Sample records for nitroxide radical complex

  1. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    NASA Astrophysics Data System (ADS)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  2. Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd(3+)-DTPA chelate complexes.

    PubMed

    Yulikov, Maxim; Lueders, Petra; Warsi, Muhammad Farooq; Chechik, Victor; Jeschke, Gunnar

    2012-08-14

    Nanosized gold particles were functionalised with two types of paramagnetic surface tags, one having a nitroxide radical and the other one carrying a DTPA complex loaded with Gd(3+). Selective measurements of nitroxide-nitroxide, Gd(3+)-nitroxide and Gd(3+)-Gd(3+) distances were performed on this system and information on the distance distribution in the three types of spin pairs was obtained. A numerical analysis of the dipolar frequency distributions is presented for Gd(3+) centres with moderate magnitudes of zero-field splitting, in the range of detection frequencies and resonance fields where the high-field approximation is only roughly valid. The dipolar frequency analysis confirms the applicability of DEER for distance measurements in such complexes and gives an estimate for the magnitudes of possible systematic errors due to the non-ideality of the measurement of the dipole-dipole interaction.

  3. Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization

    NASA Astrophysics Data System (ADS)

    Edeleva, M. V.; Marque, S. R. A.; Bagryanskaya, E. G.

    2018-04-01

    Controlled, or pseudoliving, radical polymerization provides unique opportunities for the synthesis of structurally diverse polymers with a narrow molecular-weight distribution. These reactions occur under relatively mild conditions with broad tolerance to functional groups in the monomers. The nitroxide-mediated pseudoliving radical polymerization is of particular interest for the synthesis of polymers for biomedical applications. This review briefly describes one of the mechanisms of controlled radical polymerization. The studies dealing with the use of imidazoline and imidazolidine nitroxides as controlling agents for nitroxide-mediated pseudoliving radical polymerization of various monomers are summarized and analyzed. The publications addressing the key steps of the controlled radical polymerization in the presence of imidazoline and imidazolidine nitroxides and new approaches to nitroxide-mediated polymerization based on protonation of both nitroxides and monomers are considered. The bibliography includes 154 references.

  4. An efficient synthetic method for organometallic radicals: structures and properties of gold(i)-(nitronyl nitroxide)-2-ide complexes.

    PubMed

    Suzuki, Shuichi; Kira, Sayaka; Kozaki, Masatoshi; Yamamura, Masaki; Hasegawa, Toru; Nabeshima, Tatsuya; Okada, Keiji

    2017-02-21

    One-pot synthesis of (nitronyl nitroxide)-gold(i)-phosphine (NN-Au-P) complexes has been developed using chloro(tetrahydrothiophene)gold(i), phosphine ligands, nitronyl nitroxide radicals, and sodium hydroxide. The NN-Au-P complexes can be easily handled because they were quite stable under aerated conditions in both solution and crystalline states. They showed weak absorption bands with vibrational structures in the 450-650 nm region. The oxidation potentials assigned to the NN moieties of NN-Au-P complexes with aromatic phosphines were observed around -0.1 V vs. Fc/Fc + (-0.11 V for NN-Au-1, -0.08 V for NN-Au-2, -0.13 V for NN-Au-5, and -0.07 V for NN-Au-6), somewhat lower than that of NN-Au-P complexes with aliphatic phosphines (-0.25 V for NN-Au-3 and -0.17 V for NN-Au-4).

  5. TEMPO-promoted Pauson-Khand reaction. Single-electron activation of cobalt-carbonyl bonds?

    PubMed

    Lagunas, Anna; Mairata I Payeras, Antoni; Jimeno, Ciril; Pericàs, Miquel A

    2005-07-07

    [reaction: see text] The Pauson-Khand reaction is notably accelerated by TEMPO. According to DFT calculations, TEMPO could trigger a radical, low-energy pathway for the reaction by facilitating the decarbonylation of doublet complexes arising either from a CO/nitroxide exchange or from nitroxide addition to a CO ligand.

  6. Preparation of Some Homologous TEMPO Nitroxides and Oxoammonium Salts; Notes on the NMR Spectroscopy of Nitroxide Free Radicals; Observed Radical Nature of Oxoammonium Salt Solutions Containing Trace Amounts of Corresponding Nitroxides in an Equilibrium Relationship.

    PubMed

    Bobbitt, James M; Eddy, Nicholas A; Cady, Clyde X; Jin, Jing; Gascon, Jose A; Gelpí-Dominguez, Svetlana; Zakrzewski, Jerzy; Morton, Martha D

    2017-09-15

    Three new homologous TEMPO oxoammonium salts and three homologous nitroxide radicals have been prepared and characterized. The oxidation properties of the salts have been explored. The direct 13 C NMR and EPR spectra of the nitroxide free radicals and the oxoammonium salts, along with TEMPO and its oxoammonium salt, have been successfully measured with little peak broadening of the NMR signals. In the spectra of all ten compounds (nitroxides and corresponding oxoammonium salts), the carbons in the 2,2,6,6-tetramethylpiperidine core do not appear, implying paramagnetic properties. This unpredicted overall paramagnetism in the oxoammonium salt solutions is explained by a redox equilibrium as shown between oxoammonium salts and trace amounts of corresponding nitroxide. This equilibrium is confirmed by electron interchange reactions between nitroxides with an N-acetyl substituent and oxoammonium salts with longer acyl side chains.

  7. Biological Relevance of Free Radicals and Nitroxides.

    PubMed

    Prescott, Christopher; Bottle, Steven E

    2017-06-01

    Nitroxides are stable, kinetically-persistent free radicals which have been successfully used in the study and intervention of oxidative stress, a critical issue pertaining to cellular health which results from an imbalance in the levels of damaging free radicals and redox-active species in the cellular environment. This review gives an overview of some of the biological processes that produce radicals and other reactive oxygen species with relevance to oxidative stress, and then discusses interactions of nitroxides with these species in terms of the use of nitroxides as redox-sensitive probes and redox-active therapeutic agents.

  8. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants.

  9. Ferromagnetic interactions in Ru(III)-nitronyl nitroxide radical complex: a potential 2p4d building block for molecular magnets.

    PubMed

    Pointillart, Fabrice; Bernot, Kevin; Sorace, Lorenzo; Sessoli, Roberta; Gatteschi, Dante

    2007-07-07

    The reaction between [Ru(salen)(PPh3)Cl] and the 4-pyridyl-substituted nitronyl nitroxide radical (NITpPy) leads to the [Ru(salen)(PPh3)(NITpPy)](ClO4)(H2O)2 complex while the reaction with the azido anion (N3-) leads to the [Ru(salen)(PPh3)(N3)] complex 2 (where salen2- = N,N'-ethan-1,2-diylbis(salicylidenamine) and PPh3 = triphenylphosphine). Both compounds have been characterized by single crystal X-ray diffraction. The two crystal structures are composed by a [Ru(III)(salen)(PPh3)]+ unit where the Ru(III) ion is coordinated to a salen2- ligand and one PPh3 ligand in axial position. In 1 the Ru(III) ion is coordinated to the 4-pyridyl-substituted nitronyl nitroxide radical whereas in 2 the second axial position is occupied by the azido ligand. In both complexes the Ru(III) ions are in the same environment RuO2N3P, in a tetragonally elongated octhaedral geometry. The crystal packing of 1 reveals pi-stacking in pairs. While antiferromagnetic intermolecular interaction (J2 = 5.0 cm(-1)) dominates at low temperatures, ferromagnetic intramolecular interaction (J1 = -9.0 cm(-1)) have been found between the Ru(III) ion and the coordinated NITpPy.

  10. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.

    PubMed

    Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants. Published by Elsevier Inc.

  11. Reactions of nitroxide radicals in aqueous solutions exposed to non-thermal plasma: limitations of spin trapping of the plasma induced species

    NASA Astrophysics Data System (ADS)

    Gorbanev, Yury; Stehling, Nicola; O'Connell, Deborah; Chechik, Victor

    2016-10-01

    Low temperature (‘cold’) atmospheric pressure plasmas have gained much attention in recent years due to their biomedical effects achieved through the interactions of plasma-induced species with the biological substrate. Monitoring of the radical species in an aqueous biological milieu is usually performed via electron paramagnetic resonance (EPR) spectroscopy using various nitrone spin traps, which form persistent radical adducts with the short-lived radicals. However, the stability of these nitroxide radical adducts in the plasma-specific environment is not well known. In this work, chemical transformations of nitroxide radicals in aqueous solutions using a model nitroxide 4-oxo-TEMPO were studied using EPR and LC-MS. The kinetics of the nitroxide decay when the solution was exposed to plasma were assessed, and the reactive pathways proposed. The use of different scavengers enabled identification of the types of reactive species which cause the decay, indicating the predominant nitroxide group reduction in oxygen-free plasmas. The 2H adduct of the PBN spin trap (PBN-D) was shown to decay similarly to the model molecule 4-oxo-TEMPO. The decay of the spin adducts in plasma-treated solutions must be considered to avoid rendering the spin trapping results unreliable. In particular, the selectivity of the decay indicated the limitations of the PTIO/PTI nitroxide system in the detection of nitric oxide.

  12. A rational approach to the modulation of the dynamics of the magnetisation in a dysprosium-nitronyl-nitroxide radical complex.

    PubMed

    Poneti, Giordano; Bernot, Kevin; Bogani, Lapo; Caneschi, Andrea; Sessoli, Roberta; Wernsdorfer, Wolfgang; Gatteschi, Dante

    2007-05-14

    A control of the dynamics of the magnetisation is chemically achieved in a ring-like Dy-radical based molecule, allowing the estimation of the quantum tunneling frequency with a (4)He-cooled susceptometer.

  13. Development of nitroxide radicals-containing polymer for scavenging reactive oxygen species from cigarette smoke

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Toru; Kuramochi, Kazuhiro; Binh Vong, Long; Nagasaki, Yukio

    2014-06-01

    We developed a nitroxide radicals-containing polymer (NRP), which is composed of poly(4-methylstyrene) possessing nitroxide radicals as a side chain via amine linkage, to scavenge reactive oxygen species (ROS) from cigarette smoke. In this study, the NRP was coated onto cigarette filters and its ROS-scavenging activity from streaming cigarette smoke was evaluated. The intensity of electron spin resonance signals of the NRP in the filter decreased after exposure to cigarette smoke, indicating consumption of nitroxide radicals. To evaluate the ROS-scavenging activity of the NRP-coated filter, the amount of peroxy radicals in an extract of cigarette smoke was measured using UV-visible spectrophotometry and 1,1-diphenyl-2-picrylhydrazyl (DPPH). The absorbance of DPPH at 517 nm decreased with exposure to cigarette smoke. When NRP-coated filters were used, the decrease in the absorbance of DPPH was prevented. In contrast, both poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters, which have no nitroxide radical, did not show any effect, indicating that the nitroxide radicals in the NRP scavenge the ROS in cigarette smoke. As a result, the extract of cigarette smoke passed through the NRP-coated filter has a lower cellular toxicity than smoke passed through poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters. Accordingly, NRP is a promising material for ROS scavenging from cigarette smoke.

  14. Distance-dependent Fluorescence Quenching and Binding of CdSe Quantum Dots by Functionalized Nitroxide Radicals

    PubMed Central

    Tansakul, Chittreeya; Lilie, Erin; Walter, Eric D.; Rivera, Frank; Wolcott, Abraham; Zhang, Jin Z.; Millhauser, Glenn L.

