Science.gov

Sample records for nitrogen silicon chalcogen

  1. Contactless Microwave Measurements of Photoconductivity in Silicon Hyperdoped with Chalcogens

    DTIC Science & Technology

    2012-01-01

    photocarrier lifetime, hyperdoped silicon David Hutchinson, Thomas Cruson, Anthony DiFranzo, Andrew McAllister, Aurore J. Said, Jeffrey M. Warrender, Daniel...Chalcogens Daniel Recht, David Hutchinson1, Thomas Cruson1, Anthony DiFranzo1, Andrew McAllister1, Aurore J. Said, Jeffrey M. Warrender2, Peter D. Persans1...microwaves emitted by a Millitech Gunn diode pass, via a waveguide , through an isolator to protect the source from reflections. A ‘‘magic tee’’ then

  2. Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Newman, Bonna K.; Sher, Meng-Ju; Mazur, Eric; Buonassisi, Tonio

    2011-06-01

    Silicon doped with nonequilibrium concentrations of chalcogens using a femtosecond laser exhibits near-unity absorption of sub-bandgap photons to wavelengths of at least 2500 nm. Previous studies have shown that sub-bandgap absorptance decreases with thermal annealing up to 1175 K and that the absorption deactivation correlates with chalcogen diffusivity. In this work, we show that sub-bandgap absorptance can be reactivated by annealing at temperatures between 1350 and 1550 K followed by fast cooling (>50 K/s). Our results suggest that the defects responsible for sub-bandgap absorptance are in equilibrium at high temperatures in hyperdoped Si:chalcogen systems.

  3. Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon

    SciTech Connect

    Wang, Ke-Fan; Shao, Hezhu; Liu, Kong; Qu, Shengchun E-mail: wangyx@henu.edu.cn; Wang, Zhanguo; Wang, Yuanxu E-mail: wangyx@henu.edu.cn

    2015-09-14

    Single-crystal silicon was hyperdoped with sulfur, selenium, and tellurium using ion implantation and nanosecond laser melting. The hyperdoping of such chalcogen elements led to strong and wide sub-bandgap light absorption. Annealing the hyperdoped silicon, even at low temperatures (such as 200–400 °C), led to attenuation of the sub-bandgap absorption. To explain the attenuation process, we modeled it as chemical decomposition reaction from an optically absorbing structure to a non-absorbing structure. Attenuation of the experimental absorption coefficient was fit using the Arrhenius equation. From the fitted data, we extracted the reaction activation energies of S-, Se-, and T-hyperdoped silicon as 0.338 ± 0.029 eV, 0.471 ± 0.040 eV, and 0.357 ± 0.028 eV, respectively. We discuss these activation energies in terms of the bond energies of chalcogen–Si metastable bonds, and suggest that several high-energy interstitial sites, rather than substitutional sites, are candidates for the atomic structures that are responsible for the strong sub-bandgap absorption of chalcogen hyperdoped silicon.

  4. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium

    NASA Astrophysics Data System (ADS)

    Eom, Kwangsup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.

    2017-01-01

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene--SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2-1. The achieved cathode capacity is 403 mAh gSeS2-1 (1,209 mAh cmSeS2-3).

  5. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium.

    PubMed

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F

    2017-01-05

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene-SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2(-1). The achieved cathode capacity is 403 mAh gSeS2(-1) (1,209 mAh cmSeS2(-3)).

  6. A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium

    PubMed Central

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.

    2017-01-01

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene—SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2−1. The achieved cathode capacity is 403 mAh gSeS2−1 (1,209 mAh cmSeS2−3). PMID:28054543

  7. Reactions in silicon-nitrogen plasma.

    PubMed

    Kovačević, Goran; Pivac, Branko

    2017-02-01

    Reaction mechanisms that lead to creation of silicon-nitrogen bonds are studied in detail. These reactions are of fundamental importance for silicon nitride synthesis by plasma enhanced chemical vapour deposition from the gas mixture of silane (SiH4) and ammonia (NH3). All reactions in SiH4-NH3 plasma can be categorised as some of the basic types of reactions: bond dissociation, neutral nucleophilic substitution, radical neutralisation, neutral-radical addition, silylene addition, silylene rearrangement, radical nucleophilic addition or hydrogen abstraction reaction. Energetics of these reactions is analysed in detail for a great number of reactions belonging to these categories, by using theoretical modelling. Geometry optimisations are carried out with the MP2/aug-cc-pVTZ level of theory and energetics is further determined with high level ab initio calculations at the CASPT2/aug-cc-pVTZ level, which enabled confirmation of relevance of several mechanisms as reactions that lead to silicon nitride growth from plasma enhanced chemical vapour deposition, as well as introduction of new, energetically favourable mechanisms. Besides amine radical assisted eliminative addition and proton transfer reactions, silylene addition reactions are thermodynamically and kinetically favourable since they lack energy barriers. A new reaction pathway for synthesis of silicon nitride from plasma is proposed. This pathway is enabled by the ability of silylene to create two weak dative bonds, which enables silylene-amine complexes to stick to the silicon nitride surface. Upon dissociation of amine from the surface-bound complex, silylene remains on the surface, available for reaction with other reactive species from plasma.

  8. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    PubMed Central

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-01-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10−15 cm2 s−1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value. PMID:26227342

  9. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  10. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers.

    PubMed

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-31

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10(-15) cm(2) s(-1), 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  11. Nitrogen related shallow thermal donors in silicon

    NASA Astrophysics Data System (ADS)

    Fujita, N.; Jones, R.; Öberg, S.; Briddon, P. R.

    2007-07-01

    In this letter, the authors investigate the electrical properties of nitrogen related shallow thermal donor (STD) candidates and their concentrations under different doping conditions by means of density functional theory. Experimentally, the existence of STDs containing one nitrogen atom and both even and odd numbers of oxygen atoms has been proposed. However, so far first principles studies have not presented a candidate for the latter. Here, they show that the NO defect possesses a shallow donor level. Adding one or two more oxygen atoms results in the donor level to become shallower. The fraction of shallow nitrogen related donors to N dimers increases in material with low concentration of nitrogen.

  12. Photoassisted Deposition of Silicon Dioxide from Silane and Nitrogen Dioxide

    DTIC Science & Technology

    1988-09-30

    Photoassisted Deposition of Silicon Dioxide N from Silane and Nitrogfen Diotde, J. MARKS, R. C. BO\\VMAN, Jr., and R.. E. ROBIERTSON Chemisty and...WCO OL-AB I UINCLASSIFIED uv ~E~ CAS(TXI WF MTHISPA REPORT DOCUMENTATION PAGE ItRPg EUM "IICTO 1b. RE STRICTIVE MARKINGS Unclassified...IDeposition of Silicon Dioxide from e and Nitrogen Dio2x 12. PERSONAL AUTHOR(S) 0Marks, Jeffrey Bowa Robert C., Jr.: anWRobertson. Rubv E. 13.TYPE OF

  13. Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.

    1996-01-01

    Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.

  14. Nature of chalcogen hor ellipsis chalcogen contact interactions in organic donor-molecule salts

    SciTech Connect

    Novoa, J.J.; Whangbo, Myung-Hwan . Dept. of Chemistry); Williams, J.M. )

    1990-01-01

    The nature of chalcogen{hor ellipsis}chalcogen contact interactions in organic donor-molecule salts was examined by performing ab initio SCF-MO/MP2 calculations on H{sub 2}X{hor ellipsis}XH{sub 2}(X = O, S, SE, Te) and MM2 calculations on donor dimers (TXF){sub 2} (X = S, SE, Te) and (BEDX-TTF){sub 2} (X = O, S). 14 refs., 4 figs., 4 tabs.

  15. A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation

    SciTech Connect

    Dong, Xiao; Zhu, Zhen; Shao, Hezhu; Rong, Ximing; Zhuang, Jun; Li, Ning; Liang, Cong; Sun, Haibin; Zhao, Li; Feng, Guojin

    2014-03-03

    A supersaturation of nitrogen atoms is found in the surface layer of microstructured silicon after femtosecond (fs) laser irradiation in NF{sub 3}. The average nitrogen concentration in the uppermost 50 nm is about 0.5 ± 0.2 at. %, several orders of magnitude higher than the solid solubility of nitrogen atoms in silicon. The nitrogen-hyperdoped silicon shows high crystallinity in the doped layer, which is due to the repairing effect of nitrogen on defects in silicon lattices. Nitrogen atoms and vacancies can be combined into thermal stable complexes after fs laser irradiation, which makes the nitrogen-hyperdoped silicon exhibit good thermal stability of optical properties.

  16. Chalcogen catalysts for polymer electrolyte fuel cell

    DOEpatents

    Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  17. Effect of oxygen and nitrogen interactions on friction of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Friction studies were conducted with single-crystal silicon carbide contacting silicon carbide and titanium after having been exposed to oxygen and nitrogen in various forms. After they had been sputter cleaned, the surfaces were (1) exposed to gaseous oxygen and nitrogen (adsorption), (2) ion bombarded with oxygen and nitrogen, or (3) reacted with oxygen (SiC only). Auger emission spectroscopy was used to determine the presence of oxygen and nitrogen. The results indicate that the surfaces of silicon carbide with reacted and ion-bombarded oxygen ions give higher coefficients of friction than do argon sputter-cleaned surfaces. The effects of oxygen on friction may be related to the relative chemical, thermodynamic properties of silicon, carbon, and titanium for oxygen. The adsorbed films of oxygen, nitrogen, and mixed gases of oxygen and nitrogen on sputter-cleaned, oxygen-ion bombarded, and oxygen-reacted surfaces generally reduce friction. Adsorption to silicon carbide is relatively weak.

  18. Nitrogen effects on silicon growth, defects, and carrier lifetime

    SciTech Connect

    Ciszek, T.F.; Wang, T.H.; Burrows, R.W.

    1995-08-01

    Silicon crystal or multicrystal growth in N{sub 2} or partial-N{sub 2} atmospheres can provide mechanical strengthening, lower purge-gas costs (nitrogen from liquid sources is about a factor of 4 less expensive than argon from liquid sources), and reduce swirl-type microdefect formation in dislocation-free (DF) crystals. There is not much literature on electrical effects of N in Si, including lifetime effects. We studied the effects of Si growth in atmospheres containing N{sub 2} on minority charge carrier lifetime E using the float-zone (FZ) crystal growth method. Ingots were grown with purge gases that ranged from pure argon (99.9995%) to pure N{sub 2} (99-999%). We found that multicrystalline silicon ingot growth in a partial or total nitrogen ambient has a negligible effect on {tau}. Values of 40 {mu}s < {tau} < 100 {mu}s were typical regardless of ambient. For DF growth, the degradation of {tau} is minimal and {tau} values above 1000 {mu}s are obtained if the amount of N{sub 2} in the purge gas is below the level at which nitride compounds form in the melt and disrupt DF growth.

  19. Estimation of leaf nitrogen and silicon using hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Mokhele, Tholang A.; Ahmed, Fethi B.

    2010-11-01

    The potential to estimate the nutrient status in important agricultural crops such as maize and sugarcane is of significant interest. In South African sugarcane agriculture, just like in global ecosystem, the estimation of Nitrogen (N) and Silicon (Si) is very important. These nutrients are one of the factors influencing the prevalence of the stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). Therefore, the researchers aim at estimating leaf N and Si concentration as well as their ratio in sugarcane using hyperspectral remote sensing (spectroradiometry) for monitoring E. saccharina. A hand-held Analytical Spectral Devices (ASD) Field Spec® 3 spectroradiometer was used to take leaf spectral measurements of sugarcane plants from a potted-plant trial taking place under shade house conditions. In this trial, nitrogen and silicon nutrient applications as well as varieties used were known. In addition, watering regimes and artificial infestation of E. saccharina were carefully controlled. The study results indicate that the Red-edge Index (R740/R720) is linearly related to N concentration (R2 = 0.81, Root Mean Square Error (RMSE) = 0.103) for N37 with the highest correlation coefficient. For Si, the index (R750-R560)/(R750+R560) was linearly related to Si concentration (R2 = 0.53, RMSE = 0.118) for N25. Finally, the N:Si ratio was linearly correlated to the index (R1075-R730)/(R1075+R730) (R2 = 0.67, RMSE = 1.508) for N37, hence this index can be used for early detection of E. saccharina damage or for identifying sugarcane that is prone to attack by E. saccharina. It was concluded that hyperspectral remote sensing has potential for use in estimating the N:Si ratio and E. saccharina potential infestations can be monitored rapidly and nondestructively in sugarcane under controlled conditions. It is recommended that an advanced study be conducted in field conditions using airborne and/or spaceborne hyperspectral sensors.

  20. Nitrogen incorporation and interface trap reduction in silicon dioxide/4H-silicon carbide

    NASA Astrophysics Data System (ADS)

    McDonald, Kyle

    2001-07-01

    Silicon carbide is a wide band gap semiconductor whose properties make it an ideal material for high power applications. Silicon carbide thermally oxidizes to form SiO2, which is used as a gate insulator in MOSFETs; however, MOSFETs produced from the 4H-SiC polytype exhibit much lower channel mobilities than expected. A large density of interface traps produced by carbon clusters and located near the conduction band has been proposed as the source of the poor mobility. The nitridation of the SiO2/4H-SiC interface using NO and NH3 has been shown to reduce this interface trap density and improve the channel mobility. In this work, the kinetics of nitrogen incorporation using NO and NH3 are compared, and the relationship between nitrogen content and interface trap density are discussed. The nitridation of SiO2/4H-SiC in NO at temperatures from 1050--1175°C incorporates ˜1014 cm-2 of nitrogen at the interface. Oxygen formed during the thermal decomposition of NO oxidizes the substrate and removes carbon and nitrogen from the interface. When the nitridation and oxidation reactions reach equilibrium, the nitrogen content saturates independently of temperature. The nitridation of SiO 2/4H-SiC in NH; at temperatures from 1050--1175°C incorporates ˜10 16 cm-2 uniformly throughout the oxide bulk. During nitridation, oxygen is removed from the oxide, and the stoichiometry of the film is changed significantly. The nitridation of SiO2/4H-SiC in NO reduces the interface trap density near the conduction band by a factor of 10, but the trap density remains high. The complete passivation of these particular traps occurs at a nitrogen content of ≈2.5 x 1014 cm-2 , regardless of the annealing conditions. The data are consistent with a model of the interface in which the traps near the conduction band are produced by large carbon clusters with a near-continuum of energy levels. The passivation of these traps with nitrogen then proceeds by the dissolution of these carbon clusters

  1. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOEpatents

    Pugar, Eloise A.; Morgan, Peter E. D.

    1990-01-01

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N.sub.n H.sub.(n+m) wherein: n=1-4 and m=2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si-N-H intermediate enables chemical pathways to be explored previously unavailable in conventional solid state approaches to silicon-nitrogen ceramics.

  2. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOEpatents

    Pugar, E.A.; Morgan, P.E.D.

    1987-09-15

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N/sub n/H/sub (n+m)/ wherein: n = 1--4 and m = 2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200--1700/degree/C for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si/endash/N/endash/H intermediate enables chemical pathways to be explored previously unavailable in conventional solid-state approaches to silicon-nitrogen ceramics

  3. Powder containing 2H-type silicon carbide produced by reacting silicon dioxide and carbon powder in nitrogen atmosphere in the presence of aluminum

    NASA Technical Reports Server (NTRS)

    Kuramoto, N.; Takiguchi, H.

    1984-01-01

    The production of powder which contains silicon carbide consisting of 40% of 2H-type silicon carbide, beta type silicon carbide and less than 3% of nitrogen is discussed. The reaction temperature to produce the powder containing 40% of 2H-type silicon carbide is set at above 1550 degrees C in an atmosphere of aluminum or aluminum compounds and nitrogen gas or an antioxidation atmosphere containing nitrogen gas. The mixture ratio of silicon dioxide and carbon powder is 0.55 - 1:2.0 and the contents of aluminum or aluminum compounds within silicon dioxide is less than 3% in weight.

  4. Energy level of the nitrogen dangling bond in amorphous silicon nitride

    SciTech Connect

    Warren, W.L. ); Kanicki, J. ); Robertson, J. ); Lenahan, P.M. )

    1991-09-30

    The composition dependence and room-temperature metastability of the paramagnetic nitrogen dangling-bond center is amorphous silicon nitride suggest that its energy level lies close to the N {ital p}{pi} states, in agreement with theoretical calculations.

  5. The Reactivity of Germanium Phosphanides with Chalcogens.

    PubMed

    Harris, Lisa M; Tam, Eric C Y; Cummins, Struan J W; Coles, Martyn P; Fulton, J Robin

    2017-03-06

    The reactivity of germanium phosphanido complexes with elemental chalcogens is reported. Addition of sulfur to [(BDI)GePCy2] (BDI = CH{(CH3)CN-2,6-iPr2C6H3}2) results in oxidation at germanium to form germanium(IV) sulfide [(BDI)Ge(S)PCy2] and oxidation at both germanium and phosphorus to form germanium(IV) sulfide dicylohexylphosphinodithioate complex [(BDI)Ge(S)SP(S)Cy2], whereas addition of tellurium to [(BDI)GePCy2] only gives the chalcogen inserted product, [(BDI)GeTePCy2]. This reactivity is different from that observed between [(BDI)GePCy2] and selenium. Addition of selenium to the diphenylphosphanido germanium complex, [(BDI)GePPh2], results in insertion of selenium into the Ge-P bond to form [(BDI)GeSePCy2] as well as the oxidation at phosphorus to give [(BDI)GeSeP(Se)Ph2]. In contrast, addition of selenium to the bis(trimethylsilyl)phosphanido germanium complex, [(BDI)GeP(SiMe3)2], yields the germanium(IV) selenide [(BDI)Ge(Se)P(SiMe3)2].

  6. Optical absorption and emission of nitrogen-doped silicon nanocrystals.

    PubMed

    Pi, Xiaodong; Chen, Xiaobo; Ma, Yeshi; Yang, Deren

    2011-11-01

    Silicon nanocrystals (Si NCs) may be both unintentionally and intentionally doped with nitrogen (N) during their synthesis and processing. Since the importance of Si NCs largely originates from their remarkable optical properties, it is critical to understand the effect of N doping on the optical behavior of Si NCs. On the basis of theoretical calculations, we show that the doping of Si NCs with N most likely leads to the formation of paired interstitial N at the NC surface, which causes both the optical absorption and emission of Si NCs to redshift. But these redshifts are smaller than those induced by doubly bonded O at the NC surface. It is found that high radiative recombination rates can be reliably obtained for Si NCs with paired interstitial N at the NC surface. The current results not only help to understand the optical behavior of Si NCs synthesized and processed in N-containing environments, but also inspire intentional N doping as an additional means to control the optical properties of Si NCs.

  7. Synthesis of silicon carbide in a nitrogen plasma torch: rotational temperature determination and material analysis

    NASA Astrophysics Data System (ADS)

    Ruiz-Camacho, J.; Castell, R.; Castro, A.; Manrique, M.

    2008-09-01

    Experiments on silicon carbide synthesis were performed using a dc nitrogen plasma torch. Measurements of rotational temperature of nitrogen molecules by emission spectroscopy were performed, based on the band (0, 1) of the first negative system of nitrogen N_2^+ (B\\,{}^2\\Sigma_u^+ \\to X\\,{}^2\\Sigma _g^+) for the R branch. Three different plasma torch powers were studied in order to optimize the production of silicon carbide with our experimental set-up. The synthesized products were characterized by x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy.

  8. Southern ocean nitrogen and silicon dynamics during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Horn, Matthew G.; Beucher, Charlotte P.; Robinson, Rebecca S.; Brzezinski, Mark A.

    2011-10-01

    The reinvigoration of overturning in the Southern Ocean is hypothesized to have returned CO 2 from the deep ocean to the atmosphere at the end of the last ice age. Large peaks in opal accumulation have been put forward as evidence for an increase in wind driven upwelling between 10 and 15 ka. Here, we use coupled nitrogen and silicon isotope records alongside opal accumulation rates to provide quasi-quantitative estimates of Southern Ocean nutrient supply, by upwelling, and nutrient utilization across this interval. Significant changes in the consumption of N and Si across the two opal accumulation peaks indicate major changes in both upwelling and nutrient demand. We find N and Si consumption to be relatively incomplete during peak opal accumulation at the onset of the deglaciation. This indicates that nutrient supply was significantly enhanced. The second deglacial peak in opal accumulation is associated with more complete Si consumption and variable N consumption. We suggest that this peak represents strong upwelling and more complete utilization of the available silicic acid pool. Differences between the Si and N responses during opal peaks may stem from decreasing iron availability across the glacial termination. The nutrient isotope evidence for excess nutrients during the deglaciation indicates that the high export productivity was insufficient to overcome the evasion of CO 2 to the atmosphere as a result of physical circulation changes. Previous work has demonstrated that the reinvigoration of overturning circulation during the deglaciation causes a transient peak in nutrient supply to the low latitudes. This is supported by our data, which indicate that relatively high macronutrient concentrations were maintained in the Southern Ocean surface waters that are incorporated into mode waters despite high demand.

  9. Physical integrated diffusion-oxidation model for implanted nitrogen in silicon

    NASA Astrophysics Data System (ADS)

    Adam, Lahir Shaik; Law, Mark E.; Dokumaci, Omer; Hegde, Suri

    2002-02-01

    Scaling the gate oxide thickness is one of many process development challenges facing device engineers today. Nitrogen implantation has been used to control gate oxide thickness. By varying the dose of the nitrogen implant, process engineers can have multiple gate oxide thicknesses in the same process. Although it has been observed that nitrogen retards gate oxidation kinetics, the physics of how this occurs is not yet well understood. Since the retardation in oxide growth is due to the diffusion of nitrogen and its subsequent incorporation at the silicon/silicon oxide interface, the study of the diffusion behavior of nitrogen in silicon becomes important. Further, it is also necessary to study how this diffusion behavior impacts oxide growth. Models have been developed to explore these issues. The diffusion model is based on ab initio results and is compared to experimental results at two temperatures. The oxide reduction model is based on the diffusion of nitrogen to the surface. The surface nitrogen is coupled to the surface reaction rate of silicon and oxygen to moderate oxide growth.

  10. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon.

    PubMed

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-05-27

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing.

  11. Electron trap level of hydrogen incorporated nitrogen vacancies in silicon nitride

    SciTech Connect

    Sonoda, Ken'ichiro Tsukuda, Eiji; Tanizawa, Motoaki; Yamaguchi, Yasuo

    2015-03-14

    Hydrogen incorporation into nitrogen vacancies in silicon nitride and its effects on electron trap level are analyzed using simulation based on density functional theory with temperature- and pressure-dependent hydrogen chemical potential. If the silicon dangling bonds around a nitrogen vacancy are well separated each other, hydrogen incorporation is energetically stable up to 900 °C, which is in agreement with the experimentally observed desorption temperature. On the other hand, if the dangling bonds strongly interact, the incorporation is energetically unfavorable even at room temperature because of steric hindrance. An electron trap level caused by a nitrogen vacancy becomes shallow by the hydrogen incorporation. An electron is trapped in a deep level created by a silicon dangling bond before hydrogen incorporation, whereas it is trapped in a shallow level created by an anti-bonding state of a silicon-silicon bond after hydrogen incorporation. The simulation results qualitatively explain the experiment, in which reduced hydrogen content in silicon nitride shows superior charge retention characteristics.

  12. Syntheses and Reactions of Chalcogen-containing Heterocycles.

    PubMed

    Sashida, Haruki

    2016-01-01

    The advances in my laboratory for the past 20-25 years concerning the chemistry of chalcogen-containing heterocycles are reviewed. The intramolecular cyclization of the chalcogenols (-TeH, -SeH, -SH) into a triple bond or appropriate leaving group produced various chalcogen-containing heterocycles. The reactions of the obtained products were examined: the reactions of 1-benzo- and 2-benzopyrylium salts containing a tellurium or selenium element with several nucleophiles, including alkoxides, amines, the cyanide ion, an active methyl compound (acetone), Grignard reagents, copper reagents, and tin reagents, along with hydrogenation and hydrolysis reactions, provided corresponding chromes or isochromes having various functional groups at the 2- or 1-C position. Isothiocyanate and isoselenocyanate were used as chalcogen sources for the preparation of five- or six-membered heterocycles. In addition, double intramolecular cyclization, ring-expansion reactions, electrophilic cyclization and iodocyclization were also carried out.

  13. Femtosecond Laser Microstructuring and Chalcogen Inclusion in Silicon

    DTIC Science & Technology

    2011-02-12

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...significant contributions to the areas of thin-film metrology, low-k dielec- tric materials, and laser micromachining. His re- search interests include laser...Gilmer can be reached by e-mail at gilmer1@llnl.gov. Richard Haight is a re- search staff member in the Physical Sciences Department at the IBM T.J

  14. Formation of ultrathin nitrided SiO{sub 2} oxides by direct nitrogen implantation into silicon

    SciTech Connect

    Soleimani, H.R.; Doyle, B.S.; Philipossian, A.

    1995-08-01

    A nitridation technique is proposed for ultrathin, SiO{sub 2} oxides in deep submicron CMOS technology, which involves direct implantation of molecular nitrogen (N{sub 2}) into the silicon substrate. N{sub 2} ions were implanted into silicon at different doses and energies, through a 150 {angstrom} thick screen oxide. In this study the effect of implanted N atoms on silicon oxidation, and SiO{sub 2} oxide nitridation process have been studied. Two groups of the N{sub 2}-implanted wafers were used: wafers from one group were annealed prior to the screen oxide removal, whereas wafers of the other group did not receive this anneal. It is shown that nitridation can be achieved both ways, allowing this technique to be easily integrated into a semiconductor IC fabrication process.

  15. A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries.

    PubMed

    Chen, Bing-Hong; Chuang, Shang-I; Liu, Wei-Ren; Duh, Jenq-Gong

    2015-12-30

    In this study, a jumbo silicon/silicon carbide (Si/SiC) composite (JSC), a novel anode material source, was extracted from solar power industry cutting waste and used as a material for lithium-ion batteries (LIBs), instead of manufacturing the nanolized-Si. Unlike previous methods used for preventing volume expansion and solid electrolyte interphase (SEI), the approach proposed here simply entails applying surface modification to JSC-based electrodes by using nitrogen-atmospheric pressure plasma jet (N-APPJ) treatment process. Surface organic bonds were rearranged and N-doped compounds were formed on the electrodes through applying different plasma treatment durations, and the qualitative examinations of before/after plasma treatment were identified by X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA). The surface modification resulted in the enhancement of electrochemical performance with stable capacity retention and high Coulombic efficiency. In addition, depth profile and scanning electron microscope (SEM) images were executed to determine the existence of Li-N matrix and how the nitrogen compounds change the surface conditions of the electrodes. The N-APPJ-induced rapid surface modification is a major breakthrough for processing recycled waste that can serve as anode materials for next-generation high-performance LIBs.

  16. Substitutional nitrogen impurities in pulsed-laser annealed silicon

    NASA Astrophysics Data System (ADS)

    Murakami, Kouichi; Itoh, Hisayoshi; Takita, Kôki; Masuda, Kohzoh

    1984-07-01

    Single-crystal Si samples with nitrogen (N) impurities (Si:N) and with N and phosphorus (P) impurities (Si:N:P) have been investigated by electron spin resonance measurements. It was found that substitutional N impurities Ns cannot be incorporated into Si by cw laser annealing of N ion-implanted Si or by N doping during crystal growth; however, Ns is incorporated into Si by pulsed-laser annealing (PLA) of N ion-implanted Si. The spin density of Ns decreases with doping of P shallow donors into PLA Si:N and increases by introduction of slight point defects in PLA Si:N:P. These results suggest that Ns with a negative charge are formed in PLA Si: N:P system.

  17. Annealing effect on thermodynamic and physical properties of mesoporous silicon: A simulation and nitrogen sorption study

    NASA Astrophysics Data System (ADS)

    Kumar, Pushpendra; Huber, Patrick

    2016-04-01

    Discovery of porous silicon formation in silicon substrate in 1956 while electro-polishing crystalline Si in hydrofluoric acid (HF), has triggered large scale investigations of porous silicon formation and their changes in physical and chemical properties with thermal and chemical treatment. A nitrogen sorption study is used to investigate the effect of thermal annealing on electrochemically etched mesoporous silicon (PS). The PS was thermally annealed from 200˚C to 800˚C for 1 hr in the presence of air. It was shown that the pore diameter and porosity of PS vary with annealing temperature. The experimentally obtained adsorption / desorption isotherms show hysteresis typical for capillary condensation in porous materials. A simulation study based on Saam and Cole model was performed and compared with experimentally observed sorption isotherms to study the physics behind of hysteresis formation. We discuss the shape of the hysteresis loops in the framework of the morphology of the layers. The different behavior of adsorption and desorption of nitrogen in PS with pore diameter was discussed in terms of concave menisci formation inside the pore space, which was shown to related with the induced pressure in varying the pore diameter from 7.2 nm to 3.4 nm.

  18. Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces

    NASA Astrophysics Data System (ADS)

    Singh, Sonal; Catledge, Shane A.

    2013-01-01

    Fluorescent nanodiamonds were produced by incorporation of silicon-vacancy (Si-V) defect centers in as-received diamonds of averaged size ˜255 nm using microwave plasma chemical vapor deposition. The potential for further enhancement of Si-V emission in nanodiamonds (NDs) is demonstrated through controlled nitrogen doping by adding varying amounts of N2 in a H2 + CH4 feedgas mixture. Nitrogen doping promoted strong narrow-band (FWHM ˜ 10 nm) emission from the Si-V defects in NDs, as confirmed by room temperature photoluminescence. At low levels, isolated substitutional nitrogen in {100} growth sectors is believed to act as a donor to increase the population of optically active (Si-V)- at the expense of optically inactive Si-V defects, thus increasing the observed luminescence from this center. At higher levels, clustered nitrogen leads to deterioration of diamond quality with twinning and increased surface roughness primarily on {111} faces, leading to a quenching of the Si-V luminescence. Enhancement of the Si-V defect through controlled nitrogen doping offers a viable alternative to nitrogen-vacancy defects in biolabeling/sensing applications involving sub-10 nm diamonds for which luminescent activity and stability are reportedly poor.

  19. Characterization of nitrogen doped silicon-carbon multi-layer nanostructures obtained by TVA method

    NASA Astrophysics Data System (ADS)

    Ciupina, Victor; Vasile, Eugeniu; Porosnicu, Corneliu; Prodan, Gabriel C.; Lungu, Cristian P.; Vladoiu, Rodica; Jepu, Ionut; Mandes, Aurelia; Dinca, Virginia; Caraiane, Aureliana; Nicolescu, Virginia; Dinca, Paul; Zaharia, Agripina

    2016-09-01

    Ionized nitrogen doped Si-C multi-layer thin films used to increase the oxidation resistance of carbon have been obtained by Thermionic Vacuum Arc (TVA) method. The 100 nm thickness carbon thin films were deposed on silicon or glass substrates and then seven N doped Si-C successively layers on carbon were deposed. To characterize the microstructure, tribological and electrical properties of as prepared N-SiC multi-layer films, Transmission Electron Microscopy (TEM, STEM), Energy Dispersive X-Ray Spectroscopy (EDXS), electrical and tribological techniques were achieved. Samples containing multi-layer N doped Si-C coating on carbon were investigated up to 1000°C. Oxidation protection is based on the reaction between SiC and elemental oxygen, resulting SiO2 and CO2, and also on the reaction involving N, O and Si-C, resulting silicon oxynitride (SiNxOy) with a continuously vary composition, and because nitrogen can acts as a trapping barrier for oxygen. The tribological properties of structures were studied using a tribometer with ball-on-disk configuration from CSM device with sapphire ball. The measurements show that the friction coefficient on the N-SiC is smaller than friction coefficient on uncoated carbon layer. Electrical conductivity at different temperatures was measured in constant current mode. The results confirm the fact that conductivity is greater when nitrogen content is greater. To justify the temperature dependence of conductivity we assume a thermally activated electrical transport mechanism.

  20. Paramagnetic nitrogen defects in silicon nitride. [Amorphous hydrogenated SiN

    SciTech Connect

    Warren, W.L. ); Kanicki, J. . Thomas J. Watson Research Center); Robertson, J. ); Poindexter, E.H. )

    1992-01-01

    Photocreation mechanisms and properties of nitrogen dangling bonds in amorphous hydrogenated silicon nitride (a-SiN[sub x]:H) thin films are investigated. We find that the creation kinetics are strongly dependent on the post-deposition anneal; this thermal process can be described by a simple exponential function which yields an activation energy of 0.8 eV. The compositional dependence of the nitrogen dangling bond center suggests that its energy level lies close to the valence band edge, in agreement with theoretical calculations. This energy level position can explain why a-SiN[sub x]:H films often become conducting following a high post-deposition anneal.

  1. Structural and emission properties of Tb3+-doped nitrogen-rich silicon oxynitride films

    NASA Astrophysics Data System (ADS)

    Labbé, C.; An, Y.-T.; Zatryb, G.; Portier, X.; Podhorodecki, A.; Marie, P.; Frilay, C.; Cardin, J.; Gourbilleau, F.

    2017-03-01

    Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb3+ ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si–N and Si–O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the ‘out-of-phase’ stretching vibration mode of the Si–O bond. The highest Tb3+ photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare

  2. Structural and emission properties of Tb(3+)-doped nitrogen-rich silicon oxynitride films.

    PubMed

    Labbé, C; An, Y-T; Zatryb, G; Portier, X; Podhorodecki, A; Marie, P; Frilay, C; Cardin, J; Gourbilleau, F

    2017-03-17

    Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb(3+) ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si-N and Si-O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the 'out-of-phase' stretching vibration mode of the Si-O bond. The highest Tb(3+) photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare earth

  3. Black Silicon for Next-Generation Infrared Sensors

    DTIC Science & Technology

    2012-08-01

    3 0 0 n m Ion-implant chalcogen (S, Se, Te) into p-Si (1) Pulsed-laser melting ( PLM ) “heals” implant damage Crystalline Si, supersaturated...34@ N 0.50 ro E ~ 0 0.25 c A = (1 - R - T) I (1 - R) fs-laser doping , , lon implant+ PLM doping ,..,1020 em""’ chalcogens silicon w fer S.Si

  4. [Progress in the research on silicon-nitrogen based phosphor for white LED].

    PubMed

    Xu, Guo-Tang; Liang, Pei; Wang, Le; Dong, Qian-Min; Liu, Yang; Li, Xiao-Yan

    2013-11-01

    With the rapid development of white LED technology, the traditional YAG : Ce3+ phosphor is difficult to meet the requirement due to the low color rendering and high color temperature. Using ultraviolet chip to stimulate the tri-phosphor has become an effective way for white LED, and it is urgent to develop novel tri-phosphor with high-performance, especially for red light-emitting materials. Silicon-nitrogen based compounds contain the network structure composed of SiN4 tetrahedron, with higher chemical and thermal stability. Because of their diversity structures, these phosphors have a higher absorption efficiency in UV-blue region, and also, with the change of substrate and active ion, emission spectrum will cover the entire visible region, resulting in a higher light conversion efficiency and light color stability, coupled with the advantages of being not sensitive to the changes in temperature and drive current, etc. These studies will have a far-reaching impact on the development of white LED. In the present paper, we introduce the preparation and latest progress of silicon-nitrogen based phosphor, including the crystal structure, spectroscopic properties and application characteristics.

  5. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines

    DOEpatents

    Pugar, Eloise A.; Morgan, Peter E. D.

    1990-04-03

    A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about 0.degree. C. up to about 300.degree. C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.

  6. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines and products formed thereby

    DOEpatents

    Pugar, E.A.; Morgan, P.E.D.

    1988-04-04

    A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about O/degree/C up to about 300/degree/C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200-1700/degree/C for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.

  7. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces

    SciTech Connect

    Moore, Samuel L.; Vohra, Yogesh K.

    2015-01-01

    Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.

  8. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces

    DOE PAGES

    Moore, Samuel L.; Vohra, Yogesh K.

