America after Brazil. Across large areas of Mexico, N fertilizers are being over-applied, resulting in lower N use efficiencies. Mexico’s trace gas inventory (in CO2 equivalents) reports that agricultu...

  9. A gas scintillation monitor for tritium gas in argon or in nitrogen.

    PubMed

    Campi, F; Mascherpa, C; Sterlini, C; Pacenti, P; Terrani, S

    1996-09-01

    For civilian purposes tritium is presently used in quantities of tens of PBq (MCi) in laboratories for the studies of tritium technology, at the Joint European Torus plant (Abingdon, Oxon, OX143A, UK) as fuel for the process of nuclear fusion, and in the manufacture of radio-luminescent items. Given the extreme mobility of tritium in most materials, it is necessary to use systems for double containment, such as glove boxes or spaces between primary and secondary containers, in which inert gas like argon or nitrogen flows. With these systems it is possible to recover tritium that escapes from the primary containment. Presently the gas flow is monitored continuously by means of ionization chambers which may present problems in particular applications ("memory effect" with high activity, strong dependence of the response on the presence of impurity, etc.). The aim of the work here presented is to determine the prospects for the realization of a new type of monitor mainly dedicated to the measurement of gas activity in isolation space of the containing systems of the high activity tritium plants. This monitor should have sufficient sensitivity, quick response, and should be easily decontaminated. As a detection technique we chose the scintillation produced in the inert gas by radioactive decay. With the first prototype, designed in cylindrical form, it was possible to observe gaseous scintillation events in mixture of tritium and argon or nitrogen. Following that, a spherical prototype was designed, of which we studied the performances and the dependence of the response varying the pressure, the concentration of tritium, the percentage of the impurity, and the gas flow rate. The results are satisfactory and suggest that the monitor could be used in glove boxes and double containment systems. The future research program will include tests involving large quantities of tritium and a study of the ideal dimensions and geometry of the detection chamber in order to optimize

  10. About the development of single microdischarges in dielectric barrier discharges in CO2 and CO2/N2 gas mixtures. DBD-MDs in CO2 and CO2/N2

    NASA Astrophysics Data System (ADS)

    Brandenburg, Ronny; Sarani, Abdollah

    2017-08-01

    The conversion of carbon dioxide as one of the main greenhouse gases into carbon monoxide as a chemical feedstock is considered as so-called carbon capture usage technology. Recently it was shown, that the dissociation of carbon dioxide to carbon monoxide in Dielectric Barrier Discharges can be enhanced by the addition of nitrogen gas. Here, the development of microdischarges in CO2 and CO2/N2 gas mixtures is studied. Therefore, a single filament DBD arrangement operated under sinusoidal high-voltage is investigated by means of spectroscopic and electrical diagnostics with high spatial and temporal resolution and sensitivity. The filament development is similar as in air or other nitrogen-oxygen gas mixtures, but the gas composition influences the duration and other parameters. The higher the CO2 content the weaker the filaments and the faster the quenching of excited molecular states. The optimum power dissipation into single discharge is obtained for a CO2 content between 20 and 30 vol.%.

  11. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  12. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  13. Spectroscopic diagnosis of an atmospheric-pressure waveguide-based microwave N2-Ar plasma torch

    NASA Astrophysics Data System (ADS)

    Li, Shou-Zhe; Chen, Chuan-Jie; Zhang, Xin; Zhang, Jialiang; Wang, Yong-Xing

    2015-04-01

    An atmospheric-pressure N2-Ar plasma is investigated by means of optical emission spectroscopic diagnosis concerning the variation of its fundamental parameters, electron density and plasma temperature, and concentrations of ionized molecular nitrogen, atomic nitrogen, and excited argon with the tuning variables, such as the input power and the ratio of N2 in N2-Ar mixture gas, in the discharge region of the plasma torch. Moreover, qualitative discussions are delivered with respect to the mechanisms for nitrogen dissociation and influence of the Ar component on the N2 plasma discharge at atmospheric pressure.

  14. Removal of nitrogen oxides from a gas stream by using monatomic nitrogen induced by a pulsed arc

    SciTech Connect

    Ng, H.K.; Novick, V.J.; Sekar, R.R.; Pierucci, K.A.; Geise, M.F.

    1995-01-01

    The effectiveness of N atoms, nitrogen, induced by a pulsed electric arc, in reducing nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) was studied. Goal is reduction of nitrogen oxides (NO{sub x}) from automobile emissions by this alternative technique, which can be cost-effective and has the potential to reduce NO{sub x} in exhaust containing up to 10% oxygen. Initial tests with 100, 500, and 1,000 ppM NO in pure nitrogen have shown that a greater than 50% reduction of NO/NO{sub x} is readily achievable. At an NO concentration of 100 ppM, a greater than 90% NO/NO{sub x} reduction was recorded. Different flow rates of the monatomic nitrogen and the gas stream were tested. The flow rate of the monatomic nitrogen did not have a significant effect on the reduction efficiency, unlike the flow rate of the gas stream. The cross-sectional flow area of the gas stream was varied in order to assess whether the proximity of the gas stream to the arc would affect NO/NO{sub x} reduction. Results of the tests revealed that the smallest cross-sectional area had the best reduction, but also the highest chance of contacting the arc. The composition of the gas stream was also varied to elucidate the effects of N0{sub 2} and 0{sub 2} on the NO/NO{sub x} reduction efficiency. When N0{sub 2} and 0{sub 2} are present in the gas stream, both gases lower the reduction efficiency significantly by creating more NO or N0{sub 2}. Experiments are continuing to improve the reduction efficiency. The electrical power, a function of pulse frequency, voltage, and current, was treated as a key parameter in the investigation. The power consumption of the high-voltage purser apparatus for a 100-kW engine was estimated to be 3 kW.

  15. Microplume model of spatial-yield spectra. [applying to electron gas degradation in molecular nitrogen gas

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Singhal, R. P.

    1979-01-01

    An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.

  16. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing.

