Sample records for nitrogen-overfertilized rice plants

  1. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    PubMed

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  2. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    PubMed Central

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  3. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop.

    PubMed

    Bhuvaneshwari, K; Singh, Pawan Kumar

    2015-08-01

    The water fern Azolla harbors nitrogen-fixing cyanobacterium Anabaena azollae as symbiont in its dorsal leaves and is known as potent N 2 fixer. Present investigation was carried out to study the influence of fresh Azolla when used as basal incorporation in soil and as dual cropped with rice variety Mahsoori separately and together with and without chemical nitrogen fertilizer in pots kept under net house conditions. Results showed that use of Azolla as basal or dual or basal plus dual influenced the rice crop positively where use of fern as basal plus dual was superior and served the nitrogen requirement of rice. There was marked increase in plant height, number of effective tillers, dry mass and nitrogen content of rice plants with the use of Azolla and N-fertilizers alone and other combinations. The use of Azolla also increased organic matter and potassium contents of the soil.

  4. Tropical legume crop rotation and nitrogen fertilizer effects on agronomic and nitrogen efficiency of rice.

    PubMed

    Rahman, Motior M; Islam, Aminul M; Azirun, Sofian M; Boyce, Amru N

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m(-2) preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m(-2). No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m(-2) achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13-23% higher grain yield than rice after fallow rotation with 8 g N m(-2). The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m(-2) can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m(-2). The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility.

  5. Recycling of solid waste rich in organic nitrogen from leather industry: mineral nutrition of rice plants.

    PubMed

    Nogueira, Francisco G E; Castro, Isabela A; Bastos, Ana R R; Souza, Guilherme A; de Carvalho, Janice G; Oliveira, Luiz C A

    2011-02-28

    The leather industry produces a large quantity of solid waste (wet blue leather), which contains a high amount of chromium. After its removal from wet blue leather, a solid collagenic material is recovered, containing high nitrogen levels, which can be used as a nitrogen source in agriculture. In order to take more advantage of the collagen, it was enriched with mineral P and K in order to produce NPK formulations. The objective was also to evaluate the efficiency of such formulations as a nutrient supply for rice plants in an Oxisoil, under greenhouse conditions. The application of PK enriched-collagen formulations resulted in N contents in the vegetative parts and grains of rice plants which were equivalent or superior to those obtained with urea and commercial NPK formulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice

    PubMed Central

    Rahman, Motior M.; Islam, Aminul M.; Azirun, Sofian M.; Boyce, Amru N.

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility. PMID:24971378

  7. [Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers].

    PubMed

    Liu, Yi-Ren; Li, Xiang; Yu, Jie; Shen, Qi-Rong; Xu, Yang-Chun

    2012-01-01

    A pot experiment was conducted to study the effects of combined application of organic and inorganic fertilizers on the nitrogen uptake by rice and the nitrogen supply by soil in a wheat-rice rotation system, and approach the mechanisms for the increased fertilizer nitrogen use efficiency of rice under the combined fertilization from the viewpoint of microbiology. Comparing with applying inorganic fertilizers, combined application of organic and inorganic fertilizers decreased the soil microbial biomass carbon and nitrogen and soil mineral nitrogen contents before tillering stage, but increased them significantly from heading to filling stage. Under the combined fertilization, the dynamics of soil nitrogen supply matched best the dynamics of rice nitrogen uptake and utilization, which promoted the nitrogen accumulation in rice plant and the increase of rice yield and biomass, and increased the fertilizer nitrogen use efficiency of rice significantly. Combined application of inorganic and organic fertilizers also promoted the propagation of soil microbes, and consequently, more mineral nitrogen in soil was immobilized by the microbes at rice early growth stage, and the immobilized nitrogen was gradually released at the mid and late growth stages of rice, being able to better satisfy the nitrogen demand of rice in its various growth and development stages.

  8. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    NASA Astrophysics Data System (ADS)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  9. Efficacy of Rice Insecticide Seed Treatments at Selected Nitrogen Rates for Control of the Rice Water Weevil (Coleoptera: Curculionidae).

    PubMed

    Everett, Mallory; Lorenz, Gus; Slaton, Nathan; Hardke, Jarrod

    2015-08-01

    Seed-applied insecticides are the standard control method used in the United States to minimize rice water weevil (Lissorhoptrus oryzophilus Kuschel) injury to rice (Oryza sativa L.) roots, and often results in greater yields than rice that receives no seed-applied insecticide. Yield increases from seed-applied insecticides often occur even when insect pressure is low and should not cause yield loss. The research objective was to evaluate the effect of urea-nitrogen rate and seed-applied insecticide on number of rice water weevil larvae, nitrogen uptake, and rice grain yield. Six trials were conducted at the Pine Tree Research Station (PTRS) and the Rice Research Extension Center (RREC) to examine the response of rice plants receiving different insecticide-seed treatments and urea-nitrogen rate combinations. Insecticide-seed treatments included label rates of clothianidin, thiamethoxam, and a no-insecticide (fungicide only) control, in combination with season-total nitrogen rates of 0, 50, 100, 150, and 200 kg urea-nitrogen/ha. Rice seed that was treated with clothianidin or thiamethoxam generally had equal numbers of rice water weevil larvae, which were significantly fewer compared with rice that received no insecticide with an equivalent urea-nitrogen rate. Nitrogen uptake at panicle differentiation was not affected by insecticide-seed treatments at four of six sites and usually increased positively and linearly as urea-nitrogen rate increased. As urea-nitrogen rate increased, grain yield increased either linearly or nonlinearly. Averaged across urea-nitrogen rates, both insecticide seed treatments had similar yields that were 4 to 7% greater than the grain yields of rice that received no insecticide at four of the five harvested sites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Nitrogen Excess in North American Ecosystems: Predisposing Factors, Ecosystem Responses, and Management Strategies

    Treesearch

    Mark E. Fenn; Mark A. Poth; John D. Aber; Jill S. Baron; Bernard T. Bormann; Dale W. Johnson; A. Dennis Lemly; Steven G. McNulty; Douglas F. Ryan; Robert Stottlemyer

    1998-01-01

    Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of...

  11. Accumulated Expression Level of Cytosolic Glutamine Synthetase 1 Gene (OsGS1;1 or OsGS1;2) Alter Plant Development and the Carbon-Nitrogen Metabolic Status in Rice

    PubMed Central

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2014-01-01

    Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield. PMID:24743556

  12. Deciphering the factors associated with the colonization of rice plants by cyanobacteria.

    PubMed

    Bidyarani, Ngangom; Prasanna, Radha; Chawla, Gautam; Babu, Santosh; Singh, Rajendra

    2015-04-01

    Cyanobacteria-rice plant interactions were analyzed using a hydroponics experiment. The activity of plant defense and pathogenesis-related enzymes, scanning electron microscopy, growth, nitrogen fixation (measured as ARA), and DNA fingerprinting assays proved useful in illustrating the nature of associations of cyanobacteria with rice plants. Microscopic analyses revealed the presence of short filaments and coiled masses of filaments of cyanobacteria near the epidermis and cortex of roots and shoot tissues. Among the six cyanobacterial strains employed, Calothrix sp. (RPC1), Anabaena laxa (RPAN8), and Anabaena azollae (C16) were the best performing strains, in terms of colonization in roots and stem. These strains also enhanced nitrogen fixation and stimulated the activity of plant defense/cell wall-degrading enzymes. A significantly high correlation was also recorded between the elicited plant enzymes, growth, and ARA. DNA fingerprinting using highly iterated palindromic sequences (HIP-TG) further helped in proving the establishment of inoculated organisms in the roots/shoots of rice plants. This study illustrated that the colonization of cyanobacteria in the plant tissues is facilitated by increased elicitation of plant enzymes, leading to improved plant growth, nutrient mobilization, and enhanced plant fitness. Such strains can be promising candidates for developing "cyanobacteria colonized-nitrogen-fixing rice plants" in the future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. TOND1 confers tolerance to nitrogen deficiency in rice

    PubMed Central

    Zhang, Yangjun; Tan, Lubin; Zhu, Zuofeng; Yuan, Lixing; Xie, Daoxin; Sun, Chuanqing

    2015-01-01

    Nitrogen (N), the most important mineral nutrient for plants, is critical to agricultural production systems. N deficiency severely affects rice growth and decreases rice yields. However, excessive use of N fertilizer has caused severe pollution to agricultural and ecological environments. The necessity of breeding of crops that require lower input of N fertilizer has been recognized. Here we identified a major quantitative trait locus on chromosome 12, Tolerance Of Nitrogen Deficiency 1 (TOND1), that confers tolerance to N deficiency in the indica cultivar Teqing. Sequence verification of 75 indica and 75 japonica cultivars from 18 countries and regions demonstrated that only 27.3% of cultivars (41 indica cultivars) contain TOND1, whereas 72.7% of cultivars, including the remaining 34 indica cultivars and all 75 japonica cultivars, do not harbor the TOND1 allele. Over-expression of TOND1 increased the tolerance to N deficiency in the TOND1-deficient rice cultivars. The identification of TOND1 provides a molecular basis for breeding rice varieties with improved grain yield despite decreased input of N fertilizers. PMID:25439309

  14. Evaluating the Ability of Oysters (Crassostrea virginica) to Mitigate Coastal Nitrogen Over-Enrichment

    EPA Science Inventory

    Human actions have resulted in a doubling of the rate of bio-available nitrogen production in the biosphere, leading to over-fertilization of coastal ecosystems worldwide. Such over-fertilization has numerous negative consequences for coastal ecosystems, such as excessive algal g...

  15. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    PubMed

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  16. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance.

    PubMed

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-06-04

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth.

  17. Rapid Growth and Apparent Total Nitrogen Increases in Rice and Corn Plants following Applications of Triacontanol 1

    PubMed Central

    Knowles, N. Richard; Ries, Stanley K.

    1981-01-01

    Triacontanol (TRIA) increased fresh and dry weight and total reducible nitrogen (total N) of rice (Oryza sativa L.) seedlings within 40 minutes. Increases in total N in the supernatants from homogenates of corn (Zea mays L.) and rice leaves treated with TRIA for one minute before grinding occurred within 30 and 80 minutes, respectively. The source for the increase was investigated utilizing atmospheric substitution and enrichment and depletion studies with 15N. The increase in total N in seedlings was shown to be independent of method of N analysis and the presence of nitrate in the plants. Automated Kjeldahl determinations showing apparent increases in N composition due to TRIA were shown to be correlated with hand Kjeldahl, elemental analysis, and chemiluminescent analysis in three independent laboratories. TRIA did not alter the nitrate uptake or endogenous levels of nitrate in corn and rice seedlings. Enrichment experiments revealed that the total N increases in rice seedlings, in vivo, and in supernatants of corn leaf homogenates, in vitro, are not due to atmospheric N2. TRIA increased the soluble N pools of the plants, specifically the free amino acid and soluble protein fractions. No differences in depletion or enrichment of 15N incorporated into soluble and insoluble N fractions of rice seedlings could be detected on an atom per cent 15N basis. The apparent short-term total N increases cannot be explained by current knowledge of major N assimilation pathways. TRIA may stimulate a change in the chemical composition of the seedlings, resulting in interference with standard methods of N analysis. PMID:16662092

  18. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice.

    PubMed

    Sandhiya, G S; Sugitha, T C K; Balachandar, D; Kumar, K

    2005-09-01

    Nitrogen fixing endophytic Serratia sp. was isolated from rice and characterized. Re-colonization ability of Serratia sp. in the rice seedlings as endophyte was studied under laboratory condition. For detecting the re-colonization potential in the rice seedlings, Serratia sp. was marked with reporter genes (egfp and Kmr) using transposon mutagenesis. The conjugants were screened for re-colonization ability and presence of nif genes using PCR. Further, the influence of flavonoids and growth hormones on the endophytic colonization and in planta nitrogen fixation of Serratia was also investigated. The flavonoids, quercetin (3 microg/ml) and diadzein (2 microg/ml) significantly increased the re-colonization ability of the endophytic Serratia, whereas the growth hormones like IAA and NAA (5 microg/ml) reduced the endophytic colonization ability of Serratia sp. Similarly, the in planta nitrogen fixation by Serratia sp. in rice was significantly increased due to flavonoids. The inoculation of endophytic diazotrophs increased the plant biomass and biochemical constituents.

  19. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice.

    PubMed

    Wada, Shinya; Hayashida, Yasukzu; Izumi, Masanori; Kurusu, Takamitsu; Hanamata, Shigeru; Kanno, Keiichi; Kojima, Soichi; Yamaya, Tomoyuki; Kuchitsu, Kazuyuki; Makino, Amane; Ishida, Hiroyuki

    2015-05-01

    Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. (15)N pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance

    PubMed Central

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-01-01

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth. PMID:26053400

  1. Comparison of Ion Balance and Nitrogen Metabolism in Old and Young Leaves of Alkali-Stressed Rice Plants

    PubMed Central

    Wang, Huan; Wu, Zhihai; Han, Jiayu; Zheng, Wei; Yang, Chunwu

    2012-01-01

    Background Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism. The aim of this study was to investigate whether the alkali stress has different effects on the growth, ion balance, and nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. Methodology/Principal Findings The results showed that alkali stress only produced a small effect on the growth of young leaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl− in old leaves. The up-regulation of OsHKT1;1, OsAKT1, OsHAK1, OsHAK7, OsHAK10 and OsHAK16 may contribute to the larger accumulation of Na+ in old leaves under alkali stress. Alkali stress mightily reduced the NO3 − contents in both organs. As old leaf cells have larger vacuole, under alkali stress these scarce NO3 − was principally stored in old leaves. Accordingly, the expression of OsNRT1;1 and OsNRT1;2 in old leaves was up-regulated by alkali stress, revealing that the two genes might contribute to the accumulation of NO3 − in old leaves. NO3 − deficiency in young leaves under alkali stress might induce the reduction in OsNR1 expression and the subsequent lacking of NH4 +, which might be main reason for the larger down-regulation of OsFd-GOGAT and OsGS2 in young leaves. Conclusions/Significance Our results strongly indicated that, during adaptation of rice to alkali stress, young and old leaves have distinct mechanisms of ion balance and nitrogen metabolism regulation. We propose that the comparative studies of young and old tissues may be important for abiotic stress tolerance research. PMID:22655071

  2. Responses of Super Rice (Oryza sativa L.) to Different Planting Methods for Grain Yield and Nitrogen-Use Efficiency in the Single Cropping Season

    PubMed Central

    Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS. PMID:25111805

  3. Responses of super rice (Oryza sativa L.) to different planting methods for grain yield and nitrogen-use efficiency in the single cropping season.

    PubMed

    Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha-1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha-1) was generally lower than TP (8.58 t ha-1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.

  4. Modeling the leaf angle dynamics in rice plant.

    PubMed

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  5. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status

    PubMed Central

    Bao, Aili; Liang, Zhijun; Zhao, Zhuqing; Cai, Hongmei

    2015-01-01

    AMT1-3 encodes the high affinity NH4+ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants. PMID:25915023

  6. Diversity and activity of nitrogen fixing archaea and bacteria associated with micro-environments of wetland rice

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Woebken, Dagmar

    2017-04-01

    Wetland rice is one of the world's most important crop plants. The cultivation on waterlogged paddy soils is strongly limited by nitrogen (N), which is typically supplied by industrial fertilizers that are not only costly but also exhibit hazardous effects on the environment. It has been reported that "Biological Nitrogen Fixation" through N2-fixing bacteria and archaea (diazotrophs) can alleviate the N-shortage in rice cultivation, thus carrying out an important ecosystem function. However, our understanding of the diversity and in situ N2 fixation activity of diazotrophs in flooded rice fields is still rudimentary. Moreover, knowledge on the impact of biochemical gradients established by root activity (i.e. exudation, radial oxygen loss) on the functioning of N-fixing microorganisms in paddy soil ecosystems is limited. We aimed at studying underlying processes on biologically relevant scales. Greenhouse studies were performed to identify key factors that control rice-diazotroph association and related N2 fixation activities. Paddy soils of different geographical origin were cultivated with two commercially used genotypes of wetland rice. Samples were separated into bulk soil, rhizosphere soil, rhizoplane, and roots at flowering stage of rice plant development. These samples were subjected to functional assays and various molecular biological techniques in order to analyze the associated diazotroph communities. Based on Illumina amplicon sequencing of nifH genes and transcripts, we show that the diversity and potential activity of diazotroph communities varies according to micro-environments. We will comparatively discuss the influence of (a) the soil microbial "seed bank" and (b) plant genotype in shaping the respective microbiomes and selecting for potentially active diazotrophs. Actual N2 fixation activities of soil-genotype combinations and micro-environments will be shown on the basis of incubation assays using 15N2-containing atmospheres. Areas of potential

  7. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission.

  8. [Characteristics of paddy field nitrogen leakage and runoff in rice-duck farming system].

    PubMed

    Yu, Xiang; Wang, Qiang-sheng; Wang, Shao-hua; Liu, Zheng-hui; Wang, Xia-wen; Ding, Yan-feng

    2009-01-01

    A field experiment was conducted to study the characteristics of paddy field nitrogen (N) leakage and runoff under rice-duck farming (MRD), conventional farming (MR), and conventional farming with flooding (CK). Comparing with that under MR, the paddy field under MRD had a notable decrease of N (especially NO3- -N) concentration in its leaked liquid; but this concentration was tended to be increased, compared with that under CK. After 7-9 days of fertilization, the NH4+ -N and NO3- -N concentrations in paddy field surface water were higher under MRD than under MR. However, owing to the no draining and the higher band, the paddy field under MRD had a notable reduction of drainage, resulting in a marked decrease of N runoff than that under MR. Comparing with MR, the paddy field under MRD had an addition of nitrogen supply from duck dung, a reduction of N leakage and runoff, a lesser application of chemical nitrogen fertilizer, and more nitrogen uptake by rice plant. Both the reduction of N input and that of N output in rice-duck farming system were nearly equal in quantity.

  9. [Index screening and comprehensive evaluation of phenotypic traits of low nitrogen tolerance using BILs population derived from Dongxiang wild rice (Oryza rufipogon Griff)].

    PubMed

    Hu, Biao-lin; Li, Xia; Wan, Yong; Qiu, Zai-hui; Nie, Yuan-yuan; Xie, Jian-kun

    2015-08-01

    To identify the low nitrogen tolerance of Dongxiang wild rice (DXWR) and its progenies, ten phenotypic traits including plant height (PH), heading day (HD), panicle length (PL), number of effective tillers per plant (NETP), number of filled grains per panicle (NFGP), number of grains per panicle (NGP), grain density (GD), spikelet fertility (SF), 1000-grain mass (TGM) and grain yield per plant (GYP) were studied under normal and low nitrogen treatments, using backcross inbred lines (BILs) of Xieqingzao B//DXWR/Xieqingzao B in BC1 F12. Comprehensive evaluation on the low nitrogen tolerance of the BILs population was conducted using principal component analysis and the subordinate function. The evaluation results indicated that the low nitrogen tolerance of the line 116, 143 and 157 was the strongest, which could be served as the intermediate materials for genetic studies on the low nitrogen tolerance of DXWR and breeding for the low nitrogen tolerance in rice. The optimal regression equation of the low nitrogen tolerance in rice was established using stepwise regression analysis. The relative values of five traits including PH, NGP, SF, TGM and GYP were screened out and could be used as comprehensive evaluation indices for the low nitrogen tolerance in the whole growth stage. Therefore, more attention should be paid to the relative values of these five traits, especially for NGP and GYP, in the genetic improvement of the low nitrogen tolerance in rice.

  10. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    PubMed

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  11. [Ammonia volatilization loss of nitrogen fertilizer from rice field and wet deposition of atmospheric nitrogen in rice growing season].

    PubMed

    Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong

    2003-11-01

    Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.

  12. Nitrogen removal and power generation from treated municipal wastewater by its circulated irrigation for resource-saving rice cultivation.

    PubMed

    Watanabe, Toru; Mashiko, Takuma; Maftukhah, Rizki; Kaku, Nobuo; Pham, Dong Duy; Ito, Hiroaki

    2017-02-01

    This study aims at improving the performance of the cultivating system of rice for animal feed with circulated irrigation of treated municipal wastewater by applying a larger amount of wastewater, as well as adding a microbial fuel cell (MFC) to the system. The results of bench-scale experiments indicate that this modification has increased the rice yield, achieving the target for the rice cultivar used in the experiment. In addition, an assessment of protein content of the harvested rice showed that the value of the rice as animal fodder has improved. Compared with normal one-way irrigation, circulated irrigation significantly enhanced the plant growth and rice production. The direction of the irrigation (bottom-to-top or top-to-bottom) in the soil layer had no significant effect. This modified system demonstrated >96% for nitrogen removal from the treated wastewater used for the irrigation, with approximately 40% of the nitrogen being used for rice plant growth. The MFC installed in the system facilitated power generation comparable with that reported for normal paddy fields. The power generation appeared to be enhanced by bottom-to-top irrigation, which could provide organic-rich treated wastewater directly to the bacterial community living on the anode of the MFC set in the soil layer.

  13. Effects of nitrogen on egg-laying inhibition and ovicidal response in planthopper-resistant rice varieties.

    PubMed

    Horgan, Finbarr G; Srinivasan, Thanga Suja; Naik, Bhaskar S; Ramal, Angelee Fame; Bernal, Carmencita C; Almazan, Maria Liberty P

    2016-11-01

    A series of experiments was set up to examine the effects of nitrogen on rice ( Oryza sativa L.) resistance against Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth). Egg laying by N. lugens was reduced on the indica variety IR60. Nymph biomass ( N. lugens and S. furcifera ) was also lower on IR60: this was associated with low honeydew production and a high proportion of xylem-derived honeydew in N. lugens but not in S. furcifera . Nitrogen increased egg-laying by S. furcifera and increased N. lugens nymph biomass on all varieties tested. Oviposition and egg mortality in both planthopper species were examined on plants at 15, 30 and 45 days after sowing (DAS). Sogatella furcifera laid more eggs on plants at 15 DAS, but laid few eggs during darkness; N. lugens continued to lay eggs on older rice plants (30 DAS) and during darkness. Egg mortality was high on cv. Asiminori, highest at 45 DAS, and higher for S. furcifera than for N. lugens . Mortality of S. furcifera eggs was associated with lesions around the egg clusters. These were more common around clusters laid during the day and suggested induction by Asiminori of an ovicidal response. Egg mortality declined under higher soil nitrogen levels. Results are discussed in the light of improving rice resistance against planthoppers and reducing rates of planthopper adaptation to resistance genes.

  14. Autophagy Supports Biomass Production and Nitrogen Use Efficiency at the Vegetative Stage in Rice1[OPEN

    PubMed Central

    Hayashida, Yasukazu; Kurusu, Takamitsu; Kojima, Soichi; Makino, Amane

    2015-01-01

    Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in all eukaryotes, and recent studies have revealed critical roles for autophagy in Rubisco degradation and nitrogen remobilization into seeds in Arabidopsis (Arabidopsis thaliana). Here, we examined the function of autophagy in vegetative growth and nitrogen usage in a cereal plant, rice (Oryza sativa). An autophagy-disrupted rice mutant, Osatg7-1, showed reduced biomass production and nitrogen use efficiency compared with the wild type. While Osatg7-1 showed early visible leaf senescence, the nitrogen concentration remained high in the senescent leaves. 15N pulse chase analysis revealed suppression of nitrogen remobilization during leaf senescence in Osatg7-1. Accordingly, the reduction of nitrogen available for newly developing tissues in Osatg7-1 likely led its reduced leaf area and tillers. The limited leaf growth in Osatg7-1 decreased the photosynthetic capacity of the plant. Much of the nitrogen remaining in senescent leaves of Osatg7-1 was in soluble proteins, and the Rubisco concentration in senescing leaves of Osatg7-1 was about 2.5 times higher than in the wild type. Transmission electron micrographs showed a cytosolic fraction rich with organelles in senescent leaves of Osatg7-1. Our results suggest that autophagy contributes to efficient nitrogen remobilization at the whole-plant level by facilitating protein degradation for nitrogen recycling in senescent leaves. PMID:25786829

  15. QTL and QTL x environment effects on agronomic and nitrogen acquisition traits in rice.

    PubMed

    Senthilvel, Senapathy; Vinod, Kunnummal Kurungara; Malarvizhi, Palaniappan; Maheswaran, Marappa

    2008-09-01

    Agricultural environments deteriorate due to excess nitrogen application. Breeding for low nitrogen responsive genotypes can reduce soil nitrogen input. Rice genotypes respond variably to soil available nitrogen. The present study attempted quantification of genotype x nitrogen level interaction and mapping of quantitative trait loci (QTLs) associated with nitrogen use efficiency (NUE) and other associated agronomic traits. Twelve parameters were observed across a set of 82 double haploid (DH) lines derived from IR64/Azucena. Three nitrogen regimes namely, native (0 kg/ha; no nitrogen applied), optimum (100 kg/ha) and high (200 kg/ha) replicated thrice were the environments. The parents and DH lines were significantly varying for all traits under different nitrogen regimes. All traits except plant height recorded significant genotype x environment interaction. Individual plant yield was positively correlated with nitrogen use efficiency and nitrogen uptake. Sixteen QTLs were detected by composite interval mapping. Eleven QTLs showed significant QTL x environment interactions. On chromosome 3, seven QTLs were detected associated with nitrogen use, plant yield and associated traits. A QTL region between markers RZ678, RZ574 and RZ284 was associated with nitrogen use and yield. This chromosomal region was enriched with expressed gene sequences of known key nitrogen assimilation genes.

  16. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea.

    PubMed

    Li, Pengfei; Lu, Jianwei; Hou, Wenfeng; Pan, Yonghui; Wang, Yang; Khan, Muhammad Rizwan; Ren, Tao; Cong, Rihuan; Li, Xiaokun

    2017-04-01

    Controlled release fertilizer can reduce nitrogen losses to the environment while increasing grain yield and improving apparent nitrogen recovery (ANR) of rice. However, few studies have evaluated the comparative efficacy of different polymer-coated urea products on nitrogen (N) losses, ANR, and N uptake of rice. A 2-year field experiment was conducted to compare the effects of three different types of polymer-coated urea fertilizer on nitrogen losses through NH 3 volatilization and surface runoff to the environment, ANR, grain yield, and N uptake as compared to conventional urea of rice. Six treatments including (1) control with 0 kg N ha -1 (CK), (2) basal application of urea (U b ), (3) split application (U s ) of urea (50% at transplanting, 25% at tillering, and 25% at panicle stages), (4) CRU-1 (polyurethane-coated urea), (5) CRU-2 (degradable polymer-coated urea), and (6) CRU-3 (water-based polymer-coated urea) all applied at 165 kg N ha -1 . It was found that CRU-2 resulted in the highest grain yield and panicle numbers among the N fertilization treatments in 2013 and 2014. Applying CRU could help increase N uptake in rice, reduce N losses through NH 3 volatilization and surface runoff, and hence improve ANR. Its single dose can meet the nutrient demand of the rice plant. Controlled release urea could be adopted as an effective mitigation alternative to retard N losses through NH 3 volatilization and surface runoff while improving ANR of double cropping of late rice.

  17. Soil water availability and capacity of nitrogen accumulation influence variations of intrinsic water use efficiency in rice.

    PubMed

    Xue, Wei; Nay-Htoon, Bhone; Lindner, Steve; Dubbert, Maren; Otieno, Dennis; Ko, Jonghan; Werner, Christiane; Tenhunen, John

    2016-04-01

    Leaf intrinsic water use efficiency (WUEi) coupling maximum assimilation rate (Amax) and transpirable water lost via stomatal conductance (gsc) has been gaining increasing concern in sustainable crop production. Factors that influence leaf Amax and WUEi in rice (Oryza sativa L. cv Unkang) at flooding and rainfed conditions were evaluated. Positive correlations for leaf nitrogen content (Nm) and maximum carboxylation rate (Vcmax), for nitrogen allocation in Rubisco enzymes and mesophyll conductance (gm) were evident independent of cropping cultures. Rainfed rice exhibited enriched canopy leaf average Nm resulting in higher Amax, partially supporting improved leaf WUEi. Maximum WUEi (up to 0.14 μmol mmol(-1)) recorded in rainfed rice under drought conditions resulted from increasing gm/gsc ratio while at cost of significant decline in Amax due to hydraulically constrained gsc. Amax sensitivity related to gsc which was regulated by plant hydraulic conductance. WUEi was tightly correlated to Vcmax/gsc and gm/gsc ratios across the paddy and rainfed not to light environment, morphological and physiological traits, highlighting enhance capacity of Nm accumulation in rainfed rice with gsc at moderately high level similar to paddy rice facilitate optimization in Amax and WUEi while, is challenged by drought-vulnerable plant hydraulic conductance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants.

    PubMed

    Tripathi, R D; Dwivedi, S; Shukla, M K; Mishra, S; Srivastava, S; Singh, R; Rai, U N; Gupta, D K

    2008-02-01

    Rice is a major food crop throughout the world; however, accumulation of toxic metals and metalloids in grains in contaminated environments is a matter of growing concern. Field experiments were conducted to analyze the growth performance, elemental composition (Fe, Si, Zn, Mn, Cu, Ni, Cd and As) and yield of the rice plants (Oryza sativa L. cv. Saryu-52) grown under different doses of fly-ash (FA; applied @ 10 and 100 tha(-1) denoted as FA(10) and FA(100), respectively) mixed with garden soil (GS) in combination with nitrogen fertilizer (NF; applied @ 90 and 120 kg ha(-1) denoted as NF(90) and NF(120), respectively) and blue green algae biofertilizer (BGA; applied @ 12.5 kg ha(-1) denoted as BGA(12.5)). Significant enhancement of growth was observed in the plants growing on amended soils as compared to GS and best response was obtained in amendment of FA(10)+NF(90)+BGA(12.5). Accumulation of Si, Fe, Zn and Mn was higher than Cu, Cd, Ni and As. Arsenic accumulation was detected only in FA(100) and its amendments. Inoculation of BGA(12.5) caused slight reduction in Cd, Ni and As content of plants as compared to NF(120) amendment. The high levels of stress inducible non-protein thiols (NP-SH) and cysteine in FA(100) were decreased by application of NF and BGA indicating stress amelioration. Study suggests integrated use of FA, BGA and NF for improved growth, yield and mineral composition of the rice plants besides reducing the high demand of nitrogen fertilizers.

  19. Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome

    NASA Astrophysics Data System (ADS)

    Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara

    2016-04-01

    Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation

  20. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice.

    PubMed

    Adhikari, T B; Joseph, C M; Yang, G; Phillips, D A; Nelson, L M

    2001-10-01

    Of 102 rhizoplane and endophytic bacteria isolated from rice roots and stems in California, 37% significantly (P < or = 0.05) inhibited the growth in vitro of two pathogens, Achlya klebsiana and Pythium spinosum, causing seedling disease of rice. Four endophytic strains were highly effective against seedling disease in growth pouch assays, and these were identified as Pseudomonas fluorescens (S3), Pseudomonas tolaasii (S20), Pseudomonas veronii (S21), and Sphingomonas trueperi (S12) by sequencing of amplified 16S rRNA genes. Strains S12, S20, and S21 contained the nitrogen fixation gene, nifD, but only S12 was able to reduce acetylene in pure culture. The four strains significantly enhanced plant growth in the absence of pathogens, as evidenced by increases in plant height and dry weight of inoculated rice seedlings relative to noninoculated rice. Three bacterial strains (S3, S20, and S21) were evaluated in pot bioassays and reduced disease incidence by 50%-73%. Strain S3 was as effective at suppressing disease at the lowest inoculum density (106 CFU/mL) as at higher density (10(8) CFU/mL or undiluted suspension). This study indicates that selected endophytic bacterial strains have potential for control of seedling disease of rice and for plant growth promotion.

  1. Liquid nitrogen pretreatment of eucalyptus sawdust and rice hull for enhanced enzymatic saccharification.

    PubMed

    Castoldi, Rafael; Correa, Vanesa G; de Morais, Gutierrez Rodrigues; de Souza, Cristina G M; Bracht, Adelar; Peralta, Rosely A; Peralta-Muniz Moreira, Regina F; Peralta, Rosane M

    2017-01-01

    In this work, liquid nitrogen was used for the first time in the pretreatment of plant biomasses for purposes of enzymatic saccharification. After treatment (cryocrushing), the initial rates of the enzymatic hydrolysis of eucalyptus sawdust and rice hull were increased more than ten-fold. Cryocrushing did not modify significantly the contents of cellulose, hemicellulose and lignin in both eucalyptus sawdust and rice hulls. However, substantial disorganization of the lignocellulosic materials in consequence of the pretreatment could be observed by electron microscopy. Cryocrushing was highly efficient in improving the saccharification of the holocellulose component of the plant biomasses (from 4.3% to 54.1% for eucalyptus sawdust and from 3.9% to 40.6% for rice hull). It is important to emphasize that it consists in a simple operation with low requirements of water and chemicals, no corrosion, no release of products such as soluble phenolics, furfural and hydroxymethylfurfural and no waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice

    PubMed Central

    Sun, Huwei; Li, Jiao; Song, Wenjing; Tao, Jinyuan; Huang, Shuangjie; Chen, Si; Hou, Mengmeng; Xu, Guohua; Zhang, Yali

    2015-01-01

    Increasing evidence shows that partial nitrate nutrition (PNN) can be attributed to improved plant growth and nitrogen-use efficiency (NUE) in rice. Nitric oxide (NO) is a signalling molecule involved in many physiological processes during plant development and nitrogen (N) assimilation. It remains unclear whether molecular NO improves NUE through PNN. Two rice cultivars (cvs Nanguang and Elio), with high and low NUE, respectively, were used in the analysis of NO production, nitrate reductase (NR) activity, lateral root (LR) density, and 15N uptake under PNN, with or without NO production donor and inhibitors. PNN increased NO accumulation in cv. Nanguang possibly through the NIA2-dependent NR pathway. PNN-mediated NO increases contributed to LR initiation, 15NH4 +/15NO3 – influx into the root, and levels of ammonium and nitrate transporters in cv. Nanguang but not cv. Elio. Further results revealed marked and specific induction of LR initiation and 15NH4 +/15NO3 – influx into the roots of plants supplied with NH4 ++sodium nitroprusside (SNP) relative to those supplied with NH4 + alone, and considerable inhibition upon the application of cPTIO or tungstate (NR inhibitor) in addition to PNN, which is in agreement with the change in NO fluorescence in the two rice cultivars. The findings suggest that NO generated by the NR pathway plays a pivotal role in improving the N acquisition capacity by increasing LR initiation and the inorganic N uptake rate, which may represent a strategy for rice plants to adapt to a fluctuating nitrate supply and increase NUE. PMID:25784715

  3. Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species

    PubMed Central

    Elbeltagy, Adel; Nishioka, Kiyo; Sato, Tadashi; Suzuki, Hisa; Ye, Bin; Hamada, Toru; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2001-01-01

    Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis. PMID:11679357

  4. Reducing Soil CO2 Emission and Improving Upland Rice Yield with no-Tillage, Straw Mulch and Nitrogen Fertilization in Northern Benin

    NASA Astrophysics Data System (ADS)

    Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.

    2015-12-01

    To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.

  5. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari.

    PubMed

    Yang, Bo; Ma, Hai-Yan; Wang, Xiao-Mi; Jia, Yong; Hu, Jing; Li, Xia; Dai, Chuan-Chao

    2014-09-01

    The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage; S2, the tillering stage; S3, the heading stage; S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively; that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively; and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH4(+), NO3(-), amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice-P. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Response of rice cultivars to rates of nitrogen and potassium application in field and pot conditions.

    PubMed

    Bahmaniar, M A; Ranjbar, G A

    2007-05-01

    Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p < or = 0.05). Potassium application in field conditions has significantly affected on all characteristics but 1000 grain weight and leaf N and K contents. Simultaneous application of N and K have increasingly affected on grain yield, plant height, shoot dry matter and harvest index in field conditions and on plant height, length of flag leaf and shoot dry matter in pot conditions (p < or = 0.05).

  7. Increasing rice plant growth by Trichoderma sp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  8. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L.).

    PubMed

    Yang, Jun; Chen, Xiaorong; Zhu, Changlan; Peng, Xiaosong; He, Xiaopeng; Fu, Junru; Ouyang, Linjuan; Bian, Jianmin; Hu, Lifang; Sun, Xiaotang; Xu, Jie; He, Haohua

    2015-01-01

    Rice reproductive development is sensitive to high temperature and soil nitrogen supply, both of which are predicted to be increased threats to rice crop yield. Rice spikelet development is a critical process that determines yield, yet little is known about the transcriptional regulation of rice spikelet development in response to the combination of heat stress and low nitrogen availability. Here, we profiled gene expression of rice spikelet development during meiosis under heat stress and different nitrogen levels using RNA-seq. We subjected plants to four treatments: 1) NN: normal nitrogen level (165 kg ha-1) with normal temperature (30°C); 2) HH: high nitrogen level (264 kg ha-1) with high temperature (37°C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and normal temperature. The de novo transcriptome assembly resulted in 52,250,482 clean reads aligned with 76,103 unigenes, which were then used to compare differentially expressed genes (DEGs) in the different treatments. Comparing gene expression in samples with the same nitrogen levels but different temperatures, we identified 70 temperature-responsive DEGs in normal nitrogen levels (NN vs NH) and 135 DEGs in high nitrogen levels (HN vs HH), with 27 overlapping DEGs. We identified 17 and seven nitrogen-responsive DEGs by comparing changes in nitrogen levels in lower temperature (NN vs HN) and higher temperature (NH vs HH), with one common DEG. The temperature-responsive genes were principally associated with cytochrome, heat shock protein, peroxidase, and ubiquitin, while the nitrogen-responsive genes were mainly involved in glutamine synthetase, amino acid transporter, pollen development, and plant hormone. Rice spikelet fertility was significantly reduced under high temperature, but less reduced under high-nitrogen treatment. In the high temperature treatments, we observed downregulation of genes involved in spikelet development, such as pollen tube growth, pollen

  9. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant

    NASA Astrophysics Data System (ADS)

    Setiawati, Mieke Rochimi; Damayani, Maya; Herdiyantoro, Diyan; Suryatmana, Pujawati; Anggraini, Derisfha; Khumairah, Fiqriah Hanum

    2018-02-01

    The yield of rice plants is strongly influenced by N fertilizer. Nitrogen in rice plants has roles in vegetative growth, tiller formation and increasing yield through rice protein formation. Nitrogen supplied from organic fertilizers is better than inorganic fertilizers that may have environmental problem effects. Organic fertilizers from Azolla pinnata water fern contain higher N than other organic fertilizers. Symbiosis between A. pinnata and the N-fixing cyanobacteria results in high content of nitrogen, 3 to 5%. A. pinnata can be added to the rice field as organic fertilizer in form of fresh biomass or composted. Composted form can be ground into powder which passes through 100 mesh sieve. Preparation of compost powder of A. pinnata is done to reduce the constraints of voluminous application of organic fertilizers and to improve the efficiency of its use. The objective of this research was to compare the effect of the use of fresh A. pinnata and compost powder of A. pinnata on some soil and plant chemical properties and rice yield. The treatments applied were fresh A. pinnata at the dose of 0, 10 and 20 ton ha-1 and A. pinnata compost powder at 12.5 and 25 kg ha-1. The results showed that incorporation of fresh A. pinnata at 20 tons ha-1 and its compost powder at 25 kg ha-1 increased the available P of soil, plant P content and tiller number, but did not affect the content of organic-C, total soil N, plant N content and rice yield. This study suggested the benefits of A. pinnata compost powder technology in organic fertilization of soil to increase the nutrient content of soil and rice plants.

  10. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies

    Treesearch

    Mark E. Fenn; Mark A. Poth; John D. Aber; Jill S. Baron; Bernard T. Bormann; Dale W. Johnson; A. Dennis Lemly; Steven G. McNulty; Douglas F. Ryan; Robert Stottlemyer

    1998-01-01

    Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plantlsoil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of...

  11. Effects of late-stage nitrogen fertilizer application on the starch structure and cooking quality of rice.

    PubMed

    Cao, XianMei; Sun, HuiYan; Wang, ChunGe; Ren, XiaoJia; Liu, HongFei; Zhang, ZuJian

    2018-04-01

    With the rapid development of modern agriculture, high-quality rice production and consumption has become the current urgent demand for the development of rice production. In this paper, the effects of late-stage nitrogen fertilizer application on rice quality were studied under the same genetic background. Wx near-isogenic lines were used as test materials to study the starch composition, amylopectin structure and cooking quality of rice. Results showed that rice amylose content and gel consistency significantly differed when different Wx genes were tranformed into waxy rice. The law of apparent amylose content in rice is Wx a > Wx in > Wx b > wx at the same nitrogen level, while the trend of gel consistency was opposite to that of apparent amylose content, presenting obvious characteristics of Indica and Japonica varieties. As the amount of fertilizer application increased, apparent amylose content increased, gel consistency decreased, breakdown and peak viscosities dropped and setback viscosity and peak time increased. Moreover, the cooking quality of rice significantly decreased with the use of nitrogen fertilizer, especially under low-level nitrogen fertilizer application. Amylopectin structure varied significantly in different genotypes of the Wx gene, and the degree of branching was as follows: wx > Wx b > Wx in > Wx a . This result indicated that the closer to Indica rice, the fewer short chains of amylopectin. Starch crystallinity and swelling potential were negatively correlated with amylose content but significantly positively correlated with amylopectin branching degree, decreasing with the increase of late-stage nitrogen fertilization. Late-stage nitrogen fertilization reduced the cooking quality of rice by increasing amylose content and reducing amylopectin branching degree, which decreased starch crystallinity and aggravated pasting properties. Obviously, controlling late nitrogen application is essential to optimize rice quality. © 2017 Society of

  12. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Soil salinity and sodicity can not only directly restrain crop growth by osmotic and specific ion stresses, it also may reduce grain yield indirectly by impacting plant absorption of essential nutrients. Ensuring adequate nitrogen is an important management aspect of rice production in saline-sodic ...

  13. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants.

    PubMed

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-05-17

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection.

  14. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    PubMed Central

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha−1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha−1, BBF; polymer-coated urea at 240 kg N ha−1, PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  15. Physiological and morphological responses of Ischaemum rugosum Salisb. (wrinkled grass) to different nitrogen rates and rice seeding rates.

    PubMed

    Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C Sta

    2014-01-01

    Ischaemum rugosum is a competitive weed in direct-seeded rice systems. Developing integrated weed management strategies that promote the suppression of weeds by crop density, cultivar selection, and nutrition requires better understanding of the extent to which rice interferes with the growth of this weed and how it responds to resource limitation due to rice interference. The growth of I. rugosum was studied when grown with four rice seeding rates (0, 25, 50, and 100 kg ha(-1)) and four nitrogen (N) rates (0, 50, 100, and 150 kg ha(-1)). Compared to the weed plants grown alone, weed tiller number was reduced by 63-80%, leaf number by 68-77%, leaf area by 69-77%, leaf biomass by 72-84%, and inflorescence biomass by 81-93% at the rice seeding rates of 25-100 kg ha(-1). All these parameters increased with increasing rates of N from 0 to 150 kg ha(-1). At weed maturity, I. rugosum plants were 100% taller than rice at 0 kg N ha(-1), whereas, with added N, the weeds were only 50% taller than rice. Weed biomass increased by 82-160%, whereas rice biomass increased by 92-229%, with the application of 50-150 kg N ha(-1). Added N favored rice biomass production more than it did the weed. Rice interference reduced the height and biomass of I. rugosum, but did not suppress its growth completely. I. rugosum showed the ability to reduce the effects of rice interference by increasing leaf area, leaf weight ratio, and specific leaf area, and by decreasing the root-shoot weight ratio in comparison to the weed plants grown alone. The results suggest that rice crop interference alone may reduce I. rugosum growth but may not provide complete control of this weed. The need for integrated weed management practices to effectively control this weed species is highlighted.

  16. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    PubMed

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-12-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus, with minimal or zero inputs.

  17. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    PubMed

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  18. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems.

    PubMed

    Luo, Liang-Guo; Itoh, Sumio; Zhang, Qing-Wen; Yang, Shi-Qi; Zhang, Qing-Zhong; Yang, Zheng-Li

    2011-06-01

    The leaching behavior of nitrogen was studied in single rice paddy production ecosystems in Tsukuba, Japan after 75 years of consistent fertilization regimes (no fertilizer, ammonium sulfate, a combination of composted rice straw with soybean cake, and fresh clover). During the 75-year period, management was unchanged with respect to rice planting density, irrigation, and net N fertilization for each field to which an N-source was added. Percolation water was collected, from May 2001 to April 2002, using porous suction cups installed in the fields at depths of 15, 40, and 60 cm. All water samples were taken to the laboratory for the measurement of both NH(4) ( + )-N and NO(3) ( - )-N concentrations using a continuous-flow nitrogen analyzer. The result indicated that there were significant differences in N leaching losses between treatments during the rice growing season. Total N leaching was significantly lower with the application of composted rice straw plus soybean cake (0.58 kg N ha( - 1)) than with ammonium sulfate (2.41 kg N ha( - 1)), which resulted in N leaching at a similar level to that with the fresh clover treatment (no significant difference). The majority of this N leaching was not due to NO(3) ( - )-N loss, but to that of NH(4) ( + )-N. The mean N leaching for all fertilizer treatments during the entire rice growing season was 1.58 kg N ha( - 1). Composted rice straw plus soybean cake produced leaching losses which were 65-75% lower than those with the application of fresh clover and ammonium sulfate. N accumulation resulting from nitrification in the fallow season could be a key source of nitrate-N leaching when fields become re-flooded before rice transplanting in the following year; particular attention should be paid to this phenomenon.

  19. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Dutta, Subashisa

    2016-12-01

    Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.

  20. [Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields].

    PubMed

    Zhang, Jing Sheng; Wang, Chang Quan; Li, Bing; Liang, Jing Yue; He, Jie; Xiang, Hao; Yin, Bin; Luo, Jing

    2017-06-18

    A field experiment was conducted to investigate the effect of controlled-release fertilizer (CRF) combined with urea (UR) on the soil fertility and environment in wheat-rice rotation system. Changes in four forms of nitrogen (total nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass nitrogen) and in activities of three soil enzymes participating in nitrogen transformation (urease, protease, and nitrate reductase) were measured in seven fertilization treatments (no fertilization, routine fertilization, 10%CRF+90%UR, 20%CRF+80%UR, 40%CRF+60%UR, 80%CRF+20%UR, and 100%CRF). The results showed that soil total nitrogen was stable in the whole growth period of wheat and rice. There was no significant difference among the treatments of over 20% CRF in soil total nitrogen content of wheat and rice. The soil inorganic nitrogen content was increased dramatically in treatments of 40% or above CRF during the mid-late growing stages of wheat and rice. With the advance of the growth period, conventional fertilization significantly decreased soil microbial biomass nitrogen, but the treatments of 40% and above CRF increased the soil microbial biomass nitrogen significantly. The soil enzyme activities were increased with over 40% of CRF in the mid-late growing stage of wheat and rice. By increasing the CRF ratio, the soil protease activity and nitrate reductase activity were improved gradually, and peaked in 100% CRF. The treatments of above 20% CRF could decrease the urease activity in tillering stage of rice and delay the peak of ammonium nitrogen, which would benefit nitrogen loss reduction. The treatments of 40% and above CRF were beneficial to improving soil nitrogen supply and enhancing soil urease and protease activities, which could promote the effectiveness of nitrogen during the later growth stages of wheat and rice. The 100% CRF treatment improved the nitrate reductase activity significantly during the later stage of wheat and rice. Compared with the

  1. Interactions between Nitrogen and Silicon in Rice and Their Effects on Resistance toward the Brown Planthopper Nilaparvata lugens

    PubMed Central

    Wu, Xiaoying; Yu, Yaoguang; Baerson, Scott R.; Song, Yuanyuan; Liang, Guohua; Ding, Chaohui; Niu, Jinbo; Pan, Zhiqiang; Zeng, Rensen

    2017-01-01

    Nitrogen (N) and silicon (Si) are two important nutritional elements required for plant growth, and both impact host plant resistance toward insect herbivores. The interaction between the two elements may therefore play a significant role in determining host plant resistance. We investigated this interaction in rice (Oryza sativa L.) and its effect on resistance to the herbivore brown planthopper Nilaparvata lugens (BPH). Our results indicate that high-level (5.76 mM) N fertilization reduced Si accumulation in rice leaves, and furthermore, this decrease was likely due to decreased expression of Si transporters OsLsi1 and OsLsi2. Conversely, reduced N accumulation was observed at high N fertilization levels when Si was exogenously provided, and this was associated with down-regulation of OsAMT1;1 and OsGS1;1, which are involved in ammonium uptake and assimilation, respectively. Under lower N fertilization levels (0.72 and/or 1.44 mM), Si amendment resulted in increased OsNRT1:1, OsGS2, OsFd-GOGAT, OsNADH-GOGAT2, and OsGDH2 expression. Additionally, bioassays revealed that high N fertilization level significantly decreased rice resistance to BPH, and the opposite effect was observed when Si was provided. These results provide additional insight into the antagonistic interaction between Si and N accumulation in rice, and the effects on plant growth and susceptibility to herbivores. PMID:28167952

  2. AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions

    PubMed Central

    Rothstein, Steven J.

    2014-01-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4 +). The NH4 + uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4 + transport in rice plants. However, little is known about its involvement in NH4 + uptake in rice roots and subsequent effects on NH4 + assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4 + permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4 + content in the shoots and roots than the WT. Direct NH4 + fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4 + contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4 + levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions. PMID:24420570

  3. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions.

    PubMed

    Ranathunge, Kosala; El-Kereamy, Ashraf; Gidda, Satinder; Bi, Yong-Mei; Rothstein, Steven J

    2014-03-01

    The major source of nitrogen for rice (Oryza sativa L.) is ammonium (NH4(+)). The NH4(+) uptake of roots is mainly governed by membrane transporters, with OsAMT1;1 being a prominent member of the OsAMT1 gene family that is known to be involved in NH4(+) transport in rice plants. However, little is known about its involvement in NH4(+) uptake in rice roots and subsequent effects on NH4(+) assimilation. This study shows that OsAMT1;1 is a constitutively expressed, nitrogen-responsive gene, and its protein product is localized in the plasma membrane. Its expression level is under the control of circadian rhythm. Transgenic rice lines (L-2 and L-3) overexpressing the OsAMT1;1 gene had the same root structure as the wild type (WT). However, they had 2-fold greater NH4(+) permeability than the WT, whereas OsAMT1;1 gene expression was 20-fold higher than in the WT. Analogous to the expression, transgenic lines had a higher NH4(+) content in the shoots and roots than the WT. Direct NH4(+) fluxes in the xylem showed that the transgenic lines had significantly greater uptake rates than the WT. Higher NH4(+) contents also promoted higher expression levels of genes in the nitrogen assimilation pathway, resulting in greater nitrogen assimilates, chlorophyll, starch, sugars, and grain yield in transgenic lines than in the WT under suboptimal and optimal nitrogen conditions. OsAMT1;1 also enhanced overall plant growth, especially under suboptimal NH4(+) levels. These results suggest that OsAMT1;1 has the potential for improving nitrogen use efficiency, plant growth, and grain yield under both suboptimal and optimal nitrogen fertilizer conditions.

  4. Physiological and Morphological Responses of Ischaemum rugosum Salisb. (Wrinkled Grass) to Different Nitrogen Rates and Rice Seeding Rates

    PubMed Central

    Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C. Sta.