    2010-01-01

    Quantum dot (QD) fluorescence is effectively quenched at low concentration by nitroxides bearing amine or carboxylic acid ligands. The association constants and fluorescence quenching of CdSe QDs with these derivatized nitroxides have been examined using electron paramagnetic resonance (EPR) and fluorescence spectroscopy. The EPR spectra in the non-protic solvent toluene are extremely sensitive to intermolecular and intramolecular hydrogen bonding of the functionalized nitroxides. Fluorescence measurements show that quenching of QD luminescence is nonlinear, with a strong dependence on the distance between the radical and the QD. The quenched fluorescence is restored when the surface-bound nitroxides are converted to hydroxylamines by mild reducing agents, or trapped by carbon radicals to form alkoxyamines. EPR studies indicate that photoreduction of the nitroxide occurs in toluene solution upon photoexcitation at 365 nm. However, photolysis in benzene solution gives no photoreduction, suggesting that photoreduction in toluene is independent of the quenching mechanism. The fluorescence quenching of QDs by nitroxide binding is a reversible process. PMID:20473339

  15. Modulation of oxidative damage by nitroxide free radicals.

    PubMed

    Dragutan, Ileana; Mehlhorn, Rolf J

    2007-03-01

    Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.

  16. Antioxidant effects of water- and lipid-soluble nitroxide radicals in liposomes.

    PubMed

    Cimato, Alejandra N; Piehl, Lidia L; Facorro, Graciela B; Torti, Horacio B; Hager, Alfredo A

    2004-12-15

    Liposomes are today useful tools in different fields of science and technology. A lack of stability due to lipid peroxidation is the main problem in the extension of the use of these formulations. Recent investigative works have reported the protective effects of stable nitroxide radicals against oxidative processes in different media and under different stress conditions. Our group has focused its attention on the natural aging of liposomes and the protection provided by the water- and lipid-soluble nitroxide radicals 2,2,6,6-tetramethylpiperdine-1-oxyl (TEMPO) and doxylstearic acids (5-DSA, 12-DSA, and 16-DSA), respectively. Unilamellar liposomes were incubated under air atmosphere at 37 degrees C, both in the absence and in the presence of these radicals. Conjugated dienes, lipid hydroperoxides, TBARS, membrane fluidity, and nitroxide ESR signal intensity were followed as a function of time. Our results demonstrated that doxylstearic acids were more efficient than TEMPO in retarding lipid peroxidation at all the concentrations tested. The inhibition percentages, depending on the total nitroxide concentration, were not proportional to the lipid-water partition coefficient. Furthermore, time-course ESR signals showed a slower decrease for doxylstearic acids than for TEMPO. No significant differences were found among 5-DSA, 12-DSA, and 16-DSA. We concluded that the nitroxide radical efficiency as antioxidant directly depends on both nitroxide concentration and lipophilicity.

  17. Synthesis and spectral properties of polymethine-cyanine dye-nitroxide radical hybrid compounds for use as fluorescence probes to monitor reducing species and radicals

    NASA Astrophysics Data System (ADS)

    Sato, Shingo; Tsunoda, Minoru; Suzuki, Minoru; Kutsuna, Masahiro; Takido-uchi, Kiyomi; Shindo, Mitsuru; Mizuguchi, Hitoshi; Obara, Heitaro; Ohya, Hiroaki

    2009-01-01

    Various hybrid compounds comprised of two types of nitroxide radicals and either a pentamethine (Cy5) or trimethine cyanine (Cy3) were synthesized. The nitroxide radicals were linked either via an ester-bond to one or two N-alkyl carboxyl-terminated groups of Cy5, or via two amido-bonds (aminocarbonyl or carbonylamino group) to the 5-position of the indolenine moieties of Cy5 and Cy3. Changes in fluorescence and ESR intensities of the hybrid compounds were measured before and after addition of Na ascorbate in PBS (pH 7.0) to reduce the radicals. Among the hybrid compounds synthesized, those that linked the nitroxide radicals via an aminocarbonyl residue at the 5-position of the indolenine moieties on Cy5 and Cy3 exhibited a 1.8- and 5.1-fold increase in fluorescence intensity with the reduction of the nitroxide segment by the addition of Na ascorbate, respectively. In contrast, fluorescence intensity was not enhanced in the other hybrid compounds. Thus, the hybrid compounds which exhibited an increase in fluorescent intensity with radical reduction can be used in the quantitative measurement of reducing species such as Fe 2+ and ascorbic acid, and hydroxyl radicals. Because these hybrid compounds have the advantage of fluorescing at longer wavelengths—661 (Cy5) or 568 (Cy3) nm, respectively, they can be used to measure radical-reducing species or radicals either in solution or in vivo.

  18. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.

    PubMed

    Shi, Fengqiang; Zhang, Peifeng; Mao, Yujia; Wang, Can; Zheng, Meiqing; Zhao, Zhongwei

    2017-01-29

    In vivo physiological ligand citrate can bind iron(II) ions to form the iron(II)-citrate complex. Inhibition of hydroxyl radical (OH) production from the Fenton-like reaction of iron(II)-citrate with H 2 O 2 is biologically important, as this reaction may account for one of the mechanisms of the labile iron pool in vivo to induce oxidative stress and pathological conditions. Nitroxides have promising potentials as therapeutic antioxidants. However, there are controversial findings indicating that they not only act as antioxidants but also as pro-oxidants when engaged in Fenton reactions. Although the underlying mechanisms are proposed to be the inhibition or enhancement of the OH production by nitroxides, the proposed elucidations are only based on assessing biological damages and not demonstrated directly by measuring the OH production in the presence of nitroxides. In this study, therefore, we employed EPR and fluorescence spectroscopies to show direct evidence that nitroxide 2,2,6,6-tetramethyl-piperidine-1-oxyl (Tempo) inhibited OH production from the Fenton-like reaction of iron(II)-citrate with H 2 O 2 by up to 90%. We also demonstrated spectrophotometrically, for the first time, that this inhibition was due to oxidation of the iron(II)-citrate by Tempo with a stoichiometry of Tempo:Iron(III)-citrate = 1.1:1.0. A scheme was proposed to illustrate the roles of nitroxides engaged in Fenton/Fenton-like reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Nitroxide free radicals protect macular carotenoids against chemical destruction (bleaching) during lipid peroxidation

    PubMed Central

    Zareba, M.; Widomska, J.; Burke, J. M.; Subczynski, W. K.

    2016-01-01

    Macular xanthophylls (MXs) lutein and zeaxanthin are dietary carotenoids that are selectively concentrated in the human eye retina, where they are thought to protect against age-related macular degeneration (AMD) by multiple mechanisms, including filtration of phototoxic blue light and quenching of singlet oxygen and triplet states of photosensitizers. These physical protective mechanisms require that MXs be in their intact structure. Here, we investigated the protection of the intact structure of zeaxanthin incorporated into model membranes subjected to oxidative modification by water- and/or membrane-soluble small nitroxide free radicals. Model membranes were formed from saturated, monounsaturated, and polyunsaturated phosphatidylcholines (PCs). Oxidative modification involved autoxidation, iron-mediated, and singlet oxygen-mediated lipid peroxidation. The extent of chemical destruction (bleaching) of zeaxanthin was evaluated from its absorption spectra and compared with the extent of lipid peroxidation evaluated using the thiobarbituric acid assay. Nitroxide free radicals with different polarity (membrane/water partition coefficients) were used. The extent of zeaxanthin bleaching increased with membrane unsaturation and correlated with the rate of PC oxidation. Protection of the intact structure of zeaxanthin by membrane-soluble nitroxides was much stronger than that by water-soluble nitroxides. The combination of zeaxanthin and lipid-soluble nitroxides exerted strong synergistic protection against singlet oxygen-induced lipid peroxidation. The synergistic effect may be explained in terms of protection of the intact zeaxanthin structure by effective scavenging of free radicals by nitroxides, therefore allowing zeaxanthin to quench the primary oxidant, singlet oxygen, effectively by the physical protective mechanism. The redox state of nitroxides was monitored using electron paramagnetic resonance spectroscopy. Both nitroxide free radicals and their reduced form, hydroxylamines, were equally effective. Obtained data were compared with the protective effects of α-tocopherol, which is the natural antioxidant and protector of MXs within the retina. The new strategies employed here to maintain the intact structure of MXs may enhance their protective potential against AMD. PMID:27840316

  20. Nitroxide free radicals protect macular carotenoids against chemical destruction (bleaching) during lipid peroxidation.

    PubMed

    Zareba, M; Widomska, J; Burke, J M; Subczynski, W K

    2016-12-01

    Macular xanthophylls (MXs) lutein and zeaxanthin are dietary carotenoids that are selectively concentrated in the human eye retina, where they are thought to protect against age-related macular degeneration (AMD) by multiple mechanisms, including filtration of phototoxic blue light and quenching of singlet oxygen and triplet states of photosensitizers. These physical protective mechanisms require that MXs be in their intact structure. Here, we investigated the protection of the intact structure of zeaxanthin incorporated into model membranes subjected to oxidative modification by water- and/or membrane-soluble small nitroxide free radicals. Model membranes were formed from saturated, monounsaturated, and polyunsaturated phosphatidylcholines (PCs). Oxidative modification involved autoxidation, iron-mediated, and singlet oxygen-mediated lipid peroxidation. The extent of chemical destruction (bleaching) of zeaxanthin was evaluated from its absorption spectra and compared with the extent of lipid peroxidation evaluated using the thiobarbituric acid assay. Nitroxide free radicals with different polarity (membrane/water partition coefficients) were used. The extent of zeaxanthin bleaching increased with membrane unsaturation and correlated with the rate of PC oxidation. Protection of the intact structure of zeaxanthin by membrane-soluble nitroxides was much stronger than that by water-soluble nitroxides. The combination of zeaxanthin and lipid-soluble nitroxides exerted strong synergistic protection against singlet oxygen-induced lipid peroxidation. The synergistic effect may be explained in terms of protection of the intact zeaxanthin structure by effective scavenging of free radicals by nitroxides, therefore allowing zeaxanthin to quench the primary oxidant, singlet oxygen, effectively by the physical protective mechanism. The redox state of nitroxides was monitored using electron paramagnetic resonance spectroscopy. Both nitroxide free radicals and their reduced form, hydroxylamines, were equally effective. Obtained data were compared with the protective effects of α-tocopherol, which is the natural antioxidant and protector of MXs within the retina. The new strategies employed here to maintain the intact structure of MXs may enhance their protective potential against AMD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors

    PubMed Central

    Kálai, Tamás; Altman, Robin; Maezawa, Izumi; Balog, Mária; Morisseau, Christophe; Petrlova, Jitka; Hammock, Bruce D.; Jin, Lee-Way; Trudell, James; Voss, John C.; Hideg, Kálmán

    2014-01-01

    A series of new Tacrine analogs modified with nitroxides or pre-nitroxides on 9-amino group via methylene or piperazine spacers were synthesized; the nitroxide or its precursors were incorporated into the Tacrine scaffold. The new compounds were tested for their hydroxyl radical and peroxyl radical scavenging ability, acetyl cholinesterase inhibitor activity and protection against Aβ-induced cytotoxicity. Based on these assays, we conclude that Tacrine analogs connected to five and six-membered nitroxides via piperazine spacers (9b, 9b/HCl and 12) exhibited the best activity, providing direction for further development of additional candidates with dual functionality (anti Alzheimer’s and antioxidant). PMID:24657571