    PubMed

    Keiner, Robert; Herrmann, Martina; Küsel, Kirsten; Popp, Jürgen; Frosch, Torsten

    2015-03-15

    The comprehensive investigation of changes in N cycling has been challenging so far due to difficulties with measuring gases such as N2 and N2O simultaneously. In this study we introduce cavity enhanced Raman gas spectroscopy as a new analytical methodology for tracing the stepwise reduction of (15)N-labelled nitrate by the denitrifying bacteria Pseudomonas stutzeri. The unique capabilities of Raman multi-gas analysis enabled real-time, continuous, and non-consumptive quantification of the relevant gases ((14)N2, (14)N2O, O2, and CO2) and to trace the fate of (15)N-labeled nitrate substrate ((15)N2, (15)N2O) added to a P. stutzeri culture with one single measurement. Using this new methodology, we could quantify the kinetics of the formation and degradation for all gaseous compounds (educts and products) and thus study the reaction orders. The gas quantification was complemented with the analysis of nitrate and nitrite concentrations for the online monitoring of the total nitrogen element budget. The simultaneous quantification of all gases also enabled the contactless and sterile online acquisition of the pH changes in the P. stutzeri culture by the stoichiometry of the redox reactions during denitrification and the CO2-bicarbonate equilibrium. Continuous pH monitoring - without the need to insert an electrode into solution - elucidated e.g. an increase in the slope of the pH value coinciding with an accumulation of nitrite, which in turn led to a temporary accumulation of N2O, due to an inhibition of nitrous oxide reductase. Cavity enhanced Raman gas spectroscopy has a high potential for the assessment of denitrification processes and can contribute substantially to our understanding of nitrogen cycling in both natural and agricultural systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effects of warming and nitrogen deposition on CH4, CO2 and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau.

    PubMed

    Zhao, Zhenzhen; Dong, Shikui; Jiang, Xiaoman; Liu, Shiliang; Ji, Hanzhong; Li, Yu; Han, Yuhui; Sha, Wei

    2017-08-15

    Increases in nitrogen (N) deposition along with climate warming can change the dynamics of carbon and nitrogen in the soil, and alter greenhouse gases (GHGs) fluxes. To examine how N deposition and warming affect GHGs (CH4, CO2 and N2O) fluxes in alpine grasslands, we conducted experiments in an alpine meadow (AM), alpine-steppe (AS), and alpine cultivated grassland (CG) on the Qinghai-Tibetan Plateau (QTP). We simulated N deposition by treating soil with ammonium nitrate (NH4NO3) (8kgNha(-1)year(-1)), a warming treatment using an open top chamber (OTC) was carried out, and a combined treatment of warming and N deposition (8kgNha(-1)year(-1)) was conducted. The GHGs were collected during early, peak, and late plant growing seasons, i.e., May, August, and October of 2015, respectively, using a static chamber. We found, in general, neither N deposition nor warming solely altered CH4 and N2O fluxes in the alpine grasslands. The N deposition under warming conditions reduced CO2 emission significantly. The reduction of CO2 emission was most significant in the alpine steppe. The effects of climatic warming and N deposition on the GHGs varied greatly across the grassland types and the growing seasons. The cultivated grasslands were much more unstable than the native grasslands in CH4 uptake. In can be concluded the N deposition associated with human activities may buffer the CO2 emission in the alpine grassland ecosystems in terms of climate changes on the QTP. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Electrochemical behavior of nitrogen gas species adsorbed onto boron-doped diamond (BDD) electrodes.

    PubMed

    Manzo-Robledo, A; Lévy-Clément, C; Alonso-Vante, N

    2007-11-06

    The adsorption of nitrogen species, in neutral electrolyte solutions, onto boron-doped diamond (BDD) electrode surfaces from dissolved NO2, NO, and N2O gases was induced at 0 V/SCE. Modified BDD electrode surfaces showed a different electrochemical response toward the hydrogen evolution reaction than did a nonmodified electrode surface in electrolyte base solution. The formation of molecular hydrogen and nitrogen gaseous species was confirmed by the online differential electrochemical mass spectrometry (DEMS) technique. Among the three nitrogen oxides gases, NO2 substantially modifies the electrolyte via hydrolysis leading to the formation of NO3- and its adsorption on the BDD electrode surface. The BDD/(NO3-) interface was the only N2O and N2 species generating system.

  19. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  20. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  1. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

    PubMed Central

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F.; Wang, Jian-Ping

    2016-01-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 107 erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25–30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 1017/cm2. PMID:27145983

  2. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  3. Characteristics of surface-wave plasma with air-simulated N2 O2 gas mixture for low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Nonaka, H.; Zhou, H. Y.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2007-02-01

    Sterilization experiments using low-pressure air discharge plasma sustained by the 2.45 GHz surface-wave have been carried out. Geobacillus stearothermoplilus spores having a population of 3.0 × 106 were sterilized for only 3 min using air-simulated N2-O2 mixture gas discharge plasma, faster than the cases of pure O2 or pure N2 discharge plasmas. From the SEM analysis of plasma-irradiated spores and optical emission spectroscopy measurements of the plasmas, it has been found that the possible sterilization mechanisms of air-simulated plasma are the chemical etching effect due to the oxygen radicals and UV emission from the N2 molecules and NO radicals in the wavelength range 200-400 nm. Experiment suggested that UV emission in the wavelength range less than 200 nm might not be significant in the sterilization. The UV intensity at 237.0 nm originated from the NO γ system (A 2Σ+ → X 2Π) in N2-O2 plasma as a function of the O2 percentage added to N2-O2 mixture gas has been investigated. It achieved its maximum value when the O2 percentage was roughly 10-20%. This result suggests that air can be used as a discharge gas for sterilization, and indeed we have confirmed a rapid sterilization with the actual air discharge at a sample temperature of less than 65 °C.

  4. Synthesis of ultrasmooth nanostructured diamond films by microwave plasma chemical vapor deposition using a He/H(2)/CH(4)/N(2) gas mixture.