    2015-01-01

    Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectronmore » Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.« less

  9. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition

    SciTech Connect

    Laube, J. Gutsch, S.; Hiller, D.; Zacharias, M.; Bruns, M.; Kübel, C.; Weiss, C.

    2014-12-14

    This paper reports the growth of silicon nanocrystals (SiNCs) from SiH4–O{sub 2} plasma chemistry. The formation of an oxynitride was avoided by using O{sub 2} instead of the widely used N{sub 2}O as precursor. X-ray photoelectron spectroscopy is used to prove the absence of nitrogen in the layers and determine the film stoichiometry. It is shown that the Si rich film growth is achieved via non-equilibrium deposition that resembles a interphase clusters mixture model. Photoluminescence and Fourier transformed infrared spectroscopy are used to monitor the formation process of the SiNCs, to reveal that the phase separation is completed at lower temperatures as for SiNCs based on oxynitrides. Additionally, transmission electron microscopy proves that the SiNC sizes are well controllable by superlattice configuration, and as a result, the optical emission band of the Si nanocrystal can be tuned over a wide range.

  10. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm2 and 4 J/cm2 resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm2 under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm2, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly dependent upon the laser fluence as well as environmental conditions. The difference in surface morphology is attributable to cooling, confinement and shielding effects as well as difference in plasma temperature, density and pressure of environmental media that corresponds to different energy deposition

  11. Thermal Stability of Hi-Nicalon SiC Fiber in Nitrogen and Silicon Environments

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Garg, A.

    1995-01-01

    The room temperature tensile strength of uncoated and two types of pyrolytic boron nitride coated (PBN and Si-rich PBN) Hi-Nicalon SiC fibers was determined after 1 to 400 hr heat treatments to 1800 C under N2 pressures of 0.1, 2, and 4 MPa, and under 0.1 Mpa argon and vacuum environments. In addition, strength stability of both uncoated and coated fibers embedded in silicon powder and exposed to 0.1 MPa N2 for 24 hrs at temperatures to 1400 C was investigated. The uncoated and both types of BN coated fibers exposed to N2 for 1 hr showed noticeable strength degradation above 1400 C and 1600 C, respectively. The strength degradation appeared independent of nitrogen pressure, time of heat treatment, and surface coatings. TEM microstructural analysis suggests that flaws created due to SiC grain growth are responsible for the strength degradation. In contact with silicon powder, the uncoated and both types of PBN coated fibers degrade rapidly above 1350 C.

  12. Magnetism of single-walled silicon carbide nanotubes doped by boron, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Maghnaoui, Ahmed; Boufelfel, Ahmed

    2012-09-01

    We calculated, using spin polarized density functional theory, the electronic properties of zigzag (10,0) and armchair (6,6) semiconductor silicon carbide nanotubes (SiCNTs) doped once at the time with boron, nitrogen, and oxygen. We have looked at the two possible scenarios where the guest atom X (B, N, O), replaces the silicon XSi, or the carbon atom XC, in the unit cell. We found that in the case of one atom B @ SiCNT replacing a carbon atom position annotated by BC exhibits a magnetic moment of 1 μB/cell in both zigzag and armchair nanotubes. Also, B replacing Si, (BSi), induce a magnetic moment of 0.46 μB/cell in the zigzag (10,0) but no magnetic moment in armchair (6,6). For N substitution; (NC) and (NSi) each case induce a magnetic moment of 1 μB/cell in armchair (6,6), while NSi give rise to 0.75 μB/cell in zigzag (10,0) and no magnetic moment for NC. In contrast the case of OC and OSi did not produce any net magnetic moment in both zigzag and armchair geometries.

  13. Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions

    NASA Astrophysics Data System (ADS)

    Holloway, Karen; Fryer, Peter M.; Cabral, Cyril, Jr.; Harper, J. M. E.; Bailey, P. J.; Kelleher, K. H.

    1992-06-01

    The interaction of Cu with Si separated by thin (50 nm) layers of tantalum, Ta2N, and a nitrogen alloy of Ta has been investigated to determine the factors that affect the success of these materials as diffusion barriers to copper. Intermixing in these films was followed as a function of annealing temperature by in situ resistance measurements, Rutherford backscattering spectra, scanning electron microscopy, and cross-section transmission electron microscopy. Ta prevents Cu-silicon interaction up to 550 °C for 30 min in flowing purified He. At higher temperatures, copper penetration results in the formation of η`-Cu3Si precipitates at the Ta-Si interface. Local defect sites appear on the surface of the sample in the early stages of this reaction. The Ta subsequently reacts with the substrate at 650 °C to form a planar hexagonal-TaSi2 layer. Ta silicide formation, which does not occur until 700 °C in a Ta-Si binary reaction couple, is accelerated by the presence of Cu. Nitrogen-alloyed Ta is a very similar diffusion barrier to Ta. It was found that Ta2N is a more effective barrier to copper penetration, preventing Cu reaction with the substrate for temperatures up to at least 650 °C for 30 min. In this case, local Cu-Si reaction occurs along with the formation of a uniform Ta5Si3 layer at the Ta2N-Si interface.

  14. Deep Impurity Band Silicon for Subbandgap Photodetection

    DTIC Science & Technology

    2014-05-02

    Our prior research had demonstrated an insulator-to-metal transition in silicon hyperdoped with sulfur or selenium when the chalcogen concentration...silicon hyperdoped with selenium , from [1]. Filled defect band broadens until it intersects conduction band at 0.4% Se caus- ing insulator-to-metal...Aziz, T. Buonassisi, and J.C. Grossman, "Insulator-to-Metal Transition in Selenium -Hyperdoped Silicon: Observation and Origin", Physical Review Letters

  15. Supramolecular macrocycles reversibly assembled by Te…O chalcogen bonding

    PubMed Central

    Ho, Peter C.; Szydlowski, Patrick; Sinclair, Jocelyn; Elder, Philip J. W.; Kübel, Joachim; Gendy, Chris; Lee, Lucia Myongwon; Jenkins, Hilary; Britten, James F.; Morim, Derek R.; Vargas-Baca, Ignacio

    2016-01-01

    Organic molecules with heavy main-group elements frequently form supramolecular links to electron-rich centres. One particular case of such interactions is halogen bonding. Most studies of this phenomenon have been concerned with either dimers or infinitely extended structures (polymers and lattices) but well-defined cyclic structures remain elusive. Here we present oligomeric aggregates of heterocycles that are linked by chalcogen-centered interactions and behave as genuine macrocyclic species. The molecules of 3-methyl-5-phenyl-1,2-tellurazole 2-oxide assemble a variety of supramolecular aggregates that includes cyclic tetramers and hexamers, as well as a helical polymer. In all these aggregates, the building blocks are connected by Te…O–N bridges. Nuclear magnetic resonance spectroscopic experiments demonstrate that the two types of annular aggregates are persistent in solution. These self-assembled structures form coordination complexes with transition-metal ions, act as fullerene receptors and host small molecules in a crystal. PMID:27090355

  16. Fingerprints of carbon, nitrogen, and silicon isotopes in small interstellar SiC grains from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Geiss, Johannes; Buehler, Fritz; Neuenschwander, Juerg; Amari, Sachiko; Lewis, Roy S.

    1993-01-01

    We report ion microprobe determinations of the carbon, nitrogen, and silicon isotopic compositions of small SiC grains from the Murchison CM2 chondrite. Analyses were made on samples containing variable numbers of grains and on 14 individual grains. In some cases the multiple-grain sample compositions were probably dominated by only one or two grains. Total ranges observed are given. Only a few grains show values near the range limits. Both the total ranges of carbon and nitrogen isotopic compositions, and even the narrower ranges typical for the majority of the grains, are similar to those observed for larger SiC grains. Two rare components appear to be present in the smaller-size fraction, one characterized by C-12/C-13 about 12-16 and the other by very heavy nitrogen. The carbon and nitrogen isotopic compositions qualitatively may reflect hydrostatic H-burning via the CNO cycle and He-burning in red giants, as well as explosive H-burning in novae. The silicon isotopic compositions of most grains qualitatively show what is the signature of He-burning. The silicon isotopic composition of one grain, however, suggests a different process.

  17. Organometallic chemical vapor deposition of silicon nitride films enhanced by atomic nitrogen generated from surface-wave plasma

    SciTech Connect

    Okada, H.; Kato, M.; Ishimaru, T.; Sekiguchi, H.; Wakahara, A.; Furukawa, M.

    2014-02-20

    Organometallic chemical vapor deposition of silicon nitride films enhanced by atomic nitrogen generated from surface-wave plasma is investigated. Feasibility of precursors of triethylsilane (TES) and bis(dimethylamino)dimethylsilane (BDMADMS) is discussed based on a calculation of bond energies by computer simulation. Refractive indices of 1.81 and 1.71 are obtained for deposited films with TES and BDMADMS, respectively. X-ray photoelectron spectroscopy (XPS) analysis of the deposited film revealed that TES-based film coincides with the stoichiometric thermal silicon nitride.

  18. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  19. Structural Elements of Shallow Thermal Donors Formed in Nitrogen-Gas-Doped Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Hara, Akito

    2007-02-01

    It has been reported that shallow thermal donors (STDs) are formed in oxygen-rich silicon (Si) crystals preannealed in nitrogen gas (N-gas-doped) and also in hydrogen-doped (H-doped) oxygen-rich Si crystals. The STDs formed in these crystals exhibit very similar electronic structures. Experiments using far-infrared optical absorption showed that several hydrogen-like STDs were formed at the same time and their energy levels in both the above-mentioned crystals were very similar. It has also been reported that the g-values of the STDs formed in both the crystals were identical. On the basis of electron-nucleus double resonance results, it has been strongly suggested that a hydrogen impurity is incorporated as a structural element of the STDs formed in the H-doped Si crystals. However, the origin of the STDs that are formed in N-gas-doped Si crystals is still unclear. To clarify this point, hydrogen detection in N-gas-doped Si was conducted and the annealing behaviors of STDs in N-gas-doped Si and H-doped Si were compared by electron spin resonance and far-infrared optical absorption measurement. It was concluded that the origin of the STDs formed in N-gas-doped Si crystals is not related to the hydrogen impurity.

  20. Chalcogen-Based Aerogels as Sorbents for Radionuclide Remediation

    SciTech Connect

    Riley, Brian J.; Chun, Jaehun; Um, Wooyong; Lepry, William C.; Matyas, Josef; Olszta, Matthew J.; Li, Xiaohong; Polychronopoulou, Kyriaki; Kanatzidis, Mercouri G.

    2013-06-13

    The efficient capture of radionuclides having long half-lives such as technetium-99 (99Tc), uranium-238 (238U), and iodine-129 (129I) is pivotal to prevent their transport into groundwater and/or release into the atmosphere. While different sorbents have been considered for capturing each of them, in the current work, a new nanostructured chalcogen-based aerogel, called a chalcogel, is shown to be very effective to capture ionic forms of 99Tc and 238U, as well as nonradioactive gaseous iodine (i.e., a surrogate for 129I), irrespective of the sorbent polarity. Some of the chalcogels performed better than others but the PtGeS sorbent performed the best with capture efficiencies of 98% and 99.4% for 99Tc and 238U, respectively. All sorbents showed >99% capture efficiency for iodine over the test duration. This unified sorbent would be an attractive option in environmental remediation for various radionuclides associated with legacy wastes from nuclear weapons production, wastes from nuclear power production, or potential future nuclear fuel reprocessing.

  1. Transitional Metal/Chalcogen Dependant Interactions of Hairpin DNA with Transition Metal Dichalcogenides, MX2.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Sofer, Zdenek; Pumera, Martin

    2015-08-03

    Owing to the attractive properties that transition metal dichalcogenides (TMDs) display, they have found recent application in the fabrication of biosensing devices. These devices involve the immobilization of a recognition element such as DNA onto the surface of TMDs. Therefore, it is imperative to examine the interactions between TMDs and DNA. Herein, we explore the effect of different transition metals (Mo and W) and chalcogens (S and Se) on the interactions between hairpin DNA and TMDs of both bulk and t-BuLi exfoliated forms. We discovered that the interactions are strongly dependent on the metal/chalcogen composition in TMDs.

  2. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  3. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow.

    PubMed

    Xu, Danghui; Fang, Xiangwen; Zhang, Renyi; Gao, Tianpeng; Bu, Haiyan; Du, Guozhen

    2015-11-15

    Fertilization, especially with nitrogen (N), increases aboveground primary productivity (APP), but reduces plant species richness at some level. Silicon (Si) fertilization alone, or with addition of N or phosphorus (P), has multiple direct and indirect beneficial effects on plant growth and development, both for individuals and the whole community. This study aimed to examine the effects of Si, N, P, NSi and PSi combinations on APP and species richness of the community and of four functional groups in an alpine meadow. The results showed that plots fertilized with Si in combination with either N or P had higher APP than when fertilized with N or P alone. Addition of N or P increased APP, and the higher APP occurred when the highest level of N was added, indicating co-limitation of N and P, with N being most limiting. Silicon fertilization alone or with addition of N increased the APP of grasses and forbs. Nitrogen addition decreased the community species richness; Si with addition of N alleviated the loss of species richness of the whole community and the forbs group. For the four functional groups, N or P addition increased the species richness of grasses and decreased that of forbs. Our findings highlight the importance of Si in improving APP and alleviating N fertilization-induced biodiversity loss in grasslands, and will help improve our ability to predict community composition and biomass dynamics in alpine meadow ecosystems subject to changing nutrient availability.

  4. Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters.

    PubMed

    Kremer, Adrian; Aurisicchio, Claudia; De Leo, Federica; Ventura, Barbara; Wouters, Johan; Armaroli, Nicola; Barbieri, Andrea; Bonifazi, Davide

    2015-10-19

    The synthesis, X-ray crystal structures, ground- and excited-state UV/Vis absorption spectra, and luminescence properties of chalcogen-doped organic emitters equipped on both extremities with benzoxa-, benzothia-, benzoselena- and benzotellurazole (1X and 2X ) moieties have been reported for the first time. The insertion of the four different chalcogen atoms within the same molecular skeleton enables the investigation of only the chalcogenic effect on the organisation and photophysical properties of the material. Detailed crystal-structure analyses provide evidence of similar packing for 2O -2Se , in which the benzoazoles are engaged in π-π stacking and, for the heavier atoms, in secondary X⋅⋅⋅X and X⋅⋅⋅N bonding interactions. Detailed computational analysis shows that the arrangement is essentially governed by the interplay of van der Waals and secondary bonding interactions. Progressive quenching of the fluorescence and concomitant onset of phosphorescence features with gradually shorter lifetimes are detected as the atomic weight of the chalcogen heteroatom increases, with the tellurium-doped derivatives exhibiting only emission from the lowest triplet excited state. Notably, the phosphorescence spectra of the selenium and tellurium derivatives can be recorded even at room temperature; this is a very rare finding for fully organic emitters.

  5. Phosphine-Free Synthesis of Metal Chalcogenide Quantum Dots by Directly Dissolving Chalcogen Dioxides in Alkylthiol as the Precursor.

    PubMed

    Yao, Dong; Xin, Wei; Liu, Zhaoyu; Wang, Ze; Feng, Jianyou; Dong, Chunwei; Liu, Yi; Yang, Bai; Zhang, Hao

    2017-03-09

    Semiconductor quantum dots (QDs) are competitive emitting materials in developing new-generation light-emitting diodes (LEDs) with high color rendering and broad color gamut. However, the use of highly toxic alkylphosphines cannot be fully avoided in the synthesis of metal selenide and telluride QDs because they are requisite reducing agents and solvents for preparing chalcogen precursors. In this work, we demonstrate the phosphine-free preparation of selenium (Se) and tellurium (Te) precursors by directly dissolving chalcogen dioxides in the alkylthiol under the mild condition. The chalcogen dioxides are reduced to elemental chalcogen clusters, while the alkylthiol is oxidized to disulfides. The chalcogen clusters further combine with the disulfides, generating dispersible chalcogen precursors. The resulting chalcogen precursors are suitable for synthesizing various metal chalcogenide QDs, including CdSe, CdTe, Cu2Te, Ag2Te, PbTe, HgTe, and so forth. In addition, the precursors are of high reactivity, which permits a shorter QD synthesis process at lower temperature. Owing to the high quantum yield (QYs) and easy tunability of the photoluminescence (PL), the as-synthesized QDs are further employed as down-conversion materials to fabricate monochrome and white LEDs.

  6. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    PubMed Central

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.

    2015-01-01

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096

  7. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

    PubMed

    Zhou, Shengqiang; Liu, Fang; Prucnal, S; Gao, Kun; Khalid, M; Baehtz, C; Posselt, M; Skorupa, W; Helm, M

    2015-02-09

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

  8. Role of oxygen and nitrogen in n-type microcrystalline silicon carbide grown by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pomaska, Manuel; Mock, Jan; Köhler, Florian; Zastrow, Uwe; Perani, Martina; Astakhov, Oleksandr; Cavalcoli, Daniela; Carius, Reinhard; Finger, Friedhelm; Ding, Kaining

    2016-12-01

    N-type microcrystalline silicon carbide (μc-SiC:H(n)) deposited by hot wire chemical vapor deposition provides advantageous opto-electronic properties for window layer material in silicon-based thin-film solar cells and silicon heterojunction solar cells. So far, it is known that the dark conductivity (σd) increases with the increase in the crystallinity of μc-SiC:H(n)films. However, due to the fact that no active doping source is used, the mechanism of electrical transport in these films is still under debate. It is suggested that unintentional doping by atmospheric oxygen (O) or nitrogen (N) contamination plays an important role in the electrical transport. To investigate the impact of O and N, we incorporated O and N in μc-SiC:H(n) films and compared the influence on the microstructural, electronic, and optical properties. We discovered that, in addition to increasing the crystallinity, it is also possible to increase the σd by several orders of magnitude by increasing the O-concentration or the N-concentration in the films. Combining a high concentration of O and N, along with a high crystallinity in the film, we optimized the σd to a maximum of 5 S/cm.

  9. Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F2CX (X = Se and Te)

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Liu, Yan-Wen; Li, Qing-Zhong; Li, Wen-Zuo; Cheng, Jian-Bo

    2015-01-01

    F2CX (X = Se and Te) have two Lewis acid sites of σ-hole and π-hole located respectively in the vicinity of X and C ends, participating in the chalcogen and tetrel bonds with HCN and NH3, respectively. F2CSe forms a stronger tetrel bond, while F2CTe forms a stronger chalcogen bond. F2CX shows weaker tetrel and chalcogen bonds in the ternary system, exhibiting anticooperativity with some different features from positive one. The nature of two interactions and the origin of anticooperativity have been analyzed by means of energy decomposition, molecular electrostatic potential, and orbital interaction.

  10. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  11. Measurement of bonding energy in an anhydrous nitrogen atmosphere and its application to silicon direct bonding technology

    NASA Astrophysics Data System (ADS)

    Fournel, F.; Continni, L.; Morales, C.; Da Fonseca, J.; Moriceau, H.; Rieutord, F.; Barthelemy, A.; Radu, I.

    2012-05-01

    Bonding energy represents an important parameter for direct bonding applications as well as for the elaboration of physical mechanisms at bonding interfaces. Measurement of bonding energy using double cantilever beam (DCB) under prescribed displacement is the most used technique thanks to its simplicity. The measurements are typically done in standard atmosphere with relative humidity above 30%. Therefore, the obtained bonding energies are strongly impacted by the water stress corrosion at the bonding interfaces. This paper presents measurements of bonding energies of directly bonded silicon wafers under anhydrous nitrogen conditions in order to prevent the water stress corrosion effect. It is shown that the measurements under anhydrous nitrogen conditions (less than 0.2 ppm of water in nitrogen) lead to high stable debonding lengths under static load and to higher bonding energies compared to the values measured under standard ambient conditions. Moreover, the bonding energies of Si/SiO2 or SiO2/SiO2 bonding interfaces are measured overall the classical post bond annealing temperature range. These new results allow to revisit the reported bonding mechanisms and to highlight physical and chemical phenomena in the absence of stress corrosion effect.

  12. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    DOEpatents

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  13. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  14. Nitrogen-doped carbon coated silicon derived from a facile strategy with enhanced performance for lithium storage

    NASA Astrophysics Data System (ADS)

    Zeng, Lingxing; Liu, Renpin; Qiu, Heyuan; Chen, Xi; Huang, Xiaoxia; Xiong, Peixun; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2016-07-01

    Silicon-based nanostructures are receiving intense interest in lithium-ion batteries (LIBs) because they have ultrahigh lithium ion storage ability. However, the fast capacity fading induced by the considerably tremendous volume changes of Si anode during the Li-ion intercalation processes as well as the low intrinsic electric conductivity have hindered its deployment. Herein, we initially developed an effective technique to synthesize the core-shell Si/nitrogen-doped carbon (Si/N-C), composite by combining in situ interfacial polymerization and decorate with melamine, followed by carbonization. When used as anode material for LIBs, the Si/N-C composite delivered a notable reversible capacity (1084 mAh g-1 at 0.2 A g-1 for 50 cycles) and high rate capability (495 mAh g-1 at 1 A g-1).

  15. STEM EDX Nitrogen Mapping of Nanoinclusions in Milky Diamonds from Juina, Brazil, Using a Windowless Silicon Drift Detector System.

    PubMed

    Rudloff-Grund, J; Brenker, F E; Marquardt, K; Kaminsky, F V; Schreiber, A

    2016-06-07

    Energy-dispersive X-ray spectroscopy (EDX) performed using scanning transmission electron microscopy (STEM) in combination with a windowless detector setup allows high-resolution imaging and chemical composition mapping even of light elements present in low concentrations. The used TEM-system combines a field emission electron source with four silicon drift detectors allowing for high detection sensitivity. We used this enhanced system to investigate 20 to 200 nm sized inclusions in milky diamonds from Rio Soriso, Juina area, Brazil. The diamonds act as a chemical inert container and therefore protect their inclusions from further chemical reactions with their surroundings. We visualize the presence and distribution of nitrogen within focused ion beam (FIB) slices containing these nanoinclusions. The investigation of these specific diamonds may open a new window to deeper parts of the Earth (>660 km) as they represent pristine material of this deep mantle environment.

  16. Reductive Insertion of Elemental Chalcogens into Boron-Boron Multiple Bonds.

    PubMed

    Braunschweig, Holger; Dellermann, Theresa; Ewing, William C; Kramer, Thomas; Schneider, Christoph; Ullrich, Stefan

    2015-08-24

    The syntheses of sulfur- and selenium-bridged cyclic compounds containing boron stabilized by N-heterocyclic carbenes (NHCs) have been achieved by the reductive insertion of elemental chalcogens into boron-boron multiple bonds. The three pairs of bonding electrons between the boron atoms in the triply bonded diboryne enabled six-electron reduction reactions, resulting in the formation of [2.2.1]-bicyclic systems wherein bridgehead boron atoms are spanned by three chalcogen bridges. A similar reaction using a diborene (boron-boron double bond) resulted in the reductive transfer of both pairs of bonding electrons to three sulfur atoms, yielding a NHC-stabilized trisulfidodiborolane. The demonstration of these six- and four-electron reductions lends support to the presence of three and two pairs of bonding electrons between the boron atoms of the diboryne and diborene, respectively, a fact that may be useful in future discussions on bond order.

  17. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  18. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Tali, S. A. Safiabadi; Soleimani-Amiri, S.; Sanaee, Z.; Mohajerzadeh, S.

    2017-02-01

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C2H2 and N2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm2 (45 F/cm3) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 103 Wh/m3 (8.3 × 106 J/m3) and ultra-high power density of 2.6 × 108 W/m3 which is among the highest reported values.

  19. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes

    PubMed Central

    Tali, S. A. Safiabadi; Soleimani-Amiri, S.; Sanaee, Z.; Mohajerzadeh, S.

    2017-01-01

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C2H2 and N2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm2 (45 F/cm3) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 103 Wh/m3 (8.3 × 106 J/m3) and ultra-high power density of 2.6 × 108 W/m3 which is among the highest reported values. PMID:28186204

  20. The Roles of Iron and Vertical Mixing in Regulating Nitrogen and Silicon Cycling in the Southern Ocean over the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Robinson, R. S.; Brzezinski, M. A.; Beucher, C.; Horn, M. G.; Bedsole, P.

    2014-12-01

    The air-sea CO2 balance is regulated by both biological and physical mechanisms in the Southern Ocean. Changes in the vertical supply of the major nutrients, nitrogen, phosphorus, and silicon, and in the availability of the micronutrient Fe are all thought to play a role in the glacial-interglacial variation in atmospheric CO2 concentrations. Here we present the most spatially extensive dataset of silicon and nitrogen isotope measurements from diatom frustules to examine the controls on nutrient drawdown during the last glacial period and across the glacial termination. The data confirm existing views that differing silicon and nitrate consumption patterns are likely the result, at least in part, of iron addition during the last glacial maximum. However, earlier in the glacial, a more coordinated response between the two proxy records, with both reflecting enhanced consumption during episodes of increased iron accumulation and export production, implies a different response to iron than observed for the LGM. Extended spatial coverage in the Subantarctic provides evidence for vertical mixing of nutrients directly in this zone. The collapse of the expected equatorward gradient in silicon isotope values and contraction of the nitrogen isotope gradient during the deglaciation suggests that nutrient supply increased not only in the Antarctic Zone, but also in the Subantarctic, perhaps due to enhanced deep mixing locally. Increased vertical supply in both zones of the Southern Ocean may better explain the enhanced nutrient supply to the low latitude thermocline than Antarctic Zone dynamics alone.

  1. D0 Silicon Upgrade: Liquid Nitrogen Subcooler Coil Sizing for D-Zero Upgrade

    SciTech Connect

    Kuwazaki, Andrew; Leicht, Todd; /Fermilab

    1995-10-03

    The raw calculations are attached as Appendix A. The calculations provide the analysis of the heat transferred while the LN{sub 2} subcooler is in use. In order to achieve an acceptable conclusion, the assumption of a fully developed thermal boundary layer was made. The hot fluid or the fluid condensing on the inside surface will determine the rate of heat transfer because A{sub o} = A{sub i} and h{sub o}A{sub o} >> h{sub i}A{sub i}. The conclusion drawn is to use a 1/2-inch OD copper tube wound approximately 8 times about an 8-inch diameter circle. There are also calculations concerning the size of the nitrogen supply and subcooler vent. The maximum mass flow rate was determined as 52.5 g/s and the sizing of the nitrogen supply and subcooler vent should be chosen accordingly.

  2. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  3. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  4. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    DTIC Science & Technology

    2013-06-03

    measured by Hall effect in Ref. 9 (crosses) as functions of implanted sulfur dose. (c) Calculated reflectivity by Kramers- Kronig transformation of the...MIR band is small enough, this assumption is reasonable according to the Kramers- Kronig relationship between optical absorption and reflectivity...calculated by a Kramers- Kronig transformation of the absorption spectrum shown in Fig. 1(a) and the results are shown in Fig. 1(c). However, the a value

  5. Extended Infrared Photoresponse and Gain in Chalcogen-Supersaturated Silicon Photodiodes

    DTIC Science & Technology

    2011-01-01

    Warrender, M. J. Aziz, B. L. Cardozo , and R. S. Goldman, J. Vac. Sci. Technol. B 25, 1847 (2007). 8B. P. Bob, A. Kohno, S Charnvanichborikarn, J. M...Warrender, I. Umezu, M. Tabbal, J. S. Williams , and M. J. Aziz, J. Appl. Phys. 107, 123506 (2010). 9M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J...viewed 2 April 2011. 11S. H. Pan, D. Recht, S. Charnvanichborikarn, J. S. Williams , and M. J. Aziz, Appl. Phys. Lett. 98, 121913 (2011). 12Z. Huang, J

  6. Effects of nitrogen impurities on the microstructure and electronic properties of P-doped Si nanocrystals emebedded in silicon-rich SiNx films

    NASA Astrophysics Data System (ADS)

    Ma, Deng-Hao; Zhang, Wei-Jia; Luo, Rui-Ying; Jiang, Zhao-Yi; Ma, Qiang; Ma, Xiao-Bo; Fan, Zhi-Qiang; Song, Deng-Yuan; Zhang, Lei

    2016-05-01

    Phosphorus doped Si nanocrystals (SNCs) emebedded in silicon-rich SiNx:H films were prepared using plasma enhanced chemical vapor deposition technique, and the effects of nitrogen incorporation on the microstructure and electronic properties of the thin films have been systematically studied. Transmission electron microscope and Raman observation revealed that nitrogen incorporation prevents the growth of Si nanocrystals, and that their sizes can be adjusted by varying the flow rate of NH3. The reduction of photoluminescence (PL) intensity in the range of 2.1-2.6 eV of photon energy was observed with increasing nitrogen impurity, and a maximal PL intensity in the range 1.6-2.0 eV was obtained when the incorporation flow ratio NH3/(SiH4+H2+PH3) was 0.02. The conductivity of the films is improved by means of proper nitrogen impurity doping, and proper doping causes the interface charge density of the heterojunction (H-J) device to be lower than the nc-Si:H/c-Si H-J device. As a result, the proper incorporation of nitrogen could not only reduce the silicon banding bond density, but also fill some carrier capture centers, and suppress the nonradiative recombination of electrons.

  7. Resonance enhancement of electronic Raman scattering from nitrogen defect levels in silicon carbide

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; Long, F. H.; Ferguson, I. T.

    1999-08-01

    Electronic Raman scattering from nitrogen defect levels in SiC is seen to be significantly enhanced with excitation by red (633 nm, 1.98 eV) or near-IR (785 nm, 1.58 eV) laser light at room temperature. Four nitrogen peaks are observed in 6H-SiC (380, 430, 510, and 638 cm-1) and three peaks in 4H-SiC (about 400, 530, and 570 cm-1). The peaks in the 4H-SiC spectrum are seen to shift to lower frequency with increasing nominal doping concentration. Raman spectra taken at low temperature in 6H-SiC reveal differences between wafers and Lely grown platelets by the appearance of several additional peaks. The origin of the resonant enhancement is the near-IR absorption band associated with the green color characteristic of n-type SiC. These results demonstrate that the laser wavelength is a key parameter in the characterization of SiC by Raman scattering.

  8. Application of INEPT nitrogen-15 and silicon-29 nuclear magnetic resonance spectrometry to derivatized fulvic acids

    USGS Publications Warehouse

    Thorn, K.A.; Folan, D.W.; Arterburn, J.B.; Mikita, M.A.; MacCarthy, P.

    1989-01-01

    Use of the INEPT experiment has been examined in two derivatization studies of the Suwannee River fulvic acid. In the first study, the fulvic acid was derivatized with 15N enriched hydroxylamine. The quantitative 15N NMR spectrum, acquired with a 45° pulse angle, 2.0 second pulse delay and inverse gated decoupling, showed that oximes (390-340 ppm) were the major derivatives, followed by nitriles (270-240 ppm), hydroxamic acids (170-160 ppm), secondary amides (150-115 ppm), and lactams (115-90 ppm). The INEPT 15N NMR spectrum was acquired using refocussing delays and polarization transfer times optimized for signal enhancement of singly protonated nitrogens. INEPT greatly enhanced the amide and lactam resonances, and showed that resonances downfield of 180 ppm in the quantitative spectrum represented nonprotonated nitrogens. In the second study, the fulvic acid was first methylated with diazomethane and then silylated with hexamethyldisilazane. The 29Si NMR spectra exhibited two major peaks, from approximately 33 to 22 ppm, representing silyl esters of carboxylic acids, and from 22 to 13 ppm, representing silyl ethers of alcohols and phenols. The INEPT 29Si NMR spectrum was virtually identical to the quantitative 29Si spectrum, acquired with a 90° pulse angle, 5.0 second pulse delay, inverse gated decoupling, and relaxation reagent. INEPT therefore can be used for quantitative analysis of trimethylsilyl derivatives of the fulvic acid, saving spectrometer time and eliminating the need for relaxation reagents.

  9. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    SciTech Connect

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  10. Response of northern San Francisco Bay to riverine inputs of dissolved inorganic carbon, silicon, nitrogen and phosphorus

    USGS Publications Warehouse

    Schemel, Laurence E.; Harmon, Dana D.; Eager, Stephen W.; Peterson, David H.; Kennedy, Victor S.

    1984-01-01

    Estuarine processes can be effective in modifying (filtering) distributions of dissolved inorganic forms of carbon (DIC), silicon (DIS), nitrogen (DIN), and phosphorus (DIP) in northern San Francisco Bay. During winter, high inflow from the Sacramento-San Joaquin river system supplied these nutrients to the estuary at rates that exceeded potential rates of estuarine supply and removal processes. During spring and summer, when inflow rates were lower, the estuary was an effective “filter” of the river inflow “signal” because rates of estuarine processes were high relative to river and other supply rates. At lower inflow rates, the river apparently influenced estuarine hydrodynamic features that controlled rates of phytoplankton nutrient removal. Largest biological removal effects were localized in San Pablo Bay during spring and Suisun Bay during summer, and they were generally more pronounced in shallow water areas of the bays. In San Pablo Bay, effects of biological removal appeared soon after river inflow decreased from high winter rates, but persisted for only a short time. During the following summer months, DIN and DIP distributions in San Pablo Bay indicated that estuarine sources contributed to higher concentrations of these nutrients.

  11. Interactions between Nitrogen and Silicon in Rice and Their Effects on Resistance toward the Brown Planthopper Nilaparvata lugens

    PubMed Central

    Wu, Xiaoying; Yu, Yaoguang; Baerson, Scott R.; Song, Yuanyuan; Liang, Guohua; Ding, Chaohui; Niu, Jinbo; Pan, Zhiqiang; Zeng, Rensen

    2017-01-01

    Nitrogen (N) and silicon (Si) are two important nutritional elements required for plant growth, and both impact host plant resistance toward insect herbivores. The interaction between the two elements may therefore play a significant role in determining host plant resistance. We investigated this interaction in rice (Oryza sativa L.) and its effect on resistance to the herbivore brown planthopper Nilaparvata lugens (BPH). Our results indicate that high-level (5.76 mM) N fertilization reduced Si accumulation in rice leaves, and furthermore, this decrease was likely due to decreased expression of Si transporters OsLsi1 and OsLsi2. Conversely, reduced N accumulation was observed at high N fertilization levels when Si was exogenously provided, and this was associated with down-regulation of OsAMT1;1 and OsGS1;1, which are involved in ammonium uptake and assimilation, respectively. Under lower N fertilization levels (0.72 and/or 1.44 mM), Si amendment resulted in increased OsNRT1:1, OsGS2, OsFd-GOGAT, OsNADH-GOGAT2, and OsGDH2 expression. Additionally, bioassays revealed that high N fertilization level significantly decreased rice resistance to BPH, and the opposite effect was observed when Si was provided. These results provide additional insight into the antagonistic interaction between Si and N accumulation in rice, and the effects on plant growth and susceptibility to herbivores. PMID:28167952

  12. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    NASA Astrophysics Data System (ADS)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon-carbon-nitrogen (Si-C-N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg.g-1 and 1084.5 mg.g-1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si-C-N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants.

  13. Proton induced gamma-ray production cross sections and thick-target yields for boron, nitrogen and silicon

    NASA Astrophysics Data System (ADS)

    Marchand, Benoît; Mizohata, Kenichiro; Räisänen, Jyrki

    2016-07-01

    The excitation functions for the reactions 14N(p,p‧γ)14N, 28Si(p,p‧γ)28Si and 29Si(p,p‧γ)29Si were measured at an angle of 55° by bombarding a thin Si3N4 target with protons in the energy range of 3.6-6.9 MeV. The deduced γ-ray production cross section data is compared with available literature data relevant for ion beam analytical work. Thick-target γ-ray yields for boron, nitrogen and silicon were measured at 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 MeV proton energies utilizing thick BN and Si3N4 targets. The measured yield values are put together with available yield data found in the literature. The experimental yield data has been used to cross-check the γ-ray production cross section values by comparing them with calculated thick-target yields deduced from the present and literature experimental excitation curves. All values were found to be in reasonable agreement taking into account the experimental uncertainties.

  14. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon

    NASA Astrophysics Data System (ADS)

    Ali, Muataz; Zhou, Fengling; Chen, Kun; Kotzur, Christopher; Xiao, Changlong; Bourgeois, Laure; Zhang, Xinyi; Macfarlane, Douglas R.

