Science.gov

Sample records for nitrosococcus oceani atcc19707

  1. Draft Genome Sequence of Pseudomonas oceani DSM 100277T, a Deep-Sea Bacterium.

    PubMed

    García-Valdés, Elena; Gomila, Margarita; Mulet, Magdalena; Lalucat, Jorge

    2018-04-12

    Pseudomonas oceani DSM 100277 T was isolated from deep seawater in the Okinawa Trough at 1390 m. P. oceani belongs to the Pseudomonas pertucinogena group. Here, we report the draft genome sequence of P. oceani , which has an estimated size of 4.1 Mb and exhibits 3,790 coding sequences, with a G+C content of 59.94 mol%. Copyright © 2018 García-Valdés et al.

  2. Draft Genome Sequence of Pseudomonas oceani DSM 100277T, a Deep-Sea Bacterium

    PubMed Central

    2018-01-01

    ABSTRACT Pseudomonas oceani DSM 100277T was isolated from deep seawater in the Okinawa Trough at 1390 m. P. oceani belongs to the Pseudomonas pertucinogena group. Here, we report the draft genome sequence of P. oceani, which has an estimated size of 4.1 Mb and exhibits 3,790 coding sequences, with a G+C content of 59.94 mol%. PMID:29650573

  3. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru.

    PubMed

    Finster, Kai W; Kjeldsen, Kasper U

    2010-03-01

    Two deltaproteobacterial sulfate reducers, designated strain I.8.1(T) and I.9.1(T), were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20 degrees C at pH 7.0-8.0 and at 2.5-3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C(3-4) fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-omega9c (18%) for strain I.8.1(T) and iso-17:0-omega9c (14%) for strain I.9.1(T). The G+C contents of their genomic DNA were 45-46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141(T) and Desulfovibrio marinisediminis JCM 14577(T) represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98-99%. The level of DNA-DNA hybridization between strains I.8.1(T) and I.9.1(T) was 30-38%. The two strains shared 10-26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1(T) and I.9.1(T) represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1(T) = DSM 21390(T) = JCM 15970(T)) and D. oceani subsp. galateae (type strain, I.9.1(T) = DSM 21391(T) = JCM 15971(T)).

  4. Growth of Nitrosococcus-Related Ammonia Oxidizing Bacteria Coincides with Extremely Low pH Values in Wastewater with High Ammonia Content

    PubMed Central

    2017-01-01

    Ammonia oxidation decreases the pH in wastewaters where alkalinity is limited relative to total ammonia. The activity of ammonia oxidizing bacteria (AOB), however, typically decreases with pH and often ceases completely in slightly acidic wastewaters. Nevertheless, nitrification at low pH has been reported in reactors treating human urine, but it has been unclear which organisms are involved. In this study, we followed the population dynamics of ammonia oxidizing organisms and reactor performance in synthetic fully hydrolyzed urine as the pH decreased over time in response to a decrease in the loading rate. Populations of the β-proteobacterial Nitrosomonas europaea lineage were abundant at the initial pH close to 6, but the growth of a possibly novel Nitrosococcus-related AOB genus decreased the pH to the new level of 2.2, challenging the perception that nitrification is inhibited entirely at low pH values, or governed exclusively by β-proteobacterial AOB or archaea. With the pH shift, nitrite oxidizing bacteria were not further detected, but nitrous acid (HNO2) was still removed through chemical decomposition to nitric oxide (NO) and nitrate. The growth of acid-tolerant γ-proteobacterial AOB should be prevented, by keeping the pH above 5.4, which is a typical pH limit for the N. europaea lineage. Otherwise, the microbial community responsible for high-rate nitrification can be lost, and strong emissions of hazardous volatile nitrogen compounds such as NO are likely. PMID:28509546