    PubMed

    Chowdhury, S; Hillman, Damon A; Catledge, Shane A; Konovalov, Valery V; Vohra, Yogesh K

    2006-10-01

    Ultrasmooth nanostructured diamond (USND) films were synthesized on Ti-6Al-4V medical grade substrates by adding helium in H(2)/CH(4)/N(2) plasma and changing the N(2)/CH(4) gas flow from 0 to 0.6. We were able to deposit diamond films as smooth as 6 nm (root-mean-square), as measured by an atomic force microscopy (AFM) scan area of 2 μm(2). Grain size was 4-5 nm at 71% He in (H(2) + He) and N(2)/CH(4) gas flow ratio of 0.4 without deteriorating the hardness (~50-60 GPa). The characterization of the films was performed with AFM, scanning electron microscopy, x-ray diffraction (XRD), Raman spectroscopy, and nanoindentation techniques. XRD and Raman results showed the nanocrystalline nature of the diamond films. The plasma species during deposition were monitored by optical emission spectroscopy. With increasing N(2)/CH(4) feedgas ratio (CH(4) was fixed) in He/H(2)/CH(4)/N(2) plasma, a substantial increase of CN radical (normalized by Balmer H(α) line) was observed along with a drop in surface roughness up to a critical N(2)/CH(4) ratio of 0.4. The CN radical concentration in the plasma was thus correlated to the formation of ultrasmooth nanostructured diamond films.

  5. Synthesis of ultrasmooth nanostructured diamond films by microwave plasma chemical vapor deposition using a He/H2/CH4/N2 gas mixture

    PubMed Central

    Chowdhury, S.; Hillman, Damon A.; Catledge, Shane A.; Konovalov, Valery V.; Vohra, Yogesh K.

    2008-01-01

    Ultrasmooth nanostructured diamond (USND) films were synthesized on Ti–6Al–4V medical grade substrates by adding helium in H2/CH4/N2 plasma and changing the N2/CH4 gas flow from 0 to 0.6. We were able to deposit diamond films as smooth as 6 nm (root-mean-square), as measured by an atomic force microscopy (AFM) scan area of 2 μm2. Grain size was 4–5 nm at 71% He in (H2 + He) and N2/CH4 gas flow ratio of 0.4 without deteriorating the hardness (~50–60 GPa). The characterization of the films was performed with AFM, scanning electron microscopy, x-ray diffraction (XRD), Raman spectroscopy, and nanoindentation techniques. XRD and Raman results showed the nanocrystalline nature of the diamond films. The plasma species during deposition were monitored by optical emission spectroscopy. With increasing N2/CH4 feedgas ratio (CH4 was fixed) in He/H2/CH4/N2 plasma, a substantial increase of CN radical (normalized by Balmer Hα line) was observed along with a drop in surface roughness up to a critical N2/CH4 ratio of 0.4. The CN radical concentration in the plasma was thus correlated to the formation of ultrasmooth nanostructured diamond films. PMID:18946515

  6. Vibrational Spectroscopy of Mass-Selected [UO2(ligand)n]2+ Complexes in the Gas Phase: Comparison with Theory

    SciTech Connect

    Gary S. Groenewold; Anita K. Gianotto

    2006-03-01

    The gas-phase infrared spectra of discrete uranyl ([UO2]2+) complexes ligated with acetone and/or acetonitrile were used to evaluate systematic trends of ligation on the position of the OdUdO stretch and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric OdUdO stretching frequency was measured at 1017 cm-1 for [UO2(CH3COCH3)2]2+ and was systematically red shifted to 1000 and 988 cm-1 by the addition of a third and fourth acetone ligand, respectively, which was consistent with increased donation of electron density to the uranium center in complexes with higher coordination number. The values generated computationally using LDA, B3LYP, and ZORA-PW91 were in good agreement with experimental measurements. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from two to four and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)n]2+ complexes, although the uranyl asymmetric stretching frequencies were greater than those measured for acetone complexes having equivalent coordination, which is consistent with the fact that acetonitrile is a weaker nucleophile than is acetone. This conclusion was confirmed by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3-6 cm-1.

  7. Greenhouse gas and soil nutrient dynamics at Haliburton Forest: nitrogen and phosphorous amendments to soils to study the effects of high nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Winsborough, C. L.; Basiliko, N.

    2011-12-01

    Many of Canada's forests are currently experiencing a major environmental disturbance in the form of atmospheric nitrogen (N) deposition from fossil fuel burning and agricultural practices. Nitrogen is a major nutrient required for plants and soil microorganisms and is normally in short supply relative to biological demands. However, when N is in excess various negative impacts result including nutrient leaching, increased nitrous oxide (N2O) emissions, and disturbances to carbon and methane (CH4) cycling. Introducing soil amendments might have the potential to mitigate the negative impacts of excess N in forest soils. Previous research at Haliburton Forest in southeastern Ontario, Canada has demonstrated that N is no longer a limiting nutrient for plants, but rather phosphorous (P), where the addition of P resulted in rapid increased growth in sugar maple trees. We characterized long term (>5 years) and more immediate/short-term effects of P additions and short-term effects of N and N+P additions to soils at Haliburton Forest on the exchange of greenhouse gases (CH4, N2O, CO2) and cycling of N and P to determine the extent of excess N impact and potential N saturation. Long-term effects of P addition demonstrated suppressed levels of CH4 uptake likely due to an N limitation of CH4 oxidizing bacteria. Decreased pools of N with P addition suggest that P additions alleviate P limitation and induce N uptake, however overall low inorganic N pools suggest that N saturation has not yet appeared. Immediate effects demonstrated increased N2O and CO2 efflux and suppressed CH4 uptake in N amended plots while P amended plots remained similar to control plots. 1- and 2-year post-application greenhouse gas and nutrient data will help to elucidate these findings.

  8. N2O and NOy

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Jackman, C. H.; Douglass, A. R.; Strahan, S. E.

    2003-01-01

    The principal loss processes for ozone in the stratosphere are either directly or indirectly closely coupled to the abundance and distribution of reactive oxides of nitrogen (NOy). The main source of NOy in the stratosphere is N2O, a trace gas that is changing significantly as a result of anthropogenic forcing. Thus diagnosis of the distributions of N2O, NOy, and their coupling is required to evaluate any chemistry-climate model aspiring to accurately simulate ozone change. In the NASA Assessment of the Effects of High-speed Aircraft in the Stratosphere: 1998 we found that the sensitivity of various models ozone to perturbation did correspond consistently with their background NOy distribution. Coordinated NOy and N2O mixing ratio distributions are available from observations: ER-2 aircraft in the lower stratosphere and ATMOS and balloon profiles to higher altitudes at a subset of latitudes and seasons. Although close comparison to these diagnostics is crucial, unfortunately the distributions are due to a combination of transport and chemical processes, and isolating the source of differences is not always simple. However, in combination with other transport and photochemical diagnostics, comparison with N2O and NOy can be very instructive in evaluation of model processes and performance.