  2. Nitroxides as Antioxidants and Anticancer Drugs

    PubMed Central

    Lewandowski, Marcin; Gwozdzinski, Krzysztof

    2017-01-01

    Nitroxides are stable free radicals that contain a nitroxyl group with an unpaired electron. In this paper, we present the properties and application of nitroxides as antioxidants and anticancer drugs. The mostly used nitroxides in biology and medicine are a group of heterocyclic nitroxide derivatives of piperidine, pyrroline and pyrrolidine. The antioxidant action of nitroxides is associated with their redox cycle. Nitroxides, unlike other antioxidants, are characterized by a catalytic mechanism of action associated with a single electron oxidation and reduction reaction. In biological conditions, they mimic superoxide dismutase (SOD), modulate hemoprotein’s catalase-like activity, scavenge reactive free radicals, inhibit the Fenton and Haber-Weiss reactions and suppress the oxidation of biological materials (peptides, proteins, lipids, etc.). The use of nitroxides as antioxidants against oxidative stress induced by anticancer drugs has also been investigated. The application of nitroxides and their derivatives as anticancer drugs is discussed in the contexts of breast, hepatic, lung, ovarian, lymphatic and thyroid cancers under in vivo and in vitro experiments. In this article, we focus on new natural spin-labelled derivatives such as camptothecin, rotenone, combretastatin, podophyllotoxin and others. The applications of nitroxides in the aging process, cardiovascular disease and pathological conditions were also discussed. PMID:29165366

  3. Nitroxide stable radicals interacting as Lewis bases in hydrogen bonds: A search in the Cambridge structural data base for intermolecular contacts

    NASA Astrophysics Data System (ADS)

    Alkorta, Ibon; Elguero, José; Elguero, Eric

    2017-11-01

    1125 X-ray structures of nitroxide free radicals presenting intermolecular hydrogen bonds have been reported in the Cambridge Structural Database. We will report in this paper a qualitative and quantitative analysis of these bonds. The observation in some plots of an excluded region was statistically analyzed using convex hull and kernel smooting methodologies. A theoretical study at the MP2 level with different basis has been carried out indicating that the nitronyl nitroxide radicals (five electrons) lie just in between nitroso compounds (four electrons) and amine N-oxides (six electrons) as far as hydrogen-bond basicity is concerned.

  4. Photostability enhancement of the pentacene derivative having two nitronyl nitroxide radical substituents.

    PubMed

    Shimizu, Akihiro; Ito, Akitaka; Teki, Yoshio

    2016-02-18

    Pentacene derivatives possessing nitronyl nitroxide radical substituents (1a and 1b) were synthesized, and their photochemical properties were evaluated. 1a with two radical substituents showed a remarkable enhancement of photostability compared with pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene and the monoradical, 1b. This is understood due to the presence of the multiple deactivation pathways in the photoexcited states.

  5. A Novel Nitronyl Nitroxide with Salicylic Acid Framework Attenuates Pain Hypersensitivity and Ectopic Neuronal Discharges in Radicular Low Back Pain.

    PubMed

    Han, Wen-Juan; Chen, Lei; Wang, Hai-Bo; Liu, Xiang-Zeng; Hu, San-Jue; Sun, Xiao-Li; Luo, Ceng

    2015-01-01

    Evidence has accumulated that reactive oxygen species and inflammation play crucial roles in the development of chronic pain, including radicular low back pain. Nonsteroid anti-inflammatory drugs (NSAIDs), for example, salicylic acid, aspirin, provided analgesic effects in various types of pain. However, long-term use of these drugs causes unwanted side effects, which limits their implication. Stable nitronyl (NIT) nitroxide radicals have been extensively studied as a unique and interesting class of new antioxidants for protection against oxidative damage. The present study synthesized a novel NIT nitroxide radical with salicylic acid framework (SANR) to provide synergistic effect of both antioxidation and antiinflammation. We demonstrated for the first time that both acute and repeated SANR treatment exerted dramatic analgesic effect in radicular low back pain mimicked by chronic compression of dorsal root ganglion in rats. This analgesic potency was more potent than that produced by classical NSAIDs aspirin and traditional nitroxide radical Tempol alone. Furthermore, SANR-induced behavioral analgesia is found to be mediated, at least in partial, by a reduction of ectopic spontaneous discharges in injured DRG neurons. Therefore, the synthesized NIT nitroxide radical coupling with salicylic acid framework may represent a novel potential therapeutic candidate for treatment of chronic pain, including radicular low back pain.

  6. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    PubMed

    Akiel, R D; Stepanov, V; Takahashi, S

    2017-06-01

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  7. Synthesis of a Novel Nitronyl Nitroxide Radical and Determination of its Protective Effects Against Infrasound-Induced Injury.

    PubMed

    Wang, Haibo; Wang, Jin; Yang, Qi; Zhang, Xinwei; Gao, Peng; Xu, Shenglong; Sun, XiaoLi; Wang, YuKun

    2015-07-01

    Infrasound causes functional disorders and structural injury to the central nervous system. However, few anti-infrasound drugs exist, and they are inefficient. Nitronyl nitroxide radicals have been reported to be good antioxidants that act as superoxide dismutase mimics and directly react with reactive oxygen species, such as ·OH, H2O2, and O 2 (∙) -. Our previous research showed that the nitronyl nitroxide radical L-NNNBP has good protective effects against β-amyloid deposition and memory deficits in an AD rat model of APP/PS1. The objective of the present study was to find a new group of anti-infrasound drugs and determine the underlying pharmacological actions of nitronyl nitroxide radicals against infrasound-induced neuronal impairment in vivo. We synthesized a new stable nitronyl nitroxide radical, NRbt, and characterized its crystal structure. The results of the anti-oxidative damage effects of NRbt and the positive control drug tempol showed that they could significantly increase the SOD activity, CAT activity and GSH level and decrease the MDA level in rat hippocampi compared with infrasound exposure without pretreatment. Moreover, the ability of NRbt to regulate the activity or level of these biochemical markers was better than that of tempol. Our results showed that both NRbt and tempol significantly protected against the learning and memory impairments induced by infrasound exposure in a Morris water maze, but there were no significant differences in the path length or escape latency between the rats in the tempol group and the three NRbt groups (P > 0.05). In addition, the infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by NRbt and tempol. The results demonstrated that compared with the infrasound exposure group, the expression of Bcl-2 was up-regulated and the expressions of Bax and caspase-3 were down-regulated in rats pretreated with NRbt (40 mg/kg) or tempol (40 mg/kg). These results showed that the newly synthesized nitronyl nitroxide radical, NRbt, may be an effective anti-infrasound drug because of its capacity to inhibit the oxidative damage of free radicals induced by infrasound exposure.

  8. Laser flash photolysis and CIDNP studies of steric effects on coupling rate constants of imidazolidine nitroxide with carbon-centered radicals, methyl isobutyrate-2-yl and tert-butyl propionate-2-yl.

    PubMed

    Zubenko, Dmitry; Tsentalovich, Yuri; Lebedeva, Nataly; Kirilyuk, Igor; Roshchupkina, Galina; Zhurko, Irina; Reznikov, Vladimir; Marque, Sylvain R A; Bagryanskaya, Elena

    2006-08-04

    Time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP) and laser flash photolysis (LFP) techniques have been used to measure rate constants for coupling between acrylate-type radicals and a series of newly synthesized stable imidazolidine N-oxyl radicals. The carbon-centered radicals under investigation were generated by photolysis of their corresponding ketone precursors RC(O)R (R = C(CH3)2-C(O)OCH3 and CH(CH3)-C(O)-OtBu) in the presence of stable nitroxides. The coupling rate constants kc for modeling studies of nitroxide-mediated polymerization (NMP) experiments were determined, and the influence of steric and electronic factors on kc values was addressed by using a Hammett linear free energy relationship. The systematic changes in kc due to the varied steric (Es,n) and electronic (sigmaL,n) characters of the substituents are well-described by the biparameter equation log(kc/M- 1s(-1)) = 3.52sigmaL,n + 0.47Es,n + 10.62. Hence, kc decreases with the increasing steric demand and increases with the increasing electron-withdrawing character of the substituents on the nitroxide.

  9. Design concept for α-hydrogen-substituted nitroxides.

    PubMed

    Amar, Michal; Bar, Sukanta; Iron, Mark A; Toledo, Hila; Tumanskii, Boris; Shimon, Linda J W; Botoshansky, Mark; Fridman, Natalia; Szpilman, Alex M

    2015-02-06

    Stable nitroxides (nitroxyl radicals) have many essential and unique applications in chemistry, biology and medicine. However, the factors influencing their stability are still under investigation, and this hinders the design and development of new nitroxides. Nitroxides with tertiary alkyl groups are generally stable but obviously highly encumbered. In contrast, α-hydrogen-substituted nitroxides are generally inherently unstable and rapidly decompose. Herein, a novel, concept for the design of stable cyclic α-hydrogen nitroxides is described, and a proof-of-concept in the form of the facile synthesis and characterization of two diverse series of stable α-hydrogen nitroxides is presented. The stability of these unique α-hydrogen nitroxides is attributed to a combination of steric and stereoelectronic effects by which disproportionation is kinetically precluded. These stabilizing effects are achieved by the use of a nitroxide co-planar substituent in the γ-position of the backbone of the nitroxide. This premise is supported by a computational study, which provides insight into the disproportionation pathways of α-hydrogen nitroxides.

  10. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer.

    PubMed

    Kovacic, Peter

    2005-01-01

    Cocaine is one of the principal drugs of abuse. Although impressive advances have been made, unanswered questions remain concerning mechanism of toxicity and addiction. Discussion of action mode usually centers on receptor binding and enzyme inhibition, with limited attention to events at the molecular level. This review provides extensive evidence in support of the hypothesis that oxidative metabolites play important roles comprising oxidative stress (OS), reactive oxygen species (ROS), and electron transfer (ET). The metabolites include norcocaine and norcocaine derivatives: nitroxide radical, N-hydroxy, nitrosonium, plus cocaine iminium and formaldehyde. Observed formation of ROS is rationalized by redox cycling involving several possible ET agents. Three potential ones are present in the form of oxidative metabolites, namely, nitroxide, nitrosonium, and iminium. Most attention has been devoted to the nitroxide-hydroxylamine couple which has been designated by various investigators as the principal source of ROS. The proximate ester substituent is deemed important for intramolecular stabilization of reactive intermediates. Reduction potential of nitroxide is in accord with plausibility of ET in the biological milieu. Toxicity by cocaine, with evidence for participation of OS, is demonstrated for many body components, including liver, central nervous system, cardiovascular system, reproductive system, kidney, mitochondria, urine, and immune system. Other adverse effects associated with ROS comprise teratogenesis and apoptosis. Examples of ROS generated are lipid peroxides and hydroxyl radical. Often observed were depletion of antioxidant defenses, and protection by added antioxidants, such as, thiol, salicylate, and deferoxamine. Considerable evidence supports the contention that oxidative ET metabolites of cocaine are responsible for much of the observed OS. Quite significantly, the pro-oxidant, toxic effects, including generation of superoxide and lipid peroxyl radicals, plus depletion of glutathione, elicited by nitroxide or the hydroxylamine derivative, were greater than for the parent drug. The formaldehyde metabolite also appears to play a role. Mechanistic similarity to the action of neurotoxin 3,3'-iminodipropionitrile is pointed out. A number of literature strategies for treatment of addiction are addressed. However, no effective interventions are currently available. An hypothesis for addiction is offered based on ET and ROS at low concentrations. Radicals may aid in cell signaling entailing redox processes which influence ion transport, neuromodulation, and transcription. Ideas are suggested for future work dealing with health promotion. These include use of AOs, both dietary and supplemental, trapping of the norcocaine metabolite by non-toxic complexing agents, and use of nitrones for capturing harmful radical species.