  5. Candida oceani sp. nov., a novel yeast isolated from a Mid-Atlantic Ridge hydrothermal vent (-2300 meters).

    PubMed

    Burgaud, Gaëtan; Arzur, Danielle; Sampaio, José Paulo; Barbier, Georges

    2011-06-01

    A novel species in the genus Candida was obtained from deep-sea hydrothermal fields on the Mid-Atlantic Ridge. Strains Mo39, MARY089 and CBS 5307, respectively, isolated from an unidentified deep-sea coral collected near Rainbow hydrothermal vent, from water samples near Menez Gwen hydrothermal field and from the stomach of a marine fish are considered as a novel taxon. Sequence similarities in the D1/D2 region of the 26S rRNA gene indicated that strains Mo39, MARY089 and CBS 5307 have for closest neighbors Candida spencermartinsiae, Candida taylorii, Candida atmosphaerica and Candida atlantica. The strains, respectively, differ from C. spencermartinsiae, C. taylorii, C. atmosphaerica andCandida atlantica by 4, 4.3, 4.3 and 4.7% in the D1/D2 domain. Strains Mo39, MARY089 and CBS 5307 were differentiated from others by differences in the ability to assimilate D: -Gluconate and in the ability to grow at relatively high temperature. Only strain Mo39 displays an optimal growth at 3% sea salts, indicating that this strain is clearly adapted to live in marine conditions. Sequence similarities between strains Mo39, MARY089 and CBS 5307 and related species and differences in the ability to utilize specific carbon compounds revealed that these strains represent a hitherto unknown species. Sexual reproduction was not observed in strains Mo39, MARY089 and CBS 5307. An anamorphic name Candida oceani sp. nov. is proposed for the type strain Mo39(T) (= CBS 11857(T) = DSM 23777(T)) and the two other strains MARY089 and CBS 5307. To our knowledge, this is the first description of a micro-eukaryotic organism including a strain isolated from a deep-sea coral near a hydrothermal ecosystem.

  6. Differential responses of nitrifying archaea and bacteria to methylene blue toxicity.

    PubMed

    Sipos, A J; Urakawa, H

    2016-02-01

    Methylene blue, a heterocyclic aromatic chemical compound used to treat fish diseases in the ornamental fish aquaculture industry, is believed to impair nitrification as a side effect. However, very little is known about the toxicity of methylene blue to nitrifying micro-organisms. Here, we report the susceptibility of six bacterial and one archaeal ammonia-oxidizing micro-organisms to methylene blue within the range of 10 ppb to 10 ppm. Remarkably high susceptibility was observed in the archaeal species Nitrosopumilus maritimus compared to the bacterial species. Ammonia oxidation by Nitrosopumilus maritimus was inhibited 65% by 10 ppb of methylene blue. Of the bacterial species examined, Nitrosococcus oceani was the most resistant to methylene blue toxicity. For similar inhibition of Nitrosococcus oceani (75% inhibition), one thousand times more methylene blue (10 ppm) was needed. The examination of single cell viability on Nitrosomonas marina demonstrated that methylene blue is lethal to the cells rather than reducing their single cell ammonia oxidation activity. The level of susceptibility to methylene blue was related to the cell volume, intracytoplasmic membrane arrangement and the evolutionary lineage of nitrifying micro-organisms. Our findings are relevant for effectively using methylene blue in various aquaculture settings by helping minimize its impact on nitrifiers during the treatment of fish diseases. In the future, resistant nitrifiers such as Nitrosococcus oceani may be purposely added to aquaculture systems to maintain nitrification activity during treatments with methylene blue. The susceptibility of six bacterial and one archaeal nitrifying micro-organisms to methylene blue was tested. Remarkably high susceptibility was observed in the archaeal species compared to the bacterial species. The level of resistance to methylene blue was related to the cell volume, cytomembrane system and the taxonomic position of the nitrifying micro

  7. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  8. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2013-10-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans, respectively. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  9. Combiner L'Education Et Le Travail; Experiences en Asie et en Oceanie: Viet Nam (Combining Education and Work; Experiences in Asia and Oceania: Viet Nam).