  9. Pyroxenes from Governador Valadares and Lafayette: A Nitrogen and Noble Gas Study

    NASA Astrophysics Data System (ADS)

    Schwenzer, S. P.; Herrmann, S.; Ott, U.

    2006-03-01

    We present new noble gas and nitrogen data on pyroxene separates from Lafayette and Governador Valadares [rad. 4He, cosmogenic nuclides (in Ne, Ar), martian interior, fractionated and unfractionated martian, and fractionated terrestrial atmosphere].

  10. Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions.

    PubMed

    Fuchs, Valerie J; Mihelcic, James R; Gierke, John S

    2011-02-01

    Life cycle assessment (LCA) is used to compare the environmental impacts of vertical flow constructed wetlands (VFCW) and horizontal flow constructed wetlands (HFCW). The LCAs include greenhouse gas (N(2)O, CO(2) and CH(4)) emissions. Baseline constructed wetland designs are compared to different treatment performance scenarios and to conventional wastewater treatment at the materials acquisition, assembly and operation life stages. The LCAs suggest that constructed wetlands have less environmental impact, in terms of resource consumption and greenhouse gas emissions. The VFCW is a less impactful configuration for removing total nitrogen from domestic wastewater. Both wetland designs have negligible impacts on respiratory organics, radiation and ozone. Gaseous emissions, often not included in wastewater LCAs because of lack of data or lack of agreement on impacts, have the largest impact on climate change. Nitrous oxide accounts for the increase in impact on respiratory inorganic, and the combined acidification/eutrophication category. The LCAs were used to assess the importance of nitrogen removal and recycling, and the potential for optimizing nitrogen removal in constructed wetlands.

  11. Effects of gas temperature fluctuations on the evolution of Nitrogenous species during coal devolatilization

    SciTech Connect

    Zhang, H.T.; Zhang, J.

    2009-02-15

    The effects of gas temperature fluctuations on the instantaneous evolution processes of nitrogenous species were investigated for pulverized coal particles undergoing devolatilization in a hot gas. The instantaneous mass variations of nitrogenous species released from the particles with diameters of 10-50 {mu} m were computed for different conditions. The instantaneous gas temperature was varied with time either in a simple harmonic way or in a random way. The calculated results showed that, under different time-average gas temperatures, the HCN evolution behaviors of particles with different diameters were all affected by the gas temperature fluctuations. The gas temperature fluctuations led to more rapid HCN release from the pulverized coal particles compared to the results obtained without gas temperature fluctuations. The effects were further enhanced by increasing the amplitude or intensity of the gas temperature fluctuations.

  12. EOS7C Version 1.0: TOUGH2 Module for Carbon Dioxide or Nitrogen inNatural Gas (Methane) Reservoirs

    SciTech Connect

    Oldenburg, Curtis M.; Moridis,George J.; Spycher, Nicholas; Pruess, Karsten

    2004-06-29

    EOS7C is a TOUGH2 module for multicomponent gas mixtures in the systems methane carbon dioxide (CH4-CO2) or methane-nitrogen (CH4-N2) with or without an aqueous phase and H2O vapor. EOS7C uses a cubic equation of state and an accurate solubility formulation along with a multiphase Darcy s Law to model flow and transport of gas and aqueous phase mixtures over a wide range of pressures and temperatures appropriate to subsurface geologic carbon sequestration sites and natural gas reservoirs. EOS7C models supercritical CO2 and subcritical CO2 as a non-condensible gas, hence EOS7C does not model the transition to liquid or solid CO2 conditions. The components modeled in EOS7C are water, brine, non-condensible gas, gas tracer, methane, and optional heat. The non-condensible gas (NCG) can be selected by the user to be CO2 or N2. The real gas properties module has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Partitioning of the NCG and CH4 between the aqueous and gas phases is calculated using a very accurate chemical equilibrium approach. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. We present instructions for use and example problems to demonstrate the accuracy and practical application of EOS7C.

  13. Nitrogen loss factors of nitrogen trace gas emissions and leaching from excreta patches in grassland ecosystems: A summary of available data.

    PubMed

    Cai, Yanjiang; Akiyama, Hiroko

    2016-12-01

    Patches of excreta voided by grazing animals are nitrogen (N) transformation hotspots in grassland ecosystems and an important source of N trace gas emissions and leaching. Previous studies have focused on individual N losses from excreta, but no quantitative analysis has been performed on all the N losses via N trace gas emissions and leaching. To better understand the fate of N in excreta patches, we summarized 418, 15, 65, 22, 54, 11, and 81 measurements of nitrous oxide (N2O), nitric oxide (NO), ammonia (NH3), and ammonium (NH4(+)) leaching, nitrate (NO3(-)) leaching, dissolved organic nitrogen (DON) leaching, and aboveground plant N uptake, respectively. The results based on field studies indicated that the average fractions of N lost via N2O were 0.28%, 0.76%, 0.08%, and 0.35% for cattle dung, cattle urine, sheep dung, and sheep urine, respectively. Only 0.01-0.12% of excreta N was lost via NO, whereas 1.69-12.7%, 0-4.58%, 16.4-24.6%, and 1.43-5.91% were lost by NH3 and NH4(+), NO3(-), and DON leaching, respectively. Aboveground plant parts assimilated 10.4-31.4% of the excreta N. The N lost via N2O from urine patches decreased as NH3 losses increased, and greater NO3(-) leaching occurred with lower plant N uptake. The combined N2O emission factors for dung and urine from cattle and sheep were 0.59% and 0.26%, respectively. Each N loss factor was much higher in urine patches than in dung patches, irrespective of animal type. This study provides general estimates of N losses and plant N uptake from excreta patches on grazed grassland based on currently available field data. More field studies are needed in the future with longer measurement periods from a wide range of climate zones to refine these N loss factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    PubMed

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  15. Using the Triple Labelling Technique to apportion N2O Emissions to Nitrification and Denitrification from different Nitrogen Sources at different Water-Filled-Pore-Spaces

    NASA Astrophysics Data System (ADS)

    Loick, Nadine; Dixon, Elizabeth R.; Repullo Ruibérriz de Torres, Miguel A.; Ciganda, Veronica; Lopez-Aizpun, Maria A.; Matthews, G. Peter; Müller, Christoph; Cardenas, Laura M.