    2014-01-01

    Ischaemum rugosum is a competitive weed in direct-seeded rice systems. Developing integrated weed management strategies that promote the suppression of weeds by crop density, cultivar selection, and nutrition requires better understanding of the extent to which rice interferes with the growth of this weed and how it responds to resource limitation due to rice interference. The growth of I. rugosum was studied when grown with four rice seeding rates (0, 25, 50, and 100 kg ha−1) and four nitrogen (N) rates (0, 50, 100, and 150 kg ha−1). Compared to the weed plants grown alone, weed tiller number was reduced by 63–80%, leaf number by 68–77%, leaf area by 69–77%, leaf biomass by 72–84%, and inflorescence biomass by 81–93% at the rice seeding rates of 25–100 kg ha−1. All these parameters increased with increasing rates of N from 0 to 150 kg ha−1. At weed maturity, I. rugosum plants were 100% taller than rice at 0 kg N ha−1, whereas, with added N, the weeds were only 50% taller than rice. Weed biomass increased by 82–160%, whereas rice biomass increased by 92–229%, with the application of 50–150 kg N ha−1. Added N favored rice biomass production more than it did the weed. Rice interference reduced the height and biomass of I. rugosum, but did not suppress its growth completely. I. rugosum showed the ability to reduce the effects of rice interference by increasing leaf area, leaf weight ratio, and specific leaf area, and by decreasing the root-shoot weight ratio in comparison to the weed plants grown alone. The results suggest that rice crop interference alone may reduce I. rugosum growth but may not provide complete control of this weed. The need for integrated weed management practices to effectively control this weed species is highlighted. PMID:24910995

  5. Impacts of elevated CO2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen.

    PubMed

    Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N; Chen, Fajun

    2017-11-07

    Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO 2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO 2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO 2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO 2 .

  6. Association of arsenic with nutrient elements in rice plants.

    PubMed

    Duan, Guilan; Liu, Wenju; Chen, Xueping; Hu, Ying; Zhu, Yongguan

    2013-06-01

    Rice is the main cereal crop that feeds half of the world's population, and two thirds of the Chinese population. Arsenic (As) contamination in paddy soil and irrigation water elevates As concentration in rice grains, thus rice consumption is an important As intake route for populations in south and south-east Asia, where rice is the staple food. In addition to direct toxicity of As to human, As may limit the accumulation of micro-nutrients in rice grains, such as selenium (Se) and zinc (Zn). These micro-nutrients are essential for humans, while mineral deficiencies, especially iron (Fe) and Zn, are prevalent in China. Therefore, it is important to understand the interactions between As and micro-nutrients in rice plants, which is the principal source of these nutrients for people on rice diets. In addition, during the processes of As uptake, translocation and transformation, the status of macro-nutrients (e.g. silicon (Si), phosphors (P), sulfur (S)) are important factors affecting As dynamics in soil-plant systems and As accumulation in rice grains. Recently, synchrotron-based spectroscopic techniques have been applied to map the distribution of As and nutrient elements in rice plants, which will aid to understand how As are accumulated, complexed and transported within plants. This paper reviews the interactions between As and macro-nutrients, as well as micro-nutrients in rice plants.

  7. Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water budgets

    NASA Astrophysics Data System (ADS)

    Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar

    2013-04-01

    Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4

  8. Significant accumulation of C(4)-specific pyruvate, orthophosphate dikinase in a C(3) plant, rice.

    PubMed

    Fukayama, H; Tsuchida, H; Agarie, S; Nomura, M; Onodera, H; Ono, K; Lee, B H; Hirose, S; Toki, S; Ku, M S; Makino, A; Matsuoka, M; Miyao, M

    2001-11-01

    The C(4)-Pdk gene encoding the C(4) enzyme pyruvate, orthophosphate dikinase (PPDK) of maize (Zea mays cv Golden Cross Bantam) was introduced into the C(3) plant, rice (Oryza sativa cv Kitaake). When the intact maize C(4)-Pdk gene, containing its own promoter and terminator sequences and exon/intron structure, was introduced, the PPDK activity in the leaves of some transgenic lines was greatly increased, in one line reaching 40-fold over that of wild-type plants. In a homozygous line, the PPDK protein accounted for 35% of total leaf-soluble protein or 16% of total leaf nitrogen. In contrast, introduction of a chimeric gene containing the full-length cDNA of the maize PPDK fused to the maize C(4)-Pdk promoter or the rice Cab promoter only increased PPDK activity and protein level slightly. These observations suggest that the intron(s) or the terminator sequence of the maize gene, or a combination of both, is necessary for high-level expression. In maize and transgenic rice plants carrying the intact maize gene, the level of transcript in the leaves per copy of the maize C(4)-Pdk gene was comparable, and the maize gene was expressed in a similar organ-specific manner. These results suggest that the maize C(4)-Pdk gene behaves in a quantitatively and qualitatively similar way in maize and transgenic rice plants. The activity of the maize PPDK protein expressed in rice leaves was light/dark regulated as it is in maize. This is the first reported evidence for the presence of an endogenous PPDK regulatory protein in a C(3) plant.

  9. [Rice endogenous nitrogen fixing and growth promoting bacterium Herbaspirillum seropedicae DX35].

    PubMed

    Wang, Xiucheng; Cao, Yanhua; Tang, Xue; Ma, Xiaotong; Gao, Jusheng; Zhang, Xiaoxia

    2014-03-04

    To screen efficient nitrogen fixation endophytes from rice and to analyze their growth-promoting properties. We isolated strains from the roots of rice in the field where it has a rice-rice-green manure rotation system for 30 years. Efficient strains were screened by acetylene reduction assay. Phylogenetic analysis is based on 16S rRNA gene, nifH gene and the composition of fatty acid. In addition, we also detected the ability of indole acetic acid secretion through the Salkowski colorimetric method, measured the production of siderophore through the blue plate assay and detected phosphate solubilization, to analyze the growth-promoting properties. A total of 48 strains were isolated, in which DX35 has the highest nitrogenase activity. It belongs to Herbaspirillum seropedicae after identification. Its nitrogenase activity (181.21 nmol C2H4/(mg protein x h)) was 10 times as much as the reference strain Azotobacter chroococcum ACCC10006. In addition, it also can secrete siderophore and solubilize phosphorus. Strain DX35, belonging to Herbaspirillum seropedicae, is an efficient nitrogen fixation endophytes.

  10. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.

    PubMed

    Li, Weiwei; Chen, Ming; Wang, Erhui; Hu, Liqin; Hawkesford, Malcolm J; Zhong, Li; Chen, Zhu; Xu, Zhaoshi; Li, Liancheng; Zhou, Yongbin; Guo, Changhong; Ma, Youzhi

    2016-10-12

    Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Our results deepen understanding about the characteristics and functions of ATG genes in

  11. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice.

    PubMed

    Wang, Qing; Nian, Jinqiang; Xie, Xianzhi; Yu, Hong; Zhang, Jian; Bai, Jiaoteng; Dong, Guojun; Hu, Jiang; Bai, Bo; Chen, Lichao; Xie, Qingjun; Feng, Jian; Yang, Xiaolu; Peng, Juli; Chen, Fan; Qian, Qian; Li, Jiayang; Zuo, Jianru

    2018-02-21

    In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.

  12. Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Yan, X.

    2011-11-01

    Nitrogen (N) fertilizer plays an important role in agricultural systems in terms of food yield. However, N application rates (NARs) are often overestimated over the rice (Oryza sativa L.) growing season in the Taihu Lake region of China. This is largely because negative externalities are not entirely included when evaluating economically-optimal nitrogen rate (EONR), such as only individual N losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA) method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and farming processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.05 yuan. Accordingly, our current EONR has been evaluated at 187 kg N ha-1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.

  13. Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement.

    PubMed

    Sahoo, Ranjan K; Ansari, Mohammad W; Dangar, Tushar K; Mohanty, Santanu; Tuteja, Narendra

    2014-05-01

    Biological nitrogen fixation (BNF) is highly effective in the field and potentially useful to reduce adverse effects chemical fertilisers. Here, Azotobacter species were selected via phenotypic, biochemical and molecular characterisations from different rice fields. Acetylene reduction assay of Azotobacter spp. showed that Azotobacter vinelandii (Az3) fixed higher amount of nitrogen (121.09 nmol C2H4 mg(-1) bacteria h(-1)). Likewise, its plant growth functions, viz. siderophore, hydrogen cyanide, salicylic acid, IAA, GA3, zeatin, NH3, phosphorus solubilisation, ACC deaminase and iron tolerance, were also higher. The profile of gDNA, plasmid DNA and cellular protein profile depicted inter-generic and inter-specific diversity among the isolates of A. vinelandii. The PCR-amplified genes nifH, nifD and nifK of 0.87, 1.4 and 1.5 kb , respectively, were ascertained by Southern blot hybridisation in isolates of A. vinelandii. The 16S rRNA sequence from A. vinelandii (Az3) was novel, and its accession number (JQ796077) was received from NCBI data base. Biofertiliser formulation of novel A. vinelandii isolates along with commercial one was evaluated in rice (Oriza sativa L. var. Khandagiri) fields. The present finding revealed that treatment T4 (Az3) (A. vinelandii) are highly efficient to improved growth and yield of rice crop.

  14. Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China.

    PubMed

    Wu, Lilian; Yuan, Shen; Huang, Liying; Sun, Fan; Zhu, Guanglong; Li, Guohui; Fahad, Shah; Peng, Shaobing; Wang, Fei

    2016-01-01

    Selecting rice varieties with a high nitrogen (N) use efficiency (NUE) is the best approach to reduce N fertilizer application in rice production and is one of the objectives of the Green Super Rice (GSR) Project in China. However, the performance of elite candidate GSR varieties under low N supply remains unclear. In the present study, differences in the grain yield and NUE of 13 and 14 candidate varieties with two controls were determined at a N rate of 100 kg ha(-1) in field experiments in 2014 and 2015, respectively. The grain yield for all of the rice varieties ranged from 8.67 to 11.09 t ha(-1), except for a japonica rice variety YG29, which had a grain yield of 6.42 t ha(-1). HY549 and YY4949 produced the highest grain yield, reflecting a higher biomass production and harvest index in 2014 and 2015, respectively. Total N uptake at maturity (TNPM) ranged from 144 to 210 kg ha(-1), while the nitrogen use efficiency for grain production (NUEg) ranged from 35.2 to 62.0 kg kg(-1). Both TNPM and NUEg showed a significant quadratic correlation with grain yield, indicating that it is possible to obtain high grain yield and NUEg with the reduction of TNPM. The correlation between N-related parameters and yield-related traits suggests that promoting pre-heading growth could increase TNPM, while high biomass accumulation during the grain filling period and large panicles are important for a higher NUEg. In addition, there were significant and negative correlations between the NUEg and N concentrations in leaf, stem, and grain tissues at maturity. Further improvements in NUEg require a reduction in the stem N concentration but not the leaf N concentration. The daily grain yield was the only parameter that significantly and positively correlated with both TNPMand NUEg. This study determined variations in the grain yield and NUE of elite candidate GSR rice varieties and provided plant traits that could be used as selection criteria in breeding N-efficient rice varieties.

  15. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants.

    PubMed

    Chen, Jingguang; Fan, Xiaoru; Qian, Kaiyun; Zhang, Yong; Song, Miaoquan; Liu, Yu; Xu, Guohua; Fan, Xiaorong

    2017-10-01

    The nitrate (NO3-) transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and 15 N influx in roots increased 21%-32% in response to 0.2 mm and 2.5 mm 15NO3- and 1.25 mm 15 NH 4 15 NO 3 . Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO 3 - uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants.

    PubMed

    Muthukumarasamy, R; Kang, U G; Park, K D; Jeon, W-T; Park, C Y; Cho, Y S; Kwon, S-W; Song, J; Roh, D-H; Revathi, G

    2007-04-01

    This study has been aimed (i) to isolate and identify diazotrophs from Korean rice varieties; (ii) to examine the long-term effect of N and compost on the population dynamics of diazotrophs and (iii) to realize the shot-term inoculation effect of these diazotrophs on rice seedlings. Diazotrophic and heterotrophic bacterial numbers were enumerated by most probable number method and the isolates were identified based on morphological, physiological, biochemical and 16s rDNA sequence analysis. Long-term application of fertilizer N with compost enhanced both these numbers in rice plants and its environment. Bacteria were high in numbers when malate and azelaic acids were used as carbon source, but less when sucrose was used as a carbon substrate. The combined application promoted the association of diazotrophic bacteria like Azospirillum spp., Herbaspirillum spp., Burkholderia spp., Gluconacetobacter diazotrophicus and Pseudomonas spp. in wetland rice plants. Detection of nifD genes from different diazotrophic isolates indicated their nitrogen fixing ability. Inoculation of a representative isolate from each group onto rice seedlings of the variety IR 36 grown in test tubes indicated the positive effect of these diazotrophs on the growth of rice seedlings though the percentage of N present in the plants did not differ much. Application of compost with fertilizer N promoted the diazotrophic and heterotrophic bacterial numbers and their association with wetland rice and its environment. Compost application in high N fertilized fields would avert the reduction of N(2)-fixing bacterial numbers and their association was beneficial to the growth of rice plants. The inhibitory effect of high N fertilization on diazotrophic bacterial numbers could be reduced by the application of compost and this observation would encourage more usage of organic manure. This study has also thrown light on the wider geographic distribution of G. diazotrophicus with wetland rice in temperate

  17. Do rice water weevils and rice stem borers compete when sharing a host plant?*

    PubMed Central

    Shi, Sheng-wei; He, Yan; Ji, Xiang-hua; Jiang, Ming-xing; Cheng, Jia-an

    2008-01-01

    The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice. PMID:18600788

  18. Do rice water weevils and rice stem borers compete when sharing a host plant?

    PubMed

    Shi, Sheng-Wei; He, Yan; Ji, Xiang-Hua; Jiang, Ming-Xing; Cheng, Jia-An

    2008-07-01

    The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice.

  19. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China.

    PubMed

    Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao

    2007-03-01

    Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.

  20. The dynamics of nitrogen derived from a chemical nitrogen fertilizer with treated swine slurry in paddy soil-plant systems

    PubMed Central

    Lee, Joonhee

    2017-01-01

    A well-managed chemical nitrogen (N) fertilization practice combined with treated swine slurry (TSS) is necessary to improve sustainability and N use efficiency in rice farming. However, little is known about the fate of N derived from chemical N fertilizer with and without TSS in paddy soil-plant systems. The objectives of this study were (1) to estimate the contribution of applied N fertilizer to N turnover in rice paddy soil with different N fertilization practices that were manipulated by the quantity of treated swine slurry and chemical N fertilizer (i.e., HTSS+LAS, a high amount of TSS with a low amount of ammonium sulfate; LTSS+HAS, a low amount of TSS with a high amount of ammonium sulfate; AS, ammonium sulfate with phosphorus and potassium; C, the control) and (2) to compare the rice response to applied N derived from each N fertilization practice. Rice biomass yield, 15N recovery in both rice grain and stems, soil total N (TN), soil inorganic N, and soil 15N recovery were analyzed. Similar amounts of 15N uptake by rice in the TSS+AS plots were obtained, indicating that the effects of the different quantities of TSS on chemical fertilizer N recovery in rice during the experimental period were not significant. The soil 15N recoveries of HTSS+LAS, LTSS+HAS, and AS in each soil layer were not significantly different. For the HTSS+LAS, LTSS+HAS and AS applications, total 15N recoveries were 42%, 43% and 54%, respectively. Because the effects of reducing the use of chemical N fertilizer were attributed to enhancing soil quality and cost-effectiveness, HTSS+LAS could be an appropriate N fertilization practice for improving the long-term sustainability of paddy soil-plant systems. However, N losses, especially through the coupled nitrification-denitrification process, can diminish the benefits that HTSS+LAS offers. PMID:28339491

  1. The dynamics of nitrogen derived from a chemical nitrogen fertilizer with treated swine slurry in paddy soil-plant systems.

    PubMed

    Lee, Joonhee; Choi, Hong L

    2017-01-01

    A well-managed chemical nitrogen (N) fertilization practice combined with treated swine slurry (TSS) is necessary to improve sustainability and N use efficiency in rice farming. However, little is known about the fate of N derived from chemical N fertilizer with and without TSS in paddy soil-plant systems. The objectives of this study were (1) to estimate the contribution of applied N fertilizer to N turnover in rice paddy soil with different N fertilization practices that were manipulated by the quantity of treated swine slurry and chemical N fertilizer (i.e., HTSS+LAS, a high amount of TSS with a low amount of ammonium sulfate; LTSS+HAS, a low amount of TSS with a high amount of ammonium sulfate; AS, ammonium sulfate with phosphorus and potassium; C, the control) and (2) to compare the rice response to applied N derived from each N fertilization practice. Rice biomass yield, 15N recovery in both rice grain and stems, soil total N (TN), soil inorganic N, and soil 15N recovery were analyzed. Similar amounts of 15N uptake by rice in the TSS+AS plots were obtained, indicating that the effects of the different quantities of TSS on chemical fertilizer N recovery in rice during the experimental period were not significant. The soil 15N recoveries of HTSS+LAS, LTSS+HAS, and AS in each soil layer were not significantly different. For the HTSS+LAS, LTSS+HAS and AS applications, total 15N recoveries were 42%, 43% and 54%, respectively. Because the effects of reducing the use of chemical N fertilizer were attributed to enhancing soil quality and cost-effectiveness, HTSS+LAS could be an appropriate N fertilization practice for improving the long-term sustainability of paddy soil-plant systems. However, N losses, especially through the coupled nitrification-denitrification process, can diminish the benefits that HTSS+LAS offers.

  2. Dark septate endophyte decreases stress on rice plants.

    PubMed

    Santos, Silvana Gomes Dos; Silva, Paula Renata Alves da; Garcia, Andres Calderin; Zilli, Jerri Édson; Berbara, Ricardo Luis Louro

    Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Effect of Rates and Timing of Midseason Nitrogen Applications on Performance of Short-season Rice Varieties, 1964-1965

    Treesearch

    John L. Sims; V. L. Hall; T. H. Johnston

    1967-01-01

    Research conducted in Arkansas has shown the value of splitting nitrogen applications made to rice and the importance of proper timing of applications near midseason. Results of these studies recently were presented and references to the world literature on timing of nitrogen applications to rice were reviewed.

  4. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  5. The impact of planting date on management of the rice water weevil in Louisiana rice

    USDA-ARS?s Scientific Manuscript database

    The rice water weevil, Lissorhoptrus oryzophilus, is the most destructive insect pest of rice in the United States. Early planting of rice to avoid damaging infestations of the rice water weevil has long been suggested as a management tactic. A five-year study was conducted to characterize the influ...

  6. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    PubMed

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats.

    PubMed

    Kowaka, Emi; Shimajiri, Yasuka; Kawakami, Kouhei; Tongu, Miki; Akama, Kazuhito

    2015-06-01

    Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar 'Koshihikari' by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. 'Koshihikari' plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75-0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5% GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

  8. Methyl jasmonate induced resistance in cheniere rice and soybean plants

    NASA Astrophysics Data System (ADS)

    Taplin, C.

    2017-12-01

    Methyl jasmonate (MJ) is a compound naturally occurring in certain plants that aids in plant defense. In this study, we examined the difference in herbivory of fall armyworm (FAW) on control plants (treated without MJ) and MJ-treated plants. Seeds of cheniere rice and soybean were soaked in MJ overnight and planted in the greenhouse, although the soybean never grew. Therefore, only the mature plant leaves of cheniere rice were fed to FAW and the difference in herbivory was looked at. Our results show there is no statistical difference in the herbivory of the cheniere rice plant leaves.

  9. Factors Affecting Planting Depth and Standing of Rice Seedling in Parachute Rice Transplanting

    NASA Astrophysics Data System (ADS)

    Astika, I. W.; Subrata, I. D. M.; Pramuhadi, G.

    2018-05-01

    Parachute rice transplanting is a simple and practical rice transplanting method. It can be done manually or mechanically, with various possible designs of machines or tools. This research aimed at quantitatively formulating related factors to the planting depth and standing of rice seedling. Parachute seedlings of rice were grown at several sizes of parachute soil bulb sizes. The trays were specially designed with a 3D printer having bulb sizes 7, 8, 9, 10 mm in square sides and 15 mm depth. At seedling ages of 8-12 days after sowing the seedling bulbs were drops into puddled soil. Soil hardness was set at 3 levels of hardness, measured in hardness index using golf ball test. Angle of dropping was set at 3 levels: 0°, 30°and 45° from the vertical axis. The height of droppings was set at 100 cm, 75 cm, and 50 cm. The relationship between bulb size, height of dropping, soil hardness, dropping angle and planting depth was formulated with ANN. Most of input variables did not significantly affect the planting depth, except that hard soil significantly differs from mild soil and soft soil. The dropping also resulted in various positions of the planted seedlings: vertical standing, sloped, and falling. However, at any position of the planted seedlings, the seedlings would recover themselves into normally vertical position. With this result, the design of planting machinery, as well as the manual planting operation, can be made easier.

  10. Transpiration rates of rice plants treated with Trichoderma spp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Anizan, I.; Che Radziah C. M., Z.; Yusoff, Wan Mohtar Wan

    2014-09-01

    Trichoderma spp. are considered as successful plant growth promoting fungi and have positive role in habitat engineering. In this study, the potential for Trichoderma spp. to regulate transpiration process in rice plant was assessed experimentally under greenhouse condition using a completely randomized design. The study revealed that Trichoderma spp. have potential to enhance growth of rice plant through transpirational processes. The results of the study add to the advancement of the understanding as to the role of Trichoderma spp. in improving rice physiological process.

  11. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  12. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  13. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China.

    PubMed

    Xie, Zhijian; He, Yaqin; Tu, Shuxin; Xu, Changxu; Liu, Guangrong; Wang, Huimin; Cao, Weidong; Liu, Hui

    2017-06-15

    Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15 N labeling (including three treatments: control, no fertilizer N and CMV; 15 N-labeled urea alone, 15 NU; substituting partial 15 NU with CMV, 15 NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15 NU recovery in rice-based rotation system. The 15 NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15 N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15 N recovery by 77% versus 15 NU alone. Remarkable increases in soil NH 4 + and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO 3 - content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.

  14. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.

    PubMed

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion.

    PubMed

    Saravanan, V S; Madhaiyan, M; Osborne, Jabez; Thangaraju, M; Sa, T M

    2008-01-01

    Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.

  16. Single-wavelength based rice leaf color analyzer for nitrogen status estimation

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2014-02-01

    With the need of a tool for efficient nitrogen (N) fertilizer management in the rice field, this paper proposes a low-cost compact single-wavelength based colorimeter that can be used to indicate the specified six color levels of a rice leaf associated with the desired amount of N fertilizer for the rice field. Our key design is in a reflective optical architecture that allows us to investigate the amount of light scattered from only one side of the rice leaf. We also show how we implement this needed rice leaf color analyzer by integrating an off-the-shelf 562-nm wavelength light emitting diode (LED), a silicon photodiode, an 8-bit microcontroller, and a 6×1 LED panel in a compact plastic package. Field test results in rice fields confirm that leaf color levels of 1, 2, 3, 5, and 6 are effectively identified and their corresponding amount of N fertilizer can be determined. For the leaf color level of 4, our single-wavelength based rice leaf color analyzer sometimes indicates a higher color level of 5 whose suggested amount of N fertilizer is equal to that for the leaf color level of 4. Other key features include ease of use and upgradability for different color levels.

  17. Are common symbiosis genes required for endophytic rice-rhizobial interactions?

    PubMed

    Chen, Caiyan; Zhu, Hongyan

    2013-09-01

    Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.

  18. [Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties].

    PubMed

    Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang

    2017-04-18

    To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could

  19. PAY1 improves plant architecture and enhances grain yield in rice.

    PubMed

    Zhao, Lei; Tan, Lubin; Zhu, Zuofeng; Xiao, Langtao; Xie, Daoxin; Sun, Chuanqing

    2015-08-01

    Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over-expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole-3-acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker-assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high-yielding rice varieties. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  20. Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen-Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies.

    PubMed

    Yang, Xiaolu; Nian, Jinqiang; Xie, Qingjun; Feng, Jian; Zhang, Fengxia; Jing, Hongwei; Zhang, Jian; Dong, Guojun; Liang, Yan; Peng, Juli; Wang, Guodong; Qian, Qian; Zuo, Jianru

    2016-11-07

    Plants assimilate inorganic nitrogen absorbed from soil into organic forms as Gln and Glu through the glutamine synthetase/glutamine:2-oxoglutarate amidotransferase (GS/GOGAT) cycle. Whereas GS catalyzes the formation of Gln from Glu and ammonia, GOGAT catalyzes the transfer of an amide group from Gln to 2-oxoglutarate to produce two molecules of Glu. However, the regulatory role of the GS/GOGAT cycle in the carbon-nitrogen balance is not well understood. Here, we report the functional characterization of rice ABNORMAL CYTOKININ RESPONSE 1 (ABC1) gene that encodes a ferredoxin-dependent (Fd)-GOGAT. The weak mutant allele abc1-1 mutant shows a typical nitrogen-deficient syndrome, whereas the T-DNA insertional mutant abc1-2 is seedling lethal. Metabolomics analysis revealed the accumulation of an excessive amount of amino acids with high N/C ratio (Gln and Asn) and several intermediates in the tricarboxylic acid cycle in abc1-1, suggesting that ABC1 plays a critical role in nitrogen assimilation and carbon-nitrogen balance. Five non-synonymous single-nucleotide polymorphisms were identified in the ABC1 coding region and characterized as three distinct haplotypes, which have been highly and specifically differentiated between japonica and indica subspecies. Collectively, these results suggest that ABC1/OsFd-GOGAT is essential for plant growth and development by modulating nitrogen assimilation and the carbon-nitrogen balance. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  1. Plant traits related to nitrogen uptake influence plant-microbe competition.

    PubMed

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  2. Insects as a Nitrogen Source for Plants

    PubMed Central

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  3. Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates.

    PubMed

    Zhang, Wujun; Wu, Longmei; Wu, Xiaoran; Ding, Yanfeng; Li, Ganghua; Li, Jingyong; Weng, Fei; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2016-12-01

    Lodging in rice production often limits grain yield and quality by breaking or bending stems. Excessive nitrogen (N) fertilizer rates are the cause of poor lodging resistance in rice, but little is known about the effect of top-dressing N application rates on the mechanical strength of japonica rice plants, especially how the anatomical structure in culms is affected by N. In this study, field experiments on two japonica rice varieties with three top-dressing N application rates, 0 kg N ha(-1) (LN), 135 kg N ha(-1) (MN), and 270 kg N ha(-1) (HN) as urea, were conducted. Wuyunjing23, a lodging-resistant japonica rice cultivar and W3668, a lodging-susceptible japonica rice cultivar were used. The lodging index, breaking strength, morphological and anatomical traits in culms were measured in this study. The visual lodging rate in japonica rice differed remarkably between genotypes and top-dressing N treatments. The higher lodging index of rice plants was primarily attributed to the weak breaking strength of the lower internodes. The longer elongated basal internodes were responsible for higher plant height and a higher lodging index. Correlation analysis showed that breaking strength was significantly and positively correlated with the thickness of the mechanical tissue but was significantly and negatively correlated with the inner diameter of the major axis (b2). With increasing top-dressing N rates, the sclerenchyma cells of the mechanical tissues and the vascular bundles of the Wuyunjing23 cultivar varied little. The plant height, inner diameter of the minor axis (a2) and b2 increased significantly, but the area of the large vascular bundle (ALVB) and the area of the small vascular bundle (ASVB) decreased significantly and resulted in lower stem strength and a higher lodging index under higher top-dressing N conditions. The culm diameter of the W3668 cultivar increased slightly with no significant difference, and the sclerenchyma cells in the mechanical

  4. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations.

    PubMed

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones.

  5. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations

    PubMed Central

    Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones. PMID:27284692

  6. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants.

    PubMed

    Sun, Jiali; Ye, Miao; Peng, Shaobing; Li, Yong

    2016-08-10

    To identify the effect of nitrogen (N) nutrition on the dynamic photosynthesis of rice plants, a pot experiment was conducted under two N conditions. The leaf N and chlorophyll levels, as well as steady-state photosynthesis, were significantly increased under high N. After the transition from saturating to low light levels, decreases in the induction state (IS%) of leaf photosynthesis (A) and stomatal conductance (gs) were more severe under low than under high N supply. After the transition from low to flecked irradiance, the times to 90% of maximum A (T90%A) were significantly longer under low than under high N supply. Under flecked irradiance, the maximum A under saturating light (Amax-fleck) and the steady-state A under low light (Amin-fleck) were both lower than those under uniform irradiance (Asat and Ainitial). Under high N supply, Amax-fleck was 14.12% lower than Asat, while it was 22.80% lower under low N supply. The higher IS%, shorter T90%A, and the lower depression of Amax-fleck from Asat under high N supply led to a less carbon loss compared with under a low N supply. Therefore, we concluded that N can improve the rapid response of photosynthesis to changing irradiance.

  7. Transgenic strategies to confer resistance against viruses in rice plants

    PubMed Central

    Sasaya, Takahide; Nakazono-Nagaoka, Eiko; Saika, Hiroaki; Aoki, Hideyuki; Hiraguri, Akihiro; Netsu, Osamu; Uehara-Ichiki, Tamaki; Onuki, Masatoshi; Toki, Seichi; Saito, Koji; Yatou, Osamu

    2014-01-01

    Rice (Oryza sativa L.) is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. Many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA interference (RNAi), also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral “Achilles’ heel” gene to target for RNAi attack when engineering plants. PMID:24454308

  8. Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene.

    PubMed

    Shimizu, Masami; Kimura, Tetsuya; Koyama, Takayoshi; Suzuki, Katsuhisa; Ogawa, Naoto; Miyashita, Kiyotaka; Sakka, Kazuo; Ohmiya, Kunio

    2002-08-01

    The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.

  9. Electrophysiological responses of the rice leaffolder, cnaphalocrocis medinalis (lepidoptera: pyralidae), to rice plant volatiles

    USDA-ARS?s Scientific Manuscript database

    The electrophysiological activities of 38 synthetic volatiles that were known to be released from the rice plants (Poaceae: Oryza spp.) were studied using electroantennogram (EAG) recording technique on male and female antennae of the rice leaffolder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: ...

  10. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan

    2016-08-01

    Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG

  11. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.

    PubMed

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of 'Yangdao 6' was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments.

  12. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    PubMed

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference.

    PubMed

    Zhao, Xue Qiang; Guo, Shi Wei; Shinmachi, Fumie; Sunairi, Michio; Noguchi, Akira; Hasegawa, Isao; Shen, Ren Fang

    2013-01-01

    Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants. This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions. indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth. The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.

  14. Molecular analysis of rice plant mutated after space flight

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Li, C.; Wei, L.; Xu, D.; Gu, D.; Guan, S.; Zhao, H.; Xin, P.; Sun, Y.

    We have obtained several rice mutants planted from seeds flown on recoverable satellites. Some new traits, such as good yields, diseases resistances and higher nutrient values, have been identified, putatively as consequences of the space environment. Radiation inside the Chinese recoverable satellite was composed of low flux of high energy particles (>40 Mev/u). To study the mechanisms of plant mutations induced by the space environment, we used dry rice seeds as a model to identify the phenotype of mutations, and used the wealth of the rice genome to identify the mutated genes in the mutants. The research included collecting rice plant mutants in the seeds flown on the satellites, identifying the nature of genomic and proteomic alterations, modifications and identifying the functional changes of the specific genes. The study showed that the rice seeds are a good model for exploring biological effect of space environment since 1) it is easy fly the seeds without specific hardware and crew work, 2) it is easy to obtain pure mutant breed lines for cloning DNA sequence in order to compare with the sequence in the wild type, and 3) it is easy to quantitatively analyze genetics using advanced molecular techniques.

  15. [Effects of fish on field resource utilization and rice growth in rice-fish coculture].

    PubMed

    Zhang, Jian; Hu, Liang Liang; Ren, Wei Zheng; Guo, Liang; Wu, Min Fang; Tang, Jian Jun; Chen, Xin

    2017-01-01

    Rice field can provide habitat for fish and other aquatic animals. Rice-fish coculture can increase rice yield and simultaneously reduce the use of chemicals through reducing rice pest occurrence and nutrient complementary use. However, how fish uses food sources (e.g. phytoplankton, weeds, duckweed, macro-algal and snail) from rice field, and whether the nutrients releasing from those food sources due to fish transforming can improve rice growth are still unknown. Here, we conducted two field experiments to address these questions. One was to investigate the pattern of fish activity in the field using the method of video recording. The other was to examine the utilization of field resources by fish using stable isotope technology. Rice growth and rice yield were also exa-mined. Results showed that fish tended to be more active and significantly expanded the activity range in the rice-fish coculture compared to fish monoculture (fish not living together with rice plants). The contributions of 3 potential aquatic organisms (duckweed, phytoplankton and snail) to fish dietary were 22.7%, 34.8% and 30.0% respectively under rice-fish coculture without feed. Under the treatment with feed, however, the contributions of these 3 aquatic organisms to the fish die-tary were 8.9%, 5.9% and 1.6% respectively. The feed contribution was 71.0%. Rice-fish coculture significantly increased the nitrogen concentration in rice leaves, prolonged tillering stage by 10-12 days and increased rice spike rate and yield. The results suggested that raising fish in paddy field may transform the nutrients contained in field resources to bioavailable for rice plants through fish feeding activity, which can improve rice growth and rice yield.

  16. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.).

    PubMed

    Zhong, Chu; Cao, Xiaochuang; Bai, Zhigang; Zhang, Junhua; Zhu, Lianfeng; Huang, Jianliang; Jin, Qianyu

    2018-04-01

    Nitrogen metabolism is as sensitive to water stress as photosynthesis, but its role in plant under soil drying is not well understood. We hypothesized that the alterations in N metabolism could be related to the acclimation of photosynthesis to water stress. The features of photosynthesis and N metabolism in a japonica rice 'Jiayou 5' and an indica rice 'Zhongzheyou 1' were investigated under mild and moderate soil drying with a pot experiment. Soil drying increased non-photochemical quenching (NPQ) and reduced photon quantum efficiency of PSII and CO 2 fixation in 'Zhongzheyou 1', whereas the effect was much slighter in 'Jiayou 5'. Nevertheless, the photosynthetic rate of the two cultivars showed no significant difference between control and water stress. Soil drying increased nitrate reducing in leaves of 'Zhongzheyou 1', characterized by enhanced nitrate reductase (NR) activity and lowered nitrate content; whereas glutamate dehydrogenase (GDH), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were relative slightly affected. 'Jiayou 5' plants increased the accumulation of nitrate under soil drying, although its NR activity was increased. In addition, the activities of GDH, GOT and GPT were typically increased under soil drying. Besides, amino acids and soluble sugar were significantly increased under mild and moderate soil drying, respectively. The accumulation of nitrate, amino acid and sugar could serve as osmotica in 'Jiayou 5'. The results reveal that N metabolism plays diverse roles in the photosynthetic acclimation of rice plants to soil drying. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China

    PubMed Central

    Yousaf, Muhammad; Li, Xiaokun; Zhang, Zhi; Ren, Tao; Cong, Rihuan; Ata-Ul-Karim, Syed Tahir; Fahad, Shah; Shah, Adnan N.; Lu, Jianwei

    2016-01-01

    The use of efficient rates of nitrogen (N) fertilizer application is important with regard to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed rape rotations are a mainstay of the economy and food security of China. Therefore, a field experiment was carried out during 2011–2013 in Honghu to identify the most appropriate N application rates for enhancing crop productivity and N use efficiency for rice (Oryza sativa L.)-oilseed rape (Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2, RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with three replicates. ROx represented the N fertilizer application rates (kg ha−1) for rice and oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly increased by 59–71% (rice) and 109–160% (oilseed rape) during the total rotation (2011–2013), as compared to RO1 (control; no application). Furthermore, a similar trend was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB) was positively lowest under R05 (183.4 kg ha−1) followed by R02 (234.2 kg ha−1) and highest under R06 (344.5 kg ha−1) during the total rotation. The results of grain yield, NUE, and ANB indicated that the R02 rate of N application was superior. This information should help to develop a cost-effective and environment-friendly N management strategy for rice-oilseed rape rotation systems of central China. PMID:27746809

  18. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China.

    PubMed

    Yousaf, Muhammad; Li, Xiaokun; Zhang, Zhi; Ren, Tao; Cong, Rihuan; Ata-Ul-Karim, Syed Tahir; Fahad, Shah; Shah, Adnan N; Lu, Jianwei

    2016-01-01

    The use of efficient rates of nitrogen (N) fertilizer application is important with regard to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed rape rotations are a mainstay of the economy and food security of China. Therefore, a field experiment was carried out during 2011-2013 in Honghu to identify the most appropriate N application rates for enhancing crop productivity and N use efficiency for rice ( Oryza sativa L.)-oilseed rape ( Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2, RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with three replicates. RO x represented the N fertilizer application rates (kg ha -1 ) for rice and oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly increased by 59-71% (rice) and 109-160% (oilseed rape) during the total rotation (2011-2013), as compared to RO1 (control; no application). Furthermore, a similar trend was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB) was positively lowest under R05 (183.4 kg ha -1 ) followed by R02 (234.2 kg ha -1 ) and highest under R06 (344.5 kg ha -1 ) during the total rotation. The results of grain yield, NUE, and ANB indicated that the R02 rate of N application was superior. This information should help to develop a cost-effective and environment-friendly N management strategy for rice-oilseed rape rotation systems of central China.

  19. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    PubMed

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  20. [Effects of applying nitrogen fertilizer at different stages in ploughed furrow on dry matter production and yield of rice].

    PubMed

    Shi, Kun; Hao, Shufeng; Xie, Hongtu; Zhang, Xudong

    2002-12-01

    The effects of applying nitrogen fertilizer in ploughed furrow at different stages on dry matter production and yield of rice were studied in a field experiment in 1999. The results showed that applying N fertilizer at booting stage (BS) had better effects on dry weight (2.9 g.hill-1) of leaf, stem and whole plant than at panicle primordia formation stage (PPFS), tillering stage (TS) and regular N fertilization (RF). Meanwhile, the dry weight of leaf and sheath as well as the leaf area index (LAI, 8.9) could be maintained at a high level for a relative long time in BS treatment, compared with PPFS, TS and RF treatments. Similar phenomenon was observed in the growth velocity (0.73 g.d-1.hill-1) of stem and whole plant, and the dry weight (10434 kg.hm-2) of seed. The grain yield of rice followed the sequence of BS > or = PPFS > TS > or = RF. Thus, the optimum stage of applying N fertilizer in ploughed furrow was the booting stage.

  1. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice.

    PubMed

    Walitang, Denver I; Kim, Kiyoon; Madhaiyan, Munusamy; Kim, Young Kee; Kang, Yeongyeong; Sa, Tongmin

    2017-10-26

    showed promising plant growth promoting activities including hormone modulation, nitrogen fixation, siderophore production and phosphate solubilization. Though many of the isolates possess similar PGP and endophytic physiological traits, this study shows some prominent and distinguishing traits among bacterial groups indicating key determinants for their success as endophytes in the rice seed endosphere. Rice seeds are also inhabited by bacterial endophytes that promote growth during early seedling development.

  2. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  3. Synergetic use of Sentinel-1 and 2 to improve agro-hydrological modeling. Results of groundwater pumping estimates in south-India and nitrogen excess in south-west of France

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Le Page, M.; Kerr, Y. H.; Selles, A.; Mermoz, S.; Al-Bitar, A.; Muddu, S.; Gascoin, S.; Marechal, J. C.; Durand, P.; Salmon-Monviola, J.; Ceschia, E.; Bustillo, V.

    2016-12-01

    Nitrogen transfers at agricultural catchment level are intricately linked to water transfers. Agro-hydrological modeling approaches aim at integrating spatial heterogeneity of catchment physical properties together with agricultural practices to spatially estimate the water and nitrogen cycles. As in hydrology, the calibration schemes are designed to optimize the performance of the temporal dynamics and biases in model simulations, while ignoring the simulated spatial pattern. Yet, crop uses, i.e. transpiration and nitrogen exported by harvest, are the main fluxes at the catchment scale, highly variable in space and time. Geo-information time-series of vegetation and water index with multi-spectral optical detection S2 together with surface roughness time series with C-band radar detection S1 are used to reset soil water holding capacity parameters (depth, porosity) and agricultural practices (sowing date, irrigated area extent) of a crop model coupled with a hydrological model. This study takes two agro-hydrological contexts as demonstrators: 1-spatial nitrogen excess estimation in south-west of France, and 2-groundwater extraction for rice irrigation in south-India. Spatio-temporal patterns are involved in respectively surface water contamination due to over-fertilization and local groundwater shortages due to over-pumping for above rice inundation. Optimized Leaf Area Index profiles are simulated at the satellite images pixel level using an agro-hydrological model to reproduce spatial and temporal crop growth dynamics in south-west of France, improving the in-stream nitrogen fluxes by 12%. Accurate detection of irrigated area extents are obtained with the thresholding method based on optical indices, with a kappa of 0.81 for the dry season 2016. The actual monsoon season is monitored and will be presented. These extents drive the groundwater pumping and are highly variable in time (from 2 to 8% of the total area).

  4. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage.

    PubMed

    Yang, Jun; Chen, Xiaorong; Zhu, Changlan; Peng, Xiaosong; He, Xiaopeng; Fu, Junru; Ouyang, Linjuan; Bian, Jianmin; Hu, Lifang; Sun, Xiaotang; Xu, Jie; He, Haohua

    2015-11-17

    Rice (Oryza sativa) is one of the most important cereal crops, providing food for more than half of the world's population. However, grain yields are challenged by various abiotic stresses such as drought, fertilizer, heat, and their interaction. Rice at reproductive stage is much more sensitive to environmental temperatures, and little is known about molecular mechanisms of rice spikelet in response to high temperature interacting with nitrogen (N). Here we reported the transcriptional profiling analysis of rice spikelet at meiosis stage using RNA sequencing (RNA-seq) as an attempt to gain insights into molecular events associated with temperature and nitrogen. This study received four treatments: 1) NN: normal nitrogen level (165 kg ha(-1)) with natural temperature (30 °C); 2) HH: high nitrogen level (330 kg ha(-1)) with high temperature (37 °C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and natural temperature, respectively. The de novo assembly generated 52,553,536 clean reads aligned with 72,667 unigenes. About 10 M reads were identified from each treatment. In these differentially expressed genes (DEGs), we found 151 and 323 temperature-responsive DEGs in NN-vs-NH and HN-vs-HH, and 114 DEGs were co-expressed. Meanwhile, 203 and 144 nitrogen-responsive DEGs were focused in NN-vs-HN and NH-vs-HH, and 111 DEGs were co-expressed. The temperature-responsive genes were principally associated with calcium-dependent protein, cytochrome, flavonoid, heat shock protein, peroxidase, ubiquitin, and transcription factor while the nitrogen-responsive genes were mainly involved in glutamine synthetase, transcription factor, anthocyanin, amino acid transporter, leucine zipper protein, and hormone. It is noted that, rice spikelet fertility was significantly decreased under high temperature, but it was more reduced under higher nitrogen. Accordingly, numerous spikelet genes involved in pollen development, pollen tube growth, pollen

  5. Dissipation and residues of monosultap in rice plant and environment.

    PubMed

    Zhang, Fengzu; Wang, Lei; Zhou, Li; Pan, Canping

    2012-03-01

    A modified method for the analysis of monosultap residue in rice plant and environment was developed and validated. Monosultap residue dynamics and final residues in supervised field trials at GAP conditions were studied. At fortification levels of 0.05, 0.5 and 1 mg kg(-1), it was shown that recoveries ranged from 75.0% to 109.2% with RSDs of 1.2-5.1% (n = 5). The dissipation experiments showed the half-lives (T(1/2)) of monosultap in water, soil and rice plants were 1.1-1.9, 1.4-2.1 and 1.3-2.1 days, respectively. At pre-harvest intervals (PHI) of 21 and 30 days, monosultap residue were 0.01-0.06 mg kg(-1) in soil, 0.01-0.19 mg kg(-1) in rice plants, and 0.01-0.09 mg kg(-1) in husked rice.

  6. In-Situ Quantification of Microbial Processes Controlling Methane Emissions From Rice Plants

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Cho, R.; Zeyer, J. A.

    2011-12-01

    Methane is an important greenhouse gas contributing to global warming. Among other sources, rice (paddy) soils represent a major nonpoint source of biogenic methane. In flooded paddy soils methane is produced under anaerobic conditions. Conversely, methanotrophic microorganisms oxidize methane to carbon dioxide in the root zone of rice plants, thus reducing overall methane emissions to the atmosphere. We present a novel combination of methods to quantify methanogenesis and methane oxidation in paddy soils and to link methane turnover to net emissions of rice plants. To quantify methane turnover in the presence of high methane background concentrations, small-scale push-pull tests (PPTs) were conducted in paddy soils using stable isotope-labeled substrates. Deuterated acetate and 13-C bicarbonate were employed to discern and quantify acetoclastic and hydrogenotrophic methanogenesis, while 13-C methane was employed to quantify methane oxidation. During 2.5 hr-long PPTs, 140 mL of a test solution containing labeled substrates and nonreactive tracers (Ar, Br-) was injected into paddy soils of potted rice plants. After a short rest period, 480 mL of test solution/pore water mixture was extracted from the same location. Methane turnover was then computed from extraction-phase breakthrough curves of substrates and/or products, and nonreactive tracers. To link methane turnover to net emissions, methane emissions from paddy soils and rice plants were individually determined immediately preceding PPTs using static flux chambers. We will present results of a series of experiments conducted in four different potted rice plants. Preliminary results indicate substantial variability in methane turnover and net emission between different rice plants. The employed combination of methods appears to provide a robust means to quantitatively link methane turnover in paddy soils to net emissions from rice plants.

  7. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis

    PubMed Central

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B.; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of ‘Yangdao 6’ was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments. PMID:28103264

  8. Overexpression of miR169o, an Overlapping microRNA in Response to Both Nitrogen Limitation and Bacterial Infection, Promotes Nitrogen Use Efficiency and Susceptibility to Bacterial Blight in Rice.

    PubMed

    Chao, Yu; Chen, Yutong; Cao, Yaqian; Chen, Huamin; Wang, Jichun; Bi, Yong-Mei; Tian, Fang; Yang, Fenghuan; Rothstein, Steven J; Zhou, Xueping; He, Chenyang

    2018-03-15

    Limiting nitrogen (N) supply contributes to improved resistance to bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) in susceptible rice (Oryza sativa). To understand the regulatory roles of microRNAs in this phenomenon, sixty-three differentially-expressed overlapping miRNAs in response to Xoo infection and N-limitation stress in rice were identified through deep RNA-sequence and stem loop qRT-PCR. Among these, miR169o was further assessed as a typical overlapping miRNA through the overexpression of the miR169o primary gene. Osa-miR169o-OX plants were taller, and had more biomass accumulation with significantly increased nitrate and total amino acid contents in roots than wild type (WT). Transcript level assays showed that under different N supply conditions miR169o opposite regulated NRT2 which is reduced under normal N supply condition but remarkably induced under N limiting stress. On the other hand, osa-miR169o-OX plants also displayed increased disease lesion lengths and reduced transcriptional levels of defense gene (PR1b, PR10a, PR10b and PAL) compared with WT after inoculation with Xoo. In addition, miR169o impeded Xoo-mediated NRT transcription. Therefore, the overlapping miR169o contributes to increase N use efficiency and negatively regulates the resistance to bacterial blight in rice. Consistently, transient expression of NF-YAs in rice protoplast promoted the transcripts of PR genes and NRT2 genes, while reduced the transcripts of NRT1 genes. Our results provide novel and additional insights into the coordinated regulatory mechanisms of crosstalk between Xoo infection and N-deficiency responses in rice.

  9. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.

    PubMed

    Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu

    2008-03-01

    Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

  10. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation

    PubMed Central

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn

    2017-01-01

    ABSTRACT Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice (Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO3, NH4NO3, or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean (Vigna radiata) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues

  11. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation.

    PubMed

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Tittabutr, Panlada; Boonkerd, Nantakorn; Teaumroong, Neung

    2017-11-15

    Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice ( Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO 3 , NH 4 NO 3 , or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean ( Vigna radiata ) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions. IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues

  12. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant.

    PubMed

    Duan, X; Li, X; Xue, Q; Abo-el-Saad, M; Xu, D; Wu, R

    1996-04-01

    We introduced the potato proteinase inhibitor II (PINII) gene (pin2) into several Japonica rice varieties, and regenerated a large number of transgenic rice plants. Wound-inducible expression of the pin2 gene driven by its own promoter, together with the first intron of the rice actin 1 gene (act1), resulted in high-level accumulation of the PINII protein in the transgenic plants. The introduced pin2 gene was stably inherited in the second, third, and fourth generations, as shown by molecular analyses. Based on data from the molecular analyses, several homozygous transgenic lines were obtained. Bioassay for insect resistance with the fifth-generation transgenic rice plants showed that transgenic rice plants had increased resistance to a major rice insect pest, pink stem borer (Sesamia inferens). Thus, introduction of an insecticidal proteinase inhibitor gene into cereal plants can be used as a general strategy for control of insect pests.

  13. Disease incidence and severity of rice plants in conventional chemical fertilizer input compared with organic farming systems

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Luo, Fan

    2015-04-01

    To study the impacts of different fertilizer applications on rice growth and disease infection, a 3-year field experiment of rice cultivation was carried out in the suburb of Shanghai from 2012-2014. No any pesticides and herbicides were applied during the entire experiment to prevent their disturbance to rice disease. Compared with green (GM) and cake manures (CM), the application of chemical fertilizer (CF) stimulated the photosysthesis and vegetative growth of rice plants more effectively. Chlorophyll content, height and tiller number of the rice plants treated with the CF were generally higher than those treated with the GM and CM and the control; the contents of nitrate (NO3--N), ammonium (NH4+-N), Kjeldahl nitrogen (KN) and soluble protein treated with the CF were also higher than those with the others during the 3-year experiment. The 3-year experiment also indicated that the incidences of stem borers, shreath blight, leaf rollers and planthoppers of the rice treated with the CF were signficantly higher than those treated with the GM and CM and the control. Especially in 2012 and 2014, the incidences of rice pests and diseases treated with the CF were far more severe than those with the others. As a result, the grain yield treated with the CF was not only lower than that treated with the GM and CM, but also lower than that of the no-fertilizer control. This might be attributed to two reasons: Pests favor the rice seedlings with sufficient N-related nutrients caused by CF application; the excessive accumulation of nutrients in the seedlings might have toxic effects and weaken their immune systems, thus making them more vulnerable to pests and diseases. In comparison, the plants treated with a suitable amount of organic manure showed a better capability of disease resistance and grew more healthy. In addition, the incidences of rice pests and diseases might also be related to climatic conditions. Shanghai was hit by strong subtropical storms in the summer of

  14. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador.

    PubMed

    Otero, X L; Tierra, W; Atiaga, O; Guanoluisa, D; Nunes, L M; Ferreira, T O; Ruales, J

    2016-12-15

    Geogenic arsenic (As) can accumulate and reach high concentrations in rice grains, thus representing a potential threat to human health. Ecuador is one of the main consumers of rice in South America. However, there is no information available about the concentrations of As in rice agrosystems, although some water bodies are known to contain high levels of the element. We carried out extensive sampling of water, soil, rice plants and commercial rice (obtained from local markets). Water samples were analysed to determine physico-chemical properties and concentrations of dissolved arsenic. Soil samples were analysed to determine total organic C, texture, total Fe and amorphous Fe oxyhydroxides (Fe Ox ), total arsenic (tAs) and the bioavailable fraction (As Me ). The different plant parts were analysed separately to determine total (tAs), inorganic (iAs) and organic arsenic (oAs). Low concentrations of arsenic were found in samples of water (generally <10μgl -1 ) and soil (4.48±3mgkg -1 ). The tAs in the rice grains was within the usual range (0.042-0.125mgkg -1 dry weight, d.w.) and was significantly lower than in leaves (0.123-0.286mgkg -1 d.w.) and stems (0.091-0.201mgkg -1 d.w.). The Fe Ox and tAs and also As Me in flood water were negatively correlated with tAs in the plants. However, the concentrations of As in stems and leaves were linearly correlated with tAs in the soil and flood water. The relationship between tAs and arsenic in the grain fitted a logarithmic function, as did that between tAs in the grain and the stem. The findings seem to indicate that high concentrations of arsenic in the environment (soil or water) or in the rice stem do not necessarily imply accumulation of the element in the grain. The iAs form was dominant (>80%) in all parts of the rice plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)

    PubMed Central

    2012-01-01

    Background It is well known that salt stress has different effects on old and young tissues. However, it remains largely unexplored whether old and young tissues have different regulatory mechanism during adaptation of plants to salt stress. The aim of this study was to investigate whether salt stress has different effects on the ion balance and nitrogen metabolism in the old and young leaves of rice, and to compare functions of both organs in rice salt tolerance. Results Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl− in old leaves. The up-regulation of OsHKT1;1, OsHAK10 and OsHAK16 might contribute to accumulation of Na+ in old leaves under salt stress. In addition, lower expression of OsHKT1;5 and OsSOS1 in old leaves may decrease frequency of retrieving Na+ from old leaf cells. Under salt stress, old leaves showed higher concentration of NO3− content than young leaves. Up-regulation of OsNRT1;2, a gene coding nitrate transporter, might contribute to the accumulation of NO3− in the old leaves of salt stressed-rice. Salt stress clearly up-regulated the expression of OsGDH2 and OsGDH3 in old leaves, while strongly down-regulated expression of OsGS2 and OsFd-GOGAT in old leaves. Conclusions The down-regulation of OsGS2 and OsFd-GOGAT in old leaves might be a harmful response to excesses of Na+ and Cl−. Under salt stress, rice might accumulate Na+ and Cl− to toxic levels in old leaves. This might influence photorespiration process, reduce NH4+ production from photorespiration, and immediately down-regulate the expression of OsGS2 and OsFd-GOGAT in old leaves of salt stressed rice. Excesses of Na+ and Cl− also might change the pathway of NH4+ assimilation in old leaves of salt stressed rice plants, weaken GOGAT/GS pathway and elevate GDH pathway. PMID:23082824

  17. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  18. [Nitrogen status diagnosis of rice by using a digital camera].