    ERIC Educational Resources Information Center

    Vien, Hguyen Khac

    Educational policy in Viet Nam has closely followed the revolutionary movement. In the essentially democratic period from 1945 to 1960, Viet Nam created a nationwide 10-grade school system and fought illiteracy on a large scale. By 1960, as socialism began to predominate, especially in the North, traditional educational methods and values began to…

  10. Global Climate Change and Environmental Contaminants: A SETAC Call for Research

    EPA Science Inventory

    Climate change has become a global environmental threat that will impact virtually every ecosystem on the planet for generations to come. The widespread nature of the threat is evident in not only industrialized countries, but in remote locations, such as polar regions and oceani...

  11. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater.

    PubMed

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-04-25

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30-85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations.

  12. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-01-01

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30–85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations. PMID:27109617

  13. The timescales of global surface-ocean connectivity.

    PubMed

    Jönsson, Bror F; Watson, James R

    2016-04-19

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.

  14. Differential response of marine flagellate communities to prokaryotic food quality

    NASA Astrophysics Data System (ADS)

    De Corte, D.; Paredes, G.; Sintes, E.; Herndl, G. J.

    2016-02-01

    Marine prokaryotes play a major role in the biogeochemical cycles. The main predators of prokaryotes are heterotrophic nanoflagellates (HNF). HNF are thus a major link connecting dissolved organic material through prokaryotic grazing to the higher trophic levels. However, little is known about the grazing specificity of HNF on specific prokaryotic taxa. Bacterial and archaeal microbes may have different nutritive values for the HNF communities, thus affecting growth rates and community composition of HNFs. In this study we investigated the influence of prey food quality on Cafeteria roenbergensis and on a natural HNF community isolated in the northern Adriatic Sea. Two Nitrosopumilus maritimus-related strains isolated from the northern Adriatic Sea (Nitrosopumilus adriaticus, Nitrosopumilus piranensis), two Nitrosococcus strains and two fast growing marine Bacteria (Pseudomonas marina and Marinobacter algicola) were fed to the HNFs. The two fast growing bacterial strains resulted in high growth rates of Cafeteria roenbergensis and the mixed HNF community, while the two Nitrosococcus strains did not. Cafeteria roenbergensis fed on N. adriaticus but it did not graze N. piranensis, suggesting that the subtle metabolic and physiological differences between these two closely related thaumarchaeal strains affect the grazing pressure to which they are exposed. Our study also indicates that prokaryotic community composition influences the composition of the HNF community.

  15. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo.

    PubMed

    Limpiyakorn, Tawan; Shinohara, Yuko; Kurisu, Futoshi; Yagi, Osami

    2005-10-01

    We investigated ammonia-oxidizing bacteria in activated sludge collected from 12 sewage treatment systems, whose ammonia removal and treatment processes differed, during three different seasons. We used real-time PCR quantification to reveal total bacterial numbers and total ammonia oxidizer numbers, and used specific PCR followed by denaturing gel gradient electrophoresis, cloning, and sequencing of 16S rRNA genes to analyze ammonia-oxidizing bacterial communities. Total bacterial numbers and total ammonia oxidizer numbers were in the range of 1.6 x 10(12) - 2.4 x 10(13) and 1.0 x 10(9) - 9.2 x 10(10)cellsl(-1), respectively. Seasonal variation was observed in the total ammonia oxidizer numbers, but not in the ammonia-oxidizing bacterial communities. Members of the Nitrosomonas oligotropha cluster were found in all samples, and most sequences within this cluster grouped within two of the four sequence types identified. Members of the clusters of Nitrosomonas europaea-Nitrosococcus mobilis, Nitrosomonas cryotolerans, and unknown Nitrosomonas, occurred solely in one anaerobic/anoxic/aerobic (A2O) system. Members of the Nitrosomonas communis cluster occurred almost exclusively in association with A2O and anaerobic/aerobic systems. Solid residence time mainly influenced the total numbers of ammonia-oxidizing bacteria, whereas dissolved oxygen concentration primarily affected the ammonia-oxidizing activity per ammonia oxidizer cell.