    2016-04-01

    Ammonia (NH3) is one of the most widely produced chemicals worldwide. It has application in the production of many important chemicals, particularly fertilizers. It is also, potentially, an important energy storage intermediate and clean energy carrier. Ammonia production, however, mostly uses fossil fuels and currently accounts for more than 1.6% of global CO2 emissions (0.57 Gt in 2015). Here we describe a solar-driven nanostructured photoelectrochemical cell based on plasmon-enhanced black silicon for the conversion of atmospheric N2 to ammonia producing yields of 13.3 mg m-2 h-1 under 2 suns illumination. The yield increases with pressure; the highest observed in this work was 60 mg m-2 h-1 at 7 atm. In the presence of sulfite as a reactant, the process also offers a direct solar energy route to ammonium sulfate, a fertilizer of economic importance. Although the yields are currently not sufficient for practical application, there is much scope for improvement in the active materials in this cell.

  15. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon

    PubMed Central

    Ali, Muataz; Zhou, Fengling; Chen, Kun; Kotzur, Christopher; Xiao, Changlong; Bourgeois, Laure; Zhang, Xinyi; MacFarlane, Douglas R.

    2016-01-01

    Ammonia (NH3) is one of the most widely produced chemicals worldwide. It has application in the production of many important chemicals, particularly fertilizers. It is also, potentially, an important energy storage intermediate and clean energy carrier. Ammonia production, however, mostly uses fossil fuels and currently accounts for more than 1.6% of global CO2 emissions (0.57  Gt in 2015). Here we describe a solar-driven nanostructured photoelectrochemical cell based on plasmon-enhanced black silicon for the conversion of atmospheric N2 to ammonia producing yields of 13.3 mg m−2 h−1 under 2 suns illumination. The yield increases with pressure; the highest observed in this work was 60 mg m−2 h−1 at 7 atm. In the presence of sulfite as a reactant, the process also offers a direct solar energy route to ammonium sulfate, a fertilizer of economic importance. Although the yields are currently not sufficient for practical application, there is much scope for improvement in the active materials in this cell. PMID:27093916

  16. Defect chemistry and chalcogen diffusion in thin-film Cu{sub 2}ZnSnSe{sub 4} materials

    SciTech Connect

    Harvey, Steven P.; Repins, Ingrid; Teeter, Glenn

    2015-02-21

    Selenium diffusion in polycrystalline thin-film Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSe) on molybdenum-coated soda-lime glass substrates was investigated by in situ monitoring of the molybdenum back-contact resistance during high-temperature selenization treatments. In these measurements, selenium diffusion through the CZTSe layer results in conversion of the molybdenum layer to MoSe{sub 2}, increasing the sheet resistance of the film stack. By monitoring the rate of MoSe{sub 2} formation as a function of annealing temperature, an activation energy of 0.5 ± 0.1 eV has been measured for selenium diffusion in CZTSe. The partial pressure dependence of chalcogen diffusion suggests that chalcogen vacancies are not the defect controlling chalcogen diffusion in thin-film CZTSe.

  17. Defect chemistry and chalcogen diffusion in thin-film Cu2ZnSnSe4 materials

    NASA Astrophysics Data System (ADS)

    Harvey, Steven P.; Repins, Ingrid; Teeter, Glenn

    2015-02-01

    Selenium diffusion in polycrystalline thin-film Cu2ZnSn(S,Se)4 (CZTSe) on molybdenum-coated soda-lime glass substrates was investigated by in situ monitoring of the molybdenum back-contact resistance during high-temperature selenization treatments. In these measurements, selenium diffusion through the CZTSe layer results in conversion of the molybdenum layer to MoSe2, increasing the sheet resistance of the film stack. By monitoring the rate of MoSe2 formation as a function of annealing temperature, an activation energy of 0.5 ± 0.1 eV has been measured for selenium diffusion in CZTSe. The partial pressure dependence of chalcogen diffusion suggests that chalcogen vacancies are not the defect controlling chalcogen diffusion in thin-film CZTSe.

  18. Provision of nitrogen as ammonium rather than nitrate increases silicon uptake in sugarcane

    PubMed Central

    Keeping, Malcolm G.; Rutherford, R. Stuart; Sewpersad, C.; Miles, Neil

    2015-01-01

    Silicon (Si) is important in mitigating abiotic and biotic plant stresses, yet many agricultural soils, such as those of the rainfed production areas of the South African sugar industry, are deficient in plant-available Si, making Si supplementation necessary. However, Si uptake by sugarcane (Saccharum spp. hybrids) is limited even where silicate amendments improve soil Si status. Rhizosphere pH, which can affect Si uptake, can be manipulated using different N-form fertilizers. We tested whether (i) fertilization with NH4+ (rhizosphere acidification) increased Si uptake compared with NO3− (rhizosphere alkalinization); and (ii) uptake differed between an N-efficient, more acid-tolerant cultivar (N12) and an N-inefficient, less acid-tolerant cultivar (N14). Two pot trials with low-Si soil were fertilized with calcium silicate (Ca2SiO4) slag, plus N from ammonium sulphate [(NH4)2SO4], ammonium thiosulphate [(NH4)2S2O3] and calcium nitrate [Ca(NO3)2] (Trial 1) or N from (NH4)2S2O3 and Ca(NO3)2 only (Trial 2). Trial 2 included cultivars N12 and N14. Nitrate treatments significantly increased soil pH and soil Si compared with NH4+. However, NH4+ treatments significantly increased leaf and stalk Si content compared with NO3−, reflected in a significant negative relationship between soil pH and leaf Si. Acid-extracted soil Si was negatively related to leaf and stalk Si, likely due to adsorption of silicic acid to soil surfaces under higher pH of the NO3− treatment and its reduced availability for plant uptake. We conclude that NH4+ increased Si uptake into leaf and stalk, and propose that reduced rhizosphere pH solubilized Si from Ca2SiO4 and increased silicic acid availability for plant uptake. By contrast, NO3− may have reduced Si uptake due to adsorption of Si to soil surfaces at higher pH. Our results indicate that ammoniacal fertilizers, such as (NH4)2SO4 and urea, have potential for promoting dissolution of applied Ca2SiO4 and subsequent uptake of Si by

  19. Provision of nitrogen as ammonium rather than nitrate increases silicon uptake in sugarcane.

    PubMed

    Keeping, Malcolm G; Rutherford, R Stuart; Sewpersad, C; Miles, Neil

    2014-12-01

    Silicon (Si) is important in mitigating abiotic and biotic plant stresses, yet many agricultural soils, such as those of the rainfed production areas of the South African sugar industry, are deficient in plant-available Si, making Si supplementation necessary. However, Si uptake by sugarcane (Saccharum spp. hybrids) is limited even where silicate amendments improve soil Si status. Rhizosphere pH, which can affect Si uptake, can be manipulated using different N-form fertilizers. We tested whether (i) fertilization with [Formula: see text] (rhizosphere acidification) increased Si uptake compared with [Formula: see text] (rhizosphere alkalinization); and (ii) uptake differed between an N-efficient, more acid-tolerant cultivar (N12) and an N-inefficient, less acid-tolerant cultivar (N14). Two pot trials with low-Si soil were fertilized with calcium silicate (Ca2SiO4) slag, plus N from ammonium sulphate [(NH4)2SO4], ammonium thiosulphate [(NH4)2S2O3] and calcium nitrate [Ca(NO3)2] (Trial 1) or N from (NH4)2S2O3 and Ca(NO3)2 only (Trial 2). Trial 2 included cultivars N12 and N14. Nitrate treatments significantly increased soil pH and soil Si compared with [Formula: see text] However, [Formula: see text] treatments significantly increased leaf and stalk Si content compared with [Formula: see text] reflected in a significant negative relationship between soil pH and leaf Si. Acid-extracted soil Si was negatively related to leaf and stalk Si, likely due to adsorption of silicic acid to soil surfaces under higher pH of the [Formula: see text] treatment and its reduced availability for plant uptake. We conclude that [Formula: see text] increased Si uptake into leaf and stalk, and propose that reduced rhizosphere pH solubilized Si from Ca2SiO4 and increased silicic acid availability for plant uptake. By contrast, [Formula: see text] may have reduced Si uptake due to adsorption of Si to soil surfaces at higher pH. Our results indicate that ammoniacal fertilizers, such as (NH4

  20. Evaluation of Electron Donation as a Mechanism for the Stabilisation of Chalcogenate-Protected Gold Nanoclusters.

    PubMed

    Segala, Maximiliano; Schneider, Felipe S S; Caramori, Giovanni F; Parreira, Renato L T

    2016-10-05

    Models based on Au(111) face have been extensively used to describe self-assembled monolayers, as well nanoparticles and nanoclusters. However, for very small clusters (<2 nm), the chemisorption of ligands leads to surface reconstruction, making necessary the use of a more reliable model that is able to simulate the main electronic and geometrical features of these small systems. In this work, a simple model to describe the geometries and the metal-ligand bonding in chalcogenate-protected gold nanoclusters is proposed. Three different models with Aun(+) and [XCH3 ](-) (n=10, 15, 19, 22 and X=S, Se, Te) are used in this work. The obtained structures are in close agreement not only with the available crystallographic data, but also with much more expensive computational procedures, confirming that the proposed models are robust enough to describe the metal-ligand bonding. The results reveal that the Au-X distances are dependent on both the nature of the chalcogen and the coordination mode. The shortest Au-X distances are observed in the face-centred cubic mode, indicating that the central gold atom seems to play a role in determining the adsorption strength. The proposed models show unambiguously chalcogen→cluster σ-donation, as supported by energy decomposition analysis coupled with the natural orbitals for chemical valence and natural bond orbital analyses. In all cases, the metal-ligand interactions are characterised as being more covalent than electrostatic.

  1. Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine

    SciTech Connect

    Riley, Brian J.; Chun, Jaehun; Ryan, Joseph V.; Matyas, Josef; Li, Xiaohong S.; Matson, Dean W.; Sundaram, S. K.; Strachan, Denis M.; Vienna, John D.

    2011-12-22

    Aerogels employing chalcogen-based (i.e., S, Se, and/or Te) structural units and interlinking metals are termed chalcogels and have many emerging applications. Here, chalcogels are discussed in the context of nuclear fuel reprocessing and radioactive waste remediation. Motivated by previous work on removal of heavy metals in aqueous solution, we explored the application of germanium sulfide chalcogels as a sorbent for gas-phase I2 based on Pearson's Hard/Soft Acid-Base (HSAB) principle. This work was driven by a significant need for high-efficiency sorbents for I-129, a long-lived isotope evolved during irradiated UO2 nuclear fuel reprocessing. These chalcogel compositions are shown to possess an affinity for iodine gas, I2(g), at various concentrations in air and the affinity is attributed to a strong chemical attraction between the chalcogen and I2(g), according to the HSAB principle. The high sorption efficiency is facilitated by the high porosity as well as the exceptionally large surface area of the chalcogels.

  2. Highly Selective Halide Receptors Based on Chalcogen, Pnicogen, and Tetrel Bonds.

    PubMed

    Scheiner, Steve

    2016-12-23

    The interactions of halides with a number of bipodal receptors were examined by quantum chemical methods. The receptors were based on a dithieno thiophene framework in which two S atoms can engage in a pair of chalcogen bonds with a halide. These two S atoms were replaced by P and As atoms to compare chalcogen with pnicogen bonding, and by Ge which engages in tetrel bonds with the receptor. Zero, one, and two O atoms were added to the thiophene S atom which is not directly involved in the interaction with the halides. Fluoride bound the most strongly, followed by Cl(-) , Br(-) , and I(-) , respectively. Replacing S by the pnicogen bonds of P strengthened the binding, as did moving down to As in the third row of the periodic table. A further large increment is associated with the switch to the tetrel bonds of Ge. Even though the thiophene S atom is remote from the binding site, each additional O atom added to it raises the binding energy, which can be quite large, as much as 63 kcal mol(-1) for the Ge⋅⋅⋅F(-) interaction. The receptors have a pronounced selectivity for F(-) over the other halides, as high as 27 orders of magnitude. The data suggest that incorporation of tetrel atoms may lead to new and more powerful halide receptors.

  3. The changing roles of iron and vertical mixing in regulating nitrogen and silicon cycling in the Southern Ocean over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Robinson, Rebecca S.; Brzezinski, Mark A.; Beucher, Charlotte P.; Horn, Matthew G. S.; Bedsole, Patrick

    2014-12-01

    The Southern Ocean plays a critical role in the air-sea CO2 balance through biological and physical mechanisms. Vertical supply of deep waters returns nutrients and CO2 to the surface and stimulates phytoplankton growth. Photosynthesis in the Southern Ocean is limited by iron and only a fraction of the carbon and nutrients that return to the surface are consumed for potential sequestration in the deep sea. Here we present the most spatially extensive data set of silicon and nitrogen isotope measurements from diatom frustules to date to examine the controls on nutrient drawdown during the last glacial period and across the glacial termination in both the Antarctic and Subantarctic zones. The new data confirm existing views that differing silicon and nitrate consumption patterns in the Antarctic zone are likely the result, at least in part, of iron addition during the last glacial maximum (LGM). However, earlier in the glacial, a more coordinated response in the two proxy records, with both reflecting enhanced consumption during episodes of increased iron accumulation and export production, implies a different system response than observed for the LGM. A collapse of the expected equatorward gradient in silicon isotope values and contraction of the nitrogen isotope gradient during the deglaciation suggests that nutrient supply increased not only in the Antarctic Zone, but also in the Subantarctic, perhaps due to enhanced deep mixing locally. Enhanced deep water ventilation across the Southern Ocean likely increased the nutrient content of mode waters during the deglaciation.

  4. Reactions Between Chalcogen Donors and Dihalogens/Interalogens: Typology of Products and Their Characterization by FT-Raman Spectroscopy

    PubMed Central

    Arca, Massimiliano; Aragoni, M. Carla; Devillanova, Francesco A.; Garau, Alessandra; Isaia, Francesco; Lippolis, Vito; Mancini, Annalisa; Verani, Gaetano

    2006-01-01

    The chemical bond and structural features for the most important classes of solid products obtained by reacting chalcogen donors with dihalogens and interhalogens are reviewed. Particular attention is paid to the information the FT-Raman spectroscopy can confidently give about each structural motif considered in the absence of X-ray structural analyses. PMID:17497008

  5. Suppression Effect and Mechanism of Platinum and Nitrogen-Containing Silane on the Tracking and Erosion of Silicone Rubber for High-Voltage Insulation.

    PubMed

    Chen, Wan Juan; Zeng, Xingrong; Lai, Xuejun; Li, Hongqiang; Fang, Wei Zhen; Hou, Fei

    2016-08-17

    How to effectively improve the tracking and erosion resistance of silicone rubber (SR) was an urgent topic in the field of high-voltage insulation. In this work, the tracking and erosion resistance of SR was significantly improved by incorporating platinum (Pt) catalyst and nitrogen-containing silane (NS). The suppression effect and mechanism of Pt/NS on tracking and erosion were studied by inclined plane (IP) test, thermogravimetry (TG), thermogravimetry-Fourier transform infrared spectrometry, laser Raman spectroscopy, and scanning electron microscopy. It revealed that when 1.4 phr of NS and 6.7 ppm of Pt were added, the tracking resistance of SR was improved from 2.5 to 4.5 kV level in the IP test, and the eroded mass was significantly reduced. This might be attributed to the synergistic effect of Pt/NS on silicone chains. At a high temperature produced by arc discharge, Pt/NS would catalyze radical cross-linking, meanwhile suppressing oxidation and depolymerization of silicone chains. Hence, a tightly cross-linked network was formed and protected inner materials from arc ablation. Moreover, carbon deposit during pyrolysis was suppressed by Pt/NS, which served as the secondary mechanism of tracking suppression.

  6. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  7. Advances in the development of complexes that contain a group 13 element chalcogen multiple bond.

    PubMed

    Franz, Daniel; Inoue, Shigeyoshi

    2016-06-21

    Inorganic group 13 element (M) chalcogenides (E) based on the general formular M2E3 are ubiquitous in synthesis, catalysis and material science. The parent ME fragment which aggregates to form three dimensional networks in the condensed phase can be expected to exhibit multiple bond character between the elements. Low temperature matrix isolation techniques are required to investigate the nature of this elusive species. An alternate approach for respective studies is the synthesis of electron-precise molecular complexes that contain the ME entity and for which isolation at ambient temperature is possible. This is realized by kinetic stabilization with bulky ligands and thermodynamic stabilization using electron donor, as well as acceptor groups attached to the ME functionality (i.e. donor-acceptor stabilization). In this article we revise the literature on complex compounds that exhibit a bonding interaction between a group 13 element atom and a chalcogen atom that is reasonably to be interpreted in terms of a double- or triple bond.

  8. Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis

    SciTech Connect

    Spencer, Liam P; Batista, Enrique R; Boncella, James M; Yang, Ping; Scott, Brian L

    2009-01-01

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  9. Improving dielectric properties of epitaxial Gd{sub 2}O{sub 3} thin films on silicon by nitrogen doping

    SciTech Connect

    Roy Chaudhuri, Ayan; Osten, H. J.; Fissel, A.; Archakam, V. R.

    2013-01-14

    We report about the effect of nitrogen doping on the electrical properties of epitaxial Gd{sub 2}O{sub 3} thin films. Epitaxial Gd{sub 2}O{sub 3}:N thin films were grown on Si (111) substrates by solid source molecular beam epitaxy using nitrous oxide as the nitridation agent. Substitutional nitrogen incorporation into the dielectric layer was confirmed by secondary ion mass spectroscopy and X-ray photoelectron spectroscopy analysis. Substantial reduction of the leakage current density and disappearance of hysteresis in capacitance-voltage characteristics observed in the Gd{sub 2}O{sub 3}:N layers indicate that nitrogen incorporation in Gd{sub 2}O{sub 3} effectively eliminates the adverse effects of the oxygen vacancy induced defects in the oxide layer.

  10. Preparation of nitrogen doped silicon oxides thin films by plasma polymerization of 3-aminopropyltriethoxylsilane using atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun; Wang, Meng-Jiy

    2016-01-01

    Surface modification techniques have been applied in various applications including self-cleaning surface, antibacterial filter, and biomaterials. In this study we employed the atmospheric pressure plasma jet (APPJ) deposition, a dry process for surface modification, to deposit 3-aminopropyltriethoxylsilane (APTES) on stainless steel (SS) on the purposes of simultaneously incorporating SiOx and nitrogen containing functionalities for the modulation of biofunctionality. The APPJ deposition allowed to form a thin layer of APTES with linear growth rate by controlling the deposition time. In addition, the surface chemical and physical properties, such as surface chemical composition, wettability, film thickness, and interactions with mammalian cells were evaluated by using different analytical methods. The results showed that the surface wettability was improved significantly due to the APTES deposition along with the increase of the incorporated nitrogen content. Moreover, the viability of L-929 fibroblasts was clearly promoted on the APTES deposited SS, which is most probably due to the thicker deposited films and higher density of nitrogen-containing functional groups. The outcomes of this research showed great potential to apply on metallic substrates in real time for biomedical related applications.

  11. Chalcogen (O2, S, Se, Te) atmosphere annealing induced bulk superconductivity in Fe1+yTe1-xSex single crystal

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Tsuchiya, Y.; Yamada, T.; Taen, T.; Pyon, S.; Shi, Z. X.; Tamegai, T.

    2014-09-01

    We reported a detailed study of Fe1+yTe0.6Se0.4 single crystals annealed in the atmosphere of chalcogens (O2, S, Se, Te). After annealing with appropriate amount of chalcogens, Fe1+yTe0.6Se0.4 single crystals show Tc higher than 14 K with a sharp transition width ∼1 K. Critical current density Jc for the annealed crystals reach a very high value ∼2-4 × 105 A/cm2 under zero field, and is also robust under applied field at low temperatures. Magneto-optical imaging reveal that the Jc is homogeneously distributed in the annealed crystals and isotropic in the ab-plane. Our results show that annealing in the atmosphere of chalcogens can successfully induce bulk superconductivity in Fe1+yTe0.6Se0.4.

  12. Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane

    PubMed Central

    Keeping, Malcolm G.; Miles, Neil; Sewpersad, Chandini

    2014-01-01

    The stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) is a major limiting factor in South African sugarcane production, while yield is also reduced by sugarcane thrips Fulmekiola serrata Kobus (Thysanoptera: Thripidae). Borer management options include appropriate nitrogen (N) and enhanced silicon (Si) nutrition; the effect of N on sugarcane thrips is unknown. We tested the effects of these nutrients, in combination with resistant (N33) and susceptible (N27) sugarcane cultivars, on E. saccharina and F. serrata infestation. Two pot trials with three levels of N (60, 120, and 180 kg ha-1) and two levels each of calcium silicate and dolomitic lime (5 and 10 t ha-1) were naturally infested with thrips, then artificially water stressed and infested with borer. Higher N levels increased borer survival and stalk damage, while Si reduced these compared with controls. Silicon significantly reduced stalk damage in N27 but not in N33; hence, Si provided relatively greater protection for susceptible cultivars than for resistant ones. High N treatments were associated with greater thrips numbers, while Si treatments did not significantly influence thrips infestation. The reduction in borer survival and stalk damage by Si application at all N rates indicates that under field conditions, the opportunity exists for optimizing sugarcane yields through maintaining adequate N nutrition, while reducing populations of E. saccharina using integrated pest management (IPM) tactics that include improved Si nutrition of the crop and reduced plant water stress. Improved management of N nutrition may also provide an option for thrips IPM. The contrasting effects of Si on stalk borer and thrips indicate that Si-mediated resistance to insect herbivores in sugarcane has mechanical and biochemical components that are well developed in the stalk tissues targeted by E. saccharina but poorly developed in the young leaf spindles where F. serrata occurs. PMID:24999349

  13. The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading

    PubMed Central

    Liu, Xiaoxu; Chao, Dongliang; Zhang, Qiang; Liu, Hai; Hu, Hailong; Zhao, Jiupeng; Li, Yao; Huang, Yizhong; Lin, Jianyi; Shen, Ze Xiang

    2015-01-01

    A stable Si-based anode with a high initial coulombic efficiency (ICE) for lithium-ion batteries (LIB) is critical for energy storage. In the present paper, a new scalable method is adopted in combination with giant nitrogen-doped graphene and micron-size electrode materials. We first synthesize a new type of freestanding LIB anode composed of micron-sized Si (mSi) particles wrapped by giant nitrogen-doped graphene (mSi@GNG) film. High ICE (>85%) and long cycle life (more than 80 cycles) are obtained. In the mSi@GNG composite, preferential formation of a stable solid electrolyte interphase (SEI) on the surface of graphene sheets is achieved. The formation and components of SEI are identified for the first time by using UV-resonance Raman spectroscopy and Raman mapping, which will revive the study of formation and evolution of SEI by Raman. New mechanism is proposed that the giant graphene sheets protect the mSi particles from over-lithiation and fracture. Such a simple and scalable method may also be applied to other anode systems to boost their energy and power densities for LIB. PMID:26497729

  14. The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxu; Chao, Dongliang; Zhang, Qiang; Liu, Hai; Hu, Hailong; Zhao, Jiupeng; Li, Yao; Huang, Yizhong; Lin, Jianyi; Shen, Ze Xiang

    2015-10-01

    A stable Si-based anode with a high initial coulombic efficiency (ICE) for lithium-ion batteries (LIB) is critical for energy storage. In the present paper, a new scalable method is adopted in combination with giant nitrogen-doped graphene and micron-size electrode materials. We first synthesize a new type of freestanding LIB anode composed of micron-sized Si (mSi) particles wrapped by giant nitrogen-doped graphene (mSi@GNG) film. High ICE (>85%) and long cycle life (more than 80 cycles) are obtained. In the mSi@GNG composite, preferential formation of a stable solid electrolyte interphase (SEI) on the surface of graphene sheets is achieved. The formation and components of SEI are identified for the first time by using UV-resonance Raman spectroscopy and Raman mapping, which will revive the study of formation and evolution of SEI by Raman. New mechanism is proposed that the giant graphene sheets protect the mSi particles from over-lithiation and fracture. Such a simple and scalable method may also be applied to other anode systems to boost their energy and power densities for LIB.

  15. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  16. Tribological properties and thermal stability of hydrogenated, silicon/nitrogen-coincorporated diamond-like carbon films prepared by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nakazawa, Hideki; Okuno, Saori; Magara, Kohei; Nakamura, Kazuki; Miura, Soushi; Enta, Yoshiharu

    2016-12-01

    We have deposited hydrogenated, silicon/nitrogen-incorporated diamond-like carbon (Si-N-DLC) films by plasma-enhanced chemical vapor deposition using hexamethyldisilazane [((CH3)3Si)2NH; HMDS] as the Si and N source, and compared the tribological performance and thermal stability of the Si-N-DLC films with those of hydrogenated, Si-incorporated DLC (Si-DLC) films prepared using dimethylsilane [SiH2(CH3)2] as the Si source. The deposited films were annealed at 723-873 K in air atmosphere. The friction coefficients of hydrogenated DLC films after annealing significantly increased at the initial stages of friction tests. On the other hand, the friction coefficients of the Si-N-DLC films deposited at an HMDS flow ratio [HMDS/(HMDS+CH4)] of 2.27% remained low after the annealing even at 873 K. We found that the wear rate of the Si-N-DLC film deposited at 2.27% and -1000 V remained almost unchanged after the annealing at 873 K, whereas that of the Si-DLC film with a similar Si fraction deposited at -1000 V significantly increased after the annealing at 773 K.

  17. Crystallization Behavior of Virgin TR-55 Silicone Rubber Measured Using Dynamic Mechanical Thermal Analysis with Liquid Nitrogen Cooling

    SciTech Connect

    Small IV, W; Wilson, T S

    2010-02-11

    Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Two dynamic temperature sweep tests, 25 to -100 C and 25 to -70 to 0 C (ramp rate = 1 C/min), were conducted at a frequency of 6.28 rad/s (1 Hz) using a torsion rectangular test geometry. A strain of 0.1% was used, which was near the upper limit of the linear viscoelastic region of the material based on an initial dynamic strain sweep test. Storage (G{prime}) and loss (G{double_prime}) moduli, the ratio G{double_prime}/G{prime} (tan {delta}), and the coefficient of linear thermal expansion ({alpha}) were determined as a function of temperature. Crystallization occurred between -40 and -60 C, with G{prime} increasing from {approx}6 x 10{sup 6} to {approx}4 x 10{sup 8} Pa. The value of {alpha} was fairly constant before ({approx}4 x 10{sup -4} mm/mm- C) and after ({approx}3 x 10{sup -4} mm/mm- C) the transition, and peaked during the transition ({approx}3 x 10{sup -3} mm/mm- C). Melting occurred around -30 C upon heating.

  18. Use of silicon in liquid sintered silicon nitrides and sialons

    DOEpatents

    Raj, R.; Baik, S.

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  19. Use of silicon in liquid sintered silicon nitrides and sialons

    DOEpatents

    Raj, Rishi; Baik, Sunggi

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  20. S···O chalcogen bonding in sulfa drugs: insights from multipole charge density and X-ray wavefunction of acetazolamide.

    PubMed

    Thomas, Sajesh P; Jayatilaka, Dylan; Guru Row, T N

    2015-10-14

    Experimental charge density analysis combined with the quantum crystallographic technique of X-ray wavefunction refinement (XWR) provides quantitative insights into the intra- and intermolecular interactions formed by acetazolamide, a diuretic drug. Firstly, the analysis of charge density topology at the intermolecular level shows the presence of exceptionally strong interaction motifs such as a DDAA-AADD (D-donor, A-acceptor) type quadruple hydrogen bond motif and a sulfonamide dimer synthon. The nature and strength of intra-molecular S···O chalcogen bonding have been characterized using descriptors from the multipole model (MM) and XWR. Although pure geometrical criteria suggest the possibility of two intra-molecular S···O chalcogen bonded ring motifs, only one of them satisfies the "orbital geometry" so as to exhibit an interaction in terms of an electron density bond path and a bond critical point. The presence of 'σ-holes' on the sulfur atom leading to the S···O chalcogen bond has been visualized on the electrostatic potential surface and Laplacian isosurfaces close to the 'reactive surface'. The electron localizability indicator (ELI) and Roby bond orders derived from the 'experimental wave function' provide insights into the nature of S···O chalcogen bonding.

  1. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1+yTe1-xSex [How does annealing in chalcogen vapor induce superconductivity in Fe1+yTe-xSex?

    DOE PAGES

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; ...

    2015-02-01

    Recent investigations have shown that Fe1+yTe1-xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1+yTe1-xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥ 1) complexes. We show thatmore » the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.« less

  2. Chalcogen-height dependent magnetic interactions and magnetic order switching in FeSexTe1-x.

    PubMed

    Moon, Chang-Youn; Choi, Hyoung Joon

    2010-02-05

    Magnetic properties of iron chalcogenide superconducting materials are investigated using density-functional calculations. We find that the stability of magnetic phases is very sensitive to the height of chalcogen species from the Fe plane: while FeTe with optimized Te height has the double-stripe (pi, 0) magnetic ordering, the single-stripe (pi, pi) ordering becomes the ground state when Te is lowered below a critical height by, e.g., Se doping. This behavior is understood by opposite Te-height dependences of the superexchange interaction and a longer range magnetic interaction mediated by itinerant electrons. We also demonstrate a linear temperature dependence of the macroscopic magnetic susceptibility in the single-stripe phase in contrast with the constant behavior in the double-stripe phase. Our findings provide a comprehensive and unified view on the magnetism in FeSexTe1-x and iron pnictide superconductors.

  3. Nutrients cycling in response to opal productivity during the last 600 kyr in the Bering Sea (IODP Exp. 323 Site U1343): diatom silicon isotope and sedimentary nitrogen isotope

    NASA Astrophysics Data System (ADS)

    Kim, Sunghan; Takahashi, Kozo; Kanematsu, Yoshiyuki; Asahi, Hirofumi; Ikehara, Minoru; Khim, Boo-Keun

    2014-05-01

    Multidisciplinary paleoceanographic proxies (biogenic opal, diatom silicon isotope, and sedimentary nitrogen isotope, benthic foraminifera oxygen isotope) were analyzed for Site U1343 of IODP Exp. 323, in order to investigate the degree of nutrient utilization in response to glacial-interglacial changes of opal productivity in the Bering Sea. According to oxygen isotope of benthic foraminifera, an age model for Site U1343 represents a record of 600 ka. High diatom silicon isotope values during interglacial periods were attributed to increased opal production under nutrient-replete conditions, which would have resulted in higher silicic acid utilization along with increased diatom productivity. In contrast, low diatom silicon isotope values during glacial periods were caused by reduced opal production due to extensive sea ice. Such condition can lead to lower silicic acid utilization along with decreased diatom productivity. Thus, silicic acid cycling between subsurface and surface waters was active during interglacial periods, but weak during glacial periods. High sedimentary nitrogen isotope values generally occurred with high biogenic opal, particularly during warm (low oxygen isotope) periods, indicating higher nitrate utilization with increased diatom productivity. In contrast, low sedimentary nitrogen isotope values were found primarily in conjunction with low biogenic opal particularly during cold (high oxygen isotope) periods, reflecting lower nitrate utilization with decreased diatom productivity. Thus, nitrate cycling between subsurface and surface waters was active during warm periods and weak during cold periods. Diatom productivity at Site U1343 was significantly restricted owing to extensive sea ice during glacial/cold periods, emphasizing the important role in controlling orbital-scale nutrient utilization by diatoms in the slope area of the Bering Sea.

  4. Interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS∙∙∙NH₃ (X = F, OH, NC, CN, and FCC) complex.

    PubMed

    Zhao, Qiang

    2014-10-01

    The interplay between halogen and chalcogen bonding in the XCl∙∙∙OCS and XCl∙∙∙OCS∙∙∙NH3 (X = F, OH, NC, CN, and FCC) complex was studied at the MP2/6-311++G(d,p) computational level. Cooperative effect is observed when halogen and chalcogen bonding coexist in the same complex. The effect is studied by means of binding distance, interaction energy, and cooperative energy. Molecular electrostatic potential calculation reveals the electrostatic nature of the interactions. Cooperative effect is explained by the difference of the electron density. Second-order stabilization energy was calculated to study the orbital interaction in the complex. Atoms in molecules analysis was performed to analyze the enhancement of the electron density in the bond critical point.

  5. Bond Angles in the Crystalline Silicon/Silicon Nitride Interface

    NASA Astrophysics Data System (ADS)

    Leonard, Robert H.; Bachlechner, Martina E.

    2006-03-01

    Silicon nitride deposited on a silicon substrate has major applications in both dielectric layers in microelectronics and as antireflection and passivation coatings in photovoltaic applications. Molecular dynamic simulations are performed to investigate the influence of temperature and rate of externally applied strain on the structural and mechanical properties of the silicon/silicon nitride interface. Bond-angles between various atom types in the system are used to find and understand more about the mechanisms leading to the failure of the crystal. Ideally in crystalline silicon nitride, bond angles of 109.5 occur when a silicon atom is at the vertex and 120 angles occur when a nitrogen atom is at the vertex. The comparison of the calculated angles to the ideal values give information on the mechanisms of failure in silicon/silicon nitride system.

  6. Role of axial base coordination in isonitrile binding and chalcogen atom transfer to vanadium(III) complexes.

    PubMed

    Majumdar, Subhojit; Stauber, Julia M; Palluccio, Taryn D; Cai, Xiaochen; Velian, Alexandra; Rybak-Akimova, Elena V; Temprado, Manuel; Captain, Burjor; Cummins, Christopher C; Hoff, Carl D

    2014-10-20

    The enthalpy of oxygen atom transfer (OAT) to V[(Me3SiNCH2CH2)3N], 1, forming OV[(Me3SiNCH2CH2)3N], 1-O, and the enthalpies of sulfur atom transfer (SAT) to 1 and V(N[t-Bu]Ar)3, 2 (Ar = 3,5-C6H3Me2), forming the corresponding sulfides SV[(Me3SiNCH2CH2)3N], 1-S, and SV(N[t-Bu]Ar)3, 2-S, have been measured by solution calorimetry in toluene solution using dbabhNO (dbabhNO = 7-nitroso-2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) and Ph3SbS as chalcogen atom transfer reagents. The V-O BDE in 1-O is 6.3 ± 3.2 kcal·mol(-1) lower than the previously reported value for 2-O and the V-S BDE in 1-S is 3.3 ± 3.1 kcal·mol(-1) lower than that in 2-S. These differences are attributed primarily to a weakening of the V-Naxial bond present in complexes of 1 upon oxidation. The rate of reaction of 1 with dbabhNO has been studied by low temperature stopped-flow kinetics. Rate constants for OAT are over 20 times greater than those reported for 2. Adamantyl isonitrile (AdNC) binds rapidly and quantitatively to both 1 and 2 forming high spin adducts of V(III). The enthalpies of ligand addition to 1 and 2 in toluene solution are -19.9 ± 0.6 and -17.1 ± 0.7 kcal·mol(-1), respectively. The more exothermic ligand addition to 1 as compared to 2 is opposite to what was observed for OAT and SAT. This is attributed to less weakening of the V-Naxial bond in ligand binding as opposed to chalcogen atom transfer and is in keeping with structural data and computations. The structures of 1, 1-O, 1-S, 1-CNAd, and 2-CNAd have been determined by X-ray crystallography and are reported.