  11. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group

    NASA Astrophysics Data System (ADS)

    Kuzhelev, Andrey A.; Strizhakov, Rodion K.; Krumkacheva, Olesya A.; Polienko, Yuliya F.; Morozov, Denis A.; Shevelev, Georgiy Yu.; Pyshnyi, Dmitrii V.; Kirilyuk, Igor A.; Fedin, Matvey V.; Bagryanskaya, Elena G.

    2016-05-01

    Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34 GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700 ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T = 80-300 K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180 K) becomes negligible at 300 K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.

  12. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    PubMed Central

    Bačić, Goran; Pavićević, Aleksandra; Peyrot, Fabienne

    2015-01-01

    Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes. PMID:26827126

  13. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions.

    PubMed

    Hirosawa, Shota; Arai, Satoshi; Takeoka, Shinji

    2012-05-18

    We report a mitochondrial targeted redox probe (MitoRP) that comprises a nitroxide radical (TEMPO) moiety and coumarin 343. Using isolated mitochondria in the presence/absence of substrates and inhibitors of oxidative phosphorylation, we demonstrated that MitoRP is a useful probe to monitor the electron flow associated with complex I. This journal is © The Royal Society of Chemistry 2012

  14. Synthesis and Reduction Kinetics of Five Ibuprofen-Nitroxides for Ascorbic Acid and Methyl Radicals.

    PubMed

    Sasaki, Kota; Ito, Tomohiro; Fujii, Hirotada G; Sato, Shingo

    2016-01-01

    The hybrid compounds 1-5 comprised of five nitroxides with ibuprofen were synthesized and their reduction rate for ascorbic acid (AsA) and methyl radicals were measured in comparison with 3-hydroxy-tetramethylpyrrolidine-1-oxyl (PROXYL) 6. The rate constants in reduction reaction with 200-fold excess of AsA were determined in following order: 1 (0.42±0.06), 3 (0.17±0.06), 2 (0.10±0.05), and 6 (0.09±0.02 M -1 s -1 ). The remaining two sterically shielded nitroxides 4 and 5 scarcely reacted with AsA. In the reaction with the more reactive methyl radicals, produced by 200-fold excess of Fenton's reagent, the reduction rates of 2, 4, and 5 were in the following decreasing order: 2 (1.1±0.2), 4 (0.76±0.09), and 5 (0.31±0.03 M -1 s -1 ).

  15. Quenching of cascade reaction between triplet and photochrome probes with nitroxide radicals. A novel labeling method in study of membranes and surface systems.

    PubMed

    Papper, V; Medvedeva, N; Fishov, I; Likhtenshtein, G I

    2000-01-01

    We proposed a new method for the study of molecular dynamics and fluidity of the living and model biomembranes and surface systems. The method is based on the measurements of the sensitized photoisomerization kinetics of a photochrome probe. The cascade triplet cis-trans photoisomerization of the excited stilbene derivative sensitized with the excited triplet Erythrosin B has been studied in a model liposome membrane. The photoisomerization reaction is depressed with nitroxide radicals quenching the excited triplet state of the sensitizer. The enhanced fluorescence polarization of the stilbene probe incorporated into liposome membranes indicates that the stilbene molecules are squeezed in a relatively viscous media of the phospholipids. Calibration of the "triple" cascade system is based on a previously proposed method that allows the measurement of the product of the quenching rate constant and the sensitizer's triplet lifetime, as well as the quantitative detection of the nitroxide radicals in the vicinity of the membrane surface. The experiment was conducted using the constant-illumination fluorescence technique. Sensitivity of the method using a standard commercial spectrofluorimeter is about 10(-12) mol of fluorescence molecules per sample and can be improved using an advanced fluorescence technique. The minimal local concentration of nitroxide radicals or any other quenchers being detected is about 10(-5) M. This method enables the investigation of any chemical and biological surface processes of microscopic scale when the minimal volume is about 10(-3) microL or less.

  16. Nitroxide delivery system for Nrf2 activation and skin protection.

    PubMed

    Ben Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Sasson, Shmuel Ben; Bianco-Peled, Havazelet; Bitton, Ronit; Kohen, Ron

    2015-08-01

    Cyclic nitroxides are a large group of compounds composed of diverse stable radicals also known as synthetic antioxidants. Although nitroxides are valuable for use in several skin conditions, in in vivo conditions they have several drawbacks, such as nonspecific dispersion in normal tissue, preferential renal clearance and rapid reduction of the nitroxide to the corresponding hydroxylamine. However, these drawbacks can be easily addressed by encapsulating the nitroxides within microemulsions. This approach would allow nitroxide activity and therefore their valuable effects (e.g. activation of the Keap1-Nrf2-EpRE pathway) to continue. In this work, nitroxides were encapsulated in a microemulsion composed of biocompatible ingredients. The nanometric size and shape of the vehicle microemulsion and nitroxide microemulsion displayed high similarity, indicating that the stability of the microemulsions was preserved. Our studies demonstrated that nitroxide microemulsions were more potent inducers of the Keap1-Nrf2-EpRE pathway than the free nitroxides, causing the activation of phase II enzymes. Moreover, microemulsions containing nitroxides significantly reduced UVB-induced cytotoxicity in the skin. Understanding the mechanism of this improved activity may expand the usage of many other Nrf2 modulating molecules in encapsulated form, as a skin protection strategy against oxidative stress-related conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Electrochemistry of norcocaine nitroxide and related compounds: implications for cocaine hepatotoxicity.

    PubMed

    Charkoudian, J C; Shuster, L

    1985-08-15

    Norcocaine nitroxide, a free radical metabolite of cocaine, displays a reversible one-electron cyclic voltammogram which is abolished by the addition of reduced glutathione. The corresponding nitrosonium ion was synthesized. It showed the same electrochemical characteristics as the nitroxide. The spin label 4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPOL) and its nitrosonium ion behaved like morcocaine nitroxide and its nitrosonium ion. The nitrosonium ion of TEMPOL caused hemolysis of red blood cells, but TEMPOL did not. These observations suggest that the highly reactive nitrosonium ion may be involved in the production of cocaine-induced hepatic necrosis in mice.

  18. Unusual Internal Electron Transfer in Conjugated Radical Polymers.

    PubMed

    Li, Fei; Gore, Danielle N; Wang, Shaoyang; Lutkenhaus, Jodie L

    2017-08-07

    Nitroxide-containing organic radical polymers (ORPs) have captured attention for their high power and fast redox kinetics. Yet a major challenge is the polymer's aliphatic backbone, resulting in a low electronic conductivity. Recent attempts that replace the aliphatic backbone with a conjugated one have not met with success. The reason for this is not understood until now. We examine a family of polythiophenes bearing nitroxide radical groups, showing that while both species are electrochemically active, there exists an internal electron transfer mechanism that interferes with stabilization of the polymer's fully oxidized form. This finding directs the future design of conjugated radical polymers in energy storage and electronics, where careful attention to the redox potential of the backbone relative to the organic radical species is needed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pyrene-Functionalized PTMA by NRC for Greater π-π Stacking with rGO and Enhanced Electrochemical Properties.

    PubMed

    Zhang, Kai; Hu, Yuxiang; Wang, Lianzhou; Monteiro, Michael J; Jia, Zhongfan

    2017-10-11

    Nitroxide radical polymers can undergo both excellent electrochemical redox reactions and a rapid "click" coupling reaction with carbon-centered radicals (i.e., nitroxide radical coupling (NRC) reaction). In this work, we report a strategy to functionalize poly(2,2,6,6,-tetramethylpiperidinyl-1-oxyl methacrylate) (PTMA) with pyrene side groups through a rapid and near quantitative NRC reaction. This resulted in P(TMA-co-PyMA) random copolymers with near quantitative amounts of pyrene along the PTMA chain for greater π-π interaction with rGO, while the nitroxide radicals on the polymer could simultaneously be used for energy storage. These copolymers can bind with reduced graphene oxide (rGO) and form layered composites through noncovalent π-π stacking, attaining molecular-level dispersion. Electrochemical performance of the composites with different polymer contents (24, 35, and 45 wt %), tested in lithium ion batteries, indicated that the layered structures consisting of P(TMA-co-PyMA) maintained greater capacities at high C-rates. This simple and efficient strategy to synthesize pyrene-functionalized polymers will provide new opportunities to fabricate many other polymer composite electrodes for desired electrochemical performance.

  20. Interpretation of cw-ESR spectra of p-methyl-thio-phenyl-nitronyl nitroxide in a nematic liquid crystalline phase.

    PubMed

    Collauto, Alberto; Zerbetto, Mirco; Brustolon, Marina; Polimeno, Antonino; Caneschi, Andrea; Gatteschi, Dante

    2012-03-07

    In this paper we report on the characterization by continuous wave electron spin resonance spectroscopy (cw-ESR) of a nitronyl nitroxide radical in a nematic phase. A detailed analysis is performed by exploiting an innovative modeling strategy alternative to the usual spectral simulation approach: most of the molecular parameters needed to calculate the spectrum are evaluated a priori and the ESR spectrum is obtained by direct application of the stochastic Liouville equation. Allowing a limited set of fitting parameters it is possible to reproduce satisfactorily ESR spectra in the temperature range 260 K-340 K including the nematic-to-isotropic phase transition (325.1 K). Our results open the way to a more quantitative understanding of the ordering and mobility of nitronyl nitroxide radicals in nanostructured environments.

  1. Changes in the Microenvironment of Nitroxide Radicals around the Glass Transition Temperature.

    PubMed

    Bordignon, Enrica; Nalepa, Anna I; Savitsky, Anton; Braun, Lukas; Jeschke, Gunnar

    2015-10-29

    For structural characterization by pulsed EPR methods, spin-labeled macromolecules are routinely studied at cryogenic temperatures. The equilibration of the conformational ensemble during shock-freezing occurs to a good approximation at the glass transition temperature (Tg). In this work, we used X-band power saturation continuous wave (cw) EPR to obtain information on the glass transition temperatures in the microenvironment of nitroxide radicals in solvents or bound to different sites in proteins. The temperature dependence of the saturation curve of nitroxide probes in pure glycerol or ortho-terphenyl showed detectable transitions at the respective Tg values, with the latter solvent characterized by a sharper change of the saturation properties, according to its higher fragility. In contrast, nitroxide probes in a glycerol/water mixture showed a discontinuity in the saturation properties close to the expected glass transition temperature, which made the determination of Tg complicated. Low-temperature W-band cw EPR and W-band ELDOR-detected NMR experiments demonstrated that the discontinuity is due to local rearrangements of H-bonds between water molecules and the nitroxide reporter group. The change in the network of H-bonds formed between the nitroxide and water molecules that occurs around Tg was found to be site-dependent in spin-labeled proteins. This effect can therefore be modulated by neighboring residues with different steric hindrances and/or charge distributions and possibly by the glycerol enrichment on protein surfaces. In conclusion, if the thermal history of the sample is carefully reproduced, the nitroxide probe is extremely sensitive in reporting site-specific changes in the H-bonding to water molecules close to Tg and local glass transition temperatures in spin-labeled macromolecules.