  16. Shifts in Nitrification Kinetics and Microbial Community during Bioaugmentation of Activated Sludge with Nitrifiers Enriched on Sludge Reject Water

    PubMed Central

    Yu, Lifang; Peng, Dangcong; Pan, Ruiling

    2012-01-01

    This study used two laboratory-scale sequencing batch reactors (SBRs) to evaluate the shifts in nitrification kinetics and microbial communities of an activated sludge sewage treatment system (main stream) during bioaugmentation with nitrifiers cultivated on real sludge reject water (side stream). Although bioaugmentation exerted a strong influence on the microbial community and the nitrification kinetics in the main stream, there was 58% of maximum ammonia uptake rate (AUR) and 80% of maximum nitrite uptake rate (NUR) loss of the seed source after bioaugmentation. In addition, nitrite accumulation occurred during bioaugmentation due to the unequal and asynchronous increase of the AUR (from 2.88 to 13.36 mg N/L·h) and NUR (from 0.76 to 4.34 mg N/L·h). FISH results showed that ammonia oxidizing bacteria (AOB) was inclined to be washed out with effluent in contrast to nitrite oxidizing bacteria (NOB), and Nitrosococcus mobilis lineage was the dominant AOB, while the dominant NOB in the main stream gradually transferred from Nitrospira to Nitrobacter. Nitrospina and Nitrococcus which existed in the seed source could not be detected in the main stream. It can be inferred that nitrite accumulation occurred due to the mismatch of NOB structure but washed out with effluent. PMID:23091354

  17. Identification of Bacteria Responsible for Ammonia Oxidation in Freshwater Aquaria

    PubMed Central

    Burrell, Paul C.; Phalen, Carol M.; Hovanec, Timothy A.

    2001-01-01

    Culture enrichments and culture-independent molecular methods were employed to identify and confirm the presence of novel ammonia-oxidizing bacteria (AOB) in nitrifying freshwater aquaria. Reactors were seeded with biomass from freshwater nitrifying systems and enriched for AOB under various conditions of ammonia concentration. Surveys of cloned rRNA genes from the enrichments revealed four major strains of AOB which were phylogenetically related to the Nitrosomonas marina cluster, the Nitrosospira cluster, or the Nitrosomonas europaea-Nitrosococcus mobilis cluster of the β subdivision of the class Proteobacteria. Ammonia concentration in the reactors determined which AOB strain dominated in an enrichment. Oligonucleotide probes and PCR primer sets specific for the four AOB strains were developed and used to confirm the presence of the AOB strains in the enrichments. Enrichments of the AOB strains were added to newly established aquaria to determine their ability to accelerate the establishment of ammonia oxidation. Enrichments containing the Nitrosomonas marina-like AOB strain were most efficient at accelerating ammonia oxidation in newly established aquaria. Furthermore, if the Nitrosomonas marina-like AOB strain was present in the original enrichment, even one with other AOB, only the Nitrosomonas marina-like AOB strain was present in aquaria after nitrification was established. Nitrosomonas marina-like AOB were 2% or less of the cells detected by fluorescence in situ hybridization analysis in aquaria in which nitrification was well established. PMID:11722936

  18. Assessment of Changes in Microbial Community Structure during Operation of an Ammonia Biofilter with Molecular Tools

    PubMed Central

    Sakano, Y.; Kerkhof, L.

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria. PMID:9835577

  19. Metagenomic analysis of nitrogen metabolism genes in the surface of marine sediments

    NASA Astrophysics Data System (ADS)

    Reyes, Carolina; Schneider, Dominik; Thürmer, Andrea; Dellwig, Olaf; Lipka, Marko; Daniel, Rolf; Böttcher, Michael E.; Friedrich, Michael W.