  7. New dimensions in chemistry of materials with lanthanide-chalcogen bonds: Highly emissive molecules, clusters and composites

    NASA Astrophysics Data System (ADS)

    Banerjee, Santanu

    This thesis presents the synthesis and characterization of materials having bonds between hard, electropositive lanthanide metal cations and soft, covalent chalcogen based ligands and a study of their electronic properties. Molecular Ln chalcogenido chalcogenolate clusters LnxEy(ER) z(Ln=La-Lu; E=S,Se,Te; R=C6H5, C6F 5), oxo-ligand containing clusters [LnxEyO z(ER)n,LnxEyOz] and heterovalent clusters [Ln(II)/Ln(III)x (ER)y, Ln(II)/Ln(III) xEy(ER)z, Ln(II)/Ln'(III)x(ER) z Ln(II)/Ln'(III)xEy(ER)z] have been isolated and characterized. These compounds are useful in terms of interpreting the nature of the Ln-E bond and for correlating the physical properties of molecular lanthanide chalcogenolates [Ln(EPh)x] with those of LnxEy solid state materials. Also thermal decomposition of these clusters was investigated to establish the utility of the molecular materials as precursors to solid state materials. In addition to synthesis and structural chemistry, the photoluminescence properties of these compounds were studied in detail. The results of optical studies of different lanthanide compounds with chalcogenido, fluorinated thiolate and mu-Oxo ligands are reported here. Electronic characterization of these materials involves UV-Visible absorption spectroscopy, emission spectroscopy using LASER diode sources, optical gain and fluorescence decay time measurements.

  8. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  9. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  10. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOEpatents

    Raj, Rishi; Baik, Sunggi

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  11. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOEpatents

    Raj, R.; Baik, S.

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  12. Effects of stress annealing in nitrogen on the index of refraction of silicon dioxide layers in metal-oxide-semiconductor devices

    NASA Astrophysics Data System (ADS)

    Massoud, Hisham Z.; Przewlocki, Henryk M.

    2002-08-01

    In this article, we report the results of a study of the effects of high-temperature stress annealing in nitrogen on the index of refraction of SiO2 layers in metal/oxide/semiconductor (MOS) devices. In this study, we have experimentally characterized the dependence of mechanical stress in the Si-SiO2 system on the oxidation and annealing conditions and correlated such properties with the dependence of the index of refraction on processing conditions and oxide thickness. We consider the contributions of the thermal-relaxation and nitrogen-incorporation processes in determining changes in the index of refraction with annealing time. This description is consistent with other annealing studies carried out in argon where only the thermal-relaxation process is present. Correlations of these experimental observations with the electrical properties of the same MOS devices are presented in a companion article.

  13. Studies of pure and nitrogen-incorporated hydrogenated amorphous carbon thin films and their possible application for amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Kumar, Sushil; Malik, Hitendra K.

    2012-01-01

    Hydrogenated amorphous carbon (a-C:H) and nitrogen-incorporated a-C:H (a-C:N:H) thin films were deposited using radio frequency-plasma-enhanced chemical vapor deposition technique and studied for their electrical, optical, and nano-mechanical properties. Introduction of nitrogen and increase of self bias enhanced the conductivity of a-C:H and a-C:N:H films, whereas current-voltage measurement reveals heterojunction formation due to their rectifying behavior. The bandgap of these films was changed over wide range from 1.9 eV to 3.45 eV by varying self bias and the nitrogen incorporation. Further, activation energy was correlated with the electronic structure of a-C:H and a-C:N:H films, and conductivity was discussed as a function of bandgap. Moreover, a-C:N:H films exhibited high hardness and elastic modulus, with maximum values as 42 GPa and 430 GPa, respectively, at -100 V. Observed fascinating electrical, optical, and nano-mechanical properties made it a material of great utility in the development of optoelectronic devices, such as solar cells. In addition, we also performed simulation study for an a-Si:H solar cell, considering a-C:H and C:N:H as window layers, and compared their performance with the a-Si:H solar cell having a-SiC:H as window layer. We also proposed several structures for the development of a near full-spectrum solar cell. Moreover, due to high hardness, a-C:N:H films can be used as a protective and encapsulate layer on solar cells, especially in n-i-p configuration on metal substrate. Nevertheless, a-C:H and a-C:N:H as a window layer can avoid the use of additional hard and protective coating and, hence, minimize the cost of the product.

  14. Metallization of Large Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.

    1978-01-01

    A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.

  15. Control of silicon nanoparticle size embedded in silicon oxynitride dielectric matrix

    SciTech Connect

    Ehrhardt, F.; Ferblantier, G.; Muller, D.; Slaoui, A.; Ulhaq-Bouillet, C.; Rinnert, H.

    2013-07-21

    In this study, silicon rich silicon oxynitride layers containing more than 15% nitrogen were deposited by electron cyclotron resonance assisted plasma enhanced vapor deposition in order to form silicon nanoparticles after a high temperature thermal annealing. The effect of the flows of the precursor gases on the composition and the structural properties of the layers was assessed by Rutherford backscattering spectroscopy, elastic recoil detection analysis, and infrared spectroscopic measurements. The morphological and crystallinity properties were investigated by energy filtered transmission electron microscopy and Raman spectroscopy. We show that the excess of silicon in the silicon oxynitride layer controls the silicon nanoparticles size. On the other hand, the crystalline fraction of particles is found to be strongly correlated to the nanoparticle size. Finally, the photoluminescence measurements show that it is also possible to tune the photoluminescence peak position between 400 and 800 nm and its intensity by changing the silicon excess in the silicon rich silicon oxynitride matrix.

  16. Silicon on sapphire for ion implantation studies

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.

    1974-01-01

    Van der Pauw or bridge samples are ultrasonically cut from silicon on sapphire wafers. Contact pad regions are implanted with moderately heavy dose of ions. Ion of interest is implanted into sample; and, before being annealed in vacuum, sample is sealed with sputtered layer of silicon dioxide. Nickel or aluminum is sputtered onto contact pad areas and is sintered in nitrogen atmosphere.

  17. Determination of Silicon in Hydrazine

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Mast, Dion; Greene, Ben; Maes, Miguel J.

    2006-01-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a highly sensitive technique sometimes used for the trace determination of silicon at a mass-to-charge (m/z) ratio of 28, the most abundant natural isotope of silicon. Unfortunately, ICP-MS is unable to differentiate between other sources of m/z 28 and false positive results for silicon will result when other sources of m/z 28 are present. Nitrogen was a major source of m/z 28 and contributes to the m/z 28 signal when hydrazine sample or nitric acid preservative is introduced into the plasma. Accordingly, this work was performed to develop a sample preparation step coupled with an ICP-MS analysis that minimized non-silicon sources of m/z 28. In the preparatory step of this method, the hydrazine sample was first decomposed predominately to nitrogen gas and water with copper-catalyzed hydrogen peroxide. In the analysis step, ICP-MS was used without nitric acid preservative in samples or standards. Glass, a potential source of silicon contamination, was also avoided where possible. The method was sensitive, accurate, and reliable for the determination of silicon in monopropellant grade hydrazine (MPH) in AF-E-332 elastomer leaching tests. Results for silicon in MPH were comparable to those reported in the literature for other studies.

  18. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOEpatents

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  19. Prediction and characterization of a chalcogen-hydride interaction with metal hybrids as an electron donor in F2CS-HM and F2CSe-HM (M = Li, Na, BeH, MgH, MgCH3) complexes.

    PubMed

    Li, Qing-Zhong; Qi, Hui; Li, Ran; Liu, Xiao-Feng; Li, Wen-Zuo; Cheng, Jian-Bo

    2012-03-07

    A novel type of σ-hole bonding has been predicted and characterized in F(2)CS-HM and F(2)CSe-HM (M = Li, Na, BeH, MgH) complexes at the MP2/aug-cc-pVTZ level. This interaction, termed a chalcogen-hydride interaction, was analyzed in terms of geometric, energetic and spectroscopic features of the complexes. It exhibits similar properties to hydrogen bonding and halogen bonding. The methyl group in metal hydrides makes a positive contribution to the formation of chalcogen-hydride bonded complexes. In the F(2)CSe-HLi-OH(2) complex, the chalcogen-hydride bonding shows synergetic effects with lithium bonding. These complexes have been analyzed with the atoms in molecules (AIM) theory and symmetry adapted perturbation theory (SAPT) method. The results show that the chalcogen-hydride bonding is dominated with an electrostatic interaction.

  20. Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2-fS2 conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Brenan, James

    2015-06-01

    In order to better understand the behavior of highly siderophile elements (HSEs: Os, Ir, Ru, Rh, Pt, Pd, Au, Re), Ag, Pb and chalcogens (As, Se, Sb, Te and Bi) during the solidification of sulfide magmas, we have conducted a series of experiments to measure partition coefficients (D values) between monosulfide solid solution (MSS) and sulfide melt, as well as MSS and intermediate solid solution (ISS), at 0.1 MPa and 860-926 °C, log fS2 -3.0 to -2.2 (similar to the Pt-PtS buffer), with fO2 controlled at the fayalite-magnetite-quartz (FMQ) buffer. The IPGEs (Os, Ir, Ru), Rh and Re are found to be compatible in MSS relative to sulfide melt with D values ranging from ∼20 to ∼5, and DRe/DOs of ∼0.5. Pd, Pt, Au, Ag, Pb, as well as the chalcogens, are incompatible in MSS, with D values ranging from ∼0.1 to ∼1 × 10-3. For the same metal/sulfur ratio, D values for the IPGEs, Rh and Re are systematically larger than most past studies, correlating with higher oxygen content in the sulfide liquid, reflecting the significant effect of oxygen on increasing the activity coefficients for these elements in the melt phase. MSS/ISS partitioning experiments reveal that Ru, Os, Ir, Rh and Re are partitioned into MSS by a factor of >50, whereas Pd, Pt, Ag, Au and the chalcogens partition from weakly (Se, As) to strongly (Ag, Au) into ISS. Uniformly low MSS- and ISS- melt partition coefficients for the chalcogens, Pt, Pd, Ag and Au will lead to enrichment in the residual sulfide liquid, but D values are generally too large to reach early saturation in Pt-Pd-chalcogen-rich accessory minerals, based on current solubility estimates. Instead, these phases likely precipitate at the last dregs of crystallization. Modeled evolution curves for the PGEs and chalcogens are in reasonably good agreement with whole-rock sulfide compositions for the McCreedy East deposit (Sudbury, Ontario), consistent with an origin by crystallization of MSS, then MSS + ISS from sulfide magma.

  1. Ion implantation reduces radiation sensitivity of metal oxide silicon /MOS/ devices

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Implanting nitrogen ions improves hardening of silicon oxides 30 percent to 60 percent against ionizing radiation effects. Process reduces sensitivity, but retains stability normally shown by interfaces between silicon and thermally grown oxides.

  2. Fractionation of highly siderophile and chalcogen elements during magma transport in the mantle: Constraints from pyroxenites of the Balmuccia peridotite massif

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Becker, Harry

    2015-06-01

    Sulfide segregation from sulfur saturated basic magmas affects the compositions of chalcophile elements such as the highly siderophile elements (HSE) and the chalcogens S, Se, Te to variable extent. Whether this process predominantly occurs in the lower crust or in the mantle and how segregation of liquid sulfide and accumulation affects concentrations and ratios of these elements at different mantle depths and in presumed primitive basic magmas remains uncertain. Abundances of the HSE, S, Se and Te and Os isotopes in websterites and spinel clinopyroxenites of the Balmuccia peridotite massif (Ivrea-Verbano Zone, Italian Alps) provide new insight on sulfide segregation and the compositional change of melt and peridotite during magma transport in the mantle. Balmuccia websterites and clinopyroxenites formed from late Paleozoic and Mesozoic melt influx into stretched continental lithospheric mantle of the Ivrea-Verbano Zone, respectively. The HSE and chalcogen element compositions of websterites and clinopyroxenites reflect the segregation and accumulation of sulfide melt from S saturated silicate melts with different abundances and ratios of chalcogens and the HSE. The pyroxenites display large variations in abundances of the platinum group elements (PGE) and Te whereas abundances of less chalcophile elements S, Se and Re are much less variable. The fractionation between the PGE and fractionation of Re/Os, S/Se and Se/Te in the mantle pyroxenites are consistent with sulfide melt-silicate melt partitioning with a sequence of apparent coefficients of DPGE > DAu ⩾ DTe > DSe ⩾ DS ≈ DRe. Concentrations in ocean ridge basalts and in gabbros of the lower oceanic crust are also consistent with such fractionation. Websterites which have formed during refertilization of depleted peridotites display ratios of the HSE and moderately suprachondritic initial 187Os/188Os similar to interstitial sulfides of refertilized peridotites. These compositions are different from

  3. Abnormally long-range diamagnetic anisotropy induced by cyclic d(δ)-p(π) π conjugation within a six-membered dimolybdenum/chalcogen ring.

    PubMed

    Tan, Zhong Fei; Liu, Chun Y; Li, Ziyun; Meng, Miao; Weng, Ng Seik

    2012-02-20

    Incorporating two quadruply bonded dimolybdenum units [Mo(2)(DAniF)((3))](+) (ancillary ligand DAniF = N,N'-di-p-anisylformamidinate) with two hydroselenides (SeH(-)) gave rise to [Mo(2)(DAniF)(3)](2)(μ-SeH)(2) (1). With the molecular scaffold remaining unchanged, aerobic oxidation of 1, followed by autodeprotonation, generated [Mo(2)(DAniF)(3)](2)(μ-Se)(2) (2). The two complexes share a common cyclic six-membered Mo(2)/Se core, but compound 2 is distinct from 1 by having structural, electronic, and magnetic properties that correspond with aromaticity. Importantly, the aromatic behaviors for this non-carbon system are ascribable to the bonding analogy between the δ component in a Mo-Mo quadruple bond and the π component in a C-C double bond. Cyclic π delocalization via d(δ)-p(π) conjugation within the central unit, which involves six π electrons with one electron from each of the Mo(2) units and two electrons from each of the bridging atoms, has been confirmed in a previous work on the oxygen- and sulfur-bridged analogues (Fang, W.; et al. Chem.-Eur. J.2011, 17, 10288). Of the three members in this family, compound 2 exhibits an enhanced aromaticity because of the selenium bridges. The remote in-plane and out-of-plane methine (ArNCHNAr) protons resonate at chemical shifts (δ) 9.42 and 7.84 ppm, respectively. This NMR displacement, Δδ = 1.58 ppm, is larger than that for the oxygen-bridged (1.30 ppm) and sulfur-bridged (1.49 ppm) derivatives. The abnormally long-range shielding effects and the large diamagnetic anisotropy for this complex system can be rationalized by the induced ring currents circulating the Mo(2)/chalcogen core. By employment of the McConnell equation {Δσ = Δχ[(l - 3 cos 2θ)/3R(3)N]}, the magnetic anisotropy (Δχ = χ(⊥) - χ(||)) is estimated to be -414 ppm cgs, which is dramatically larger than -62.9 ppm cgs for benzene, the paradigm of aromaticity. In addition, it is found that the magnitude of Δχ is linearly related to the

  4. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    NASA Astrophysics Data System (ADS)

    Agosto, William N.

    1993-03-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  5. Production of electronic grade lunar silicon by disproportionation of silicon difluoride

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1993-01-01

    Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.

  6. Indicators: Nitrogen

    EPA Pesticide Factsheets

    Nitrogen, like phosphorus, is a critical nutrient required for all life. Nitrogen can occur in rivers and streams, lakes, and coastal waters in several forms including ammonia (NH3), nitrates (NO3), and nitrites (NO2).

  7. Tetrel, chalcogen, and CH⋅⋅O hydrogen bonds in complexes pairing carbonyl-containing molecules with 1, 2, and 3 molecules of CO{sub 2}

    SciTech Connect

    Azofra, Luis M.; Scheiner, Steve

    2015-01-21

    The complexes formed by H{sub 2}CO, CH{sub 3}CHO, and (CH{sub 3}){sub 2}CO with 1, 2, and 3 molecules of CO{sub 2} are studied by ab initio calculations. Three different types of heterodimers are observed, most containing a tetrel bond to the C atom of CO{sub 2}, and some supplemented by a CH⋅⋅O H-bond. One type of heterodimer is stabilized by an anti-parallel arrangement of the C=O bonds of the two molecules. The binding energies are enhanced by methyl substitution on the carbonyl, and vary between 2.4 and 3.5 kcal/mol. Natural bond orbital analysis identifies a prime source of interaction as charge transfer into the π*(CO) antibonding orbital. Heterotrimers and tetramers carry over many of the geometrical and bonding features of the binary complexes, but also introduce O⋅⋅O chalcogen bonds. These larger complexes exhibit only small amounts of cooperativity.

  8. Silicon nitride equation of state

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  9. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  10. Silicon spintronics.

    PubMed

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  11. Nitrogen in aquatic ecosystems.

    PubMed

    Rabalais, Nancy N

    2002-03-01

    Aquatic ecosystems respond variably to nutrient enrichment and altered nutrient ratios, along a continuum from fresh water through estuarine, coastal, and marine systems. Although phosphorus is considered the limiting nutrient for phytoplankton production in freshwater systems, the effects of atmospheric nitrogen and its contribution to acidification of fresh waters can be detrimental. Within the estuarine to coastal continuum, multiple nutrient limitations occur among nitrogen, phosphorus, and silicon along the salinity gradient and by season, but nitrogen is generally considered the primary limiting nutrient for phytoplankton biomass accumulation. There are well-established, but nonlinear, positive relationships among nitrogen and phosphorus flux, phytoplankton primary production, and fisheries yield. There are thresholds, however, where the load of nutrients to estuarine, coastal and marine systems exceeds the capacity for assimilation of nutrient-enhanced production, and water-quality degradation occurs. Impacts can include noxious and toxic algal blooms, increased turbidity with a subsequent loss of submerged aquatic vegetation, oxygen deficiency, disruption of ecosystem functioning, loss of habitat, loss of biodiversity, shifts in food webs, and loss of harvestable fisheries.

  12. Research of materials for porous matrices in sol-gel systems based on silicon dioxide and metallic oxides

    NASA Astrophysics Data System (ADS)

    Maraeva, E. V.; Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A.; Nalimova, S. S.

    2015-11-01

    In this study silicon dioxide - stannic oxide and silicon dioxide - zinc nanomaterials oxide were obtained through sol-gel technology. The results of nitrogen thermal desorption measurements, atomic force microscopy measurements and particle sizes measurements are discussed.

  13. The Rechargeability of Silicon-Air Batteries

    DTIC Science & Technology

    2012-06-01

    seconds in order to remove surface native oxide layer. The silicon was then rinsed with de- ionized (DI) water and dried using a nitrogen stream. After the...continued operation without loss of energy density, and avoiding the build-up of water byproduct in the electrolyte during reduction during recharge phase...an Si-air electrochemical cell a source of water for other applications. Metal-air batteries, silicon-air, electrochemistry, rechargeable batteries UU

  14. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  15. The Nature of the Chemical Bond in Linear Three-Body Systems: From I3− to Mixed Chalcogen/Halogen and Trichalcogen Moieties

    PubMed Central

    Aragoni, M. Carla; Arca, Massimiliano; Devillanova, Francesco A.; Garau, Alessandra; Isaia, Francesco; Lippolis, Vito; Mancini, Annalisa

    2007-01-01

    The 3 centre-4 electrons (3c-4e) and the donor/acceptor or charge-transfer models for the description of the chemical bond in linear three-body systems, such as I3− and related electron-rich (22 shell electrons) systems, are comparatively discussed on the grounds of structural data from a search of the Cambridge Structural Database (CSD). Both models account for a total bond order of 1 in these systems, and while the former fits better symmetric systems, the latter describes better strongly asymmetric situations. The 3c-4e MO scheme shows that any linear system formed by three aligned closed-shell species (24 shell electrons overall) has reason to exist provided that two electrons are removed from it to afford a 22 shell electrons three-body system: all combinations of three closed-shell halides and/or chalcogenides are considered here. A survey of the literature shows that most of these three-body systems exist. With some exceptions, their structural features vary continuously from the symmetric situation showing two equal bonds to very asymmetric situations in which one bond approaches to the value corresponding to a single bond and the second one to the sum of the van der Waals radii of the involved atoms. This indicates that the potential energy surface of these three-body systems is fairly flat, and that the chemical surrounding of the chalcogen/halogen atoms can play an important role in freezing different structural situations; this is well documented for the I3− anion. The existence of correlations between the two bond distances and more importantly the linearity observed for all these systems, independently on the degree of their asymmetry, support the state of hypervalency of the central atom. PMID:18389065

  16. Sputtered silicon nitride coatings for wear protection

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1982-01-01

    Silicon nitride films were deposited by RF sputtering on 304 stainless steel substrates in a planar RF sputtering apparatus. The sputtering was performed from a Si3N4 target in a sputtering atmosphere of argon and nitrogen. The rate of deposition, the composition of the coatings, the surface microhardness and the adhesion of the coatings to the substrates were investigated as a function of the process parameters, such as: substrate target distance, fraction nitrogen in the sputtering atmosphere and sputtering pressure. Silicon rich coating was obtained for fraction nitrogen below 0.2. The rate of deposition decreases continuously with increasing fraction nitrogen and decreasing sputtering pressure. It was found that the adherence of the coatings improves with decreasing sputtering pressure, almost independently of their composition.

  17. Heteroatomic SenS8-n Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries.

    PubMed

    Sun, Fugen; Cheng, Hongye; Chen, Jianzhuang; Zheng, Nan; Li, Yongsheng; Shi, Jianlin

    2016-09-27

    A reversible cathode material in an ether-based electrolyte for high-energy lithium batteries was successfully fabricated by homogeneously confining heteroatomic SenS8-n molecules into nitrogen-doped mesoporous carbons (NMCs) via a facile melt-impregnation route. The resultant SenS8-n/NMC composites exhibit highly reversible electrochemical behavior, where selenium sulfides are recovered through the reversible conversion of polysulfoselenide intermediates during discharge-charge cycles. The recovery of selenium sulfide molecules endows the SenS8-n/NMC cathodes with the rational integration of S and Se cathodes. Density functional theory calculations further reveal that heteroatomic selenium sulfide molecules with higher polarizability could bind more strongly with NMCs than homoatomic sulfur molecules, which provides more efficient suppression of the shuttling phenomenon. Therefore, with further assistance of mesopore confinement of the nitrogen-doped carbons, the Se2S6/NMC composite with an optimal Se/S mole ratio of 2/6 presents excellent cycle stability with a high initial Coulombic efficiency of 96.5% and a high reversible capacity of 883 mAh g(-1) after 100 cycles and 780 mAh g(-1) after 200 cycles at 250 mA g(-1). These encouraging results suggest that the heteroatomization of chalcogen (such as S, Se, or Te) molecules in mesostructured carbon hosts is a promising strategy in enhancing the electrochemical performances of chalcogen/carbon-based cathodes for Li batteries.

  18. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOEpatents

    Lowden, R.A.

    1994-04-05

    A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.

  19. Fundamental Studies and Device Development in Beta Silicon Carbide

    DTIC Science & Technology

    1990-02-28

    The dependence of growth rate of alpha-SiC on alpha- Silicon Carbide substrates and surface morphology on temperature, source gas/carrier gas flow...Hydrogen- Silicon Carbide films during deposition have also been studied. Device research has involved studies of suitable ohmic and rectifying...semiconductor field effect transistor and Impact Avalanche transit-time diodes. Alpha silicon carbide , Semi-conductors, Growth rate, Aluminum dopant, Nitrogen dopant, Ohmic contacts, Schottky contacts, MESFET, MOSFET, IMPATT.

  20. Nitrogen Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to improve the management of nitrogen inputs to agricultural systems because they increase the potential for losses of reactive nitrogen to the environment, resulting in negative impacts to water and air resources. There is a need to reduce nitrate leaching, emissions of N2O from agr...

  1. Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe1+yTe1-xSex [How does annealing in chalcogen vapor induce superconductivity in Fe1+yTe-xSex?

    SciTech Connect

    Lin, Wenzhi; Ganesh, P.; Gianfrancesco, Anthony; Berlijn, Tom; Maier, Thomas A.; Kalinin, Sergei V.; Sales, Brian C.; Pan, Minghu

    2015-02-01

    Recent investigations have shown that Fe1+yTe1-xSex can be made superconducting by annealing it in Se and O vapors. The current lore is that these chalcogen vapors induce superconductivity by removing the magnetic excess Fe atoms. To investigate this phenomenon we performed a combination of magnetic susceptibility, specific heat and transport measurements together with scanning tunneling microscopy and spectroscopy and density functional theory calculations on Fe1+yTe1-xSex treated with Te vapor. We conclude that the main role of the Te vapor is to quench the magnetic moments of the excess Fe atoms by forming FeTem (m ≥ 1) complexes. We show that the remaining FeTem complexes are still damaging to the superconductivity and therefore that their removal potentially could further improve superconductive properties in these compounds.

  2. The role of the alkali and chalcogen atoms on the stability of the layered chalcogenide \\mathbf{{{A}_{2}}{{M}^{II}}M_{3}^{\\,IV}{{Q}_{8}}} (A  =  alkali-metal M  =  metal-cations Q  =  chalcogen) compounds: a density functional theory investigation within van der Waals corrections

    NASA Astrophysics Data System (ADS)

    Besse, Rafael; Da Silva, Juarez L. F.

    2017-01-01

    There is a great interest to design two-dimensional (2D) chalcogenide materials, however, our atomistic understanding of the major physical parameters that drive the formation of 2D or three-dimensional (3D) chalcogenides is far from satisfactory, in particular, for complex quaternary systems. To address this problem, we selected a set of quaternary 2D and 3D chalcogenide compounds, namely, {{\\text{A}}2}\\text{ZnS}{{\\text{n}}3}{{\\text{Q}}8} (A  =  Li, K, Cs; Q  =  S, Se, Te), which were investigated by density functional theory calculations within van der Waals (vdW) corrections. Employing experimental crystal structures and well designed crystal modifications, we found that the average atomic radius of the alkali-metal, A, and chalcogen, Q, species play a crucial role in the stability of the 2D structures. For example, the 2D structures are energetically favored for smaller (R<1.5~{\\mathring{\\text{A}}}) and larger (R>1.8~{\\mathring{\\text{A}}}) average atomic radius, while 3D structures are favored at intermediate average atomic radius. Those results are explained in terms of strain minimization and Coulomb repulsion of the anionic species in the structure framework. Furthermore, the equilibrium lattice parameters are in excellent agreement with experimental results. Thus, the present insights can help in the design of stable quartenary 2D chalcogenide compounds.

  3. Bulk and interface trap generation under negative bias temperature instability stress of p-channel metal-oxide-semiconductor field-effect transistors with nitrogen and silicon incorporated HfO2 gate dielectrics

    NASA Astrophysics Data System (ADS)

    Choi, Changhwan; Lee, Jack C.

    2011-02-01

    Negative bias temperature instabilities (NBTIs) of p-channel metal-oxide-semiconductor field-effect-transistor with HfO2, HfOxNy, and HfSiON were investigated. Higher bulk trap generation (ΔNot) is mainly attributed to threshold voltage shift rather than interface trap generation (ΔNit). ΔNit, ΔNot, activation energy (Ea), and lifetime were exacerbated with incorporated nitrogen while improved with adding Si into gate dielectrics. Compared to HfO2, HfOxNy showed worse NBTI due to nitrogen pile-up at Si interface. However, adding Si into HfOxNy placed nitrogen peak profile away from Si/oxide interface and NBTI was reduced. This improvement is ascribed to reduced ΔNot and ΔNit, resulting from less nitrogen at Si interface.

  4. Silicon microdosimetry.

    PubMed

    Agosteo, Stefano; Pola, Andrea

    2011-02-01

    Silicon detectors are being studied as microdosemeters since they can provide sensitive volumes of micrometric dimensions. They can be applied for assessing single-event effects in electronic instrumentation exposed to complex fields around high-energy accelerators or in space missions. When coupled to tissue-equivalent converters, they can be used for measuring the quality of radiation therapy beams or for dosimetry. The use of micrometric volumes avoids the contribution of wall effects to the measured spectra. Further advantages of such detectors are their compactness, cheapness, transportability and a low sensitivity to vibrations. The following problems need to be solved when silicon devices are used for microdosimetry: (i) the sensitive volume has to be confined in a region of well-known dimensions; (ii) the electric noise limits the minimum detectable energy; (iii) corrections for tissue-equivalency should be made; (iv) corrections for shape equivalency should be made when referring to a spherical simulated site of tissue; (v) the angular response should be evaluated carefully; (vi) the efficiency of a single detector of micrometric dimensions is very poor and detector arrays should be considered. Several devices have been proposed as silicon microdosemeters, based on different technologies (telescope detectors, silicon on insulator detectors and arrays of cylindrical p-n junctions with internal amplification), in order to satisfy the issues mentioned above.

  5. Method of densifying an article formed of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, John A. (Inventor)

    1982-01-01

    A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.

  6. Deposition of reactively ion beam sputtered silicon nitride coatings

    NASA Technical Reports Server (NTRS)

    Grill, A.

    1982-01-01

    An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.

  7. Corrosion of silicon nitride in high temperature alkaline solutions

    NASA Astrophysics Data System (ADS)

    Qiu, Liyan; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si3N4) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si3N4 experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  8. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for producing silicon from dichlorosilane in a 1,000 MT/yr plant was continued. Progress and status for the chemical engineering analysis of the HSC process are reported for the primary process design engineering activities: base case conditions (85%), reaction chemistry (85%), process flow diagram (60%), material balance (60%), energy balance (30%), property data (30%), equipment design (20%) and major equipment list (10%). Engineering design of the initial distillation column (D-01, stripper column) in the process was initiated. The function of the distillation column is to remove volatile gases (such as hydrogen and nitrogen) which are dissolved in liquid chlorosilanes. Initial specifications and results for the distillation column design are reported including the variation of tray requirements (equilibrium stages) with reflux ratio for the distillation.

  9. Prokaryotic silicon utilizing microorganisms in the biosphere

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Das, S.

    2012-12-01

    Although a little study has been done to determine the silicon utilizing prokaryotes, our previous experiments indicated that almost all Gram-positive bacteria are silicon utilizing; one of them, Streptococci survived exposure on the lunar surface for a long period in experiment done by others. Our initial experiments with these Gram positive microorganisms showed that there were limited growths of these microorganisms on carbon free silicate medium probably with the help of some carry over carbon and nitrogen during cultivation procedures. However, increase in growth rate after repeated subcultures could not be explained at present. The main groups of prokaryotes which were found silicon utilizing microorganisms were Mycobacterium, Bacillus, Nocardia, Streptomyces, Staphylococcus, Streptococcus, Lactobacillus, and Clostridium. In a another previous study by us when silicon level was studied in such grown up cells on carbon "free" silicate medium by electron prove microanalyser, it was found that silicon in cells grown on carbon "free" silicate medium was much higher (24.9%) than those grown on conventional carbon based medium (0.84%). However, these initial findings are encouraging for our future application of this group of organisms on extraterrestrial surfaces for artificial micro-ecosystem formation. It was found that when electropositive elements are less in extraterrestrial situation, then polymerization of silicon-oxygen profusion may occur easily, particularly in carbon and nitrogen paucity in the rocky worlds of the Universe.

  10. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  11. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    NASA Technical Reports Server (NTRS)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  12. Double stabilization of nanocrystalline silicon: a bonus from solvent

    NASA Astrophysics Data System (ADS)

    Kolyagin, Y. G.; Zakharov, V. N.; Yatsenko, A. V.; Paseshnichenko, K. A.; Savilov, S. V.; Aslanov, L. A.

    2016-01-01

    Double stabilization of the silicon nanocrystals was observed for the first time by 29Si and 13C MAS NMR spectroscopy. The role of solvent, 1,2-dimethoxyethane (glyme), in formation and stabilization of silicon nanocrystals as well as mechanism of modification of the surface of silicon nanocrystals by nitrogen-heterocyclic carbene (NHC) was studied in this research. It was shown that silicon nanocrystals were stabilized by the products of cleavage of the C-O bonds in ethers and similar compounds. The fact of stabilization of silicon nanoparticles with NHC ligands in glyme was experimentally detected. It was demonstrated that MAS NMR spectroscopy is rather informative for study of the surface of silicon nanoparticles but it needs very pure samples.

  13. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  14. Synthesis, crystal structure and DFT studies of a Zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n. The additional stabilizing role of S⋯π chalcogen bond

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed

    2017-04-01

    A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.

  15. Silicon carbide

    SciTech Connect

    Ault, N.N.; Crowe, J.T. )

    1991-05-01

    This paper reports that, since silicon carbide (SiC) does not occur in nature, it must be synthesized by a high-temperature chemical reaction. The first commercial production began at the end of the 19th century when Acheson developed a process of reacting sand and coke in a resistance furnace. This process is still the basic SiC manufacturing process used today. High-quality silica sand (99.5% SiO{sub 2}), low-sulfur petroleum coke, and electricity (23.8 MJ/kg) are the major ingredients in the production of SiC. The reaction takes place in a trough-like furnace with a removable refractory side (or some similar configuration) and with permanent refractory ends holding carbon electrodes. When the furnace is started, the carbon electrodes are joined by the graphite core laid the length of the furnace near the center of the mixture which fills the furnace.

  16. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  17. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  18. Effects of combined neutron and gamma irradiation upon silicone foam

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Wang, Pu-Cheng; Ao, Yin-Yong; Zhao, Yan; An, You; Chen, Hong-Bing; Huang, Wei

    2017-04-01

    The total dose effect of combined fast-neutron beam and 60Co γ-ray radiation on silicone foam in air and nitrogen were investigated, respectively. The results show that foam hardening occurs and crystallization of polymer matrix decreases with increasing dose. Gas chromatograph was used to identify the kinetics of volatile products generating, which generally increase with increasing total dose. The study indicates that combined neutron and gamma irradiation would influence silicone foam property obviously during the investigated dose range.

  19. Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains: R2P-Ndbnd Sdbnd N-PR2 and R2P-Ndbnd Sdbnd N-AsR2

    NASA Astrophysics Data System (ADS)

    Bal, Kristof M.; Cautereels, Julie; Blockhuys, Frank

    2017-03-01

    The conformational and configurational preferences of Me2P-Ndbnd Sdbnd N-PMe2 (3) and Me2P-Ndbnd Sdbnd N-AsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.

  20. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  1. Silicon Nitride Balls For Cryogenic Bearings

    NASA Technical Reports Server (NTRS)

    Butner, Myles F.; Ng, Lillian W.

    1990-01-01

    Resistance to wear greater than that of 440C steel. Experiments show lives of ball bearings immersed in liquid nitrogen or liquid oxygen increased significantly when 440C steel balls (running on 440C steel races) replaced by balls of silicon nitride. Developed for use at high temperatures, where lubrication poor or nonexistent. Best wear life of any bearing tested to date and ball material spalls without fracturing. Plans for future tests call for use of liquid oxygen as working fluid.

  2. The microchannel heatsink with liquid nitrogen cooling

    SciTech Connect

    Riddle, R.A.; Bernhardt, A.F.

    1992-06-09

    Excellent thermal performance of a silicon microchannel heatsink is demonstrated using liquid nitrogen as the coolant over a wide range of heat loads up to 1 kW/cm[sup 2]. This performance is partly due to the order of magnitude increase in the thermal conductivity of silicon near 77 [degree]K compared to room temperature. Subcooled boiling of the liquid nitrogen in the microchannel heatsink further enhances the thermal performance but makes the thermal resistance a nonlinear function of heat load. For a 500 W/cm[sup 2] heat load, a thermal resistances of 0.052 cm[sup 2*0]C/W for a 9:1 aspect ratio heatsink was measured.

  3. The microchannel heatsink with liquid nitrogen cooling

    SciTech Connect

    Riddle, R.A.; Bernhardt, A.F.

    1992-06-09

    Excellent thermal performance of a silicon microchannel heatsink is demonstrated using liquid nitrogen as the coolant over a wide range of heat loads up to 1 kW/cm{sup 2}. This performance is partly due to the order of magnitude increase in the thermal conductivity of silicon near 77 {degree}K compared to room temperature. Subcooled boiling of the liquid nitrogen in the microchannel heatsink further enhances the thermal performance but makes the thermal resistance a nonlinear function of heat load. For a 500 W/cm{sup 2} heat load, a thermal resistances of 0.052 cm{sup 2*0}C/W for a 9:1 aspect ratio heatsink was measured.

  4. Use of (77)Se and (125)Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3](-) (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners.