  2. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    PubMed

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors

    PubMed Central

    2017-01-01

    Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxide-functionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques. PMID:28776023

  4. Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins.

    PubMed

    Venditti, Elisabetta; Scirè, Andrea; Tanfani, Fabio; Greci, Lucedio; Damiani, Elisabetta

    2008-01-01

    Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.

  5. A perspective on slow-relaxing molecular magnets built from rare-earths and nitronyl-nitroxide building blocks (invited)

    NASA Astrophysics Data System (ADS)

    Bogani, Lapo

    2011-04-01

    We offer a perspective, accessible to both chemists and physicists, of recent developments in the synthesis and characterization of molecular magnetic materials based on rare-earths and nitronyl-nitroxide radicals. We show both the rationale of the synthetic strategies and the observed behaviors. We highlight the relevance of these findings for synthetic chemists, material scientists, and physicists.

  6. Self-reporting and refoldable profluorescent single-chain nanoparticles.

    PubMed

    Fischer, Tobias S; Spann, Sebastian; An, Qi; Luy, Burkhard; Tsotsalas, Manuel; Blinco, James P; Mutlu, Hatice; Barner-Kowollik, Christopher

    2018-05-28

    We pioneer the formation of self-reporting and refoldable profluorescent single-chain nanoparticles (SCNPs) via the light-induced reaction ( λ max = 320 nm) of nitroxide radicals with a photo-active crosslinker. Whereas the tethered nitroxide moiety in these polymers fully quenches the luminescence ( i.e. fluorescence) of the aromatic backbone, nitroxide trapping of a transient C-radical leads to the corresponding closed shell alkoxyamine thereby restoring luminescence of the folded SCNP. Hence, the polymer in the folded state is capable of emitting light, while in the non-folded state the luminescence is silenced. Under oxidative conditions the initially folded SCNPs unfold, resulting in luminescence switch-off and the reestablishment of the initial precursor polymer. Critically, we show that the luminescence can be repeatedly silenced and reactivated. Importantly, the self-reporting character of the SCNPs was followed by size-exclusion chromatography (SEC), dynamic light scattering (DLS), fluorescence, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR) and diffusion ordered NMR spectroscopy (DOSY).

  7. Wade Braunecker | NREL

    Science.gov Websites

    ; copolymers for a number of systematic studies in the field of organic photovoltaics (OPV). He became a Staff nitroxide radical groups for application as organic radical cathode materials, the development of materials been developing covalent organic frameworks for gas storage and separation applications. Research

  8. Efficiency of water-soluble nitroxide biradicals for dynamic nuclear polarization in rotating solids at 9.4 T: bcTol-M and cyolyl-TOTAPOL as new polarizing agents.

    PubMed

    Geiger, Michel; Jagtap, Anil; Kaushik, Monu; Sun, Han; Stöppler, Daniel; Sigurdsson, Snorri; Corzilius, Björn; Oschkinat, Hartmut

    2018-05-09

    Nitroxide biradicals are very efficient polarizing agents in magic angle spinning (MAS) cross effect (CE) dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR). Many recently synthesized, new radicals show superior DNP-efficiency in organic solvents but suffer from insufficient solubility in water or glycerol/water for biological applications. We report DNP efficiencies for two new radicals, the particularly well-water soluble bcTol-M and cyolyl-TOTAPOL, and include a comparison with three known biradicals, TOTAPOL, bcTol, and AMUPol. They differ by linker groups, featuring either a 3-aminopropane-1,2-diol or a urea tether, or by the structure of the alkyl substituents that flank the nitroxide groups. For evaluating their performances, we measured both signal enhancements  and DNP-enhanced sensitivity κ, and compared the results to electron spin relaxation data recorded at the same magnetic field strength (9.4 T). In our study, differences in DNP efficiency correlate with changes in the nuclear polarization dynamics rather than electron relaxation. The ratios of their individual ε and κ differ by up to 20%, which is explained by starkly different nuclear polarization build-up rates. For the radicals compared here empirically, using proline standard solutions, the new radical bcTol-M performs best while being most soluble in water/glycerol mixtures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Inhibiting properties of stable nitroxyl radicals in reactions of linoleic acid and linoleyl alcohol oxidation catalyzed by 5-lipoxygenase].

    PubMed

    Kharchenko, O V; Kharitonenko, A I; Vovk, A I; Kukhar', V P; Babiĭ, L V; Khil'chevskiĭ, A N; Mel'nik, A K

    2005-01-01

    The inhibiting effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its 4-substituted derivatives in reactions of linoleyl acid or linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase were investigated. Inhibiting properties of stable nitroxyl radicals in presence of lubrol and SDS were reduced at the transition from TEMPO to 4-hydroxy-TEMPO or 4-amino-TEMPO and increased at use of adamantane-1-carboxylic or 3-methyladamantane-1-carboxylic acid 1-oxyl-2,2,6,6-tetramethylpiperidine-4-yl esters. Enzyme activity at saturating concentrations of inhibitor was not suppressed completely, and decreased up to the certain level determined by the substrate nature. The dependence of partial inhibition efficiency on rotational correlation time of stable nitroxides in model micellar systems were analysed. It was supposed that 5-lipoxygenase inhibition includes the interaction of hydrophobic nitroxide with radical intermediate formed in enzymatic process.

  10. Preparation, characterization and magnetic behavior of a spin-labelled physical hydrogel containing a chiral cyclic nitroxide radical unit fixed inside the gelator molecule.

    PubMed

    Takemoto, Yusa; Yamamoto, Takayuki; Ikuma, Naohiko; Uchida, Yoshiaki; Suzuki, Katsuaki; Shimono, Satoshi; Takahashi, Hiroki; Sato, Nobuhiro; Oba, Yojiro; Inoue, Rintaro; Sugiyama, Masaaki; Tsue, Hirohito; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2015-07-21

    An optically active amphiphilic nitroxide radical compound [(S,S,R)-], which contains a paramagnetic (2S,5S)-2,5-dimethyl-2,5-diphenylpyrrolidine-N-oxyl radical group fixed in the inner position together with a hydrophobic long alkyl chain and a hydrophilic (R)-alanine residue in the opposite terminal positions, was found to serve as a low-molecular-weight gelator in H2O to give rise to a spin-labelled physical hydrogel. Characterization of the hydrogel was performed by microscopic (SEM, TEM and AFM) techniques, XRD and SAXS measurements, and IR, UV and CD spectroscopies. The gel-sol transition temperature was determined by EPR spectral line-width (ΔHpp) analysis. Measurement of the temperature dependence of relative paramagnetic susceptibility (χrel) for the hydrogel and sol phases was achieved by means of the double-integration of VT-EPR spectra.

  11. Recyclable crosslinked polymer networks with full property recovery made via one-step controlled radical polymerization

    NASA Astrophysics Data System (ADS)

    Jin, Kailong; Li, Lingqiao; Torkelson, John

    Rubber tires illustrate well the issues ranging from economic loss to environmental problems and sustainability issues that arise with spent, covalently crosslinked polymers. A nitroxide-mediated polymerization (NMP) strategy has been developed that allows for one-step synthesis of recyclable crosslinked polymers from monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. Resulting materials possess dynamic alkoxyamine crosslinks that undergo reversible decrosslinking as a function of temperature. Using polybutadiene as starting material, and styrene, an appropriate nitroxide molecule and bifunctional initiator for initial crosslinking, a model for tire rubber can be produced by reaction at temperatures comparable to those employed in tire molding. Upon cooling, the crosslinks are made permanent due to the extraordinarily strong temperature dependence of the reverisible nitroxide capping and uncapping reaction. Based on thermomechanical property characterization, when the original crosslinked model rubber is chopped into bits and remolded in the melt state, a well-consolidated material is obtained which exhibits full recovery of properties reflecting crosslink density after multiple recycling steps.

  12. Nitroxide-mediated radical ring-opening copolymerization: chain-end investigation and block copolymer synthesis.

    PubMed

    Delplace, Vianney; Harrisson, Simon; Tardy, Antoine; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2014-02-01

    Well-defined, degradable copolymers are successfully prepared by nitroxide-mediated radical ring opening polymerization (NMrROP) of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA), a small amount of acrylonitrile (AN) and cyclic ketene acetals (CKAs) of different structures. Phosphorous nuclear magnetic resonance allows in-depth chain-end characterization and gives crucial insights into the nature of the copoly-mer terminal sequences and the living chain fractions. By using a small library of P(OEGMA-co-AN-co-CKA) and P(MMA-co-AN-co-CKA) as macroinitiators, chain extensions with styrene are performed to furnish (amphiphilic) block copolymers comprising a degradable segment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thomas Gennett | NREL

    Science.gov Websites

    catalysts through ion implantation and sputtering Non-aqueous flow batteries based on organic energy-storage organic radical polymer in the solid state," Journal of Physical Chemistry C (2015) 119(37), 21369 . Braunecker, T.W. Kemper, R.E. Larsen, T. Gennett, "Close packing of nitroxide radicals in stable organic

  14. ESR study of molecular orientation and dynamics of nitronyl nitroxide radicals in CLPOT 1D nanochannels.

    PubMed

    Kobayashi, Hirokazu; Morinaga, Yuka; Fujimori, Etsuko; Asaji, Tetsuo

    2014-07-10

    New inclusion compounds (ICs) were prepared using the organic 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) as a nanosized template and nitronyl nitroxide (NN) radicals such as phenylnitronylnitroxide (PhNN) and p-nitrophenylnitronylnitroxide (p-NPNN). ESR measurements below 255 K for the CLPOT ICs diluted with spacer molecules gave rigid limit spectra similar to that for PhNN molecules in a glassy ethanol matrix at low temperature, which suggests isolation of the radical molecules. ESR measurements for them in the range of 290-400 K gave a modulated quintet ESR signal, which suggested uniaxial rotational diffusion of NN radicals in the nanochannels approximately around the principal y-axis of the g-tensors. In the ESR measurements to 430 K for the [(CLPOT)2-(p-NPNN)0.07] IC without spacers, the broader line width than the case in dilution was observed by inter-radical dipolar interaction. In every case, the rotational diffusion activation energies of NN radicals in the CLPOT nanochannels were several times larger than those of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical derivatives (4-X-TEMPO) in CLPOT nanochannels. This is expected due to the larger molecular size of NN radicals than 4-X-TEMPO or stronger interaction between NN radicals and the surrounding host or guest molecules.

  15. Molecular Dynamics Simulation Study of Solvent and State of Charge Effects on Solid-Phase Structure and Counterion Binding in a Nitroxide Radical Containing Polymer Energy Storage Material

    DOE PAGES

    Kemper, Travis W.; Gennett, Thomas; Larsen, Ross E.