    2016-04-01

    In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (North Sea) and Bothnian Bay (Baltic Sea) sediments, to trace the prevailing nitrogen pathways. NO3- was present in the top 5 cm below the sediment-water interface at both sites. NH4+ increased with depth below 5 cm where it overlapped with the NO3- zone. Steady state modelling of NO3- and NH4+ porewater profiles indicates zones of net nitrogen species transformations. Protease, peptidase, urease and deaminase ammonification genes were detected in metagenomes. Genes involved in ammonia oxidation (amo, hao), nitrite oxidation (nxr), denitrification (nar, nir, nor) and dissimilatory NO3- reduction to NH4+ (nap, nfr and otr) were also present. 16S rRNA gene analysis showed that the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus, and Nitrosonomas) appeared less abundant in Skagerrak sediments compared to Bothnian Bay sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present suggesting chemolithoautotrophic NO3- reduction to NO2- or NH4+ as a possible pathway. Although anammox planctomycetes 16S rRNA genes were present in metagenomes, anammox protein-coding genes were not detected. Our results show the metabolic potential for ammonification, nitrification, NO3- reduction, and denitrification activities in Skagerrak and Bothnian Bay sediments.

  20. Production of NO2/-/ and N2O by nitrifying bacteria at reduced concentrations of oxygen

    NASA Technical Reports Server (NTRS)

    Goreau, T. J.; Kaplan, W. A.; Wofsy, S. C.; Mcelroy, M. B.; Valois, F. W.; Watson, S. W.

    1980-01-01

    The influence of oxygen concentration on the production of NO2(-) and N2O by nitrifying marine bacteria of the genus Nitrosomonas is investigated. Pure cultures of the ammonium-oxiding bacteria isolated from the Western Tropical Atlantic Ocean were grown at oxygen partial pressures from 0.005 to 0.2 atm, and concentrations of N2O in the air above the growth medium and dissolved NO2(-) were determined. Decreasing oxygen concentrations are observed to induce a marked decrease in NO2(-) production rates and increase in N2O evolution, leading to an increase of the relative yield of N2O with respect to NO2(-) from 0.3% to nearly 10%. Similar yields of N2O at atmospheric oxygen levels are found for nitrifying bacteria of the genera Nitrosomonas, Nitrosolobus, Nitrosospira and Nitrosococcus, while nitrite-oxydizing bacteria and a dinoflagellate did not produce detectable quantities of N2O. Results support the view that nitrification is a major source of N2O in the environment.

  1. Community structure of denitrifying and total bacteria during nitrogen accumulation in an ammonia-loaded biofilter.

    PubMed

    Yasuda, T; Waki, M; Fukumoto, Y; Hanajima, D; Kuroda, K; Suzuki, K; Matsumoto, T; Uenishi, H

    2017-12-01

    To obtain insight into the complex behaviour of denitrifying and total bacterial groups during the nitrogen accumulation process in an ammonia-loaded biofiltration system. Denitrifying and total bacterial communities in a laboratory-scale rockwool biofilter with intermittent water recirculation were analysed by using denaturing gradient gel electrophoresis targeting nosZ and metabarcoding sequencing of the 16S rRNA gene. Gene abundance was evaluated by quantitative PCR. The nosZ number increased from 6·59 × 10 6 to 3·33 × 10 8 copies per gram dry sample over the 436 days of operation, during which nitrogen mass balance errors increased to 39%. The nosZ sequences associated with the genera Castellaniella, Hyphomicrobium and Pseudomonas were detected. Metabarcoding sequencing analysis indicated that the proportions of the genera for which at least one denitrifying strain or species possessing nosZ had been characterized corresponded well to the nitrogen loss. In addition, the genus Nitrosococcus (γ-proteobacteria) increased its relative abundance at days 317 and 436. The increased proportion of denitrifying bacteria in this ammonia-loaded biofiltration system could be related to the nitrogen loss. These results will help to clarify the complex behaviour of nitrifiers and denitrifiers within ammonia-loaded biofiltration systems. © 2017 The Society for Applied Microbiology.