    2017-04-01

    Nitrous oxide (N2O) is considered to be an important greenhouse gas (GHG) accounting for approximately 6% of the current global warming. The atmospheric N2O concentration has been increasing since the Industrial Revolution, with soils representing its major source, making the understanding of its sources and removal processes very important for the development of mitigation strategies. In soils N gases are mainly produced via nitrification and denitrification. It is assumed that under dry/aerobic conditions nitrification is the dominant N consuming process, while denitrification becomes dominant under wetter conditions promoting anaerobicity. Nitrification and denitrification may occur simultaneously in different microsites of the same soil but there is often uncertainty associated with which process dominates in a particular soil under specific conditions. N2O predominantly derives from incomplete denitrification of nitrate (NO3-). The existence of different pools of NO3- in soils, namely the native soil pool, and the fertiliser-added one, has been suggested through a series of laboratory incubation experiments (Meijide et al., 2010; Bergstermann et al., 2011) using the denitrification incubation system, DENIS (Cardenas et al., 2003), in which soil cores are incubated under an N-free atmosphere, allowing direct measurements of all emitted N gases (NO, N2O and N2) as well as CO2. A third pool, NO3- produced from nitrification of applied NH4+, can also be a source of N2O via denitrification and also from nitrification. In this study labelling of substrate-N with 15N is used to quantify the underlying gross N transformation rates and link them to N-emissions to identify the production and consumption pathways and temporal dynamics of N2O. In three experiments twelve soil cores each were incubated in the DENIS to measure gaseous emissions, while parallel incubations under the same conditions were set up for destructive soil sampling at 7 time points. Using the triple

  16. Effects of Nitrogen Segregation and Solubility on the Formation of Nitrogen Gas Pores in 21.5Cr-1.5Ni Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Chun; Jiang, Zhou-Hua; Li, Hua-Bing; Feng, Hao; Zhang, Shu-Cai; Liu, Guo-Hai; Zhu, Jun-Hui; Wang, Peng-Bo; Zhang, Bin-Bin; Fan, Guang-Wei; Li, Guo-Ping

    2017-10-01

    The nitrogen gas pore-formation mechanism was discussed with regard to the solidification of 21.5Cr-1.5Ni duplex stainless steels (DSSs) by considering nitrogen segregation and solubility. The segregation behavior of nitrogen was investigated with phase transformation using experimental detection methods and Thermo-Calc software calculations. The process associated with the formation of gas pores was illustrated clearly. The factors that influenced the formation of gas pores, including shrinkage, nitrogen content, solidification pressure, and alloying elements (Mn and Cr), were discussed in detail. The formation of nitrogen-rich phases [austenite phase (FCC), AlN, and hexagonal close packed] is beneficial to eliminate nitrogen segregation and suppressing gas pore formation. The nitrogen-depleted phase (ferrite phase (BCC)) exhibits an opposite effect. Regular gas pores are initially formed in locations consisting of the austenite phase. As the gas pores lengthen, ferrite and austenite phases alternately form around the gas pores. Solidification shrinkage can promote the formation of irregular gas pores at the centerline of the ingots. Increasing the nitrogen content is favorable to the formation of gas pores. Increasing solidification pressure is effective with regard to suppressing the formation of gas pore defects in DSSs. Increasing the Mn content can reduce the likelihood of gas pore formation; this can be attributed to the increased nitrogen solubility in the residual liquid surrounding the dendrites and the formation tendency of the nitrogen-rich phase. Increasing the Cr content exhibits a dual effect on gas pore formation, which is caused by the increased nitrogen solubility and segregation in the residual liquid.

  17. N2 Gas Flushing Alleviates the Loss of Bacterial Diversity and Inhibits Psychrotrophic Pseudomonas during the Cold Storage of Bovine Raw Milk

    PubMed Central

    Kublik, Susanne; Fuka, Mirna Mrkonjić; Schloter, Michael; Munsch-Alatossava, Patricia

    2016-01-01

    The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk

  18. N2 Gas Flushing Alleviates the Loss of Bacterial Diversity and Inhibits Psychrotrophic Pseudomonas during the Cold Storage of Bovine Raw Milk.

    PubMed

    Gschwendtner, Silvia; Alatossava, Tapani; Kublik, Susanne; Fuka, Mirna Mrkonjić; Schloter, Michael; Munsch-Alatossava, Patricia

    2016-01-01

    The quality and safety of raw milk still remains a worldwide challenge. Culture-dependent methods indicated that the continuous N2 gas-flushing of raw milk reduced the bacterial growth during cold storage by up to four orders of magnitude, compared to cold storage alone. This study investigated the influence of N2 gas-flushing on bacterial diversity in bovine raw-milk samples, that were either cold stored at 6°C or additionally flushed with pure N2 for up to one week. Next-generation sequencing (NGS) of the V1-V2 hypervariable regions of 16S rRNA genes, derived from amplified cDNA, which was obtained from RNA directly isolated from raw-milk samples, was performed. The reads, which were clustered into 2448 operational taxonomic units (OTUs), were phylogenetically classified. Our data revealed a drastic reduction in the diversity of OTUs in raw milk during cold storage at 6°C at 97% similarity level; but, the N2-flushing treatment alleviated this reduction and substantially limited the loss of bacterial diversity during the same cold-storage period. Compared to cold-stored milk, the initial raw-milk samples contained less Proteobacteria (mainly Pseudomonadaceae, Moraxellaceae and Enterobacteriaceae) but more Firmicutes (mainly Ruminococcaceaea, Lachnospiraceae and Oscillospiraceaea) and Bacteroidetes (mainly Bacteroidales). Significant differences between cold-stored and additionally N2-flushed milk were mainly related to higher levels of Pseudomononadaceae (including the genera Pseudomonas and Acinetobacter) in cold-stored milk samples; furthermore, rare taxa were better preserved by the N2 gas flushing compared to the cold storage alone. No major changes in bacterial composition with time were found regarding the distribution of the major 9 OTUs, that dominated the Pseudomonas genus in N2-flushed or non-flushed milk samples, other than an intriguing predominance of bacteria related to P. veronii. Overall, this study established that neither bacteria causing milk

  19. Gas analysis using Raman spectroscopy demonstrates the presence of intraperitoneal air (nitrogen and oxygen) in a cohort of children undergoing pediatric laparoscopic surgery.