    PubMed

    Jia, Liang-Liang; Fan, Ming-Sheng; Zhang, Fu-Suo; Chen, Xin-Ping; Lü, Shi-Hua; Sun, Yan-Ming

    2009-08-01

    In the present research, a field experiment with different N application rate was conducted to study the possibility of using visible band color analysis methods to monitor the N status of rice canopy. The Correlations of visible spectrum band color intensity between rice canopy image acquired from a digital camera and conventional nitrogen status diagnosis parameters of leaf SPAD chlorophyll meter readings, total N content, upland biomass and N uptake were studied. The results showed that the red color intensity (R), green color intensity (G) and normalized redness intensity (NRI) have significant inverse linear correlations with the conventional N diagnosis parameters of SPAD readings, total N content, upland biomass and total N uptake. The correlation coefficient values (r) were from -0.561 to -0.714 for red band (R), from -0.452 to -0.505 for green band (G), and from -0.541 to 0.817 for normalized redness intensity (NRI). But the normalized greenness intensity (NGI) showed a significant positive correlation with conventional N parameters and the correlation coefficient values (r) were from 0.505 to 0.559. Compared with SPAD readings, the normalized redness intensity (NRI), with a high r value of 0.541-0.780 with conventional N parameters, could better express the N status of rice. The digital image color analysis method showed the potential of being used in rice N status diagnosis in the future.

  19. Evaluating the non-rice host plant species of Sesamia inferens (Lepidoptera: Noctuidae) as natural refuges: resistance management of Bt rice.

    PubMed

    Liu, Zhuorong; Gao, Yulin; Luo, Ju; Lai, Fengxiang; Li, Yunhe; Fu, Qiang; Peng, Yufa

    2011-06-01

    Although rice (Oryza sativa L.) lines that express Bacillus thuringiensis (Bt) toxins have shown great potential for managing the major Lepidoptera pests of rice in southern China, including Sesamia inferens, their long-term use is dependent on managing resistance development to Bt toxins in pest populations. The maintenance of "natural" refuges, non-Bt expressing plants that are hosts for a target pest, has been proposed as a means to minimize the evolution of resistance to Bt toxins in transgenic plants. In the current study, field surveys and greenhouse experiments were conducted to identify host plants of S. inferens that could serve as "natural" refuges in rice growing areas of southern China. A field survey showed that 34 plant species in four families can be alternative host plants of S. inferens. Based on injury level under field conditions, rice (Oryza sativa L.); water oat (Zizania latifolia Griseb.); corn (Zea mays L.); tidalmarsh flatsedge (Cyperus serotinus Rottb.); and narrow-leaved cat-tail (Typha angustifolia Linn.) were identified as the primary host plant species of S. inferens. Greenhouse experiments further demonstrated that water oat, corn, and narrow-leaved cat-tail could support the survival and development of S. inferens. Interestingly, greenhouse experiments showed that S. inferens preferred to lay eggs on tidalmarsh flatsedge compared with the other three nonrice host species, although no pupae were found in the plants examined in field surveys. Few larvae were found to survive on tidalmarsh flatsedge in greenhouse bioassays, suggesting that tidalmarsh flatsedge could serve as a "dead-end" trap crop for S. inferens, but is not a candidate to serve as natural refuge to maintain susceptible S. inferens. Overall, these results suggest that water-oat, corn, and narrow-leaved cat-tail might serve as "natural refuge" for S. inferens in rice planting area of southern China when Bt rice varieties are planted.

  20. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    PubMed

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  1. Fertilizer nitrogen, soil chemical properties, and their determinacy on rice yield: Evidence from 92 paddy fields of a large-scale farm in the Kanto Region of Japan

    NASA Astrophysics Data System (ADS)

    Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S.

    2017-07-01

    Rice, a staple crop in Japan, is at risk of decreasing production and its yield highly depends on soil fertility. This study aimed to investigate determinants of rice yield, from the perspectives of fertilizer nitrogen and soil chemical properties. The data were sampled in 2014 and 2015 from 92 peat soil paddy fields on a large-scale farm located in the Kanto Region of Japan. The rice variety used was the most widely planted Koshihikari in Japan. Regression analysis indicated that fertilizer nitrogen significantly affected the yield, with a significant sustained effect to the subsequent year. Twelve soil chemical properties, including pH, cation exchange capacity, content of pyridine base elements, phosphoric acid, and silicic acid, were estimated. In addition to silicic acid, magnesia, in forms of its exchangeable content, saturation, and ratios to potassium and lime, positively affected the yield, while phosphoric acid negatively affected the yield. We assessed the soil chemical properties by soil quality index and principal component analysis. Positive effects were identified for both approaches, with the former performing better in explaining the rice yield. For soil quality index, the individual standardized soil properties and margins for improvement were indicated for each paddy field. Finally, multivariate regression on the principal components identified the most significant properties.

  2. Agronomic and environmental aspects of diazotrophic bacteria in irrigated rice fields

    USDA-ARS?s Scientific Manuscript database

    This article provides an overview of the free-living and plant-associated nitrogen-fixing bacterial communities in irrigated rice fields, with a focus on describing the drivers affecting community assemblages in this soil-water-plant-atmosphere system. Theoretical and technical advances in non-legu...

  3. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images

    PubMed Central

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-01-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region. PMID:27688742

  4. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images.

    PubMed

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-04-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between Rice Landsat and Rice NLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

  5. Silicon Supplementation Alters the Composition of Herbivore Induced Plant Volatiles and Enhances Attraction of Parasitoids to Infested Rice Plants.

    PubMed

    Liu, Jian; Zhu, Jiwei; Zhang, Pengjun; Han, Liwei; Reynolds, Olivia L; Zeng, Rensen; Wu, Jinhong; Shao, Yue; You, Minsheng; Gurr, Geoff M

    2017-01-01

    Silicon (Si) is important in plant defenses that operate in a direct manner against herbivores, and work in rice ( Oryza sativa ) has established that this is mediated by the jasmonate signaling pathway. Plant defenses also operate indirectly, by the production of herbivore induced plant volatiles (HIPVs) that attract predators and parasitoids of herbivores. These indirect defenses too are mediated by the jasmonate pathway but no earlier work has demonstrated an effect of Si on HIPVs. In this study, we tested the effect of Si supplementation versus Si deprivation to rice plants on subsequent HIPV production following feeding by the important pest, rice leaffolder ( Cnaphalocrocis medinalis ). Gas chromatography-mass spectrometry analyses showed lower production of α-bergamotene, β-sesquiohellandrene, hexanal 2-ethyl, and cedrol from +Si herbivore-infested plants compared with -Si infested plants. These changes in plant chemistry were ecologically significant in altering the extent to which parasitoids were attracted to infested plants. Adult females of Trathala flavo-orbitalis and Microplitis mediator both exhibited greater attraction to the HIPV blend of +Si plants infested with their respective insect hosts compared to -Si infested plants. In equivalent studies using RNAi rice plants in which jasmonate perception was silenced there was no equivalent change to the HIPV blend associated with Si treatment; indicating that the effects of Si on HIPVs are modulated by the jasmonate pathway. Further, this work demonstrates that silicon alters the HIPV blend of herbivore-infested rice plants. The significance of this finding is that there are no earlier-published studies of this phenomenon in rice or any other plant species. Si treatment to crops offers scope for enhancing induced, indirect defenses and associated biological control of pests because parasitoids are more strongly attracted by the HIPVs produced by +Si plants.

  6. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The rice mitochondrial iron transporter is essential for plant growth

    PubMed Central

    Bashir, Khurram; Ishimaru, Yasuhiro; Shimo, Hugo; Nagasaka, Seiji; Fujimoto, Masaru; Takanashi, Hideki; Tsutsumi, Nobuhiro; An, Gynheung; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2011-01-01

    In plants, iron (Fe) is essential for mitochondrial electron transport, heme, and Fe-Sulphur (Fe-S) cluster synthesis; however, plant mitochondrial Fe transporters have not been identified. Here we show, identify and characterize the rice mitochondrial Fe transporter (MIT). Based on a transfer DNA library screen, we identified a rice line showing symptoms of Fe deficiency while accumulating high shoot levels of Fe. Homozygous knockout of MIT in this line resulted in a lethal phenotype. MIT localized to the mitochondria and complemented the growth of Δmrs3Δmrs4 yeast defective in mitochondrial Fe transport. The growth of MIT-knockdown (mit-2) plants was also significantly impaired despite abundant Fe accumulation. Further, the decrease in the activity of the mitochondrial and cytosolic Fe-S enzyme, aconitase, indicated that Fe-S cluster synthesis is affected in mit-2 plants. These results indicate that MIT is a mitochondrial Fe transporter essential for rice growth and development. PMID:21610725

  8. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms

    PubMed Central

    Bernaola, Lina; Cosme, Marco; Schneider, Raymond W.; Stout, Michael

    2018-01-01

    Plants face numerous challenges from both aboveground and belowground stressors, and defend themselves against harmful insects and microorganisms in many ways. Because plant responses to biotic stresses are not only local but also systemic, belowground interactions can influence aboveground interactions in both natural and agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) are soilborne organisms that form symbiotic associations with many plant roots and are thought to play a central role in plant nutrition, growth, and fitness. In the present study, we focused on the influence of AMF on rice defense against pests. We inoculated rice plants with AMF in several field and greenhouse experiments to test whether the interaction of AMF with rice roots changes the resistance of rice against two chewing insects, the rice water weevil (Lissorhoptrus oryzophilus Kuschel, RWW) and the fall armyworm (Spodoptera frugiperda, FAW), and against infection by sheath blight (Rhizoctonia solani, ShB). Both in field and greenhouse experiments, the performance of insects and the pathogen on rice was enhanced when plants were inoculated with AMF. In the field, inoculating rice plants with AMF resulted in higher numbers of RWW larvae on rice roots. In the greenhouse, more RWW first instars emerged from AMF-colonized rice plants than from non-colonized control plants. Weight gains of FAW larvae were higher on rice plants treated with AMF inoculum. Lesion lengths and susceptibility to ShB infection were higher in rice plants colonized by AMF. Although AMF inoculation enhanced the growth of rice plants, the nutritional analyses of root and shoot tissues indicated no major increases in the concentrations of nutrients in rice plants colonized by AMF. The large effects on rice susceptibility to pests in the absence of large effects on plant nutrition suggest that AMF colonization influences other mechanisms of susceptibility (e.g., defense signaling processes). This study represents

  9. Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms.

    PubMed

    Bernaola, Lina; Cosme, Marco; Schneider, Raymond W; Stout, Michael

    2018-01-01

    Plants face numerous challenges from both aboveground and belowground stressors, and defend themselves against harmful insects and microorganisms in many ways. Because plant responses to biotic stresses are not only local but also systemic, belowground interactions can influence aboveground interactions in both natural and agricultural ecosystems. Arbuscular mycorrhizal fungi (AMF) are soilborne organisms that form symbiotic associations with many plant roots and are thought to play a central role in plant nutrition, growth, and fitness. In the present study, we focused on the influence of AMF on rice defense against pests. We inoculated rice plants with AMF in several field and greenhouse experiments to test whether the interaction of AMF with rice roots changes the resistance of rice against two chewing insects, the rice water weevil ( Lissorhoptrus oryzophilus Kuschel, RWW) and the fall armyworm ( Spodoptera frugiperda , FAW), and against infection by sheath blight ( Rhizoctonia solani , ShB). Both in field and greenhouse experiments, the performance of insects and the pathogen on rice was enhanced when plants were inoculated with AMF. In the field, inoculating rice plants with AMF resulted in higher numbers of RWW larvae on rice roots. In the greenhouse, more RWW first instars emerged from AMF-colonized rice plants than from non-colonized control plants. Weight gains of FAW larvae were higher on rice plants treated with AMF inoculum. Lesion lengths and susceptibility to ShB infection were higher in rice plants colonized by AMF. Although AMF inoculation enhanced the growth of rice plants, the nutritional analyses of root and shoot tissues indicated no major increases in the concentrations of nutrients in rice plants colonized by AMF. The large effects on rice susceptibility to pests in the absence of large effects on plant nutrition suggest that AMF colonization influences other mechanisms of susceptibility (e.g., defense signaling processes). This study

  10. Rice straw addition as sawdust substitution in oyster mushroom (Pleurotus ostreatus) planted media

    NASA Astrophysics Data System (ADS)

    Utami, Christine Pamardining; Susilawati, Puspita Ratna

    2017-08-01

    Oyster mushroom is favorite by the people because of the high nutrients. The oyster mushroom cultivation usually using sawdust. The availability of sawdust become difficult to find. It makes difficulties of mushroom cultivation. Rice straw as an agricultural waste can be used as planted media of oyster mushroom because they contain much nutrition needed to the mushroom growth. The aims of this research were to analysis the influence of rice straw addition in a baglog as planted media and to analysis the concentration of rice straw addition which can substitute sawdust in planted media of oyster mushroom. This research used 4 treatment of sawdust and rice straw ratio K = 75 % : 0 %, P1 = 60 % : 15 %, P2 = 40 % : 35 %, P3 = 15 % : 60 %. The same material composition of all baglog was bran 20%, chalk 5%, and water 70%. The parameters used in this research were wet weight, dry weight, moisture content and number of the mushroom fruit body. Data analysis was used ANOVA test with 1 factorial. The results of this research based on statistical analysis showed that there was no influence of rice straw addition in a planted media on the oyster mushroomgrowth. 15% : 60% was the concentrationof rice straw additionwhich can substitute the sawdust in planted media of oyster mushroom.

  11. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.

    PubMed

    Jiao, Yongqing; Wang, Yonghong; Xue, Dawei; Wang, Jing; Yan, Meixian; Liu, Guifu; Dong, Guojun; Zeng, Dali; Lu, Zefu; Zhu, Xudong; Qian, Qian; Li, Jiayang

    2010-06-01

    Increasing crop yield is a major challenge for modern agriculture. The development of new plant types, which is known as ideal plant architecture (IPA), has been proposed as a means to enhance rice yield potential over that of existing high-yield varieties. Here, we report the cloning and characterization of a semidominant quantitative trait locus, IPA1 (Ideal Plant Architecture 1), which profoundly changes rice plant architecture and substantially enhances rice grain yield. The IPA1 quantitative trait locus encodes OsSPL14 (SOUAMOSA PROMOTER BINDING PROTEIN-LIKE 14) and is regulated by microRNA (miRNA) OsmiR156 in vivo. We demonstrate that a point mutation in OsSPL14 perturbs OsmiR156-directed regulation of OsSPL14, generating an 'ideal' rice plant with a reduced tiller number, increased lodging resistance and enhanced grain yield. Our study suggests that OsSPL14 may help improve rice grain yield by facilitating the breeding of new elite rice varieties.

  12. Tocopherol-deficient rice plants display increased sensitivity to photooxidative stress.

    PubMed

    Chen, Defu; Chen, Haiwei; Zhang, Luhua; Shi, Xiaoli; Chen, Xiwen

    2014-06-01

    Tocopherols are lipophilic antioxidants that are synthesized exclusively in photosynthetic organisms. Despite extensive in vivo characterization of tocopherol functions in plants, their functions in the monocot model plant, rice, remain to be determined. In this study, transgenic rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) activity were generated. Silencing of HPT and TC resulted in up to a 98 % reduction in foliar tocopherol content relative to the control plants, which was also confirmed by transcript level analysis. When grown under normal conditions, HPT and TC transgenics showed no distinctive phenotype relative to the control plants, except a slight reduction in plant height and a slight decrease in the first leaf length. However, when exposed to high light at low temperatures, HPT and TC transgenics had a significantly higher leaf yellowing index than the control plants. The tocopherol-deficient plants decreased their total individual chlorophyll levels, their chlorophyll a/b ratio, and the maximum photochemical efficiency of photosystem II, whereas increased lipid peroxidation levels relative to the control plants. Tocopherol deficiency had no effect on ascorbate biosynthesis, but induced glutathione, antheraxanthin, and particularly zeaxanthin biosynthesis for compensation under stressful conditions. However, despite these compensation mechanisms, HPT and TC transgenics still exhibited altered phenotypes under high light at low temperatures. Therefore, it is suggested that tocopherols cannot be replaced and play an indispensable role in photoprotection in rice.

  13. The pitcher plant Sarracenia purpurea can directly acquire organic nitrogen and short-circuit the inorganic nitrogen cycle.

    PubMed

    Karagatzides, Jim D; Butler, Jessica L; Ellison, Aaron M

    2009-07-07

    Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition. At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake. By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on infrequent and irregular prey capture.

  14. The Pitcher Plant Sarracenia purpurea Can Directly Acquire Organic Nitrogen and Short-Circuit the Inorganic Nitrogen Cycle

    PubMed Central

    Karagatzides, Jim D.; Butler, Jessica L.; Ellison, Aaron M.

    2009-01-01

    Background Despite the large stocks of organic nitrogen in soil, nitrogen availability limits plant growth in many terrestrial ecosystems because most plants take up only inorganic nitrogen, not organic nitrogen. Although some vascular plants can assimilate organic nitrogen directly, only recently has organic nitrogen been found to contribute significantly to the nutrient budget of any plant. Carnivorous plants grow in extremely nutrient-poor environments and carnivory has evolved in these plants as an alternative pathway for obtaining nutrients. We tested if the carnivorous pitcher plant Sarracenia purpurea could directly take up intact amino acids in the field and compared uptake of organic and inorganic forms of nitrogen across a gradient of nitrogen deposition. We hypothesized that the contribution of organic nitrogen to the nitrogen budget of the pitcher plant would decline with increasing nitrogen deposition. Methodology and Principal Findings At sites in Canada (low nitrogen deposition) and the United States (high nitrogen deposition), individual pitchers were fed two amino acids, glycine and phenylalanine, and inorganic nitrogen (as ammonium nitrate), individually and in mixture. Plants took up intact amino acids. Acquisition of each form of nitrogen provided in isolation exceeded uptake of the same form in mixture. At the high deposition site, uptake of organic nitrogen was higher than uptake of inorganic nitrogen. At the low deposition site, uptake of all three forms of nitrogen was similar. Completeness of the associated detritus-based food web that inhabits pitcher-plant leaves and breaks down captured prey had no effect on nitrogen uptake. Conclusions and Significance By taking up intact amino acids, Sarracenia purpurea can short-circuit the inorganic nitrogen cycle, thus minimizing potential bottlenecks in nitrogen availability that result from the plant's reliance for nitrogen mineralization on a seasonally reconstructed food web operating on

  15. Method for estimating rice plant height without ground surface detection using laser scanner measurement

    NASA Astrophysics Data System (ADS)

    Thi Phan, Anh Thu; Takahashi, Kazuyoshi; Rikimaru, Atsushi; Higuchi, Yasuhiro

    2016-10-01

    A method for estimating the height of rice plants, using three-dimensional laser range data from point clouds, is proposed and assessed. Rice plant height (H) is estimated using a reference position at the top of the rice plant, avoiding the need to determine the ground position. Field experiments were performed with a SICK LMS 200 laser scanner in 2013 and 2014 on a test field with five different planting geometries. Percentile analysis identified the closest percentile to the top of the rice plant (pt=1), with vertical distances at the first percentile unaffected by planting geometry. The plant bottom position was identified using three different percentile ranks (pb=95, pb =80, and pb =70). Relative vertical distances (rD) were computed from the difference between the top and bottom positions of the rice plant. These correlated well with measured H, with slopes greater than 1.0. A greater number of stems in 2014 led to steeper slopes. Estimated H was more accurate when plant bottom positions were closer to the ground surface, and the best results were obtained with pb=95 (r2>0.87 RMSE≈4 cm). Overall, H was typically 16.0 cm greater than rD with pb=95.

  16. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice.

    PubMed

    Du, Ba; Wei, Zhe; Wang, Zhanqi; Wang, Xiaoxiao; Peng, Xinxin; Du, Bo; Chen, Rongzhi; Zhu, Lili; He, Guangcun

    2015-07-01

    Brown plant-hopper (Nilaparvata lugens Stål, BPH), one of the most devastating agricultural insect pests of rice throughout Asia, ingests nutrients from rice sieve tubes and causes a dramatic yield loss. Planting resistant variety is an efficient and economical way to control this pest. Understanding the mechanisms of host resistance is extremely valuable for molecular design of resistant rice variety. Here, we used an iTRAQ-based quantitative proteomics approach to perform analysis of protein expression profiles in the phloem exudates of BPH-resistant and susceptible rice plants following BPH infestation. A total of 238 proteins were identified, most of which were previously described to be present in the phloem of rice and other plants. The expression of genes for selected proteins was confirmed using a laser capture micro-dissection method and RT-PCR. The mRNAs for three proteins, RGAP, TCTP, and TRXH, were further analyzed by using in situ mRNA hybridization and localized in the phloem cells. Our results showed that BPH feeding induced significant changes in the abundance of proteins in phloem sap of rice involved in multiple pathways, including defense signal transduction, redox regulation, and carbohydrate and protein metabolism, as well as cell structural proteins. The results presented provide new insights into rice resistance mechanisms and should facilitate the breeding of novel elite BPH-resistant rice varieties. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Asymmetric Spread of SRBSDV between Rice and Corn Plants by the Vector Sogatella furcifera (Hemiptera: Delphacidae).

    PubMed

    Li, Pei; Li, Fei; Han, Yongqiang; Yang, Lang; Liao, Xiaolan; Hou, Maolin

    2016-01-01

    Plant viruses are mostly transmitted by sucking insects via their piercing behaviors, which may differ due to host plant species and their developmental stages. We characterized the transmission of a fijivirus, southern rice black-streaked dwarf virus (SRBSDV), by the planthopper vector Sogatella furcifera Horváth (Hemiptera: Delphacidae), between rice and corn plants of varying developmental stages. SRBSDV was transmitted from infected rice to uninfected corn plants as efficiently as its transmission between rice plants, while was acquired by S. furcifera nymphs at a much lower rate from infected corn plants than from infected rice plants. We also recorded a high mortality of S. furcifera nymphs on corn plants. It is evident that young stages of both the virus donor and recipient plants added to the transmission efficiency of SRBSDV from rice to corn plants. Feeding behaviors of the vector recorded by electrical penetration graph showed that phloem sap ingestion, the behavioral event that is linked with plant virus acquisition, was impaired on corn plants, which accounts for the high mortality of and low virus acquisition by S. furcifera nymphs on corn plants. Our results reveal an asymmetric spread of SRBSDV between its two host plants and the underlying behavioral mechanism, which is of significance for assessing SRBSDV transmission risks and field epidemiology, and for developing integrated management approaches for SRBSDV disease.

  18. Nitrogen Cycling in the Mycorrhizosphere: Multipartite Interactions and Plant Nitrogen Uptake Vary with Fertilization Legacy

    NASA Astrophysics Data System (ADS)

    Hestrin, R.; Lehmann, J.

    2017-12-01

    Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.

  19. Biological nitrogen fixation in non-legume plants

    PubMed Central

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-01-01

    Background Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Scope Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Conclusions Understanding the molecular mechanism of BNF outside the legume–rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops. PMID:23478942

  20. Biological nitrogen fixation in non-legume plants.

    PubMed

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  1. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, Jia; Shi, Shuo; Gong, Wei; Yang, Jian; Du, Lin; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2017-01-01

    Fast and nondestructive assessment of leaf nitrogen concentration (LNC) is critical for crop growth diagnosis and nitrogen management guidance. In the last decade, multispectral LiDAR (MSL) systems have promoted developments in the earth and ecological sciences with the additional spectral information. With more wavelengths than MSL, the hyperspectral LiDAR (HSL) system provides greater possibilities for remote sensing crop physiological conditions. This study compared the performance of ASD FieldSpec Pro FR, MSL, and HSL for estimating rice (Oryza sativa) LNC. Spectral reflectance and biochemical composition were determined in rice leaves of different cultivars (Yongyou 4949 and Yangliangyou 6) throughout two growing seasons (2014-2015). Results demonstrated that HSL provided the best indicator for predicting rice LNC, yielding a coefficient of determination (R2) of 0.74 and a root mean square error of 2.80 mg/g with a support vector machine, similar to the performance of ASD (R2 = 0.73). Estimation of rice LNC could be significantly improved with the finer spectral resolution of HSL compared with MSL (R2 = 0.56).

  2. Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants.

    PubMed

    Abe, K; Takahashi, H; Suge, H

    1998-12-01

    We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.

  3. Effectiveness of Rice Agricultural Waste, Microbes and Wetland Plants in the Removal of Reactive Black-5 Azo Dye in Microcosm Constructed Wetlands.

    PubMed

    Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D

    2015-01-01

    Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.

  4. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    PubMed

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Comparative proteomics analysis of the rice roots colonized by Herbaspirillum seropedicae strain SmR1 reveals induction of the methionine recycling in the plant host.

    PubMed

    Alberton, Dayane; Müller-Santos, Marcelo; Brusamarello-Santos, Liziane Cristina Campos; Valdameri, Glaucio; Cordeiro, Fabio Aparecido; Yates, Marshall Geoffrey; de Oliveira Pedrosa, Fabio; de Souza, Emanuel Maltempi

    2013-11-01

    Although the use of plant growth-promoting bacteria in agriculture is a reality, the molecular basis of plant-bacterial interaction is still poorly understood. We used a proteomic approach to study the mechanisms of interaction of Herbaspirillum seropedicae SmR1 with rice. Root proteins of rice seedlings inoculated or noninoculated with H. seropedicae were separated by 2-D electrophoresis. Differentially expressed proteins were identified by MALDI-TOF/TOF and MASCOT program. Among the identified proteins of H. seropedicae, the dinitrogenase reductase NifH and glutamine synthetase GlnA, which participate in nitrogen fixation and ammonium assimilation, respectively, were the most abundant. The rice proteins up-regulated included the S-adenosylmethionine synthetase, methylthioribose kinase, and acireductone dioxygenase 1, all of which are involved in the methionine recycling. S-Adenosylmethionine synthetase catalyzes the synthesis of S-adenosylmethionine, an intermediate used in transmethylation reactions and in ethylene, polyamine, and phytosiderophore biosynthesis. RT-qPCR analysis also confirmed that the methionine recycling and phytosiderophore biosynthesis genes were up-regulated, while ACC oxidase mRNA level was down-regulated in rice roots colonized by bacteria. In agreement with these results, ethylene production was reduced approximately three-fold in rice roots colonized by H. seropedicae. The results suggest that H. seropedicae stimulates methionine recycling and phytosiderophore synthesis and diminishes ethylene synthesis in rice roots.

  6. Plant nitrogen regulatory P-PII genes

    DOEpatents

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  7. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.

    PubMed

    Tang, Zhenya; Fan, Fangling; Wang, Xinyue; Shi, Xiaojun; Deng, Shiping; Wang, Dingyong

    2018-04-15

    High levels of mercury (Hg), especially methylmercury (MeHg), in rice is of concern due to its potential of entering food chain and the high toxicity to human. The level and form of Hg in rice could be influenced by fertilizers and other soil amendments. Studies were conducted to evaluate the effect of 24 years application of chemical fertilizers and organic amendments on total Hg (THg) and MeHg and their translocation in soil, plants, and rice grain. All treatments led to significantly higher concentrations of MeHg in grain than those from the untreated control. Of nine treatments tested, chemical fertilizers combining with returning rice straw (NPK1+S) led to highest MeHg concentration in grain and soil; while the nitrogen and potassium (NK) treatment led to significantly higher THg in grain. Concentrations of soil MeHg were significantly correlated with THg in soil (r = 0.59 *** ) and MeHg in grain (r = 0.48 *** ). Calcium superphosphate negatively affected plant bioavailability of soil Hg. MeHg concentration in rice was heavily influenced by soil Hg levels. Phosphorus fertilizer was a main source contributing to soil THg, while returning rice straw to the field contributed significantly to MeHg in soil and rice grain. As a result, caution should be exercised in soil treatment or when utilizing Hg-contaminated soils to produce rice for human consumption. Strategic management of rice straw and phosphorus fertilizer could be effective strategies of lowering soil Hg, which would ultimately lower MeHg in rice and the risk of Hg entering food chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Flavonoids inhibit both rice and sheep serotonin N-acetyltransferases and reduce melatonin levels in plants.

    PubMed

    Lee, Kyungjin; Hwang, Ok Jin; Reiter, Russel J; Back, Kyoungwhan

    2018-05-31

    The plant melatonin biosynthetic pathway has been well characterized, but inhibitors of melatonin synthesis have not been well studied. Here, we found that flavonoids potently inhibited plant melatonin synthesis. For example, flavonoids including morin and myricetin significantly inhibited purified, recombinant sheep serotonin N-acetyltransferase (SNAT). Flavonoids also dose-dependently and potently inhibited purified rice SNAT1 and SNAT2. Thus, myricetin (100 μmol/L) reduced rice SNAT1 and SNAT2 activity 7- and 10-fold, respectively, and also strongly inhibited the N-acetylserotonin methyltransferase activity of purified, recombinant rice caffeic acid O-methyltransferase. To explore the in vivo effects, rice leaves were treated with flavonoids and then cadmium. Flavonoid-treated leaves had lower melatonin levels than the untreated control. To explore the direct roles of flavonoids in melatonin biosynthesis, we first functionally characterized a putative rice flavonol synthase (FLS) in vitro and generated flavonoid-rich transgenic rice plants that overexpressed FLS. Such plants produced more flavonoids but less melatonin than the wild-type, which suggests that flavonoids indeed inhibit plant melatonin biosynthesis. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Use of banker plant system for sustainable management of the most important insect pest in rice fields in China.

    PubMed

    Zheng, Xusong; Lu, Yanhui; Zhu, Pingyang; Zhang, Facheng; Tian, Junce; Xu, Hongxing; Chen, Guihua; Nansen, Christian; Lu, Zhongxian

    2017-04-03

    To meet the World's food demand, there is a growing need for sustainable pest management practices. This study describes the results from complementary laboratory and field studies of a "banker plant system" for sustainable management of the rice brown planthopper (BPH) (Nilaparvata lugens Stål) - the economically most important rice pest in Asian rice growing areas. The banker plant system consisted of planting a grass species, Leersia sayanuka, adjacent to rice fields. L. sayanuka is the host plant of a planthopper, Nilaparvata muiri. An egg parasitoid, Anagrus nilaparvatae, parasitizes eggs of both BPH and N. muiri, and its establishment and persistence are improved through plantings of L. sayanuka and thereby attraction of N. muiri. Laboratory results showed that BPH was unable to complete its life cycle on L. sayanuka, and N. muiri could not complete its life cycle on rice. Thus, planting L. sayanuka did not increase the risk of planthopper damage to rice fields. Field studies showed that BPH densities were significantly lower in rice fields with banker plant system compared to control rice fields without banker plant system.

  10. Immunity to Rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein.

    PubMed

    Shimizu, Takumi; Nakazono-Nagaoka, Eiko; Akita, Fusamichi; Uehara-Ichiki, Tamaki; Omura, Toshihiro; Sasaya, Takahide

    2011-09-01

    The nonstructural protein P9-1 of Rice black streaked dwarf virus has been confirmed to accumulate in viroplasms, the putative sites of viral replication, in infected plants and insects. We transformed rice plants by introducing an RNA interference construct against the P9-1-encoding gene. The resultant transgenic plants accumulated short interfering RNAs specific to the construct. All progenies produced by self-fertilization of these transgenic plants with induced RNA interference against the gene for P9-1 were resistant to infection by the virus. Our results demonstrated that interfering with the expression of a viroplasm component protein of plant reoviruses, which plays an important role in viral proliferation, might be a practical and effective way to control plant reovirus infection in crop plants. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  12. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  13. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    2000-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  14. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica

    PubMed Central

    Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok

    2018-01-01

    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice. PMID:29774046

  15. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica.

    PubMed

    Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok

    2018-01-01

    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 ( DaCBF4 ), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4 -overexpressing transgenic rice plant ( Ubi:DaCBF4 ) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice.

  16. Microbial Activity and Silica Degradation in Rice Straw

    NASA Astrophysics Data System (ADS)

    Kim, Esther Jin-kyung

    Abundantly available agricultural residues like rice straw have the potential to be feedstocks for bioethanol production. Developing optimized conditions for rice straw deconstruction is a key step toward utilizing the biomass to its full potential. One challenge associated with conversion of rice straw to bioenergy is its high silica content as high silica erodes machinery. Another obstacle is the availability of enzymes that hydrolyze polymers in rice straw under industrially relevant conditions. Microbial communities that colonize compost may be a source of enzymes for bioconversion of lignocellulose to products because composting systems operate under thermophilic and high solids conditions that have been shown to be commercially relevant. Compost microbial communities enriched on rice straw could provide insight into a more targeted source of enzymes for the breakdown of rice straw polysaccharides and silica. Because rice straw is low in nitrogen it is important to understand the impact of nitrogen concentrations on the production of enzyme activity by the microbial community. This study aims to address this issue by developing a method to measure microbial silica-degrading activity and measure the effect of nitrogen amendment to rice straw on microbial activity and extracted enzyme activity during a high-solids, thermophilic incubation. An assay was developed to measure silica-degrading enzyme or silicase activity. This process included identifying methods of enzyme extraction from rice straw, identifying a model substrate for the assay, and optimizing measurement techniques. Rice straw incubations were conducted with five different levels of nitrogen added to the biomass. Microbial activity was measured by respiration and enzyme activity. A microbial community analysis was performed to understand the shift in community structure with different treatments. With increased levels of nitrogen, respiration and cellulose and hemicellulose degrading activity

  17. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol.

    PubMed

    Oraby, Hesham; Venkatesh, Balan; Dale, Bruce; Ahmad, Rashid; Ransom, Callista; Oehmke, James; Sticklen, Mariam

    2007-12-01

    The catalytic domain of Acidothermus cellulolyticus thermostable endoglucanase gene (encoding for endo-1,4-beta-glucanase enzyme or E1) was constitutively expressed in rice. Molecular analyses of T1 plants confirmed presence and expression of the transgene. The amount of E1 enzyme accounted for up to 4.9% of the plant total soluble proteins, and its accumulation had no apparent deleterious effects on plant growth and development. Approximately 22 and 30% of the cellulose of the Ammonia Fiber Explosion (AFEX)-pretreated rice and maize biomass respectively was converted into glucose using rice E1 heterologous enzyme. As rice is the major food crop of the world with minimal use for its straw, our results suggest a successful strategy for producing biologically active hydrolysis enzymes in rice to help generate alcohol fuel, by substituting the wasteful and polluting practice of rice straw burning with an environmentally friendly technology.

  18. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress

    PubMed Central

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  19. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    PubMed

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  20. Low Temperature Storage of Southern Rice Black-Streaked Dwarf Virus-Infected Rice Plants Cannot Sustain Virus Transmission by the Vector.

    PubMed

    Liu, Danfeng; Li, Pei; Han, Yongqiang; Lei, Wenbin; Hou, Maolin

    2016-02-01

    Southern rice black-streaked dwarf virus (SRBSDV) is a novel virus transmitted by white-backed planthopper Sogatella furcifera (Hováth) (Hemiptera: Delphacidae). Due to low virus transmission efficiency by the planthopper, researchers are frequently confronted with shortage of viruliferous vectors or infected rice plants, especially in winter and the following spring. To find new ways to maintain virus-infected materials, viral rice plants were stored at -80°C for 45 or 140 d and evaluated as virus sources in virus transmission by the vector. SRBSDV virions were not degraded during storage at -80°C as indicated by reverse transcription-polymerase chain reaction and reverse transcription real-time PCR detection. The planthopper nymphs fed on the infected thawed plants for 48 h survived at about 40% and showed positive detection of SRBSDV, but they lost the virus after feeding for another 20 d (the circulative transmission period) on noninfected plants. Transmission electron microscope images indicated broken capsid of virions in infected thawed leaves in contrast to integrity capsid of virions in infected fresh leaves. These results show that low temperature storage of SRBSDV-infected rice plants cannot sustain virus transmission by white-backed planthopper. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Antimicrobial Activity of Plant Extracts from Aloe Vera, Citrus Hystrix, Sabah Snake Grass and Zingiber Officinale against Pyricularia Oryzae that causes Rice Blast Disease in Paddy Plants

    NASA Astrophysics Data System (ADS)

    Uda, M. N. A.; Harzana Shaari, N.; Shamiera. Said, N.; Hulwani Ibrahim, Nur; Akhir, Maisara A. M.; Khairul Rabani Hashim, Mohd; Salimi, M. N.; Nuradibah, M. A.; Hashim, Uda; Gopinath, Subash C. B.

    2018-03-01

    Rice blast disease, caused by the fungus known as Pyricularia oryzae, has become an important and serious disease of rice worldwide. Around 50% of production may be lost in a field moderately affected by infection and each year the fungus destroys rice, which is enough to feed an estimated 60 million people. Therefore, use of herbal plants offer an alternative for the management of plant diseases. Herbal plant like Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale extracts can be used for controlling disease of rice blast. In this study, these four herbal plants were used for evaluating antimicrobial activity against rice plant fungus Pyricularia oryzae, which causes rice blast disease.

  2. Ammonia volatilization from a paddy field following applications of urea: rice plants are both an absorber and an emitter for atmospheric ammonia.

    PubMed

    Hayashi, Kentaro; Nishimura, Seiichi; Yagi, Kazuyuki

    2008-02-15

    Ammonia (NH(3)) volatilization from a paddy field following applications of urea was measured. Two lysimeters of Gray Lowland soil with a pH (H(2)O) of 5.7 were used for the experiment. Urea was applied at a rate of 50 kg N ha(-1) by incorporation as the basal fertilization (BF) and at rates of 30 and 10 kg N ha(-1) by top-dressing as the first (SF1) and second (SF2) supplemental fertilizations, respectively. Two wind tunnels per lysimeter were installed just after BF; one was transplanted with rice plants (PR plot), and the other was without rice plants (NR plot). Weak volatilization was observed at the PR plots after BF. By contrast, strong volatilization was observed at the PR plots after SF1 with a maximum flux of 150 g N ha(-1) h(-1); however, almost no volatilization was observed after SF2. The NH(3) volatilization loss accounted for 2.1%, 20.9%, 0.5%, and 8.2% of the applied urea at each application, BF, SF1, SF2, and the total application, respectively, for which only the net fluxes as volatilization were accumulated. The NH(3) volatilization fluxes from the paddy water surface (F(vol)) at the NR plots were estimated using a film model for its verification. After confirmation of good correlation, the film model was applied to estimate F(vol) at the PR plots. The NH(3) exchange fluxes by rice plants (F(ric)) were obtained by subtracting F(vol) from the observed net NH(3) flux. The derived F(ric) showed that the rice plants emitted NH(3) remarkably just after SF1 when a relatively high rate of urea was applied, although they absorbed atmospheric NH(3) in the other periods. In conclusion, rice plants are essentially an absorber of atmospheric NH(3); however, they turn into an emitter of NH(3) under excess nutrition of ammoniacal nitrogen.

  3. Effects of long-term fertilization practices on heavy metal cadmium accumulation in the surface soil and rice plants of double-cropping rice system in Southern China.

    PubMed

    Xu, Yilan; Tang, Haiming; Liu, Tangxing; Li, Yifeng; Huang, Xinjie; Pi, Jun

    2018-05-08

    Fertilizer regime is playing an important role in heavy metal cadmium (Cd) accumulation in paddy soils and crop plant. It is necessary to assess the Cd accumulation in soils and rice (Oryza sativa L.) plants under long-term fertilization managements, and the results which help to assess the environmental and food risk in Southern China. However, the effects of different organic manure and chemical fertilizers on Cd accumulation in soils and rice plant remain unclear under intensively cultivated rice conditions. Therefore, the objective was to explore Cd accumulation in paddy soils and rice plant at mature stage under different long-term fertilization managements in the double-cropping rice system. Cd accumulation in the surface soils (0-20 cm) and rice plant with chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic matter and 70% chemical fertilizer (LOM), 60% organic matter and 40% chemical fertilizer (HOM), and without fertilizer input (CK) basis on 32 years long-term fertilization experiment were analyzed. The results showed that the soil total Cd content was increased by 0.296 and 0.351 mg kg -1 and 0.261 and 0.340 mg kg -1 under LOM and HOM treatments at early and late rice mature stages, respectively, compared with the CK treatment. And the soil available Cd content was increased by 0.073 and 0.137 mg kg -1 and 0.102 and 0.160 mg kg -1 under LOM and HOM treatments at early and late rice mature stages, respectively, compared with the CK treatment. The bioconcentration factor of Cd across different parts of rice plant was the highest in root, followed by stem and grain, and the lowest in leaves. At early and late rice mature stages, the root Cd concentration of rice plant was increased by 0.689 and 0.608 mg kg -1 with HOM treatment, the stem Cd concentration of rice plant was increased by 0.666 and 0.758 mg kg -1 with RF treatment, and the leaf and grain Cd concentration of rice plant was increased 0.094 and

  4. Estimation of the Age and Amount of Brown Rice Plant Hoppers Based on Bionic Electronic Nose Use

    PubMed Central

    Xu, Sai; Zhou, Zhiyan; Lu, Huazhong; Luo, Xiwen; Lan, Yubin; Zhang, Yang; Li, Yanfang

    2014-01-01

    The brown rice plant hopper (BRPH), Nilaparvata lugens (Stal), is one of the most important insect pests affecting rice and causes serious damage to the yield and quality of rice plants in Asia. This study used bionic electronic nose technology to sample BRPH volatiles, which vary in age and amount. Principal component analysis (PCA), linear discrimination analysis (LDA), probabilistic neural network (PNN), BP neural network (BPNN) and loading analysis (Loadings) techniques were used to analyze the sampling data. The results indicate that the PCA and LDA classification ability is poor, but the LDA classification displays superior performance relative to PCA. When a PNN was used to evaluate the BRPH age and amount, the classification rates of the training set were 100% and 96.67%, respectively, and the classification rates of the test set were 90.67% and 64.67%, respectively. When BPNN was used for the evaluation of the BRPH age and amount, the classification accuracies of the training set were 100% and 48.93%, respectively, and the classification accuracies of the test set were 96.67% and 47.33%, respectively. Loadings for BRPH volatiles indicate that the main elements of BRPHs' volatiles are sulfur-containing organics, aromatics, sulfur- and chlorine-containing organics and nitrogen oxides, which provide a reference for sensors chosen when exploited in specialized BRPH identification devices. This research proves the feasibility and broad application prospects of bionic electronic noses for BRPH recognition. PMID:25268913

  5. Use of banker plant system for sustainable management of the most important insect pest in rice fields in China

    PubMed Central

    Zheng, Xusong; Lu, Yanhui; Zhu, Pingyang; Zhang, Facheng; Tian, Junce; Xu, Hongxing; Chen, Guihua; Nansen, Christian; Lu, Zhongxian

    2017-01-01

    To meet the World’s food demand, there is a growing need for sustainable pest management practices. This study describes the results from complementary laboratory and field studies of a “banker plant system” for sustainable management of the rice brown planthopper (BPH) (Nilaparvata lugens Stål) – the economically most important rice pest in Asian rice growing areas. The banker plant system consisted of planting a grass species, Leersia sayanuka, adjacent to rice fields. L. sayanuka is the host plant of a planthopper, Nilaparvata muiri. An egg parasitoid, Anagrus nilaparvatae, parasitizes eggs of both BPH and N. muiri, and its establishment and persistence are improved through plantings of L. sayanuka and thereby attraction of N. muiri. Laboratory results showed that BPH was unable to complete its life cycle on L. sayanuka, and N. muiri could not complete its life cycle on rice. Thus, planting L. sayanuka did not increase the risk of planthopper damage to rice fields. Field studies showed that BPH densities were significantly lower in rice fields with banker plant system compared to control rice fields without banker plant system. PMID:28367978

  6. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  7. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].

    PubMed

    Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing

    2010-01-01

    With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.

  8. Plant nitrogen regulatory P-PII polypeptides

    DOEpatents

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2004-11-23

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the invention may be used to engineer organisms to overexpress wild-type or mutant P-PII regulatory protein. Engineered plants that overexpress or underexpress P-PII regulatory protein may have increased nitrogen assimilation capacity. Engineered organisms may be used to produce P-PII proteins which, in turn, can be used for a variety of purposes including in vitro screening of herbicides. P-PII nucleotide sequences have additional uses as probes for isolating additional genomic clones having the promoters of P-PII gene. P-PII promoters are light- and/or sucrose-inducible and may be advantageously used in genetic engineering of plants.

  9. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination.

    PubMed

    Bandaru, Varaprasad; Daughtry, Craig S; Codling, Eton E; Hansen, David J; White-Hansen, Susan; Green, Carrie E

    2016-06-18

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L(-1) sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR) wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves) model for various soil moisture conditions and leaf area indices (LAI). Further, sensitivity of various vegetative indices (VIs) to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r²) greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs' performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI) exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI) and TCARI) suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields.

  10. Application of Azolla and intermittent irrigation to improve the productivity and nutrient contents of local black rice variety

    NASA Astrophysics Data System (ADS)

    Sulandjari; Yunindanova, M. B.

    2018-03-01

    Black rice is a local rice variety that contains a high level of anthocyanin pigment. Anthocyanin has been reported to be very effective in reducing cholesterol levels as well as cancer cell invasion. One of the main problems in rice cultivation is lack of water. System of Rice Intensification (SRI) has shown to be able to increase rice productivity by increasing the number of tillers. This system is known as a water-efficient cultivation. Other rice cultivation barrier is related to the use of nitrogen fertilizer. One of replacement of nitrogen fertilizer is by adding azolla. The objective of this research was identifying growth and yield of organic black rice with intermittent irrigation and application of azolla. The plant material used was black rice Cempo variety from Sleman, Yogyakarta. This experiment utilized 4 dosages of azolla as the first treatment: 100 gm-2, 200 gm-2 and 400 gm-2. The second treatment was water supply consisted of continuous flooded 2 cm; flooded 2 cm every 3 days; flooded 2 cm every 6 days. The results depicted that the application of azolla was able to increase the growth of black rice. Azolla of 200 gm-2 and 400 gm-2 and intermittent 3 days to 6 days generated higher dry grain, anthocyanin and antioxidant. Azolla 200 gm-2 with intermittent irrigation 3 days could be a good combination to improve plant growth, yield and properties of local black rice.

  11. Rice microstructure

    USDA-ARS?s Scientific Manuscript database

    An understanding of plant structure is desirable to obtain a clear idea of the overall impact of a crop. A mature rice plant consists of leafy components (left in the field post-harvest) and paddy rice (collected). The rice plant is supported by a hollow stem (culm) with leaf sheaths attached to nod...

  12. Plant phosphomannose isomerase as a selectable marker for rice transformation

    PubMed Central

    Hu, Lei; Li, Hao; Qin, Ruiying; Xu, Rongfang; Li, Juan; Li, Li; Wei, Pengcheng; Yang, Jianbo

    2016-01-01

    The E. coli phosphomannose isomerase (EcPMI) gene is widely used as a selectable marker gene (SMG) in mannose (Man) selection-based plant transformation. Although some plant species exhibit significant PMI activity and active PMIs were even identified in Man-sensitive plants, whether plant PMIs can be used as SMGs remains unclear. In this study, we isolated four novel PMI genes from Chlorella variabilis and Oryza sativa. Their isoenzymatic activities were examined in vitro and compared with that of EcPMI. The active plant PMIs were separately constructed into binary vectors as SMGs and then transformed into rice via Agrobacterium. In both Indica and Japonica subspecies, our results indicated that the plant PMIs could select and produce transgenic plants in a pattern similar to that of EcPMI. The transgenic plants exhibited an accumulation of plant PMI transcripts and enhancement of the in vivo PMI activity. Furthermore, a gene of interest was successfully transformed into rice using the plant PMIs as SMGs. Thus, novel SMGs for Man selection were isolated from plants, and our analysis suggested that PMIs encoding active enzymes might be common in plants and could potentially be used as appropriate genetic elements in cisgenesis engineering. PMID:27174847

  13. Good manufacturing practices production of a purification-free oral cholera vaccine expressed in transgenic rice plants.

    PubMed

    Kashima, Koji; Yuki, Yoshikazu; Mejima, Mio; Kurokawa, Shiho; Suzuki, Yuji; Minakawa, Satomi; Takeyama, Natsumi; Fukuyama, Yoshiko; Azegami, Tatsuhiko; Tanimoto, Takeshi; Kuroda, Masaharu; Tamura, Minoru; Gomi, Yasuyuki; Kiyono, Hiroshi

    2016-03-01

    The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized countries. A leading, practical obstacle to their widespread use is producing plant-based vaccines that meet governmental regulatory requirements. Here, we report the first production according to current Good Manufacturing Practices of a rice-based vaccine, the cholera vaccine MucoRice-CTB, at an academic institution. To this end, we established specifications and methods for the master seed bank (MSB) of MucoRice-CTB, which was previously generated as a selection-marker-free line, evaluated its propagation, and given that the stored seeds must be renewed periodically. The production of MucoRice-CTB incorporated a closed hydroponic system for cultivating the transgenic plants, to minimize variations in expression and quality during vaccine manufacture. This type of molecular farming factory can be operated year-round, generating three harvests annually, and is cost- and production-effective. Rice was polished to a ratio of 95 % and then powdered to produce the MucoRice-CTB drug substance, and the identity, potency, and safety of the MucoRice-CTB product met pre-established release requirements. The formulation of MucoRice-CTB made by fine-powdering of drug substance and packaged in an aluminum pouch is being evaluated in a physician-initiated phase I study.

  14. A nitrogen response pathway regulates virulence in plant pathogenic fungi: role of TOR and the bZIP protein MeaB.

    PubMed

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-12-01

    Virulence in plant pathogenic fungi is controlled through a variety of cellular pathways in response to the host environment. Nitrogen limitation has been proposed to act as a key signal to trigger the in planta expression of virulence genes. Moreover, a conserved Pathogenicity mitogen activated protein kinase (MAPK) cascade is strictly required for plant infection in a wide range of pathogens. We investigated the relationship between nitrogen signaling and the Pathogenicity MAPK cascade in controlling infectious growth of the vascular wilt fungus Fusarium oxysporum. Several MAPK-activated virulence functions such as invasive growth, vegetative hyphal fusion and host adhesion were strongly repressed in the presence of the preferred nitrogen source ammonium. Repression of these functions by ammonium was abolished by L-Methionine sulfoximine (MSX) or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR (Target Of Rapamycin), respectively, and was dependent on the bZIP protein MeaB. Supplying tomato plants with ammonium rather than nitrate resulted in a significant delay of vascular wilt symptoms caused by the F. oxysporum wild type strain, but not by the ΔmeaB mutant. Ammonium also repressed invasive growth in two other pathogens, the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. Our results suggest the presence of a conserved nitrogen-responsive pathway that operates via TOR and MeaB to control infectious growth in plant pathogenic fungi.