    PubMed

    Smiles, Danil E; Wu, Guang; Hrobárik, Peter; Hayton, Trevor W

    2016-01-27

    Reaction of [Th(I)(NR2)3] (R = SiMe3) (1) with 1 equiv of either [K(18-crown-6)]2[Se4] or [K(18-crown-6)]2[Te2] affords the thorium dichalcogenides, [K(18-crown-6)][Th(η(2)-E2)(NR2)3] (E = Se, 2; E = Te, 3), respectively. Removal of one chalcogen atom via reaction with Et3P, or Et3P and Hg, affords the monoselenide and monotelluride complexes of thorium, [K(18-crown-6)][Th(E)(NR2)3] (E = Se, 4; E = Te, 5), respectively. Both 4 and 5 were characterized by X-ray crystallography and were found to feature the shortest known Th-Se and Th-Te bond distances. The electronic structure and nature of the actinide-chalcogen bonds were investigated with (77)Se and (125)Te NMR spectroscopy accompanied by detailed quantum-chemical analysis. We also recorded the (77)Se NMR shift for a U(VI) oxo-selenido complex, [U(O)(Se)(NR2)3](-) (δ((77)Se) = 4905 ppm), which features the highest frequency (77)Se NMR shift yet reported, and expands the known (77)Se chemical shift range for diamagnetic substances from ∼3300 ppm to almost 6000 ppm. Both (77)Se and (125)Te NMR chemical shifts of given chalcogenide ligands were identified as quantitative measures of the An-E bond covalency within an isoelectronic series and supported significant 5f-orbital participation in actinide-ligand bonding for uranium(VI) complexes in contrast to those involving thorium(IV). Moreover, X-ray diffraction studies together with NMR spectroscopic data and density functional theory (DFT) calculations provide convincing evidence for the actinide-chalcogen multiple bonding in the title complexes. Larger An-E covalency is observed in the [U(O)(E)(NR2)3](-) series, which decreases as the chalcogen atom becomes heavier.

  5. Breast Implants: Saline vs. Silicone

    MedlinePlus

    ... to women of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with ... likely be inserted at the same time. Ruptured silicone implant If a silicone breast implant ruptures, you ...

  6. Optical, structural, and mechanical properties of silicon oxynitride films prepared by pulsed magnetron sputtering.

    PubMed

    Tang, Chien-Jen; Jaing, Cheng-Chung; Tien, Chuen-Lin; Sun, Wei-Chiang; Lin, Shih-Chin

    2017-02-01

    Silicon oxynitride films were deposited by reactive pulsed magnetron sputtering. The optical, structural, and mechanical properties of silicon oxynitride films with different nitrogen proportions were analyzed via spectroscopy, atomic force microscopy, Twyman-Green interferometer, and nanoindentation. The refractive indices of the silicon oxynitride films were adjusted from 1.487 to 1.956 with the increase in nitrogen proportions. The surface roughness decreased from 1.33 to 0.97 nm with the increase in nitrogen proportions. The residual stress of the silicon oxynitride films was higher than for pure silicon nitride and silicon dioxide films. The hardness and Young's modulus increased from 13.51 to 19.74 GPa and 110.41 to 140.49 GPa with the increase in nitrogen proportions, respectively. The hardness and Young's modulus of antireflection coatings using silicon oxynitride film were 13.64 GPa and 102.11 GPa, respectively. Silicon oxynitride film could be used to improve the hardness of antireflective coatings.

  7. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N-H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  8. The Silicon / Silicon Nitride Interface and Fracture in Si: Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Kalia, Rajiv K.; Vashishta, Priya; Ebbsjö, Ingvar

    1997-03-01

    The interface structure of a Si_3N_4(0001) film on a Si(111) substrate is studied using the molecular dynamics (MD) method. Bulk Si is described by the Stillinger-Weber potential and Si_3N4 by a combination of two-body and three-body contributions. At the interface, the charge transfer from silicon to nitrogen is taken from LCAO electronic structure calculations. Using these Si, Si_3N4 and interface interactions in MD simulations, we determine structural correlations in the interfacial regions. Results for crack propagation in silicon will also be presented.

  9. PVT gauging with liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Van Dresar, Neil T.

    2006-02-01

    Experimental results are presented for pressure-volume-temperature (PVT) liquid quantity gauging of a 0.17 m 3 liquid nitrogen tank pressured with ambient temperature helium in the normal gravity environment. A previously reported PVT measurement procedure has been improved to include helium solubility in liquid nitrogen. Gauging data was collected at nominal tank fill levels of 80%, 50% and 20% and at nominal tank pressures of 0.3, 1.0, and 1.7 MPa. The test tank was equipped with a liquid pump and spray manifold to circulate and mix the fluid contents and therefore create near-isothermal conditions throughout the tank. Silicon diode sensors were distributed throughout the tank to monitor temperatures. Close-spaced arrays of silicon diode point sensors were utilized to precisely detect the liquid level at the nominal 80%, 50%, and 20% fill levels. The tests simulated the cryogenic tank-side conditions only; helium mass added to the tank was measured by gas flowmeters rather than using pressure and temperature measurements from a dedicated helium supply bottle. Equilibrium data for cryogenic nitrogen and helium mixtures from numerous sources was correlated to predict soluble helium mole fractions. Results show that solubility should be accounted for in the PVT gauging calculations. Mole fractions predicted by Dalton's Law were found to be in good agreement with the compiled equilibrium data within the temperature-pressure range of interest. Therefore, Dalton's Law was deemed suitable for calculating ullage composition. Gauging results from the PVT method agreed with the reference liquid level measurements to within 3%.

  10. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  11. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  12. Efficient Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    High-purity silicon efficiently produced and transferred by continuous two-cycle reactor. New reactor operates in relatively-narrow temperature rate and uses large surfaces area to minimize heat expenditure and processing time in producing silicon by hydrogen reduction of trichlorosilane. Two cycles of reactor consists of silicon production and removal.

  13. Effect of attrition milling on the reaction sintering of silicon nitride

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Yeh, H. C.

    1978-01-01

    Silicon powder was ground in a steel attrition mill under nitrogen. Air-exposed powder was compacted, prefired in helium, and reaction-sintered in nitrogen-4 v/o hydrogen. For longer grinding times, oxygen content, surface area and compactability of the powder increased; and both alpha/beta ratio and degree of nitridation during sintering increased. Iron content remained constant.

  14. Effect of attrition milling on the reaction sintering of silicon nitride

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Yeh, H. C.

    1978-01-01

    Silicon powder was ground in a steel attrition mill under nitrogen. Air exposed powder was compacted, prefired in helium, and reaction sintered in nitrogen-4 v/o hydrogen. For longer grinding times, oxygen content, surface area and compactability of the powder increased; and both alpha/beta ratio and degreee of nitridation during sintering increased. Iron content remained constant.

  15. Does Silicon Have a Role in Ornamental Crop Production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silicon (Si) is not considered to be an essential plant nutrient because most plant species can complete their life cycle without it. Still, some plants can accumulate Si at concentrations greater than nitrogen and potassium, and all species evaluated so far have concentrations of Si in tissue grea...

  16. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  17. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  18. NITROGEN REMOVAL FROM NATURAL GAS

    SciTech Connect

    K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

    1999-12-31

    The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest

  19. The Solubility of Nitrogen and Air in Liquids

    NASA Astrophysics Data System (ADS)

    Battino, Rubin; Rettich, Timothy R.; Tominaga, Toshihiro

    1984-04-01

    This review covers the solubility of nitrogen and air in liquids as a function of temperature and pressure. Solubility data for individual systems were critically evaluated. Recommended or tentative values are presented as smoothing equations and/or in tabular form. Trends in homologous series or related solvents are discussed. Data for the n-alkanes were smoothed with respect to temperature, pressure, and carbon number. Liquids include: water; heavy water; seawater; aqueous salt solutions; mixed solvents; hydrocarbons; organic compounds containing oxygen, halogen, sulfur, nitrogen, or silicon; olive oil; various biological fluids; H2S; SO2; NH3; CO2; nitrogen oxides; and several halogen and boron containing inorganic solvents.

  20. Process for making silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    1998-01-01

    A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  1. Synthesis of fine-grained .alpha.-silicon nitride by a combustion process

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1990-01-01

    A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.

  2. Nanocrystalline silicon/amorphous silicon dioxide superlattices

    SciTech Connect

    Fauchet, P.M.; Tsybeskov, L.; Zacharias, M. |; Hirschman, K. |

    1998-12-31

    Thin layers made of densely packed silicon nanocrystals sandwiched between amorphous silicon dioxide layers have been manufactured and characterized. An amorphous silicon/amorphous silicon dioxide superlattice is first grown by CVD or RF sputtering. The a-Si layers are recrystallized in a two-step procedure (nucleation + growth) for form layers of nearly identical nanocrystals whose diameter is given by the initial a-Si layer thickness. The recrystallization is monitored using a variety of techniques, including TEM, X-Ray, Raman, and luminescence spectroscopies. When the a-Si layer thickness decreases (from 25 nm to 2.5 nm) or the a-SiO{sub 2} layer thickness increases (from 1.5 nm to 6 nm), the recrystallization temperature increases dramatically compared to that of a single a-Si film. The removal of the a-Si tissue present between the nanocrystals, the passivation of the nanocrystals, and their doping are discussed.

  3. Silicon germanium carbon heteroepitaxial growth on silicon

    NASA Astrophysics Data System (ADS)

    Mayer, James W.

    1993-10-01

    This project represents the initiation of band-gap engineering of Si-based devices at Arizona State University by James W. Mayer. While at Cornell, he directed the Microscience and Technology program supported by the Semiconductor Research Corporation. His Work on heteoepitaxy of SiGe on silicon convinced him that heteroepitaxy on Si was a viable technique for forming smaller band gap layers on silicon but the requirement was for larger energy-gap materials. In the fall of 1991, James Mayer visited Tom Picraux of Sandia National Laboratories and Clarence Tracy of Motorola Semiconductor Products to discuss the possibility of a joint program to investigate Silicon Germanium Carbon Heteroepitaxial Growth on Silicon. This represented a new research and development initiate for band gap engineering.

  4. Thermal stresses in the microchannel heatsink cooled by liquid nitrogen

    SciTech Connect

    Riddle, R.A.

    1993-06-30

    Microchannel heatsinks represent a highly efficient and compact method for heat removal in high heat flux components. Excellent thermal performance of a silicon microchannel heatsink has been demonstrated using liquid nitrogen as the coolant. For the heating of a 1 square centimeter area, at a heat dissipation of 500 W, a typical silicon heatsink cooled by liquid nitrogen has a thermal resistance of 0.046 cm{sup 2}{degrees}K/W. The actual heatsink structure in this case is only 0.1 cm high. Silicon, although it has excellent thermal properties at liquid nitrogen temperatures, may fracture with very little plastic deformation due to mechanical and thermal stresses. Because the fracture strength of silicon depends on the presence of small defects, strength of the heatsink structures must be addressed to insure highly reliable heatsink devices. Microchannel heatsink reliability can be affected by thermal stresses that arise due to temperature gradients between the base and fin and along the film length. These stresses are combined with the bonding stresses that arise in attaching components at elevated temperatures to the silicon heatsink and then cooling the structure to the cryogenic operating temperatures. These bonding stresses are potentially large because of the differences in the values of the coefficients of thermal expansion in silicon heatsink material, and the attached component materials. The stress results are shown for a 17:1 aspect ratio heatsink cooled in liquid nitrogen. The temperature gradients are a result of a surface heat flux of 1.3 kW/cm{sup 2}, approximating the heat dissipation of an RF power chip. The chip is connected to an aluminum nitride substrate, then the chip and substrate module are attached to the heatsink at a bonding temperature of 600{degrees}K, as for a gold tin eutectic bond. The stresses are shown to be within the allowables of the materials involved.

  5. Silicon on graphite cloth

    SciTech Connect

    Rand, J.A.; Cotter, J.E.; Thomas, C.J.; Ingram, A.E.; Bai, Y.B.; Ruffins, T.R.; Barnett, A.M.

    1994-12-31

    A new polycrystalline silicon solar cell has been developed that utilizes commercially available graphite cloth as a substrate. This solar cell has achieved an energy conversion efficiency of 13.4% (AM1.5G). It is believed that this is a record efficiency for a silicon solar cell formed on a graphite substrate. The silicon-on-fabric structure is comprised of a thin layer of polycrystalline silicon grown directly on the graphite fabric substrate. The structure is fabricated by a low-cost ribbon process that avoids the expense and waste of wafering. The fabric substrate gives structural support to the thin device. Critical to the achievement of device quality silicon layers is control over impurities in the graphite fabric. The silicon-on-fabric technology has the potential to supply lightweight, low-cost solar cells to weight-sensitive markets at a fraction of the cost of conventionally thinned wafers.

  6. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  7. Growth of silicon bump induced by swift heavy ion at the silicon oxide-silicon interface

    SciTech Connect

    Carlotti, J.-F.; Touboul, A.D.; Ramonda, M.; Caussanel, M.; Guasch, C.; Bonnet, J.; Gasiot, J.

    2006-01-23

    Thin silicon oxide layers on silicon substrates are investigated by scanning probe microscopy before and after irradiation with 210 MeV Au+ ions. After irradiation and complete chemical etching of the silicon oxide layer, silicon bumps grown on the silicon surface are observed. It is shown that each impinging ion induces one silicon bump at the interface. This observation is consistent with the thermal spike theory. Ion energy loss is transferred to the oxide and induces local melting. Silicon-bump formation is favored when the oxide and oxide-silicon interface are silicon rich.

  8. Highly porous silicon membranes fabricated from silicon nitride/silicon stacks.

    PubMed

    Qi, Chengzhu; Striemer, Christopher C; Gaborski, Thomas R; McGrath, James L; Fauchet, Philippe M

    2014-07-23

    Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm-thick SiO2 layers. In this work, the silicon dioxide barrier layers are replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) are tested under different annealing temperatures. Generally the pore size, pore density, and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. It is hypothesized that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process.

  9. SILICON CARBIDE FOR SEMICONDUCTORS

    DTIC Science & Technology

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  10. Silicon Carbide Shapes.

    DTIC Science & Technology

    Free-standing silicon carbide shapes are produced by passing a properly diluted stream of a reactant gas, for example methyltrichlorosilane, into a...reaction chamber housing a thin walled, hollow graphite body heated to 1300-1500C. After the graphite body is sufficiently coated with silicon carbide , the...graphite body is fired, converting the graphite to gaseous CO2 and CO and leaving a silicon carbide shaped article remaining.

  11. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  12. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  13. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  14. Compounding with Silicones.

    PubMed

    Allen, Loyd V

    2015-01-01

    Since the 1940s, methylchlorosilanes have been used to treat glassware to prevent blood from clotting. The use of silicones in pharmaceutical and medical applications has grown to where today they are used in many life-saving devices (pacemakers, hydrocephalic shunts) and pharmaceutical applications from tubing, to excipients in topical formulations, to adhesives to affix transdermal drug delivery systems, and are also being used in products as active pharmaceutical ingredients, such as antiflatulents. About 60% of today's skin-care products now contain some type of silicone where they are considered safe and are known to provide a pleasant "silky-touch," non-greasy, and non-staining feel. Silicones exhibit many useful characteristics, and the safety of these agents supports their numerous applications; their biocompatibility is partially due to their low-chemical reactivity displayed by silicones, low-surface energy, and their hydrophobicity. Silicones are used both as active ingredients and as excipients. In addition is their use for "siliconization," or surface treatment, of many parenteral packaging components. Dimethicone and silicone oil are used as lubricants on stoppers to aid machineability, in syringes to aid piston movement, or on syringe needles to reduce pain upon injection. Silicones are also useful in pharmaceutical compounding as is discussed in this artiele included with this article are in developing formulations with silicones.

  15. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram

    2009-03-01

    We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.

  16. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  17. SILICON METABOLISM IN DIATOMS

    PubMed Central

    Lewin, Joyce C.

    1954-01-01

    1. Cells of the fresh water diatom Navicula pelliculosa may be grown in a mineral medium containing a low concentration of silicon. When transferred to a fresh silicate solution and incubated under non-growing conditions such deficient cells rapidly take up silicon from the medium. 2. The utilization of silicon is an aerobic process. 3. When deficient cells are washed with distilled water or saline, their ability to utilize silicon is impaired whereas respiration is unaffected. 4. The ability of washed cells to take up silicon can be partially restored with sulfate or ascorbic acid, and is completely restored by Na2S, Na2S2O3, glutathione, l-cysteine, dl-methionine, or ascorbic acid plus sulfate. 5. The sulfhydryl reagent, CdCl2, inhibits silicon utilization of unwashed cells at concentrations which do not affect respiration. This inhibition similarly is reversed by glutathione or cysteine. 6. However, sodium iodoacetate or sodium arsenite inhibits respiration and silicon utilization at the same concentrations. 7. The silicon taken up by deficient cells is deposited at the cell surface as a thickening of the existing silica frustules. 8. Sulfhydryl groups in the cell membrane may be involved in silicon uptake by diatoms. PMID:13163359

  18. Carbonitriding of silicon using plasma focus device

    SciTech Connect

    Jabbar, S.; Khan, I. A.; Ahmad, R.; Zakaullah, M.; Pan, J. S.

    2009-03-15

    Carbonitride thin films have been deposited on silicon substrate by the irradiation of energetic nitrogen ions emanated from dense plasma focus device. The carbon ions are ablated by the irradiation of relativistic electrons from the insert material (graphite) placed at the anode tip. The x-ray diffraction analysis demonstrates that a polycrystalline thin film consisting of various compounds such as Si{sub 3}N{sub 4}, SiC, and C{sub 3}N{sub 4} is formed on the silicon (100) substrate. Crystallinity of different compounds decreases with the increase in angular positions (0 deg., 10 deg., and 20 deg. ). Raman spectroscopy shows the appearance of graphitic and disordered bands with silicon nitride and silicon carbide indicating the formation of carbonitride. Raman spectra also indicate that broadening of bands increases with the increase in focus deposition shots, leading to the amorphization of the thin film. The amorphization of the thin films depends on the ion energy flux as well as on the sample angular position. The scanning electron microscopy exhibits the damaging of the substrate surface at 0 deg. angular position. The microstructure shows the tubular shape for higher ion dose (40 focus shots). At 10 deg. angular position, a two phase phenomenon is observed with the ordered phase in the solid solution. A smooth and uniform surface morphology showing a small cluster is observed for the 20 deg. angular position.

  19. Electronic structure and spatial distribution of the spin density of shallow nitrogen donors in the SiC lattice

    NASA Astrophysics Data System (ADS)

    Muzafarova, M. V.; Il'in, I. V.; Anisimov, A. N.; Mokhov, E. N.; Soltamov, V. A.; Baranov, P. G.

    2016-12-01

    The discovery of unique magnetooptical properties of paramagnetic centers in silicon carbide, which make it possible to control spins of small arrays of centers of atomic sizes to single centers at room temperatures, using the techniques of optical detection of the magnetic resonance, posed a number of problems, among which one of the main ones is the creation of conditions under which spin relaxation effects are minimized. As studies of properties of spin nitrogen-vacancy centers in diamond showed, the main contribution to spin relaxation is made by the interaction with nitrogen donors, being a major impurity in diamond. A similar problem exists for silicon carbide, since nitrogen donors are also basic background impurities. The objective of this work is to study the spatial distribution of the spin density of nitrogen donors in two basic silicon carbide polytypes, i.e., 4 H-SiC and 6 H-SiC, to use this information for minimizing the interaction of nitrogen donors with paramagnetic centers in silicon carbide. The results of the study are analyzed by magnetic resonance methods; the spin density distribution on the nearest coordination spheres of nitrogen donors occupying carbon sites in silicon carbide is determined. It is concluded that paramagnetic centers in the 4 H-SiC polytype, including silicon vacancies, can be more stable to the interactions with unpaired donor electrons, since electrons are not localized on the coordination sphere closest to the paramagnetic center in this case.

  20. Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient

    NASA Technical Reports Server (NTRS)

    Cohen, R. A.; Wheeler, R. K. (Inventor)

    1974-01-01

    A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.

  1. A New Understanding of Near-Threshold Damage for 200 keV Irradiation In Silicon

    SciTech Connect

    Stoddard, Nathan; Duscher, Gerd J M; Windl, Wolfgang; Rozgonyi, G. A.

    2005-01-01

    Recently we reported room temperature point defect creation and subsequent extended defect nucleation in nitrogen-doped silicon during 200 kV electron irradiation, while identical irradiation of nitrogen-free silicon produced no effect. In this paper, first principles calculations are combined with new transmission electron microscope (TEM) observations to support a new model for elastic electron-silicon interactions in the TEM, which encompasses both nitrogen doped and nitrogen free silicon. Specifically, the nudged elastic band method was used to study the energetics along the diffusion path during an electron collision event in the vicinity of a nitrogen pair. It was found that the 0 K estimate for the energy barrier of a knock-on event is lowered from {approx}12 to 6.2 eV. However, this is still inadequate to explain the observations. We therefore propose an increase in the energy barrier for Frenkel pair recombination associated with N{sub 2}-V bonding. Concerning pure silicon, stacking fault formation near irradiation-induced holes demonstrates the participation of bulk processes. In low oxygen float zone material, 2--5 nm voids were formed, while oxygen precipitation in Czochralski Si has been verified by electron energy-loss spectroscopy. Models of irradiation-induced point defect aggregation are presented and it is concluded that these must be bulk and not surface mediated phenomena.

  2. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  3. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  4. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  5. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  6. Silicon Carbide Photoconductive Switches

    DTIC Science & Technology

    1994-09-01

    The optoelectronic properties of p-type 6-H silicon carbide (6H-SiC) have been investigated in an experiment that used lateral and vertical...and the bandgap was determined to be approximately 3.1 eV. 6H-SiC, Photoconductive, Photovoltaic, Absorption coefficient, Switch, Silicon carbide

  7. SILICON CARBIDE DATA SHEETS

    DTIC Science & Technology

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  8. Silicon Stokes terahertz laser

    SciTech Connect

    Pavlov, S. G.; Huebers, H.-W.; Hovenier, J. N.; Klaassen, T. O.; Carder, D. A.; Phillips, P. J.; Redlich, B.; Riemann, H.; Zhukavin, R. Kh.; Shastin, V. N.

    2007-04-10

    A Raman-type silicon laser at terahertz frequencies has been realized. Stokes-shifted stimulated emission has been observed from silicon crystals doped by antimony donors when optically excited by an infrared free electron laser. The Raman lasing was obtained due to resonant scattering on electronic states of a donor atom.

  9. Silicones in medical electronics.

    PubMed

    Bruner, Stephen

    2008-01-01

    The use of silicones, although already extensive, is set to grow in medical electronics. Silicones used in medical device applications as tubing or moulded parts should also be considered for electronic applications in the same device. This article outlines the potential reduction in complexity that this solution offers. Benefits include eliminating negative materials interactions and avoiding bonding problems.

  10. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  11. Formation of colorized silicon by femtosecond laser pulses in different background gases

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Dao; Li, Xiao-Hong; Li, Guo-Qiang; Wen, Cai; Qiu, Rong; Huang, Wen-Hao; Wang, Jun-Bo

    2011-08-01

    A single-crystal silicon(111) wafer surface fixed on an x- y translation stage is scanned with a focused femtosecond laser beam at a wavelength of 800 nm under different atmospheres (air, vacuum, and nitrogen). Different colors from different angles on the surface of the silicon then appear. From the result of the experiments, periodic ripple surface structures emerge on the surface of colorized silicon, and the phenomenon is more obvious in vacuum and nitrogen than in air. The periods of the surface structures on silicon are not the same in the different atmospheres. Under vacuum, the period is the longest and is closer to the wavelength of the laser irradiation. Different from metals, the range of energy density is smaller when the colorized silicon appears with femtosecond laser pulses. Through SEM, TEM, and AFM, we observe in detail the microstructures of colorized silicon that forms in air, vacuum, and nitrogen and analyze the possible physical mechanism. Finally, research into the optical reflection of the colorized silicon indicates that the reflectivity is not higher than 30% in the 250-800 nm range.

  12. Half-metallicity obtained in silicene nanosheet by nitrogenation engineering

    NASA Astrophysics Data System (ADS)

    Qian, Yan; Wu, Haiping; Kan, Erjun; Lu, Ruifeng; Deng, Kaiming

    2016-12-01

    Based on the facts that most components and devices are based on silicon and modern industry is transferring to atomic scale era, engineering half-metallicity in low-dimensional silicon-based materials has vast importance in spintronic field, since such half-metals can perfectly match with the previous silicon-based components. Hence, we investigated the possibility of achieving half-metallic silicene nanosheet by using first-principles calculations, and expectedly observed that silicene could be transferred to half-metal when it is fully nitrogenated on one Si sublattice. Notably, it possesses a half-metallic gap of ˜0.25 eV, and the estimated Curie temperature is of ˜374 K. This is very significant for the stability of half-metallicity and practical applications at high temperature. The other two types of nitrogenated silicene were also studied, and the results show that both compounds behave as of metallic nature. This work indicates that nitrogenation, which can be experimentally realized by generating silicene on the surface of some nitrides, maybe is an open way to search for silicon-based low-dimensional half-metals.

  13. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  14. Silicone-containing composition

    DOEpatents

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  15. Intraventricular Silicone Oil

    PubMed Central

    Mathis, Stéphane; Boissonnot, Michèle; Tasu, Jean-Pierre; Simonet, Charles; Ciron, Jonathan; Neau, Jean-Philippe

    2016-01-01

    Abstract Intracranial silicone oil is a rare complication of intraocular endotamponade with silicone oil. We describe a case of intraventricular silicone oil fortuitously observed 38 months after an intraocular tamponade for a complicated retinal detachment in an 82 year-old woman admitted in the Department of Neurology for a stroke. We confirm the migration of silicone oil along the optic nerve. We discuss this rare entity with a review of the few other cases reported in the medical literature. Intraventricular migration of silicone oil after intraocular endotamponade is usually asymptomatic but have to be known of the neurologists and the radiologists because of its differential diagnosis that are intraventricular hemorrhage and tumor. PMID:26735537

  16. Silicon Nanocrystal Laser

    SciTech Connect

    Yu, J

    2005-03-09

    The purpose of this feasibility study project was to attempt to demonstrate the silicon-nanocrystal-based laser. Such a silicon laser (made using conventional silicon-manufacturing technologies) would provide the crucial missing link that would enable a completely-silicon-based photonic system. We prepared thin layers of silicon nanocrystal material by ion-implanting Si in fused silica substrates, followed by a high temperature anneal process. These Si nanocrystals produced intense photoluminescence when optically pumped with ultraviolet light. Laser structures based on Fabry-Perot cavity and distributed feedback (DFB) designs were fabricated using the Si nanocrystals as the ''lasing'' medium. We optically pumped the samples with CW lasers at 413nm wavelength to quickly assess the feasibility of making lasers out of the Nanocrystal Si material and to verify the gain coefficients reported by other research groups.

  17. Reversible Cycling of Silicon and Silicon Alloys

    NASA Astrophysics Data System (ADS)

    Obrovac, Mark

    2012-02-01

    Lithium ion batteries typically use a graphite negative electrode. Silicon can store more lithium than any other element and has long been considered as an attractive replacement for graphite. The theoretical lithium storage capacity of silicon is nearly ten times higher than graphite volumetrically and three times higher gravimetrically. The equilibrium Si-Li binary system is well known. Completely new phase behaviors are observed at room temperature. This includes the formation of a new phase, Li15Si4, which is the highest lithium containing phase at room temperature [1]. The formation of Li15Si4 is accompanied by a 280 percent volume expansion of silicon. During de-alloying this phase contracts, forming amorphous silicon. The volume expansion of alloys can cause intra-particle fracture and inter-particle disconnection; leading to loss of cycle life. To overcome issues with volume expansion requires a detailed knowledge of Li-Si phase behavior, careful design of the composition and nanostructure of the alloy and the microstructure of the negative electrode [2]. In this presentation the phase behavior of the Li-Si system will be described. Using this knowledge alone, strategies can be developed so that silicon can be reversibly cycled in a battery hundreds of times. Further increases in energy density and efficiency can be gained by alloying silicon with other elements, while controlling microstructure [2]. Coupled with negative electrode design strategies, practical negative electrodes for lithium ion cells can be developed based on bulk materials, with significant energy density improvement over conventional electrodes. [4pt] [1] M.N. Obrovac and L.J. Krause, J. Electrochem. Soc., 154 (2007) A103. [0pt] [2] M.N. Obrovac, Leif Christensen, Dinh Ba Le, and J.R. Dahn, J. Electrochem. Soc., 154 (2007) A849

  18. SEMICONDUCTOR TECHNOLOGY: Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    NASA Astrophysics Data System (ADS)

    Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang

    2010-02-01

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.

  19. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect

    Kovačević, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  20. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  1. Transformational silicon electronics.

    PubMed

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications.

  2. Process for making silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  3. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  4. Microwave behavior of silicon carbide/high alumina cement composites

    NASA Astrophysics Data System (ADS)

    Leiser, Kristie Sue

    2001-09-01

    calcium oxide due to an increase in the thermal conductivity. A nitrogen atmosphere also tended to result in higher composite heating rates than an air atmosphere, most likely due to the suppression of oxidation of silicon carbide. In addition, beta-phase silicon carbide composites tended to heat more rapidly than alpha-phase silicon carbide composites.

  5. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  6. Electrical Properties of Nitrogen Doped Float Zone Silicon.

    DTIC Science & Technology

    1985-07-01

    800’C for One Hour 20 14 van der Pauw Resistance Ratio for Si:N Sample FZ-C before and after a One Half Hour Anneal at 650°C 21 15 Carrier...was a serious degradation in the van der Pauw ratio, RI/R 2. ratios tended to show strong temperature dependences after annealing. A typical 1ple is...together. The carrier concentrations are almost tical as are the mnbilities, which are both indicative of high quality material. van der Pauw resistance

  7. Flexible protective coatings made from silicon-nitrogen materials

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Flexible protective coatings formed from either of two polymers endure high temperatures for long periods. One polymer is a byproduct in hexaphenylcyclotrisilazane preparation, the other is obtained by heating bis/methylamino/diphenylsilane.

  8. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  9. Recrystallization of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  10. Advanced silicon on insulator technology

    NASA Technical Reports Server (NTRS)

    Godbey, D.; Hughes, H.; Kub, F.

    1991-01-01

    Undoped, thin-layer silicon-on-insulator was fabricated using wafer bonding and selective etching techniques employing a molecular beam epitaxy (MBE) grown Si0.7Ge0.3 layer as an etch stop. Defect free, undoped 200-350 nm silicon layers over silicon dioxide are routinely fabricated using this procedure. A new selective silicon-germanium etch was developed that significantly improves the ease of fabrication of the bond and etch back silicon insulator (BESOI) material.

  11. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  12. Flameless nitrogen skid unit

    SciTech Connect

    Loesch, S.B.; John, J.C.; Mints, D.K.

    1984-03-27

    A flameless nitrogen vaporizing unit includes a first internal combustion engine driving a nitrogen pump through a transmission. A second internal combustion engine drives three hydraulic oil pumps against a variable back pressure so that a variable load may be imposed upon the second engine. Liquid nitrogen is pumped from the nitrogen pump driven by the first engine into a first heat exchanger where heat is transferred from exhaust gases from the first and second internal combustion engines to the liquid nitrogen to cause the nitrogen to be transformed into a gaseous state. The gaseous nitrogen then flows into a second heat exchanger where it is superheated by an engine coolant fluid to heat the gaseous nitrogen to essentially an ambient temperature. The superheated nitrogen is then injected into the well. The engine coolant fluid flows in a coolant circulation system. Heat is transferred to the coolant fluid directly from the internal combustion engine. Heat is also provided to the coolant fluid from lubrication oil pumped by the three pumps attached to the second internal combustion engine. The coolant fluid circulating system includes a comingling chamber for comingling warmer coolant fluid flowing from the internal combustion engines to the second heat exchanger with cooler coolant fluids flowing from the second heat exchanger to the internal combustion engines. Methods of vaporizing nitrogen are also disclosed.

  13. Interface state densities for metal-nitride-oxide-silicon devices

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Kapoor, Vik J.

    1990-10-01

    The interface state density of metal-nitride-oxide-silicon (MNOS) devices was investigated as a function of silicon nitride (Si3N4) deposition temperature and postdeposition annealing conditions. The interface state density around the midgap of the oxide-silicon interface of the MNOS structures as a function of deposition temperature between 650 to 850 °C increased from 1.1 to 8.2×1011 cm-2 eV-1, for as-deposited silicon nitride films,; but decreased from 5.0 to 3.5×1011 cm-2 eV-1, for films annealed in nitrogen at 900 °C for 60 min; and further decreased and remained constant at 1.5×1011 cm-2 eV-1, for films which were further annealed in hydrogen at 900 °C for an additional 60 min. The interface state density increase is due to an increase in the loss of hydrogen at the interfacial region and also due to an increase in the thermal stress caused by differences in thermal expansion coefficients of silicon nitride and silicon dioxide films at higher deposition temperatures. The interface state density is subject to two opposing influences; an increase by thermal stress, and a reduction by hydrogen compensation of these states. Thus either low-temperature processing or subsequent hydrogen annealing after high processing temperatures is warranted.

  14. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Shuleiko, D. V.; Ilin, A. S.

    2016-08-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa93/Si3N4 and SiN0.8/Si3N4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals.

  15. Gelcasting of silicon compositions for SRBSN

    SciTech Connect

    Nunn, S.D.; Kiggans, J.O. Jr.; Simpson, R.E. II; Maria, J.P.

    1995-12-31

    Compositions of high purity silicon metal containing various oxides as sintering aids were gelcast to prepare green bodies for subsequent nitridation and sintering to form sintered reaction bonded silicon nitride (SRBSN). An acidic aqueous and an alcohol-based gelcasting system were used. The solids content in the slurry affected the green density of the cast samples, however, there was no apparent correlation between the green density and the percent nitridation. Samples were nitrided under flowing, high-purity nitrogen in either a tungsten element furnace, a graphite element furnace, or in a microwave furnace. The samples nitrided in the graphite and microwave furnaces showed 9--16% higher levels of nitridation than in the tungsten furnace. A N{sub 2}-4% H{sup 2} gas mixture was compared to pure nitrogen in the tungsten furnace. The addition of the hydrogen increased nitridation levels by 14--19%. The nitrided and sintered SRBSN ceramics had densities of 95--98% of theoretical, with no direct relationship being observed between the level of nitridation and the fired density. The average 4-point flexure strength of the samples ranged from 428 to 741 MPa.

  16. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-05

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  17. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  18. Silicon microfabricated beam expander

    SciTech Connect

    Othman, A. Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  19. Silicone azide fireproof material

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Finely powdered titanium oxide was added to silicone azide as the sintering agent to produce a nonflammable material. Mixing proportions, physical properties, and chemical composition of the fireproofing material are included.

  20. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  1. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).

  2. Albert Behnke: nitrogen narcosis.

    PubMed

    Grover, Casey A; Grover, David H

    2014-02-01

    As early as 1826, divers diving to great depths noted that descent often resulted in a phenomenon of intoxication and euphoria. In 1935, Albert Behnke discovered nitrogen as the cause of this clinical syndrome, a condition now known as nitrogen narcosis. Nitrogen narcosis consists of the development of euphoria, a false sense of security, and impaired judgment upon underwater descent using compressed air below 3-4 atmospheres (99 to 132 feet). At greater depths, symptoms can progress to loss of consciousness. The syndrome remains relatively unchanged in modern diving when compressed air is used. Behnke's use of non-nitrogen-containing gas mixtures subsequent to his discovery during the 1939 rescue of the wrecked submarine USS Squalus pioneered the use of non-nitrogen-containing gas mixtures, which are used by modern divers when working at great depth to avoid the effects of nitrogen narcosis.

  3. Photocurrent spectrum measurements of doped black silicon

    NASA Astrophysics Data System (ADS)

    Zhang, S. K.; Ahmar, H.; Chen, B.; Wang, W.; Alfano, R.