    PubMed

    Taylor, Susan P; Sato, Thomas T; Balcom, Anthony H; Groth, Travis; Hoffman, George M

    2015-02-01

    Clinically significant gas embolism during laparoscopy is a rare but potentially catastrophic event. Case reports suggest that air, in addition to the insufflation gas, may be present. We studied the effects of equipment design and flushing techniques on the composition of gas present under experimental and routine pediatric surgical conditions. Concentrations of nitrogen (N2), oxygen (O2), and carbon dioxide (CO2) were measured by Raman spectroscopy in gas delivered to and retrieved from a mock peritoneum during simulated laparoscopy. We then analyzed the composition of insufflated and recovered gases during elective laparoscopic procedures conducted with CO2-preflushed and unflushed tubing to determine the presence of significant (10%) quantities of air. In vitro, CO2 was not detected at the distal end of insufflator tubing until after delivery of approximately 0.2 L of gas, and N2 persisted until >0.4 L was delivered, with 40% ± 8% (mean ± SD, range 33%-49%) recovered from the mock peritoneum at the termination of initial insufflation. In clinical studies, preflushing reduced the initial concentration of N2 from 78% ± 0.5% to 23% ± 15%, but >10% air was detected in all subsequent samples, regardless of insufflation technique. Laparoscopic equipment and practice routinely permit delivery of air to the insufflated cavity. Purging the equipment with CO2 reduces but does not eliminate air (N2, O2) within the peritoneal cavity during laparoscopy. Thus, when vascular injury occurs, embolized gases will contain variable quantities of N2, O2, and CO2. As the initial insufflation volume diminishes and approaches the volume of the insufflation tubing, which occurs in infants and young pediatric patients, the concentration of N2 will approximate that of room air in an unflushed system. Small insufflation volumes containing high N2 concentrations can contribute to catastrophic air emboli in neonates and small pediatric patients.

  20. Method for measuring changes in the atmospheric O2/N2 ratio by a gas chromatograph equipped with a thermal conductivity detector

    NASA Astrophysics Data System (ADS)

    Tohjima, Yasunori

    2000-06-01

    We present a method for measuring changes in the atmospheric O2/N2 ratio based on data from a gas chromatograph (GC) equipped with a thermal conductivity detector (TCD). In this method, O2 and N2 in an air sample are separated on a column filled with molecular sieve 5A with H2 carrier gas. Since the separated O2 includes Ar, which has a retention time similar to that of O2, the (O2+Ar)/N2 ratio is actually measured. The change in the measured (O2+Ar)/N2 ratio can be easily converted to that in the O2/N2 ratio with a very small error based on the fact that the atmospheric Ar/N2 ratio is almost constant. The improvements to achieve the high-precision measurement include stabilization of the pressure at the GC column head and at the outlets of the TCD and the sample loop. Additionally, the precision is improved statistically by repeating alternate analyses of sample and a reference gas. The standard deviation of the replicate cycles of reference and sample analyses is about 18 per meg (corresponding to 3.8 parts per million (ppm) O2 in air). This means that the standard error is about 7 per meg (1.5 ppm O2 in air) for seven cycles of alternate analyses, which takes about 70 min. The response of this method is likely to have a 2% nonlinearity. Ambient air samples are collected under pressure in glass flasks equipped with two stopcocks sealed by Viton O-rings at both ends. Pressure depletion in the flask during the O2/N2 measurement does not cause any detectable change in the O2/N2 ratio, but the O2/N2 ratio in the flask was found to gradually decrease during the storage period. We also present preliminary results from air samples collected at Hateruma Island (latitude 24°03'N, longitude 123°49') from July 1997 through March 1999. The observed O2/N2 ratios clearly show a seasonal variation, increasing in spring and summer and decreasing in autumn and winter.

  1. Desflurane usage during anesthesia with and without N2O using FLOW-i Automatic Gas Control with three different wash-in speeds.

    PubMed

    De Medts, Robrecht; Carette, Rik; De Wolf, Andre M; Hendrickx, Jan F A

    2017-06-09

    AGC(®) (Automatic Gas Control) is the FLOW-i's automated low flow tool (Maquet, Solna, Sweden) that target controls the inspired O2 (FIO2) and end-expired desflurane concentration (FAdes) while (by design) exponentially decreasing fresh gas flow (FGF) during wash-in to a maintenance default FGF of 300 mL min(-1). It also offers a choice of wash-in speeds for the inhaled agents. We examined AGC performance and hypothesized that the use of lower wash-in speeds and N2O both reduce desflurane usage (Vdes). After obtaining IRB approval and patient consent, 78 ASA I-II patients undergoing abdominal surgery were randomly assigned to 1 of 6 groups (n = 13 each), depending on carrier gas (O2/air or O2/N2O) and wash-in speed (AGC speed 2, 4, or 6) of desflurane, resulting in groups air/2, air/4, air/6, N2O/2, N2O/4, and N2O/6. The target for FIO2 was set at 35%, while the FAdes target was selected so that the AGC displayed 1.3 MAC (corrected for the additive affect of N2O if used). AGC was activated upon starting mechanical ventilation. Varvel's criteria were used to describe performance of achieving the targets. Patient demographics, end-expired N2O concentration, MAC, FGF, and Vdes were compared using ANOVA. Data are presented as mean ± standard deviation, except for Varvel's criteria (median ± quartiles). Patient demographics did not differ among the groups. Median performance error was -2-0% for FIO2 and -3-1% for FAdes; median absolute performance error was 1-2% for FIO2 and 0-3% for FAdes. MAC increased faster in N2O groups, but total MAC decreased 0.1-0.25 MAC below that in the O2/air groups after 60 min. The effect of wash-in speed on Vdes faded over time. N2O decreased Vdes by 62%. AGC performance for O2 and desflurane targeting is excellent. After 1 h, the wash-in speeds tested are unlikely to affect desflurane usage. N2O usage decreases Vdes proportionally with its reduction in FAtdes.