  15. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  16. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    PubMed

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  17. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance.

    PubMed

    Singh, Dhananjaya P; Prabha, Ratna; Yandigeri, Mahesh S; Arora, Dilip K

    2011-11-01

    Phenylpropanoids, flavonoids and plant growth regulators in rice (Oryza sativa) variety (UPR 1823) inoculated with different cyanobacterial strains namely Anabaena oryzae, Anabaena doliolum, Phormidium fragile, Calothrix geitonos, Hapalosiphon intricatus, Aulosira fertilissima, Tolypothrix tenuis, Oscillatoria acuta and Plectonema boryanum were quantified using HPLC in pot conditions after 15 and 30 days. Qualitative analysis of the induced compounds using reverse phase HPLC and further confirmation with LC-MS/MS showed consistent accumulation of phenolic acids (gallic, gentisic, caffeic, chlorogenic and ferulic acids), flavonoids (rutin and quercetin) and phytohormones (indole acetic acid and indole butyric acid) in rice leaves. Plant growth promotion (shoot, root length and biomass) was positively correlated with total protein and chlorophyll content of leaves. Enzyme activity of peroxidase and phenylalanine ammonia lyase and total phenolic content was fairly high in rice leaves inoculated with O. acuta and P. boryanum after 30 days. Differential systemic accumulation of phenylpropanoids in plant leaves led us to conclude that cyanobacterial inoculation correlates positively with plant growth promotion and stress tolerance in rice. Furthermore, the study helped in deciphering possible mechanisms underlying plant growth promotion and stress tolerance in rice following cyanobacterial inoculation and indicated the less explored avenue of cyanobacterial colonization in stress tolerance against abiotic stress.

  18. Changes of paddy rice planting areas in Northeastern Asia from 1986 to 2014 based on Landsat data

    NASA Astrophysics Data System (ADS)

    Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Wang, J.; Zhang, G.; Jin, C.; Zhou, Y.; Menarguez, M. A.; Moore, B., III

    2014-12-01

    Paddy rice is an important cereal crop and main grain source for more than half of the global human population. However, knowledge about its area and spatial pattern is still limited due to large changes in agriculture in different regions; for example, higher latitude areas underwent increase (e.g., northeastern China) and decrease (e.g., South Korea) of paddy rice planting areas due to climatic warming, urbanization and other drivers. It is necessary to track paddy rice planting area changes in these regions in the past decades. We developed a pixel- and phenology-based image analysis system, Landsat-RICE, to map the paddy rice by using Landsat imagery. The algorithm was based on the unique physical and spectral characteristics of paddy rice fields during the flooding and transplanting phases. First, Landsat images are preprocessed and time series vegetation indices (NDVI, EVI, and LSWI) are generated. Second, MODIS Land Surface Temperature (LST) data were used to define thermal plant growing season (0 oC, 5 oC and 10 oC), which provides a guide for selection of Landsat images within the period of flooding and transplanting. Third, several non-cropland land cover maps (e.g., permanent water bodies, built-up and barren lands, sparsely vegetated lands, and evergreen vegetation) are produced through analysis of Landsat-based vegetation indices within the plant growing season and combined as a mask. Fourthly, vegetation index data within the time window of flooded and rice transplanting were analyzed to identify flood/transplanting signals. Finally, the maps of paddy rice planting areas were generated through overlying the results from Step 3 and 4. Paddy rice planting area changes were investigated in some hotspots of Northeastern Asia from 1986 to 2014 at 30-m spatial resolution and 5-year interval. This study has demonstrated that our newly developed Landsat-Rice system is robust and effective for tracking paddy rice changes in cold temperate and temperate zones.

  19. RiceAtlas, a spatial database of global rice calendars and production.

    PubMed

    Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew

    2017-05-30

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.

  20. Fate and Transformation of CuO Nanoparticles in the Soil-Rice System during the Life Cycle of Rice Plants.

    PubMed

    Peng, Cheng; Xu, Chen; Liu, Qinglin; Sun, Lijuan; Luo, Yongming; Shi, Jiyan

    2017-05-02

    Agricultural soil is gradually becoming a primary sink for metal-based nanoparticles (MNPs). The uptake and accumulation of MNPs by crops may contaminate food chain and pose unexpected risks for human health. Here, we investigated the fate and transformation of CuO nanoparticles (NPs) in the soil-rice system during the rice lifecycle. The results show that at the maturation stage, 1000 mg/kg CuO NPs significantly decreased redox potential by 202.75 mV but enhanced electrical conductivity by 497.07 mS/cm compared to controls. Moreover, the bioavailability of highest CuO NPs in the soil was reduced by 69.84% along with the plant growth but then was significantly increased by 165% after drying-wetting cycles. Meanwhile, CuO and Cu combined with humic acid were transformed to Cu 2 S and Cu associated with goethite by X-ray absorption near edge structure analysis. Additionally, CuO NPs had an acute negative effect on the plant growth than bulk particles, which dramatically reduced the fresh weight of grains to 6.51% of controls. Notably, CuO NPs were found to be translocated from soil to plant especially to the chaff and promoted the Cu accumulation in the aleurone layer of rice using micro X-ray fluorescence technique, but could not reach the polished rice.

  1. Sago-Type Palms Were an Important Plant Food Prior to Rice in Southern Subtropical China

    PubMed Central

    Yang, Xiaoyan; Barton, Huw J.; Wan, Zhiwei; Li, Quan; Ma, Zhikun; Li, Mingqi; Zhang, Dan; Wei, Jun

    2013-01-01

    Poor preservation of plant macroremains in the acid soils of southern subtropical China has hampered understanding of prehistoric diets in the region and of the spread of domesticated rice southwards from the Yangtze River region. According to records in ancient books and archaeological discoveries from historical sites, it is presumed that roots and tubers were the staple plant foods in this region before rice agriculture was widely practiced. But no direct evidences provided to test the hypothesis. Here we present evidence from starch and phytolith analyses of samples obtained during systematic excavations at the site of Xincun on the southern coast of China, demonstrating that during 3,350–2,470 aBC humans exploited sago palms, bananas, freshwater roots and tubers, fern roots, acorns, Job's-tears as well as wild rice. A dominance of starches and phytoliths from palms suggest that the sago-type palms were an important plant food prior to the rice in south subtropical China. We also believe that because of their reliance on a wide range of starch-rich plant foods, the transition towards labour intensive rice agriculture was a slow process. PMID:23667584

  2. Leaf nitrogen remobilisation for plant development and grain filling.

    PubMed

    Masclaux-Daubresse, C; Reisdorf-Cren, M; Orsel, M

    2008-09-01

    A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.

  3. Enhanced nitrogen removal in trickling filter plants.

    PubMed

    Dai, Y; Constantinou, A; Griffiths, P

    2013-01-01

    The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3(-)-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.

  4. Differences in how rice plants processes arsenic in their cells

    USDA-ARS?s Scientific Manuscript database

    Arsenic (As), a carcinogenic heavy metal, is a problem in some drinking water and staple food supplies around the world. Rice plants readily uptake arsenic and transport a portion of it into the grain. Arsenic is also toxic to plants; therefore mechanisms that reduce toxicity or accumulation have ev...

  5. Using SPOT-5 images in rice farming for detecting BPH (Brown Plant Hopper)

    NASA Astrophysics Data System (ADS)

    Ghobadifar, F.; Wayayok, A.; Shattri, M.; Shafri, H.

    2014-06-01

    Infestation of rice plant-hopper such as Brown Plant Hopper (BPH) (Nilaparvata lugens) is one of the most notable risk in rice yield in tropical areas especially in Asia. In order to use visible and infrared images to detect stress in rice production caused by BPH infestation, several remote sensing techniques have been developed. Initial recognition of pest infestation by means of remote sensing will spreads, for precision farming practice. To address this issue, detection of sheath blight in rice farming was examined by using SPOT-5 images. Specific image indices such as Normalized decrease food production costs, limit environmental hazards, and enhance natural pest control before the problem Normalized Difference Vegetation Index (NDVI), Standard difference indices (SDI) and Ratio Vegetation Index (RVI) were used for analyses using ENVI 4.8 and SPSS software. Results showed that all the indices to recognize infected plants are significant at α = 0.01. Examination of the association between the disease indices indicated that band 3 (near infrared) and band 4 (mid infrared) have a relatively high correlation. The selected indices declared better association for detecting healthy plants from diseased ones. Consequently, these sorts of indices especially NDVI could be valued as indicators for developing techniques for detecting the sheath blight of rice by using remote sensing. This infers that they are useful for crop disease detection but the spectral resolution is probably not sufficient to distinguish plants with light infections (low severity level). Using the index as an indicator can clarify the threshold for zoning the outbreaks. Quick assessment information is very useful in precision farming to practice site specific management such as pesticide application.

  6. Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system.

    PubMed

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production.

  7. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  8. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling.

    PubMed

    Kandasamy, Saveetha; Loganathan, Karthiba; Muthuraj, Raveendran; Duraisamy, Saravanakumar; Seetharaman, Suresh; Thiruvengadam, Raguchander; Ponnusamy, Balasubramanian; Ramasamy, Samiyappan

    2009-12-24

    Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  9. Research in rice fields

    USGS Publications Warehouse

    ,

    2000-01-01

    Between 1987 and 1999, 2.4-3 million acres of rice were planted annually nationwide. Rice fields are a major component of the contemporary landscapes in the Gulf Coastal Plain, the Mississippi Alluvial Valley, and Central Valley of California. In 1998, approximately 600,000 acres of rice were planted in Louisiana. In the Louisiana plant commodities report for 1998, total value for rice was over $350 million; sugarcane was the only plant commodity that exceeded this value. Louisiana has over 2,000 rice farmers supporting over 12,000 jobs in the state. Rice fields in the United States receive high use by wildlife, especially shorebirds, wading birds, and waterfowl. Waterbirds use rice fields for food, shelter, and breeding habitat.

  10. Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter

    PubMed Central

    Yun, Dae-Jin; Lee, Kwang Sik; Hong, So Yeon; Bae, Ki Deuk; Chung, Young Soo; Kwon, Yong Sham; Kim, Du Hyun; Jung, Ki Hong

    2018-01-01

    Myeloblastosis (MYB) transcription factors play central roles in plant developmental processes and in responses to nutrient deficiency. In this study, OsMYB5P, an R2R3-MYB transcription factor, was isolated and identified from rice (Oryza sativa L. ‘Dongjin’) under inorganic phosphate (Pi)-deficient conditions. OsMYB5P protein is localized to the nucleus and functions as a transcription activator in plant development. Overexpression of OsMYB5P in rice and Arabidopsis (Arabidopsis thaliana Col-0) increases tolerance to phosphate starvation, whereas OsMYB5P knock-out through RNA interference increases sensitivity to Pi depletion in rice. Furthermore, shoots and roots of transgenic rice plants overexpressing OsMYB5P were longer than those of wild plants under both normal and Pi-deficient conditions. These results indicate that OsMYB5P is associated with the regulation of shoot development and root- system architecture. Overexpression of OsMYB5P led to increased Pi accumulation in shoots and roots. Interestingly, OsMYB5P directly bound to MBS (MYB binding site) motifs on the OsPT5 promoter and induced transcription of OsPT5 in rice. In addition, overexpression of OsMYB5P in Arabidopsis triggered increased expression of AtPht1;3, an Arabidopsis Pi transporter, in shoots and roots under normal and Pi-deficient conditions. Together, these results demonstrate that overexpression of OsMYB5P increases tolerance to Pi deficiency in plants by modulating Pi transporters at the transcriptional level in monocots and dicots. PMID:29566032

  11. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants

    DOE PAGES

    Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda; ...

    2016-06-29

    The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that themore » carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.« less

  12. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda

    The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that themore » carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.« less

  13. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants

    PubMed Central

    Cambui, Camila Aguetoni; Gruffman, Linda; Palmroth, Sari; Oren, Ram; Näsholm, Torgny

    2016-01-01

    Abstract The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production. PMID:27241731

  14. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants.

    PubMed

    Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda; Palmroth, Sari; Oren, Ram; Näsholm, Torgny

    2017-01-01

    The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower - up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  15. Assessment of total soil and plant trace elements in rice-based production systems in NE Italy

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Vianello, Gilmo; Vittori, Livia; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    Macro- and micronutrients concentrations, and PTEs contents in soils and plants (rice) from the rice district in the Venetian territory (NE Italy) have been determined by ICP-MS spectrometry, with the following aims: - to determine the background levels of macro- and microelements in the study area; - to assess possible contamination of soils and plants; - to calculate the Translocation Factor (TF) of metals from soil to plant, and the possible hazard for human health. Four rice plots with different rotation systems were investigated from seedling time to harvesting; sampling of soils (0-30cm) and plants was carried out 4 times during growing season (three replicates). Rice plants were separated into roots, stems, leaves and grains, and then oven-dried. Chemical and physical analyses were carried out at the Soil Science Lab of the University of Bologna and Venice, respectively. The results obtained point to a land with moderate soil contamination by trace elements (namely Li, Sn, Tl, Sr, Ti, Fe). Heavy metal (Sb, As, Be, Cd, Co, Cr, Ni, Pb, Cu, V, Zn ) concentrations in soils are below the threshold indicated by the Italian legislation (DM 152/2006). Cd, Sn, and Ti contents in soils are positively correlated with soil pH, while As, Fe, Li, Ti, Tl and Zn are negatively correlated with organic matter content. With the exception of Strontium, soil metal contents are always correlated between variable couples. HMs in plants vary according to the sampling season, texture and moisture, and soil pH. Most non-essential trace elements are accumulated in rice roots and, only in cases of essential micronutrients, in leaves. Therefore, rice can be assumed as an accumulator plant of As, Pb, Cr, Ba, and Ti, whereas it is as an indicator plant for Cu, Fe, Ni, Mn and Zn. The results of multiple linear regression analysis showed that soil pH has a larger effect on Ba, Cr, Cu, Fe, Mn, Ni, Ti and Zn concentrations in grain than other soil parameters. The average translocation of

  16. Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants.

    PubMed

    Sun, Lijuan; Yang, Jianjun; Fang, Huaxiang; Xu, Chen; Peng, Cheng; Huang, Haomin; Lu, Lingli; Duan, Dechao; Zhang, Xiangzhi; Shi, Jiyan

    2017-07-01

    Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S 0 , Na 2 SO 4 ) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    The study tested the hypothesis that resupplying nitrogen after a period of nitrogen stress leads to restoration of the balance between root and shoot growth and normal functional activity. Nonnodulated soybean plants were grown hydroponically for 14 days with 1.0 mM NO3- in a complete nutrient solution. One set of plants was continued on the complete nutrient solution for 25 days; a second set was given 0.0 mM NO3- for 25 days; and the third set was given 0.0 mM NO3- for 10 days followed by transfer to the complete solution with 1.0 mM NO3- for 15 days. In continuously nitrogen-stressed plants, emergence and expansion of main-stem and branch leaves were severely inhibited as low nitrogen content limited further growth. This was followed by a shift in partitioning of dry matter from the leaves to the roots, resulting in an initial stimulation of root growth and a decreased shoot:root ratio. Reduced nitrogen also was redistributed from the leaves into the stem and roots. When nitrogen stress was relieved, leaf initiation and expansion were renewed. With the restoration of the balance between root and shoot function, the shoot:root ratio and distribution of reduced nitrogen within the plant organs returned to levels similar to those of nonstressed plants.

  18. Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination

    USDA-ARS?s Scientific Manuscript database

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor ars...

  19. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    PubMed Central

    2009-01-01

    Background Plant Growth Promoting Rhizobacteria (PGPR), Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion. PMID:20034395

  20. Metabolic Engineering of the Regulators in Nitrogen Catabolite Repression To Reduce the Production of Ethyl Carbamate in a Model Rice Wine System

    PubMed Central

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production. PMID:24185848

  1. Enriching rice with Zn and Fe while minimizing Cd risk

    PubMed Central

    Slamet-Loedin, Inez H.; Johnson-Beebout, Sarah E.; Impa, Somayanda; Tsakirpaloglou, Nikolaos

    2015-01-01

    Enriching iron (Fe) and zinc (Zn) content in rice grains, while minimizing cadmium (Cd) levels, is important for human health and nutrition. Natural genetic variation in rice grain Zn enables Zn-biofortification through conventional breeding, but limited natural Fe variation has led to a need for genetic modification approaches, including over-expressing genes responsible for Fe storage, chelators, and transporters. Generally, Cd uptake and allocation is associated with divalent metal cations (including Fe and Zn) transporters, but the details of this process are still unknown in rice. In addition to genetic variation, metal uptake is sometimes limited by its bioavailability in the soil. The availability of Fe, Zn, and Cd for plant uptake varies widely depending on soil redox potential. The typical practice of flooding rice increases Fe while decreasing Zn and Cd availability. On the other hand, moderate soil drying improves Zn uptake but also increases Cd and decreases Fe uptake. Use of Zn- or Fe-containing fertilizers complements breeding efforts by providing sufficient metals for plant uptake. In addition, the timing of nitrogen fertilization has also been shown to affect metal accumulation in grains. The purpose of this mini-review is to identify knowledge gaps and prioritize strategies for improving the nutritional value and safety of rice. PMID:25814994

  2. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    PubMed

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-06-13

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.

  3. Identification and characterization of proteins involved in rice urea and arginine catabolism.

    PubMed

    Cao, Feng-Qiu; Werner, Andrea K; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter

    2010-09-01

    Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (K(m) = 67 mm, k(cat) = 490 s(-1)). The activity depended on the presence of manganese (K(d) = 1.3 microm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution.

  4. Auxin distribution is differentially affected by nitrate in roots of two rice cultivars differing in responsiveness to nitrogen

    PubMed Central

    Song, Wenjing; Sun, Huwei; Li, Jiao; Gong, Xianpo; Huang, Shuangjie; Zhu, Xudong; Zhang, Yali; Xu, Guohua

    2013-01-01

    Background and Aims Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3−) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3− nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3− availability are not known. Methods Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3−, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants. Key Results Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3− compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’. Conclusions The results indicate that higher NO3− responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’. PMID:24095838

  5. Photosynthetic Bradyrhizobia Are Natural Endophytes of the African Wild Rice Oryza breviligulata

    PubMed Central

    Chaintreuil, Clémence; Giraud, Eric; Prin, Yves; Lorquin, Jean; Bâ, Amadou; Gillis, Monique; de Lajudie, Philippe; Dreyfus, Bernard

    2000-01-01

    We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production. PMID:11097925

  6. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.

    PubMed

    Dai, Xiaoyan; Wang, Yuanyuan; Zhang, Wen-Hao

    2016-02-01

    The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Plant growth-promoting activities of Streptomyces spp. in sorghum and rice.

    PubMed

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Sree Vidya, Meesala; Rathore, Abhishek

    2013-01-01

    Five strains of Streptomyces (CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90) were earlier reported by us as biological control agents against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri (FOC). In the present study, the Streptomyces were characterized for enzymatic activities, physiological traits and further evaluated in greenhouse and field for their plant growth promotion (PGP) of sorghum and rice. All the Streptomyces produced lipase, β-1-3-glucanase and chitinase (except CAI-121 and CAI-127), grew in NaCl concentrations of up to 6%, at pH values between 5 and 13 and temperatures between 20 and 40°C and were highly sensitive to Thiram, Benlate, Captan, Benomyl and Radonil at field application level. When the Streptomyces were evaluated in the greenhouse on sorghum all the isolates significantly enhanced all the agronomic traits over the control. In the field, on rice, the Streptomyces significantly enhanced stover yield (up to 25%; except CAI-24), grain yield (up to 10%), total dry matter (up to 18%; except CAI-24) and root length, volume and dry weight (up to 15%, 36% and 55%, respectively, except CAI-24) over the control. In the rhizosphere soil, the Streptomyces significantly enhanced microbial biomass carbon (except CAI-24), nitrogen, dehydrogenase (except CAI-24), total N, available P and organic carbon (up to 41%, 52%, 75%, 122%, 53% and 13%, respectively) over the control. This study demonstrates that the selected Streptomyces which were antagonistic to FOC also have PGP properties.

  8. Sources of atmospheric methane - Measurements in rice paddies and a discussion

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.; Shetter, J. D.

    1981-01-01

    Field measurements of methane fluxes from rice paddies, fresh water lakes, and saltwater marshes have been made to infer estimates of the size of these sources of atmospheric methane. The rice-paddy measurements, the first of their kind, show that the principal means of methane escape is through the plants themselves as opposed to transport across the water-air interface via bubbles or molecular diffusion. Nitrogen-fertilized plants release much more methane than unfertilized plants but even these measured rates are only one fourth as large as those inferred earlier by Koyama (1963, 1964) and on which all global extrapolations have been based to date. Measured methane fluxes from lakes and marshes are also compared to similar earlier data and it is found that extant data and flux-measurement methods are insufficient for reliable global extrapolations.

  9. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    PubMed Central

    Beatty, Perrin H.; Klein, Matthias S.; Fischer, Jeffrey J.; Lewis, Ian A.; Muench, Douglas G.; Good, Allen G.

    2016-01-01

    A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE) in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields. PMID:27735856

  10. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    PubMed

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach.

    PubMed

    Bhattacharyya, P; Roy, K S; Das, M; Ray, S; Balachandar, D; Karthikeyan, S; Nayak, A K; Mohapatra, T

    2016-01-15

    Carbon (C) and nitrogen (N) mineralization is one of the key processes of biogeochemical cycling in terrestrial ecosystem in general and rice ecology in particular. Rice rhizosphere is a rich niche of microbial diversity influenced by change in atmospheric temperature and concentration of carbon dioxide (CO2). Structural changes in microbial communities in rhizosphere influence the nutrient cycling. In the present study, the bacterial diversity and population dynamics were studied under ambient CO2 (a-CO2) and elevated CO2+temperature (e-CO2T) in lowland rice rhizosphere using whole genome metagenomic approach. The whole genome metagenomic sequence data of lowland rice exhibited the dominance of bacterial communities including Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria and Planctomycetes. Interestingly, four genera related to methane production namely, Methanobacterium, Methanosphaera, Methanothermus and Methanothermococcus were absent in a-CO2 but noticed under e-CO2T. The acetoclastic pathway was found as the predominant pathway for methanogenesis, whereas, the serine pathway was found as the principal metabolic pathway for CH4 oxidation in lowland rice. The abundances of reads of enzymes in the acetoclastic methanogenesis pathway and serine pathways of methanotrophy were much higher in e-CO2T (328 and 182, respectively) as compared with a-CO2 (118 and 98, respectively). Rice rhizosphere showed higher structural diversities and functional activities in relation to N metabolism involving nitrogen fixation, assimilatory and dissimilatory nitrate reduction and denitrification under e-CO2T than that of a-CO2. Among the three pathways of N metabolism, dissimilarity pathways were predominant in lowland rice rhizosphere and more so under e-CO2T. Consequently, under e-CO2T, CH4 emission, microbial biomass nitrogen (MBN) and dehydrogenase activities were 45%, 20% and 35% higher than a-CO2, respectively. Holistically, a high bacterial diversity and

  12. Quantitative descriptions of rice plant architecture and their application

    PubMed Central

    Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation. PMID:28545144

  13. Quantitative descriptions of rice plant architecture and their application.

    PubMed

    Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation.

  14. Small subunit of a cold-resistant plant, Timothy, does not significantly alter the catalytic properties of Rubisco in transgenic rice.

    PubMed

    Fukayama, Hiroshi; Koga, Atsushi; Hatanaka, Tomoko; Misoo, Shuji

    2015-04-01

    Effects of overexpression of high activity-type Rubisco small subunit (RbcS) from a cold-resistant plant, timothy (Phleum pratense), on kinetic properties of Rubisco were studied in rice (Oryza sativa). The full-length mRNA sequence of timothy RbcS (PpRbcS1) was determined by 5'RACE and 3'RACE. The coding sequence of PpRbcS1 was fused to the chlorophyll a/b-binding protein promoter and introduced into rice. PpRbcS was highly expressed in leaf blade and accounted for approximately 30 % of total RbcS in homozygous transgenic lines. However, the catalytic turnover rate and K m for CO2 of Rubisco did not significantly change in these transgenic lines compared to non-transgenic rice, suggesting that PpRbcS1 is not effective for improvement of catalytic efficiency of rice Rubisco. The photosynthetic rate and growth were essentially unchanged, whereas the photosynthetic rate at low CO2 condition was marginally increased in transgenic lines. Rubisco content was significantly increased, whereas soluble protein, nitrogen, and chlorophyll contents were unchanged in transgenic lines compared to non-transgenic rice. Because the kinetic properties were similar, observed slight increase in photosynthetic rate at low CO2 is considered to be large due to increase in Rubisco content in transgenic lines. Introduction of foreign RbcS is an effective approach for the improvement of Rubisco kinetics and photosynthesis. However, in this study, it was suggested that RbcS of high activity-type Rubisco, even showing higher amino acid identity with rice RbcS, did not always enhance the catalytic turnover rate of Rubisco in rice. Thus, we should carefully select RbcS to be overexpressed before introduction.

  15. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Cox, Peter; Sitch, Stephen; Jones, Chris; Liddicoat, spencer

    2013-04-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be two to three times smaller than previously predicted. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and higher atmospheric CO2 concentrations than originally expected. This study compares alternative models of plant N uptake as found in different terrestrial biogeochemical models against field measurements, and introduces a new N

  16. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants.

    PubMed

    Mostofa, Mohammad Golam; Hossain, Mohammad Anwar; Siddiqui, Md Nurealam; Fujita, Masayuki; Tran, Lam-Son

    2017-07-01

    The present study investigated the phenotypical, physiological and biochemical changes of rice plants exposed to high selenium (Se) concentrations to gain an insight into Se-induced phytotoxicity. Results showed that exposure of rice plants to excessive Se resulted in growth retardation and biomass reduction in connection with the decreased levels of chlorophyll, carotenoids and soluble proteins. The reduced water status and an associated increase in sugar and proline levels indicated Se-induced osmotic stress in rice plants. Measurements of Se contents in roots, leaf sheaths and leaves revealed that Se was highly accumulated in leaves followed by leaf sheaths and roots. Se also potentiated its toxicity by impairing oxidative metabolism, as evidenced by enhanced accumulation of hydrogen peroxide, superoxide and lipid peroxidation product. Se toxicity also displayed a desynchronized antioxidant system by elevating the level of glutathione and the activities of superoxide dismutase, glutathione-S-transferase and glutathione peroxidase, whereas decreasing the level of ascorbic acid and the activities of catalase, glutathione reductase and dehydroascorbate reductase. Furthermore, Se triggered methylglyoxal toxicity by inhibiting the activities of glyoxalases I and II, particularly at higher concentrations of Se. Collectively, our results suggest that excessive Se caused phytotoxic effects on rice plants by inducing chlorosis, reducing sugar, protein and antioxidant contents, and exacerbating oxidative stress and methylglyoxal toxicity. Accumulation levels of Se, proline and glutathione could be considered as efficient biomarkers to indicate degrees of Se-induced phytotoxicity in rice, and perhaps in other crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture

    PubMed Central

    Kiba, Takatoshi; Krapp, Anne

    2016-01-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  18. Phytohormones signaling and crosstalk regulating leaf angle in rice.

    PubMed

    Luo, Xiangyu; Zheng, Jingsheng; Huang, Rongyu; Huang, Yumin; Wang, Houcong; Jiang, Liangrong; Fang, Xuanjun

    2016-12-01

    Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.

  19. Short-term complete submergence of rice at the tillering stage increases yield.

    PubMed

    Zhang, Yajie; Wang, Zhensheng; Li, Lei; Zhou, Qun; Xiao, Yao; Wei, Xing; Zhou, Mingyao

    2015-01-01

    Flooding is a major threat to agricultural production. Most studies have focused on the lower water storage limit in rice fields, whereas few studies have examined the upper water storage limit. This study aimed to explore the effect of waterlogging at the rice tillering stage on rice growth and yield. The early-ripening late japonica variety Yangjing 4227 was selected for this study. The treatments included different submergence depths (submergence depth/plant height: 1/2 (waist submergence), 2/3 (neck submergence), and 1/1 (complete submergence)) and durations (1, 3, and 5 d). The control group was treated with the conventional alternation of drying and wetting. The effects of waterlogging at the tillering stage on root characteristics, dry matter production, nitrogen and phosphorus accumulation, yield, yield components, and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene expression were explored. Compared with the control group, the 1/1 group showed significant increases in yield, seed-setting rate, photosynthetically efficient leaf area, and OS-ACS3 gene expression after 1 d of submergence. The grain number per panicle, dry weight of the aboveground and belowground parts, and number of adventitious roots also increased. Correlation analysis revealed a significant positive correlation between the panicle number and nitrogen content; however, no significant correlation was found for phosphorus content. If a decrease in rice yield of less than 10% is acceptable, half, 2/3, and complete submergence of the plants can be performed at the tillering stage for 1-3 d; this treatment will increase the space available for rice field water management/control and will improve rainfall resource utilization.

  20. Feral rice from introgression of weedy rice genes into transgenic herbicide-resistant hybrid-rice progeny.

    PubMed

    Zhang, Jingxu; Kang, Ye; Valverde, Bernal E; Dai, Weimin; Song, Xiaoling; Qiang, Sheng

    2018-06-05

    Pollen-mediated herbicide-resistance transgene flow occurs bidirectionally between transgenic cultivated rice and weedy rice. The potential risk of weedy traits introgressing into hybrid rice is underestimated and poorly understood. Two of each glufosinate-resistant transgenic rice varieties and hybrid rice (F1) and their succeeding generations (F2-F4) were planted for three years in weedy-rice-free field plots adjacent to experimental weedy-rice fields. Weedy-rice-like (feral) plants, both glufosinate-resistant and with red-pericarp seed, were initially found only among the F3 generations of the two glufosinate-resistant transgenic hybrid rice. The composite fitness (an index based on eight productivity and weediness traits) of the feral progeny was significantly higher than that of glufosinate-resistant transgenic hybrid rice (the original female parent of feral progeny) under common monoculture garden conditions. Hybrid rice progeny segregated into individuals of variable height and extended flowering. Hybrid rice F2 generations had higher outcrossing rates by pollen reception (0.96%-1.65%) than their progenitors (0.07%-0.98%). Herbicide-resistant weedy rice can rapidly arise by pollen-mediated gene flow from weedy to transgenic hybrid rice. Their segregating pollen-receptive progeny pose greater agro-ecological risk than transgenic varieties. The safety assessment and management regulations for transgenic hybrid rice should take into account the risk of bidirectional gene flow.

  1. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients.

    PubMed

    Endo, Satoru; Kajimoto, Tsuyoshi; Shizuma, Kiyoshi

    2013-02-01

    The transfer coefficient (TF) from soil to rice plants of (134)Cs and (137)Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City. Rice crops were planted in the following May and harvested at the end of September. Soil cores of 30-cm depth were sampled from rice-planted paddy fields to measure (134)Cs and (137)Cs radioactivity at 5-cm intervals. (134)Cs and (137)Cs radioactivity was also measured in rice ears (rice with chaff), straws and roots. The rice ears were subdivided into chaff, brown rice, polished rice and rice bran, and the (134)Cs and (137)Cs radioactivity concentration of each plant part was measured to calculate the respective TF from the soil. The TF of roots was highest at 0.48 ± 0.10 in the field where the (40)K concentration in the soil core was relatively low, in comparison with TF values of 0.31 and 0.38 in other fields. Similar trends could be found for the TF of whole rice plants, excluding roots. The TF of rice ears was relatively low at 0.019-0.026. The TF of chaff, rice bran, brown rice and polished rice was estimated to be 0.049, 0.10-0.16, 0.013-0.017 and 0.005-0.013, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa).

    PubMed

    Chang, Hsiang; Huang, Hsiang-En; Cheng, Chin-Fu; Ho, Mei-Hsuan; Ger, Mang-Jye

    2017-04-01

    The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency. In this report, two independent transgenic lines of rice plants (designated as pflp-1 and pflp-2) were generated from non-transgenic TNG67 rice plant (WT). Both transgenic pflp rice plants exhibited enhanced photosynthesis efficiency, and gas exchange rates of photosynthesis were 1.3- and 1.2-fold higher for pflp-1 and pflp-2 than WT respectively. Significantly higher electron transport rates of pflp rice plants were observed. Moreover, photosynthetic products, such as fructose, glucose, sucrose and starch contents of pflp transgenic lines were increased accordingly. Molecular evidences of carbohydrate metabolism related genes activities (osHXK5, osHXK6, osAGPL3, osAGPS2α, osSPS, ospFBPase, oscFBPase, and osSBPase) in transgenic lines were higher than those of WT. For performance of crop production, 1000-grain weight for pflp-1 and pflp-2 rice plants were 52.9 and 41.1 g that were both significantly higher than 31.6 g for WT, and panicles weights were 1.4- and 1.2-fold higher than WT. Panicle number, tiller number per plants for pflp rice plants were all significantly higher compared with those of WT where there was no significant difference observed between two pflp rice plants. Taken altogether; this study demonstrated that constitutive pflp expression can improve rice production by

  3. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment.

    PubMed

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot-1 (equivalent to the recommended field rate of 150 kg ha-1) to 0.44 g pot-1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk.

  4. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment

    PubMed Central

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot–1 (equivalent to the recommended field rate of 150 kg ha–1) to 0.44 g pot–1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk. PMID:27880837

  5. The new species Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice

    PubMed Central

    2013-01-01

    Background Six independent Gram-negative, facultatively anaerobic, non-spore-forming, nitrogen-fixing rod-shaped isolates were obtained from the root endosphere of rice grown at the International Rice Research Institute (IRRI) and investigated in a polyphasic taxonomic study. Results The strains produced fatty acid patterns typical for members of the family Enterobacteriaceae. Comparative sequence analyses of the 16S rRNA as well as rpoB genes allocated the strains to two well-defined groups within the genus Enterobacter, family Enterobacteriaceae. The analyses indicated Enterobacter radicincitans, Enterobacter arachidis and Enterobacter oryzae to be the closest related species. An RpoB (translated) protein comparison supported the placement in the genus Enterobacter and the relatedness of our isolates to the aforementioned species. Genomic DNA:DNA hybridization analyses and biochemical analyses provided further evidence that the novel strains belong to two new species within the genus Enterobacter. The two species can be differentiated from each other and from existing enteric species by acid production from L-rhamnose and D-melibiose, decarboxylation of ornithine and utilization of D-alanine, D-raffinose L-proline and L-aspartic acid, among other characteristics. Members of both species revealed capacities to colonise rice roots, including plant-growth-promoting capabilities such as an active supply of fixed nitrogen to the plant and solubilisation of inorganic phosphorus, next to traits allowing adaptation to the plant. Conclusions Two novel proposed enterobacterial species, denominated Enterobacter oryziphilus sp. nov. (type strain REICA_142T=LMG 26429T=NCCB 100393T) and Enterobacter oryzendophyticus sp. nov. (type strain REICA_082T=LMG 26432T =NCCB 100390T) were isolated from rice roots. Both species are capable of promoting rice growth by supplying nitrogen and phosphorus. PMID:23865888

  6. Improving nitrogen management via a regional management plan for Chinese rice production

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Chen, Xinping; Cui, Zhenling; Wang, Guiliang; Zhang, Weifeng

    2015-09-01

    A lack of basic information on optimal nitrogen (N) management often results in over- or under-application of N fertilizer in small-scale intensive rice farming. Here, we present a new database of N input from a survey of 6611 small-scale rice farmers and rice yield in response to added N in 1177 experimental on-farm tests across eight agroecological subregions of China. This database enables us to evaluate N management by farmers and develop an optimal approach to regional N management. We also investigated grain yield, N application rate, and estimated greenhouse gas (GHG) emissions in comparison to N application and farming practices. Across all farmers, the average N application rate, weighted by the area of rice production in each subregion, was 210 kg ha-1 and ranged from 30 to 744 kg ha-1 across fields and from 131 to 316 kg ha-1 across regions. The regionally optimal N rate (RONR) determined from the experiments averaged 167 kg ha-1 and varied from 114 to 224 kg N ha-1 for the different regions. If these RONR were widely adopted in China, approximately 56% of farms would reduce their use of N fertilizer, and approximately 33% would increase their use of N fertilizer. As a result, grain yield would increase by 7.4% from 7.14 to 7.67 Mg ha-1, and the estimated GHG emissions would be reduced by 11.1% from 1390 to 1236 kg carbon dioxide (CO2) eq Mg-1 grain. These results suggest that to achieve the goals of improvement in regional yield and sustainable environmental development, regional N use should be optimized among N-poor and N-rich farms and regions in China.

  7. Plant architecture and grain yield are regulated by the novel DHHC-type zinc finger protein genes in rice (Oryza sativa L.).

    PubMed

    Zhou, Bo; Lin, Jian Zhong; Peng, Dan; Yang, Yuan Zhu; Guo, Ming; Tang, Dong Ying; Tan, Xiaofeng; Liu, Xuan Ming

    2017-01-01

    In many plants, architecture and grain yield are affected by both the environment and genetics. In rice, the tiller is a vital factor impacting plant architecture and regulated by many genes. In this study, we cloned a novel DHHC-type zinc finger protein gene Os02g0819100 and its alternative splice variant OsDHHC1 from the cDNA of rice (Oryza sativa L.), which regulate plant architecture by altering the tiller in rice. The tillers increased by about 40% when this type of DHHC-type zinc finger protein gene was over-expressed in Zhong Hua 11 (ZH11) rice plants. Moreover, the grain yield of transgenic rice increased approximately by 10% compared with wild-type ZH11. These findings provide an important genetic engineering approach for increasing rice yields. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Identification of Morphological Character and Esterase Isozyme Pattern in Second-Generation Black Rice Plant Irradiated to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Hartanti, R. S.; Putri, T. A. N.; Zulfa, F.; Sutarno; Suranto

    2017-04-01

    Black rice is one of the functional foods due to its high anthocyanin content. Black rice grain was irradiated by gamma rays with a dose of 200 Gy and 300 Gy. The main purpose of this irradiation is to induce mutation to the black rice plant in order to achieve the improved organism. This study was undertaken to elucidate the morphological character and esterase isozyme pattern of black rice plant after irradiated by gamma rays. There were morphological differences on leaves, stems and grains between irradiated and non irradiated black rice plant. Gamma radiation dose of 200 Gy showed the significant influence of the length of the stem, number of internodes, and length of leaves. The radiation dose of 300 Gy showed the significant influence of the decrease value of diameter of 3rd internodes, number of branches and width of leaves. Flowering time is getting faster as increasing radiation dose. At the age of 74 days after planting there are 9.15% plants of 200 Gy radiation dose that have flowered faster than normal plants. This value increased into 11.45% at the dose of radiation 300 Gy. There were differences in the esterase banding pattern between radiation dose of 200 Gy and 300 Gy than the control plants, indicated that randomly mutation has occurred.

  9. Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply.

    PubMed

    Zahoor; Sun, Dan; Li, Ying; Wang, Jing; Tu, Yuanyuan; Wang, Yanting; Hu, Zhen; Zhou, Shiguang; Wang, Lingqiang; Xie, Guosheng; Huang, Jianliang; Alam, Aftab; Peng, Liangcai

    2017-11-01

    In this study, two rice cultivars were collected from experimental fields with seven nitrogen fertilizer treatments. All biomass samples contained significantly increased cellulose contents and reduced silica levels, with variable amounts of hemicellulose and lignin from different nitrogen treatments. Under chemical (NaOH, CaO, H 2 SO 4 ) and physical (hot water) pretreatments, biomass samples exhibited much enhanced hexoses yields from enzymatic hydrolysis, with high bioethanol production from yeast fermentation. Notably, both degree of polymerization (DP) of cellulose and xylose/arabinose (Xyl/Ara) ratio of hemicellulose were reduced in biomass residues, whereas other wall polymer features (cellulose crystallinity and monolignol proportion) were variable. Integrative analysis indicated that cellulose DP, hemicellulosic Xyl/Ara and silica are the major factors that significantly affect cellulose crystallinity and biomass saccharification. Hence, this study has demonstrated that nitrogen fertilizer supply could largely enhance biomass saccharification in rice cultivars, mainly by reducing cellulose DP, hemicellulosic Xyl/Ara and silica in cell walls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of the magnetic resonance imaging contrast agent Gd-DTPA on plant growth and root imaging in rice.

    PubMed

    Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin

    2014-01-01

    Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.

  11. Prediction of methyl mercury uptake by rice plants ( Oryza sativa L.) using the diffusive gradient in thin films technique.

    PubMed

    Liu, Jinling; Feng, Xinbin; Qiu, Guangle; Anderson, Christopher W N; Yao, Heng

    2012-10-16

    Rice consumption is the primary pathway for methyl mercury (MeHg) exposure at inland mercury (Hg) mining areas of SW China. Mechanistic information on MeHg accumulation in rice is, however, limited. The process of MeHg exchange between paddy soil and rice plants predominantly occurs in pore water. The detection of bioavailable MeHg in pore water is therefore important to predict MeHg uptake by rice plants ( Oryza sativa L.). This study investigated MeHg dynamics and spatial MeHg trends in pore water during the rice growing season using the diffusive gradient in thin films (DGT) technique and tested the ability of DGT to predict MeHg uptake by rice. The MeHg uptake flux from soil to rice plants via roots was significantly correlated with the DGT-measured MeHg flux (R = 0.853, p < 0.01). Our study implies that DGT can predict the bioavailability of MeHg in rice paddy soil and that the DGT method can provide quantitative description of the rate of uptake of this bioavailable MeHg. The DGT technique is demonstrated as a useful indicator of the likely ecotoxicological risk that might be apparent where paddy rice is grown in MeHg contaminated soil.

  12. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-07-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions.

  13. Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field.

    PubMed

    Busconi, M; Baldi, G; Lorenzoni, C; Fogher, C

    2014-01-01

    In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide-resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting.

    PubMed

    Lu, Guangwen; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Bi, Yong-Mei; Rothstein, Steven J

    2017-05-01

    Agronomic traits controlling the formation, architecture and physiology of source and sink organs are main determinants of rice productivity. Semi-dwarf rice varieties with low tiller formation but high seed production per panicle and dark green and thick leaves with prolonged source activity are among the desirable traits to further increase the yield potential of rice. Here, we report the functional characterization of a zinc finger transcription factor, OsGATA12, whose overexpression causes increased leaf greenness, reduction of leaf and tiller number, and affects yield parameters. Reduced tillering allowed testing the transgenic plants under high density which resulted in significantly increased yield per area and higher harvest index compared to wild-type. We show that delayed senescence of transgenic plants and the corresponding longer stay-green phenotype is mainly due to increased chlorophyll and chloroplast number. Further, our work postulates that the increased greenness observed in the transgenic plants is due to more chlorophyll synthesis but most significantly to decreased chlorophyll degradation, which is supported by the reduced expression of genes involved in the chlorophyll degradation pathway. In particular we show evidence for the down-regulation of the STAY GREEN RICE gene and in vivo repression of its promoter by OsGATA12, which suggests a transcriptional repression function for a GATA transcription factor for prolonging the onset of senescence in cereals.

  15. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.

    PubMed

    Park, Seong-Im; Kim, Young-Saeng; Kim, Jin-Ju; Mok, Ji-Eun; Kim, Yul-Ho; Park, Hyang-Mi; Kim, Il-Sup; Yoon, Ho-Sung

    2017-08-01

    Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields. Copyright © 2017. Published by Elsevier GmbH.

  16. [Effects of rice straw returning on the community structure and diversity of nitrogen-fixing gene (nifH) in paddy soil].

    PubMed

    Zhang, Miao-miao; Liu, Yi; Sheng, Rong; Qin, Hong-ling; Wu, Yan-zheng; Wei, Wen-xue

    2013-08-01

    Taking a long-term fertilization experiment in Taoyuan Agro-ecosystem Research Station under Chinese Academy of Sciences as the platform, and selecting four treatments (no fertilization, CK; rice straw returning, C; nitrogen, phosphorus and potassium fertilization, NPK; and NPK+C) as the objects, soil samples were collected at the tillering, booting and maturing stages of rice, and the abundance, composition and diversity of nifH-containing bacterial community were measured by real-time quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP), aimed to understand the effects of rice straw returning on the nifH-containing bacterial community in paddy soil. Compared with CK, treatments NPK+C and NPK increased the abundance of nifH-containing microorganisms significantly (except at tillering stage), and NPK+C had the highest abundance of nifH-containing microorganisms. Under the effects of long-term fertilization, the composition of nifH gene community in CK differed obviously from that in the other three treatments. The nifH composition had definite difference between C and NPK, but less difference between NPK and NPK+C. Long-term fertilization did not induce significant changes in nifH diversity. Therefore, long-term rice straw returning not only induced the changes of nifH gene community composition, but also resulted in a significant increase in the abundance of nifH-containing community, and hence, the increase of soil nitrogen fixing capacity.

  17. [Characteristics of nitrogen and phosphorus runoff losses from croplands with different planting patterns in a riverine plain area of Zhejiang Province, East China].

    PubMed

    Zhang, Ming-Kui; Wang, Yang; Huang, Chao

    2011-12-01

    By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss

  18. Growth and Productivity Response of Hybrid Rice to Application of Animal Manures, Plant Residues and Phosphorus

    PubMed Central

    Amanullah; Khan, Shams-ul-Tamraiz; Iqbal, Asif; Fahad, Shah

    2016-01-01

    The objective of this research was to evaluate the impact of organic sources (animal manures vs. plant residues at the rate of 10 t ha−1 each) on the productivity of hybrid rice (Oryza sativa L.) production under different levels of phosphorus (0, 30, 60, and 90 kg P ha−1) fertilization. Two separate field experiments were conducted. In experiment (1), impact of three animal manures sources (cattle, sheep, and poultry manures) and P levels were studied along with one control plot (no animal manure and P applied) was investigated. In experiment (2), three plant residues sources (peach leaves, garlic residues, and wheat straw) and P levels were studied along with one control plot (no plant residues and P applied). Both the experiments were carried out on small land farmer field at District Swabi, Khyber Pakhtunkhwa Province (Northwest Pakistan) during summer 2015. The results revealed that in both experiments the control plot had significantly (p ≤ 0.05) less productivity than the average of all treated plots with organic sources and P level. The increase in P levels in both experiments (animal manure vs. plant residues) resulted in higher rice productivity (90 > 60 > 30 > 0 kg P ha−1). In the experiment under animal manures, application of poultry manure increased rice productivity as compared with sheep and cattle manures (poultry > sheep > cattle manures). In the experiment under plant residues, application of peach leaves or garlic residues had higher rice productivity than wheat straw (peach leaves = garlic residues > wheat straw). On average, rice grown under animal manures produced about 20% higher grain yield than rice grown under crop residues. We conclude from this study that application of 90 kg P ha−1 along with combined application of animal manures, especially poultry manure increases rice productivity. Also, the use of either garlic residues or peach leaves, never applied before as organic manures, can increase crop productivity and will help

  19. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images.

    PubMed

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-05-12

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems.

  20. Effect of volunteer rice infestation on grain quality and yield of rice

    USDA-ARS?s Scientific Manuscript database

    Volunteer rice (Oryza sativa L.) plants arise from shattered seeds of the previous crop, which could reduce the yield of cultivated rice and the commercial value of harvested grain. Volunteer rice plants from a cultivar other than the current crop produce grains that may differ in physico-chemical t...

  1. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice.

    PubMed

    Wu, Xinru; Tang, Ding; Li, Ming; Wang, Kejian; Cheng, Zhukuan

    2013-01-01

    Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and leaf angle by controlling the adaxial growth of tiller node and lamina joint. LPA1 was also found to affect shoot gravitropism. Expression pattern analysis suggested that LPA1 influences plant architecture by affecting the gravitropism of leaf sheath pulvinus and lamina joint. However, LPA1 only influences gravity perception or signal transduction in coleoptile gravitropism by regulating the sedimentation rate of amyloplasts, distinct from the actions of LAZY1. LPA1 encodes a plant-specific INDETERMINATE DOMAIN protein and defines a novel subfamily of 28 INDETERMINATE DOMAIN proteins with several unique conserved features. LPA1 is localized in the nucleus and functions as an active transcriptional repressor, an activity mainly conferred by a conserved ethylene response factor-associated amphiphilic repression-like motif. Further analysis suggests that LPA1 participates in a complicated transcriptional and protein interaction network and has evolved novel functions distinct from SGR5. This study not only facilitates the understanding of gravitropism mechanisms but also generates a useful genetic material for rice breeding.

  2. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance.

    PubMed

    Ohsumi, Akihiro; Hamasaki, Akihiro; Nakagawa, Hiroshi; Yoshida, Hiroe; Shiraiwa, Tatsuhiko; Horie, Takeshi

    2007-02-01

    Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.

  3. Adaptational changes in the lipids and fatty acid profile of the cell and thylakoid membrane of rice plants exposed to sunlight.

    PubMed

    Vaz, Janet F; Sharma, Prabhat Kumar

    2010-07-01

    Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150-200 μmol m(-2) s(-1)) or moderate (600-800 μmol m(-2) s(-1)) light conditions. Results were compared with rice plants grown in high (1200-2200 μmol m(-2) s(-1)) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.

  4. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    PubMed

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Metabolic Profiling and Physiological Analysis of a Novel Rice Introgression Line with Broad Leaf Size

    PubMed Central

    Zhao, Xiuqin; Zhang, Guilian; Wang, Yun; Zhang, Fan; Wang, Wensheng; Zhang, Wenhao; Fu, Binying; Xu, Jianlong; Li, Zhikang

    2015-01-01

    A rice introgression line, NIL-SS1, and its recurrent parent, Teqing, were used to investigate the influence of the introgression segment on plant growth. The current research showed NIL-SS1 had an increased flag leaf width, total leaf area, spikelet number per panicle and grain yield, but a decreased photosynthetic rate. The metabolite differences in NIL-SS1 and Teqing at different developmental stages were assessed using gas chromatography—mass spectrometry technology. Significant metabolite differences were observed across the different stages. NIL-SS1 increased the plant leaf nitrogen content, and the greatest differences between NIL-SS1 and Teqing occurred at the booting stage. Compared to Teqing, the metabolic phenotype of NIL-SS1 at the booting stage has closer association with those at the flowering stage. The introgression segment induced more active competition for sugars and organic acids (OAs) from leaves to the growing young spikes, which resulted in more spikelet number per plant (SNP). The results indicated the introgression segment could improve rice grain yield by increasing the SNP and total leaf area per plant, which resulted from the higher plant nitrogen content across growth stages and stronger competition for sugars and OAs of young spikes at the booting stage. PMID:26713754

  6. Can the co-cultivation of rice and fish help sustain rice production?

    NASA Astrophysics Data System (ADS)

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-06-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability.

  7. Glutamine nitrogen and ammonium nitrogen supplied as a nitrogen source is not converted into nitrate nitrogen of plant tissues of hydroponically grown pak-choi (Brassica chinensis L.).

    PubMed

    Wang, H-J; Wu, L-H; Tao, Q-N; Miller, D D; Welch, R M

    2009-03-01

    Many vegetables, especially leafy vegetables, accumulate NO(-) (3)-N in their edible portions. High nitrate levels in vegetables constitute a health hazard, such as cancers and blue baby syndrome. The aim of this study was to determine if (1) ammonium nitrogen (NH(+) (4)-N) and glutamine-nitrogen (Gln-N) absorbed by plant roots is converted into nitrate-nitrogen of pak-choi (Brassica chinensis L.) tissues, and (2) if nitrate-nitrogen (NO(-) (3)-N) accumulation and concentration of pak-choi tissues linearly increase with increasing NO(-) (3)-N supply when grown in nutrient solution. In experiment 1, 4 different nitrogen treatments (no nitrogen, NH(+) (4)-N, Gln-N, and NO(-) (3)-N) with equal total N concentrations in treatments with added N were applied under sterile nutrient medium culture conditions. In experiment 2, 5 concentrations of N (from 0 to 48 mM), supplied as NO(-) (3)-N in the nutrient solution, were tested. The results showed that Gln-N and NH(+) (4)-N added to the nutrient media were not converted into nitrate-nitrogen of plant tissues. Also, NO(-) (3)-N accumulation in the pak-choi tissues was the highest when plants were supplied 24 mM NO(-) (3)-N in the media. The NO(-) (3)-N concentration in plant tissues was quadratically correlated to the NO(-) (3)-N concentration supplied in the nutrient solution.