    2011-03-01

    Photocurrent spectra of doped black silicon (BSi) samples were investigated using metal-semiconductor-metal (MSM) structure. The BSi samples were fabricated through femtosecond-laser doping method. Two pieces of samples were annealed in nitrogen ambient for 30 minutes at different temperatures 350°C and 700°C. One control sample remains without annealing. It was found that the doped black silicon samples have an electron mobility as low as 40~50 cm2/V s but a conductivity as high as 4 ~ 5 Scm-1. The high conductivity allows making electrodes by directly contacting metal stripes onto the black silicon surfaces. For the sample without annealing, its photocurrent spectrum covers a wavelength range from 400 nm to 1200 nm. For the sample annealed at 350°C, no significant improvement was found except disappearance of a defect induced photocurrent peak at 660 nm. Further annealing at 700°C, as observed for the third sample, was found to greatly help enhance photoresponse in the wavelength range from 400 nm to 800 nm. The photocurrent spectra under different biases were also measured. With the increasing of bias from 0 to 0.6 V, the peak photoresponse was enhanced by about 5 times while large dark current brought in substantial noise level as well.

  4. Nitrogen In Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D. J.; Reisenfeld, D.; Shappirio, M. D.; Baragiola, R.; Michael, M.; Shematovich, V. I.; Crary, F.; Young, D. T.

    2004-12-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions in the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to our models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and CAPS Cassini instrument team programs.

  5. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  6. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  7. Implanted bottom gate for epitaxial graphene on silicon carbide

    NASA Astrophysics Data System (ADS)

    Waldmann, D.; Jobst, J.; Fromm, F.; Speck, F.; Seyller, T.; Krieger, M.; Weber, H. B.

    2012-04-01

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic temperature operation. Depending on implantation dose and temperature we operate in two gating regimes. In the first, the gating mechanism is similar to a MOSFET, the second is based on a tuned space charge region of the silicon carbide semiconductor. We present a detailed model that describes the two gating regimes and the transition in between.

  8. Bend strengths of reaction bonded silicon nitride prepared from dry attrition milled silicon powder

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.

    1979-01-01

    Dry attrition milled silicon powder was compacted, sintered in helium, and reaction bonded in nitrogen-4 volume percent hydrogen. Bend strengths of bars with as-nitrided surfaces averaged as high as 210 MPa at room temperature and 220 MPa at 1400 C. Bars prepared from the milled powder were stronger than those prepared from as-received powder at both room temperature and at 1400 C. Room temperature strength decreased with increased milling time and 1400 C strength increased with increased milling time.

  9. Fifth workshop on the role of impurities and defects in silicon device processing. Extended abstracts

    SciTech Connect

    Sopori, B.L.; Luque, A.; Sopori, B.; Swanson, D.; Gee, J.; Kalejs, J.; Jastrzebski, L.; Tan, T.

    1995-08-01

    This workshop dealt with engineering aspects and material properties of silicon electronic devices. Crystalline silicon growth, modeling, and properties are discussed in general and as applied to solar cells. Topics considered in discussions of silicon growth include: casting, string ribbons, Al backside contacts, ion implantation, gettering, passivation, and ultrasound treatments. Properties studies include: Electronic properties of defects and impurities, dopant and carrier concentrations, structure and bonding, nitrogen effects, degradation of bulk diffusion length, and recombination parameters. Individual papers from the workshop are indexed separately on the Energy Data Bases.

  10. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.

    PubMed

    Lai, Y C; Friends, G D

    1997-06-05

    In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.

  11. Sintered silicon nitrode recuperator fabrication

    NASA Technical Reports Server (NTRS)

    Gatti, A.; Chiu, W. S.; Mccreight, L. R.

    1980-01-01

    The preliminary design and a demonstration of the feasibility of fabricating submodules of an automotive Stirling engine recuperator for waste heat recovery at 370 C are described. Sinterable silicon nitride (Sialon) tubing and plates were fabricated by extrusion and hydrostatic pressing, respectively, suitable for demonstrating a potential method of constructing ceramic recuperator-type heat exchangers. These components were fired in nitrogen atmosphere to 1800 C without significant scale formation so that they can be used in the as-fired condition. A refractory glass composition (Al2O3 x 4.5 CaO.MgO x 11SiO2) was used to join and seal component parts by a brazing technique which formed strong recuperator submodules capable of withstanding repeated thermal cycling to 1370 C. The corrosion resistance of these materials to Na2SO4 + NaCl carbon mixtures was also assessed in atmospheres of air, hydrogen and CO2-N2-H2O mixtures at both 870 C and 1370 C for times to 1000 hours. No significant reaction was observed under any of these test conditions.

  12. Hydrogenated amorphous silicon photonics

    NASA Astrophysics Data System (ADS)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  13. Very high temperature silicon on silicon pressure transducers

    NASA Technical Reports Server (NTRS)

    Kurtz, Anthony D.; Nunn, Timothy A.; Briggs, Stephen A.; Ned, Alexander

    1992-01-01

    A silicon on silicon pressure sensor has been developed for use at very high temperatures (1000 F). The design principles used to fabricate the pressure sensor are outlined and results are presented of its high temperature performance.

  14. The Fixation of Nitrogen.

    ERIC Educational Resources Information Center

    Andrew, S. P. S.

    1978-01-01

    Discusses the fixation of atmospheric nitrogen in the form of ammonia as one of the foundations of modern chemical industry. The article describes ammonia production and synthesis, purifying the hydrogen-nitrogen mix, nitric acid production, and its commericial plant. (HM)

  15. Nitrogen trading tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  16. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  17. Research on Silicon, Carbon, and Silicon Carbide Heterostructures

    DTIC Science & Technology

    1990-09-14

    0Innr Jc9&9b 1. TITLE (Include Security Classification) Research on Silicon, Carbon, and Silicon Carbide Heterostructures Z. PERSONAL AUTHOR(S) W. D...and identify by block number) FIELD I GROUP SUB-GROUP PLASMAS. DEPOSITION. THIN FILMS. SILICON CARBIDE . DIAMOND. SURFACES. DESORPTION. CHARACTERIZATION...AND SILICON CARBIDE HETEROSTRUCTURES W. D. Partlow (P.I.), W. J. Choyke, J. T. Yates, Jr., C. C. Cheng, H. Gutleben, L. E. Kline, R. R. Mitchell, J

  18. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  19. The microbial nitrogen cycle.

    PubMed

    Jetten, Mike S M

    2008-11-01

    This special issue highlights several recent discoveries in the microbial nitrogen cycle including the diversity of nitrogen-fixing bacteria in special habitats, distribution and contribution of aerobic ammonium oxidation by bacteria and crenarchaea in various aquatic and terrestrial ecosystems, regulation of metabolism in nitrifying bacteria, the molecular diversity of denitrifying microorganisms and their enzymes, the functional diversity of freshwater and marine anammox bacteria, the physiology of nitrite-dependent anaerobic methane oxidation and the degradation of recalcitrant organic nitrogen compounds. Simultaneously the articles in this issue show that many questions still need to be addressed, and that the microbes involved in catalyzing the nitrogen conversions still harbour many secrets that need to be disclosed to fully understand the biogeochemical nitrogen cycle, and make future predictions and global modelling possible.

  20. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  1. Stoichiometric silicon oxynitride thin films reactively sputtered in Ar/N2O plasmas by HiPIMS

    NASA Astrophysics Data System (ADS)

    Hänninen, Tuomas; Schmidt, Susann; Wissting, Jonas; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2016-04-01

    Silicon oxynitride (SiO x N y , x=0.2-1.3, y=0.2 -0.7) thin films were synthesized by reactive high power impulse magnetron sputtering from a pure silicon target in Ar/N2O atmospheres. It was found that the composition of the material can be controlled by the reactive gas flow and the average target power. X-ray photoelectron spectroscopy (XPS) shows that high average powers result in more silicon-rich films, while lower target powers yield silicon-oxide-like material due to more pronounced target poisoning. The amount of nitrogen in the films can be controlled by the percentage of nitrous oxide in the working gas. The nitrogen content remains at a constant level while the target is operated in the transition region between metallic and poisoned target surface conditions. The extent of target poisoning is gauged by the changes in peak target current under the different deposition conditions. XPS also shows that varying concentrations and ratios of oxygen and nitrogen in the films result in film chemical bonding structures ranging from silicon-rich to stoichiometric silicon oxynitrides having no observable Si-Si bond contributions. Spectroscopic ellipsometry shows that the film optical properties depend on the amount and ratio of oxygen and nitrogen in the compound, with film refractive indices measured at 633 nm ranging between those of SiO2 and Si3N4.

  2. Diffusion and segregation properties of iron in silicon dioxide

    NASA Astrophysics Data System (ADS)

    Ramappa, Deepak Arabagatte

    1999-09-01

    Iron contamination often originates at the surface of a wafer during processing in the IC fabrication line and is diffused into the wafer during subsequent thermal processing. Since the silicon wafer surface is often passivated with a silicon dioxide layer, comprehensive understanding of iron transport in silicon dioxide is necessary. The goal of this research is to advance the fundamental and practical knowledge of the diffusion properties of iron in silicon dioxide. This dissertation evaluates, for the first time, the diffusion parameters of iron in electronic grade silicon dioxide and presents a quantitative analysis of iron transport in silicon dioxide. A source of iron applied on the surface of thermally oxidized silicon wafers was diffused at temperatures ranging from 700 to 1100°C under oxygen, nitrogen, forming gas and chlorinated ambients to diffuse the iron impurity through the oxide and into the silicon. The iron concentration profile in the oxide and silicon was measured using the techniques of Total Reflection X-Ray Fluorescence (TXRF), Deep Level Transient Spectroscopy (DLTS) and Surface Photovoltage (SPV). A two-boundary diffusion model was applied to the experimental data to determine the diffasivity and segregation coefficient of iron in SiO 2. Iron diffusivity in Si02 was observed to obey the Arrhenius relationship and has a thermal activation energy of 1.51eV. Results showed, that processing factors such as oxide thickness, nature of oxide, temperature, time and ambient affect the transport of iron in SiO2. The minimum oxide thickness required to mask iron contaminate diffusion into the wafer was empirically determined using the diffusivity data. Iron was found to diffuse faster in wet oxides and under an annealing ambient of hydrogen. Chlorine ambients reduce the amount of iron transported to the silicon wafer through the oxide. Iron exhibits a strong tendency to preferentially segregate to the SiO2 side of the SiO2-Si interface and has

  3. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  4. Molecular Biology of Nitrogen Fixation

    ERIC Educational Resources Information Center

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  5. Bondability of RTV silicon rubber

    NASA Technical Reports Server (NTRS)

    Delollis, N. J.; Montoya, O.

    1972-01-01

    Glow discharge method for producing a bondable Room Temperature Vulcanizing (RTV) silicone is described. Mechanical and chemical properties of silicone specimens are described. Theory concerning the relationship between surface characteristics and bondability is examined with respect to the polymer specimen.

  6. Bond Sensitivity to Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.

  7. The electrophotonic silicon biosensor

    PubMed Central

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-01-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale. PMID:27624590

  8. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  9. Crystalline oxides on silicon.

    PubMed

    Reiner, James W; Kolpak, Alexie M; Segal, Yaron; Garrity, Kevin F; Ismail-Beigi, Sohrab; Ahn, Charles H; Walker, Fred J

    2010-07-20

    This review outlines developments in the growth of crystalline oxides on the ubiquitous silicon semiconductor platform. The overall goal of this endeavor is the integration of multifunctional complex oxides with advanced semiconductor technology. Oxide epitaxy in materials systems achieved through conventional deposition techniques is described first, followed by a description of the science and technology of using atomic layer-by-layer deposition with molecular beam epitaxy (MBE) to systematically construct the oxide-silicon interface. An interdisciplinary approach involving MBE, advanced real-space structural characterization, and first-principles theory has led to a detailed understanding of the process by which the interface between crystalline oxides and silicon forms, the resulting structure of the interface, and the link between structure and functionality. Potential applications in electronics and photonics are also discussed.

  10. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  11. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  12. Scriber for silicon wafers

    NASA Technical Reports Server (NTRS)

    Yamakawa, K. A.; Fortier, E. P. (Inventor)

    1981-01-01

    A device for dividing silicon wafers into rectangular chips is characterized by a base including a horizontally oriented bed with a planar support surface, a vacuum chuck adapted to capture a silicon wafer seated on the support for translation in mutually perpendicular directions. A stylus support mounted on the bed includes a shaft disposed above and extended across the bed and a truck mounted on the shaft and supported thereby for linear translation along a path extended across the bed a vertically oriented scribe has a diamond tip supported by the truck also adapted as to engage a silicon wafer captured by the chuck and positioned beneath it in order to form score lines in the surface of the wafer as linear translation is imparted to the truck. A chuck positioning means is mounted on the base and is connected to the chuck for positioning the chuck relative to the stylus.

  13. Floating Silicon Method

    SciTech Connect

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  14. Silicon optical modulators

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Thomson, D. J.

    2010-08-01

    Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

  15. Silicon carbide thyristor

    NASA Technical Reports Server (NTRS)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  16. Thick silicon growth techniques

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.

    1973-01-01

    Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies.

  17. Cell technology: Advanced silicon sheet

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1986-01-01

    The Flat-plate Solar Array (FSA)-sponsored Fourth Silicon Stress/Strain Workshop reviewed, coordinated, and assessed the progress in understanding and controlling stress and strain during the crystal growth of silicon ribbons. dislocation electrical activity and limits on solar cell efficiency, and on studying the effects of dopants on EFG characteristics. Work on silicon for high-efficiency solar cells, stress-strain relationships in silicon ribbon, and high temperature deformation of dendritic web ribbon was also discussed.

  18. Substrate for silicon solar cells

    SciTech Connect

    Thomas, D.E.

    1982-08-10

    A substrate is made for silicon solar cells by heating a sheet of large-grained silicon steel at a temperature of at least about 1300* C. In an atmosphere of hydrogen and tungsten hexafluo (Or hexachloride) at a partial pressure ratio of hydrogen to tungsten hexafluoride of about 3 to about 6 to deposit an epitaxial layer of tungsten on said sheet of silicon steel. Epitaxial silicon can then be deposited in a conventional manner on the layer of epitaxial tungsten.

  19. Micromachined silicon electrostatic chuck

    SciTech Connect

    Anderson, R.A.; Seager, C.H.

    1994-12-31

    In the field of microelectronics, and in particular the fabrication of microelectronics during plasma etching processes, electrostatic chucks have been used to hold silicon wafers during the plasma etching process. Current electrostatic chucks that operate by the {open_quotes}Johnson-Rahbek Effect{close_quotes} consist of a metallic base plate that is typically coated with a thick layer of slightly conductive dielectric material. A silicon wafer of approximately the same size as the chuck is placed on top of the chuck and a potential difference of several hundred volts is applied between the silicon and the base plate of the electrostatic chuck. This causes an electrostatic attraction proportional to the square of the electric field in the gap between the silicon wafer and the chuck face. When the chuck is used in a plasma filled chamber the electric potential of the wafer tends to be fixed by the effective potential of the plasma. The purpose of the dielectric layer on the chuck is to prevent the silicon wafer from coming into direct electrical contact with the metallic part of the chuck and shorting out the potential difference. On the other hand, a small amount of conductivity appears to be desirable in the dielectric coating so that much of its free surface between points of contact with the silicon wafer is maintained near the potential of the metallic base plate; otherwise, a much larger potential difference would be needed to produce a sufficiently large electric field in the vacuum gap between the wafer and chuck. Typically, the face of the chuck has a pattern of grooves in which about 10 torr pressure of helium gas is maintained. This gas provides cooling (thermal contact) between the wafer and the chuck. A pressure of 10 torr is equivalent to about 0.2 psi.

  20. Electrochemical thinning of silicon

    DOEpatents

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  1. Electrochemical thinning of silicon

    DOEpatents

    Medernach, John W.

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  2. Silicon sheet technologies

    SciTech Connect

    Ciszek, T.F.

    1982-09-01

    A classification of silicon sheet growth methods by meniscus geometry permits them to be discussed in three groups: short meniscus techniques, high meniscus techniques, and extended meniscus or large solid/liquid interface area techniques. A second parameter, meniscus shaper interaction with the liquid silicon, is also instrumental in determining the characteristics of the various sheet processes. The current status of each process is discussed in the context of meniscus geometry and shaper/melt interaction. One aspect of sheet growth, surface area generation rate, is quantitatively compared with combined ingot growth and wafering surface area generation rates.

  3. Fracture toughness of silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1980-01-01

    The paper presents a study to determine the fracture toughness and to characterize fracture modes of silicon as a function of the orientation of single-crystal and polycrystalline material. It is shown that bar specimens cracked by Knoop microhardness indentation and tested to fracture under four-point bending at room temperature were used to determine the fracture toughness values. It is found that the lowest fracture toughness value of single crystal silicon was 0.82 MN/m to the 3/2 in the 111 plane type orientation, although the difference in values in the 111, 110, and 100 planes was small.

  4. Fertilizer nitrogen isotope signatures.

    PubMed

    Bateman, Alison S; Kelly, Simon D

    2007-09-01

    There has been considerable recent interest in the potential application of nitrogen isotope analysis in discriminating between organically and conventionally grown crops. A prerequisite of this approach is that there is a difference in the nitrogen isotope compositions of the fertilizers used in organic and conventional agriculture. We report new measurements of delta15N values for synthetic nitrogen fertilizers and present a compilation of the new data with existing literature nitrogen isotope data. Nitrogen isotope values for fertilizers that may be permitted in organic cultivation systems are also reported (manures, composts, bloodmeal, bonemeal, hoof and horn, fishmeal and seaweed based fertilizers). The delta15N values of the synthetic fertilizers in the compiled dataset fall within a narrow range close to 0 per thousand with 80% of samples lying between-2 and 2 per thousand and 98.5% of the data having delta15N values of less than 4 per thousand (mean=0.2 per thousand n=153). The fertilizers that may be permitted in organic systems have a higher mean delta15N value of 8.5 per thousand and exhibit a broader range in delta15N values from 0.6 to 36.7 per thousand (n=83). The possible application of the nitrogen isotope approach in discriminating between organically and conventionally grown crops is discussed in light of the fertilizer data presented here and with regard to other factors that are also important in determining crop nitrogen isotope values.

  5. The nitrogen cycle.

    PubMed

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation.

  6. Light emission from porous silicon

    NASA Astrophysics Data System (ADS)

    Penczek, John

    The continuous evolution of silicon microelectronics has produced significant gains in electronic information processing. However, greater improvements in performance are expected by utilizing optoelectronic techniques. But these techniques have been severely limited in silicon- based optoelectronics due to the lack of an efficient silicon light emitter. The recent observation of efficient light emission from porous silicon offer a promising opportunity to develop a suitable silicon light source that is compatible with silicon microelectronics. This dissertation examined the porous silicon emission mechanism via photoluminescence, and by a novel device structure for porous silicon emitters. The investigation first examined the correlation between porous silicon formation conditions (and subsequent morphology) with the resulting photoluminescence properties. The quantum confinement theory for porous silicon light emission contends that the morphology changes induced by the different formation conditions determine the optical properties of porous silicon. The photoluminescence spectral shifts measured in this study, in conjunction with TEM analysis and published morphological data, lend support to this theory. However, the photoluminescence spectral broadening was attributed to electronic wavefunction coupling between adjacent silicon nanocrystals. An novel device structure was also investigated in an effort to improve current injection into the porous silicon layer. The selective etching properties of porous silicon were used to create a p-i-n structure with crystalline silicon contacts to the porous silicon layer. The resulting device was found to have unique characteristics, with a negative differential resistance region and current-induced emission that spanned from 400 nm to 5500 nm. The negative differential resistance was correlated to resistive heating effects in the device. A numerical analysis of thermal emission spectra from silicon films, in addition to

  7. Nitrogen Backbone Oligomers.

    PubMed

    Wang, Hongbo; Eremets, Mikhail I; Troyan, Ivan; Liu, Hanyu; Ma, Yanming; Vereecken, Luc

    2015-08-19

    We found that nitrogen and hydrogen directly react at room temperature and pressures of ~35 GPa forming chains of single-bonded nitrogen atom with the rest of the bonds terminated with hydrogen atoms - as identified by IR absorption, Raman, X-ray diffraction experiments and theoretical calculations. At releasing pressures below ~10 GPa, the product transforms into hydrazine. Our findings might open a way for the practical synthesis of these extremely high energetic materials as the formation of nitrogen-hydrogen compounds is favorable already at pressures above 2 GPa according to the calculations.

  8. Nitrogen Backbone Oligomers

    PubMed Central

    Wang, Hongbo; Eremets, Mikhail I.; Troyan, Ivan; Liu, Hanyu; Ma, Yanming; Vereecken, Luc

    2015-01-01

    We found that nitrogen and hydrogen directly react at room temperature and pressures of ~35 GPa forming chains of single-bonded nitrogen atom with the rest of the bonds terminated with hydrogen atoms - as identified by IR absorption, Raman, X-ray diffraction experiments and theoretical calculations. At releasing pressures below ~10 GPa, the product transforms into hydrazine. Our findings might open a way for the practical synthesis of these extremely high energetic materials as the formation of nitrogen-hydrogen compounds is favorable already at pressures above 2 GPa according to the calculations. PMID:26286836

  9. Pair distribution functions of silicon/silicon nitride interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Deng; Bachlechner, Martina E.

    2006-03-01

    Using molecular dynamics simulations, we investigate different mechanical and structural properties of the silicon/silicon nitride interface. One way to characterize the structure as tensile strain is applied parallel to the interface is to calculate pair distribution functions for specific atom types. The pair distribution function gives the probability of finding a pair of atoms a distance r apart, relative to the probability expected for a completely random distribution at the same density. The pair distribution functions for bulk silicon nitride reflect the fracture of the silicon nitride film at about 8 % and the fact that the centerpiece of the silicon nitride film returns to its original structure after fracture. The pair distribution functions for interface silicon atoms reveal the formation of bonds for originally unbound atom pairs, which is indicative of the interstitial-vacancy defect that causes failure in silicon.

  10. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  11. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  12. Silicon Carbide Metallization

    NASA Astrophysics Data System (ADS)

    Lescoat, F.; Tanguy, F.; Durand, P.

    2016-05-01

    A study has been done to assess the feasibility of metallization of Silicon Carbide (SiC) in order to simplify design and mounting of one or more ground reference rail needed to provide an electrical reference for electronics mounted on an SiC structure.

  13. Silicon Raman polarizer.

    PubMed

    Kozlov, Victor V; Wabnitz, Stefan

    2012-02-15

    We theoretically investigate the polarization properties of Raman amplifiers based on silicon-on-insulator waveguides, and show that it is possible to realize a waveguide Raman polarizer. The Raman polarizer is a special type of Raman amplifier with the property of producing an amplified and highly repolarized beam when it is fed by a relatively weak and unpolarized signal.

  14. Composition Comprising Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  15. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  16. Characterization of Silicon Carbide.

    DTIC Science & Technology

    The various electrical and structural measurement techniques for silicon carbide are described. The electrical measurements include conductivity, resistivity, carrier concentration, mobility, doping energy levels, and lifetime. The structural measurements include polytype determination and crystalline perfection. Both bulk and epitaxial films are included.

  17. Analysis of porous silicon

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; Farr, J. P. G.; Grzeszczyk, P. E.; Sturland, I.; Keen, J. M.

    1985-06-01

    Porous silicon, suitable after oxidation for dielectric isolation, has been produced successfully by anodizing silicon in strong HF. The oxidized layer has been shown to have promise in device manufacture, providing high packing densities and radiation hardness. Anodizing has been carried out using both single and double cells, following the effects of current density. HF concentration and silicon resistivity. The resultant porous layers have been characterised with respect to composition and structure. The materials produced differ considerably in lattice strain, composition and reactivities. Prompt radiation analyses 19F(p,αγ), 16O(d,α), 12C(d,p), are useful for monitoring the anodizing procedures and subsequent oxidation: currently, interest centres on the mechanistic information obtained. RBS analysis using α-particles gives a much lower Si response from porous than from bulk silicon. Glancing angle proton recoil analyses reveal considerable quantities of hydrogen in the porous layers. These mutually consistent findings have considerable mechanistic significance; extensive Si-H bonding occurs following a 2 equivalent Faradaic process.

  18. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  19. Microgravity Silicon Zoning Investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.

    1985-01-01

    This research program is directed toward the understanding of the float zone crystal growth process, the melt interactions which lead to crystal inhomogeneities, and the influence of microgravity on reducing these inhomogeneities. Silicon was selected as the model crystal because its inhomogeneities lead to known variations in device performance, and because the mechanisms involved in its growth are understood better than for other high temperature crystals. The objective of the program is to understand the growth mechanisms in float zone growth and thereby determine the feasibility and advantages of float zone growth of silicon under microgravity conditions. This will be done by characterizing the growth at g = 1, projecting the changes in melt flows due to microgravity, observing these in space growth and determining the effects on defective inhomogeneities. A Thin Rod Zoner was constructed as a laboratory prototype for flight growth of 5 mm diameter silicon crystals, which can be done within the power and cooling capabilities of shuttle flights. A new method of zoning silicon, using resistance heating, has resulted in melting 5 mm diameter ingots.

  20. The Liquid Nitrogen Fountain

    NASA Astrophysics Data System (ADS)

    McRae, Robin; Rahn, Jeffrey A.; Beamer, Timothy W.; Lebret, Norm

    2002-10-01

    Details of a demonstration using liquid nitrogen are presented. The demonstration is based on a 500-mL transparent polyethylene soft-drink bottle with a screw-on pop-up drink top. Prior to the demonstration, a balloon is placed over the popped-up spout of the bottle top. The bottle is filled with liquid nitrogen and the top, with the balloon affixed, is quickly put in place and screwed on tightly. As the liquid nitrogen in the bottle boils, the balloon inflates. When the balloon bursts the noise produced is far greater than would ordinarily be expected, and a fountain of liquid nitrogen and condensing water vapor shoots into the air above the bottle.

  1. Mineral commodity profiles: nitrogen

    USGS Publications Warehouse

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  2. Antifuse with a single silicon-rich silicon nitride insulating layer

    DOEpatents

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  3. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  4. Protein Nitrogen Determination

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  5. Silicon oxidation in fluoride solutions

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Kapur, V.

    1980-01-01

    Silicon is produced in a NaF, Na2SiF6, and Na matrix when SiF4 is reduced by metallic sodium. Hydrogen is evolved during acid leaching to separate the silicon from the accompanying reaction products, NaF and Na2SiF6. The hydrogen evolution reaction was studied under conditions simulating leaching conditions by making suspensions of the dry silicon powder in aqueous fluoride solutions. The mechanism for the hydrogen evolution is discussed in terms of spontaneous oxidation of silicon resulting from the cooperative effects of (1) elemental sodium in the silicon that reacts with water to remove a protective silica layer, leaving clean reactive silicon, and (2) fluoride in solution that complexes with the oxidized silicon in solution and retards formation of a protective hydrous oxide gel.

  6. Improved toughness of silicon carbide

    NASA Technical Reports Server (NTRS)

    Palm, J. A.

    1975-01-01

    Several techniques were employed to apply or otherwise form porous layers of various materials on the surface of hot-pressed silicon carbide ceramic. From mechanical properties measurements and studies, it was concluded that although porous layers could be applied to the silicon carbide ceramic, sufficient damage was done to the silicon carbide surface by the processing required so as to drastically reduce its mechanical strength. It was further concluded that there was little promise of success in forming an effective energy absorbing layer on the surface of already densified silicon carbide ceramic that would have the mechanical strength of the untreated or unsurfaced material. Using a process for the pressureless sintering of silicon carbide powders it was discovered that porous layers of silicon carbide could be formed on a dense, strong silicon carbide substrate in a single consolidation process.

  7. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis.

    PubMed

    Schaller, J; Brackhage, C; Gessner, M O; Bäuker, E; Gert Dudel, E

    2012-03-01

    Silicon is a non-essential element for plant growth. Nevertheless, it affects plant stress resistance and in some plants, such as grasses, it may substitute carbon (C) compounds in cell walls, thereby influencing C allocation patterns and biomass production. How variation in silicon supply over a narrow range affects nitrogen (N) and phosphorus (P) uptake by plants has also been investigated in some detail. However, little is known about effects on the stoichiometric relationships between C, N and P when silicon supply varies over a broader range. Here, we assessed the effect of silicon on aboveground biomass production and C:N:P stoichiometry of common reed, Phragmites australis, in a pot experiment in which three widely differing levels of silicon were supplied. Scanning electron microscopy (SEM) showed that elevated silicon supply promoted silica deposition in the epidermis of Phragmites leaves. This resulted in altered N:P ratios, whereas C:N ratios changed only slightly. Plant growth was slightly (but not significantly) enhanced at intermediate silicon supply levels but significantly decreased at high levels. These findings point to the potential of silicon to impact plant growth and elemental stoichiometry and, by extension, to affect biogeochemical cycles in ecosystems dominated by Phragmites and other grasses and sedges.

  8. Nitrogen loss from Titan

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.; Johnson, R. E.; Michael, M.; Luhmann, J. G.

    2003-08-01

    Dissociation and dissociative ionization of molecular nitrogen by solar UV radiation and by photoelectrons and sputtering by the magnetospheric ions and pickup ions are the main sources of translationally excited (hot) nitrogen atoms and molecules in the upper atmosphere of Titan. As Titan does not posses an intrinsic magnetic field, Saturn's magnetospheric ions can penetrate Titan's exobase and sputter atoms and molecules from it. The sputtering of nitrogen from Titan's upper atmosphere by the corotating nitrogen ions and by photodissociation was addressed earlier [Lammer and Bauer, 1993; Shematovich et al., 2001]. Here penetration of slowed and deflected magnetospheric N+ and carbon-containing pickup ions is described using a Monte Carlo model. The interaction of these ions with the atmospheric neutrals leads to the production of fast neutrals that collide with other atmospheric neutrals producing heating and ejection of atoms and molecules. Results from Brecht et al. [2000] are used to estimate the net flux and energy spectra of the magnetospheric and pickup ions onto the exobase. Sputtering is primarily responsible for any ejected molecular nitrogen, and, for the ion fluxes used, we show that the total sputtering contribution is comparable to or larger than the dissociation contribution giving a total loss rate of ~3.6 × 1025 nitrogen neutrals per second.

  9. Brucella, nitrogen and virulence.

    PubMed

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  10. Nitrogen Uptake in Spinach

    NASA Astrophysics Data System (ADS)

    Ramirez, J.; VanBenthem, P.

    2013-12-01

    A plant's absorption of nitrogen can be encouraged by a variety of environmental factors, especially the application of fertilizers. As a common limiting factor in plant growth, not up taking enough nitrogen can be a result of an unhealthy plant. Moreover, as farmers seek out methods to increase growth of plants, fertilizers are used as a solution to the issue of nitrogen deficiency to incorporate additional nitrogen from chemical or organic sources, by not using the right fertilizer can greatly affect the plats. The point of this research project is to determine the effect of various fertilizers on the plant growth, and to correlate the measured nitrogen, water and chlorophyll content in spinach leaves. Spinach leaves were used because they are known to quickly uptake chemicals in the environment. The spinach plants were exposed to four different growing parameters, which are referred to as control, ammonium nitrate, MiracleGro , and organic. The spinach was originally placed in nitrogen deficient soil with only 2.2x10 4 weight percent (wt. %) nitrogen. The leaves in the control group were grown in this nitrogen deficient soil without any fertilizer added. Ammomium nitrate and MiracleGro were added to the spinach in the A and MG groups, respectively, and organic chicken stool was used for the O group. By using a spectral imaging system and flame combustion techniques, the chlorophyll content can be related to the nitrogen content in the spinach leaves. In these spinach leaves, nitrogen and chlorophyll content were measured, chlorophyll is a green pigment that plays a crucial role in producing nutrients for green plants. The lack of chlorophyll will allow the plant to become susceptible to diseases, so it is extremely important that the plants have a high content of chlorophyll. The role of nitrogen in chlorophyll is very important and helps in the creation of chlorophyll; therefore it is necessary that an appropriate amount of nitrogen is added for optimal growth

  11. Strong Narrow-Band Luminescence from Silicon-Vacancy Color Centers in Spatially Localized Sub-10 nm Nanodiamond

    PubMed Central

    Catledge, Shane A.; Singh, Sonal

    2011-01-01

    Discrete nanodiamond particles of 500 nm and 6 nm average size were seeded onto silicon substrates and plasma treated using chemical vapor deposition to create silicon-vacancy color centers. The resulting narrow-band room temperature photoluminescence is intense, and readily observed even for weakly agglomerated sub-10 nm size diamond. This is in contrast to the well-studied nitrogen-vacancy center in diamond which has luminescence properties that are strongly dependant on particle size, with low probability for incorporation of centers in sub-10 nm crystals. We suggest the silicon-vacancy center to be a viable alternative to nitrogen-vacancy defects for use as a biomarker in the clinically-relevant sub-10 nm size regime, for which nitrogen defect-related luminescent activity and stability is reportedly poor. PMID:21603120

  12. Amorphous metallic films in silicon metallization systems

    NASA Astrophysics Data System (ADS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-06-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  13. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  14. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.

  15. Top-Coating Silicon Onto Ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Nelson, L. D.; Zook, J. D.

    1985-01-01

    Polycrystalline silicon for solar cells produced at low cost. Molten silicon poured from quartz trough onto moving carbon-coated ceramic substrate. Doctor blade spreads liquid silicon evenly over substrate. Molten material solidifies to form sheet of polycrystalline silicon having photovoltaic conversion efficiency greater than 10 percent. Method produces 100-um-thick silicon coatings at speed 0.15 centimeter per second.

  16. Rapid Silicon Dioxide Film Formation on Clean Silicon Surfaces

    DTIC Science & Technology

    1992-10-19

    devices, and demands for higher reliability, thereby requiring further refinements of silicon planar technology . An understanding of the kinetics of film...110)) reveal the dependence of the refractive index of SiO. as a function of oxide thickness. No orientation effects were found. Kinetic measurements...further refinements of silicon planar technology . An understanding of the kinetics of film formation and optical properties of ultrathin silicon

  17. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  18. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  19. Silicon Carbide Electronic Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.

    2001-01-01

    The status of emerging silicon carbide (SiC) widebandgap semiconductor electronics technology is briefly surveyed. SiC-based electronic devices and circuits are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot function. Projected performance benefits of SiC electronics are briefly illustrated for several applications. However, most of these operational benefits of SiC have yet to be realized in actual systems, primarily owing to the fact that the growth techniques of SiC crystals are relatively immature and device fabrication technologies are not yet sufficiently developed to the degree required for widespread, reliable commercial use. Key crystal growth and device fabrication issues that limit the performance and capability of high-temperature and/or high-power SiC electronics are identified. The electrical and material quality differences between emerging SiC and mature silicon electronics technology are highlighted.

  20. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  1. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  2. Haematic silicon in drowning.

    PubMed

    Pierucci, Giovanni; Merlano, Federica; Chen, Yao; Sturini, Michela; Maraschi, Federica; Profumo, Antonella

    2016-04-01

    The aim of this paper was to evaluate silicon (Si) concentration in human whole ventricular blood as a further potential chemical marker in the diagnosis of drowning. We employed an acidic digestion for the extraction of soluble Si, and an alkaline digestion for the determination of total Si, including particulate matter, both arising from drowning medium. 29 suspected drowning situations, 24 in fresh water (Fw) and 5 in seawater (Sw), were examined. The difference in Si concentration between the left and right ventricular blood (Si ΔL-R) was measured and alkaline Si ΔL-R seems, indeed, a potentially significant complementary tool in the diagnosis of Fw drowning, because insoluble silicon fraction does not undergo hemo-dilution or hemo-concentration, and the ΔL-R is not affected by exogenous factors. In spite of the limited number of cases investigated, a good correlation was observed between the analytical results and the macro-microscopic autoptic findings.

  3. A silicon electromechanical photodetector.

    PubMed

    Tallur, Siddharth; Bhave, Sunil A

    2013-06-12

    Optomechanical systems have enabled wide-band optical frequency conversion and multichannel all-optical radio frequency amplification. Realization of an on-chip silicon communication platform is limited by photodetectors needed to convert optical information to electrical signals for further signal processing. In this paper we present a coupled silicon microresonator, which converts near-IR optical intensity modulation at 174.2 MHz and 1.198 GHz into motional electrical current. This device emulates a photodetector which detects intensity modulation of continuous wave laser light in the full-width-at-half-maximum bandwidth of the mechanical resonance. The resonant principle of operation eliminates dark current challenges associated with convetional photodetectors. While the results presented here constitute a purely classical demonstration, the device can also potentially be extended to the quantum regime to realize a photon-phonon translator.