  2. Nitrogen Injection To Flush Coal Seam Gas Out Of Coal: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Aziz, Naj; Ren, Ting; Nemcik, Jan; Tu, Shihao

    2015-12-01

    Several mines operating in the Bulli seam of the Sydney Basin in NSW, Australia are experiencing difficulties in reducing gas content within the available drainage lead time in various sections of the coal deposit. Increased density of drainage boreholes has proven to be ineffective, particularly in sections of the coal seam rich in CO2. Plus with the increasing worldwide concern on green house gas reduction and clean energy utilisation, significant attention is paid to develop a more practical and economical method of enhancing the gas recovery from coal seams. A technology based on N2 injection was proposed to flush the Coal Seam Gas (CSG) out of coal and enhance the gas drainage process. In this study, laboratory tests on CO2 and CH4 gas recovery from coal by N2 injection are described and results show that N2 flushing has a significant impact on the CO2 and CH4 desorption and removal from coal. During the flushing stage, it was found that N2 flushing plays a more effective role in reducing adsorbed CH4 than CO2. Comparatively, during the desorption stage, the study shows gas desorption after N2 flushing plays a more effective role in reducing adsorbed CO2 than CH4.

  3. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  4. Development of a New N2O/CO Cavity Ring-Down Spectrometer for sub-ppb Ambient Gas Monitoring

    NASA Astrophysics Data System (ADS)

    Leggett, G. A.; Saad, N.; Zhou, J.; Hoffnagle, J.; Fleck, D.

    2015-12-01

    With a global warming potential of nearly 300, N2O is a critically important greenhouse gas, contributing about 5% of the US total GHG emissions. Agriculture soil management practices are the dominant source of anthropogenic N2O emissions, contributing nearly 3/4ths of US N2O emissions. In urban areas, vehicle tailpipe emissions and waste water treatment plants are significant sources of N2O. We report here a new mid-infrared laser-based cavity ring-down spectrometer that was recently developed to measure sub-ppb ambient concentrations of two key greenhouse gas species, N2O and CO, simultaneously. It combines a quantum cascade laser with a proprietary 3-mirror optical cavity. The new optical analyzer was set up to monitor nitrous oxide and carbon monoxide, along with CO2 and CH4, in ambient air obtained from a 10m tower in Santa Clara, California. In the data collected, the contribution from traffic and a nearby sewage treatment facility was evident.

  5. Determination of CH4, CO2 and N2O in air samples and soil atmosphere by gas chromatography mass spectrometry, GC-MS.

    PubMed

    Ekeberg, Dag; Ogner, Gunnar; Fongen, Monica; Joner, Erik J; Wickstrom, Torild

    2004-07-01

    A method for determination of the climate gases CH4, CO2 and N2O in air samples and soil atmosphere was developed using GC-MS. The method uses straightforward gas chromatography (separation of the gases) with a mass spectrometric detector in single ion mode (specific determination). The gases were determined with high sensitivity and high sample throughput (18 samples h(-1)). The LOD (3sigma) for the gases were 0.10 micro L L(-1) for CH4, 20 microL L(-1) for CO2 and 0.02 microL L(-1) for N2O. The linear range (R2 = 0.999) was up to 500 microL L(-1) for CH4, 4000 microL L(-1) for CO2 and 80 microL L(-1) for N2O. The samples were collected in 10 mL vials and a 5 microL aliquot was injected on column. The method was tested against certified gas references, the analytical data gave an accuracy within +/-5% and a precision of +/-3%. The presence of < or = 10% by volume of C2H2 (often used experimentally to prevent N2 formation from N2O) did not interfere with detection for the targeted trace gases.

  6. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  7. [Simultaneous determination of stimulant, narcotics and antiestrogen in urine by gas chromatography-nitrogen phosphorous detection].

    PubMed

    Qiu, Lijun; Zheng, Xiaoyan; You, Feiming; Liu, Wei; Zhang, Jinzhang; Zhang, Lan

    2009-05-01

    An easy, sensitive and quick method was established for simultaneously separating and determining stimulant, narcotics and antiestrogen in spiked human urine using gas chromatography-nitrogen phosphorous detection (GC-NPD). The urine sample was preprocessed by liquid-liquid extraction. Tert-butyl methyl ether and N-phenylamine were chosen as extraction solvent and internal standard for quantitation, respectively. That is, a standard stock mixture containing methylephedrine, meperidine, methadone, tamoxifen, fentanyl and N-phenylaniline was added into 5.0 mL urine samples and mixed uniformly, then 0.5 mL 5.0 mol/L NaOH, 3.0 g NaCl and 5.0 mL tert-butyl methyl ether were added and finally centrifuged. The extraction solution was dried under N2, redissolved by acetone and then determined by GC-NPD. The )j method showed the satisfactory linearity was between 0.022 - 20 mg/L, with the coefficient correlation from 0.9945 to 0.9998. The detection limits were in the range of 0.007 - 0.015 mg/ L, and the average recoveries in spiked urine were between 75.8% - 118.2% and the relative standard deviations were lower than 17.2%.

  8. Fluxes of CO2, CH4 and N2O at two European beech forests: linking soil gas production profiles with soil and stem fluxes

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Machacova, Katerina; Halaburt, Ellen; Haddad, Sally; Urban, Otmar; Lang, Friederike