  8. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105).

    PubMed

    Rungin, Siriwan; Indananda, Chantra; Suttiviriya, Pavinee; Kruasuwan, Worarat; Jaemsaeng, Ratchaniwan; Thamchaipenet, Arinthip

    2012-10-01

    An endophytic Streptomyces sp. GMKU 3100 isolated from roots of a Thai jasmine rice plant (Oryza sativa L. cv. KDML105) showed the highest siderophore production on CAS agar while phosphate solubilization and IAA production were not detected. A mutant of Streptomyces sp. GMKU 3100 deficient in just one of the plant growth promoting traits, siderophore production, was generated by inactivation of a desD-like gene encoding a key enzyme controlling the final step of siderophore biosynthesis. Pot culture experiments revealed that rice and mungbean plants inoculated with the wild type gave the best enhancement of plant growth and significantly increased root and shoot biomass and lengths compared with untreated controls and siderophore-deficient mutant treatments. Application of the wild type in the presence or absence of ferric citrate significantly promoted plant growth of both plants. The siderophore-deficient mutant clearly showed the effect of this important trait involved in plant-microbe interaction in enhancement of growth in rice and mungbean plants supplied with sequestered iron. Our results highlight the value of a substantial understanding of the relationship of the plant growth promoting properties of endophytic actinomycetes to the plants. Endophytic actinomycetes, therefore, can be applied as potentially safe and environmentally friendly biofertilizers in agriculture.

  9. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions.

    PubMed

    Ikeda, Seishi; Sasaki, Kazuhiro; Okubo, Takashi; Yamashita, Akifumu; Terasawa, Kimihiro; Bao, Zhihua; Liu, Dongyan; Watanabe, Takeshi; Murase, Jun; Asakawa, Susumu; Eda, Shima; Mitsui, Hisayuki; Sato, Tadashi; Minamisawa, Kiwamu

    2014-01-01

    Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha(-1), respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a (13)C methane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems.

  10. Low Nitrogen Fertilization Adapts Rice Root Microbiome to Low Nutrient Environment by Changing Biogeochemical Functions

    PubMed Central

    Ikeda, Seishi; Sasaki, Kazuhiro; Okubo, Takashi; Yamashita, Akifumu; Terasawa, Kimihiro; Bao, Zhihua; Liu, Dongyan; Watanabe, Takeshi; Murase, Jun; Asakawa, Susumu; Eda, Shima; Mitsui, Hisayuki; Sato, Tadashi; Minamisawa, Kiwamu

    2014-01-01

    Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha−1, respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a 13C methane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems. PMID:24463575

  11. A technique system for the measurement, reconstruction and character extraction of rice plant architecture

    PubMed Central

    Li, Xumeng; Wang, Xiaohui; Wei, Hailin; Zhu, Xinguang; Peng, Yulin; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    This study developed a technique system for the measurement, reconstruction, and trait extraction of rice canopy architectures, which have challenged functional–structural plant modeling for decades and have become the foundation of the design of ideo-plant architectures. The system uses the location-separation-measurement method (LSMM) for the collection of data on the canopy architecture and the analytic geometry method for the reconstruction and visualization of the three-dimensional (3D) digital architecture of the rice plant. It also uses the virtual clipping method for extracting the key traits of the canopy architecture such as the leaf area, inclination, and azimuth distribution in spatial coordinates. To establish the technique system, we developed (i) simple tools to measure the spatial position of the stem axis and azimuth of the leaf midrib and to capture images of tillers and leaves; (ii) computer software programs for extracting data on stem diameter, leaf nodes, and leaf midrib curves from the tiller images and data on leaf length, width, and shape from the leaf images; (iii) a database of digital architectures that stores the measured data and facilitates the reconstruction of the 3D visual architecture and the extraction of architectural traits; and (iv) computation algorithms for virtual clipping to stratify the rice canopy, to extend the stratified surface from the horizontal plane to a general curved surface (including a cylindrical surface), and to implement in silico. Each component of the technique system was quantitatively validated and visually compared to images, and the sensitivity of the virtual clipping algorithms was analyzed. This technique is inexpensive and accurate and provides high throughput for the measurement, reconstruction, and trait extraction of rice canopy architectures. The technique provides a more practical method of data collection to serve functional–structural plant models of rice and for the optimization of rice

  12. Can Rice (Oryza sativa) Mitigate Pesticides and Nutrients in Agricultural Runoff?

    PubMed

    Moore, M T; Locke, M A

    2018-01-01

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, and permethrin. Twenty-two high density polyethylene circular containers (56 cm x 45 cm) were used as mesocosms, with 12 mesocosms planted with rice and 10 mesocosms remaining unvegetated. Mesocosms were hydraulically connected and arranged in a series of two, with each system providing a 4 h hydraulic retention time (HRT) for a total system retention time of 8 h. Two treatments (RICE/RICE and RICE/BARE) of four replicates each were utilized, with three replicates of controls (BARE/BARE). Systems with RICE/RICE (8 h HRT) significantly reduced diazinon (p = 0.0126), cis-permethrin (p = 0.0442), filtered orthophosphate (p = 0.0058), and total orthophosphate (p = 0.0123) compared to control systems. No significant differences were noted for trans-permethrin, nitrate, or ammonium. Results indicate promise in phytoremediation of agricultural runoff by rice. If further studies reveal contaminants are not transferred into seeds, then rice could potentially serve as both a remediation tool and food source in countries facing agricultural pollution challenges.

  13. Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima.

    PubMed

    Yang, Baolu; Onda, Yuichi; Wakiyama, Yoshifumi; Yoshimura, Kazuya; Sekimoto, Hitoshi; Ha, Yiming

    2016-01-01

    About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012-2014) after the nuclear accident. Our results showed that radiocesium migrated into 24-28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for (137)Cs and (134)Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Serobactins-mediated iron acquisition systems optimize competitive fitness of Herbaspirillum seropedicae inside rice plants.

    PubMed

    Rosconi, Federico; Trovero, María F; de Souza, Emanuel M; Fabiano, Elena

    2016-09-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Under iron-deficient conditions, this organism secretes serobactins, a suite of lipopetide siderophores. The role of siderophores in the interaction between endophytes and their plant hosts are not well understood. In this work, we aimed to determine the importance of serobactins-mediated iron acquisition systems in the interaction of H. seropedicae with rice plants. First we provide evidence, by using a combination of genome analysis, proteomic and genetic studies, that the Hsero_2345 gene encodes a TonB-dependent receptor involved in iron-serobactin complex internalization when iron bioavailability is low. Our results show that survival of the Hsero_2345 mutant inside rice plants was not significantly different from that of the wild-type strain. However, when plants were co-inoculated at equal ratios with the wild-type strain and with a double mutant defective in serobactins synthesis and internalization, recovery of mutant was significantly impaired after 8 days post-inoculation. These results demonstrate that serobactins-mediated iron acquisition contributes to competitive fitness of H. seropedicae inside host plants. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Can herbicide safeners allow selective control of weedy rice infesting rice crops?

    PubMed

    Busi, Roberto; Nguyen, Nghia K; Chauhan, Bhagirath S; Vidotto, Francesco; Tabacchi, Maurizio; Powles, Stephen B

    2017-01-01

    Rice is a major field crop of paramount importance for global food security. However, the increased adoption of more profitable and resource-efficient direct-seeded rice (DSR) systems has contributed to greater weed infestations, including weedy rice, which has become a severe problem in several Asian regions. In this study we have developed a conceptually novel method to protect rice plants at high doses of clomazone and triallate. The insecticide phorate applied to rice seeds provided a substantial level of protection against the herbicides clomazone or triallate. A quantity of 15 kg phorate ha -1 significantly increased the LD 50 values, which were more than twofold greater than for rice plants treated only with clomazone. A quantity of 20 kg phorate ha -1 in combination with 2000 g triallate ha -1 safened rice plants (80% survival) with LD 50 >3.4-fold greater than in phorate-untreated rice. Weed control efficacy was not lowered by the presence of phorate-treated rice seeds. Weedy rice is one of the most damaging global weeds and a major threat to DSR systems. In this study we have developed a proof-of-concept method to allow selective weedy rice control in rice crops. We call for herbicide discovery programmes and research to identify candidate safener and herbicide combinations to achieve selective herbicide control of weedy rice and alleviate weed infestations in global rice crops. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Uptake of organic nitrogen by plants

    Treesearch

    Torgny Nasholm; Knut Kielland; Ulrika Ganeteg

    2009-01-01

    Languishing for many years in the shadow of plant inorganic nitrogen (N) nutrition research, studies of organic N uptake have attracted increased attention during the last decade. The capacity of plants to acquire organic N, demonstrated in laboratory and field settings, has thereby been well established. Even so, the ecological significance of organic N uptake for...

  17. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    PubMed

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.

  18. Annual Changes of Paddy Rice Planting Areas in Northeastern Asia from MODIS images in 2000-2014

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhang, G.; Dong, J.; Menarguez, M. A.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Moore, B., III

    2014-12-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, estimation of greenhouse gas (methane) emissions, and understanding avian influenza virus transmission. Over the past two decades, paddy rice cultivation has expanded northward in temperate and cold temperate zones, particularly in Northeastern China. There is a need to quantify and map changes in paddy rice planting areas in Northeastern Asia (Japan, North and South Korea, and northeast China) at annual interval. We developed a pixel- and phenology-based image analysis system, MODIS-RICE, to map the paddy rice in Northeastern Asia by using multi-temporal MODIS thermal and surface reflectance imagery. Paddy rice fields during the flooding and transplanting phases have unique physical and spectral characteristics, which make it possible for the development of an automated and robust algorithm to track flooding and transplanting phases of paddy rice fields over time. In this presentation, we will show the MODIS-based annual maps of paddy rice planting area in the Northeastern Asia from 2000-2014 (500-m spatial resolution). Accuracy assessments using high-resolution images show that the resultant paddy rice map of Northeastern Asia had a comparable accuracy to the existing products, including 2010 Landsat-based National Land Cover Dataset (NLCD) of China, the 2010 RapidEye-based paddy rice map in North Korea, and the 2010 AVNIR-2-based National Land Cover Dataset in Japan in terms of both area and spatial pattern of paddy rice. This study has demonstrated that our novel MODIS-Rice system, which use both thermal and optical MODIS data over a year, are simple and robust tools to identify and map paddy rice fields in temperate and cold temperate zones.

  19. An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci

    NASA Astrophysics Data System (ADS)

    Li, Baohua; Zhang, Yuanyuan; Mohammadi, Seyed Abolghasem; Huai, Dongxin; Zhou, Yongming; Kliebenstein, Daniel J.

    2016-07-01

    Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic and metabolic profiling advances. In this study, we use metabolomics and growth measurements to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused on identifying genes controlling major effect loci. To complement these studies, we conducted a replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred line population and focused on the genetic variation for primary metabolism. Using independent replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible that domestication has differentially impacted stochastic metabolite variation more than average metabolite variation.

  20. Impact of volunteer rice infestation on yield and grain quality of rice.

    PubMed

    Singh, Vijay; Burgos, Nilda R; Singh, Shilpa; Gealy, David R; Gbur, Edward E; Caicedo, Ana L

    2017-03-01

    Volunteer rice (Oryza sativa L.) grains may differ in physicochemical traits from cultivated rice, which may reduce the quality of harvested rice grain. To evaluate the effect of volunteer rice on cultivated rice, fields were surveyed in Arkansas in 2012. Cropping history that included hybrid cultivars in the previous two years (2010 and 2011) had higher volunteer rice infestation (20%) compared with fields planted previously with inbred rice (5.5%). The total grain yield of rice was reduced by 0.4% for every 1% increase in volunteer rice density. The grain quality did not change in fields planted with the same cultivar for three years. Volunteer rice density of at least 7.6% negatively impacted the head rice and when infestation reached 17.7%, it also reduced the rice grain yield. The protein and amylose contents of rice were not affected until volunteer rice infestation exceeded 30%. Crop rotation systems that include hybrid rice are expected to have higher volunteer rice infestation than systems without hybrid rice. It is predicted that, at 8% infestation, volunteer rice will start to impact head rice yield and will reduce total yield at 18% infestation. It could alter the chemical quality of rice grain at >30% infestation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti Donati, A.; Cox, P.; Smith, M. J.; Purves, D.; Sitch, S.; Jones, C. D.

    2013-12-01

    Most terrestrial biogeochemical models featured in the last Intergovernmental Panel on Climate Change (IPPC) Assessment Report highlight the importance of the terrestrial Carbon sequestration and feedbacks between the terrestrial Carbon cycle and the climate system. However, these models have been criticized for overestimating predicted Carbon sequestration and its potential climate feedback when calculating the rate of future climate change because they do not account for the Carbon sequestration constraints caused by nutrient limitation, particularly Nitrogen (N). This is particularly relevant considering the existence of a substantial deficit of Nitrogen for plants in most areas of the world. To date, most climate models assume that plants have access to as much Nitrogen as needed, but ignore the nutrient requirements for new vegetation growth. Determining the natural demand and acquisition for Nitrogen and its associated resource optimization is key when accounting for the Carbon sequestration constrains caused by nutrient limitation. The few climate models that include C-N dynamics have illustrated that the stimulation of plant growth over the coming century may be significantly smaller than previously predicted. However, models exhibit wide differences in their predictive accuracy and lead to widely diverging and inconsistent projections accounting for an uncertain Carbon sequestration decrease due to Nitrogen limitation ranging from 7 to 64%. This reduction in growth is partially offset by an increase in the availability of nutrients resulting from an accelerated rate of decomposition of dead plants and other organic matter that occurring with a rise in temperature. However, this offset does not counterbalance the reduced level of plant growth calculated by natural nutrient limitations. Additionally, Nitrogen limitation is also expected to become more pronounced in some ecosystems as atmospheric CO2 concentration increases; resulting in less new growth and

  2. Distinctive Responses of Ribulose-1,5-Bisphosphate Carboxylase and Carbonic Anhydrase in Wheat Leaves to Nitrogen Nutrition and their Possible Relationships to CO2-Transfer Resistance 1

    PubMed Central

    Makino, Amane; Sakashita, Hiroshi; Hidema, Jun; Mae, Tadahiko; Ojima, Kunihiko; Osmond, Barry

    1992-01-01

    The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport. PMID:16653191

  3. Economic optimal nitrogen application rates for rice cropping in the Taihu Lake region of China: taking account of negative externalities

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Yan, X.

    2011-07-01

    Nitrogen application rates (NARs) is often overestimated over the rice (Oryza sativa L.) growing season in the Taihu Lake region of China. This is largely because only individual nitrogen (N) losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. Since N can permeate the ecosystem in numerous forms commencing from the acquisition of raw material, through manufacturing and use, to final losses in the farming process (e.g., N2O, NH3, NO3- leaching, etc.), the costs incurred also accumulate and should be taken into account if economically-optimal N rates (EONRs) are to be established. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA) method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and raw material exploitation processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.01 yuan. Accordingly, our current EONR has been evaluated at 185 kg N ha-1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.

  4. Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper

    PubMed Central

    Dong, Yan; Fang, Xianping; Yang, Yong; Xue, Gang-Ping; Chen, Xian; Zhang, Weilin; Wang, Xuming; Yu, Chulang; Zhou, Jie; Mei, Qiong; Fang, Wang; Yan, Chengqi; Chen, Jianping

    2017-01-01

    The small brown planthopper (Laodelphax striatellus Fallén, Homoptera, Delphacidae-SBPH) is one of the major destructive pests of rice (Oryza sativa L.). Understanding on how rice responds to SBPH infestation will contribute to developing strategies for SBPH control. However, the response of rice plant to SBPH is poorly understood. In this study, two contrasting rice genotypes, Pf9279-4 (SBPH-resistant) and 02428 (SBPH-susceptible), were used for comparative analysis of protein profiles in the leaf sheath of rice plants in responses to SBPH infestation. One hundred and thirty-two protein spots that were differentially expressed between the resistant and susceptible rice lines were identified with significant intensity differences (≥2-fold, P < 0.05) at 0, 6, and 12 h after SBPH infestation. Protein expression profile analysis in the leaf sheath of SBPH-resistant and SBPH-susceptible rice lines after SBPH infestation showed that proteins induced by SBPH feeding were involved mainly in stress response, photosynthesis, protein metabolic process, carbohydrate metabolic process, energy metabolism, cell wall-related proteins, amino acid metabolism and transcriptional regulation. Gene expression analysis of 24 differentially expressed proteins (DEPs) showed that more than 50% DEPs were positively correlated with their mRNA levels. Analysis of some physiological indexes mainly involved in the removal of oxygen reactive species showed that the levels of superoxide dismutase (SOD) and glutathione (GSH) were considerably higher in Pf9279-4 than 02428 during SBPH infestation. The catalase (CAT) activity and hydroxyl radical inhibition were lower in Pf9279-4 than 02428. Analysis of enzyme activities indicates that Pf9279-4 rice plants defend against SBPH through the activation of the pathway of the salicylic acid (SA)-dependent systemic acquired resistance. In conclusion, this study provides some insights into the molecular networks involved on cellular and physiological

  5. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges.

    PubMed

    Bhattacharjee, Rumpa Biswas; Singh, Aqbal; Mukhopadhyay, S N

    2008-08-01

    The potential of nitrogen-fixing (NF) bacteria to form a symbiotic relationship with leguminous plants and fix atmospheric nitrogen has been exploited in the field to meet the nitrogen requirement of the latter. This phenomenon provides an alternative to the use of the nitrogenous fertiliser whose excessive and imbalanced use over the decades has contributed to green house emission (N2O) and underground water leaching. Recently, it was observed that non-leguminous plants like rice, sugarcane, wheat and maize form an extended niche for various species of NF bacteria. These bacteria thrive within the plant, successfully colonizing roots, stems and leaves. During the association, the invading bacteria benefit the acquired host with a marked increase in plant growth, vigor and yield. With increasing population, the demand of non-leguminous plant products is growing. In this regard, the richness of NF flora within non-leguminous plants and extent of their interaction with the host definitely shows a ray of hope in developing an ecofriendly alternative to the nitrogenous fertilisers. In this review, we have discussed the association of NF bacteria with various non-leguminous plants emphasizing on their potential to promote host plant growth and yield. In addition, plant growth-promoting traits observed in these NF bacteria and their mode of interaction with the host plant have been described briefly.

  6. Ubiquity of Insect-Derived Nitrogen Transfer to Plants by Endophytic Insect-Pathogenic Fungi: an Additional Branch of the Soil Nitrogen Cycle

    PubMed Central

    Behie, Scott W.

    2014-01-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with 15N-labeled nitrogen, and we tracked the incorporation of 15N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities. PMID:24334669

  7. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    PubMed

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  9. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  10. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants

    PubMed Central

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K.

    2016-01-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  11. Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability.

    PubMed

    Feng, Fayun; Ge, Jing; Li, Yisong; He, Shuang; Zhong, Jianfeng; Liu, Xianjing; Yu, Xiangyang

    2017-10-01

    Endophytic bacteria reside in plant tissues, such as roots, stems, leaves and seeds. Most of them can stimulate plant growth or alleviate phytotoxicity of pollutants. There are handful species with dual functions stimulating plant growth and degrading pollutants have been reported. Five endophytic bacteria were isolated from chlorpyrifos (CP) treated rice plants and identified as Pseudomonas aeruginosa strain RRA, Bacillus megaterium strain RRB, Sphingobacterium siyangensis strain RSA, Stenotrophomonas pavanii strain RSB and Curtobacterium plantarum strain RSC according to morphological characteristics, physiological and biochemical tests, and 16S rDNA phylogeny. All of them possessed some plant growth promotional traits, including indole acetic acid and siderophore production, secretion of phosphate solubilization and 1-aminocyclopropane-1-carboxylate deaminase. The bacteria were marked with the green fluorescent protein (gfp) gene and successfully colonized into rice plants. All isolates were able to degrade CP in vitro and in vivo. The five isolates degraded more than 90% of CP in 24 h when the initial concentration was lower than 5 mg/L. CP degradation was significantly enhanced in the infested rice plants and rice grains. The final CP residual was reduced up to 80% in the infested rice grains compared to the controls. The results indicate that these isolates are promising bio-inoculants for the removal or detoxification of CP residues in rice plants and grains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.

    PubMed

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Effect of pre-planting irrigation, maize planting pattern and nitrogen on weed seed bank population.

    PubMed

    Hemmati, E; Vazan, S; Oveisi, M

    2011-01-01

    Pre-planting irrigation and planting patterns are important factors in weed management that effect on seed bank. Additionally, the nitrogen is the most important factor in plant growth that affects weed-crop competition and ultimately, seed rain into the soil. A field experiment was conducted to study the effect of nitrogen application rates, pre-planting irrigation and maize planting patterns on weed seed bank population. Experimental factors were nitrogen rates at 4 levels (200, 300, 400 and 500 kg per hectare) as main plot; and pre-planting irrigation at 2 levels (irrigation before planting plus weeding emerged seedlings and, irrigation after sowing), and maize planting patterns (one-row and two-row planting of maize with same density per square of row length) that were assigned in a factorial arrangement to the sub plots. Soil samples were taken at the beginning of the season (before planting of maize) and at the end of the season (after harvest) at depth of 0-5 cm in the fixed quadrates (60 cm x 60 cm). The weed seeds were extracted from the soil samples and were identified using standard methods. The majority of weed seed bank populations included 6 weed species: Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Sorghum halepense, Daturea stramonium, Xanthium strumarium. Results showed that population of weed seed bank increased significantly with increasing nitrogen rate. The increasing rate was different between one-row and two-row planting patterns. The parameters indicated that seed bank population was much higher in a one row planting pattern of maize. With two-row planting, seed bank was decreased by 34, 26, 20 and 5% at 200, 300, 400 and 500 kg N/ha, respectively. Pre-planting irrigation was also found an effective implement to reduce the weed seed bank. When pre-planting irrigation was applied, seed bank was decreased by 57, 43, 34 and 9% at 200, 300, 400 and 500 kg N/ha. Increasing nitrogen because of weed's better growth and higher seed

  14. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    PubMed Central

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  15. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    PubMed

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  16. Nitrogen recycling from the xylem in rice leaves: dependence upon metabolism and associated changes in xylem hydraulics

    PubMed Central

    Bailey, Karen J.

    2016-01-01

    Measurements of amino acids in the guttation fluid and in the xylem exudates of cut leaves from intact plants provide evidence of the remarkable efficiency with which these nitrogenous compounds are reabsorbed from the xylem sap. This could be achieved by mechanisms involving intercellular transport and/or metabolism. Developmental changes in transcripts and protein showed that transcripts for phosphoenolpyruvate carboxykinase (PEPCK) increased from the base to the leaf tip, and were markedly increased by supplying asparagine. Supplying amino acids also increased the amounts of protein of PEPCK and, to a lesser extent, of pyruvate, Pi dikinase. PEPCK is present in the hydathodes, stomata and vascular parenchyma of rice leaves. Evidence for the role of PEPCK was obtained by using 3-mercaptopicolinic acid (MPA), a specific inhibitor of PEPCK, and by using an activation-tagged rice line that had an increase in PEPCK activity, to show that activation of PEPCK resulted in a decrease in N in the guttation fluid and that treatment by MPA resulted in an increase in amino acids in the guttation fluid and xylem sap towards the leaf tip. Furthermore, increasing PEPCK activity decreased the amount of guttation fluid, whereas decreasing PEPCK activity increased the amount of xylem sap or guttation fluid towards the leaf tip. The findings suggest the following hypotheses: (i) both metabolism and transport are involved in xylem recycling and (ii) excess N is the signal involved in modulating xylem hydraulics, perhaps via nutrient regulation of water-transporting aquaporins. Water relations and vascular metabolism and transport are thus intimately linked. PMID:27053722

  17. Early diagnosis of blast fungus, Magnaporthe oryzae, in rice plant by using an ultra-sensitive electrically magnetic-controllable electrochemical biosensor.

    PubMed

    Yang, Weijuan; Zhang, Hongyan; Li, Mengxue; Wang, Zonghua; Zhou, Jie; Wang, Shihua; Lu, Guodong; Fu, FengFu

    2014-11-19

    As one of the most destructive and widespread disease of rice, Magnaporthe oryzae (also called Magnaporthe grisea) has a significant negative impact on rice production. Therefore, it is still in high demand to develop extremely sensitive and accurate methods for the early diagnosis of Magnaporthe oryzae (M. oryzae). In this study, we developed a novel magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of M. oryzae in rice plant by using M. oryzae's chitinases (Mgchi) as biochemical marker and a rice (Oryza sativa) cDNA encoding mannose-binding jacalin-related lectin (Osmbl) as recognition probe. The proposed biosensor combined with the merits of chronoamperometry, electrically magnetic-controllable gold electrode and magnetic beads (MBs)-based palladium nano-particles (PdNPs) catalysis amplification, has an ultra-high sensitivity and specificity for the detection of trace M. oryzae in rice plant. It could be used to detect M. oryzae in rice plant in the initial infection stage (before any symptomatic lesions were observed) to help farmers timely manage the disease. In comparison with previous methods, the proposed method has notable advantages such as higher sensitivity, excellent specificity, short analysis time, robust resistibility to complex matrix and low cost etc. The success in this study provides a reliable approach for the early diagnosis and fast screening of M. oryzae in rice plant. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Plants can use protein as a nitrogen source without assistance from other organisms

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Lonhienne, Thierry G. A.; Rentsch, Doris; Robinson, Nicole; Christie, Michael; Webb, Richard I.; Gamage, Harshi K.; Carroll, Bernard J.; Schenk, Peer M.; Schmidt, Susanne

    2008-01-01

    Nitrogen is quantitatively the most important nutrient that plants acquire from the soil. It is well established that plant roots take up nitrogen compounds of low molecular mass, including ammonium, nitrate, and amino acids. However, in the soil of natural ecosystems, nitrogen occurs predominantly as proteins. This complex organic form of nitrogen is considered to be not directly available to plants. We examined the long-held view that plants depend on specialized symbioses with fungi (mycorrhizas) to access soil protein and studied the woody heathland plant Hakea actites and the herbaceous model plant Arabidopsis thaliana, which do not form mycorrhizas. We show that both species can use protein as a nitrogen source for growth without assistance from other organisms. We identified two mechanisms by which roots access protein. Roots exude proteolytic enzymes that digest protein at the root surface and possibly in the apoplast of the root cortex. Intact protein also was taken up into root cells most likely via endocytosis. These findings change our view of the spectrum of nitrogen sources that plants can access and challenge the current paradigm that plants rely on microbes and soil fauna for the breakdown of organic matter. PMID:18334638

  19. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  20. Roles of plant hormones and anti-apoptosis genes during drought stress in rice (Oryza sativa L.).

    PubMed

    Ubaidillah, Mohammad; Safitri, Fika Ayu; Jo, Jun-Hyeon; Lee, Sang-Kyu; Hussain, Adil; Mun, Bong-Gyu; Chung, Il Kyung; Yun, Byung-Wook; Kim, Kyung-Min

    2016-12-01

    We previously identified the rice (Oryza sativa) senescence-associated gene OsSAP which encodes a highly conserved protein involved in anti-apoptotic activity. This novel Bax suppressor-related gene regulates tolerance to multiple stresses in yeast. Here, we show the effects of drought stress on leaf and root tissues of plants over-expressing OsSAP in relation to the levels of phytohormones, abscisic acid (ABA), jasmonic acid (JA), indole-3-carboxylic acid (ICA), gibberellic acid (GA 3 ), and zeatin. Results showed that rice plants over-expressing SAP were tolerant to drought stress compared to wild type and the plants over-expressing AtBI-1, which is a homolog of the human Bax inhibitor-1 in Arabidopsis. ABA and JA levels in OsSAP and AtBI-1 transgenic plants consistently increased up to at least 3 days after drought treatment, whereas lower GA 3 levels were recorded during early drought period. Comparison between control and transgenic plants overexpressing anti-apoptosis genes OsSAP and AtBI-1 resulted in different patterns of hormone levels, indicating that these genes are involved in the plant responses to drought stress and present an opportunity for further study on drought stress tolerance in rice and other plant species.

  1. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    NASA Astrophysics Data System (ADS)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  2. Tracking Se Assimilation and Speciation through the Rice Plant – Nutrient Competition, Toxicity and Distribution

    PubMed Central

    Eiche, Elisabeth; Riemann, Michael; Nick, Peter; Winkel, Lenny H. E.; Göttlicher, Jörg; Steininger, Ralph; Brendel, Rita; von Brasch, Matthias; Konrad, Gabriele; Neumann, Thomas

    2016-01-01

    Up to 1 billion people are affected by low intakes of the essential nutrient selenium (Se) due to low concentrations in crops. Biofortification of this micronutrient in plants is an attractive way of increasing dietary Se levels. We investigated a promising method of Se biofortification of rice seedlings, as rice is the primary staple for 3 billion people, but naturally contains low Se concentrations. We studied hydroponic Se uptake for 0–2500 ppb Se, potential phyto-toxicological effects of Se and the speciation of Se along the shoots and roots as a function of added Se species, concentrations and other nutrients supplied. We found that rice germinating directly in a Se environment increased plant-Se by factor 2–16, but that nutrient supplementation is required to prevent phyto-toxicity. XANES data showed that selenite uptake mainly resulted in the accumulation of organic Se in roots, but that selenate uptake resulted in accumulation of selenate in the higher part of the shoot, which is an essential requirement for Se to be transported to the grain. The amount of organic Se in the plant was positively correlated with applied Se concentration. Our results indicate that biofortification of seedlings with selenate is a successful method to increase Se levels in rice. PMID:27116220

  3. Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): a proteomic approach.

    PubMed

    Wei, Zhe; Hu, Wei; Lin, Qishan; Cheng, Xiaoyan; Tong, Mengjie; Zhu, Lili; Chen, Rongzhi; He, Guangcun

    2009-05-01

    Engineering and breeding resistant plant varieties are the most effective and environmentally friendly ways to control agricultural pests and improve crop performance. However, the mechanism of plant resistance to pests is poorly understood. Here we used a quantitative mass-spectrometry-based proteomic approach for comparative analysis of expression profiles of proteins in rice leaf sheaths in responses to infestation by the brown planthopper (Nilaparvata lugens Stål, BPH), which is a serious rice crop pest. Proteins involved in multiple pathways showed significant changes in expression in response to BPH feeding, including jasmonic acid synthesis proteins, oxidative stress response proteins, beta-glucanases, protein; kinases, clathrin protein, glycine cleavage system protein, photosynthesis proteins and aquaporins. The corresponding genes of eight important proteins were further analyzed by quantitative RT-PCR. Proteomic and transcript responses that were related to wounding, oxidative and pathogen stress overlapped considerably between BPH-resistant (carrying the resistance gene BPH15) and susceptible rice lines. In contrast, proteins and genes related to callose metabolism remained unchanged and glycine cleavage system protein was up-regulated in the BPH-resistant lines, indicating that they have an efficient and specific defense mechanism. Our results provide new information about the interaction between rice and the BPH.

  4. Post-translational regulation of nitrogen transporters in plants and microorganisms.

    PubMed

    Jacquot, Aurore; Li, Zhi; Gojon, Alain; Schulze, Waltraud; Lejay, Laurence

    2017-05-01

    For microorganisms and plants, nitrate and ammonium are the main nitrogen sources and they are also important signaling molecules controlling several aspects of metabolism and development. Over the past decade, numerous studies revealed that nitrogen transporters are strongly regulated at the transcriptional level. However, more and more reports are now showing that nitrate and ammonium transporters are also subjected to post-translational regulations in response to nitrogen availability. Phosphorylation is so far the most well studied post-translational modification for these transporters and it affects both the regulation of nitrogen uptake and nitrogen sensing. For example, in Arabidopsis thaliana, phosphorylation was shown to activate the sensing function of the root nitrate transporter NRT1.1 and to switch the transport affinity. Also, for ammonium transporters, a phosphorylation-dependent activation/inactivation mechanism was elucidated in recent years in both plants and microorganisms. However, despite the fact that these regulatory mechanisms are starting to be thoroughly described, the signaling pathways involved and their action on nitrogen transporters remain largely unknown. In this review, we highlight the inorganic nitrogen transporters regulated at the post-translational level and we compare the known mechanisms in plants and microorganisms. We then discuss how these mechanisms could contribute to the regulation of nitrogen uptake and/or nitrogen sensing. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Reproduction allocation and potential mechanism of individual allelopathic rice plants in the presence of competing barnyardgrass.

    PubMed

    Kong, Chui-Hua; Wang, Ming-Li; Wang, Peng; Ni, Han-Wen; Meng, Xiang-Rui

    2013-01-01

    In spite of increasing knowledge of allelopathic rice as an efficient component involved in paddy weed management, relatively little is known about its reproduction in response to competing weeds. Reproduction allocation of individual allelopathic rice plants in relation to monoculture and mixed culture with competing barnyardgrass in a paddy field was studied, along with analyses of soil nutrients and microbial communities to understand the potential mechanism. At a 1:1 barnyardgrass and rice mixture proportion identified from a replacement series study, biomass, grain yield and major parameters of individual allelopathic rice plants at the mature stage were increased by competing barnyardgrass. There was no difference in allelopathic rice root-zone soil ammonium N and Olsen P between monoculture and mixed culture. However, mixed culture altered soil microbial biomass C and communities. When mixed with barnyardgrass, allelopathic rice root zone had an 87% increase in soil microbial biomass C. Phospholipid fatty acid (PLFA) profiling indicated that the signature lipid biomarkers of bacteria, actinobacteria and fungi were affected by mixed culture. Principal component analysis clearly identified differences in the composition of PLFA in different soil samples. Allelopathic rice specific changes in soil microbial communities may generate a positive feedback on its own growth and reproduction in the presence of competing barnyardgrass in a given paddy system. Copyright © 2012 Society of Chemical Industry.

  6. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    PubMed

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    PubMed

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.

  8. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China.

    PubMed

    Dong, Wenjun; Guo, Jia; Xu, Lijun; Song, Zhifeng; Zhang, Jun; Tang, Ao; Zhang, Xijuan; Leng, Chunxu; Liu, Youhong; Wang, Lianmin; Wang, Lizhi; Yu, Yang; Yang, Zhongliang; Yu, Yilei; Meng, Ying; Lai, Yongcai

    2018-02-01

    Water regime and nitrogen (N) fertilizer are two important factors impacting greenhouse gases (GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane (CH 4 ) emission compared with continuous flooding, however, the decrement was far lower than the global average level. The N 2 O emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH 4 emissions at low level (75kgN/ha). But both CH 4 and N 2 O emissions were uninfluenced at the levels of 150kgN/ha and 225kgN/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150kgN/ha. From our results, we recommended that the intermittent irrigation and 150kgN/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields. Copyright © 2017. Published by Elsevier B.V.

  9. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.

    PubMed

    Martinez, Raul E; Marquez, J Eduardo; Hòa, Hoàng Thị Bích; Gieré, Reto

    2013-11-01

    This study quantified Cd, Pb, and Cu content, and the soil-plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz-clay matrix of rice paddy soils at 20-30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146±0.004, 23.3±0.1, and 23.5±0.1 mg/kg which exceeded calculated background concentrations of 0.006±0.004, 1.9±0.5, and 2.4±1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2±0.1 to 140±3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60% with respect to a control sample was found for model plants, whereas a decrease of only 10% was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84±0.02 and 7.7±0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0

  10. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China.

    PubMed

    Zhang, Xianxian; Yin, Shan; Li, Yinsheng; Zhuang, Honglei; Li, Changsheng; Liu, Chunjiang

    2014-02-15

    Rice is one of the major crops of southern China and Southeast Asia. Rice paddies are one of the largest agricultural greenhouse gas (GHG) sources in this region because of the application of large quantities of nitrogen (N) fertilizers to the plants. In particular, the production of methane (CH4) is a concern. Investigating a reasonable amount of fertilizers to apply to plants is essential to maintaining high yields while reducing GHG emissions. In this study, three levels of fertilizer application [high (300 kg N/ha), moderate (210 kg N/ha), and low (150 kg N/ha)] were designed to examine the effects of variation in N fertilizer application rate on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the paddy fields in Chongming Island, Shanghai, China. The high level (300 kg N/ha) represented the typical practice adopted by the local farmers in the area. Maximum amounts of CH4 and N2O fluxes were observed upon high-level fertilizer application in the plots. Cumulative N2O emissions of 23.09, 40.10, and 71.08 mg N2O/m(2) were observed over the growing season in 2011 under the low-, moderate-, and high-level applications plots, respectively. The field data also indicated that soil temperatures at 5 and 10 cm soil depths significantly affected soil respiration; the relationship between Rs and soil temperature in this study could be described by an exponential model. Our study showed that reducing the high rate of fertilizer application is a feasible way of attenuating the global-warming potential while maintaining the optimum yield for the studied paddy fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    PubMed

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  12. Nutrient and growth responses of Leersia oryzoides, rice cutgrass, to varying degrees of soil saturation and water nitrogen concentration

    USDA-ARS?s Scientific Manuscript database

    Leersia oryzoides (rice cutgrass) is an obligate wetland plant common to agricultural ditches. The objective of this greenhouse study was to quantify the allocation of nutrients and biomass to different plant components exposed to various soil moisture and aqueous N input regimes. Plants in the con...

  13. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    PubMed

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Proteomic identification of rhythmic proteins in rice seedlings.

    PubMed

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  15. Factors affecting the availability of americium-241 to the rice plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adriano, D.C.

    1979-11-01

    Since there has been no published transuranic uptake data on the rice plant (Oryza sativa L.), greenhouse experiments were conducted to determine the effects of some factors on the uptake of /sup 241/Am by this crop. Results indicate that chelated /sup 241/Am (in the form of americium-241-diethylenetriaminepentaacetic acid) applied to the flood water was markedly taken up by the rice plant, compared to the nonchelated form. However, most of the accumulation of /sup 241/Am occurred in the vegetative parts and only trace amounts, if any, were translocated to the grain. Soil application of /sup 241/Am resulted in much lower uptake.more » Soil amendment with either diethylenetriaminepentaacetic acid (DTPA) or organic matter did not produce a discernible uptake pattern. A synthesis of published data on plant uptake of /sup 241/Am indicates that the concentration ratio (CR, a measure of availability of /sup 241/Am to the plants) values for /sup 241/Am for agricultural crops ranged from 10-/sup 6/ to 10/sup 1/ (from lowest to highest availability). Some factors that appear to influence /sup 241/Am uptake are as follows: plant parts (grain usually having lower CR), chelating agents (DTPA usually increasing the CR), organic matter (inconsistent effects although generally decreasing the CR), and lime (usually decreasing the CR).« less

  16. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    NASA Astrophysics Data System (ADS)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  17. Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta.

    PubMed

    Hassi, Ummehani; Hossain, Md Tawhid; Huq, S M Imamul

    2017-10-10

    Dangers of arsenic contamination are well known in human civilization. The threat increases when arsenic is accumulated in food and livestock through irrigated crops or animal food. Hence, it is important to mitigate the effects of arsenic as much as possible. This paper discusses a process for reducing the level of arsenic in different parts of rice plants with an aquatic fern, Marsilea minuta L. A pot experiment was done to study the possibility of using Marsilea minuta as a phytoremediator of arsenic. Rice and Marsilea minuta were allowed to grow together in soils. As a control, Marsilea minuta was also cultured alone in the presence and absence of arsenic (applied at 1 mg/L as irrigation water). We did not find any significant change in the growth of rice due to the association of Marsilea minuta, though it showed a reduction of approximately 58.64% arsenic accumulation in the roots of rice grown with the association of fern compared to that grown without fern. We measured a bioaccumulation factor (BF) of > 5.34, indicating that Marsilea minuta could be a good phytoremediator of arsenic in rice fields.

  18. RAN1 is involved in plant cold resistance and development in rice (Oryza sativa).

    PubMed

    Xu, Peipei; Cai, Weiming

    2014-07-01

    Of the diverse abiotic stresses, low temperature is one of the major limiting factors that lead to a series of morphological, physiological, biochemical, and molecular changes in plants. Ran, an evolutionarily conserved small G-protein family, has been shown to be essential for the nuclear translocation of proteins. It also mediates the regulation of cell cycle progression in mammalian cells. However, little is known about Ran function in rice (Oryza sativa). We report here that Ran gene OsRAN1 is essential for the molecular improvement of rice for cold tolerance. Ran also affects plant morphogenesis in transgenic Arabidopsis thaliana. OsRAN1 is ubiquitously expressed in rice tissues with the highest expression in the spike. The levels of mRNA encoding OsRAN1 were greatly increased by cold and indoleacetic acid treatment rather than by addition of salt and polyethylene glycol. Further, OsRAN1 overexpression in Arabidopsis increased tiller number, and altered root development. OsRAN1 overexpression in rice improves cold tolerance. The levels of cellular free Pro and sugar levels were highly increased in transgenic plants under cold stress. Under cold stress, OsRAN1 maintained cell division and cell cycle progression, and also promoted the formation of an intact nuclear envelope. The results suggest that OsRAN1 protein plays an important role in the regulation of cellular mitosis and the auxin signalling pathway. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Ethnobotanical investigation of 'wild' food plants used by rice farmers in Kalasin, Northeast Thailand

    PubMed Central

    2011-01-01

    Background Wild food plants are a critical component in the subsistence system of rice farmers in Northeast Thailand. One of the important characteristics of wild plant foods among farming households is that the main collection locations are increasingly from anthropogenic ecosystems such as agricultural areas rather than pristine ecosystems. This paper provides selected results from a study of wild food conducted in several villages in Northeast Thailand. A complete botanical inventory of wild food plants from these communities and surrounding areas is provided including their diversity of growth forms, the different anthropogenic locations were these species grow and the multiplicity of uses they have. Methods Data was collected using focus groups and key informant interviews with women locally recognized as knowledgeable about contemporarily gathered plants. Plant species were identified by local taxonomists. Results A total of 87 wild food plants, belonging to 47 families were reported, mainly trees, herbs (terrestrial and aquatic) and climbers. Rice fields constitute the most important growth location where 70% of the plants are found, followed by secondary woody areas and home gardens. The majority of species (80%) can be found in multiple growth locations, which is partly explained by villagers moving selected species from one place to another and engaging in different degrees of management. Wild food plants have multiple edible parts varying from reproductive structures to vegetative organs. More than two thirds of species are reported as having diverse additional uses and more than half of them are also regarded as medicine. Conclusions This study shows the remarkable importance of anthropogenic areas in providing wild food plants. This is reflected in the great diversity of species found, contributing to the food and nutritional security of rice farmers in Northeast Thailand. PMID:22067578

  20. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    PubMed

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  2. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    PubMed Central

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  3. Loose Plant Architecture1, an INDETERMINATE DOMAIN Protein Involved in Shoot Gravitropism, Regulates Plant Architecture in Rice1[W

    PubMed Central

    Wu, Xinru; Tang, Ding; Li, Ming; Wang, Kejian; Cheng, Zhukuan

    2013-01-01

    Tiller angle and leaf angle are two important components of rice (Oryza sativa) plant architecture that play a crucial role in determining grain yield. Here, we report the cloning and characterization of the Loose Plant Architecture1 (LPA1) gene in rice, the functional ortholog of the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis (Arabidopsis thaliana). LPA1 regulates tiller angle and leaf angle by controlling the adaxial growth of tiller node and lamina joint. LPA1 was also found to affect shoot gravitropism. Expression pattern analysis suggested that LPA1 influences plant architecture by affecting the gravitropism of leaf sheath pulvinus and lamina joint. However, LPA1 only influences gravity perception or signal transduction in coleoptile gravitropism by regulating the sedimentation rate of amyloplasts, distinct from the actions of LAZY1. LPA1 encodes a plant-specific INDETERMINATE DOMAIN protein and defines a novel subfamily of 28 INDETERMINATE DOMAIN proteins with several unique conserved features. LPA1 is localized in the nucleus and functions as an active transcriptional repressor, an activity mainly conferred by a conserved ethylene response factor-associated amphiphilic repression-like motif. Further analysis suggests that LPA1 participates in a complicated transcriptional and protein interaction network and has evolved novel functions distinct from SGR5. This study not only facilitates the understanding of gravitropism mechanisms but also generates a useful genetic material for rice breeding. PMID:23124325

  4. Growth and Survival of Baldcypress Planted in an Old Rice Field of Coastal South Carolina

    Treesearch

    William H. Conner; L. Wayne Inabinette; Mehmet Ozalp

    2004-01-01

    Vast acreages of baldcypress [Taxodium distichum (L.) Rich.] swampland in coastal South Carolina were cleared for rice production starting in the late 1600s. When rice cultivation ended in the late 1800s, many cultivated areas became marshlands. Other fields failed to return to forest unless they were planted. In one such area, nine acres were...

  5. The method for detecting biological parameter of rice growth and early planting of paddy crop by using multi temporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Domiri, D. D.

    2017-01-01

    Rice crop is the most important food crop for the Asian population, especially in Indonesia. During the growth of rice plants have four main phases, namely the early planting or inundation phase, the vegetative phase, the generative phase, and bare land phase. Monitoring the condition of the rice plant needs to be conducted in order to know whether the rice plants have problems or not in its growth. Application of remote sensing technology, which uses satellite data such as Landsat 8 and others which has a spatial and temporal resolution is high enough for monitoring the condition of crops such as paddy crop in a large area. In this study has been made an algorithm for monitoring rapidly of rice growth condition using Maximum of Vegetation Index (EVI Max). The results showed that the time of early planting can be estimated if known when EVI Max occurred. The value of EVI Max and when it occured can be known by trough spatial analysis of multitemporal EVI Landsat 8 or other medium spatial resolution satellites.

  6. [Nitrous oxide emission, nitrification, denitrification and nitrogen mineralization during rice growing season in 2 soils from Uruguay].

    PubMed

    Illarze, Gabriela; Del Pino, Amabelia; Riccetto, Sara; Irisarri, Pilar

    Microbial processes such as mineralization, nitrification and denitrification regulate nitrogen dynamics in the soil. The last two processes may produce nitrous oxide (N 2 O). In this work N 2 O fluxes were quantified at four moments of the rice cycle, sowing, tillering, panicle initiation and maturity, in two sites that differed mainly in their soil organic matter (OM) content, Salto (higher OM) and Treinta y Tres. Potential net N mineralization, ammonium oxidation and denitrification as well as the most probable numbers (MPN) of ammonia oxidizers and denitrifiers were determined. Potential N mineralization did not vary with the soil type and increased at rice maturity. Neither ammonia oxidation potential nor MPN were different among the soils. However, the soil with higher OM exhibited higher activity and MPN of denitrifiers, irrespective of the rice stage. In turn, at the latest phases of the crop, the MPN of denitrifiers increased coinciding with the highest mineralization potential and mineral N content of the soil. Significant differences in N 2 O flux were observed in Salto, where the highest emissions were detected at rice maturity, after the soil was drained (44.2 vs 20.8g N-N 2 O/ha d in Treinta y Tres). This work shows the importance of considering the soil type and end-of-season drainage of the rice field to elaborate GHGs (greenhouse gases) inventories. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids.

    PubMed

    Shivrain, Vinod K; Burgos, Nilda R; Gealy, David R; Sales, Marites A; Smith, Kenneth L

    2009-10-01

    Gene transfer from weeds to crops could produce weedy individuals that might impact upon the evolutionary dynamics of weedy populations, the persistence of escaped genes in agroecosystems and approaches to weed management and containment of transgenic crops. The present aim was to quantify the gene flowrate from weedy red rice to cultivated rice, and evaluate the morphology, phenology and fecundity of resulting hybrids. Field experiments were conducted at Stuttgart and Rohwer, Arkansas, USA. Twelve red rice accessions and an imazethapyr-resistant rice (Imi-R; Clearfield) were used. Hybrids between Imi-R rice x red rice were 138-150 cm tall and flowered 1-5 days later than the rice parent, regardless of the red rice parent. Hybrids produced 20-50% more seed than the rice parent, but had equivalent seed production to the majority of red rice parents. Seeds of all hybrids were red, pubescent and dehisced at maturity. For the majority of hybrids, seed germination was higher than that of the red rice parent. The gene flowrate from red rice to rice was 0.01-0.2% and differed by red rice biotype. The hybrids had higher fecundity and potential competitive ability than the rice parent, and in some cases also the red rice parent. Red rice plants are vectors of gene flow back to cultivated rice and other weedy populations. The progeny of red rice hybrids from cultivated rice mother plants have higher chances of persistence than those from red rice mother plants. Gene flow mitigation strategies should consider this scenario. Copyright 2009 Society of Chemical Industry.

  8. Ratoon rice generated from primed parent plants exhibit enhanced herbivore resistance

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa) plants have the ability to regenerate new panicle-bearing tillers post-harvest, and for this reason ratooning represents a practical approach for achieving increased production levels with limited labor input for this crop. Here we report that attack by insect herbivores, or trea...

  9. Use of Nitrogen Isotope To Determine Fertilizer- and Soil-Derived Ammonia Volatilization in a Rice/Wheat Rotation System.

    PubMed

    Zhao, Xu; Yan, Xiaoyuan; Xie, Yingxin; Wang, Shenqiang; Xing, Guangxi; Zhu, Zhaoliang

    2016-04-20

    The nitrogen (N) isotope method reveals that application of fertilizer N can increase crop uptake or denitrification and leaching losses of native soil N via the "added N interaction". However, there is currently little evidence of the impact of added N on soil N losses through NH3 volatilization using (15)N methodologies. In the present study, a three-year rice/wheat rotated experiment with 30% (15)N-labeled urea applied in the first rice season and unlabeled urea added in the following five crop seasons was performed to investigate volatilization of NH3 from fertilizer and soil N. We found 9.28% of NH3 loss from (15)N urea and 2.88-7.70% declines in (15)N-NH3 abundance occurred during the first rice season, whereas 0.11% of NH3 loss from (15)N urea and 0.02-0.21% enrichments in (15)N-NH3 abundance happened in the subsequent seasons. The contributions of fertilizer- and soil-derived N to NH3 volatilization from a rice/wheat rotation were 75.8-88.4 and 11.6-24.2%, respectively. These distinct variations in (15)N-NH3 and substantial soil-derived NH3 suggest that added N clearly interacts with the soil source contributing to NH3 volatilization.