    2016-10-19

    Here we performed molecular dynamics simulations to understand the effects of solvent swelling and state of charge (SOC) on the redox active, organic radical cathode material poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA). We show that the polar solvent acetonitrile primarily solvates the nitroxide radical without disrupting the packing of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) pendant groups of PTMA. We also simulated bulk PTMA in different SOC, 25%, 50%, 75%, and 100%, by converting the appropriate number of TEMPO groups to the cation charge state and adding BF 4 - counterions to the simulation. At each SOC the packing of PTMA, the solvent, and the counterionsmore » were examined. The binding of the anion to the nitroxide cation site was examined using the potential of mean force and found to be on the order of tens of meV, with a binding energy that decreased with increasing SOC. Additionally, we found that the cation state is stabilized by the presence of a nearby anion by more than 1 eV, and the implications of this stabilization on charge transport are discussed. Finally, we describe the implications of our results for how the SOC of an organic electrode affects electron and anion charge transport during the charging and discharging processes.« less

  16. Magnetic anisotropy of dysprosium(III) in a low-symmetry environment: a theoretical and experimental investigation.

    PubMed

    Bernot, Kevin; Luzon, Javier; Bogani, Lapo; Etienne, Mael; Sangregorio, Claudio; Shanmugam, Muralidharan; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante

    2009-04-22

    A mixed theoretical and experimental approach was used to determine the local magnetic anisotropy of the dysprosium(III) ion in a low-symmetry environment. The susceptibility tensor of the monomeric species having the formula [Dy(hfac)(3)(NIT-C(6)H(4)-OEt)(2)], which contains nitronyl nitroxide (NIT-R) radicals, was determined at various temperatures through angle-resolved magnetometry. These results are in agreement with ab initio calculations performed using the complete active space self-consistent field (CASSCF) method, validating the predictive power of this theoretical approach for complex systems containing rare-earth ions, even in low-symmetry environments. Susceptibility measurements performed with the applied field along the easy axis eventually permitted a detailed analysis of the temperature and field dependence of the magnetization, providing evidence that the Dy ion transmits an antiferromagnetic interaction between radicals but that the Dy-radical interaction is ferromagnetic.

  17. XMCD for monitoring exchange interactions. The role of the Gd 4f and 5d orbitals in metal-nitronyl nitroxide magnetic chains.

    PubMed

    Champion, Guillaume; Lalioti, Nikolia; Tangoulis, Vassilis; Arrio, Marie-Anne; Sainctavit, Philippe; Villain, Françoise; Caneschi, Andrea; Gatteschi, Dante; Giorgetti, Christine; Baudelet, François; Verdaguer, Michel; Cartier dit Moulin, Christophe

    2003-07-09

    We report here the X-ray magnetic circular dichroism (XMCD) study at the Gd M(4,5)- and L(2,3)-edges of two linear magnetic chains involving Gd(III) cations bridged by nitronyl nitroxide radicals. This spectroscopy directly probes the magnetic moments of the 4f and 5d orbitals of the gadolinium ions. We compare macroscopic magnetic measurements and local XMCD signals. The M(4,5)-edges results are in agreement with the J values extracted from the fits of the SQUID magnetic measurements. The L(2,3)-edges signals show that the electronic density in the Gd 5d orbitals depends on the neighbors of the gadolinium cations. Nevertheless, the 5d orbitals do not seem to play any role in the superexchange pathway between radicals through the metal ion proposed to explain the particular magnetic exchange interactions between the radicals in these chains.

  18. Microstructural study of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer (PEO-b-PS) by electrospray tandem mass spectrometry.

    PubMed

    Girod, Marion; Phan, Trang N T; Charles, Laurence

    2008-08-01

    Electrospray ionization tandem mass spectrometry has been used to characterize the microstructure of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer, called SG1-capped PEO-b-PS. The main dissociation route of co-oligomers adducted with lithium or silver cation was observed to proceed via the homolytic cleavage of a C-ON bond, aimed at undergoing reversible homolysis during nitroxide mediated polymerization. This cleavage results in the elimination of the terminal SG1 end-group as a radical, inducing a complete depolymerization process of the PS block from the so-formed radical cation. These successive eliminations of styrene molecules allowed a straightforward determination of the PS block size. An alternative fragmentation pathway of the radical cation was shown to provide structural information on the junction group between the two blocks. Proposed dissociation mechanisms were supported by accurate mass measurements. Structural information on the SG1 end-group could be reached from weak abundance fragment ions detected in the low m/z range of the MS/MS spectrum. Amongst fragments typically expected from PS dissociation, only beta ions were produced. Moreover, specific dissociation of the PEO block was not observed to occur in MS/MS, suggesting that these rearrangement reactions do not compete effectively with dissociations of the odd-electron fragment ions. Information about the PEO block length and the initiated end-group were obtained in MS(3) experiments.

  19. TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical.

    PubMed

    Zhang, Long; Vogel, Yan Boris; Noble, Benjamin B; Gonçales, Vinicius R; Darwish, Nadim; Brun, Anton Le; Gooding, J Justin; Wallace, Gordon G; Coote, Michelle L; Ciampi, Simone

    2016-08-03

    This work demonstrates the effect of electrostatic interactions on the electroactivity of a persistent organic free radical. This was achieved by chemisorption of molecules of 4-azido-2,2,6,6-tetramethyl-1-piperdinyloxy (4-azido-TEMPO) onto monolayer-modified Si(100) electrodes using a two-step chemical procedure to preserve the open-shell state and hence the electroactivity of the nitroxide radical. Kinetic and thermodynamic parameters for the surface electrochemical reaction are investigated experimentally and analyzed with the aid of electrochemical digital simulations and quantum-chemical calculations of a theoretical model of the tethered TEMPO system. Interactions between the electrolyte anions and the TEMPO grafted on highly doped, i.e., metallic, electrodes can be tuned to predictably manipulate the oxidizing power of surface nitroxide/oxoammonium redox couple, hence showing the practical importance of the electrostatics on the electrolyte side of the radical monolayer. Conversely, for monolayers prepared on the poorly doped electrodes, the electrostatic interactions between the tethered TEMPO units and the semiconductor-side, i.e., space-charge, become dominant and result in drastic kinetic changes to the electroactivity of the radical monolayer as well as electrochemical nonidealities that can be explained as an increase in the self-interaction "a" parameter that leads to the Frumkin isotherm.

  20. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vries, Wilke de; Doerenkamp, Carsten; Zeng, Zhaoyang

    Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest thatmore » these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.« less

  1. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, D., E-mail: danuta.kruk@matman.uwm.edu.pl; Hoffmann, S. K.; Goslar, J.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recentlymore » presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.« less

  2. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    PubMed

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist's perspective.

    PubMed

    Butler, A R; Flitney, F W; Williams, D L

    1995-01-01

    The multiplicity of biological functions thus far attributed to NO has led to suggestions that some effects might be mediated by other, related species instead. The radical nature of NO cannot account for its cytotoxicity, but its reaction with superoxide to form peroxynitite and highly reactive hydroxyl radicals may be important in this context. The ease with which NO can react with and destroy Fe-S clusters is also an important factor. Nitrosonium and nitroxide ions can be produced in vivo and will react under conditions that are physiologically relevant. Both could, in theory, serve in cell signalling or as cytotoxic agents. More direct experimental evidence for their involvement is needed before we can confidently assign them specific biological roles. In this article, Anthony Butler, Frederick Flitney and Lyn Williams discuss the chemistry of NO and related species.

  4. Efficiency of PBN to Trap 3-CAR in B6C3F1 Mouse Liver Slices: An EPR Study.

    DTIC Science & Technology

    1995-09-01

    be identified by electron paramagnetic resonance (EPR) using the spin trap N-tert-butyl-a phenyl nitrone (PBN). To quantitate the radicals detected...phenyl nitrone TCE trichloroethylene Vll INTRODUCTION Understanding free radical reactions is important to the military. The main objective of this...short lived radical with a spin trap’, usually a nitrone or nitroso compound yielding a longer lived nitroxide spin adduct which can be detected by

  5. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives.

    PubMed

    Lin, Xiaojie; Ishihara, Kazuhiko

    2014-01-01

    Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.

  6. New concepts for molecular magnets

    NASA Astrophysics Data System (ADS)

    Pilawa, Bernd

    1999-03-01

    Miller and Epstein (1994) define molecular magnets as magnetic materials which are prepared by the low-temperature methods of the preparative chemistry. This definition includes molecular crystals of neutral radicals, radical salts and charge transfer complexes as well as metal complexes and polymers with unpaired spins (Dormann 1995). The challenge of molecular magnets consists in tailoring magnetic properties by specific modifications of the molecular units. The combination of magnetism with mechanical or electrical properties of molecular compounds promise materials of high technical interest (Gatteschi 1994a and 1994b, Möhwald 1996) and both the chemical synthesis of new molecular materials with magnetic properties as well as the physical investigation and explanation of these properties is important, in order to achieve any progress. This work deals with the physical characterization of the magnetic properties of molecular materials. It is organized as follows. In the first part molecular crystals of neutral radicals are studied. After briefly discussing the general magnetic properties of these materials and after an overview over the physical principles of exchange interaction between organic radicals I focus on the interplay between the crystallographic structure and the magnetic properties of various derivatives of the verdazyl and nitronyl nitroxide radicals. The magnetic properties of metal complexes are the subject of the second part. After an overview over the experimental and theoretical tools which are used for the investigation of the magnetic properties I shortly discuss the exchange coupling of transition metal ions and the magnetic properties of complexes of two and three metal ions. Special emphasis is given to spin cluster compounds. Spin cluster denote complexes of many magnetic ions. They are attractive as building blocks of molecular magnets as well as magnetic model compounds for the study of spin frustration, molecular super-paramagnetism and quasi one-dimensional magnets.

  7. Spin-Parity Behavior in the Exchange-Coupled Lanthanoid-Nitroxide Molecular Magnets

    NASA Astrophysics Data System (ADS)

    Ishida, T.

    2017-05-01

    To develop lanthanoid-based magnetic materials and relevant devices, reliable prescriptions for molecular/crystal design have long been desired. Ln3+-ion dependence on the molecular magnetism was investigated in the isomorphous series [Ln(hfac)3(2pyNO)] (Ln = Tb, Dy, Ho, Er), where 2pyNO stands for tert-butyl 2-pyridyl nitroxide as a paramagnetic ligand, and hfac for 1,1,1,5,5,5-hexafluoropentane-2,4-dionate. The slow magnetization reversal was evaluated as an indication of single-molecule magnets (SMMs) by out-of-phase ac magnetic susceptibility χ”. Whereas the Tb3+ (4f8) and Ho3+ (4f10) derivatives exhibited frequency-dependent χ”, practically null χ” was recorded for the Dy3+(4f9) and Er3+ (4f11) derivatives. As for another series with Ln/radical = 1/2, [Ln(hfac)3(TEMPO)2] complexes were prepared (Ln = Tb, Dy, Ho, Er, Tm; TEMPO = 2,2,6,6-tetramethylpiperidin-1-oxyl). The Dy3+ and Er3+ derivatives showed appreciable χ”, but the Tb3+, Ho3+, and Tm3+ derivatives did not. Thus, the S = 1/2 paramagnetic ligands play a role of a spin-parity switch to regulate whether the compound behaves as an SMM. In the strongly exchange-coupled regime owing to the direct radical coordination bond, the whole molecular electron counting may provide a useful criterion to predict Kramers molecules and accordingly to explore potential SMM candidates.