    2016-04-01

    Soil and plant surfaces are known to exchange greenhouse gases with the atmosphere. Some gases like nitrous oxide (N2O) and methane (CH4) can be produced and re-consumed in different soil depths and soil compartments, so that elevated concentrations of CH4 or N2O in the soil do not necessarily mean a net efflux from the soil into the atmosphere. Soil aeration, and thus the oxygen status can underlay a large spatial variability within the soil on the plot and profile scale, but also within soil aggregates. Thus, conditions suitable for production and consumption of CH4 and N2O can vary on different scales in the soil. Plant surfaces can also emit or take up CH4 and N2O, and these fluxes can significantly contribute to the net ecosystem exchange. Since roots usually have large intercellular spaces or aerenchyma they may represent preferential transport ways for soil gases, linking possibly elevated soil gas concentrations in the subsoil in a "shortcut" to the atmosphere. We tested the hypothesis that the spatial variability of the soil-atmosphere fluxes of CO2, CH4 and N2O is caused by the heterogeneity in soil properties. Therefore, we measured soil-atmosphere gas fluxes, soil gas concentrations and soil diffusivity profiles and did a small scale field assessment of soil profiles on the measurments plots. We further tried to link vertical profiles of soil gas concentrations and diffusivity to derive the production and consumption profiles, and to link these profiles to the stem-atmosphere flux rates of individual trees. Measurements were conducted in two mountain beech forests with different geographical and climatic conditions (White Carpathians, Czech Republic; Black Forest, Germany). Gas fluxes at stem and soil levels were measured simultaneously using static chamber systems and chromatographic and continuous laser analyses. Monitoring simultaneously vertical soil gas profiles allowed to assess the within-soil gas fluxes, and thus to localize the production and

  9. Helium extraction and nitrogen removal from LNG boil-off gas

    NASA Astrophysics Data System (ADS)

    Xiong, L.; Peng, N.; Liu, L.; Gong, L.

    2017-02-01

    The helium bearing boil off gas (BOG) from liquid natural gas (LNG) storage tank in LNG plant, which has a helium concentration of about 1%, has attracted the attention in China as a new helium source. As the BOG is usually reused by re-condensing to recover methane, it is likely to cause continuous accumulation of nitrogen in the unit, thus a nitrogen removal process must be integrated. This paper describes a conceptional cryogenic separation system aiming at recovering methane, helium and nitrogen from BOG based on cryogenic distillation and condensation process.

  10. Straightforward way to enhance robustness in ultrasonic nebulization-axial view inductively coupled plasma optical emission spectrometry via an additional N2 gas stream

    NASA Astrophysics Data System (ADS)

    Scheffler, Guilherme Luiz; Pozebon, Dirce

    2015-11-01

    In the present study a low flow of N2 is mixed with the aerosol produced by ultrasonic nebulization (USN) prior analysis using inductively coupled plasma optical emission spectrometry (ICP OES). The foreign gas is added for improving plasma characteristics in axially-viewed ICP. By computing the Mg ionic to atomic ratio (plasma robustness) it was concluded that N2 dissociates closer to the load coil when USN is used as sample introduction system. The maximum emission intensity of Mg(II) for pneumatic nebulization (PN) was observed at 11 mm from the load coil while it was 8 mm for USN, indicating earlier aerosol desolvation, atomization and excitation processes in the ICP. Emission profiles of Ar(I) 415.861 nm, Ba(II) 486.601 nm and Ba(II) 233.527 nm indicated that metastable Ar species are overpopulated in the ICP under the N2 flow. Copper and manganese ionic lines with energy close to 16 eV (Ar ionization) were monitored to evaluate spatially dependent charge-transfer reaction along the ICP axis in the presence and absence of the N2 flow. The Cu(II) signal profiles indicated abundance of Ar+ species at low distances from the load coil when N2 was added. On the other hand, differences were not observed at longer distances from the load coil for both plasmas (mixed-gas and pure Ar-ICP). The calculated limits of detection (LODs) for both plasmas had the same order of magnitude. Analysis of certified reference samples demonstrated that the accuracy was preserved by adding the low flow of N2. It was concluded that adding a low flow of N2 to the aerosol produced by USN is a simple way to increase plasma robustness, which is usually lower than that achieved using conventional PN.

  11. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China.

    PubMed

    Song, Lei; Tian, Peng; Zhang, Jinbo; Jin, Guangze

    2017-12-31

    Continuously enhanced nitrogen (N) deposition alters the pattern of N and carbon (C) transformations, and thus influences greenhouse gas emissions. It is necessary to clarify the effect of N deposition on greenhouse gas emissions and soil N dynamics for an accurate assessment of C and N budgets under increasing N deposition. In this study, four simulated N deposition treatments (control [CK: no N addition], low-N [L: 20kgNha(-1)yr(-1)], medium-N [M: 40kgNha(-1)yr(-1)], and high-N [H: 80kgNha(-1)yr(-1)]) were operated from 2014. Carbon dioxide, methane and nitrous oxide fluxes were monitored semimonthly, as were soil variables such as temperature, moisture and the concentrations of total dissolved N (TDN), NO3(-), NO2(-), NH4(+), and dissolved organic N (DON) in soil solutions. The simulated N deposition resulted in a significant increase in TDN, NO3(-) and DON concentrations in soil solutions. The average CO2 emission rate ranged from 222.6mgCO2m(-2)h(-1) in CK to 233.7mgCO2m(-2)h(-1) in the high-N treatment. Three years of simulated N deposition had no effect on soil CO2 emission, which was mainly controlled by soil temperature. The mean N2O emission rate during the whole 3years was 0.02mgN2Om(-2)h(-1) for CK, which increased significantly to 0.05mgN2Om(-2)h(-1) in the high-N treatment. The N2O emission rate positively correlated with NH4(+) concentrations, and negatively correlated with soil moisture. The average CH4 flux during the whole 3years was -0.74μgCH4m(-2)h(-1) in CK, which increased to 1.41μgCH4m(-2)h(-1) in the low-N treatment. CH4 flux positively correlated with NO3(-) concentrations. These results indicate that short-term N deposition did not affect soil CO2 emissions, while CH4 and N2O emissions were sensitive to N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Comparison of the Nitrogen Gas Excess Versus the Fixed Nitrogen Deficit in Two Major Oxygen Deficient Zones of the World

    NASA Astrophysics Data System (ADS)

    Devol, A. H.; Chang, B. X.

    2006-12-01

    This study compares the nitrogen gas excesses in the oxygen deficient zones (ODZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea. These are two of the three largest ODZs in the world. In the near absence of oxygen, heterotrophic denitrification is the dominant form of respiration in these regions which, coupled to the sheer vastness of the ODZs, makes them a globally significant sink of marine fixed nitrogen. Thus, understanding how nitrogen is cycled in the ODZs is important to understanding the global nitrogen cycle. We measured profiles of nitrogen gas and argon concentrations through the ODZs of the ETSP and the Arabian Sea in the fall of 2005 and 2004, respectively. Nitrogen