  10. Identification and characterization of OsEBS, a gene involved in enhanced plant biomass and spikelet number in rice.

    PubMed

    Dong, Xianxin; Wang, Xiaoyan; Zhang, Liangsheng; Yang, Zhengting; Xin, Xiaoyun; Wu, Shuang; Sun, Chuanqing; Liu, Jianxiang; Yang, Jinshui; Luo, Xiaojin

    2013-12-01

    Common wild rice (Oryza rufipogon Griff.) is an important genetic reservoir for rice improvement. We investigated a quantitative trait locus (QTL), qGP5-1, which is related to plant height, leaf size and panicle architecture, using a set of introgression lines of O. rufipogon in the background of the Indica cultivar Guichao2 (Oryza sativa L.). We cloned and characterized qGP5-1 and confirmed that the newly identified gene OsEBS (enhancing biomass and spikelet number) increased plant height, leaf size and spikelet number per panicle, leading to an increase in total grain yield per plant. Our results showed that the increased size of vegetative organs in OsEBS-expressed plants was enormously caused by increasing cell number. Sequence alignment showed that OsEBS protein contains a region with high similarity to the N-terminal conserved ATPase domain of Hsp70, but it lacks the C-terminal regions of the peptide-binding domain and the C-terminal lid. More results indicated that OsEBS gene did not have typical characteristics of Hsp70 in this study. Furthermore, Arabidopsis (Arabidopsis thaliana) transformed with OsEBS showed a similar phenotype to OsEBS-transgenic rice, indicating a conserved function of OsEBS among plant species. Together, we report the cloning and characterization of OsEBS, a new QTL that controls rice biomass and spikelet number, through map-based cloning, and it may have utility in improving grain yield in rice. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Virus-Mediated Chemical Changes in Rice Plants Impact the Relationship between Non-Vector Planthopper Nilaparvata lugens Stål and Its Egg Parasitoid Anagrus nilaparvatae Pang et Wang

    PubMed Central

    Gao, Guanchun; Zhou, Xiaojun; Zheng, Xusong; Sun, Yujian; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-01-01

    In order to clarify the impacts of southern rice black-streaked dwarf virus (SRBSDV) infection on rice plants, rice planthoppers and natural enemies, differences in nutrients and volatile secondary metabolites between infected and healthy rice plants were examined. Furthermore, the impacts of virus-mediated changes in plants on the population growth of non-vector brown planthopper (BPH), Nilaparvata lugens, and the selectivity and parasitic capability of planthopper egg parasitoid Anagrus nilaparvatae were studied. The results showed that rice plants had no significant changes in amino acid and soluble sugar contents after SRBSDV infection, and SRBSDV-infected plants had no significant effect on population growth of non-vector BPH. A. nilaparvatae preferred BPH eggs both in infected and healthy rice plants, and tended to parasitize eggs on infected plants, but it had no significant preference for infected plants or healthy plants. GC-MS analysis showed that tridecylic aldehyde occurred only in rice plants infected with SRBSDV, whereas octanal, undecane, methyl salicylate and hexadecane occurred only in healthy rice plants. However, in tests of behavioral responses to these five volatile substances using a Y-tube olfactometer, A. nilaparvatae did not show obvious selectivity between single volatile substances at different concentrations and liquid paraffin in the control group. The parasitic capability of A. nilaparvatae did not differ between SRBSDV-infected plants and healthy plant seedlings. The results suggested that SRBSDV-infected plants have no significant impacts on the non-vector planthopper and its egg parasitoid, A. nilaparvatae. PMID:25141278

  12. Virus-mediated chemical changes in rice plants impact the relationship between non-vector planthopper Nilaparvata lugens Stål and its egg parasitoid Anagrus nilaparvatae Pang et Wang.

    PubMed

    He, Xiaochan; Xu, Hongxing; Gao, Guanchun; Zhou, Xiaojun; Zheng, Xusong; Sun, Yujian; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-01-01

    In order to clarify the impacts of southern rice black-streaked dwarf virus (SRBSDV) infection on rice plants, rice planthoppers and natural enemies, differences in nutrients and volatile secondary metabolites between infected and healthy rice plants were examined. Furthermore, the impacts of virus-mediated changes in plants on the population growth of non-vector brown planthopper (BPH), Nilaparvata lugens, and the selectivity and parasitic capability of planthopper egg parasitoid Anagrus nilaparvatae were studied. The results showed that rice plants had no significant changes in amino acid and soluble sugar contents after SRBSDV infection, and SRBSDV-infected plants had no significant effect on population growth of non-vector BPH. A. nilaparvatae preferred BPH eggs both in infected and healthy rice plants, and tended to parasitize eggs on infected plants, but it had no significant preference for infected plants or healthy plants. GC-MS analysis showed that tridecylic aldehyde occurred only in rice plants infected with SRBSDV, whereas octanal, undecane, methyl salicylate and hexadecane occurred only in healthy rice plants. However, in tests of behavioral responses to these five volatile substances using a Y-tube olfactometer, A. nilaparvatae did not show obvious selectivity between single volatile substances at different concentrations and liquid paraffin in the control group. The parasitic capability of A. nilaparvatae did not differ between SRBSDV-infected plants and healthy plant seedlings. The results suggested that SRBSDV-infected plants have no significant impacts on the non-vector planthopper and its egg parasitoid, A. nilaparvatae.

  13. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments.

    PubMed

    Liu, Nan; Wu, Shuhua; Guo, Qinfeng; Wang, Jiaxin; Cao, Ce; Wang, Jun

    2018-05-12

    Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased A max , PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Understanding the molecular mechanisms of rice blast resistance using rice mutants

    USDA-ARS?s Scientific Manuscript database

    Induced mutation can be useful for studying resistance gene controlled plant immunity. Resulting knowledge should benefit the development of strategies for crop protection. The Pi-ta gene in rice has been effectively deployed for preventing rice blast disease-the most devastating disease of rice wo...

  15. OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity.

    PubMed

    Sahoo, Ranjan Kumar; Ansari, Mohammad Wahid; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    The SUV3 (suppressor of Var 3) gene encodes a DNA and RNA helicase, which is localized in the mitochondria. Plant SUV3 has not yet been characterized in detail. However, the Arabidopsis ortholog of SUV3 (AT4G14790) has been shown to be involved in embryo sac development. Previously, we have reported that rice SUV3 functions as DNA and RNA helicase and provides salinity stress tolerance by maintaining photosynthesis and antioxidant machinery. Here, we report further analysis of the transgenic OsSUV3 rice plants under salt stress. The transgenic OsSUV3 overexpressing rice T1 lines showed significantly higher endogenous content of plant hormones viz., gibberellic acid (GA3), zeatin (Z) and indole-3-acetic acid (IAA) in leaf, stem and root as compared to wild-type (WT), vector control (VC) and antisense (AS) plants under salt (200 mM NaCl) stress condition. A similar trend of endogenous plant hormones profile was also reflected in the T2 generation of OsSUV3 transgenic rice under defined parameters and stress condition. In response to stress, OsSUV3 rice plants maintained plant hormone levels that regulate the expression of several stress-induced genes and reduce adverse effects of salt on plant growth and development and therefore sustains crop productivity.

  16. Analyzing the performance of fluorescence parameters in the monitoring of leaf nitrogen content of paddy rice

    PubMed Central

    Yang, Jian; Gong, Wei; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei; Chen, Biwu; Zhang, Zhenbing

    2016-01-01

    Leaf nitrogen content (LNC) is a significant factor which can be utilized to monitor the status of paddy rice and it requires a reliable approach for fast and precise quantification. This investigation aims to quantitatively analyze the correlation between fluorescence parameters and LNC based on laser-induced fluorescence (LIF) technology. The fluorescence parameters exhibited a consistent positive linear correlation with LNC in different growing years (2014 and 2015) and different rice cultivars. The R2 of the models varied from 0.6978 to 0.9045. Support vector machine (SVM) was then utilized to verify the feasibility of the fluorescence parameters for monitoring LNC. Comparison of the fluorescence parameters indicated that F740 is the most sensitive (the R2 of linear regression analysis of the between predicted and measured values changed from 0.8475 to 0.9226, and REs ranged from 3.52% to 4.83%) to the changes in LNC among all fluorescence parameters. Experimental results demonstrated that fluorescence parameters based on LIF technology combined with SVM is a potential method for realizing real-time, non-destructive monitoring of paddy rice LNC, which can provide guidance for the decision-making of farmers in their N fertilization strategies. PMID:27350029

  17. Nitrogen recycling from the xylem in rice leaves: dependence upon metabolism and associated changes in xylem hydraulics.

    PubMed

    Bailey, Karen J; Leegood, Richard C

    2016-04-01

    Measurements of amino acids in the guttation fluid and in the xylem exudates of cut leaves from intact plants provide evidence of the remarkable efficiency with which these nitrogenous compounds are reabsorbed from the xylem sap. This could be achieved by mechanisms involving intercellular transport and/or metabolism. Developmental changes in transcripts and protein showed that transcripts for phosphoenolpyruvate carboxykinase (PEPCK) increased from the base to the leaf tip, and were markedly increased by supplying asparagine. Supplying amino acids also increased the amounts of protein of PEPCK and, to a lesser extent, of pyruvate, Pi dikinase. PEPCK is present in the hydathodes, stomata and vascular parenchyma of rice leaves. Evidence for the role of PEPCK was obtained by using 3-mercaptopicolinic acid (MPA), a specific inhibitor of PEPCK, and by using an activation-tagged rice line that had an increase in PEPCK activity, to show that activation of PEPCK resulted in a decrease in N in the guttation fluid and that treatment by MPA resulted in an increase in amino acids in the guttation fluid and xylem sap towards the leaf tip. Furthermore, increasing PEPCK activity decreased the amount of guttation fluid, whereas decreasing PEPCK activity increased the amount of xylem sap or guttation fluid towards the leaf tip. The findings suggest the following hypotheses: (i) both metabolism and transport are involved in xylem recycling and (ii) excess N is the signal involved in modulating xylem hydraulics, perhaps via nutrient regulation of water-transporting aquaporins. Water relations and vascular metabolism and transport are thus intimately linked. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    PubMed

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice

    PubMed Central

    Garg, Rohini; Tyagi, Akhilesh K.; Jain, Mukesh

    2012-01-01

    Hormones exert pleiotropic effects on plant growth and development throughout the life cycle. Many of these effects are mediated at molecular level via altering gene expression. In this study, we investigated the exogenous effect of plant hormones, including auxin, cytokinin, abscisic acid, ethylene, salicylic acid and jasmonic acid, on the transcription of rice genes at whole genome level using microarray. Our analysis identified a total of 4171 genes involved in several biological processes, whose expression was altered significantly in the presence of different hormones. Further, 28% of these genes exhibited overlapping transcriptional responses in the presence of any two hormones, indicating crosstalk among plant hormones. In addition, we identified genes showing only a particular hormone-specific response, which can be used as hormone-specific markers. The results of this study will facilitate further studies in hormone biology in rice. PMID:22827941

  20. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Alterations in internal partitioning of carbon in soybean plants in response to nitrogen stress

    NASA Technical Reports Server (NTRS)

    Rufty, T. W. Jr; Raper, C. D. Jr; Huber, S. C.

    1984-01-01

    Alterations in internal partitioning of carbon were evaluated in plants exposed to limited nitrogen supply. Vegetative, nonnodulated soybean plants (Glycine max (L.) Merrill, 'Ransom') were grown for 21 days with 1.0 mM NO3- and then exposed to solutions containing 1.0, 0.1, or 0.0 mM NO3- for a 25-day treatment period. In nitrogen-limited plants, there were decreases in emergence of new leaves and in the expansion rate and final area at full expansion of individual leaves. As indicated by alterations in accumulation of dry weight, a larger proportion of available carbon in the plant was partitioned to the roots with decreased availability of nitrogen. Partitioning of reduced nitrogen to the root also was increased and, in plants devoid of an external supply, considerable redistribution of reduced nitrogen from leaves to the root occurred. The general decrease in growth potential and sink strength for nutrients in leaves of nitrogen-limited plants suggested that factors other than simply availability of nitrogen likely were involved in the restriction of growth in the leaf canopy and the associated increase in carbon allocation to the roots.

  2. Self-enhancement of GABA in rice bran using various stress treatments.

    PubMed

    Kim, Hyun Soo; Lee, Eun Jung; Lim, Seung-Taik; Han, Jung-Ah

    2015-04-01

    Gamma-aminobutyric acid (GABA) may be synthesized in plant tissues when the organism is under stressful conditions. Rice bran byproduct obtained from the milling of brown rice was treated under anaerobic storage with nitrogen at different temperatures (20-60 °C) and moisture contents (10-50%) up to 12h. For the GABA synthesis, the storage at 30% moisture content and 40 °C appeared optimal. Utilisation of an electrolyzed oxidizing water (EOW, pH 3.3) for moisture adjustment and addition of glutamic acid increased the GABA content in rice bran. The maximum GABA content in rice bran (523 mg/100g) could be achieved by the anaerobic storage at 30% EOW for 5h at 40 °C after an addition of glutamic acid (5mM). This amount was approximately 17 times higher than that in the control (30 mg/100g). The use of EOW also prevented bacterial growth by decreasing the colony counts almost by half. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mapping of Biophysical Parameters of Rice Agriculture System from Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Duta, Subashisa

    2017-04-01

    Chlorophyll, nitrogen and leaf water content are the most essential parameters for paddy crop growth. Ground hyperspectral observations were collected at canopy level during critical growth period of rice by using hand held Spectroradiometer. Chemical analysis was carried out to quantify the total chlorophyll, nitrogen and leaf water content. By exploiting the in-situ hyperspectral measurements, regression models were established between each of the crop growth parameters and the spectral indices specifically designed for chlorophyll, nitrogen and water stress. Narrow band vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the modified simple ratio (SR) and leaf nitrogen concentration (LNC) predictive index models, which followed a linear and nonlinear relationship respectively, produced satisfactory results in predicting rice nitrogen content from hyperspectral imagery. The presently developed model was compared with other models proposed by researchers. It was ascertained that, nitrogen content varied widely from 1-4 percentage and only 2-3 percentage for paddy crop using present modified index models and well-known predicted Tian et al. (2011) model respectively. The modified present LNC index model performed better than the established Tian et al. (2011) model as far as the estimated nitrogen content from Hyperion imagery was concerned. Moreover, within the observed chlorophyll range attained from the rice genotypes cultivated in the studied rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) accomplished satisfactory results in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content widely varied from 1.77-5.81 mg/g (LNC), 3.0-13 mg/g (OASVI) and 2.90-5.40 mg/g (MTCI). Following the similar guideline, it was found that normalized difference water index (NDWI) and normalized

  4. Sites of action of elevated CO2 on leaf development in rice: discrimination between the effects of elevated CO2 and nitrogen deficiency.

    PubMed

    Tsutsumi, Koichi; Konno, Masae; Miyazawa, Shin-Ichi; Miyao, Mitsue

    2014-02-01

    Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.

  5. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    USGS Publications Warehouse

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  6. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant.

    PubMed

    Tamreihao, K; Ningthoujam, Debananda S; Nimaichand, Salam; Singh, Elangbam Shanta; Reena, Pascal; Singh, Salam Herojeet; Nongthomba, Upendra

    2016-11-01

    Streptomyces corchorusii strain UCR3-16, obtained from rice rhizospheric soils showed antifungal activities against 6 major rice fungal pathogens by diffusible and volatile compounds production. The strain was found positive for production of fungal cell wall degrading enzymes such as chitinase, β-1,3-glucanase, β-1,4-glucanase, lipase and protease. The strain was also positive for plant growth promoting traits. It produced up to 30.5μg/ml of IAA and solubilized a significant amount of inorganic phosphate (up to 102μg/ml). It also produced 69% siderophore units. The strain also produced ammonia and gave positive result for ACC deaminase activity. Highest vigor index of inoculated seedlings was observed when rice seeds were treated with cell suspension of UCR3-16 corresponding to 4.5×10(8)cfu/ml. Bioinoculant-treated seeds also showed similar results under pathogen challenged conditions. In pot trial experiments, UCR3-16-treated rice plants showed significantly increased growth and grain yield production. Powder formulation of the strain was developed using talcum and corn starch as carriers and the shelf-lives were monitored. Talcum formulation showed higher cell-count than corn starch even after 6 months of storage, and optimum condition for storage of the powder formulation were found to be at 4°C. Pot trial experiments using talcum powder formulation also showed significant positive effects on growth of rice plants. Field trial using talcum powder formulation also exhibited significant enhancement in shoot length and weight of shoot and root, and total grain yield and weight of grains in rice plants. Talcum formulation also significantly reduced the sheath blight disease in rice leaves. Copyright © 2016. Published by Elsevier GmbH.

  7. Inspections of radiocesium concentration levels in rice from Fukushima Prefecture after the Fukushima Dai-ichi Nuclear Power Plant accident

    PubMed Central

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    We summarize the inspections of radiocesium concentration levels in rice produced in Fukushima Prefecture, Japan, for 3 years from the nuclear accident in 2011. In 2011, three types of verifications, preliminary survey, main inspection, and emergency survey, revealed that rice with radiocesium concentration levels over 500 Bq/kg (the provisional regulation level until March 2012 in Japan) was identified in the areas north and west of the Fukushima nuclear power plant. The internal exposure of an average adult eating rice grown in the area north of the nuclear plant was estimated as 0.05 mSv/year. In 2012, Fukushima Prefecture authorities decided to investigate the radiocesium concentration levels in all rice using custom-made belt conveyor testers. Notably, rice with radiocesium concentration levels over 100 Bq/kg (the new standard since April 2012 in Japan) were detected in only 71 and 28 bags out of the total 10,338,000 in 2012 and 11,001,000 in 2013, respectively. We considered that there were almost no rice exceeding 100 Bq/kg produced in Fukushima Prefecture after 3 years from the nuclear accident, and the safety of Fukushima's rice were ensured because of the investigation of all rice. PMID:25731663

  8. Insights into the structure-function relationship of brown plant hopper resistance protein, Bph14 of rice plant: a computational structural biology approach.

    PubMed

    Gupta, Manoj Kumar; Vadde, Ramakrishna; Donde, Ravindra; Gouda, Gayatri; Kumar, Jitendra; Nayak, Subhashree; Jena, Mayabini; Behera, Lambodar

    2018-05-02

    Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.

  9. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants.

    PubMed

    Bao, Zhihua; Okubo, Takashi; Kubota, Kengo; Kasahara, Yasuhiro; Tsurumaru, Hirohito; Anda, Mizue; Ikeda, Seishi; Minamisawa, Kiwamu

    2014-08-01

    In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    PubMed

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert.

    PubMed

    Arndt, Stefan K; Kahmen, Ansgar; Arampatsis, Christina; Popp, Marianne; Adams, Mark

    2004-11-01

    The Central Asian Taklamakan desert is characterized by a hyperarid climate with less than 50 mm annual precipitation but a permanent shallow groundwater table. The perched groundwater (2-16 m) could present a reliable and constant source of nitrogen throughout the growing season and help overcome temporal nitrogen limitations that are common in arid environments. We investigated the importance of groundwater and nitrogen fixation in the nitrogen metabolism of desert plants by assessing the possible forms and availability of soil N and atmospheric N and the seasonal variation in concentration as well as isotopic composition of plant N. Water availability was experimentally modified in the desert foreland through simulated flooding to estimate the contribution of surface water and temporally increased soil moisture for nutrient uptake and plant-water relations. The natural vegetation of the Taklamakan desert is dominated by plants with high foliar nitrogen concentrations (2-3% DM) and leaf nitrate reductase activity (NRA) (0.2-1 micromol NO2- g(-1) FW h(-1)). There is little evidence that nitrogen is a limiting resource as all perennial plants exhibited fast rates of growth. The extremely dry soil conditions preclude all but minor contributions of soil N to total plant N so that groundwater is suggested as the dominant source of N with concentrations of 100 microM NO3-. Flood irrigation had little beneficial effect on nitrogen metabolism and growth, further confirming the dependence on groundwater. Nitrogen fixation was determined by the 15N natural abundance method and was a significant component of the N-requirement of the legume Alhagi, the average contribution of biologically fixed nitrogen in Alhagi was 54.8%. But nitrogen fixing plants had little ecological advantage owing to the more or less constant supply of N available from groundwater. From our data we conclude that the perennial species investigated have adapted to the environmental conditions through

  12. Fractionation of Nitrogen Isotopes by Plants with Different Types of Mycorrhiza in Mountain Tundra Ecosystems

    NASA Astrophysics Data System (ADS)

    Buzin, Igor; Makarov, Mikhail; Maslov, Mikhail; Tiunov, Alexei

    2017-04-01

    We studied nitrogen concentration and nitrogen isotope composition in plants from four mountain tundra ecosystems in the Khibiny Mountains. The ecosystems consisted of a toposequence beginning with the shrub-lichen heath (SLH) on the ridge and upper slope, followed by the Betula nana dominated shrub heath (SH) on the middle slope, the cereal meadow (CM) on the lower slope and the sedge meadow (SM) at the bottom of the slope. The inorganic nitrogen concentration of the soils from the studied ecosystems were significantly different; the SLH soil was found to contain the minimum concentration of N-NH4+ and N-NO3- , while in the soils of the meadow ecosystems these concentrations were much higher. The concentration of nitrogen in leaves of the dominant plant species in all of the ecosystems is directly connected with the concentration of inorganic nitrogen in the soils, regardless of the plant's mycorrhizal symbiosis type. However, such a correlation is not apparent in the case of plant roots, especially for plant roots with ectomycorrhiza and ericoid mycorrhiza. The majority of plant species with these types of mycorrhiza in the SH and particularly in the CM were enriched in 15N in comparison with the SLH (such plants were not found within the SM). This could be due to several reasons: 1) the decreasing role of mycorrhiza in nitrogen consumption and therefore in the fractionation of isotopes in the relatively-N-enriched ecosystems; 2) the use of relatively-15N-enriched forms of nitrogen for plant nutrition in meadow ecosystems. This heavier nitrogen isotope composition in plant roots with ectomycorrhiza and ericoid mycorrhiza in ecosystems with available nitrogen enriched soils doesn't correspond to the classical idea of mycorrhiza decreasing participation in nitrogen plant nutrition. The analysis of the isotope composition of separate labile forms of nitrogen makes it possible to explain the phenomenon. Not all arbuscular mycorrhizal species within the sedge meadow

  13. Effect of allelopathic rice varieties combined with cultural management options on paddy field weeds.

    PubMed

    Kong, Chui-Hua; Hu, Fei; Wang, Peng; Wu, Jing-Lun

    2008-03-01

    A number of techniques, including cultural management, allelopathy and bioherbicide, have been considered as alternatives for synthetic herbicides, but successful weed control will require the careful integration of these multiple techniques. This study was conducted to assess the use of allelopathic rice varieties in combination with cultural management options on paddy weeds, in order to develop an allelopathy-based technique to reduce herbicide use in paddies. The weed-suppressive effects of the rice varieties tested varied highly with allelopathic trait, planting pattern and cultural management including planting density, flooding depth and duration and supply of nitrogen. Allelopathic rice varieties PI312777 and Huagan-1 demonstrated much stronger weed suppression than the non-allelopathic variety Huajianxian under the same planting pattern and cultural management. Their weed-suppressive effect was increased with cultural management options. In particular, if integrated cultural management options of allelopathic rice varieties included a low-dose (bensulfuron-methyl, 25 g AI ha(-1), a third of the recommended dose) herbicide application, the emergence and growth of most weeds found in paddy fields was completely controlled. No grain yield reduction for allelopathic varieties occurred under integrated cultural management options, whereas with the non-allelopathic variety a reduction of up to 45-60% was measurable even with the low-dose herbicide application. The allelopathic potential of rice varieties will likely have a great impact on paddy weed control if integrated with cultural management options and application of low doses of herbicides. Therefore, it is feasible to reduce herbicide input in paddies if allelopathic rice is grown under integrated cultural management practices. (c) 2008 Society of Chemical Industry.

  14. Interrelated responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply.

    PubMed

    Larbat, R; Adamowicz, S; Robin, C; Han, P; Desneux, N; Le Bot, J

    2016-05-01

    Plant-insect interactions are strongly modified by environmental factors. This study evaluates the influence of nitrogen fertilisation on the tomato (Solanum lycopersicum L.) cv. Santa clara and the leafminer (Tuta absoluta (Meyrick), Lepidoptera: Gelechiidae). Greenhouse-grown tomato plants were fed hydroponically on a complete nutrient solution containing either a high nitrogen concentration (HN) sustaining maximum growth or a low nitrogen concentration (LN) limiting plant growth. Insect-free plants were compared with plants attacked by T. absoluta. Seven and 14 days after artificial oviposition leading to efficacious hatching and larvae development, we measured total carbon, nitrogen and soluble protein as well as defence compounds (phenolics, glycoalkaloids, polyphenol oxidase activity) in the HN versus LN plants. Only in the HN treatment did T. absoluta infestation slightly impair leaf growth and induce polyphenol oxidase (PPO) activity in the foliage. Neither the concentration of phenolic compounds and proteins nor the distribution of nitrogen within the plant was affected by T. absoluta infestation. In contrast, LN nutrition impaired T. absoluta-induced PPO activity. It decreased protein and total nitrogen concentration of plant organs and enhanced the accumulation of constitutive phenolics and tomatine. Moreover, LN nutrition impaired T. absoluta development by notably decreasing pupal weight and lengthening the development period from egg to adult. Adjusting the level of nitrogen nutrition may thus be a means of altering the life cycle of T. absoluta. This study provides a comprehensive dataset concerning interrelated responses of tomato plants and T. absoluta to nitrogen nutrition. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants.

    PubMed

    Yang, Zhifan; Zhang, Futie; He, Qing; He, Guangcun

    2005-06-01

    To investigate the molecular response of brown planthopper, Nilaparvata lugens (BPH) to BPH-resistant rice plants, we isolated cDNA fragments of the genes encoding for carboxylesterase (CAR), trypsin (TRY), cytochrome P450 monooxygenase (P450), NADH-quinone oxidoreductase (NQO), acetylcholinesterase (ACE), and Glutathione S-transferase (GST). Expression profiles of the genes were monitored on fourth instar nymphs feeding on rice varieties with different resistance levels. Northern blot hybridization showed that, compared with BPH reared on susceptible rice TN1, expression of the genes for P450 and CAR was apparently up-regulated and TRY mRNA decreased in BPH feeding on a highly resistant rice line B5 and a moderately resistant rice variety MH63, respectively. Two transcripts of GST increased in BPH feeding on B5; but in BPH feeding on MH63, this gene was inducible and its expression reached a maximum level at 24 h, and then decreased slightly. The expression of NQO gene was enhanced in BPH on B5 plants but showed a constant expression in BPH on MH63 plants. No difference in ACE gene expression among BPH on different rice plants was detected by the RT-PCR method. The results suggest these genes may play important roles in the defense response of BPH to resistant rice.

  16. Rice Domestication Revealed by Reduced Shattering of Archaeological rice from the Lower Yangtze valley

    NASA Astrophysics Data System (ADS)

    Zheng, Yunfei; Crawford, Gary W.; Jiang, Leping; Chen, Xugao

    2016-06-01

    Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000-7700 BP), Tianluoshan (7000-6500 BP), Majiabang (6300-6000 BP), and Liangzhu (5300-4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice.

  17. Preferential Association of Endophytic Bradyrhizobia with Different Rice Cultivars and Its Implications for Rice Endophyte Evolution

    PubMed Central

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Okubo, Takashi; Shinoda, Ryo; Nuntakij, Achara; Tittabutr, Panlada; Boonkerd, Nantakorn

    2015-01-01

    Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions. PMID:25710371

  18. Efficient Generation of Marker-Free Transgenic Rice Plants Using an Improved Transposon-Mediated Transgene Reintegration Strategy1

    PubMed Central

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551

  19. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    PubMed Central

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  20. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    PubMed

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  1. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice.

    PubMed

    Qin, Xue; Liu, Jun Hua; Zhao, Wen Sheng; Chen, Xu Jun; Guo, Ze Jian; Peng, You Liang

    2013-02-01

    Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA(1) and GA(4) were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA(3) and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.

  2. The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.).

    PubMed

    Xu, Xiaohang; Meng, Bo; Zhang, Chao; Feng, Xinbin; Gu, Chunhao; Guo, Jianyang; Bishop, Kevin; Xu, Zhidong; Zhang, Sensen; Qiu, Guangle

    2017-04-01

    Emission from coal-fired power plants is one of the major anthropogenic sources of mercury (Hg) in the environment, because emitted Hg can be quickly deposited nearby the source, attention is paid to the effects of coal-burning facilities on levels of toxic methyl-mercury (MeHg) in biota near such sources. Since rice is an agricultural crop that can bio-accumulate MeHg, the potential effects of a large Hg-emitting coal-fired power plant in Hunan Province, China on both inorganic Hg (Hg(II)) and MeHg distributions in rice was investigated. Relatively high MeHg (up to 3.8 μg kg -1 ) and Hg(II) (up to 22 μg kg -1 ) concentrations were observed in rice samples collected adjacent to the plant, suggesting a potential impact of Hg emission from the coal fired power plant on the accumulation of Hg in rice in the area. Concentrations of MeHg in rice were positively correlated with soil MeHg, soil S, and gaseous elemental Hg (GEM) in ambient air. Soil MeHg was the most important factor controlling MeHg concentrations in rice. The methylation of Hg in soils may be controlled by factors such as the chemical speciation of inorganic Hg, soil S, and ambient GEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.

    PubMed

    Yang, Junxing; Liu, Zhiyan; Wan, Xiaoming; Zheng, Guodi; Yang, Jun; Zhang, Hanzhi; Guo, Lin; Wang, Xuedong; Zhou, Xiaoyong; Guo, Qingjun; Xu, Ruixiang; Zhou, Guangdong; Peters, Marc; Zhu, Guangxu; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Human activities have resulted in lead and sulfur accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of S supply on iron plaque formation and Pb accumulation in rice (Oryza sativa L.) under two Pb levels (0 and 600 mg kg(-1)), combined with four S concentrations (0, 30, 60, and 120 mg kg(-1)). Results showed that S supply significantly decreased Pb accumulation in straw and grains of rice. This result may be attributed to the enhancement of Fe plaque formation, decrease of Pb availability in soil, and increase of reduced glutathione (GSH) in rice leaves. Moderate S supply (30 mg kg(-1)) significantly increased Fe plaque formation on the root surface and in the rhizosphere, whereas excessive S supply (60 and 120 mg kg(-1)) significantly decreased the amounts of iron plaque on the root surface. Sulfur supply significantly enhanced the GSH contents in leaves of rice plants under Pb treatment. With excessive S application, the rice root acted as a more effective barrier to Pb accumulation compared with iron plaque. Excessive S supply may result in a higher monosulfide toxicity and decreased iron plaque formation on the root surface during flooded conditions. However, excessive S supply could effectively decrease Pb availability in soils and reduce Pb accumulation in rice plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Impact of production practices on physicochemical properties of rice grain quality.

    PubMed

    Bryant, Rolfe J; Anders, Merle; McClung, Anna

    2012-02-01

    Rice growers are interested in new technologies that can reduce input costs while maintaining high field yields and grain quality. The bed-and-furrow (BF) water management system benefits farmers through decreased water usage, labor, and fuel as compared to standard flood management. Fertilizer inputs can be reduced by producing rice in rotation with soybeans, a nitrogen-fixing crop, and with the use of slow-release fertilizers that reduce nitrogen volatilization and run-off. However, the influence of these cultural management practices on rice physicochemical properties is unknown. Our objective was to evaluate the influence of nitrogen fertilizer source, water management system, and crop rotation on rice grain quality. Grain protein concentration was lower in a continuous rice production system than in a rice-soybean rotation. Neither amylose content nor gelatinization temperature was altered by fertilizer source, crop rotation, or water management. BF water management decreased peak and breakdown viscosities relative to a flooded system. Peak and final paste viscosities were decreased by all fertilizer sources, whereas, crop rotation had no influence on the Rapid Visco Analyser profile. Sustainable production systems that decrease water use and utilize crop rotations and slow-release fertilizers have no major impact on rice physicochemical properties. Published 2011 by John Wiley & Sons, Ltd.

  5. Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field.

    PubMed

    Garnier, J; Garnier, J-M; Vieira, C L; Akerman, A; Chmeleff, J; Ruiz, R I; Poitrasson, F

    2017-01-01

    The iron isotope composition was used to investigate dissimilatory iron reduction (DIR) processes in an iron-rich waterlogged paddy soil, the iron uptake strategies of plants and its translocation in the different parts of the rice plant along its growth. Fe concentration and isotope composition (δ 56 Fe) in irrigation water, precipitates from irrigation water, soil, pore water solution at different depths under the surface water, iron plaque on rice roots, rice roots, stems, leaves and grains were measured. Over the 8.5-10cm of the vertical profiles investigated, the iron pore water concentration (0.01 to 24.3mg·l -1 ) and δ 56 Fe (-0.80 to -3.40‰) varied over a large range. The significant linear co-variation between Ln[Fe] and δ 56 Fe suggests an apparent Rayleigh-type behavior of the DIR processes. An average net fractionation factor between the pore water and the soil substrate of Δ 56 Fe≈-1.15‰ was obtained, taking the average of all the δ 56 Fe values weighted by the amount of Fe for each sample. These results provide a robust field study confirmation of the conceptual model of Crosby et al. (2005, 2007) for interpreting the iron isotope fractionation observed during DIR, established from a series of laboratories experiments. In addition, the strong enrichment of heavy Fe isotope measured in the root relative to the soil solution suggest that the iron uptake by roots is more likely supplied by iron from plaque and not from the plant-available iron in the pore water. Opposite to what was previously observed for plants following strategy II for iron uptake from soils, an iron isotope fractionation factor of -0.9‰ was found from the roots to the rice grains, pointing to isotope fractionation during rice plant growth. All these features highlight the insights iron isotope composition provides into the biogeochemical Fe cycling in the soil-water-rice plant systems studied in nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere.

    PubMed

    Venkatachalam, S; Ranjan, K; Prasanna, R; Ramakrishnan, B; Thapa, S; Kanchan, A

    2016-07-01

    The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Xia, Kuaifei; Liang, Zhen; Chen, Kunling; Gao, Caixia; Zhang, Mingyong

    2016-08-01

    Rice tillering has an important influence on grain yield, and is promoted by nitrogen (N) fertilizer. Several genes controlling rice tillering, which are regulated by poor N supply, have been identified. However, the molecular mechanism associated with the regulation of tillering based on N supply is poorly understood. Here, we report that rice microRNA393 (OsmiR393) is involved in N-mediated tillering by decreasing auxin signal sensitivity in axillary buds. Expression analysis showed that N fertilizer causes up-regulation of OsmiR393, but down-regulation of two target genes (OsAFB2 and OsTB1). In situ expression analysis showed that OsmiR393 is highly expressed in the lateral axillary meristem. OsmiR393 overexpression mimicked N-mediated tillering in wild type Zhonghua 11 (ZH11). Mutation of OsMIR393 in ZH11 repressed N-promoted tillering, which simulated the effects of limited N, and this could not be restored by supplying N fertilizer. Western blot analysis showed that OsIAA6 was accumulated in both OsmiR393-overexpressing lines and N-treated wild type rice, but was reduced in the OsMIR393 mutant. Therefore, we deduced that N-induced OsmiR393 accumulation reduces the expression of OsTIR1 and OsAFB2, which alleviates sensitivity to auxin in the axillary buds and stabilizes OsIAA6, thereby promoting rice tillering.

  8. Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wu, Zhen; Dong, Yubing; Zhou, Ziqiang; Xiong, Zhengqin

    2016-12-01

    The CH4 emissions from soil were influenced by the changeable CH4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH4 production sites during the rice-growing seasons. This layer acted as the source of CH4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha-1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH4 concentrations and diffusive effluxes induced by N in paddy fields.

  9. Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system.

    PubMed

    Xu, Xin; Wu, Zhen; Dong, Yubing; Zhou, Ziqiang; Xiong, Zhengqin

    2016-12-08

    The CH 4 emissions from soil were influenced by the changeable CH 4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH 4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH 4 production sites during the rice-growing seasons. This layer acted as the source of CH 4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH 4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH 4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha -1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH 4 concentrations and diffusive effluxes induced by N in paddy fields.

  10. Growth promotion in plants by rice necrosis mosaic virus.

    PubMed

    Ghosh, S K

    1982-08-01

    Ludwigia perennis L. infected with rice necrosis mosaic virus (RNMV) showed an increase in both shoot growth and leaf size, along with characteristic chlorotic lesions on leaves. The promotion of growth over the controls extended over a considerable period of time (70 d). Inoculation with RNMV resulted in increased plant height, leaf size, stem diameter, and number and size of fiber bundles in Corchorus olitorius L., C. capsularis L., Hibiscus sabdariffa L. and H. cannabinus L.

  11. Simulation of Soil-Plant Nitrogen Interactions for Educational Purposes.

    ERIC Educational Resources Information Center

    Huck, M. G.; Hoeft, R. G.

    1994-01-01

    Describes a computer model characterizing the balance of soil-plant Nitrogen that allows students to see the likely consequences of different biological and weather-related parameters. Proposes three uses for the model: (1) orienting beginning students to understand the soil Nitrogen cycle; (2) providing information for advanced students; and (3)…

  12. Expression of the nifH Gene of a Herbaspirillum Endophyte in Wild Rice Species: Daily Rhythm during the Light-Dark Cycle

    PubMed Central

    You, Mu; Nishiguchi, Tomohiro; Saito, Asami; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2005-01-01

    The expression of nitrogenase genes of Herbaspirillum sp. B501 associated in shoot (leaf and stem) of wild rice, Oryza officinalis, was studied by means of reverse transcription-PCR (RT-PCR) targeted at the nifH gene. RT-PCR analyses indicate that nifH transcript was detected exclusively from nitrogen-fixing cells of gfp-tagged strain B501gfp1 in both free-living and endophytic states by using a constitutive gfp gene transcript as a positive control. Transcription of nifH and nitrogen fixation in free-living cells were induced maximally at a 2% O2 concentration and repressed in free air (21% O2). nifH transcription was monitored in the endophytic cells by using total RNA extracted from B501gfp1-inoculated wild rice plants during daily light-dark cycles. The level of nifH transcription in planta varied dramatically, with a maximum during the light period. Moreover, the light radiation enhanced nifH expression even in free-living cells grown in culture. These results suggest that in planta nitrogen fixation by the endophyte shows a daily rhythm determined by the plant's light environment. PMID:16332801

  13. The nitrogen isotopic composition in soils and plants: Its use in environmental studies (A Review)

    NASA Astrophysics Data System (ADS)

    Makarov, M. I.

    2009-12-01

    The results of studying the isotopic composition of the nitrogen in soils and plants and its use for characterizing the nitrogen cycle in ecosystems, the transformation of nitrogen compounds in soils, the sources of nitrogen nutrition for plants, and the assessment of the symbiotic nitrogen fixation’s contribution to the nitrogen budget of ecosystems were considered for a wide variety of natural and agricultural ecosystems.

  14. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    NASA Astrophysics Data System (ADS)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  15. Elevated tropospheric ozone increased grain protein and amino acid content of a hybrid rice without manipulation by planting density.

    PubMed

    Zhou, Xiaodong; Zhou, Juan; Wang, Yunxia; Peng, Bin; Zhu, Jianguo; Yang, Lianxin; Wang, Yulong

    2015-01-01

    Rising tropospheric ozone affects crop yield and quality. Rice protein concentration, which is closely associated with eating/cooking quality, is of critical importance to nutritional quality. The ozone effect on amino acids of rice grains was little known, especially grown under different cultivation conditions. A hybrid rice cultivar Shanyou 63 was grown in 2010 and 2011 to investigate the interactive effect of ozone exposure and planting density on rice protein quality in a free-air ozone enrichment system. The content of protein, total amino acids (TAA), total essential (TEAA) and non-essential amino acids (TNEAA) in rice grain was increased by 12-14% with elevated ozone. A similar significant response to ozone was observed for concentrations of the seven essential and eight non-essential amino acids. In contrast, elevated ozone caused a small but significant decrease in percentage of TEAA to TAA. The year effect was significant for all measured traits; however, interactions of ozone with year or planting density were not detected. The study suggested that season-long elevation of ozone concentration to projected 2050 levels will increase protein and amino acids of Shanyou 63, and crop management such as changing planting density might not alter the impact. © 2014 Society of Chemical Industry.

  16. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis.

    PubMed

    Xiaochuang, Cao; Chu, Zhong; Lianfeng, Zhu; Junhua, Zhang; Hussain, Sajid; Lianghuan, Wu; Qianyu, Jin

    2017-03-01

    To investigate the response of rice growth and photosynthesis to different nitrogen (N) sources under cold stress, hydroponic cultivation of rice was done in greenhouse, with glycine, ammonium, and nitrate as the sole N sources. The results demonstrate that exposure to low temperature reduced the rice biomass and leaf chlorophyll content, but their values in the glycine-treated plants were significantly higher than in the ammonium- and nitrate-treated plants. This might be attributed to the higher N uptake rate and root area and activity in the glycine-treated plants. The glycine-treated plants also maintained high contents of soluble proteins, soluble sugars, and proline as well as enhanced antioxidant enzyme activities to protect themselves against chilling injury. Under cold stress, reduced stomatal conductance (g s ) and effective quantum efficiency of PSII (Φ PSII ) significantly inhibited the leaf photosynthesis; however, glycine treatment alleviated these effects compared to the ammonium and nitrate treatments. The high non-photochemical quenching (qN) and excess energy dissipative energy (E x ) in the glycine-treated plants were beneficial for the release of extra energy, thereby, strengthening their photochemical efficiency. We, therefore, conclude that the strengthened cold tolerance of glycine-treated rice plants was closely associated with the higher accumulation of dry matter and photosynthesis through the up-regulation of N-uptake, and increase in the content of osmoprotectants, activities of the antioxidant defense enzymes, and photochemical efficiency. The results of the present study provide new ideas for improving the plant tolerance to extreme temperatures by nutrient resource management in the cold regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study.

    PubMed

    Wang, Yi; Liu, Xinliang; Wang, Hua; Li, Yong; Li, Yuyuan; Liu, Feng; Xiao, Runlin; Shen, Jianlin; Wu, Jinshui

    2017-06-01

    Increased nitrogen (N) concentrations in water bodies have highlighted issues regarding nutrient pollution in agricultural catchments. In this study, the ammonium-N (NH 4 + -N), nitrate-N (NO 3 - -N), and total N (TN) concentrations were observed in the stream water and groundwater of two contrasting catchments (named Tuojia and Jianshan) in subtropical central China from 2010 to 2014, to determine the rice agriculture impacts on the hydrographic patterns, and N export characteristics of the catchments. The results suggested that greater amounts of stream flow (523.0 vs. 434.7 mm year -1 ) and base flow (237.6 vs. 142.8 mm year -1 ) were produced in Tuojia than in Jianshan, and a greater base flow contribution to stream flow and higher frequencies of high-base flow days were observed during the fallow season than during the rice-growing season, indicating that intensive rice agriculture strongly influences the catchment hydrographic pattern. Rice agriculture resulted in moderate N pollution in the stream water and groundwater, particularly in Tuojia. Primarily, rice agriculture increased the NH 4 + -N concentration in the stream water; however, it increased the NO 3 - -N concentrations in the groundwater, suggesting that the different N species in the paddy fields migrated out of the catchments through distinct hydrological pathways. The average TN loading via stream flow and base flow was greater in Tuojia than in Jianshan (1.72 and 0.58 vs. 0.72 and 0.15 kg N ha -1  month -1 , respectively). Greater TN loading via stream flow was observed during the fallow season in Tuojia and during the rice-growing season in Jianshan, and these different results were most likely a result of the higher base flow contribution to TN loading (33.5 vs. 21.3%) and greater base flow enrichment ratio (1.062 vs. 0.876) in Tuojia than in Jianshan. Therefore, the impact of rice agriculture on catchment eco-hydrological processes should be considered when performing water quality

  18. Effect of arbuscular mycorrhizal fungi (Glomus intraradices) on the oviposition of rice water weevil (Lissorhoptrus oryzophilus).

    PubMed

    Cosme, Marco; Stout, Michael J; Wurst, Susanne

    2011-10-01

    Root-feeding insects are important drivers in ecosystems, and links between aboveground oviposition preference and belowground larval performance have been suggested. The root-colonizing arbuscular mycorrhizal fungi (AMF) play a central role in plant nutrition and are known to change host quality for root-feeding insects. However, it is not known if and how AMF affect the aboveground oviposition of insects whose offspring feed on roots. According to the preference-performance hypothesis, insect herbivores oviposit on plants that will maximize offspring performance. In a greenhouse experiment with rice (Oryza sativa), we investigated the effects of AMF (Glomus intraradices) on aboveground oviposition of rice water weevil (Lissorhoptrus oryzophilus), the larvae of which feed belowground on the roots. Oviposition (i.e., the numbers of eggs laid by weevil females in leaf sheaths) was enhanced when the plants were colonized by AMF. However, the leaf area consumed by adult weevils was not affected. Although AMF reduced plant biomass, it increased nitrogen (N) and phosphorus concentrations in leaves and N in roots. The results suggest that rice water weevil females are able to discriminate plants for oviposition depending on their mycorrhizal status. The discrimination is probably related to AMF-mediated changes in plant quality, i.e., the females choose to oviposit more on plants with higher nutrient concentrations to potentially optimize offspring performance. AMF-mediated change in plant host choice for chewing insect oviposition is a novel aspect of below- and aboveground interactions. © Springer-Verlag 2011

  19. Interactive Effects of Southern Rice Black-Streaked Dwarf Virus Infection of Host Plant and Vector on Performance of the Vector, Sogatella furcifera (Homoptera: Delphacidae).

    PubMed

    Lei, Wenbin; Liu, Danfeng; Li, Pei; Hou, Maolin

    2014-10-01

    Performance of insect vectors can be influenced by the viruses they transmit, either directly by infection of the vectors or indirectly via infection of the host plants. Southern rice black-streaked dwarf virus (SRBSDV) is a propagative virus transmitted by the white-backed planthopper, Sogatella furcifera (Hovath). To elucidate the influence of SRBSDV on the performance of white-backed planthopper, life parameters of viruliferous and nonviruliferous white-backed planthopper fed rice seedlings infected or noninfected with SRBSDV were measured using a factorial design. Regardless of the infection status of the rice plant host, viruliferous white-backed planthopper nymphs took longer to develop from nymph to adult than did nonviruliferous nymphs. Viruliferous white-backed planthopper females deposited fewer eggs than nonviruliferous females and both viruliferous and nonviruliferous white-backed planthopper females laid fewer eggs on infected than on noninfected plants. Longevity of white-backed planthopper females was also affected by the infection status of the rice plant and white-backed planthopper. Nonviruliferous white-backed planthopper females that fed on infected rice plants lived longer than the other three treatment groups. These results indicate that the performance of white-backed planthopper is affected by SRBSDV either directly (by infection of white-backed planthopper) or indirectly (by infection of rice plant). The extended development of viruliferous nymphs and the prolonged life span of nonviruliferous adults on infected plants may increase their likelihood of transmitting virus, which would increase virus spread. © 2014 Entomological Society of America.

  20. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Treesearch

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  1. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants.

    PubMed

    Islam, Md Rashedul; Madhaiyan, M; Deka Boruah, Hari P; Yim, Woojong; Lee, Gillseung; Saravanan, V S; Fu, Qingling; Hu, Hongqing; Sa, Tongmin

    2009-10-01

    The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1- aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia (NH3). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

  2. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    PubMed

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  3. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert

    USGS Publications Warehouse

    Brooks, Matthew L.

    2003-01-01

    1. Deserts are one of the least invaded ecosystems by plants, possibly due to naturally low levels of soil nitrogen. Increased levels of soil nitrogen caused by atmospheric nitrogen deposition may increase the dominance of invasive alien plants and decrease the diversity of plant communities in desert regions, as it has in other ecosystems. Deserts should be particularly susceptible to even small increases in soil nitrogen levels because the ratio of increased nitrogen to plant biomass is higher compared with most other ecosystems.2. The hypothesis that increased soil nitrogen will lead to increased dominance by alien plants and decreased plant species diversity was tested in field experiments using nitrogen additions at three sites in the in the Mojave Desert of western North America.3. Responses of alien and native annual plants to soil nitrogen additions were measured in terms of density, biomass and species richness. Effects of nitrogen additions were evaluated during 2 years of contrasting rainfall and annual plant productivity. The rate of nitrogen addition was similar to published rates of atmospheric nitrogen deposition in urban areas adjacent to the Mojave Desert (3·2 g N m−2 year−1). The dominant alien species included the grasses Bromus madritensis ssp. rubens and Schismus spp. (S. arabicus and S. barbatus) and the forb Erodium cicutarium.4. Soil nitrogen addition increased the density and biomass of alien annual plants during both years, but decreased density, biomass and species richness of native species only during the year of highest annual plant productivity. The negative response of natives may have been due to increased competitive stress for soil water and other nutrients caused by the increased productivity of aliens.5. The effects of nitrogen additions were significant at both ends of a natural nutrient gradient, beneath creosote bush Larrea tridentata canopies and in the interspaces between them, although responses varied among

  4. Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change

    PubMed Central

    Redman, Regina S.; Kim, Yong Ok; Woodward, Claire J. D. A.; Greer, Chris; Espino, Luis; Doty, Sharon L.; Rodriguez, Rusty J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands. PMID:21750695

  5. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    USGS Publications Warehouse

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  6. Global impact of accelerated plant breeding: Evidence from a meta-analysis on rice breeding.

    PubMed

    Lenaerts, Bert; de Mey, Yann; Demont, Matty

    2018-01-01

    Rice breeders in Asia and elsewhere in the world have long overlooked trying to shorten the time it takes to develop new varieties. Plant breeders have proposed a technique called Rapid Generation Advance (RGA) as a way to accelerate the results of public rice breeding programs. However, little is known about RGA's potential impact. Here, we present the first results of a global impact study of RGA. More specifically, we calculated the multiplicator effects of RGA on the research benefits generated by conventional rice breeding programs and applied them to a meta-analysis of selected impact studies in the literature. These insights are a first crucial step in developing a targeted approach for disseminating RGA technology among rice breeders to accelerate the impact of their public rice breeding programs around the world. We show that the additional benefits due to time savings are considerable and offer some insights into the economics of breeding. Our results confirm that the adoption of accelerated breeding would lead to substantial advantages to rice breeding programs and the earlier variety release leads to significant economic benefits to society. This can be important to policy makers when reshaping their public breeding methods and optimising their return on research investments in breeding.

  7. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves

    PubMed Central

    Adachi, Shunsuke; Tsuru, Yukiko; Nito, Naoko; Murata, Kazumasa; Yamamoto, Toshio; Ebitani, Takeshi; Ookawa, Taiichiro; Hirasawa, Tadashi

    2011-01-01

    DNA marker-assisted selection appears to be a promising strategy for improving rates of leaf photosynthesis in rice. The rate of leaf photosynthesis was significantly higher in a high-yielding indica variety, Habataki, than in the most popular Japanese variety, Koshihikari, at the full heading stage as a result of the higher level of leaf nitrogen at the same rate of application of nitrogen and the higher stomatal conductance even when the respective levels of leaf nitrogen were the same. The higher leaf nitrogen content of Habataki was caused by the greater accumulation of nitrogen by plants. The higher stomatal conductance of Habataki was caused by the higher hydraulic conductance. Using progeny populations and selected lines derived from a cross between Koshihikari and Habataki, it was possible to identify the genomic regions responsible for the rate of photosynthesis within a 2.1 Mb region between RM17459 and RM17552 and within a 1.2 Mb region between RM6999 and RM22529 on the long arm of chromosome 4 and on the short arm of chromosome 8, respectively. The designated region on chromosome 4 of Habataki was responsible for both the increase in the nitrogen content of leaves and hydraulic conductance in the plant by increasing the root surface area. The designated region on chromosome 8 of Habataki was responsible for the increase in hydraulic conductance by increasing the root hydraulic conductivity. The results suggest that it may be possible to improve photosynthesis in rice leaves by marker-assisted selection that focuses on these regions of chromosomes 4 and 8. PMID:21296764

  8. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  9. Effect of carbon nanomaterials on the germination and growth of rice plants.

    PubMed

    Nair, Remya; Mohamed, M Sheikh; Gao, Wei; Maekawa, Toru; Yoshida, Yasuhiko; Ajayan, Pulickel M; Kumar, D Sakthi

    2012-03-01

    For the successful diverse applications of different nanomaterials in life sciences, it is necessary to understand the ultimate fate, distribution and potential environmental impacts of manufactured nanomaterials. Phytotoxicity studies using higher plants is an important criterion for understanding the toxicity of engineered nanomaterials. We studied the effects of engineered carbon nanomaterials of various dimensionalities (carbon nanotubes, C60, graphene) on the germination of rice seeds. A pronounced increase in the rate of germination was observed for rice seeds in the presence of some of these carbon nanostructures, in particular the nanotubes. Increased water content was observed in the carbon nanomaterial treated seeds during germination compared to controls. The germinated seeds were then grown in a basal growth medium supplemented with carbon nanomaterials for studying their impact on further seedling growth. Treated seedlings appeared to be healthier with well-developed root and shoot systems compared to control seedlings. Our results indicate the possible use for carbon nanomaterials as enhancers in the growth of rice seedlings.

  10. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  11. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  12. Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage.