  2. Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools

    NASA Technical Reports Server (NTRS)

    Sakano, Y.; Kerkhof, L.; Janes, H. W. (Principal Investigator)

    1998-01-01

    Biofiltration has been used for two decades to remove odors and various volatile organic and inorganic compounds in contaminated off-gas streams. Although biofiltration is widely practiced, there have been few studies of the bacteria responsible for the removal of air contaminants in biofilters. In this study, molecular techniques were used to identify bacteria in a laboratory-scale ammonia biofilter. Both 16S rRNA and ammonia monooxygenase (amoA) genes were used to characterize the heterotrophic and ammonia-oxidizing bacteria collected from the biofilter during a 102-day experiment. The overall diversity of the heterotrophic microbial population appeared to decrease by 38% at the end of the experiment. The community structure of the heterotrophic population also shifted from predominantly members of two subdivisions of the Proteobacteria (the beta and gamma subdivisions) to members of one subdivision (the gamma subdivision). An overall decrease in the diversity of ammonia monooxygenase genes was not observed. However, a shift from groups dominated by organisms containing Nitrosomonas-like and Nitrosospira-like amoA genes to groups dominated by organisms containing only Nitrosospira-like amoA genes was observed. In addition, a new amoA gene was discovered. This new gene is the first freshwater amoA gene that is closely affiliated with Nitrosococcus oceanus and the particulate methane monooxygenase gene from the methane oxidizers belonging to the gamma subdivision of the Proteobacteria.

  3. So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites.

    PubMed

    Gagliano, A L; Tagliavia, M; D'Alessandro, W; Franzetti, A; Parello, F; Quatrini, P

    2016-03-01

    This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next-Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia-oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo-acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4(+) concentration. At the same time, abundant availability of NH4(+) and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non-nitrogen-limited soils. © 2015 John Wiley & Sons Ltd.

  4. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    PubMed

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  6. Pseudomonas abyssi sp. nov., isolated from the abyssopelagic water of the Mariana Trench.

    PubMed

    Wei, Yuli; Mao, Haiyan; Xu, Yunping; Zou, Wencai; Fang, Jiasong; Blom, Jochen

    2018-06-21

    A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped bacterium, designated as strain MT5 T , was isolated from deep seawater in the Mariana Trench and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 28 °C (range, 4-45 °C), pH 5-7 (pH 4-11) and with 3-7 % (w/v) NaCl (0-18 %). Phylogenetic analysis based on 16S rRNA gene sequence showed that strain MT5 T was related to members of the genus Pseudomonas and shared the highest sequence identities with Pseudomonas pachastrellae CCUG 46540 T (99.6 %), Pseudomonas aestusnigri VGXO14 T (98.5 %) and Pseudomonas oceani KX 20 T (98.4 %). The 16S rRNA gene sequence identities between strain MT5 T and other members of the genus Pseudomonas were below 96.7 %. The digital DNA-DNA hybridization values between strain MT5 T and the two type strains, P. pachastrellae and P. aestusnigri, were 38.9±2.5 and 25.8±2.4 %, respectively. The average nucleotide identity values between strain MT5 T and the two type strains were 90.3 and 87.0 %, respectively. Strain MT5 T and the two type strains shared 94.98 and 86.2 % average amino acid identity, and 30 and 33 Karlin genomic signature, respectively. The sole respiratory menaquinone was Q-9. The major polar lipids were phosphatidylethanolamine, diphosphatidyglycerol and phosphatidylglycerol. The predominant cellular fatty acids of strain MT5 T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) (35.3 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (24.1 %), C16 : 0 (15.9 %) and C12 : 0 (7.2 %). The G+C content of the genomic DNA was 61.2 mol%. The combined genotypic and phenotypic data indicated that strain MT5 T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas abyssi sp. nov. is proposed, with the type strain MT5 T (=KCTC 62295 T =MCCC 1K03351 T ).