  4. Germanium epitaxy on silicon

    PubMed Central

    Ye, Hui; Yu, Jinzhong

    2014-01-01

    With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics. PMID:27877657

  5. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  6. Germanium epitaxy on silicon.

    PubMed

    Ye, Hui; Yu, Jinzhong

    2014-04-01

    With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics.

  7. Germanium epitaxy on silicon

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Yu, Jinzhong

    2014-04-01

    With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In this paper, we describe recent research progress on heteroepitaxy of Ge flat films and self-assembled Ge quantum dots on Si. For film growth, methods of strain modification and lattice mismatch relief are summarized, while for dot growth, key process parameters and their effects on the dot density, dot morphology and dot position are reviewed. The results indicate that epitaxial Ge-on-Si materials will play a bigger role in silicon photonics.

  8. Silicon-Based Oxide/Silicon/Oxide Resonant Tunneling

    DTIC Science & Technology

    1998-03-01

    approximately 0.5 eV in the limit of high Ge content where only thin layers can be grown without lattice relaxation. Silicon germanium and its alloys...FINAL REPORT FOR SILICON -BASED OXIDE/ SILICON /OXIDE RESONANT TUNNELING CONTRACT NO. F49620-95-C-0001 1 December 1994 - 31 March 1998 Prepared For...RSSilicon-Based Oxide/ Silicon /Oxide Re sonant Tunneling 61102F L Aurkaft-n2305/CS Dr Seabaugh 7. MORMIG VIGNIIIO;NAME(S) 1 GRISS(ES) Pf~fOMING ORGANIZATION

  9. Silicon photonics manufacturing.

    PubMed

    Zortman, William A; Trotter, Douglas C; Watts, Michael R

    2010-11-08

    Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system's frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35 μm process controls microdisk resonant frequencies for the TE fundamental resonances to within 1 THz across a wafer and 105 GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231 μW. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology.

  10. Silicon Nitride for Direct Water-Splitting and Corrosion Mitigation

    SciTech Connect

    Head, J.; Turner, J.A.

    2006-01-01

    Todays fossil fuels are becoming harder to obtain, creating pollution problems, and posing hazards to people’s health. One alternative to fossil fuels is hydrogen, capable of serving as a clean and efficient energy carrier. Certain semiconductors are able to harness the energy of photons and direct it into water electrolysis in a process known as photoelectrochemical water splitting. Triple junction devices integrate three semiconductors of different band gaps resulting in a monolithic material that absorbs over a broader spectrum. Amorphous silicon (a-Si) is one such material that, when stacked in tandem, possesses water-splitting capabilities. Even though a-Si is capable of splitting water, it is an unstable material in solution and therefore requires a coating to protect the surface from corrosion. A stable, transparent material that has the potential for corrosion protection is silicon nitride. In this study, silicon nitride thin films were grown using DC magnetron sputtering with varying amounts of argon and nitrogen added to the system. X-ray diffraction indicated amorphous silicon nitride films. Current as a function of potential was determined from cyclic voltammetry measurements. Mott-Schottky analysis showed n-type behavior with absorption and transmission measurements indicated variation in flatband potentials. Variation in band gap values ranging from 1.90 to 4.0 eV. Corrosion measurements reveal that the silicon nitride samples exhibit both p-type and n-type behavior. Photocurrent over a range of potentials was greater in samples that were submerged in acidic electrolyte. Silicon nitride shows good stability in acidic, neutral, and basic solutions, indicative of a good material for corrosion mitigation.

  11. Studies of implanted iron in silicon by channeling and Rutherford backscattering

    NASA Technical Reports Server (NTRS)

    Wang, P. W.; Cheng, H. S.; Gibson, W. M.; Corbett, J. W.

    1986-01-01

    Different amounts of 100-keV iron ions have been implanted into high-resistivity p-type FZ-silicon samples. The implantation damage, recovery of damage during various annealing periods and temperatures, movement of iron atoms under annealing and oxidation, and the kinds of defects created after implantation, annealing, or oxidation are all investigated by channeling and backscattering measurements. It is found that the critical fluence of 100-keV iron implanted into silicon at room temperature is about 2.5 x 10 to the 14th Fe/sq cm, and that iron atoms are gettered by silicon oxidation. In this supersaturated region, iron atoms diffuse slightly towards bulk silicon during high-temperature annealing (greater than or equal to 1100 C) but not at all during low-temperature annealing (less than or equal to 1000 C) in dry nitrogen ambient.

  12. Purity of (28)Si-Enriched Silicon Material Used for the Determination of the Avogadro Constant.

    PubMed

    D'Agostino, Giancarlo; Di Luzio, Marco; Mana, Giovanni; Oddone, Massimo; Bennett, John W; Stopic, Attila

    2016-07-05

    At present, counting atoms in a one-kilogram sphere made of (28)Si-enriched silicon allows the determination of the Avogadro constant with the 2.0 × 10(-8) relative standard uncertainty required for the realization of the definition of the new kilogram. With the exception of carbon, oxygen, boron, nitrogen, and hydrogen, the claimed uncertainty is based on the postulation that the silicon material used to manufacture the sphere was above a particular level of purity. Two samples of the silicon were measured using instrumental neutron activation analysis to collect experimental data to test the purity assumption. The results obtained in two experiments carried out using different research reactor neutron sources are reported. The analysis confirmed that the silicon material was of sufficient purity by quantifying the ultratrace concentration of 12 elements and determining the detection limits of another 54 elements.

  13. Diamond-silicon carbide composite

    DOEpatents

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  14. The nitrogen cycle: Atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  15. Epitaxial Silicon Doped With Antimony

    NASA Technical Reports Server (NTRS)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  16. Substrate for silicon solar cells

    SciTech Connect

    Thomas, D.E.

    1983-09-06

    A substrate is made for silicon solar cells by heating a sheet of large-grained silicon steel at a temperature of at least about 1300/sup 0/ C. in an atmosphere of hydrogen and tungsten hexafluoride (or hexachloride) at a partial pressure ratio of hydrogen to tungsten hexafluoride of about 3 to about 6 to deposit an epitaxial layer of tungsten on said sheet of silicon steel. Epitaxial silicon can then be deposited in a conventional manner on the layer of epitaxial tungsten.

  17. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  18. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  19. METHOD FOR THE PREPARATION OF BINARY NITROGEN-FLUORINE COMPOUNDS

    DOEpatents

    Frazer, J.W.

    1962-05-01

    A process is given for preparing binary nitrogenfluorine compounds, in particular, tetrafluorohydrazine (N/sub 2/F/sub 4/) and difluorodiazine (N/sub 2/ F/sub 2/), The process comprises subjecting gaseous nitrogen trifluoride to the action of an alternating current electrical glow discharge in the presence of mercury vapors. By the action of the electrical discharge, the nitrogen trifluoride is converted into a gaseous product comprising a mixture of tetrafluorohydrazine, the isomers of difluorodiazine, and other impurities including nitrogen, nitrogen oxides, silicon tetrafiuoride, and unreacted nitrogen trifluoride. The gaseous products and impurities are passed into a trap maintained at about - 196 deg C to freeze out the desired products and impurities with the exception of nitregen gas which passes off from the trap and is discarded. Subsequently, the desired products and remaining impurities are warmed to the gaseous state and passed through a silica gel trap maintained at about - 55DEC, wherein the desired tetrafluorohydrazine and difluorodiazine products are retained while the remaining gaseous impurities pass therethrough. The desired products are volatilized from the silica gel trap by heating and then separated by gas chrounatography means into the respective tetrafluorohydrazine and difluorodiazine products. (A.e.C)

  20. Effect of post-deposition implantation and annealing on the properties of PECVD deposited silicon nitride films

    SciTech Connect

    Shams, Q.A.

    1988-01-01

    Recently it has been shown that memory-quality silicon nitride can be deposited using plasma enhanced chemical vapor deposition (PECVD). Nitrogen implantation and post-deposition annealing resulted in improved memory properties of MNOS devices. The primary objective of the work described here is the continuation of the above work. Silicon nitride films were deposited using argon as the carrier gas and evaluated in terms of memory performance as the charge-trapping layer in the metal-nitride-oxide-silicon (MNOS) capacitor structure. The bonding structure of PECVD silicon nitride was modified by annealing in different ambients at temperatures higher than the deposition temperature. Post-deposition ion implantation was used to introduce argon into the films in an attempt to influence the transfer, trapping, and emission of charge during write/erase exercising of the MNOS devices. Results show that the memory performance of PECVD silicon nitride is sensitive to the deposition parameters and post-deposition processing.

  1. Solar silicon from directional solidification of MG silicon produced via the silicon carbide route

    NASA Technical Reports Server (NTRS)

    Rustioni, M.; Margadonna, D.; Pirazzi, R.; Pizzini, S.

    1986-01-01

    A process of metallurgical grade (MG) silicon production is presented which appears particularly suitable for photovoltaic (PV) applications. The MG silicon is prepared in a 240 KVA, three electrode submerged arc furnace, starting from high grade quartz and high purity silicon carbide. The silicon smelted from the arc furnace was shown to be sufficiently pure to be directionally solidified to 10 to 15 kg. After grinding and acid leaching, had a material yield larger than 90%. With a MG silicon feedstock containing 3 ppmw B, 290 ppmw Fe, 190 ppmw Ti, and 170 ppmw Al, blended with 50% of off grade electronic grade (EG) silicon to reconduct the boron content to a concentration acceptable for solar cell fabrication, the 99% of deep level impurities were concentrated in the last 5% of the ingot. Quite remarkably this material has OCV values higher tham 540 mV and no appreciable shorts due to SiC particles.

  2. Fluidized-Bed Particles Scavenge Silicon Fines

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Rohatgi, N.; Lutwack, R.; Hogle, R.

    1985-01-01

    Waste reduced, and silicon production rate improved. In new process silicon formed by thermal decomposition of SiH4. Part of silicon formed on silicon seed particles as result of surface chemical reaction. However, silicon formed by homogeneous reaction in gas phase tends to form aggregates of silicon atoms, which appear as fine particles (like dust). Believed that scavenging action of seed particles enables large fraction fines to be incorporated onto seed surface. This mode of growth confirmed by electron microscopy photographs.

  3. Fluidized bed for production of polycrystalline silicon

    SciTech Connect

    Flagella, R.N.

    1992-08-18

    This patent describes a method for removing silicon powder particles from a reactor that produces polycrystalline silicon by the pyrolysis of a silane containing gas in a fluidized bed reaction zone of silicon seed particles. It comprises introducing the silane containing gas stream into the reaction zone of fluidized silicon seed particles; heterogeneously decomposing the silane containing gas under conditions; collecting the silicon product particles from the collection zone; and removing silicon powder particles from the reactor.

  4. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  5. ODD NITROGEN PROCESSES

    SciTech Connect

    Johnston, Harold S.

    1980-01-01

    This chapter is in three parts. The first concerns interpretations that can be made from atmospheric observations regarding nitrogen compounds and ozone, the second reviews some predictions made by atmospheric models, and the third compares between certain model results and atmospheric measurements with an emphasis on detecting evidence of significant disagreements.

  6. Nitrogen recommendation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilization for corn production is complicated by soil and weather variability, yet has far-reaching economic and environmental implications. To address this challenge, alternative N management strategies have been explored extensively in recent years by both public and private groups for...

  7. Nitrogen use efficiency revisited.

    PubMed

    Hirose, Tadaki

    2011-08-01

    Nitrogen use efficiency (NUE) was originally defined as the dry mass productivity per unit N taken up from soil. The term was subsequently redefined as the product of nitrogen productivity (NP) and mean residence time of nitrogen (MRT). However, this redefinition was found to contradict the original definition under certain conditions, and confusion arose when the MRT defined for a steady-state system was applied to a system that was actually not at steady state. As MRT is the expected length of time that a unit of N newly taken up from soil is retained before being lost, it can be translated into the plant nitrogen duration (PND) divided by the total N uptake. This MRT is determined equally well for a steady state- and a non-steady state system and is in accordance with the original definition of NUE. It can be applied to a herbaceous perennial stand (that was at a steady state) and to an annual stand (that was not at a steady state) to determine NUE. NUE is also applicable when plant growth and reproduction are analyzed in relation to N use.

  8. Ruminant nitrogen usage

    SciTech Connect

    Not Available

    1985-01-01

    This book brings together the latest research on protein absorption by ruminants and takes a look at the calculation of optimum nutrient requirements, including bacterial digestion, in the calculations. It also describes the parameters of nitrogen conversion in the ruminant and examines the different kinds of protein found in animal feedstuffs.

  9. Nitrogen catch crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High costs of nitrogen (N) fertilizer and the potential for N losses to ground and surface water have resulted in increased interest in using catch crops to recover this N. Research on potatoes has shown that the amount of N lost to leaching can be as much as the amount of N removed from the field ...

  10. Visible electroluminescence in spark-processed silicon

    NASA Astrophysics Data System (ADS)

    Shepherd, Nigel Dexter

    Spark-processing is a novel technique that transforms silicon into a material with unique optical and magnetic properties. In this work, the electroluminescence (EL) from spark-processed silicon (sp-Si) has been studied and characterized. The devices studied have a MOS (metal-oxide-semiconductor) type structure. The EL spectrum is broad, and has a threshold wavelength that extends beyond 350 nm, and peaks at around 650 and 730 nm. The threshold voltage for the EL process is typically in the 5--8 V range. Irrespective of whether the base silicon is n or p-type, EL is observed only under the condition of electron injection into the spark-processed layer. The processing conditions that result in the highest EL intensity have been established. Specifically, the processing parameters that results in the highest device currents and EL intensity are 7--8 kV, 10 mA, 12--13 kHz, around 750 mbar and 10 seconds of spark voltage, current, frequency, pressure and time respectively. It has been also been found that processing in air results in higher EL intensities, compared to processing in ultra-high purity nitrogen or oxygen. These conditions are believed to result in the optimal composition and thickness of the near surface SiOx layers, thought to be the optically active region in sp-Si EL devices. These processing conditions are also believed to result in a surface morphology that facilitates the best coverage by the semitransparent metal film, through which the electroluminescence is emitted. When a tungsten wire is used as the anode for spark-processing, the pattern of emission is a circular band of light. This band consists of small light-emitting spots, separated by non-emitting regions. It is shown that by modifying the anode arrangement, significant improvements to the pattern of emission and EL intensity can be achieved. These improvements are proposed to be due to enhanced coverage by the semitransparent metal film. Based on the results of the EL characterization

  11. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  12. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  13. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  14. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  15. Low cost silicon solar array project silicon materials task

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.

  16. New process of silicon carbide purification intended for silicon passivation

    NASA Astrophysics Data System (ADS)

    Barbouche, M.; Zaghouani, R. Benabderrahmane; Benammar, N. E.; Aglieri, V.; Mosca, M.; Macaluso, R.; Khirouni, K.; Ezzaouia, H.

    2017-01-01

    In this work, we report on a new, efficient and low cost process of silicon carbide (SiC) powder purification intended to be used in photovoltaic applications. This process consists on the preparation of porous silicon carbide layers followed by a photo-thermal annealing under oxygen atmosphere and chemical treatment. The effect of etching time on impurities removal efficiency was studied. Inductively coupled plasma atomic emission spectrometry (ICP-AES) results showed that the best result was achieved for an etching time of 10 min followed by gettering at 900 °C during 1 h. SiC purity is improved from 3N (99.9771%) to 4N (99.9946%). Silicon carbide thin films were deposited onto silicon substrates by pulsed laser deposition technique (PLD) using purified SiC powder as target. Significant improvement of the minority carrier lifetime was obtained encouraging the use of SiC as a passivation layer for silicon.

  17. Nanostructured silicon nitride from wheat and rice husks

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R.

    2016-04-01

    Nanoparticles, submicron-diameter tubes, and rods of Si3N4 were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si3N4 with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si3N4. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si3N4 combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.

  18. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  19. Sorption Properties of Aerogel in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.

    2006-01-01

    Aerogel products are now available as insulation materials of the future. The Cryogenics Test Laboratory at the NASA Kennedy Space Center is developing aerogel-based thermal insulation systems for space launch applications. Aerogel beads (Cabot Nanogel ) and aerogel blankets (Aspen Aerogels Spaceloft ) have outstanding ambient pressure thermal performance that makes them useful for applications where sealing is not possible. Aerogel beads are open-celled silicone dioxide and have tiny pores that run throughout the body of the bead. It has also recently been discovered that aerogel beads can be used as a filtering device for aqueous compounds at room temperature. With their hydrophobic covering, the beads absorb any non-polar substance and they can be chemically altered to absorb hot gases. The combination of the absorption and cryogenic insulating properties of aerogel beads have never been studied together. For future cryogenic insulation applications, it is crucial to know how the beads react while immersed in cryogenic liquids, most notably liquid nitrogen. Aerogel beads in loose-fill situation and aerogel blankets with composite fiber structure have been tested for absorption properties. Depending on the type of aerogel used and the preparation, preliminary results show the material can absorb up to seven times its own weight of liquid nitrogen, corresponding to a volumetric ratio of 0.70 (unit volume nitrogen per unit volume aerogel). These tests allow for an estimate on how much insulation is needed in certain situations. The theory behind the different processes of sorption is necessary for a better understanding of the preparation of the beads before they are used in an insulation system.

  20. Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System

    NASA Technical Reports Server (NTRS)

    Kolesar, Edward S.; Reston, Rocky R.

    1995-01-01

    A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.

  1. Surface breakdown of silicon

    NASA Astrophysics Data System (ADS)

    Feuerstein, R. J.; Senitzky, B.

    1991-07-01

    The surface electrical breakdown of n(+)nn(+) rectangular solid blocks of silicon was investigated. Studies were performed in air at pressures of 10 to the -6th torr and 1 atm, and in transformer oil, ethylene glycol, and deionized water, under pulsed electrical excitation. The breakdown voltage (BV) of these devices was found to increase as the dielectric constant of the ambient increased. Glow discharge cleaning of the surface in vacuum was found to have no effect on the BV. A theory of surface charging leading to field enhancement along the surface is developed on the basis of these findings.

  2. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  3. Photoactive porous silicon nanopowder.

    PubMed

    Meekins, Benjamin H; Lin, Ya-Cheng; Manser, Joseph S; Manukyan, Khachatur; Mukasyan, Alexander S; Kamat, Prashant V; McGinn, Paul J

    2013-04-24

    Bulk processing of porous silicon nanoparticles (nSi) of 50-300 nm size and surface area of 25-230 m(2)/g has been developed using a combustion synthesis method. nSi exhibits consistent photoresponse to AM 1.5 simulated solar excitation. In confirmation of photoactivity, the films of nSi exhibit prompt bleaching following femtosecond laser pulse excitation resulting from the photoinduced charge separation. Photocurrent generation observed upon AM 1.5 excitation of these films in a photoelectrochemical cell shows strong dependence on the thickness of the intrinsic silica shell that encompasses the nanoparticles and hinders interparticle electron transfer.

  4. Silicon Web Process Development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1978-01-01

    Progress in the development of techniques to grow silicon web at 25 wq cm/min output rate is reported. Feasibility of web growth with simultaneous melt replenishment is discussed. Other factors covered include: (1) tests of aftertrimmers to improve web width; (2) evaluation of growth lid designs to raise speed and output rate; (3) tests of melt replenishment hardware; and (4) investigation of directed gas flow systems to control unwanted oxide deposition in the system and to improve convective cooling of the web. Compatibility with sufficient solar cell performance is emphasized.

  5. Silicon carbide sewing thread

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  6. Silicon material task review

    NASA Technical Reports Server (NTRS)

    Lorenz, J. H.

    1986-01-01

    The objectives of the Flat-plate Solar Array (FSA) Project Silicon Material Task are to evaluate technologies, new and old; to develop the most promising technologies; to establish practicality of the processes to meet production, energy use, and economic criteria; and to develop an information base on impurities in polysilicon and to determine their effects on solar cell performance. The approach involves determining process feasibility, setting milestones for the forced selection of the processes, and establishing the technical readiness of the integrated process.

  7. Compensated amorphous silicon solar cell

    DOEpatents

    Carlson, David E.

    1980-01-01

    An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

  8. Luneburg lens in silicon photonics.

    PubMed

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  9. The Impact of Silicon Photonics

    DTIC Science & Technology

    2007-08-29

    integrated photonics 16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF ABSTRACT 18.NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Richard Soref...The impact of present and potential applications is discussed. key words: silicon, optoelectronics, integrated photonics 1. Introduction Silicon

  10. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. V.; Cleland, J. W.; Westbrook, R. D.; Davis, H. L.; Wood, R. F.; Lindmayer, J.; Wakefield, G. F.

    1975-01-01

    The economic production of silicon solar cell arrays circumvents p-n junction degradation by nuclear doping, in which the Si-30 transmutes to P-31 after thermal neutron capture. Also considered are chemical purity specifications for improved silicon bulk states, surface induced states, and surface states.

  11. Hydrodynamic slip in silicon nanochannels

    NASA Astrophysics Data System (ADS)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-03-01

    Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.

  12. Hydrogen-silicon carbide interactions

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Jacobson, Nathan S.; Misra, Ajay K.; Humphrey, Donald L.

    1989-01-01

    A study of the thermochemistry and kinetics of hydrogen environmental attack of silicon carbide was conducted for temperatures in the range from 1100 C to 1400 C. Thermodynamic maps based on the parameters of pressure and oxygen/moisture content were constructed. With increasing moisture levels, four distinct regions of attack were identified. Each region is defined by the thermodynamically stable solid phases. The theoretically stable solid phases of Region 1 are silicon carbide and silicon. Experimental evidence is provided to support this thermodynamic prediction. Silicon carbide is the single stable solid phase in Region 2. Active attack of the silicon carbide in this region occurs by the formation of gases of SiO, CO, CH4, SiH4, and SiH. Analysis of the kinetics of reaction for Region 2 at 1300 C show the attack of the silicon carbide to be controlled by gas phase diffusion of H2O to the sample. Silicon carbide and silica are the stable phases common to Regions 3 and 4. These two regions are characterized by the passive oxidation of silicon carbide and formation of a protective silica layer.

  13. Gettering Silicon Wafers with Phosphorus

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1983-01-01

    Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.

  14. Smoother Scribing of Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1986-01-01

    Proposed new tool used to scribe silicon wafers into chips more smoothly than before. New scriber produces surface that appears ductile. Scribed groove cuts have relatively smooth walls. Scriber consists of diamond pyramid point on rigid shaft. Ethanol flows through shaft and around point, like ink in ballpoint pen. Ethanol has significantly different effect for scribing silicon than water, used in conventional diamond scribers.

  15. Recent developments in silicon calorimetry

    SciTech Connect

    Brau, J.E.

    1990-11-01

    We present a survey of some of the recent calorimeter applications of silicon detectors. The numerous attractive features of silicon detectors are summarized, with an emphasis on those aspects important to calorimetry. Several of the uses of this technology are summarized and referenced. We consider applications for electromagnetic calorimetry, hadronic calorimetry, and proposals for the SSC.

  16. Cryolite Byproduct in Silicon Production

    NASA Technical Reports Server (NTRS)

    Bartlett, R. W.

    1982-01-01

    Process reacts alumina hydrate with HF and NaF from silicon-production process. Cryolite is produced by adding reaction step to process that makes high-purity silicon from fluorosilicic acid. New extended process has been demonstrated in laboratory and could be used in commercial plants.

  17. Enthalpy of sublimation as measured using a silicon oscillator

    NASA Astrophysics Data System (ADS)

    Shakeel, Hamza; Pomeroy, J. M.

    In this study, we report the enthalpy of sublimation of common gases (nitrogen, oxygen, argon, carbon dioxide, neon, krypton, xenon, and water vapor) using a large area silicon oscillator with a sub-ng (~0.027 ng/cm2) mass sensitivity. The double paddle oscillator design enables high frequency stability (17 ppb) at cryogenic temperatures and provides a consistent technique for enthalpy measurements. The enthalpies of sublimation are derived from the rate of mass loss during programmed thermal desorption and are detected as a change in the resonance frequency of the self-tracking oscillator. These measured enthalpy values show excellent agreement with the accepted literature values.

  18. Formation of dielectric silicon compounds by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Veselov, D. S.; Voronov, Yu A.

    2016-09-01

    The paper is devoted to the study of reactive magnetron sputtering of the silicon target in the ambient of inert argon gas with reactive gas, nitrogen or oxygen. The magnetron was powered by two mid-frequency generators of a rectangular pulse of opposite polarity. The negative polarity pulse provides the sputtering of the target. The positive polarity pulse provides removal of accumulated charge from the surface of the target. This method does not require any special devices of resistances matching and provides continuous sputtering of the target.

  19. Aqueous phase removal of nitrogen from nitrogen compounds

    DOEpatents

    Fassbender, Alex G.

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  20. Bacteria and the Nitrogen Economy.

    ERIC Educational Resources Information Center

    Ayanaba, A.

    1982-01-01

    Biological nitrogen fixation accounts for almost 70 percent of nitrogen for plant growth. If food is to keep abreast of population growth, even more nitrogen must be fixed. For this international research institutes continue the search for natural variants in the bacterial population while also pursuing novel genetic engineering methods. (Author)

  1. RF-sputtered silicon and hafnium nitrides - Properties and adhesion to 440C stainless steel

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1983-01-01

    Silicon nitride and hafnium nitride coatings were deposited by reactive RF sputtering on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. Depositions were at two background pressures, 8 and 20 mtorr, and at two different fractions (f) of nitrogen in argon, 0.25 and 0.60, for hafnium nitride and at f = 0.25 for silicon nitride. The coatings and the interface between the coating and substrates were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. A Knoop microhardness of 1650 + or 100 kg/sq mm was measured for hafnium nitride and 3900 + or 500 kg/sq mm for silicon nitride. The friction coefficients between a 440C rider and the coatings were measured under lubricated conditions. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C.

  2. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  3. Silicone Granulomas, a Growing Problem?

    PubMed Central

    Curreri, Alexis T.; Taylor, Gina A.; Burris, Katy

    2016-01-01

    The formation of granulomas is known to be a possible adverse effect of liquid silicone administration, used for soft tissue augmentation. Its plumping effects provide enhancement of certain body parts, such as the lips, hips, and buttocks. The desire for enhancement, perhaps influenced by popular culture and an unrealistic standard of beauty, leads individuals to seek silicone injections. There is a growing population of women and men receiving injections by unlicensed, unskilled “practitioners” not related to the healthcare profession. Complications under such circumstances are not uncommon, particularly the emergence of silicone granulomas, and the authors’ medical center has seen an increase in such cases. In this case report, the authors illustrate a young patient with significant complications from her silicone injections, review current therapies for silicone granulomas, and discuss this growing medical problem. PMID:27386046

  4. Synthesis of nanocrystals by discharges in liquid nitrogen from Si–Sn sintered electrode

    PubMed Central

    Kabbara, H.; Noël, C.; Ghanbaja, J.; Hussein, K.; Mariotti, D.; Švrček, V.; Belmonte, T.

    2015-01-01

    The synthesis feasibility of silicon–tin nanocrystals by discharges in liquid nitrogen is studied using a Si–10 at % Sn sintered electrode. Time-resolved optical emission spectroscopy shows that silicon and tin melt almost simultaneously. The presence of both vapours does not lead to the synthesis of alloyed nanocrystals but to the synthesis of separate nanocrystals of silicon and tin with average sizes of 10 nm. These nanocrystals are transformed into amorphous silicon oxide (am–SiO2) and β–SnO2 by air oxidation, after evaporation of the liquid nitrogen. The synthesis of an am-Si0.95Sn0.05 phase around large silicon crystals (~500 nm) decorated by β–Sn spheroids is achieved if the current flowing through electrodes is high enough. When the sintered electrode is hit by powerful discharges, some grains are heated and tin diffuses in the large silicon crystals. Next, these grains are shelled and fall into the dielectric liquid. PMID:26621791

  5. SILICON AND BONE HEALTH

    PubMed Central

    JUGDAOHSINGH, R.

    2009-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health. PMID:17435952

  6. Micromachined silicon seismic transducers

    SciTech Connect

    Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.

    1995-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  7. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analysis was continued for the HSC process (Hemlock Semiconductor Corporation) in which solar cell silicon is produced in a 1,000 MT/yr plant. Progress and status are reported for the primary engineering activities involved in the preliminary process engineering design of the plant base case conditions (96%), reaction chemistry (96%), process flow diagram (85%), material balance (85%), energy balance (60%), property data (60%), equipment design (40%), major equipment list (30%) and labor requirements (10%). Engineering design of the second distillation column (D-02, TCS column) in the process was completed. The design is based on a 97% recovery of the light key (TCS, trichlorosilane) in the distillate and a 97% recovery of the heavy key (TET, silicon tetrachloride) in the bottoms. At a reflux ratio of 2, the specified recovery of TCS and TET is achieved with 20 trays (equilibrium stages, N=20). Respective feed tray locations are 9, 12 and 15 (NF sub 1 = 9, NF sub 2 = 12,, and NF sub 3 = 15). A total condenser is used for the distillation which is conducted at a pressure of 90 psia.

  8. Silicon and bone health.

    PubMed

    Jugdaohsingh, R

    2007-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health.

  9. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  10. Influence of NO2 molecule adsorption on free charge carriers and spin centers in porous silicon

    NASA Astrophysics Data System (ADS)

    Konstantinova, E. A.; Osminkina, L. A.; Sharov, C. S.; Timoshenko, V. Yu.; Kashkarov, P. K.

    2005-06-01

    The effect of nitrogen dioxide (NO2) adsorption on free charge carriers and spin centers in porous silicon has been studied by FTIR and ESR spectroscopy. The silicon dangling bond (Pb1-center) density rises with increasing NO2 pressure (PNO2) while free charge carrier concentration depends on PNO2 nonmonotonically. The experimental results are explained by a microscopic model taking into account both the formation of Pb1+ -(NO2)- donor-acceptor pairs and NO2-induced oxidation of Si nanocrystal surfaces.

  11. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  12. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  13. Effect of oxygen-nitrogen ratio on sinterability of Sialons

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1979-01-01

    The effect of varying the sintering temperature and the oxygen to nitrogen ratio (O/N) on the sinterability of Sialons of the formula Si2.55Al0.6OyN4-0.667y was investigated for y between 0.57 and 1.92 (O/N between 0.157 and 0.706). The Sialons reached maximum density on pressureless sintering for 4 hours at about 1760 C in nitrogen. Optimum sinterability with densities up to about 98 percent of theoretical was attained with negligible X-phase in the O/N range from about 0.2 to 0.3. On sintering at approximately 1830 C the Sialons decomposed with evolution of silicon and aluminum.

  14. Sealing Nitrogen Tetroxide Leaks

    NASA Technical Reports Server (NTRS)

    Garrard, George G.; Houston, Donald W.; Scott, Frank D.

    1990-01-01

    Use of Furmanite FSC-N-6B sealant in clam-shell sealing device makes it possible to stop leaks of nitrogen tetroxide through defective or improperly-seated plumbing fittings. Devised to stop leaks in vent line of small rocket motor on Space Shuttle. Also used on plumbing containing hydrazine and other hazardous fluids, and repair withstands severe temperature, vibration, and shock. Leaks stopped in place, without draining or replacement of leaking parts.

  15. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  16. Ice sheets and nitrogen.

    PubMed

    Wolff, Eric W

    2013-07-05

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas.

  17. Nitrogen metabolism in haloarchaea

    PubMed Central

    Bonete, María José; Martínez-Espinosa, Rosa María; Pire, Carmen; Zafrilla, Basilio; Richardson, David J

    2008-01-01

    The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments. The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3-, NO2- or NH4+ as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils. PMID:18593475

  18. Crystalline silicon growth in nickel/a-silicon bilayer

    SciTech Connect

    Mohiddon, Md Ahamad; Naidu, K. Lakshun; Dalba, G.; Rocca, F.; Krishna, M. Ghanashyam

    2013-02-05

    The effect of substrate temperature on amorphous Silicon crystallization, mediated by metal impurity is reported. Bilayers of Ni(200nm)/Si(400nm) are deposited on fused silica substrate by electron beam evaporator at 200 and 500 Degree-Sign C. Raman mapping shows that, 2 to 5 micron size crystalline silicon clusters are distributed over the entire surface of the sample. X-ray diffraction and X-ray absorption spectroscopy studies demonstrate silicon crystallizes over the metal silicide seeds and grow with the annealing temperature.

  19. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results of a study for Task 3 of the Low Cost Solar Array Project, directed toward the development of a cost effective encapsulation system for photovoltaic modules using silicon based materials, are reported. Results of the following are discussed: (1) weather-ometer stressing vs. weathering history of silicon and silicon modified materials; (2) humidity/temperature cycling exposure; (3) exposure at high humidity/high temperature; (4) outdoor exposure stress; (5) thermal cycling stress; and (6) UV screening agents. The plans for the next quarter are outlined.

  20. Swift heavy ion-induced recrysallization of silicon-on-insulator (SOI) structures

    NASA Astrophysics Data System (ADS)

    Virdi, G. S.; Pathak, B. C.; Avasthi, D. K.; Kanjilal, D.

    2002-02-01

    Buried Si 3N 4-Si interfaces and overlayer in silicon-on-insulator (SOI) structures were improved by irradiation with 100 MeV 107Ag after the synthesis of buried silicon nitride layers by high dose nitrogen ion-implantation. Auger electron spectroscopy (AES) depth profile analysis illustrates that the MeV heavy ions irradiation in the SOI structure, modifies the distribution of nitrogen that results in better stoichiometry of the buried silicon nitride layers and abrupt Si 3N 4-Si interfaces. Electron spin resonance (ESR) technique shows the improvement in the crystalline structure of the Si over layer. Current-voltage and high frequency capacitance-voltage ( C- V) characteristics were studied, and electrical breakdown measurements were performed on metal nitride silicon (MNS) structures fabricated after removing the Si over layer in the SOI structure. In the ion-beam irradiated SOI specimens, buried silicon nitride layer show a high breakdown field strength of 4.5-6.5 MV/cm as compared to that of 3.0-3.9 MV/cm in the unirradiated one. The C- V analysis of the MNS capacitors reveals that the buried Si 3N 4-Si substrate interface exhibits a better quality with reduced fixed insulator charge and interface state densities after the ion-beam irradiation. Mid-gap interface state density at the buried Si 3N 4-Si substrate interface was as low as 1.0×10 11 cm-2 V-2 after the ion-beam irradiation, which is comparable to that of silicon nitride films deposited on silicon (Si) by the conventional low pressure chemical vapor deposition technique. The role of MeV ion-beam irradiation in improving the properties of SOI structures has been discussed on the basis of various models.

  1. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  2. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOEpatents

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  3. Silicene: silicon conquers the 2D world

    NASA Astrophysics Data System (ADS)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry

    2016-01-01

    We live in the digital age based on the silicon chip and driven by Moore's law. Last July, IBM created a surprise by announcing the fabrication of a 7 nm test chip with functional transistors using, instead of just silicon, a silicon-germanium alloy. Will silicon be dethroned?

  4. PREPARATION AND PURIFICATION OF SILICON CARBIDE.

    DTIC Science & Technology

    the materials were divided into two parts. Part I covers problems of silicon carbide preparation and the growing of silicon carbide single crystals...and thin films for semiconductor devices. Part II treats problems of purity, including the purification and chemical analysis of silicon carbide and of starting materials for silicon carbide preparation.

  5. Ceramic for Silicon-Shaping Dies

    NASA Technical Reports Server (NTRS)

    Sekercioglu, I.; Wills, R. R.

    1982-01-01

    Silicon beryllium oxynitride (SiBON) is a promising candidate material for manufacture of shaping dies used in fabricating ribbons or sheets of silicon. It is extremely stable, resists thermal shock, and has excellent resistance to molten silicon. SiBON is a solid solution of beryllium silicate in beta-silicon nitride.