    PubMed

    Huang, Xuexia; Li, Ning; Wu, Qihang; Long, Jianyou; Luo, Dinggui; Zhang, Ping; Yao, Yan; Huang, Xiaowu; Li, Dongmei; Lu, Yayin; Liang, Jianfeng

    2016-12-01

    The objective of this paper is to assess the influence of irritating paddy fields with acid mine drainage containing thallium (Tl) to rice plant-soil system and potential health risks for local residents. Vertical distribution of Tl, pH, organic matter (OM), and cation exchange capacity (CEC) in 24 paddy soil profiles around Yunfu pyrite mine area was investigated. Rice plant samples were collected from the corresponding soil sampling site. The results showed that Tl concentrations in paddy soils at 0-60 cm depth range from 3.07 to 9.42 mg kg -1 , with a mean of 5.74 mg kg -1 , which were significantly higher than the background value of soil in China (0.58 mg kg -1 ). On the whole, Tl contents in paddy soil profiles increased quickly with soil depth from 0 to 30 cm and decreased slowly with soil depth from 30 to 60 cm. The soil Tl content was significant negatively correlated with soil pH. The mean content of Tl in the root, stem, leaf, and rice was 4.36, 1.83, 2.74, and 1.42 mg kg -1 , respectively, which exceeded the proposed permissible limits for foods and feedstuffs in Germany. The Tl content in various tissues of the rice plants followed the order root > leaf > stem (rice), which suggested that most Tl taken up by rice plants retained in the root, and a little migrated to the leaf, stem, and rice. Correlation analysis showed that Tl content in root was significant positively correlated with Tl content in leaf and rice. The ranges of hazard quotient (HQ) values were 4.08∼24.50 and 3.84∼22.38 for males and females, respectively. Males have higher health risk than females in the same age group. In childhood age groups (2 to <21 years) and adult age groups (21 to <70 years), the highest health risk level was observed in the 11 to 16 age group and 21 to 50 age group, respectively. The findings indicated that regular irrigation with Tl-bearing acid mine drainage led to considerable contamination of Tl in paddy soil and rice plant. Local government

  13. Organic nitrogen components in soils from southeast China*

    PubMed Central

    Chen, Xian-you; Wu, Liang-huan; Cao, Xiao-chuang; Zhu, Yuan-hong

    2013-01-01

    Objective: To investigate the amounts of extractable organic nitrogen (EON), and the relationships between EON and total extractable nitrogen (TEN), especially the amino acids (AAs) adsorbed by soils, and a series of other hydrolyzed soil nitrogen indices in typical land use soil types from southeast China. Under traditional agricultural planting conditions, the functions of EON, especially AAs in the rhizosphere and in bulk soil zones were also investigated. Methods: Pot experiments were conducted using plants of pakchoi (Brassica chinensis L.) and rice (Oryza sativa L.). In the rhizosphere and bulk soil zone studies, organic nitrogen components were extracted with either distilled water, 0.5 mol/L K2SO4 or acid hydrolysis. Results: K2SO4-EON constituted more than 30% of TEN pools. K2SO4-extractable AAs accounted for 25% of EON pools and nearly 10% of TEN pools in rhizosphere soils. Overall, both K2SO4-EON and extractable AAs contents had positive correlations with TEN pools. Conclusions: EON represented a major component of TEN pools in garden and paddy soils under traditional planting conditions. Although only a small proportion of the EON was present in the form of water-extractable and K2SO4-extractable AAs, the release of AAs from soil exchangeable sites might be an important source of organic nitrogen (N) for plant growth. Our findings suggest that the content of most organic forms of N was significantly greater in rhizosphere than in bulk soil zone samples. However, it was also apparent that the TEN pool content was lower in rhizosphere than in bulk soil samples without added N. PMID:23549843

  14. A salivary sheath protein essential for the interaction of the brown planthopper with rice plants.

    PubMed

    Huang, Hai-Jian; Liu, Cheng-Wen; Cai, Ye-Fang; Zhang, Min-Zhu; Bao, Yan-Yuan; Zhang, Chuan-Xi

    2015-11-01

    Salivary secretions, including gel saliva and watery saliva, play crucial roles in the interaction between the insect and plant during feeding. In this study, we identified a salivary gland-specific gene encoding a salivary sheath protein (NlShp) in Nilaparvata lugens. NlShp has two alternative splicing variants; both are expressed at high levels during the nymph and adult stages. Immunohistochemical staining showed that the NlShp were synthesized in the principal gland cells of the salivary gland. LC-MS/MS and western blot analysis confirmed that NlShp was one of the components of the salivary sheath. Simultaneously knocking down the two NlShp variants by RNA interference inhibited both salivary flange and salivary sheath formation and resulted in a lethal phenotype within four days for the brown planthopper (BPH) feeding on rice plants, indicating that the salivary sheath and salivary flanges were essential for plant-associated feeding. Despite the salivary sheath deficiency, no obvious phenotype was observed in the NlShp-knockdown BPHs fed on artificial diet. The electrical penetration graph (EPG) results showed that salivary sheath-deficient BPHs exhibited a prolonged nonpenetration period, scarce sap period, and increased stylet movement on rice plants and eventually starved to death. Our results provided evidence that the interaction between the salivary sheath and host plant might be a critical step in successful BPH feeding. According to present research, we propose a salivary sheath required feeding model for piercing-sucking insects and provide a potential target for rice planthopper management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Economic Analysis of Planting Forests on Rice Lands in Texas: Sequestering Carbon and Avoiding Methane Production

    NASA Astrophysics Data System (ADS)

    Kronrad, G. D.; Huang, C.

    2005-12-01

    Global climate change is predicted due to increases in greenhouse gasses (i.e. CO2, CH4, CFCs, N2O, O3) in the atmosphere caused by human activities. The atmospheric concentration of methane (CH4), which absorbs and retains heat 21 times more effectively than CO2, has increased. Anaerobic bacterial activity in rice paddies constitutes one of major emission sources of CH4. The rice fields of Texas, for example, accounted for an annual CH4 emission of between 1.1 and 1.6 million tons of CO2 equivalent between 1990 and 2000. Converting marginal rice fields to forests plantations will remove CO2 from the atmosphere, sequester carbon in the forests and prevent the production of CH4. Therefore, carbon credits can be claimed for the carbon sequestered and the avoidance of CH4 production. Analyses were conducted to calculate the amount of carbon sequestered and methane avoided, and the profitability, measured in net present worth (NPW), of managing loblolly pine plantation for 1) timber production only, 2) the dual products of timber products and carbon credits in forests planted on marginal agricultural and unused pastureland and 3) the dual products of timber and carbon storage in forests planted on marginal rice lands. Calculations were performed using three discount rates, three site qualities and five prices for carbon credits. The results indicate that on average quality land, using a discount rate of 8 percent, forests planted on marginal agricultural and unused pastureland earn a NPW of 346 per acre from timber production only; a NPW of 438 per acre from timber and carbon credits (54.4 tons of carbon sequestered), assuming carbon is worth 10 per ton, during one rotation (32 years). The profitability of forest management increases due to the inclusion of carbon credits. The profitability of planting forests on marginal rice fields is even higher, earning a NPW of 566 per acre from timber and carbon credits (54.4 tons of C sequestered and 33.3 tons of C emission

  16. Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe.

    PubMed

    Wei, Hai-Wei; Lü, Xiao-Tao; Lü, Fu-Mei; Han, Xing-Guo

    2014-01-01

    Plant nitrogen (N) use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(-2) yr(-1)) and prescribed fire (annual burning) on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP), inorganic N, and N uptake, decreased N response efficiency (NRE), but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.

  17. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.

    PubMed

    Kant, Surya

    2018-02-01

    The majority of terrestrial plants use nitrate as their main source of nitrogen. Nitrate also acts as an important signalling molecule in vital physiological processes required for optimum plant growth and development. Improving nitrate uptake and transport, through activation by nitrate sensing, signalling and regulatory processes, would enhance plant growth, resulting in improved crop yields. The increased remobilisation of nitrate, and assimilated nitrogenous compounds, from source to sink tissues further ensures higher yields and quality. An updated knowledge of various transporters, genes, activators, and microRNAs, involved in nitrate uptake, transport, remobilisation, and nitrate-mediated root growth, is presented. An enhanced understanding of these components will allow for their orchestrated fine tuning in efforts to improving nitrogen use efficiency in plants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Synergistic Effects of Nitrogen and Potassium on Quantitative Limitations to Photosynthesis in Rice ( Oryza sativa L.).

    PubMed

    Hou, Wenfeng; Yan, Jinyao; Jákli, Bálint; Lu, Jianwei; Ren, Tao; Cong, Rihuan; Li, Xiaokun

    2018-05-23

    The inhibition of the net CO 2 assimilation ( A) during photosynthesis is one of the major physiological effects of both nitrogen (N) and potassium (K) deficiencies on rice growth. Whether the reduction in A arises from a limitation in either the diffusion and biochemical fixation of CO 2 or photochemical energy conversion is still debated in relation to N and K deficiencies. In this study, the gas exchange parameters of rice under different N and K levels were evaluated and limitations within the photosynthetic carbon capture process were quantified. A was increased by 17.3 and 12.1% for the supply of N and K, respectively. The suitable N/K ratio should be maintained from 1.42 to 1.50. The limitation results indicated that A is primarily limited by the biochemical process. The stomatal conductance ( L S ), mesophyll conductance ( L M ), and biochemical ( L B ) limitations were regulated by 26.6-79.9, 24.4-54.1, and 44.1-75.2%, respectively, with the N and K supply.

  19. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. © 2015 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  20. Biology and Management of the Mexican Rice Borer (Lepidoptera: Crambidae) in Rice in the United States

    PubMed Central

    Beuzelin, J. M.; Wilson, B. E.; VanWeelden, M. T.; Mészáros, A.; Way, M. O.; Stout, M. J.; Reagan, T. E.

    2016-01-01

    The Mexican rice borer, Eoreuma loftini (Dyar), is an invasive pest of rice, Oryza sativa L., in the Gulf Coast region of the United States. This pest also damages sugarcane, Saccharum spp. hybrids; corn, Zea mays L.; and sorghum, Sorghum bicolor (L.) Moench, and feeds on weedy noncrop grasses. Multiple aspects of integrated pest management including use of pheromone traps, manipulation of planting dates, harvest cutting height, stubble management, noncrop host management, soil fertility management, host plant resistance, use of insecticides, and biological control have been studied for Mexican rice borer management. However, the current management strategy in rice primarily relies on the use of chlorantraniliprole insecticide seed treatments. This profile addresses Mexican rice borer biology and management in rice in the United States. PMID:28670487

  1. Differential distribution of proteins expressed in companion cells in the sieve element-companion cell complex of rice plants.

    PubMed

    Fukuda, Akari; Fujimaki, Syu; Mori, Tomoko; Suzui, Nobuo; Ishiyama, Keiki; Hayakawa, Toshihiko; Yamaya, Tomoyuki; Fujiwara, Toru; Yoneyama, Tadakatsu; Hayashi, Hiroaki

    2005-11-01

    Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.

  2. [Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super japonica rice].

    PubMed

    Wei, Hai-Yan; Wang, Ya-Jiang; Meng, Tian-Yao; Ge, Meng-Jie; Zhang, Hong-Cheng; Dai, Qi-Gen; Huo, Zhong-Yang; Xu, Ke

    2014-02-01

    Five super japonica rice cultivars were grown by mechanical transplanting in field and seven N treatments with total N application rate of 0, 150, 187.5, 225, 262.5, 300 and 337.5 kg x hm(-2) respectively were adopted to study the effects of N rate on rice yield, quality and N use efficiency. The differences between N requirement for obtaining the highest yield and for achieving the best economic benefit were compared. With the increase of N fertilizer rate, the yields of five super japonica rice cultivars increased firstly and then descended, achieving the highest yield at the N level of 300 kg x hm(-2) ranging from 10.33-10.60 kg x hm(-2). Yield increase mainly attributed to the large number of spikelet, for the total spikelet number of each rice cultivar reached the maximum value at the 300 kg x hm(-2) N level. With the increase of N application, the rates of brown rice, milled rice, head milled rice and the protein content of the five super japonica rice cultivars were all increased, and the rates of brown rice, milled rice, head milled rice and the protein con- tent were higher at 337.5 kg x hm(-2) N level than at 0 kg x hm(-2) N level by 3.3%-4.2%, 2.9%-6.0%, 4.4%-33.7% and 23.8%-44.3%, respectively. While the amylose content, gel consistency and taste value of the five rice cultivars were all decreased, and the amylose content, gel consistency and taste value were lower at 337.5 kg x hm(-2) N level than at 0 kg x hm(-2) N level by 12.4%-38.9%, 10.3%-28.5% and 20.3%-29.7%, respectively. The chalkiness increased firstly and then decreased while the change of chalky rate varied with the cultivars. With the increase of N application, the N use efficiency, agronomic N use efficiency and physiological N use efficiency decreased while the N uptake of grain increased significantly. If the cost of N fertilizer was taken into account, the N fertilizer amount to obtain the optimal economic benefits would be 275.68 kg x hm(-2) with the corresponding yield of 9.97 t x hm

  3. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress.

    PubMed

    Nwugo, Chika C; Huerta, Alfredo J

    2011-02-04

    The best known silicon (Si)-accumulating plant, rice (Oryza sativa L.), stores most of its Si in leaves, but the importance of Si has been limited to a mechanical role. Our initial studies showed that Si-induced cadmium (Cd) tolerance is mediated by the enhancement of instantaneous water-use-efficiency, carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO), and light-use-efficiency in leaves of rice plants. In this study, we investigated changes in the rice leaf proteome in order to identify molecular mechanisms involved in Si-induced Cd tolerance. Our study identified 60 protein spots that were differentially regulated due to Cd and/or Si treatments. Among them, 50 were significantly regulated by Si, including proteins associated with photosynthesis, redox homeostasis, regulation/protein synthesis, pathogen response and chaperone activity. Interestingly, we observed a Si-induced up-regulation of a class III peroxidase and a thaumatin-like protein irrespective of Cd treatment, in addition to a Cd-induced up-regulation of protein disulfide isomerase, a HSP70 homologue, a NADH-ubiquinone oxidoreductase, and a putative phosphogluconate dehydrogenase, especially in the presence of Si. Taken together, our study sheds light on molecular mechanisms involved in Si-induced Cd tolerance in rice leaves and suggests a more active involvement of Si in plant physiological processes than previously proposed.

  4. Altered Expression of OsNLA1 Modulates Pi Accumulation in Rice (Oryza sativa L.) Plants

    PubMed Central

    Zhong, Sihui; Mahmood, Kashif; Bi, Yong-Mei; Rothstein, Steven J.; Ranathunge, Kosala

    2017-01-01

    Current agricultural practices rely on heavy use of fertilizers for increased crop productivity. However, the problems associated with heavy fertilizer use, such as high cost and environmental pollution, require the development of crop species with increased nutrient use efficiency. In this study, by using transgenic approaches, we have revealed the critical role of OsNLA1 in phosphate (Pi) accumulation of rice plants. When grown under sufficient Pi and nitrate levels, OsNLA1 knockdown (Osnla1-1, Osnla1-2, and Osnla1-3) lines accumulated higher Pi content in their shoot tissues compared to wild-type, whereas, over-expression lines (OsNLA1-OE1, OsNLA1-OE2, and OsNLA1-OE3) accumulated the least levels of Pi. However, under high Pi levels, knockdown lines accumulated much higher Pi content compared to wild-type and exhibited Pi toxicity symptoms in the leaves. In contrast, the over-expression lines had 50–60% of the Pi content of wild-type and did not show such symptoms. When grown under limiting nitrate levels, OsNLA1 transgenic lines also displayed a similar pattern in Pi accumulation and Pi toxicity symptoms compared to wild-type suggesting an existence of cross-talk between nitrogen (N) and phosphorous (P), which is regulated by OsNLA1. The greater Pi accumulation in knockdown lines was a result of enhanced Pi uptake/permeability of roots compared to the wild-type. The cross-talk between N and P was found to be nitrate specific since the knockdown lines failed to over-accumulate Pi under low (sub-optimal) ammonium level. Moreover, OsNLA1 was also found to interact with OsPHO2, a known regulator of Pi homeostasis, in a Yeast Two-Hybrid (Y2H) assay. Taken together, these results show that OsNLA1 is involved in Pi homeostasis regulating Pi uptake and accumulation in rice plants and may provide an opportunity to enhance P use efficiency by manipulating nitrate supply in the soil. PMID:28626465

  5. Effect of depth of flooding on the rice water weevil, Lissorhoptrus oryzophilus, and yield of rice.

    PubMed

    Tindall, Kelly V; Bernhardt, John L; Stout, Michael J; Beighley, Donn H

    2013-01-01

    The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0-20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus.

  6. Effect of Depth of Flooding on the Rice Water Weevil, Lissorhoptrus oryzophilus, and Yield of Rice

    PubMed Central

    Tindall, Kelly V.; Bernhardt, John L.; Stout, Michael J.; Beighley, Donn H.

    2013-01-01

    The rice water weevil, Lissorhoptrus oryzophilus (Kuschel) (Coleoptera: Curculionidae), is a semi-aquatic pest of rice and is the most destructive insect pest of rice in the United States. Adults oviposit after floods are established, and greenhouse studies have shown that plants exposed to deep floods have more eggs oviposited in leaf sheaths than plants exposed to a shallow flood. Experiments were conducted in three mid-southern states in the USA to determine if the depth of flooding would impact numbers of L. oryzophilus on rice plants under field conditions. Rice was flooded at depths of approximately 5 or 10 cm in Arkansas in 2007 and 2008 and Louisiana in 2008, and at depths between 0–20 cm in Missouri in 2008. Plants were sampled three and four weeks after floods were established in all locations, and also two weeks after flood in Missouri. On all sampling dates in four experiments over two years and at three field sites, fewer L. oryzophilus larvae were collected from rice in shallow-flooded plots than from deep-flooded plots. The number of L. oryzophilus was reduced by as much as 27% in shallow-flooded plots. However, the reduction in insect numbers did not translate to a significant increase in rice yield. We discuss how shallow floods could be used as a component of an integrated pest management program for L. oryzophilus. PMID:23906324

  7. γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings.

    PubMed

    Ma, Xiaoling; Zhu, Changhua; Yang, Na; Gan, Lijun; Xia, Kai

    2016-12-01

    Excessive use of nitrogen (N) fertilizer has increased ammonium (NH 4 + ) accumulation in many paddy soils to levels that reduce rice vegetative biomass and yield. Based on studies of NH 4 + toxicity in rice (Oryza sativa, Nanjing 44) seedlings cultured in agar medium, we found that NH 4 + concentrations above 0.75 mM inhibited the growth of rice and caused NH 4 + accumulation in both shoots and roots. Use of excessive NH 4 + also induced rhizosphere acidification and inhibited the absorption of K, Ca, Mg, Fe and Zn in rice seedlings. Under excessive NH 4 + conditions, exogenous γ-aminobutyric acid (GABA) treatment limited NH 4 + accumulation in rice seedlings, reduced NH 4 + toxicity symptoms and promoted plant growth. GABA addition also reduced rhizosphere acidification and alleviated the inhibition of Ca, Mg, Fe and Zn absorption caused by excessive NH 4 + . Furthermore, we found that the activity of glutamine synthetase/NADH-glutamate synthase (GS; EC 6.3.1.2/NADH-GOGAT; EC1.4.1.14) in root increased gradually as the NH 4 + concentration increased. However, when the concentration of NH 4 + is more than 3 mM, GABA treatment inhibited NH 4 + -induced increases in GS/NADH-GOGAT activity. The inhibition of ammonium assimilation may restore the elongation of seminal rice roots repressed by high NH 4 + . These results suggest that mitigation of ammonium accumulation and assimilation is essential for GABA-dependent alleviation of ammonium toxicity in rice seedlings. © 2016 Scandinavian Plant Physiology Society.

  8. Plant genetic transformation efficiency of selected Malaysian rice based on selectable marker gene (hptII).

    PubMed

    Htwe, Nwe Nwe; Ling, Ho Chai; Zaman, Faridah Qamaruz; Maziah, Mahmood

    2014-04-01

    Rice is one of the most important cereal crops with great potential for biotechnology progress. In transformation method, antibiotic resistance genes are routinely used as powerful markers for selecting transformed cells from surrounding non-transformed cells. In this study, the toxicity level of hygromycin was optimized for two selected mutant rice lines, MR219 line 4 and line 9. The mature embryos were isolated and cultured on an MS medium with different hygromycin concentrations (0, 20, 40, 60, 80 and 100 mg L(-1)). Evidently, above 60 mg L(-1) was effective for callus formation and observed completely dead. Further there were tested for specific concentration (0-60). Although, 21.28% calli survived on the medium containing 45 mg L(-1) hygromycin, it seemed suitable for the identification of putative transformants. These findings indicated that a system for rice transformation in a relatively high frequency and the transgenes are stably expressed in the transgenic plants. Green shoots were regenerated from the explant under hygromycin stress. RT-PCR using hptII and gus sequence specific primer and Southern blot analysis were used to confirm the presence of the transgene and to determine the transformation efficiency for their stable integration in regenerated plants. This study demonstrated that the hygromycin resistance can be used as an effective marker for rice transformation.

  9. Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress.

    PubMed

    Vaz, Janet; Sharma, Prabhat K

    2011-01-01

    Thirty days old rice plants grown under low and moderate light conditions were transferred to full sunlight to observe the extent of photoinhibitory damage and protective mechanism, and the relationship between xanthophyll cycle and nonphotochemical quenching (qN) under changing light environment. Control plants (low, moderate and sun grown) exhibited similar Fv/Fm ratio, indicating similar photosynthetic efficiency prior to light stress. On exposure to the high light treatment, low light grown plants exhibited faster and higher degree of photoinhibition compared to moderate and high light grown plants. Moderate and high light grown plants showed relatively less photoinhibition and also showed higher qN, indicating better capacity of energy dissipation. Increase in qN in moderate light and sun grown plants was accompanied by conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) indicating operation of Z-dependent thermal dissipation. Rice plants fed with ascorbate (AsA), a stimulator of the de-epoxidation state of V to Z, showed higher Fv/Fm ratio and qN than the plants fed with dithiothreitol (DTT) an inhibitor of xanthophyll cycle. This indicated that an increased amount of energy reached PS II reaction centre, due to absence of A and Z formation, thereby causing greater damage to photosynthesis in DTT fed rice plants. The present data confirmed the relationship between qN and Z in dissipating the excess light energy, thereby protecting plants against photodamage.

  10. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps.

    PubMed

    Pavlovič, Andrej; Krausko, Miroslav; Adamec, Lubomír

    2016-07-01

    Carnivorous plants have evolved in nutrient-poor wetland habitats. They capture arthropod prey, which is an additional source of plant growth limiting nutrients. One of them is nitrogen, which occurs in the form of chitin and proteins in prey carcasses. In this study, the nutritional value of chitin and protein and their digestion traits in the carnivorous sundew Drosera capensis L. were estimated using stable nitrogen isotope abundance. Plants fed on chitin derived 49% of the leaf nitrogen from chitin, while those fed on the protein bovine serum albumin (BSA) derived 70% of its leaf nitrogen from this. Moreover, leaf nitrogen content doubled in protein-fed in comparison to chitin-fed plants indicating that the proteins were digested more effectively in comparison to chitin and resulted in significantly higher chlorophyll contents. The surplus chlorophyll and absorbed nitrogen from the protein digestion were incorporated into photosynthetic proteins - the light harvesting antennae of photosystem II. The incorporation of insect nitrogen into the plant photosynthetic apparatus may explain the increased rate of photosynthesis and plant growth after feeding. This general response in many genera of carnivorous plants has been reported in many previous studies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Plant species richness enhances nitrogen retention in green roof plots.

    PubMed

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  12. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice

    PubMed Central

    Shinya, Tomonori; Hojo, Yuko; Desaki, Yoshitake; Christeller, John T.; Okada, Kazunori; Shibuya, Naoto; Galis, Ivan

    2016-01-01

    Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata’s OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature. PMID:27581373

  13. Dynamics of N-NH4 +, N-NO3 -, and total soil nitrogen in paddy field with azolla and biochar

    NASA Astrophysics Data System (ADS)

    Dewi, W. S.; Wahyuningsih, G. I.; Syamsiyah, J.; Mujiyo

    2018-03-01

    Nitrogen (N) is one of macronutrients which is dynamic in the soil and becomes constraint factor for rice crops. The addition of nitrogen fertilizers and its absorption in paddy field causes the dynamics of nitrogen, thus declines of N absorption efficiency. The aim of this research is to know influence Azolla, biochar and different varieties application on N-NH4 +, N-NO3 -, and total soil N in paddy field. This research was conducted in a screen house located in Jumantono Laboratory, Faculty of Agriculture, Universitas Sebelas Maret (UNS) with altitude 170 m asl from April to June 2016. Treatment factors that were examined consisted of azolla (0 and 10 tons/ha), biochar (0 and 2 tons/ha), and rice varieties (Cisadane, Memberamo, Ciherang, IR64). The results of this research showed that there was no interaction between azolla, biochar and varieties. Nevertheless, azolla treatment with dose of 10 tons/ha increased soil NH4 + content (41 days after planting, DAP) by 13.4% but tend to decrease at 70 and 90 DAP. Biochar treatment with dose of 2 ton/ha increases NO3 - soil content (70 DAP) by 1.7% but decreases total N soil by 5.8% (41 DAP) and 4.7% (90 DAP). Different rice varieties generated different soil NH4 + content (41 DAP) and rice root volume. Cisadane variety can increase soil NH4 + content (41 DAP) by 52.08% and root volume by 51.80% (90 DAP) compared with Ciherang variety. Organic rice field management with azolla and biochar affects the availability of N in the soil and increase N absorption efficiency through its role in increasing rice root volume.

  14. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation

    PubMed Central

    Masumoto, Chisato; Miyazawa, Shin-Ichi; Ohkawa, Hiroshi; Fukuda, Takuya; Taniguchi, Yojiro; Murayama, Seiji; Kusano, Miyako; Saito, Kazuki; Fukayama, Hiroshi; Miyao, Mitsue

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of primary metabolism in bacteria, algae, and vascular plants, and is believed to be cytosolic. Here we show that rice (Oryza sativa L.) has a plant-type PEPC, Osppc4, that is targeted to the chloroplast. Osppc4 was expressed in all organs tested and showed high expression in the leaves. Its expression in the leaves was confined to mesophyll cells, and Osppc4 accounted for approximately one-third of total PEPC protein in the leaf blade. Recombinant Osppc4 was active in the PEPC reaction, showing Vmax comparable to cytosolic isozymes. Knockdown of Osppc4 expression by the RNAi technique resulted in stunting at the vegetative stage, which was much more marked when rice plants were grown with ammonium than with nitrate as the nitrogen source. Comparison of leaf metabolomes of ammonium-grown plants suggested that the knockdown suppressed ammonium assimilation and subsequent amino acid synthesis by reducing levels of organic acids, which are carbon skeleton donors for these processes. We also identified the chloroplastic PEPC gene in other Oryza species, all of which are adapted to waterlogged soil where the major nitrogen source is ammonium. This suggests that, in addition to glycolysis, the genus Oryza has a unique route to provide organic acids for ammonium assimilation that involves a chloroplastic PEPC, and that this route is crucial for growth with ammonium. This work provides evidence for diversity of primary ammonium assimilation in the leaves of vascular plants. PMID:20194759

  15. funRiceGenes dataset for comprehensive understanding and application of rice functional genes.

    PubMed

    Yao, Wen; Li, Guangwei; Yu, Yiming; Ouyang, Yidan

    2018-01-01

    As a main staple food, rice is also a model plant for functional genomic studies of monocots. Decoding of every DNA element of the rice genome is essential for genetic improvement to address increasing food demands. The past 15 years have witnessed extraordinary advances in rice functional genomics. Systematic characterization and proper deposition of every rice gene are vital for both functional studies and crop genetic improvement. We built a comprehensive and accurate dataset of ∼2800 functionally characterized rice genes and ∼5000 members of different gene families by integrating data from available databases and reviewing every publication on rice functional genomic studies. The dataset accounts for 19.2% of the 39 045 annotated protein-coding rice genes, which provides the most exhaustive archive for investigating the functions of rice genes. We also constructed 214 gene interaction networks based on 1841 connections between 1310 genes. The largest network with 762 genes indicated that pleiotropic genes linked different biological pathways. Increasing degree of conservation of the flowering pathway was observed among more closely related plants, implying substantial value of rice genes for future dissection of flowering regulation in other crops. All data are deposited in the funRiceGenes database (https://funricegenes.github.io/). Functionality for advanced search and continuous updating of the database are provided by a Shiny application (http://funricegenes.ncpgr.cn/). The funRiceGenes dataset would enable further exploring of the crosslink between gene functions and natural variations in rice, which can also facilitate breeding design to improve target agronomic traits of rice. © The Authors 2017. Published by Oxford University Press.

  16. Rice production in relation to soil quality under different rice-based cropping systems

    NASA Astrophysics Data System (ADS)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  17. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR.

    PubMed

    Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong

    2015-10-24

    Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.

  18. USE OF 15N IN THE STUDY OF FIXATION OF ATMOSPHERIC NITROGEN BY NON- NODULATED SEED PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, G.

    1959-10-31

    Both from observation of non-leguminous plants growing under natural conditions and also from measurements made of plot experiments with grasses it has been found that large amounts of nitrogen, of the order of 50-lb N/acre/year, accumulate both in the soil and in plant material. Measurements of the contribution made by nonsymbiotic nitrogen-fixing bacteria are only of the order of 2 to 3 lb N/acre/year, so that it appears likely that some other mechanism operates which leads to fixation of nitrogen with the growth of many nonleguminous plants. Experiments were carried out with the following species which grow well in Newmore » Zealand under poor nutrient conditions, especially as regards nitrogen: Pinus radiata, Coprosma robusta, Epilobium erectum and Dactylis glomerata. Plants have been grown in sand watered with a nitrogen-free nutrient solution when they have shown signs of nitrogen starvation, but, nevertheless, they have made considerable growth. Some plants have been exposed to an isotopically enriched atmosphere for periods of 7 to 14 days, and significant amounts of nitrogen-15 have been recovered from the combined nitrogen in the plants indicating that fixation of molecular nitrogen has occurred. The effect is not due to any of the known nonsymbiotic nitrogen-fixing bacteria which were shown to be absent from the sand cultures. Two possible explanations considered are that the effect may be due to microorganisms present in or on the plants, and that the effect may be due to some activity of the plants themselves. (auth)« less

  19. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-06

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  20. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand.

    PubMed

    Rangjaroen, Chakrapong; Rerkasem, Benjavan; Teaumroong, Neung; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.

  1. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress.

    PubMed

    Nautiyal, Chandra Shekhar; Srivastava, Suchi; Chauhan, Puneet Singh; Seem, Karishma; Mishra, Aradhana; Sopory, Sudhir Kumar

    2013-05-01

    Growth and productivity of rice and soil inhabiting microbial population is negatively affected by soil salinity. However, some salt resistant, rhizosphere competent bacteria improve plant health in saline stress. Present study evaluated the effect of salt tolerant Bacillus amyloliquefaciens NBRISN13 (SN13) inoculation on rice plants in hydroponic and soil conditions exposed to salinity. SN13 increased plant growth and salt tolerance (NaCl 200 mM) and expression of at least 14 genes under hydroponic and soil conditions in rice. Among these 14 genes 4 (NADP-Me2, EREBP, SOSI, BADH and SERK1) were up-regulated and 2 (GIG and SAPK4) repressed under salt stress in hydroponic condition. In greenhouse experiment, salt stress resulted in accumulation of MAPK5 and down-regulation of the remaining 13 transcripts was observed. SN13 treatment, with or without salt gave similar expression for all tested genes as compared to control. Salt stress caused changes in the microbial diversity of the rice rhizosphere and stimulated population of betaine-, sucrose-, trehalose-, and glutamine-utilizing bacteria in salt-treated rice rhizosphere (SN13 + salt). The observations imply that SN13 confers salt tolerance in rice by modulating differential transcription in a set of at least 14 genes. Stimulation of osmoprotectant utilizing microbial population as a mechanism of inducing salt tolerance in rice is reported for the first time in this study to the best of our knowledge. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development.

    PubMed

    Liu, Kunpeng; Yu, Yu; Dong, Aiwu; Shen, Wen-Hui

    2017-07-01

    Chromatin-based epigenetic information plays an important role in developmental gene regulation, in response to environment, and in natural variation of gene expression levels. Histone H3 lysine 4 di/trimethylation (H3K4me2/3) is abundant in euchromatin and is generally associated with transcriptional activation. Strikingly, however, enzymes catalyzing H3K4me2/3 remain poorly characterized in crops so far. Here, we investigated the function of the rice SET DOMAIN GROUP 701 (SDG701) gene by molecular and biochemical characterization of the gene product, and by studying effects of its loss or gain of function on plant growth and development. We demonstrated that SDG701 encodes a methytransferase specifically catalyzing H3K4 methylation. Overexpression and knockdown experiments showed that SDG701 is crucial for proper sporophytic plant development as well as for gametophytic transmission that directly impacts rice grain production. In-depth analysis of plant flowering time revealed that SDG701 promotes rice flowering under either long-day or short-day photoperiods. Consistently, the SDG701 protein was found to bind chromatin to promote H3K4me3 and to enhance expression of the rice Hd3a and RFT1 florigens. Collectively, our results establish SDG701 as a major rice H3K4-specific methyltransferase and provide important insights into function of H3K4me3 deposition in transcription activation of florigens in promoting plant flowering. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.

    PubMed

    Ding, Yanfei; Gong, Shaohua; Wang, Yi; Wang, Feijuan; Bao, Hexigeduleng; Sun, Junwei; Cai, Chong; Yi, Keke; Chen, Zhixiang; Zhu, Cheng

    2018-06-20

    MicroRNAs (miRNAs) are 20- to 24-nucleotide small non-coding RNAs that regulate gene expression in eukaryotic organisms. Several plant miRNAs, such as miR166, have vital roles in plant growth, development and responses to environmental stresses. One such environmental stress encountered by crop plants is exposure to cadmium (Cd), an element highly toxic to most organisms, including humans and plants. In this study, we analyzed the role of miR166 in Cd accumulation and tolerance in rice (Oryza sativa). The expression levels of miR166 in both root and leaf tissues were significantly higher in the reproductive stage than in the seedling stage in rice. The expression of miR166 in the roots of rice seedlings was reduced after Cd treatment. Overexpression of miR166 in rice improved Cd tolerance, a result associated with the reduction of Cd-induced oxidative stress in transgenic rice plants. Furthermore, overexpression of miR166 reduced both Cd translocation from roots to shoots and Cd accumulation in the grains. miR166 targets genes encoding the class-III homeodomain-leucine zipper (HD-Zip) family proteins in plants. In rice, HOMEODOMAIN CONTAINING PROTEIN 4 (OsHB4) gene (Os03g43930), which encodes an HD-Zip protein, was up-regulated by Cd treatment but down-regulated by overexpression of miR166 in transgenic rice plants. Overexpression of OsHB4 increased Cd sensitivity and Cd accumulation in the leaves and grains of transgenic rice plants. By contrast, silencing OsHB4 by RNA interference enhanced Cd tolerance in transgenic rice plants. These results indicate a critical role for miR166 in Cd accumulation and tolerance through regulation of its target gene, OsHB4, in rice. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  4. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil.

    PubMed

    Liu, Shusi; Lu, Yixin; Yang, Chen; Liu, Chuanping; Ma, Lin; Dang, Zhi

    2017-10-01

    Biochar was carbon-rich and generated by high-temperature pyrolysis of biomass under oxygen-limited conditions. Due to the limitations of surface functional groups and the weakness of surface activity in the field of environmental remediation, the raw biochar frequently was chemically modified to improve its properties with a new performance. In this study, a kind of high-efficiency and low-cost amino biochar modified by nano zero-valent iron (ABC/NZVI) was synthesized and applied to paddy soil contaminated with arsenic (As). Dynamic changes of soil properties, arsenic speciations and rhizosphere microbial communities have been investigated over the whole growth period of rice plants. Pot experiments revealed that the ABC/NZVI could decrease the arsenic concentration in rice straw by 47.9% and increase the content of nitrogen in rice straw by 47.2%. Proportion of Geobacter in soil with ABC/NZVI treatment increased by 175% in tillering period; while Nitrososphaera decreased by 61 and 20% in tillering and maturity, respectively, compared to that of control. ABC/NZVI promotes arsenic immobilization in rhizosphere soil and precipitation on root surface and reduces arsenic accumulation in rice. At the same time, ABC/NZVI would inhibit Nitrososphaera which is related to ammonia oxidation process, and it would have a promising potential as soil amendment to reduce nitrogen loss probably.

  5. Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China.

    PubMed

    Wang, Xiangqin; Zeng, Xiaoduo; Chuanping, Liu; Li, Fangbai; Xu, Xianghua; Lv, Yahui

    2016-08-01

    Heavy metal contents (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 99 pairs of soil-rice plant samples were evaluated from the downwind directions of a large thermal power plant in Shaoguan City, Guangdong Province, China. Results indicate that there is a substantial buildup of As, Cd, Cu, Pb, and Zn in the predominant wind direction of the power plant. The significant correlations between S and heavy metals in paddy soil suggest that the power plant represents a source of topsoil heavy metals in Shaoguan City due to sulfur-rich coal burning emissions. Elevated Cd concentrations were also found in rice plant tissues. Average Cd (0.69 mg kg(-1)) and Pb (0.39 mg kg(-1)) contents in rice grain had exceeded their maximum permissible limits (both were 0.2 mg kg(-1)) in foods of China (GB2762-2005). The enrichment of Cd and Pb in rice grain might pose a potential health risk to the local residents.

  6. [Interspecific relationship and Si, N nutrition of rice in rice-water spinach intercropping system.

    PubMed

    Ning, Chuan Chuan; Yang, Rong Shuang; Cai, Mao Xia; Wang, Jian Wu; Luo, Shi Ming; Cai, Kun Zheng

    2017-02-01

    Intercropping is a sound eco-agriculture model, but aquatic crops (e.g., rice) intercropping is seldom researched. In the present study, rice and water spinach were chosen as the research objects, a field trial was conducted to explore the yields, interspecific relationship and Si, N nutrition of rice under rice-water spinach intercropping for four seasons during two consecutive years (2014-2015). The experiment had five treatments: rice monoculture, water spinach monoculture, and rice-water spinach intercropping ratios of 2:2, 3:2, 4:2, respectively. The results showed that rice-water spinach intercropping significantly increased rice yield, and the increase rates of 2:2, 3:2 and 4:2 intercropping per unit area were 77.5%-120.6%, 64.9%-80.9%, 37.7%-56.0%, respectively. However, intercropping resulted in reduction of water spinach yield. Intercropping significantly increased total yield of rice and water spinach from land equivalent ratios (LER) analysis. The values of LER were more than 1.0, and the ratio of 3:2 intercropping had the best effect. As for the competitive index, rice was more competitive than water spinach in intercropping system, especially in early season. Compared with rice monoculture, rice-water spinach intercropping significantly increased the absorption of Si and N in rice leaves, and Si content of rice leaves during ripening stage, but didn't increase its N content and even slightly reduced it during ripening stage. Intercropping had no significant effect on available Si, ammonium N and nitrate N content in soil. Compared with rice monoculture and intercropping, water spinach monoculture had always the highest available Si, ammonium N and nitrate N contents in soil through the experiment period. The results suggested that rice-spinach intercropping could promote rice to absorb silicon and nitrogen and increase the competitive ability of rice.

  7. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants

    PubMed Central

    Ding, Lei; Li, Yingrui; Gao, Limin; Lu, Zhifeng; Wang, Min; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2018-01-01

    The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM) and high-N (7 mM) concentrations in the hydroponic culture of four rice varieties: (1) Shanyou 63 (SY63), a hybrid variant of the indica species; (2) Yangdao 6 (YD6), a variant of indica species; (3) Zhendao 11 (ZD11), a hybrid variant of japonica species; and (4) Jiuyou 418 (JY418), another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs), and tonoplast membrane intrinsic protein (TIP) were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf) was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance. PMID:29337869

  8. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae).

    PubMed

    Zhang, Dong; Kong, Wenqian; Robertson, Jon; Goff, Valorie H; Epps, Ethan; Kerr, Alexandra; Mills, Gabriel; Cromwell, Jay; Lugin, Yelena; Phillips, Christine; Paterson, Andrew H

    2015-04-19

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures of selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved 'hotspots' in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.

  9. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dong; Kong, Wenqian; Robertson, Jon

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures ofmore » selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.« less

  10. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae)

    DOE PAGES

    Zhang, Dong; Kong, Wenqian; Robertson, Jon; ...

    2015-12-01

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures ofmore » selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.« less

  11. A case study of the relative effects of power plant nitrogen oxides and sulfur dioxide emission reductions on atmospheric nitrogen deposition.

    PubMed

    Vijayaraghavan, Krish; Seigneur, Christian; Bronson, Rochelle; Chen, Shu-Yun; Karamchandani, Prakash; Walters, Justin T; Jansen, John J; Brandmeyer, Jo Ellen; Knipping, Eladio M

    2010-03-01

    The contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3). In such instances, the individual effects of NOx and SO2 controls on nitrogen deposition can be approximated by the effects of combined NOx + SO2 controls on the deposition of NOy, (the sum of oxidized nitrogen species) and reduced nitrogen species (NHx), respectively. The benefit of controls at the plant in terms of the decrease in nitrogen deposition to Escambia Bay and watershed is less than 6% of the overall benefit due to regional Clean Air Interstate Rule (CAIR) controls.

  12. Multiple Method Analysis of TiO2 Nanoparticle Uptake in Rice (Oryza sativa L.) Plants.

    PubMed

    Deng, Yingqing; Petersen, Elijah J; Challis, Katie E; Rabb, Savelas A; Holbrook, R David; Ranville, James F; Nelson, Bryant C; Xing, Baoshan

    2017-09-19

    Understanding the translocation of nanoparticles (NPs) into plants is challenging because qualitative and quantitative methods are still being developed and the comparability of results among different methods is unclear. In this study, uptake of titanium dioxide NPs and larger bulk particles (BPs) in rice plant (Oryza sativa L.) tissues was evaluated using three orthogonal techniques: electron microscopy, single-particle inductively coupled plasma mass spectroscopy (spICP-MS) with two different plant digestion approaches, and total elemental analysis using ICP optical emission spectroscopy. In agreement with electron microscopy results, total elemental analysis of plants exposed to TiO 2 NPs and BPs at 5 and 50 mg/L concentrations revealed that TiO 2 NPs penetrated into the plant root and resulted in Ti accumulation in above ground tissues at a higher level compared to BPs. spICP-MS analyses revealed that the size distributions of internalized particles differed between the NPs and BPs with the NPs showing a distribution with smaller particles. Acid digestion resulted in higher particle numbers and the detection of a broader range of particle sizes than the enzymatic digestion approach, highlighting the need for development of robust plant digestion procedures for NP analysis. Overall, there was agreement among the three techniques regarding NP and BP penetration into rice plant roots and spICP-MS showed its unique contribution to provide size distribution information.

  13. Significance of the concentration of chelating ligands on Fe3+-solubility, bioavailability, and uptake in rice plant.

    PubMed

    Hasegawa, Hiroshi; Rahman, M Mamunur; Kadohashi, Kouta; Takasugi, Yui; Tate, Yousuke; Maki, Teruya; Rahman, M Azizur

    2012-09-01

    Present study investigated the significance of the concentration of chelating ligand on Fe(3+)-solubility in growth medium and its influence on Fe bioavailability and uptake in rice plant. Rice seedlings were grown in modified Murashige and Skoog (MS) hydroponic growth medium with moderate (250 μM) and high (500 μM) concentrations of ethylenediaminetetraacetate (EDTA) and hydroxyiminodisuccinate (HIDS) under sterile and non-sterile conditions. Concentrations of soluble Fe in the growth medium increased with increasing ligand concentrations, and the growth of rice seedlings was higher at moderate ligand concentration than at control (without chelant) and high ligand concentration. This explains the relationship between Fe solubility and bioavailability in the growth medium, and its effect on Fe uptake in rice plant. Fe exists in the growth medium predominantly as particulate (insoluble) forms at low ligand concentration, and as soluble [Fe(OH)(2+), Fe(OH)(2)(+), Fe-L complex] and apparently soluble (colloidal) forms at moderate ligand concentration. At high ligand concentration, most of the Fe(3+) in the growth medium forms soluble Fe-L complex, however, the bioavailability of Fe from Fe-L complex decreased due to lopsided complex formation equilibrium reaction (CFER) between Fe and the ligands. Also, Fe is solubilized forming stable and soluble Fe-L complex, which is then detached as less stable, but soluble and bioavailable substance(s) after (time-dependent) biodegradation. Therefore- i) ligand concentration and stability constant of Fe-L complex (K(Fe-L)) influence Fe bioavailability and uptake in rice plant, and ii) the biodegradable ligands (e.g., HIDS) would be more effective Fe fertilizer than the environmentally persistent and less biodegradable ligands (e.g., EDTA). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    PubMed Central

    Khan, Shahbaz; Anwar, Sumera; Kuai, Jie; Ullah, Sana; Fahad, Shah; Zhou, Guangsheng

    2017-01-01

    Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016) under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2) and four N rates (0, 60, 120, and 180 kg ha−1). Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80%) and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy. PMID:28536581

  15. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L. D.; Anuntalabhochai, S.

    2013-07-01

    Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60-80 keV to a beam fluence range of 2 × 1016-2 × 1017 ions/cm2. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 106 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11).

  16. Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests.

    PubMed

    Boddupally, Dayakar; Tamirisa, Srinath; Gundra, Sivakrishna Rao; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2018-05-31

    To evolve rice varieties resistant to different groups of insect pests a fusion gene, comprising DI and DII domains of Bt Cry1Ac and carbohydrate binding domain of garlic lectin (ASAL), was constructed. Transgenic rice lines were generated and evaluated to assess the efficacy of Cry1Ac::ASAL fusion protein against three major pests, viz., yellow stem borer (YSB), leaf folder (LF) and brown planthopper (BPH). Molecular analyses of transgenic plants revealed stable integration and expression of the fusion gene. In planta insect bioassays on transgenics disclosed enhanced levels of resistance compared to the control plants. High insect mortality of YSB, LF and BPH was observed on transgenics compared to that of control plants. Furthermore, honeydew assays revealed significant decreases in the feeding ability of BPH on transgenic plants as compared to the controls. Ligand blot analysis, using BPH insects fed on cry1Ac::asal transgenic rice plants, revealed a modified receptor protein-binding pattern owing to its ability to bind to additional receptors in insects. The overall results authenticate that Cry1Ac::ASAL protein is endowed with remarkable entomotoxic effects against major lepidopteran and hemipteran insects. As such, the fusion gene appears promising and can be introduced into various other crops to control multiple insect pests.

  17. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: implication for environmental biosafety assessment.

    PubMed

    Cao, Qian-Jin; Xia, Hui; Yang, Xiao; Lu, Bao-Rong

    2009-12-01

    Transgene escape from genetically modified (GM) rice into weedy rice via gene flow may cause undesired environmental consequences. Estimating the field performance of crop-weed hybrids will facilitate our understanding of potential introgression of crop genes (including transgenes) into weedy rice populations, allowing for effective biosafety assessment. Comparative studies of three weedy rice strains and their hybrids with two GM rice lines containing different insect-resistance transgenes (CpTI or Bt/CpTI) indicated an enhanced relative performance of the crop-weed hybrids, with taller plants, more tillers, panicles, and spikelets per plant, as well as higher 1 000-seed weight, compared with the weedy rice parents, although the hybrids produced less filled seeds per plant than their weedy parents. Seeds from the F(1) hybrids had higher germination rates and produced more seedlings than the weedy parents, which correlated positively with 1 000-seed weight. The crop-weed hybrids demonstrated a generally enhanced relative performance than their weedy rice parents in our field experiments. These findings indicate that transgenes from GM rice can persist to and introgress into weedy rice populations through recurrent crop-to-weed gene flow with the aid of slightly increased relative fitness in F(1) hybrids.

  18. Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis

    PubMed Central

    Liu, Xiaoli; Li, Jiancai; Xu, Liping; Wang, Qi

    2018-01-01

    Mitogen-activated protein kinases (MPKs) play a central role not only in plant growth and development, but also in plant responses to abiotic and biotic stresses, including pathogens. Yet, their role in herbivore-induced plant defenses and their underlying mechanisms remain largely unknown. Here, we cloned a rice MPK gene, OsMPK4, whose expression was induced by mechanical wounding, infestation of the striped stem borer (SSB) Chilo suppressalis, and treatment with jasmonic acid (JA), but not by treatment with salicylic acid (SA). The overexpression of OsMPK4 (oe-MPK4) enhanced constitutive and/or SSB-induced levels of JA, jasmonoyl-l-isoleucine (JA-Ile), ethylene (ET), and SA, as well as the activity of elicited trypsin proteinase inhibitors (TrypPIs), and reduced SSB performance. On the other hand, compared to wild-type plants, oe-MPK4 lines in the greenhouse showed growth retardation. These findings suggest that OsMPK4, by regulating JA-, ET-, and SA-mediated signaling pathways, functions as a positive regulator of rice resistance to the SSB and a negative regulator of rice growth. PMID:29652796

  19. Integrated crop management practices for maximizing grain yield of double-season rice crop.

    PubMed

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-12

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  20. QTLs for heading date and plant height under multiple environments in rice.

    PubMed

    Han, Zhongmin; Hu, Wei; Tan, Cong; Xing, Yongzhong

    2017-02-01

    Both heading date and plant height are important traits related to grain yield in rice. In this study, a recombinant inbred lines (RILs) population was used to map quantitative trait loci (QTLs) for both traits under 3 long-day (LD) environments and 1 short-day (SD) environment. A total of eight QTLs for heading date and three QTLs for plant height were detected by composite interval mapping under LD conditions. Additional one QTL for heading date and three QTLs for plant height were identified by Two-QTL model under LD conditions. Among them, major QTLs qHd7.1, qHd7.2 and qHd8 for heading date, and qPh1 and qPh7.1 for plant height were commonly detected. qHd7.1 and qHd7.2 were mapped to small regions of less than 1 cM. Genome position comparison of previously cloned genes with QTLs detected in this study revealed that qHd5 and qPh3.1 were two novel QTLs. The alleles of these QTLs increasing trait values were dispersed in both parents, which well explained the transgressive segregation observed in this population. In addition, the interaction between qHd7.1 and qHd8 was detected under all LD conditions. Multiple-QTL model analysis revealed that all QTLs and their interactions explained over 80% of heading date variation and 50% of plant height variation. Two heading date QTLs were detected under SD condition. Of them, qHd10 were commonly identified under LD condition. The difference in QTL detection between LD and SD conditions indicated most heading date QTLs are sensitive to photoperiod. These findings will benefit breeding design for heading date and plant height in rice.

  1. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China.

    PubMed

    Chen, Zhongdu; Chen, Fu; Zhang, Hailin; Liu, Shengli

    2016-12-01

    The net global warming potential (NGWP) and net greenhouse gas intensity (NGHGI) of double-rice cropping systems are not well documented. We measured the NGWP and NGHGI including soil organic carbon (SOC) change and indirect emissions (IE) from double-crop rice fields with fertilizing systems in Southern China. These experiments with three different nitrogen (N) application rates since 2012 are as follows: 165 kgN ha -1 for early rice and 225 kgN ha -1 for late rice (N1), which was the local N application rates as the control; 135 kgN ha -1 for early rice and 180 kgN ha -1 for late rice (N2, 20 % reduction); and 105 kgN ha -1 for early rice and 135 kgN ha -1 for late rice (N3, 40 % reduction). Results showed that yields increased with the increase of N application rate, but without significant difference between N1 and N2 plots. Annual SOC sequestration rate under N1 was estimated to be 1.15 MgC ha -1  year -1 , which was higher than those under other fertilizing systems. Higher N application tended to increase CH 4 emissions during the flooded rice season and significantly increased N 2 O emissions from drained soils during the nonrice season, ranking as N1 > N2 > N3 with significant difference (P < 0.05). Two-year average IE has a huge contribution to GHG emissions mainly coming from the higher N inputs in the double-rice cropping system. Reducing N fertilizer usage can effectively decrease the NGWP and NGHGI in the double-rice cropping system, with the lowest NGHGI obtained in the N2 plot (0.99 kg CO 2 -eq kg -1 yield year -1 ). The results suggested that agricultural economic viability and GHG mitigation can be simultaneously achieved by properly reducing N fertilizer application in double-rice cropping systems.