  8. Unexpected complexes from meta-phenylene bis(tert-butyl nitroxides) and gadolinium(III) 1,1,1,5,5,5-hexafluoropentane-2,4-dionate

    NASA Astrophysics Data System (ADS)

    Sekine, Hiroyasu; Ishida, Takayuki

    2018-01-01

    Coordination reaction of the stable ground triplet biradical biphenyl-3,5-diyl bis(tert-butyl nitroxide) and [Gd(hfac)3(H2O)2] unexpectedly gave complexes containing a dimerized diamagnetic ligand via a [3+3] cycloaddition of the benzene rings (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate). To avoid such dimerization, we introduced a bulkier substituent into the ligand; namely, a new ground triplet biradical 5-mesityl-1,3-phenylene bis(tert-butyl nitroxide) was applied to this complexation scheme. However, an unexpected complex was again obtained in a different way, and the magnetic study revealed that the novel ligand involved was diamagnetic. The crystallographic analysis of the product clarified isomerization from the paramagnetic ligand to a diamagnetic N-tert-butylaminoquinone imine N-oxide ligand as a result of disproportionation from two open-shell nitroxide groups to closed-shell groups, an amine and a nitrone. The present paper reports the first structural evidence for a diamagnetic isomer of m-phenylene-bridged bisnitroxde compounds.

  9. Smooth transition between SMM and SCM-type slow relaxing dynamics for a 1-D assemblage of {Dy(nitronyl nitroxide)2} units.

    PubMed

    Liu, Ruina; Li, Licun; Wang, Xiaoling; Yang, Peipei; Wang, Chao; Liao, Daizheng; Sutter, Jean-Pascal

    2010-04-21

    A model example for size effects on the dynamic susceptibility behavior is provided by the chain compound [{Dy(hfac)(3)NitPhIm(2)}Dy(hfac)(3)] (NitPhIm = 2-[4-(1-imidazole)phenyl]nitronyl nitroxide radical). The Arrhenius plot reveals two relaxation regimes attributed to SMM (Delta = 17.1 K and tau(0) = 17.5 x 10(-6) s) and SCM (Delta = 82.7 K and tau(0) = 8.8 x 10(-8) s) behaviors. The ferromagnetic exchange among the spin carriers has been established for the corresponding Gd derivative.

  10. Study of rare encounters in a membrane using quenching of cascade reaction between triplet and photochrome probes with nitroxide radicals.

    PubMed

    Medvedeva, Nataly; Papper, Vladislav; Likhtenshtein, Gertz I

    2005-09-21

    Measurements of active encounters between molecules in native membranes containing ingredients, including proteins, are of prime importance. To estimate rare encounters in a high range of rate constants (rate coefficients) and distances between interacting molecules in membranes, a cascade of photochemical reactions for molecules diffusing in multilamellar liposomes was investigated. The sensitised cascade triplet cis-trans photoisomerisation of the excited stilbene involves the use of a triplet sensitiser (Erythrosin B), a photochrome stilbene-derivative probe (4-dimethylamino-4'-aminostilbene) exhibiting the phenomenon of trans-cis photoisomerisation, and nitroxide radicals (5-doxyl stearic acid) to quench the excited triplet state of the sensitiser. Measurement of the phosphorescence lifetime of Erythrosin B and the fluorescence enhancement of the stilbene-derivative photochrome probe, at various concentrations of the nitroxide probe, made it possible to calculate the quenching rate constant k(q)= 1.1 x 10(15) cm2 M(-1) s(-1) and the rate constant of the triplet-triplet energy transfer between the sensitiser and stilbene probe k(T)= 1.0 x 10(12) cm2 M(-1) s(-1). These values, together with the data on diffusion rate constant, obtained by methods utilising various theoretical characteristic times of about seven orders of magnitude and the experimental rate constants of about five orders of magnitude, were found to be in good agreement with the advanced theory of diffusion-controlled reactions in two dimensions. Because the characteristic time of the proposed cascade method is relatively large (0.1 s), it is possible to follow rare collisions between molecules and free radicals in model and biological membranes with a very sensitive fluorescence spectroscopy technique, using a relatively low concentration of probes.

  11. Design and synthesis of digitally encoded polymers that can be decoded and erased

    NASA Astrophysics Data System (ADS)

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-05-01

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.

  12. Design and synthesis of digitally encoded polymers that can be decoded and erased.

    PubMed

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-05-26

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.

  13. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-he; Sun, Jin; Wang, Shan; Bu, Wei; Yao, Min-na; Gao, Kai; Song, Ying; Zhao, Jin-yi; Lu, Cheng-tao; Zhang, En-hu; Yang, Zhi-fu; Wen, Ai-dong

    2016-03-01

    A novel adamantyl nitroxide derivatives has been synthesized and characterized by IR, ESI-MS and elemental analysis. Quantum chemical calculations have also been performed to calculate the molecular geometry using density functional theory (B3LYP) with the 6-31G (d,p) basis set. The calculated results showed that the optimized geometry can well reproduce the crystal structure. The antioxidant and antiproliferative activity were evaluated by superoxide (NBT) and MTT assay. The adamantyl nitroxide derivatives exhibited stronger scavenging ability towards O2· - radicals when compared to Vitamin C, and demonstrated a remarked anticancer activity against all the tested cell lines, especially Bel-7404 cells with IC50 of 43.3 μM, compared to the positive control Sorafenib (IC50 = 92.0 μM). The results of molecular docking within EGFR using AutoDock confirmed that the titled compound favorably fitted into the ATP binding site of EGFR and would be a potential anticancer agent.

  14. Poly(meth)acrylates obtained by cascade reaction.

    PubMed

    Popescu, Dragos; Keul, Helmut; Moeller, Martin

    2011-04-04

    Preparation, purification, and stabilization of functional (meth)acrylates with a high dipole moment are complex, laborious, and expensive processes. In order to avoid purification and stabilization of the highly reactive functional monomers, a concept of cascade reactions was developed comprising enzymatic monomer synthesis and radical polymerization. Transacylation of methyl acrylate (MA) and methyl methacrylate (MMA) with different functional alcohols, diols, and triols (1,2,6-hexanetriol and glycerol) in the presence of Novozyme 435 led to functional (meth)acrylates. After the removal of the enzyme by means of filtration, removal of excess (meth)acrylate and/or addition of a new monomer, e.g., 2-hydroxyethyl (meth)acrylate the (co)polymerization via free radical (FRP) or nitroxide mediated radical polymerization (NMP) resulted in poly[(meth)acrylate]s with predefined functionalities. Hydrophilic, hydrophobic as well as ionic repeating units were assembled within the copolymer. The transacylation of MA and MMA with diols and triols carried out under mild conditions is an easy and rapid process and is suitable for the preparation of sensitive monomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Location and magnetic relaxation properties of the stable tyrosine radical in photosystem II.

    PubMed

    Innes, J B; Brudvig, G W

    1989-02-07

    Dipolar interactions with neighboring metal ions can cause enhanced spin-lattice relaxation of free radicals. We have applied the theory of dipolar relaxation enhancement and shown that the dependence of the enhanced relaxation on the protein structure surrounding the free radical can be used to obtain distances from the free radical to the protein surface. To test the theoretical predictions, we have examined the effect of added Dy3+ complexes on the microwave power saturation of free radicals in two protein complexes of known structure: myoglobin nitroxide and the reaction center from Rhodobacter sphaeroides. Three cases have been considered: (1) metal ions bound to a specific site, (2) metal ions bound randomly over the protein surface, and (3) metal ions distributed randomly in solution. Only case 3, which assumes no specific binding, gave good agreement between the distances obtained by using the two model systems. The effect of added Dy3+ complexes on the microwave power saturation of signal IIslow from photosystem II (PSII) was used to determine the location of the stable tyrosine radical giving rise to signal IIslow. Assuming that the surface of a membrane-bound protein can be approximated as planar, we have obtained distances from the tyrosine radical to the membrane surface in thylakoids, in PSII membranes, and in Tris-washed PSII membranes. The distances we have determined are in good agreement with those predicted on the basis of a structural homology between the D1 and D2 subunits of PSII and the structurally characterized L and M subunits of the reaction center from purple non-sulfur bacteria. We have also examined the temperature dependence of the microwave power at half-saturation (P1/2) of signal IIslow from 4 to 200 K in dark-adapted PSII membranes. Above 70 K, the P1/2 increases as T2.5, which is consistent with a Raman relaxation mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Improved sensitivity for W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped pulses

    NASA Astrophysics Data System (ADS)

    Bahrenberg, Thorsten; Rosenski, Yael; Carmieli, Raanan; Zibzener, Koby; Qi, Mian; Frydman, Veronica; Godt, Adelheid; Goldfarb, Daniella; Feintuch, Akiva

    2017-10-01

    Chirp and shaped pulses have been recently shown to be highly advantageous for improving sensitivity in DEER (double electron-electron resonance, also called PELDOR) measurements due to their large excitation bandwidth. The implementation of such pulses for pulse EPR has become feasible due to the availability of arbitrary waveform generators (AWG) with high sampling rates to support pulse shaping for pulses with tens of nanoseconds duration. Here we present a setup for obtaining chirp pulses on our home-built W-band (95 GHz) spectrometer and demonstrate its performance on Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements. We carried out an extensive optimization procedure on two model systems, Gd(III)-PyMTA-spacer-Gd(III)-PyMTA (Gd-PyMTA ruler; zero-field splitting parameter (ZFS) D ∼ 1150 MHz) as well as nitroxide-spacer-nitroxide (nitroxide ruler) to evaluate the applicability of shaped pulses to Gd(III) complexes and nitroxides, which are two important classes of spin labels used in modern DEER/EPR experiments. We applied our findings to ubiquitin, doubly labeled with Gd-DOTA-monoamide (D ∼ 550 MHz) as a model for a system with a small ZFS. Our experiments were focused on the questions (i) what are the best conditions for positioning of the detection frequency, (ii) which pump pulse parameters (bandwidth, positioning in the spectrum, length) yield the best signal-to-noise ratio (SNR) improvements when compared to classical DEER, and (iii) how do the sample's spectral parameters influence the experiment. For the nitroxide ruler, we report an improvement of up to 1.9 in total SNR, while for the Gd-PyMTA ruler the improvement was 3.1-3.4 and for Gd-DOTA-monoamide labeled ubiquitin it was a factor of 1.8. Whereas for the Gd-PyMTA ruler the two setups pump on maximum and observe on maximum gave about the same improvement, for Gd-DOTA-monoamide a significant difference was found. In general the choice of the best set of parameters depends on the D parameter of the Gd(III) complex.

  17. Characteristic effects of substituent and external pressure on group-inclusion complexation with p-sulfonatocalix[8]arene and γ-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Miyazono, Keitaro; Hanaya, Tadashi; Sueishi, Yoshimi

    2014-07-01

    By synthesizing unique nitroxide probes (α-substituted phenyl-2,4,6-trimethoxybenzyl(t-butyl)nitroxide), we have shown that p-sulfonatocalix[8]arene (Calix-S8) and γ-cyclodextin (γ-CD) form electron spin resonance spectroscopically separable group-inclusion complexes (α-substituted phenyl-in (R-in) and t-butyl-in complexes) and determined the group-inclusion constants of Calix-S8 and γ-CD. Using nitroxide probes, we have examined the effects of substituent and external pressure on group-inclusion complexation with Calix-S8 and γ-CD. Experiments on pressure dependence enabled us to calculate the reaction volume (Δ V) for R-in and t-butyl-in complex formations. Δ V for group-in complexation with Calix-S8 had negative values. In contrast, Δ V values for γ-CD showed positive values, which is responsible for the repelled water molecules in the CD cavity. The characteristic pressure effects on group-in complexation suggest that group recognition by γ-CD is sensitive when compared with that by Calix-S8.