  7. Emergent macrophytes select for nitrifying and denitrifying microorganisms in constructed wetlands

    NASA Astrophysics Data System (ADS)

    Trias, Rosalia; Ramió Pujol, Sara; Bañeras, Lluis

    2014-05-01

    The use of constructed wetlands for wastewater treatment is a reliable low-cost alternative that has been widely developed during the last years. Several processes involving plants, sediments, and microbial communities contribute to nitrogen removal in wetlands. Vegetation plays an important role in this process, not only by nutrient assimilation but also by the stimulation of the plant associated microbiota. Plants supply oxygen at the close proximity of the root surface that may favour ammonia oxidizers. At the same time, exudation of organic compounds potentially speeds-up denitrification in the anoxic environment. The aim of this work was to understand the plant-microbe interactions at the root level in the Empuriabrava free water surface constructed wetland (Spain). The roots of the macrophytes Typha latifolia, Typha angustifolia, Phragmites australis and Bolboschoenus maritimus were sampled at four dates from January to September 2012, covering all the stages of plant growth. Additionally, sediment surrounding vegetation and non-vegetated sediments were sampled. Microbial community structure was analysed by pyrosequencing of bacterial and archaeal 16S rDNA and functional genes (nirK, nirS, nosZ and amoA). Bacterial communities were significantly different in sediments of the vegetated areas compared to the root surface. Plant roots exhibited a higher proportion of proteobacteria whereas Actinobacteria were dominant in sediments. The nitrifiers Nitrosomonas sp. and Nitrosococcus sp. accounted for less than 1% of all sequences. Archaeal communities were dominated by the Miscellaneous Crenarchaeotic Groups C2 and C3 and Methanomicrobia. Higher relative abundances of MCG were found in roots of P. australis, B. maritimus and T. angustifolia. Ammonia oxidizing archaea accounted for less than 0.1% of all sequences but were consistently more abundant in sediment samples compared to roots. NirK and NirS-type bacterial communities showed clearly distinct distribution

  8. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers.

    PubMed Central

    Bédard, C; Knowles, R

    1989-01-01

    Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two groups of organisms to the metabolism of CO, CH4, and NH4+ in various environments are not known. In the ammonia oxidizers, ammonia monooxygenase, the enzyme responsible for the conversion of NH4+ to NH2OH, also catalyzes the oxidation of CH4 to CH3OH. Ammonia monooxygenase also mediates the transformation of CH3OH to CO2 and cell carbon, but the pathway by which this is done is not known. At least one species of ammonia oxidizer, Nitrosococcus oceanus, exhibits a Km for CH4 oxidation similar to that of methanotrophs. However, the highest rate of CH4 oxidation recorded in an ammonia oxidizer is still five times lower than rates in methanotrophs, and ammonia oxidizers are apparently unable to grow on CH4. Methanotrophs oxidize NH4+ to NH2OH via methane monooxygenase and NH4+ to NH2OH via methane monooxygenase and NH2OH to NO2- via an NH2OH oxidase which may resemble the enzyme found in ammonia oxidizers. Maximum rates of NH4+ oxidation are considerably lower than in ammonia oxidizers, and the affinity for NH4+ is generally lower than in ammonia oxidizers. NH4+ does not apparently support growth in methanotrophs. Both ammonia monooxygenase and methane monooxygenase oxidize CO to CO2, but CO cannot support growth in either ammonia oxidizers or methanotrophs. These organisms have affinities for CO which are comparable to those for their growth substrates and often higher than those in carboxydobacteria. The methane monooxygenases of methanotrophs exist in two forms: a soluble form and a particulate form. The soluble form is well characterized and appears unrelated to the particulate. Ammonia monooxygenase and the particulate methane monooxygenase share a number of similarities. Both enzymes contain copper and are membrane bound. They oxidize a variety of inorganic and organic compounds, and