  6. Oxide Control for Silicon Crystal Growth

    NASA Technical Reports Server (NTRS)

    Wehrli, H. A. I.

    1982-01-01

    Web dendrite growth process pulls sheet of newly crystallized silicon from molten silicon. Jets of argon pull outside gas into melt cavity, preventing silicon oxide from passing through heat-shield hold and depositing on it. Generated by aspirators, reversed flow is used in web dendrite process, which produces sheets of single-crystal silicon for low-cost solar cells.

  7. Lipid membranes on nanostructured silicon.

    SciTech Connect

    Slade, Andrea Lynn; Lopez, Gabriel P.; Ista, Linnea K.; O'Brien, Michael J.; Sasaki, Darryl Yoshio; Bisong, Paul; Zeineldin, Reema R.; Last, Julie A.; Brueck, Stephen R. J.

    2004-12-01

    A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

  8. High specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1996-01-01

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  9. High specific activity silicon-32

    DOEpatents

    Phillips, D.R.; Brzezinski, M.A.

    1996-06-11

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  10. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  11. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, Kurt H.; Sigmon, Thomas W.

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  12. Silicon Nanowire Photocathodes for Photoelectrochemical Hydrogen Production

    PubMed Central

    Chandrasekaran, Soundarrajan; Nann, Thomas; Voelcker, Nicolas H.

    2016-01-01

    The performance of silicon for water oxidation and hydrogen production can be improved by exploiting the antireflective properties of nanostructured silicon substrates. In this work, silicon nanowires were fabricated by metal-assisted electroless etching of silicon. An enhanced photocurrent density of −17 mA/cm2 was observed for the silicon nanowires coated with an iron sulphur carbonyl catalyst when compared to bare silicon nanowires (−5 mA/cm2). A substantial amount of 315 µmol/h hydrogen gas was produced at low bias potentials for the silicon nanowires coated with an iron sulphur carbonyl catalyst. PMID:28335272

  13. Replacement of silicone polymer A with silicone polymer B and the subsequent characterization of the new cellular silicone materials

    SciTech Connect

    Schneider, J.W.

    1994-04-01

    The purpose of this project is to replace silicone polymer A with silicone polymer B produced by Vendor B. Silicone polymer B and the resulting B-50 cellular silicone have been used to produce cushions for the W87 program. Approximately 5.5 years of stress relaxation aging study data as well as actual part surveillance data have been collected, characterizing the stockpile life performance of the B-50 cellular silicone cushion material. Process characterization of new cellular silicone materials as a result of replacing silicone polymer A with silicone polymer B has been completed. Load deflection requirements for the new cellular silicone materials based on silicone polymer B have been met. The silicone polymer B based cellular silicone materials must be compounded at densities of approximately 0.03 g/cm{sup 3} less than the silicone polymer A based cellular silicone materials in order to achieve the same load deflection requirements has also been demonstrated. The change in silicone polymers from A to B involved a decrease in volatile content as well as a decrease in part shrinkage.

  14. Fabrication and characterization of porous silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jung, Daeyoon; Cho, Soo Gyeong; Moon, Taeho; Sohn, Honglae

    2016-01-01

    We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires. [Figure not available: see fulltext.

  15. 4H-SiC surface energy tuning by nitrogen up-take

    NASA Astrophysics Data System (ADS)

    Pitthan, E.; Amarasinghe, V. P.; Xu, C.; Gustafsson, T.; Stedile, F. C.; Feldman, L. C.

    2017-04-01

    Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  16. Single crystalline mesoporous silicon nanowires.

    PubMed

    Hochbaum, Allon I; Gargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-10-01

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  17. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  18. Ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, H. F.-W.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A.; Cartiglia, N.; Marchetto, F.; Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A.

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R&D topics are discussed.

  19. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A cost effective encapsulant system was identified and a silicone acrylic cover material containing a durable ultraviolet screening agent was prepared. The effectiveness of the cover material in protecting photo-oxidatively sensitive polymers was demonstrated.

  20. Micromechanical silicon precision scale

    NASA Astrophysics Data System (ADS)

    Oja, Aarne S.; Sillanpaa, Teuvo; Seppae, H.; Kiihamaki, Jyrki; Seppala, P.; Karttunen, Jani; Riski, Kari

    2000-04-01

    A micro machined capacitive silicon scale has been designed and fabricated. It is intended for weighing masses on the order of 1 g at the resolution of about 1 ppm and below. The device consists of a micro machined SOI chip which is anodically bonded to a glass chip. The flexible electrode is formed in the SOI device layer. The other electrode is metallized on the glass and is divided into three sections. The sections are used for detecting tilting of the top electrode due to a possible off-centering of the mass load. The measuring circuit implements electrostatic force feedback and keeps the top electrode at a constant horizontal position irrespective of its mass loading. First measurements have demonstrated the stability allowing measurement of 1 g masses at an accuracy of 2...3 ppm.

  1. Silicon tracker data acquisition

    SciTech Connect

    Haynes, W.J.

    1997-12-31

    Large particle physics experiments are making increasing technological demands on the design and implementation of real-time data acquisition systems. The LHC will have bunch crossing intervals of 25 nanoseconds and detectors, such as CMS, will contain over 10 million electronic channels. Readout systems will need to cope with 100 kHz rates of 1 MByte-sized events. Over 70% of this voluminous flow will stem from silicon tracker and MSGC devices. This paper describes the techniques currently being harnessed from ASIC devices through to modular microprocessor-based architectures around standards such as VMEbus and PCI. In particular, the experiences gained at the HERA H1 experiment are highlighted where many of the key technological concepts have already been im implemented.

  2. The ISOLDE Silicon Ball

    SciTech Connect

    Fraile, L.M.

    2003-09-16

    The investigation of weakly bound nuclei close to the particle driplines makes necessary the development of new spectroscopy devices with the capability of detecting charged particles and precisely determining their energy, angular distribution and nature. With this aim the ISOLDE Silicon Ball is under construction. It is a charged particle spectroscopy device with the requirements of high geometrical efficiency and broad energy range coverage, designed for the investigation of the exotic nuclei produced at ISOLDE and at other similar facilities. In order to allow for particle identification the simultaneous use of the Time of Flight (TOF) and Pulse Shape Discrimination (PSD) techniques is intended. Recoil tagging capabilities, suitable for transfer reactions to be performed at REX-ISOLDE, should be foreseen for a future development. The design and realization of the first prototype, together with the first tests are reported.

  3. Crystallization of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1984-01-01

    Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.

  4. Monolithic silicon bolometers

    NASA Technical Reports Server (NTRS)

    Downey, P. M.; Jeffries, A. D.; Meyer, S. S.; Weiss, R.; Bachner, F. J.; Donnelly, J. P.; Lindley, W. T.; Mountain, R. W.; Silversmith, D. J.

    1984-01-01

    A new type of bolometer detector for the millimeter and submillimeter spectral range is described. The bolometer is constructed of silicon using integrated circuit fabrication techniques. Ion implantation is used to give controlled resistance vs temperature properties as well as extremely low 1/f noise contacts. The devices have been tested between 4.2 and 0.3 K. The best electrical NEP measured is 4 x 10 to the -16th W/Hz to the 1/2 at 0.35 K between 1- and 10-Hz modulation frequency. This device had a detecting area of 0.25 sq cm and a time constant of 20 msec at a bath temperature of 0.35 K.

  5. Silicon force sensor

    DOEpatents

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  6. Silicon Carbide Nanotube Synthesized

    NASA Technical Reports Server (NTRS)

    Lienhard, Michael A.; Larkin, David J.

    2003-01-01

    Carbon nanotubes (CNTs) have generated a great deal of scientific and commercial interest because of the countless envisioned applications that stem from their extraordinary materials properties. Included among these properties are high mechanical strength (tensile and modulus), high thermal conductivity, and electrical properties that make different forms of single-walled CNTs either conducting or semiconducting, and therefore, suitable for making ultraminiature, high-performance CNT-based electronics, sensors, and actuators. Among the limitations for CNTs is their inability to survive in high-temperature, harsh-environment applications. Silicon carbon nanotubes (SiCNTs) are being developed for their superior material properties under such conditions. For example, SiC is stable in regards to oxidation in air to temperatures exceeding 1000 C, whereas carbon-based materials are limited to 600 C. The high-temperature stability of SiCNTs is envisioned to enable high-temperature, harsh-environment nanofiber- and nanotube-reinforced ceramics. In addition, single-crystal SiC-based semiconductors are being developed for hightemperature, high-power electronics, and by analogy to CNTs with silicon semiconductors, SiCNTs with single-crystal SiC-based semiconductors may allow high-temperature harsh-environment nanoelectronics, nanosensors, and nanoactuators to be realized. Another challenge in CNT development is the difficulty of chemically modifying the tube walls, which are composed of chemically stable graphene sheets. The chemical substitution of the CNTs walls will be necessary for nanotube self-assembly and biological- and chemical-sensing applications. SiCNTs are expected to have a different multiple-bilayer wall structure, allowing the surface Si atoms to be functionalized readily with molecules that will allow SiCNTs to undergo self-assembly and be compatible with a variety of materials (for biotechnology applications and high-performance fiber-reinforced ceramics).

  7. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  8. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    PubMed

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  9. Silicon Holder For Molecular-Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  10. Integrated silicon and silicon nitride photonic circuits on flexible substrates.

    PubMed

    Chen, Yu; Li, Mo

    2014-06-15

    Flexible integrated photonic devices based on crystalline materials on plastic substrates have a promising potential in many unconventional applications. In this Letter, we demonstrate a fully integrated photonic system including ring resonators and grating couplers, based on both crystalline silicon and silicon nitride, on flexible plastic substrate by using the stamping-transfer method. A high yield has been achieved by a simple, yet reliable transfer method without significant performance degradation.

  11. Corrosion Characteristics of Silicon Carbide and Silicon Nitride

    PubMed Central

    Munro, R. G.; Dapkunas, S. J.

    1993-01-01

    The present work is a review of the substantial effort that has been made to measure and understand the effects of corrosion with respect to the properties, performance, and durability of various forms of silicon carbide and silicon nitride. The review encompasses corrosion in diverse environments, usually at temperatures of 1000 °C or higher. The environments include dry and moist oxygen, mixtures of hot gaseous vapors, molten salts, molten metals, and complex environments pertaining to coal ashes and slags. PMID:28053489

  12. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen (amino-nitrogen) test system....

  13. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen (amino-nitrogen) test system....

  14. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen (amino-nitrogen) test system....

  15. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen (amino-nitrogen) test system....

  16. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  17. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  18. Nitrogen fixation apparatus

    DOEpatents

    Chen, Hao-Lin

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  19. Understanding Nitrogen Fixation

    SciTech Connect

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  20. Silicone Cerenkov-Radiator Material

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V.; Ormes, J. F.; Streitmatter, R. E.

    1984-01-01

    Dyes enhance visible output. Three fluorescent dyes combine to increase output of silicone material that normally has low yield of visible Cerenkov radiation by converting large amount of available ultraviolet photons into visible light.

  1. RF shaping of silicon ribbon

    NASA Technical Reports Server (NTRS)

    Pelhank, D. A.; Rochat, R. D.; Marx, W.

    1976-01-01

    Electromagnetic force generated by radiofrequency coil is used to shape molten silicon. Shaping coil surrounds melt near solid-liquid interface and induces current in surface region of melt nearly equal to but opposite coil current.

  2. Removing Silicone Grease from Glassware

    NASA Astrophysics Data System (ADS)

    Lowry, Thomas H.

    1997-07-01

    A recent note in this Journal (1) described the use of 5% aqueous hydrofluoric acid for removing silicone grease residues from round-bottom flasks. A safer and more convenient alternative is a saturated solution of sodium hydroxide in ethanol.

  3. Silicon carbide-silicon composite having improved oxidation resistance and method of making

    NASA Technical Reports Server (NTRS)

    Luthra, Krishan Lal (Inventor); Wang, Hongyu (Inventor)

    1999-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  4. Method of making silicon carbide-silicon composite having improved oxidation resistance

    NASA Technical Reports Server (NTRS)

    Luthra, Krishan Lal (Inventor); Wang, Hongyu (Inventor)

    2002-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  5. Preprototype nitrogen supply subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1981-01-01

    A nitrogen supply subsystem based on the dissociation of hydrazine into a mixture of hydrogen and nitrogen is developed. The latter is separated to provide makeup nitrogen to control the composition of spacecraft atmospheres. Specific hardware developments resulted in the design and fabrication of a nominal 3.6 kg/d nitrogen generation module. The design integrates a hydrazine catalytic dissociator, three ammonia dissociation stages and four hydrogen separation stages into a 33 kg, 14 cu dm module. A technique was devised to alternate the ammonia dissociation and hydrogen separation stages to give high nitrogen purity in the end product stream. Tests show the product stream to contain less than 0.5 percent hydrogen and 10 parts per million ammonia. The design and development of a test stand for the nitrogen generation module and a series of tests which verified its operation and performance capability are described.

  6. Carbon and nitrogen abundance determinations from transition layer lines. [giant stars

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1988-01-01

    For red giants a smooth increase in the nitrogen to carbon abundance ratio for increasing B-V as is expected for the first dredge up phase when the outer convection zone deepens is found. An average increase in the nitrogen to silicon ratio for B-V = 0.6 which goes back to almost solar values for cool giants with B - V approximately 1.0 is reported. It looks as if Si would be enriched for deeper mixing contrary to expectations from standard evolution theory.

  7. Intrinsic Magnetism at Silicon Surfaces

    DTIC Science & Technology

    2010-08-24

    localized at silicon step edges having the form of graphitic ribbons. The predicted magnetic state is supported by recent experimental observations... carbon , silicon and oxygen — can also reveal unpaired elec- trons when covalent bonds are broken. In defective or disordered group IV solids, the single...investigated for magnetism experimentally, but we show below that existing data already support it indirectly. Results Spin polarization at graphitic steps

  8. Lung embolism with liquid silicone.

    PubMed

    Rodríguez, M A; Martínez, M C; Lopez-Artíguez, M; Soria, M L; Bernier, F; Repetto, M

    1989-03-01

    A lung embolism was reported in a case involving death following repeated injections of liquid silicone for aesthetic reasons. The liquid extracted from the sites of injection was identified as methylsilicone using infrared spectrophotometry, and the presence of silicone in vacuoles in the lung was verified by scanning electron microscopy with energy dispersive X-ray analysis (EDXA). A study has been carried out with rats after intravenous and subcutaneous injections of methylsilicone.

  9. Silicone nanocomposite coatings for fabrics

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  10. Low cost silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Ravi, K. V.; Serreze, H. B.; Bates, H. E.; Morrison, A. D.; Jewett, D. N.; Ho, J. C. T.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1975-01-01

    Continuous growth methodology for silicon solar cell ribbons deals with capillary effects, die effects, thermal effects and crystal shape effects. Emphasis centers on the shape of the meniscus at the ribbon edge as a factor contributing to ribbon quality with respect to defect densities. Structural and electrical characteristics of edge defined, film-fed grown silicon ribbons are elaborated. Ribbon crystal solar cells produce AMO efficiencies of 6 to 10%.

  11. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  12. Silicone-Rubber Stitching Seal

    NASA Technical Reports Server (NTRS)

    Wang, D. S.

    1985-01-01

    Fabric products protected from raveling by coating threads and filling stitching holes with silicone rubber. Uncored silicone rubber applied to stitching lines with air-pressurized sealant gun. Next, plastic release film placed on coated side, and blanket flipped over so release film lies underneath. Blanket then bagged and adhesive cured under partial vacuum of about 3.5 psi or under pressure. Applications include balloons, parachutes, ultralight aircraft, sails, rescue harnesses, tents, or other fabric products highly stressed in use.

  13. Silicon Hot-Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.

    2004-01-01

    We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.

  14. Ground based silicon zoning program

    NASA Technical Reports Server (NTRS)

    Kern, E. L.

    1981-01-01

    The preparation of building flight hardware and carrying out experiments in space was investigated. The ground based investigation phase A/B of the experimental float zoning of silicon is outlined. The overall program goals, leading to recommending experiments to be done in phase C/D are spelled out. Thermophysical properties which must be accurately known to compare thermophysical models to experimental zoning of silicon are listed.

  15. Magnetically retained silicone facial prosthesis.

    PubMed

    Venugopalan, S; Ariga, P; Aggarwal, P; Viswanath, A

    2014-01-01

    Patients with orocutaneous fistulas suffer from discomfort in terms of facial esthetics, food spill over and lack of psychological confidence to present them socially. Prosthetic camouflaging of facial defects and use of silicone maxillofacial material are the alternatives to the surgical retreatment. Silicone elastomers provide more options to clinician for customization of the facial prosthesis which is simple, esthetically good when coupled with bio magnets for retention.

  16. Monolayer of Hydrazine Facilitates the Direct Covalent Attachment of C60 Fullerene to a Silicon Surface.

    PubMed

    Gao, Fei; Teplyakov, Andrew V

    2017-02-13

    The development of oxygen-free organic-inorganic interfaces has led to new schemes for the functionalization of silicon surfaces with nitrogen-based chemical groups. However, building layers of large structures directly on this functionalized surface has remained elusive. This work confirms the path to form a stable interface between silicon and buckminsterfullerene C60 based on covalent chemical bonds. The starting point for this modification is the hydrazine-reacted Si(111) surface with the diamine functionality, which is further reacted directly with the C60 molecules. The chemistry of this process is confirmed spectroscopically and microscopically and can be used to form organic-inorganic interfaces separated by a single layer of nitrogen.

  17. Effect of laser parameters and assist gas on spectral response of silicon fibrous nanostructure

    SciTech Connect

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Alubiady, M.; Tan, Bo

    2010-11-15

    This article report, for the first time, the influence of laser parameters on the spectral response of weblike silicon fibrous nanostructures. These nanostructures are formed by femtosecond laser irradiation at megahertz pulse frequency under atmosphere and nitrogen ambient. The observed decreasing in reflectance is correlated with the density of fibrous nanostructures and the size of the agglomerated nanoparticles. Compared to bulk silicon, Raman spectra of fibrous nanostructures shows a downward shift and asymmetric broadening at the first order phonon peak. The shift and broadening are attributed to phonon confinement of fibrous nanostructure. Polarization and nitrogen gas modify the morphology of generated nanomaterials but does not have effect on light absorptance. Pulsewidth and pulse frequency do not have significant effect on light absorptance.

  18. Electroluminescence efficiencies of erbium in silicon-based hosts

    SciTech Connect

    Cueff, Sébastien E-mail: christophe.labbe@ensicaen.fr; Manel Ramírez, Joan; Berencén, Yonder; Garrido, Blas; Kurvits, Jonathan A.; Zia, Rashid; Rizk, Richard; Labbé, Christophe E-mail: christophe.labbe@ensicaen.fr

    2013-11-04

    We report on room-temperature 1.5 μm electroluminescence from trivalent erbium (Er{sup 3+}) ions embedded in three different CMOS-compatible silicon-based hosts: SiO{sub 2}, Si{sub 3}N{sub 4}, and SiN{sub x}. We show that although the insertion of either nitrogen or excess silicon helps enhance electrical conduction and reduce the onset voltage for electroluminescence, it drastically decreases the external quantum efficiency of Er{sup 3+} ions from 2% in SiO{sub 2} to 0.001% and 0.0004% in SiN{sub x} and Si{sub 3}N{sub 4}, respectively. Furthermore, we present strong evidence that hot carrier injection is significantly more efficient than defect-assisted conduction for the electrical excitation of Er{sup 3+} ions. These results suggest strategies to optimize the engineering of on-chip electrically excited silicon-based nanophotonic light sources.

  19. Physical properties of memory quality PECVD silicon nitride

    NASA Astrophysics Data System (ADS)

    Khaliq, M. A.; Shams, Q. A.; Brown, W. D.; Naseem, H. A.

    1988-09-01

    Memory-quality silicon nitride has been deposited using plasma-enhanced chemical vapor deposition (PECVD). Film composition was varied by controlling the nitrogen concentration of the reactant gases. The effects of the source and content of the nitriding agent on the physical properties of the film were studied using ellipsometry and ultraviolet (UV), fourier transform infrared (FTIR) and Auger electron spectroscopy. Refractive index of the films varied from 1.77 to 1.95 corresponding to Si/N ratios of 0.75 to 1.03. Ultraviolet spectroscopy yielded band edge values of 4.9 to 2.2 eV depending on the Si/N ratio. Window size, endurance and retention performance is comparable to that reported for both atmospheric- and low-pressure chemical vapor deposited films. A strong correlation between the Si-H bond concentration and the memory performance was observed. Although some excess silicon in the film is needed for memory operation in a metal-nitride-oxide-silicon (MNOS) structure, excessive amounts result in low breakdown fields, small memory windows and poor retention characteristics.

  20. Nitrogen In Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D.; Reisenfeld, D.; Shappirio, M.; Michael, M.; Shematovich, V. I.; Baragiola, R. A.; Crary, F.; Young, D.

    2004-11-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions to the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to the models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and the CAPS Cassini instrument team programs.

  1. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  2. Guided photoluminescence study of Nd-doped silicon rich silicon oxide and silicon rich silicon nitride waveguides

    NASA Astrophysics Data System (ADS)

    Pirasteh, Parastesh; Charrier, Joël; Dumeige, Yannick; Doualan, Jean-Louis; Camy, Patrice; Debieu, Olivier; Liang, Chuan-hui; Khomenkova, Larysa; Lemaitre, Jonathan; Boucher, Yann G.; Gourbilleau, Fabrice

    2013-07-01

    Planar waveguides made of Nd3+-doped silicon rich silicon oxide (SRSO) and silicon rich silicon nitride (SRSN) have been fabricated by reactive magnetron sputtering and characterized with special emphasis on the comparison of the guided photoluminescence (PL) properties of these two matrices. Guided fluorescence excited by top surface pumping at 488 nm on planar waveguides was measured as a function of the distance between the excitation area and the output of the waveguide, as well as a function of the pump power density. The PL intensity increased linearly with pump power without any saturation even at high power. The linear intensity increase of the Nd3+ guided PL under a non-resonant excitation (488 nm) confirms the efficient coupling between either Si-np and rare-earth ions for SRSO or radiative defects and rare earth ions for SRSN. The guided fluorescences at 945 and 1100 nm were observed until 4 mm and 8 mm of the output of the waveguide for Nd3+ doped SRSO and SRSN waveguides, respectively. The guided fluorescence decays of Nd3+-doped-SRSO and -SRSN planar waveguides have been measured and found equal to 97 μs ±7 and 5 μs ± 2, respectively. These results show notably that the Nd3+-doped silicon rich silicon oxide is a very promising candidate on the way to achieve a laser cavity at 1.06 μm.

  3. Direct Production of Silicones From Sand

    SciTech Connect

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  4. The development of a nitrogen dioxide sonde

    NASA Astrophysics Data System (ADS)

    Sluis, W. W.; Allaart, M. A. F.; Piters, A. J. M.; Gast, L. F. L.

    2010-07-01

    A growing number of space-borne instruments measures nitrogen dioxide (NO2) concentrations in the troposphere, but validation of these instruments is hampered by lack of ground-based and in-situ profile measurements. The Royal Netherlands Meteorological Institute (KNMI) has developed a working NO2 sonde. The sonde is attached to a small meteorological balloon and measures a tropospheric NO2 profile. The NO2 sonde has a vertical resolution of 5 m, and a measurement range between 1 and 100 ppbv. The instrument is light in weight (±700 g), cheap (disposable), energy efficient and not harmful to the environment or the person who finds the package after use. The sonde uses the chemiluminescent reaction of NO2 in an aqueous luminol solution. The NO2-luminol reaction produces faint blue/purple light (at about 425 nm), which is detected by an array of silicon photodiodes. The luminol solution is optimised to be specific to NO2. An on-ground comparison with measurements from a Photolytic Analyzer of RIVM shows that both instruments measure similar NO2 variations in ambient air. During the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI) in June/July 2009 six vertical profiles of NO2 from the ground to 5 km altitude were measured, which clearly show that the largest amount of NO2 is measured in the boundary layer. The measured boundary layer heights of the NO2 sonde are in good agreement with boundary layer heights determined by a LD40 Ceilometer at Cabauw.

  5. The development of a nitrogen dioxide sonde

    NASA Astrophysics Data System (ADS)

    Sluis, W. W.; Allaart, M. A. F.; Piters, A. J. M.; Gast, L. F. L.

    2010-12-01

    A growing number of space-borne instruments measures nitrogen dioxide (NO2) concentrations in the troposphere, but validation of these instruments is hampered by the lack of ground-based and in situ profile measurements. The Royal Netherlands Meteorological Institute (KNMI) has developed a working NO2 sonde. The sonde is attached to a small meteorological balloon and measures a tropospheric NO2 profile. The NO2 sonde has a vertical resolution of 5 m and a measurement range between 1 and 100 ppbv. The instrument is light in weight (0.7 kg), cheap (disposable), energy efficient and not harmful to the environment or the person who finds the package after use. The sonde uses the chemiluminescent reaction of NO2 in an aqueous luminol solution. The NO2-luminol reaction produces faint blue/purple light (at about 425 nm), which is detected by an array of silicon photodiodes. The luminol solution is optimised to be specific to NO2. An on-ground comparison with measurements from a Photolytic Analyser of The National Institute for Public Health and the Environment (RIVM) shows that both instruments measure similar NO2 variations in ambient air. During the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring instruments (CINDI) in June/July 2009, six vertical profiles of NO2 from the ground to a 5 km altitude were measured, which clearly show that the largest amount of NO2 is measured in the boundary layer. The measured boundary layer heights of the NO2 sonde are in good agreement with boundary layer heights determined by a LD40 Ceilometer at Cabauw.

  6. Silicon active photonic devices

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  7. Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite

    NASA Astrophysics Data System (ADS)

    Qi, Gongjin; Zhang, Changrui; Hu, Haifeng; Cao, Feng; Wang, Siqing; Jiang, Yonggang; Li, Bin

    2005-10-01

    The crystallization behavior of a new type of ceramic matrix composites, three-dimensional silica fiber reinforced silicon nitride matrix composite prepared by perhydropolysilazane infiltration and pyrolysis, was investigated by X-ray diffractometry and Fourier transform infrared spectroscopy. With the post-annealing treatment of the amorphous as-received composite at elevated tempertures of 1400 and 1600 °C in nitrogen atmosphere, there was remarkable suppression of the crystallization of polymer-derived silicon nitride ceramic matrix into α-Si 3N 4 and silica fibers into α-cristobalite, which was probably attributed to the phase of silicon oxynitrides originating from the strong fiber/matrix interfacial chemical reaction.

  8. Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature

    PubMed Central

    Ghosh, Tapas

    2017-01-01

    Copper nanoparticles have been deposited on silicon surfaces by a simple galvanic displacement reaction, and rapid thermal annealing has been performed under various atmospheric conditions. In spite of the general tendency of the agglomeration of nanoparticles to lower the surface energy at elevated temperatures, our plan-view and cross-sectional transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis shows that the thermal oxidation of the copper nanoparticles and formation of cupric oxide (CuO) on silicon surfaces leads to wetting rather than agglomeration. In contrast, agglomeration has been observed when copper nanoparticles were annealed in a nitrogen environment. The lattice transformation from cubic Cu to monoclinic CuO, and hence the change in surface energy of the particles, assists the wetting process. The occurrence of wetting during the oxidation step implies a strong interaction between the oxidized film and the silicon surface. PMID:28326232

  9. Activation of Al2O3 passivation layers on silicon by microwave annealing

    NASA Astrophysics Data System (ADS)

    Ziegler, Johannes; Otto, Martin; Sprafke, Alexander N.; Wehrspohn, Ralf B.

    2013-11-01

    Thin aluminum oxide layers deposited on silicon by thermal atomic layer deposition can be used to reduce the electronic recombination losses by passivating the silicon surfaces. To activate the full passivation ability of such layers, a post-deposition annealing step at moderate temperatures (≈400 ∘C, duration≈30 min) is required. Such an annealing step is commonly done in an oven in air, nitrogen, or forming gas atmosphere. In this work, we investigate the ability to reduce the duration of the annealing step by heating the silicon wafer with a microwave source. The annealing time is significantly reduced to durations below 1 min while achieving effective minority carrier lifetimes similar or higher to that of conventionally oven-annealed samples.

  10. Orchard nitrogen management: Which nitrogen source is best?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suboptimal management of nitrogen fertility in pecan orchards leads to a loss of nutmeat yield and quality, but also a waste of natural resources and money. This article reviews several basic guiding principles useful to orchard managers when developing nitrogen management strategies, and determini...

  11. Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect.

    PubMed

    Zhao, Hong-Quan; Fujiwara, Masazumi; Takeuchi, Shigeki

    2012-07-02

    Substrates effect is observed on the suppression of the phonon sideband from nitrogen vacancy (NV) centers in 50nm diamond nanocrystals at cryogenic temperatures. As a quantitative parameter of the population of phonon sidebands, the Debye-Waller factor is estimated from fluorescence spectra on glass, silicon, and silica-on-silicon substrates. Fluorescence spectra of negatively charged NV centers in nanodiamonds on silica-on-silicon substrates have average and maximum Debye-Waller factors of 12.7% (which is about six times greater than that of samples on glass substrates) and 19.3%, respectively. This effect is expected to be very important for future applications of NV centers in quantum information science and nanosensing.

  12. Nitrogen release during coal combustion

    SciTech Connect

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  13. Nanoporous silicon oxide memory.

    PubMed

    Wang, Gunuk; Yang, Yang; Lee, Jae-Hwang; Abramova, Vera; Fei, Huilong; Ruan, Gedeng; Thomas, Edwin L; Tour, James M

    2014-08-13

    Oxide-based two-terminal resistive random access memory (RRAM) is considered one of the most promising candidates for next-generation nonvolatile memory. We introduce here a new RRAM memory structure employing a nanoporous (NP) silicon oxide (SiOx) material which enables unipolar switching through its internal vertical nanogap. Through the control of the stochastic filament formation at low voltage, the NP SiOx memory exhibited an extremely low electroforming voltage (∼ 1.6 V) and outstanding performance metrics. These include multibit storage ability (up to 9-bits), a high ON-OFF ratio (up to 10(7) A), a long high-temperature lifetime (≥ 10(4) s at 100 °C), excellent cycling endurance (≥ 10(5)), sub-50 ns switching speeds, and low power consumption (∼ 6 × 10(-5) W/bit). Also provided is the room temperature processability for versatile fabrication without any compliance current being needed during electroforming or switching operations. Taken together, these metrics in NP SiOx RRAM provide a route toward easily accessed nonvolatile memory applications.

  14. Large area Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Gleim, P. S.

    1977-01-01

    The overall cost effectiveness of the Czochralski process for producing large-area silicon was determined. The feasibility of growing several 12 cm diameter crystals sequentially at 12 cm/h during a furnace run and the subsequent slicing of the ingot using a multiblade slurry saw were investigated. The goal of the wafering process was a slice thickness of 0.25 mm with minimal kerf. A slice + kerf of 0.56 mm was achieved on 12 cm crystal using both 400 grit B4C and SiC abrasive slurries. Crystal growth experiments were performed at 12 cm diameter in a commercially available puller with both 10 and 12 kg melts. Several modifications to the puller hoz zone were required to achieve stable crystal growth over the entire crystal length and to prevent crystallinity loss a few centimeters down the crystal. The maximum practical growth rate for 12 cm crystal in this puller design was 10 cm/h, with 12 to 14 cm/h being the absolute maximum range at which melt freeze occurred.

  15. Silicon Carbide Growth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Andrew Trunek has focused on supporting the Sic team through the growth of Sic crystals, making observations and conducting research that meets the collective needs and requirements of the team while fulfilling program commitments. Cancellation of the Ultra Efficient Engine Technology (UEET) program has had a significant negative impact on resources and research goals. This report highlights advancements and achievements made with this cooperative agreement over the past year. NASA Glenn Research Center (GRC) continues to make advances in silicon carbide (SiC) research during the past year. Step free surfaces were used as substrates for the deposition of GaN epilayers that yielded very low dislocation densities. Defect free 3C- SiC was successfully nucleated on step free mesas and test diodes were fabricated. Web growth techniques were used to increase the usable surface area of dislocation free SiC by approximately equal to 40%. The greatest advancement has been attained on stepped surfaces of SiC. A metrology standard was developed using high temperature etching techniques titled "Nanometer Step Height Standard". This development culminated in being recognized for a 2004 R&D100 award and the process to produce the steps received a NASA Space Act award.

  16. Silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.; Addis, F. W.; Miller, W. A.

    1985-01-01

    The MINP solar cell concept refers to a cell structure designed to be a base region dominated device. Thus, it is desirable that recombination losses are reduced to the point that they occur only in the base region. The most unique feature of the MINP cell design is that a tunneling contact is utilized for the metallic contact on the front surface. The areas under the collector grid and bus bar are passivated by a thin oxide of tunneling thickness. Efforts must also be taken to minimize recombination at the surface between grid lines, at the junction periphery and within the emitter. Results of both theoretical and experimental studies of silicon MINP cells are given. Performance calculations are described which give expected efficiencies as a function of base resistivity and junction depth. Fabrication and characterization of cells are discussed which are based on 0.2 ohm-cm substrates, diffused emitters on the order of 0.15 to 0.20 microns deep, and with Mg MIS collector grids. A total area AM 1 efficiency of 16.8% was achieved. Detailed analyses of photocurrent and current loss mechanisms are presented and utilized to discuss future directions of research. Finally, results reported by other workers are discussed.

  17. Silicon Photomultiplier charaterization

    NASA Astrophysics Data System (ADS)

    Munoz, Leonel; Osornio, Leo; Para, Adam

    2014-03-01

    Silicon Photo Multiples (SiPM's) are relatively new photon detectors. They offer many advantages compared to photo multiplier tubes (PMT's) such as insensitivity to magnetic field, robustness at varying lighting levels, and low cost. The SiPM output wave forms are poorly understood. The experiment conducted collected waveforms of responses of Hamamatsu SiPM to incident laser pulse at varying temperatures and bias voltages. Ambient noise was characterized at all temperatures and bias voltages by averaging the waveforms. Pulse shape of the SiPM response was determined under different operating conditions: the pulse shape is nearly independent of the bias voltage but exhibits strong variation with temperature, consistent with the temperature variation of the quenching resistor. Amplitude of responses of the SiPM to low intensity laser light shows many peaks corresponding to the detection of 1,2,3 etc. photons. Amplitude of these pulses depends linearly on the bias voltage, enabling determination of the breakdown voltage at each temperature. Poisson statistics has been used to determine the average number of detected photons at each operating conditions. Department of Education Grant No. P0315090007 and the Department of Energy/ Fermi National Accelerator Laboratory.

  18. ePIXfab: the silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Khanna, Amit; Drissi, Youssef; Dumon, Pieter; Baets, Roel; Absil, Philippe; Pozo, J.; Lo Cascio, D. M. R.; Fournier, M.; Fédéli, J.-M.; Fulbert, L.; Zimmermann, L.; Tillack, B.; Aalto, T.; O'Brien, P.; Deptuck, D.; Xu, J.; Gale, D.

    2013-05-01

    ePIXfab-The European Silicon Photonics Support Center continues to provide state-of-the-art silicon photonics solutions to academia and industry for prototyping and research. ePIXfab is a consortium of EU research centers providing diverse expertise in the silicon photonics food chain, from training users in designing silicon photonics chips to fiber pigtailed chips. While ePIXfab provides world-wide users access to advanced silicon photonics it also focuses its attention to expanding the silicon photonics infrastructure through a network of design houses, access partners and industrial collaborations.

  19. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.

    1985-01-01

    The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.

  20. Investigating Nitrogen Pollution: Activities and Models.

    ERIC Educational Resources Information Center

    Green Teacher, 2000

    2000-01-01

    Introduces activities on nitrogen, nitrogen pollution from school commuters, nitrogen response in native and introduced species, and nutrient loading models. These activities help students determine the nitrogen contribution from their parents' cars, test native plant responses to nitrogen, and experiment with the results of removing water from…