  2. Circumnutation and its dependence on the gravity response in rice, morning glory and pea plants: verification by spaceflight experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Kobayashi, Akie; Fujii, Nobuharu; Yano, Sachiko; Shimazu, Toru; Kim, Hyejeong; Tomita, Yuuta; Miyazawa, Yutaka

    Plant organs display helical growth movement known as circumnutation. This movement helps plant organs find suitable environmental cues. The amplitude, period and shape of the circumnutation differ depending on plant species or organs. Although the mechanism for circumnutation is unclear, it has long been argued whether circumnutation is involved with gravitropic response. Previously, we showed that shoots of weeping morning glory (we1 and we2) are impaired in not only the differentiation of endodermis (gravisensing cells) and gravitropic response, but also winding and circumnutation (Kitazawa et al., PNAS 102: 18742-18747, 2005). Here, we report a reduced circumnutation in the shoots of rice and the roots of pea mutants defective in gravitropic response. Coleoptiles of clinorotated rice seedlings and decapped roots of pea seedlings also showed a reduction of their circumnutational movement. These results suggest that circumnutation is tightly related with gravitropic response. In the proposed spaceflight experiments, “Plant Rotation”, we will verify the hypothesis that circumnutation requires gravity response, by using microgravity environment in KIBO module of the International Space Station. We will grow rice and morning glory plants under both muG and 1G conditions on orbit and monitor their growth by a camera. The downlinked images will be analyzed for the measurements of plant growth and nutational movements. This experiment will enable us to answer the question whether circumnutation depends on gravity response or not.

  3. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions.

    PubMed

    Biscarini, Filippo; Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella

    2016-01-01

    In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions. In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7) and for plant height on chromosome 6 (FDR = 0.011). We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.

  4. Effects of plant diversity on microbial nitrogen and phosphorus dynamics in soil

    NASA Astrophysics Data System (ADS)

    Prommer, Judith; Braun, Judith; Daly, Amanda; Gorka, Stefan; Hu, Yuntao; Kaiser, Christina; Martin, Victoria; Meyerhofer, Werner; Walker, Tom W. N.; Wanek, Wolfgang; Wasner, Daniel; Wiesenbauer, Julia; Zezula, David; Zheng, Qing; Richter, Andreas

    2017-04-01

    There is a general consensus that plant diversity affects many ecosystem functions. One example of such an effect is the enhanced aboveground and belowground plant biomass production with increasing species richness, with implications for carbon and nutrient distribution in soil. The Jena Experiment (http://www.the-jena-experiment.de/), a grassland biodiversity experiment established in 2002 in Germany, comprises different levels of plant species richness and different numbers of plant functional groups. It provides the opportunity to examine how changes in biodiversity impact on microbially-mediated nutrient cycling processes. We here report on plant diversity and plant functional composition effects on growth and nitrogen and phosphorus transformation rates, including nitrogen use efficiency, of microbial communities. Microbial growth rates and microbial biomass were positively affected by increasing plant species richness. Amino acid and ammonium concentrations in soil were also positively affected by plant species richness, while phosphate concentrations in contrast were negatively affected. The cycling of organic N in soils (estimated as gross protein depolymerization rates) increased about threefold with plant diversity, while gross N and P mineralization were not significantly affected by either species or functional richness. Microbial nitrogen use efficiency did not respond to different levels of plant diversity but was very high (0.96 and 0.98) across all levels of plant species richness, demonstrating a low N availability for microbes. Taken together this indicates that soil microbial communities were able to meet the well-documented increase in plant N content with species richness, and also the higher N demand of the microbial community by increasing the recycling of organic N such as proteins. In fact, the microbial community even overcompensated the increased plant and microbial N demand, as evidenced by increased levels of free amino acids and

  5. Dynamics of the Methanogenic Archaeal Community during Plant Residue Decomposition in an Anoxic Rice Field Soil ▿

    PubMed Central

    Peng, Jingjing; Lü, Zhe; Rui, Junpeng; Lu, Yahai

    2008-01-01

    Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH4 production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15°C, 30°C, and 45°C). More CH4 was produced in the straw treatment than root treatment. Increasing the temperature from 15°C to 45°C enhanced CH4 production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15°C and 30°C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45°C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H2) seems to be the key factor that regulates the shift of methanogenic community. PMID:18344350

  6. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery

    NASA Astrophysics Data System (ADS)

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2015-07-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

  7. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery.

    PubMed

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2015-07-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms ( R 2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

  8. Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes.

    PubMed

    Rouws, L F M; Meneses, C H S G; Guedes, H V; Vidal, M S; Baldani, J I; Schwab, S

    2010-09-01

    To evaluate the colonization process of sugarcane plantlets and hydroponically grown rice seedlings by Gluconacetobacter diazotrophicus strain PAL5 marked with the gusA and gfp reporter genes. Sugarcane plantlets inoculated in vitro with PAL5 carrying the gfp::gusA plasmid pHRGFPGUS did not present green fluorescence, but beta-glucuronidase (GUS)-stained bacteria could be observed inside sugarcane roots. To complement this existing inoculation methodology for micropropagated sugarcane with a more rapid colonization assay, we employed hydroponically grown gnotobiotic rice seedlings to study PAL5-plant interaction. PAL5 could be isolated from the root surface (10(8) CFU g(-1)) and from surface-disinfected root and stem tissues (10(4) CFU g(-1)) of inoculated plants, suggesting that PAL5 colonized the internal plant tissues. Light microscopy confirmed the presence of bacteria inside the root tissue. After inoculation of rice plantlets with PAL5 marked with the gfp plasmid pHRGFPTC, bright green fluorescent bacteria could be seen colonizing the rice root surface, mainly at the sites of lateral root emergence, at root caps and on root hairs. The plasmids pHRGFPGUS and pHRGFPTC are valid tools to mark PAL5 and monitor the colonization of micropropagated sugarcane and hydroponic rice seedlings. These tools are of use to: (i) study PAL5 mutants affected in bacteria-plant interactions, (ii) monitor plant colonization in real time and (iii) distinguish PAL5 from other bacteria during the study of mixed inoculants.

  9. Effect of plant species on nitrogen recovery in aquaponics.

    PubMed

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress.

    PubMed

    Mitra, Soumik; Pramanik, Krishnendu; Ghosh, Pallab Kumar; Soren, Tithi; Sarkar, Anumita; Dey, Ramendra Sundar; Pandey, Sanjeev; Maiti, Tushar Kanti

    2018-05-01

    Application of heavy metal resistant plant growth promoting rhizobacteria has an important role as they help to evade metal-induced toxicity in plants on one hand and enhance plant growth on the other. The present study is therefore focused on the characterization of a cadmium resistant bacterial strain isolated from heavy metal contaminated rhizospheric soil designated as S8. This S8 strain was selected in terms of cadmium resistance and plant growth promoting traits. Moreover, it also showed resistance to lead and arsenic to a considerable extent. The selected strain S8 was identified as Klebsiella michiganensis by modern approaches of bacterial taxonomy. The plant growth promoting traits exhibited by the strain include 1-aminocyclopropane-1-carboxylic acid deaminase activity (58.33 ng α-keto butyrate/mg protein/h), Indole-3-acetic acid production (671 μg/ml), phosphate solubilization (71.98 ppm), nitrogen fixation (3.72 μg of nitrogen fixed/h/mg protein) etc. Besides, the strain also exhibited high cadmium removal efficiency (73-97%) from the medium and intracellular accumulation as well. Its efficiency to alleviate cadmium-induced toxicity was determined against a rice cultivar in terms of morphological and biochemical changes. Enhanced growth and reduced oxidative stress were detected in presence of the bacterium. On the basis of these results, it can be concluded that K. michiganensis strain S8 is cadmium accumulating plant growth promoting rhizobacterium that can be applied in cadmium contaminated agricultural soil to achieve better productivity of rice. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. Field evidence for the potential of Rhodobacter capsulatus as Biofertilizer for flooded rice.

    PubMed

    Gamal-Eldin, Hosny; Elbanna, Khaled

    2011-02-01

    In a previous study, we evaluated the effects of inoculating rice plants with the phototrophic purple nonsulfur bacterium Rhodobacter capsulatus (Rc) on growth and yield of rice in pots and lysimeter experiments and the results obtained have been highly encouraging. In this study, we carried out two field experiments: one in the experimental farm of the Faculty of Agriculture, Fayoum University, and the second in a farmer's field in Kafr El-sheikh, to assess the effects of Rc on growth and yield of rice in comparison and in combination with chemical nitrogen fertilizer (CNF) and farmyard manure. The results indicated that both biological and grain yields in all the Rc inoculated treatments were significantly higher than those in the uninoculated corresponding treatments in both fields. With regard to grain yield, the major factor for determining the effectiveness of any agricultural treatment, inoculation with Rc in combination with 50% of the recommended CNF rate gave a grain yield that was statistically equivalent to that obtained with 100% of the recommended CNF rate. These results provide a clear evidence for the potential of Rc as biofertilizer for flooded rice under field conditions.

  12. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization.

    PubMed

    Wang, Yanan; Ke, Xiubin; Wu, Liqin; Lu, Yahai

    2009-02-01

    Little information is available on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in flooded rice soils. Consequently, a microcosm experiment was conducted to determine the effect of nitrogen fertilizer on the composition of AOB and AOA communities in rice soil by using molecular analyses of ammonia monooxygenase gene (amoA) fragments. Experimental treatments included three levels of N (urea) fertilizer, i.e. 50, 100 and 150 mgNkg(-1) soil. Soil samples were operationally divided into four fractions: surface soil, bulk soil deep layer, rhizosphere and washed root material. NH(4)(+)-N was the dominant form of N in soil porewater and increased with N fertilization. Cloning and sequencing of amoA gene fragments showed that the AOB community in the rice soil consisted of three major groups, i.e. Nitrosomonas communis cluster, Nitrosospira cluster 3a and cluster 3b. The sequences related to Nitrosomonas were predominant. There was a clear effect of N fertilizer and soil depth on AOB community composition based on terminal restriction fragment length polymorphism fingerprinting. Nitrosomonas appeared to be more abundant in the potentially oxic or micro-oxic fractions, including surface soil, rhizosphere and washed root material, than the deep layer of anoxic bulk soil. Furthermore, Nitrosomonas increased relatively in the partially oxic fractions and that of Nitrosospira decreased with the increasing application of N fertilizer. However, AOA community composition remained unchanged according to the denaturing gradient gel electrophoresis analyses.

  13. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-05

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  14. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    PubMed Central

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-01-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542

  15. Diverse plant-associated pleosporalean fungi from saline areas: Ecological tolerance and nitrogen-status dependent effects on plant growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for constructionmore » of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-a), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially above ground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. Furthermore, this work provides a better understanding of the symbiotic relationship

  16. Diverse plant-associated pleosporalean fungi from saline areas: Ecological tolerance and nitrogen-status dependent effects on plant growth

    DOE PAGES

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian; ...

    2017-02-06

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for constructionmore » of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-a), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially above ground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. Furthermore, this work provides a better understanding of the symbiotic relationship

  17. Information Commons for Rice (IC4R)

    PubMed Central

    2016-01-01

    Rice is the most important staple food for a large part of the world's human population and also a key model organism for plant research. Here, we present Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase featuring adoption of an extensible and sustainable architecture that integrates multiple omics data through community-contributed modules. Each module is developed and maintained by different committed groups, deals with data collection, processing and visualization, and delivers data on-demand via web services. In the current version, IC4R incorporates a variety of rice data through multiple committed modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures and gene annotations contributed by the rice research community. Unlike extant related databases, IC4R is designed for scalability and sustainability and thus also features collaborative integration of rice data and low costs for database update and maintenance. Future directions of IC4R include incorporation of other omics data and association of multiple omics data with agronomically important traits, dedicating to build IC4R into a valuable knowledgebase for both basic and translational researches in rice. PMID:26519466

  18. Biochar application mode influences nitrogen leaching and NH3 volatilization losses in a rice paddy soil irrigated with N-rich wastewater.

    PubMed

    Sun, Haijun; Min, Ju; Zhang, Hailin; Feng, Yanfang; Lu, Kouping; Shi, Weiming; Yu, Min; Li, Xuewen

    2017-07-11

    Impacts of biochar application mode on nitrogen (N) leaching, ammonia (NH 3 ) volatilization, rice grain yield and N use efficiency (NUE) are not well understood. Therefore, a field experiment was conducted to evaluate those impacts in a rice paddy soil received 225 kg N ha -1 from either urea or N-rich wastewater. One treatment received 10 t ha -1 biochar with the basal fertilization, and the other received same total amount of biochar but split applied with the three split N applications with same ratio as N fertilizer split ratio (40%, 30% and 30%). Results showed that N leaching loads were 4.20-6.22 kg ha -1 . Biochar one-time application reduced N leaching by 23.1%, and biochar split application further reduced N leaching by 32.4%. Total NH 3 volatilization loss was 15.5-24.5 kg ha -1 . Biochar one-time application did not influence the NH 3 volatilization, but biochar split application stimulated the cumulative NH 3 volatilization by 57.7%. Both biochar treatments had no influence on NUE and rice grain yield. In conclusion, biochar application mode indeed influences the N leaching and NH 3 volatilization in rice paddy soils, and biochar one-time application should be recommended for reducing N leaching without increasing NH 3 volatilization.

  19. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement

    PubMed Central

    2014-01-01

    Background The rhizome, the original stem of land plants, enables species to invade new territory and is a critical component of perenniality, especially in grasses. Red rice (Oryza longistaminata) is a perennial wild rice species with many valuable traits that could be used to improve cultivated rice cultivars, including rhizomatousness, disease resistance and drought tolerance. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development and function in this plant. Results We used an integrated approach to compare the transcriptome, proteome and metabolome of the rhizome to other tissues of red rice. 116 Gb of transcriptome sequence was obtained from various tissues and used to identify rhizome-specific and preferentially expressed genes, including transcription factors and hormone metabolism and stress response-related genes. Proteomics and metabolomics approaches identified 41 proteins and more than 100 primary metabolites and plant hormones with rhizome preferential accumulation. Of particular interest was the identification of a large number of gene transcripts from Magnaportha oryzae, the fungus that causes rice blast disease in cultivated rice, even though the red rice plants showed no sign of disease. Conclusions A significant set of genes, proteins and metabolites appear to be specifically or preferentially expressed in the rhizome of O. longistaminata. The presence of M. oryzae gene transcripts at a high level in apparently healthy plants suggests that red rice is resistant to this pathogen, and may be able to provide genes to cultivated rice that will enable resistance to rice blast disease. PMID:24521476

  20. Effect of Expansion of Fertilization Width on Nitrogen Recovery Rate in Tea Plants

    NASA Astrophysics Data System (ADS)

    Nonaka, Kunihiko; Hirono, Yuhei; Watanabe, Iriki

    In cultivation of tea plants, large amounts of nitrogen, compared to amounts used for other crops, have been used for fertilization, resulting in degradation of the soil environment between hedges and an increase in concentrations of nitrate nitrogen in surrounding water systems. To reduce the environmental load, new methods of fertilizer application are needed. This report deals with the effect of expansion of fertilization width on nitrogen recovery rate in tea plants. In the test field, 15 N-labeled ammonium sulfate had been applied over custom fertilization by between-hedges fertilization (fertilization width of 15cm) and wide fertilization (fertilization width of 40cm), nitrogen recovery rates were compared. Expansion of fertilization width resulted in an approximately 30% increase in nitrogen recovery rate compared to that in the case of fertilization between hedges. Increases in nitrogen recovery rates were observed with fallapplied fertilization, spring-applied fertilization, pop-up fertilizer application, and summerapplied fertilization.

  1. Taste of Super-Dwarf Rice Cultured in Space

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki

    2016-07-01

    The interest of food production for lunar base and manned Mars mission has increased recently. So far, plants cultured long duration in space were leafy vegetables, arabidopsis, wheat, barley and so on. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. Rice symbolizes the rice-eating culture of Japan, is extremely useful as a specific cultured plant candidate of Japan in space. In the previous report, 'Kozo-no-sumika' found from seedlings in raising of seedling was introduced as a super-dwarf rice to culture in space. Considering this rice as food in space, we investigate the taste characteristics of this rice. At present, waxy 'Kozo-no-sumika' and nonwaxy 'Hosetsu dwarf' of super-dwarf rice and 'Nipponbare' of previous standard rice for sensory test are cultured in paddy field. Hereafter, we will harvest rice, investigate yield, evaluate taste.

  2. Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Yu, Yingliang; Yang, Linzhang

    2014-11-01

    In the Tailake region of China, heavy nitrogen (N) loss of rice-wheat rotation systems, due to high fertilizer-N input with low N use efficiency (NUE), was widely reported. To alleviate the detrimental impacts caused by N loss, it is necessary to improve the fertilizer management practices. Therefore, a 3 yr field experiments with different N managements including organic combined chemical N treatment (OCN, 390 kg N ha-1 yr-1, 20% organic fertilizer), control-released urea treatment (CRU, 390 kg N ha-1 yr-1, 70% resin-coated urea), reduced chemical N treatment (RCN, 390 kg N ha-1 yr-1, all common chemical fertilizer), and site-specific N management (SSNM, 333 kg N ha-1 yr-1, all common chemical fertilizer) were conducted in the Taihu Lake region with the ‘farmer’s N’ treatment (FN, 510 kg N ha-1 yr-1, all common chemical fertilizer) as a control. Grain yield, plant N uptake (PNU), NUE, and N losses via runoff, leaching, and ammonia volatilization were assessed. In the rice season, the FN treatment had the highest N loss and lowest NUE, which can be attributed to an excessive rate of N application. Treatments of OCN and RCN with a 22% reduced N rate from FN had no significant effect on PNU nor the yield of rice in the 3 yr; however, the NUE was improved and N loss was reduced 20-32%. OCN treatment achieved the highest yield, while SSNM has the lowest N loss and highest NUE due to the lowest N rate. In wheat season, N loss decreased about 28-48% with the continuous reduction of N input, but the yield also declined, with the exception of OCN treatment. N loss through runoff, leaching and ammonia volatilization was positively correlated with the N input rate. When compared with the pure chemical fertilizer treatment of RCN under the same N input, OCN treatment has better NUE, better yield, and lower N loss. 70% of the urea replaced with resin-coated urea had no significant effect on yield and NUE improvement, but decreased the ammonia volatilization loss. Soil

  3. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition.

    PubMed

    Liu, Gang; Yang, Ying-Bo; Zhu, Zhi-Hong

    2018-02-16

    Elevated nitrogen associated with global change is believed to promote the invasion of many vigorous exotic plants. However, it is unclear how a weak exotic plant will respond to elevated nitrogen in the future. In this study, the competitive outcome of a weak invasive plant (Galinsoga quadriradiata) and two non-invasive plants was detected. The plants were subjected to 3 types of culture (mixed, monoculture or one-plant), 2 levels of nitrogen (ambient or elevated at a rate of 2 g m -2 yr -1 ) and 2 levels of light (65% shade or full sunlight). The results showed that elevated nitrogen significantly promoted the growth of both the weak invader and the non-invasive plants in one-plant pots; however, growth promotion was not observed for the non-invasive species in the mixed culture pots. The presence of G. quadriradiata significantly inhibited the growth of the non-invasive plants, and a decreased negative species interaction was detected as a result of elevated nitrogen. Our results suggest that competitive interactions between G. quadriradiata and the non-invasive plants were altered by elevated nitrogen. It provides exceptional evidence that an initially weak invasive plant can become an aggressive invader through elevated nitrogen deposition.

  4. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    PubMed

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  5. Uptake Kinetics of Arsenic Species in Rice Plants

    PubMed Central

    Abedin, Mohammed Joinal; Feldmann, Jörg; Meharg, Andy A.

    2002-01-01

    Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0–0.0532 mm) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid. PMID:11891266

  6. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.

    PubMed

    Zhou, Yong; Zhu, Jinyan; Li, Zhengyi; Yi, Chuandeng; Liu, Jun; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Liang, Guohua

    2009-09-01

    Rice plant architecture is an important agronomic trait and a major determinant in high productivity. Panicle erectness is the preferred plant architecture in japonica rice, but the molecular mechanism underlying domestication of the erect panicle remains elusive. Here we report the map-based cloning of a major quantitative trait locus, qPE9-1, which plays an integral role in regulation of rice plant architecture including panicle erectness. The R6547 qPE9-1 gene encodes a 426-amino-acid protein, homologous to the keratin-associated protein 5-4 family. The gene is composed of three Von Willebrand factor type C domains, one transmembrane domain, and one 4-disulfide-core domain. Phenotypic comparisons of a set of near-isogenic lines and transgenic lines reveal that the functional allele (qPE9-1) results in drooping panicles, and the loss-of-function mutation (qpe9-1) leads to more erect panicles. In addition, the qPE9-1 locus regulates panicle and grain length, grain weight, and consequently grain yield. We propose that the panicle erectness trait resulted from a natural random loss-of-function mutation for the qPE9-1 gene and has subsequently been the target of artificial selection during japonica rice breeding.

  7. Rice: Characterizing the Environmental Response of a Gibberellic Acid-Deficient Rice for Use as a Model Crop

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Pinnock, Derek; Klassen, Steve; Bugbee, Bruce

    2004-01-01

    Rice (Oryza sativa L.) is a useful model crop plant. Rice was the first crop plant to have its complete genome sequenced. Unfortunately, even semi-dwarf rice cultivars are 60 to 90 an tail, and large plant populations cannot be grown in the confined volumes of greenhouses and growth chambers. We recently identified an extremely short (20 em tall) rice line, which is an ideal model for larger rice cultivars. We called this line "Super Dwarf rice." Here we report the response of Super Dwarf to temperature, photoperiod, photosynthetic photon flux (PPF), and factors that can affect time to head emergence. Vegetative biomass increased 6% per degree Celsius, with increasing temperature from 27 to 31 C. Seed yield decreased by 2% per degree Celsius rise in temperature, and as a result, harvest index decreased from 60 to 54%. The time to heading increased by 2 d for every hour above a 12-h photoperiod. Yield increased with increasing PPF up to the highest level tested at 1800 micro-mol/sq m/s (12-h photoperiod; 77.8 mol/sq m/d). Yield efficiency (grams per mole of photons) increased to 900 micro-mol/sq m/s and then slightly decreased at 1800 micro-mol/sq m/s . Heading was delayed by addition of gibberellic acid 3 (GA,) to the root zone but was hastened under mild N stress. Overall, short stature, high yield, high harvest index, and no extraordinary environmental requirements make Super Dwarf rice an excellent model plant for yield studies in controlled environments.

  8. Genome-Wide Association of Rice Blast Disease Resistance and Yield-Related Components of Rice.

    PubMed

    Wang, Xueyan; Jia, Melissa H; Ghai, Pooja; Lee, Fleet N; Jia, Yulin

    2015-12-01

    Robust disease resistance may require an expenditure of energy that may limit crop yield potential. In the present study, a subset of a United States Department of Agriculture rice core collection consisting of 151 accessions was selected using a major blast resistance (R) gene, Pi-ta, marker and was genotyped with 156 simple sequence repeat (SSR) markers. Disease reactions to Magnaporthe oryzae, the causal agent of rice blast disease, were evaluated under greenhouse and field conditions, and heading date, plant height, paddy and brown seed weight in two field environments were analyzed, using an association mapping approach. A total of 21 SSR markers distributed among rice chromosomes 2 to 12 were associated with blast resistance, and 16 SSR markers were associated with seed weight, heading date, and plant height. Most noticeably, shorter plants were significantly correlated with resistance to blast, rice genomes with Pi-ta were associated with lighter seed weights, and the susceptible alleles of RM171 and RM6544 were associated with heavier seed weight. These findings unraveled a complex relationship between disease resistance and yield-related components.

  9. Dynamic Response of Ammonia-Oxidizers to Four Fertilization Regimes across a Wheat-Rice Rotation System

    PubMed Central

    Wang, Jichen; Ni, Lei; Song, Yang; Rhodes, Geoff; Li, Jing; Huang, Qiwei; Shen, Qirong

    2017-01-01

    Ammonia oxidation by microorganisms is a rate-limiting step of the nitrification process and determines the efficiency of fertilizer utilized by crops. Little is known about the dynamic response of ammonia-oxidizers to different fertilization regimes in a wheat-rice rotation system. Here, we examined ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities across eight representative stages of wheat and rice growth and under four fertilization regimes: no nitrogen fertilization (NNF), chemical fertilization (CF), organic-inorganic mixed fertilizer (OIMF) and organic fertilization (OF). The abundance and composition of ammonia oxidizers were analyzed using quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) of their amoA genes. Results showed that fertilization but not plant growth stages was the best predictor of soil AOB community abundance and composition. Soils fertilized with more urea-N had higher AOB abundance, while organic-N input showed little effect on AOB abundance. 109 bp T-RF (Nitrosospira Cluster 3b) and 280 bp T-RF (Nitrosospira Cluster 3c) dominated the AOB communities with opposing responses to fertilization regimes. Although the abundance and composition of the AOA community was significantly impacted by fertilization and plant growth stage, it differed from the AOB community in that there was no particular trend. In addition, across the whole wheat-rice rotation stages, results of multiple stepwise linear regression revealed that AOB played a more important role in ammonia oxidizing process than AOA. This study provided insight into the dynamic effects of fertilization strategies on the abundance and composition of ammonia-oxidizers communities, and also offered insights into the potential of managing nitrogen for sustainable agricultural productivity with respect to soil ammonia-oxidizers. PMID:28446904

  10. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras

    NASA Astrophysics Data System (ADS)

    Naito, Hiroki; Ogawa, Satoshi; Valencia, Milton Orlando; Mohri, Hiroki; Urano, Yutaka; Hosoi, Fumiki; Shimizu, Yo; Chavez, Alba Lucia; Ishitani, Manabu; Selvaraj, Michael Gomez; Omasa, Kenji

    2017-03-01

    Application of field based high-throughput phenotyping (FB-HTP) methods for monitoring plant performance in real field conditions has a high potential to accelerate the breeding process. In this paper, we discuss the use of a simple tower based remote sensing platform using modified single-lens reflex cameras for phenotyping yield traits in rice under different nitrogen (N) treatments over three years. This tower based phenotyping platform has the advantages of simplicity, ease and stability in terms of introduction, maintenance and continual operation under field conditions. Out of six phenological stages of rice analyzed, the flowering stage was the most useful in the estimation of yield performance under field conditions. We found a high correlation between several vegetation indices (simple ratio (SR), normalized difference vegetation index (NDVI), transformed vegetation index (TVI), corrected transformed vegetation index (CTVI), soil-adjusted vegetation index (SAVI) and modified soil-adjusted vegetation index (MSAVI)) and multiple yield traits (panicle number, grain weight and shoot biomass) across a three trials. Among all of the indices studied, SR exhibited the best performance in regards to the estimation of grain weight (R2 = 0.80). Under our tower-based field phenotyping system (TBFPS), we identified quantitative trait loci (QTL) for yield related traits using a mapping population of chromosome segment substitution lines (CSSLs) and a single nucleotide polymorphism data set. Our findings suggest the TBFPS can be useful for the estimation of yield performance during early crop development. This can be a major opportunity for rice breeders whom desire high throughput phenotypic selection for yield performance traits.

  11. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang.

    PubMed

    Fang, Bin; Wang, Guang-Huo; Van, Den Berg Marrit; Roetter, Reimund

    2005-10-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.

  12. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding.

    PubMed

    Ferrando, Lucía; Fernández Scavino, Ana

    2015-09-01

    Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis.

    PubMed

    Sha, A H; Lin, X H; Huang, J B; Zhang, D P

    2005-07-01

    DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. The rice cultivar Wase Aikoku 3 becomes resistant to the blight pathogen Xanthomonas oryzae pv. oryzae at the adult stage. Using methylation-sensitive amplified polymorphism (MSAP) analysis, we compared the patterns of cytosine methylation in seedlings and adult plants of the rice cultivar Wase Aikoku 3 that had been inoculated with the pathogen Xanthomonas oryzae pv. oryzae, subjected to mock inoculation or left untreated. In all, 2000 DNA fragments, each representing a recognition site cleaved by either or both of two isoschizomers, were amplified using 60 pairs of selective primers. A total of 380 sites were found to be methylated. Of these, 45 showed differential cytosine methylation among the seedlings and adult plants subjected to different treatments, and overall levels of methylation were higher in adult plants than in seedlings. All polymorphic fragments were sequenced, and six showed homology to genes that code for products of known function. Northern analysis of three fragments indicated that their expression varied with methylation pattern, with hypermethylation being correlated with repression of transcription, as expected. The results suggest that significant differences in cytosine methylation exist between seedlings and adult plants, and that hypermethylation or hypomethylation of specific genes may be involved in the development of adult plant resistance (APR) in rice plants.

  14. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants.

    PubMed

    Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek

    2015-07-01

    Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice.

    PubMed

    Jiang, Chang-Jie; Shimono, Masaki; Maeda, Satoru; Inoue, Haruhiko; Mori, Masaki; Hasegawa, Morifumi; Sugano, Shoji; Takatsuji, Hiroshi

    2009-07-01

    Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants.

  16. Transgenic Bt Rice Does Not Challenge Host Preference of the Target Pest of Rice Leaffolder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Sun, Xiao; Zhou, Wen; Liu, Hao; Zhang, Aijun; Ai, Chao-Ren; Zhou, Shuang-Shuang; Zhou, Chang-Xiang; Wang, Man-Qun

    2013-01-01

    Background Transgenic Bt rice line T2A-1 expresses a synthesized cry2A gene that shows high resistance to Lepidoptera pests, including Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Plant volatile orientation cues and the physical characteristics of the leaf surface play key roles in host location or host-plant acceptance of phytophagous insects. These volatile compounds and physical traits may become altered in Bt rice and it is not known whether this influences the behavior of C. medinalis when searching for oviposition sites. Results The results of electronic nose analysis showed that the Radar map of Bt rice cultivars was analogous to the non- Bt rice cultivars at each growing stage. PCA analysis was able to partly discriminate between some of the Bt vs. non-Bt rice sensors, but could not to separate Bt cultivars from non-Bt cultivars. The total ion chromatogram between Bt and non-Bt rice cultivars at the seedling, booting and tillering stages were similar and 25 main compounds were identified by GC-MS. For most compounds, there was no significant difference in compound quantities between Bt and non-Bt rice cultivars at equivalent growth stages. The densities of the tubercle papicles and the trichomes on the upper and lower surfaces were statistically equal in Bt and non-Bt rice. The target pest, C. medinalis, was attracted to host rice plants, but it could not distinguish between the transgenic and the isogenic rice lines. Conclusions There were no significant differences between the Bt rice line, T2A-1 and the non-Bt rice for volatiles produced or in its physical characteristics and there were no negative impacts on C. medinalis oviposition behavior. These results add to the mounting evidence that Bt rice has no negative impact on the target insect oviposition behavior. PMID:24244410

  17. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants

    PubMed Central

    Fox, Jennifer E.; Gulledge, Jay; Engelhaupt, Erika; Burow, Matthew E.; McLachlan, John A.

    2007-01-01

    Unprecedented agricultural intensification and increased crop yield will be necessary to feed the burgeoning world population, whose global food demand is projected to double in the next 50 years. Although grain production has doubled in the past four decades, largely because of the widespread use of synthetic nitrogenous fertilizers, pesticides, and irrigation promoted by the “Green Revolution,” this rate of increased agricultural output is unsustainable because of declining crop yields and environmental impacts of modern agricultural practices. The last 20 years have seen diminishing returns in crop yield in response to increased application of fertilizers, which cannot be completely explained by current ecological models. A common strategy to reduce dependence on nitrogenous fertilizers is the production of leguminous crops, which fix atmospheric nitrogen via symbiosis with nitrogen-fixing rhizobia bacteria, in rotation with nonleguminous crops. Here we show previously undescribed in vivo evidence that a subset of organochlorine pesticides, agrichemicals, and environmental contaminants induces a symbiotic phenotype of inhibited or delayed recruitment of rhizobia bacteria to host plant roots, fewer root nodules produced, lower rates of nitrogenase activity, and a reduction in overall plant yield at time of harvest. The environmental consequences of synthetic chemicals compromising symbiotic nitrogen fixation are increased dependence on synthetic nitrogenous fertilizer, reduced soil fertility, and unsustainable long-term crop yields. PMID:17548832

  18. Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism.

    PubMed

    Yamamoto, Kosuke; Shida, Satoshi; Honda, Yoshihiro; Shono, Mariko; Miyake, Hiroshi; Oguri, Suguru; Sakamoto, Hikaru; Momonoki, Yoshie S

    2015-09-25

    Acetylcholine (ACh), a known neurotransmitter in animals and acetylcholinesterase (AChE) exists widely in plants, although its role in plant signal transduction is unclear. We previously reported AChE in Zea mays L. might be related to gravitropism based on pharmacological study using an AChE inhibitor. Here we clearly demonstrate plant AChE play an important role as a positive regulator in the gravity response of plants based on a genetic study. First, the gene encoding a second component of the ACh-mediated signal transduction system, AChE was cloned from rice, Oryza sativa L. ssp. Japonica cv. Nipponbare. The rice AChE shared high homology with maize, siratro and Salicornia AChEs. Similar to animal and other plant AChEs, the rice AChE hydrolyzed acetylthiocholine and propionylthiocholine, but not butyrylthiocholine. Thus, the rice AChE might be characterized as an AChE (E.C.3.1.1.7). Similar to maize and siratro AChEs, the rice AChE exhibited low sensitivity to the AChE inhibitor, neostigmine bromide, compared with the electric eel AChE. Next, the functionality of rice AChE was proved by overexpression in rice plants. The rice AChE was localized in extracellular spaces of rice plants. Further, the rice AChE mRNA and its activity were mainly detected during early developmental stages (2 d-10 d after sowing). Finally, by comparing AChE up-regulated plants with wild-type, we found that AChE overexpression causes an enhanced gravitropic response. This result clearly suggests that the function of the rice AChE relate to positive regulation of gravitropic response in rice seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters.

    PubMed

    Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata

    2017-01-01

    Microorganisms are considered a genetic resource with great potential for achieving sustainable development of agricultural areas. The objective of this research was to determine the effect of microorganism application forms on the production of biomass, gas exchange, and nutrient content in upland rice. The experiment was conducted under greenhouse conditions in a completely randomized design in a factorial 7 × 3 + 1, with four replications. The treatments consisted of combining seven microorganisms with three application forms (microbiolized seed; microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS); and microbiolized seed + plant sprayed with a microorganism suspension at 7 and 15 DAS) and a control (water). Treatments with Serratia sp. (BRM32114), Bacillus sp. (BRM32110 and BRM32109), and Trichoderma asperellum pool provided, on average, the highest photosynthetic rate values and dry matter biomass of rice shoots. Plants treated with Burkolderia sp. (BRM32113), Serratia sp. (BRM32114), and Pseudomonas sp. (BRM32111 and BRM32112) led to the greatest nutrient uptake by rice shoots. Serratia sp. (BRM 32114) was the most effective for promoting an increase in the photosynthetic rate, and for the greatest accumulation of nutrients and dry matter at 84 DAS, in rice shoots, which differed from the control treatment. The use of microorganisms can bring numerous benefits of rice, such as improving physiological characteristics, nutrient uptake, biomass production, and grain yield.

  20. Using biologically-fixed nitrogen by native plants to enhance growth of hardwood saplings

    Treesearch

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall

    2013-01-01

    Available soil nitrogen is frequently low in old-field plantings. Underplanting forage legumes and interplanting nitrogen-fixing shrubs can improve growth of hardwood saplings, especially black walnut and pecan. Most of the nitrogen-fixing shrubs and forbs have been introduced, and several are now considered invasive species. Research trials have been established on...

  1. Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown under free-air CO2 enrichment (FACE).

    PubMed

    Adachi, Minaco; Hasegawa, Toshihiro; Fukayama, Hiroshi; Tokida, Takeshi; Sakai, Hidemitsu; Matsunami, Toshinori; Nakamura, Hirofumi; Sameshima, Ryoji; Okada, Masumi

    2014-02-01

    To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].

  2. A mesocosm study using four native Hawaiian plants to assess nitrogen accumulation under varying surface water nitrogen concentrations.

    PubMed

    Unser, C U; Bruland, G L; Hood, A; Duin, K

    2010-01-01

    Accumulation of nitrogen (N) by native Hawaiian riparian plants from surface water was measured under a controlled experimental mesocosm setting. Four species, Cladium jamaicense, Cyperus javanicus, Cyperus laevigatus, and Cyperus polystachyos were tested for their ability to survive in coconut fiber coir log media with exposure to differing N concentrations. It was hypothesized that the selected species would have significantly different tissue total nitrogen (TN) concentrations, aboveground biomass, and TN accumulation rates because of habitat preference and physiological growth differences. A general linear model (GLM) analysis of variance (ANOVA) determined that species differences accounted for the greatest proportion of variance in tissue TN concentration, aboveground biomass growth, and accumulation rates, when compared with the other main effects (i.e. N concentration, time) and their interactions. A post hoc test of means demonstrated that C. jamaicense had significantly higher tissue TN concentration, aboveground biomass growth, and accumulation rates than the other species under all N concentrations. It was also hypothesized that tissue TN concentrations and biomass growth would increase in plants exposed to elevated N concentrations, however data did not support this hypothesis. Nitrogen accumulation rates by species were controlled by differences in plant biomass growth.

  3. Plant community responses to simultaneous changes in temperature, nitrogen availability, and invasion.

    PubMed

    Gornish, Elise S; Miller, Thomas E

    2015-01-01

    Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking. In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community. This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.

  4. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    PubMed Central

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  5. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China.

    PubMed

    Zhang, Yun; Luo, Xiao-Jun; Mo, Ling; Wu, Jiang-Ping; Mai, Bi-Xian; Peng, Yong-Hong

    2015-10-01

    The bioaccumulation and translocation of polyhalogenated compounds (PHCs) in rice planted in the paddy soils of an electronic waste (e-waste) recycling site were investigated, along with the effect of contaminated soils on rice growth. The PHCs included polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and dechlorane plus (DPs). The morphological development and all measured physiological parameters of rice plants except for peroxidase were significantly inhibited by e-waste contaminated soils. Specifically, soil-root bioaccumulation factors (RCFs) increased with increasing logarithm of octanol-water partition coefficient (logKow) for PCBs, but decreased for PBDEs. During translocation from root to stem, translocation factors (TFs) and logKow were positively correlated. However, the accumulation mechanism in the leaf was concentration-dependent. In the high concentration exposure group, translocation play more important role in determination PHCs burden in leaf than atmospheric uptake, with logTF (from stem to leaf) being positively correlated with logKow. In contrast, in the low exposure and control groups, logTF (from stem to leaf) was negatively correlated with logKow. In addition, Syn-DP was selectively accumulated in plant tissues. In conclusion, this study demonstrates that e-waste contaminated soils affect rice growth, revealed the rule of the bioaccumulation and translocation of PHCs in rice plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants

    PubMed Central

    2012-01-01

    Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves. PMID:23057967

  7. RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice.

    PubMed

    Ahmed, Mohamed M S; Bian, Shiquan; Wang, Muyue; Zhao, Jing; Zhang, Bingwei; Liu, Qiaoquan; Zhang, Changquan; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-04-01

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Development of resistant varieties by using conventional breeding methods is limited, as germplasm with high level of resistance to RBSDV have not yet been found. One of the most promising methods to confer resistance against RBSDV is the use of RNA interference (RNAi) technology. RBSDV non-structural protein P7-2, encoded by S7-2 gene, is a potential F-box protein and involved in the plant-virus interaction through the ubiquitination pathway. P8, encoded by S8 gene, is the minor core protein that possesses potent active transcriptional repression activity. In this study, we transformed rice calli using a mini-twin T-DNA vector harboring RNAi constructs of the RBSDV genes S7-2 or S8, and obtained plants harboring the target gene constructs and the selectable marker gene, hygromycin phosphotransferase (HPT). From the offspring of these transgenic plants, we obtained selectable marker (HPT gene)-free plants. Homozygous T 5 transgenic lines which harbored either S7-2-RNAi or S8-RNAi exhibited high level resistance against RBSDV under field infection pressure from indigenous viruliferous small brown planthoppers. Thus, our results showed that RNA interference with the expression of S7-2 or S8 genes seemed an effective way to induce high level resistance in rice against RBSD disease.

  8. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere.

    PubMed

    Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed

    PubMed Central

    Serrat, X.; Esteban, R.; Peñas, G.; Català, M. M.; Melé, E.; Messeguer, J.

    2013-01-01

    Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.

  10. Biogeochemical cycling in Rice Agroecosystems Resulting From Water and Si management: Implications for As abatement and Sustainable Rice Production

    NASA Astrophysics Data System (ADS)

    Seyfferth, A.; Limmer, M. A.; Amaral, D.; Teasley, W.

    2017-12-01

    Flooded rice agroecosystems favor geochemical conditions that mobilize soil-bound arsenic (As) and produce methane (CH4). These negative outcomes of flooded rice may lead to As exposure upon As-laden rice grain consumption and enhanced greenhouse gas emissions. Periodic draining of fields (e.g., alternate wetting and drying) is effective at minimizing these negative outcomes, but may reduce rice yield, increase toxic Cd in grain, and increase nitrous oxide (N2O) emissions. Because 3 of the 4 dominant chemical form of As in flooded paddy soil share the efficient Si uptake pathway, increasing plant-available Si can decrease toxic As in grain and boost yield, particularly when plants are stressed with As. We used combined pot and field studies to examine the biogeochemical cycling of As, Fe, Si, and C when plants are grown with water and/or Si management, the latter of which under both low and high As conditions. We show that increasing plant-available Si can be used alone or in conjunction with water management to improve rice yields depending on the edaphic conditions. These processes and findings will be discussed in the larger context of global food security.

  11. Evolution of Compatibility Range in the Rice-Magnaporthe oryzae System: An Uneven Distribution of R Genes Between Rice Subspecies.

    PubMed

    Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier

    2016-04-01

    Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.

  12. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*

    PubMed Central

    Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops. PMID:16187411

  13. A rhamnose-deficient lipopolysaccharide mutant of Rhizobium sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice.

    PubMed

    Mitra, Shubhajit; Mukherjee, Arijit; Wiley-Kalil, Audrey; Das, Seema; Owen, Heather; Reddy, Pallavolu M; Ané, Jean-Michel; James, Euan K; Gyaneshwar, Prasad

    2016-10-01

    Rhizobium sp. IRBG74 develops a classical nitrogen-fixing symbiosis with the aquatic legume Sesbania cannabina (Retz.). It also promotes the growth of wetland rice (Oryza sativa L.), but little is known about the rhizobial determinants important for these interactions. In this study, we analyzed the colonization of S. cannabina and rice using a strain of Rhizobium sp. IRBG74 dually marked with β-glucuronidase and the green fluorescent protein. This bacterium colonized S. cannabina by crack entry and through root hair infection under flooded and non-flooded conditions, respectively. Rhizobium sp. IRBG74 colonized the surfaces of wetland rice roots, but also entered them at the base of lateral roots. It became endophytically established within intercellular spaces in the rice cortex, and intracellularly within epidermal and hypodermal cells. A mutant of Rhizobium sp. IRBG74 altered in the synthesis of the rhamnose-containing O-antigen exhibited significant defects, not only in nodulation and symbiotic nitrogen fixation with S. cannabina, but also in rice colonization and plant growth promotion. Supplementation with purified lipopolysaccharides from the wild-type strain, but not from the mutant, restored the beneficial colonization of rice roots, but not fully effective nodulation of S. cannabina Commonalities and differences in the rhizobial colonization of the roots of wetland legume and rice hosts are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    PubMed

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  15. Hormonal regulation of floret closure of rice (Oryza sativa)

    PubMed Central

    Huang, Youming; Zeng, Xiaochun

    2018-01-01

    Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA), indole-3-butyric acid (IBA), 1-naphthalene-acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (DIC) and abscisic acid (ABA) on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013–2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of the varieties

  16. Gene flow from single and stacked herbicide-resistant rice (Oryza sativa): modeling occurrence of multiple herbicide-resistant weedy rice.

    PubMed

    Dauer, Joseph; Hulting, Andrew; Carlson, Dale; Mankin, Luke; Harden, John; Mallory-Smith, Carol

    2018-02-01

    Provisia™ rice (PV), a non-genetically engineered (GE) quizalofop-resistant rice, will provide growers with an additional option for weed management to use in conjunction with Clearfield ® rice (CL) production. Modeling compared the impact of stacking resistance traits versus single traits in rice on introgression of the resistance trait to weedy rice (also called red rice). Common weed management practices were applied to 2-, 3- and 4-year crop rotations, and resistant and multiple-resistant weedy rice seeds, seedlings and mature plants were tracked for 15 years. Two-year crop rotations resulted in resistant weedy rice after 2 years with abundant populations (exceeding 0.4 weedy rice plants m -2 ) occurring after 7 years. When stacked trait rice was rotated with soybeans in a 3-year rotation and with soybeans and CL in a 4-year rotation, multiple-resistance occurred after 2-5 years with abundant populations present in 4-9 years. When CL rice, PV rice, and soybeans were used in 3- and 4-year rotations, the median time of first appearance of multiple-resistance was 7-11 years and reached abundant levels in 10-15 years. Maintaining separate CL and PV rice systems, in rotation with other crops and herbicides, minimized the evolution of multiple herbicide-resistant weedy rice through gene flow compared to stacking herbicide resistance traits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica).

    PubMed

    Luo, Di; Niu, Xiangli; Yu, Jinde; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng

    2012-09-01

    Glycine betaine (GB) is a compatible quaternary amine that enables plants to tolerate abiotic stresses, including salt, drought and cold. In plants, GB is synthesized through two-step of successive oxidations from choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Rice is considered as a typical non-GB accumulating species, although the entire genome sequencing revealed rice contains orthologs of both CMO and BADH. Several studies unraveled that rice has a functional BADH gene, but whether rice CMO gene (OsCMO) is functional or a pseudogene remains to be elucidated. In the present study, we report the functional characterization of rice CMO gene. The OsCMO gene was isolated from rice cv. Nipponbare (Oryza sativa L. ssp. japonica) using RT-PCR. Northern blot demonstrated the transcription of OsCMO is enhanced by salt stress. Transgenic tobacco plants overexpressing OsCMO results in increased GB content and elevated tolerance to salt stress. Immunoblotting analysis demonstrates that a functional OsCMO protein with correct size was present in transgenic tobacco but rarely accumulated in wild-type rice plants. Surprisingly, a large amount of truncated proteins derived from OsCMO was induced in the rice seedlings in response to salt stresses. This suggests that it is the lack of a functional OsCMO protein that presumably results in non-GB accumulation in the tested rice plant. Expression and transgenic studies demonstrate OsCMO is transcriptionally induced in response to salt stress and functions in increasing glycinebetaine accumulation and enhancing tolerance to salt stress. Immunoblotting analysis suggests that no accumulation of glycinebetaine in the Japonica rice plant presumably results from lack of a functional OsCMO protein.

  18. Nitrogen and Phosphorous Uptake in Plant Biomass of Experimental Bioretention Systems in Utah

    NASA Astrophysics Data System (ADS)

    Sapkota, P.

    2016-12-01

    There is keen interest in implementing bioretention systems for stormwater management in an arid climate as they have proven to reduce toxicity from stormwater. Nitrogen is prevalent in urban stormwater, and plants and soil in bioretention treat stormwater before they enter natural waterways. A limited number of studies have focused on quantifying nutrient accumulation in plants. We quantified Total Nitrogen (TN), Total carbon (TC), and Total Phosphorous (TP) uptake in plants biomass of bioretention systems of semi-arid climate. The designed bioretention units housed at the University of Utah have three different vegetation types: Utah native plants (upland), no plants (control) and wetland plants (wetland grasses and reeds). The bioretention units are designed to capture 95% of the runoff from an impervious area of 220 m2. The soil is composed of 63% sand, 23% silt, and 14% clay. We compared TN, TC, and TP accumulation in plant biomass of upland and wetland systems. Two set of samples were taken for this study. For the first set, plants were completely destroyed in several upland and wetland bioretention units and TN and TP was quantified in their overall biomass. For the second set, TN and TP uptake were quantified in non-destructed samples on a monthly basis. To determine biomass of non-destructed samples, and TN, TP uptake, allometric equations were developed using plant height, crown diameter, and stem diameter measured each month from May 2015 to Dec 2015. Isotope ratio mass spectrometry (IRMS) was used to quantify TN and lachat colorimetry was used to quantify TP in all plant samples. TN, TC, and TP results for the destructed showed similar trends in three upland and wetland systems .i.e. when one increased other also increased. TN, TC analysis on plant samples over a seven months period showed that TN and TC decreased in summer, but it was significantly higher during winter. TN and TC on non-destructed samples spiked towards late spring, and woody plants

  19. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment.

    PubMed

    Liu, C Y; Jiang, X; Yang, X L; Song, Y

    2010-01-15

    Reductive dechlorination is a crucial pathway for HCB degradation, the applications of organic materials and nitrogen can alter microbial activity and redox potential of soils, thus probably influence HCB dechlorination. To evaluate hexachlorobenzene (HCB) dechlorination as affected by organic fertilizer (OF) and urea applications in planted paddy soils, a pot experiment was conducted in two types of soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). After 18 weeks of experiment, HCB residues decreased by 28.2-37.5% of the initial amounts in Ac, and 42.1-70.9% in An. The amounts of HCB metabolites showed that dechlorination rates in An were higher than in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. Both in Ac and An, the additions of 1% and 2% OF had negative effect on HCB dechlorination, which was probably because excessive nitrogen in OF decreased degraders' activity and the degradation of organic carbon in OF accepted electrons. The application of 0.03% urea could enhance HCB dechlorination rates slightly, while 0.06% urea accelerated HCB dechlorination significantly both in Ac and An. It could be assumed that urea served as an electron donor and stimulated degraders to dechlorinate HCB. In addition, the methanogenic bacteria were involved in dechlorination process, and reductive dechlorination in planted paddy soil might be impeded for the aerenchyma and O(2) supply into the rhizosphere. Results indicated that soil types, rice root system, methanogenic bacteria, OF and urea applications all had great effects on dechlorination process. Copyright 2009 Elsevier B.V. All rights reserved.

  20. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms.

    PubMed

    Zhu, Shifeng; Gao, Feng; Cao, Xuesong; Chen, Mao; Ye, Gongyin; Wei, Chunhong; Li, Yi

    2005-12-01

    The mechanisms of viral diseases are a major focus of biology. Despite intensive investigations, how a plant virus interacts with host factors to cause diseases remains poorly understood. The Rice dwarf virus (RDV), a member of the genus Phytoreovirus, causes dwarfed growth phenotypes in infected rice (Oryza sativa) plants. The outer capsid protein P2 is essential during RDV infection of insects and thus influences transmission of RDV by the insect vector. However, its role during RDV infection within the rice host is unknown. By yeast two-hybrid and coimmunoprecipitation assays, we report that P2 of RDV interacts with ent-kaurene oxidases, which play a key role in the biosynthesis of plant growth hormones gibberellins, in infected plants. Furthermore, the expression of ent-kaurene oxidases was reduced in the infected plants. The level of endogenous GA1 (a major active gibberellin in rice vegetative tissues) in the RDV-infected plants was lower than that in healthy plants. Exogenous application of GA3 to RDV-infected rice plants restored the normal growth phenotypes. These results provide evidence that the P2 protein of RDV interferes with the function of a cellular factor, through direct physical interactions, that is important for the biosynthesis of a growth hormone leading to symptom expression. In addition, the interaction between P2 and rice ent-kaurene oxidase-like proteins may decrease phytoalexin biosynthesis and make plants more competent for virus replication. Moreover, P2 may provide a novel tool to investigate the regulation of GA metabolism for plant growth and development.