  18. Observation of steric hindrance effect controlling crystal packing structures and physical properties in three new isomeric nitronyl nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Rong; Sun, Jia-Sen; Sui, Yun-Xia; Ren, Xiao-Ming; Yao, Bin-Qian; Shen, Lin-Jiang; Meng, Qing-Jin

    2009-07-01

    Three isomeric nitronyl nitroxide radical compounds, 2-[ n-( N-benzyl)pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide bromide ( n = 2, 3 and 4 for 1, 2 and 3, respectively), have been synthesized and structurally characterized. The influence of steric hindrance on the molecular packing structures and physical properties has been observed. In the radical 1, such steric hindrance leads to a folding conformation of the imidazoline and benzene rings and the intramolecular C-H…π interaction between the methyl group and the benzene ring. There is no such effect in 2 and 3. In crystal of 2, there are the intermolecular C-H…π between methyl groups and benzene ring and intermolecular π…π stacking interaction between pyridine and benzene rings. Crystal of 2 with a chiral space group P2 12 12 1 shows the SHG response about 0.4 times as that of urea. In crystal of 3, there are three symmetry-independent radical molecules, which form an unusually six-membered supramolecular ring via intermolecular O…π interactions. For the solid sample of 3, the X-band EPR exhibits an axially symmetric signal and magnetic susceptibility data suggest intermolecular antiferromagnetic (AFM) coupling interactions and very weak intermolecular ferromagnetic (FM) coupling interactions which is more likely caused by magnetic anisotropy, while measurements of both 1 and 2 show isotropic X-band EPR signals and simple Currie-Weiss magnetic behavior.

  19. Spin relaxation measurements of electrostatic bias in intermolecular exploration

    NASA Astrophysics Data System (ADS)

    Teng, Ching-Ling; Bryant, Robert G.

    2006-04-01

    We utilize the paramagnetic contribution to proton spin-lattice relaxation rate constants induced by freely diffusing charged paramagnetic centers to investigate the effect of charge on the intermolecular exploration of a protein by the small molecule. The proton NMR spectrum provided 255 resolved resonances that report how the explorer molecule local concentration varies with position on the surface. The measurements integrate over local dielectric constant variations, and, in principle, provide an experimental characterization of the surface free energy sampling biases introduced by the charge distribution on the protein. The experimental results for ribonuclease A obtained using positive, neutral, and negatively charged small nitroxide radicals are qualitatively similar to those expected from electrostatic calculations. However, while systematic electrostatic trends are apparent, the three different combinations of the data sets do not yield internally consistent values for the electrostatic contribution to the intermolecular free energy. We attribute this failure to the weakness of the electrostatic sampling bias for charged nitroxides in water and local variations in effective translational diffusion constant at the water-protein interface, which enters the nuclear spin relaxation equations for the nitroxide-proton dipolar coupling.

  20. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz

    NASA Astrophysics Data System (ADS)

    Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.

  1. Preparation of end-grafted polymer brushes by nitroxide-mediated free radical polymerization of vaporized vinyl monomers.

    PubMed

    Li, Jun; Chen, Xiaoru; Chang, Ying-Chih

    2005-10-11

    In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.

  2. Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue.

    PubMed

    Cotelle, Philippe; Cotelle, Nicole; Teissier, Elisabeth; Vezin, Hervé

    2003-03-20

    4-(4-Hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one 1 was prepared by an acidic dimerisation of 4-hydroxyphenylpyruvic acid and some of its antioxidant and spectroscopic properties have been measured and compared to that of ascorbic acid. 1 is as good an antioxidant as ascorbic acid in the DPPH (2,2-diphenyl-1-picryl hydrazyl radical) test and the inhibition of hydroxyl radical and a powerful inhibitor of the Cu(2+) or AAPH (2,2'-azobis-(2-amidinopropane) dihydrochloride) induced oxidation of human LDL. 1 gives a stable radical characterised by its ESR spectrum similarly to ascorbic acid but in lower concentration and with a different reactivity towards nitroxides. Theoretical calculations allow us to propose the structure for the radical formed from 1, to explain its lower stability than ascorbyl radical and to evaluate the lipophilicity of 1.

  3. In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frédéric A.; Sadow, Aaron; Pruski, Marek

    Numerical calculations of enhancement factors offered by dynamic nuclear polarization in solids under magic angle spinning (DNP-MAS) were performed to determine the optimal EPR parameters for a dinitroxide polarizing agent. We found that the DNP performance of a biradical is more tolerant to the relative orientation of the two nitroxide moieties than previously thought. In general, any condition in which the gyy tensor components of both radicals are perpendicular to one another is expected to have near-optimal DNP performance. These results highlight the important role of the exchange coupling, which can lessen the sensitivity of DNP performance to the inter-radicalmore » distance, but also lead to lower enhancements when the number of atoms in the linker becomes less than three. Finally, the calculations showed that the electron T1e value should be near 500μs to yield optimal performance. Importantly, the newest polarizing agents already feature all of the qualities of the optimal polarizing agent, leaving little room for further improvement. Further research into DNP polarizing agents should then target non-nitroxide radicals, as well as improvements in sample formulations to advance high-temperature DNP and limit quenching and reactivity.« less

  4. In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?

    DOE PAGES

    Perras, Frédéric A.; Sadow, Aaron; Pruski, Marek

    2017-06-09

    Numerical calculations of enhancement factors offered by dynamic nuclear polarization in solids under magic angle spinning (DNP-MAS) were performed to determine the optimal EPR parameters for a dinitroxide polarizing agent. We found that the DNP performance of a biradical is more tolerant to the relative orientation of the two nitroxide moieties than previously thought. In general, any condition in which the gyy tensor components of both radicals are perpendicular to one another is expected to have near-optimal DNP performance. These results highlight the important role of the exchange coupling, which can lessen the sensitivity of DNP performance to the inter-radicalmore » distance, but also lead to lower enhancements when the number of atoms in the linker becomes less than three. Finally, the calculations showed that the electron T1e value should be near 500μs to yield optimal performance. Importantly, the newest polarizing agents already feature all of the qualities of the optimal polarizing agent, leaving little room for further improvement. Further research into DNP polarizing agents should then target non-nitroxide radicals, as well as improvements in sample formulations to advance high-temperature DNP and limit quenching and reactivity.« less

  5. EPR Studies of the Binding Properties, Guest Dynamics, and Inner-Space Dimensions of a Water-Soluble Resorcinarene Capsule.

    PubMed

    Ayhan, Mehmet Menaf; Casano, Gilles; Karoui, Hakim; Rockenbauer, Antal; Monnier, Valérie; Hardy, Micaël; Tordo, Paul; Bardelang, David; Ouari, Olivier

    2015-11-09

    Nitroxide free radicals have been used to study the inner space of one of Rebek's water-soluble capsules. EPR and (1) H NMR spectroscopy, ESI-MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka ) in the order of 10(7)  M(-2) . EPR spectral-shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of nanosized (<20 nm) polymer particles by radical polymerization in miniemulsion employing in situ surfactant formation.

    PubMed

    Guo, Yi; Zetterlund, Per B

    2011-10-18

    A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Antioxidant pool in beer and kinetics of EPR spin-trapping.

    PubMed

    Kocherginsky, Nikolai M; Kostetski, Yuri Yu; Smirnov, Alex I

    2005-08-24

    The kinetics of spin-trap adduct formation in beer oxidation exhibits an induction period if the reaction is carried out at elevated temperatures and in the presence of air. This lag period lasts until the endogenous antioxidants are almost completely depleted, and its duration is used as an indicator of the flavor stability and shelf life of beer. This paper demonstrates that the total kinetics of the process can be characterized by three parameters-the lag period, the rate of spin-trap adduct formation, and, finally, the steady-state spin-adduct concentration. A steady-state chain reaction mechanism is described, and quantitative estimates of the main kinetic parameters such as the initiation rate, antioxidant pool, effective content of organic molecules participating in the chain reactions, and the rate constant of the 1-hydroxyethyl radical EtOH(*) spin-adduct disappearance are given. An additional new dimensionless parameter is suggested to characterize the antioxidant pool-the product of the lag time and the rate of spin-trap radical formation immediately after the lag time, normalized by the steady-state concentration of the adducts. The results of spin-tapping EPR experiments are compared with the nitroxide reduction kinetics measured in the same beer samples. It is shown that although the kinetics of nitroxide reduction in beer can be used to evaluate the reducing power of beer, the latter parameter does not correlate with the antioxidant pool. The relationship of free radical processes, antioxidant pool, reducing power, and beer staling is discussed.

  8. Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.

    2016-04-01

    We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.

  9. Low operational stability of enzymes in dry organic solvents: changes in the active site might affect catalysis.

    PubMed

    Bansal, Vibha; Delgado, Yamixa; Legault, Marc; Barletta, Gabriel

    2012-02-14

    The potential of enzyme catalysis in organic solvents for synthetic applications has been overshadowed by the fact that their catalytic properties are affected by organic solvents. In addition, it has recently been shown that an enzyme's initial activity diminishes considerably after prolonged exposure to organic media. Studies geared towards understanding this last drawback have yielded unclear results. In the present work we decided to use electron paramagnetic resonance spectroscopy (EPR) to study the motion of an active site spin label (a nitroxide free radical) during 96 h of exposure of the serine protease subtilisin Carlsberg to four different organic solvents. Our EPR data shows a typical two component spectra that was quantified by the ratio of the anisotropic and isotropic signals. The isotropic component, associated with a mobile nitroxide free radical, increases during prolonged exposure to all solvents used in the study. The maximum increase (of 43%) was observed in 1,4-dioxane. Based on these and previous studies we suggest that prolonged exposure of the enzyme to these solvents provokes a cascade of events that could induce substrates to adopt different binding conformations. This is the first EPR study of the motion of an active-site spin label during prolonged exposure of an enzyme to organic solvents ever reported.

  10. Circulating blood volume determination using electronic spin resonance spectroscopy.

    PubMed

    Facorro, Graciela; Bianchin, Ana; Boccio, José; Hager, Alfredo

    2006-09-01

    There have been numerous methods proposed to measure the circulating blood volume (CBV). Nevertheless, none of them have been massively and routinely accepted in clinical diagnosis. This study describes a simple and rapid method, on a rabbit model, using the dilution of autologous red cells labeled with a nitroxide radical (Iodoacetamide-TEMPO), which can be detected by electronic spin resonance (ESR) spectroscopy. Blood samples were withdrawn and re-injected using the ears' marginal veins. The average CBV measured by the new method/body weight (CBV(IAT)/BW) was 59 +/- 7 mL/kg (n = 33). Simultaneously, blood volume determinations using the nitroxide radical and (51)Cr (CBV(Cr)) were performed. In the plot of the difference between the methods (CBV(IAT) - CBV(Cr)) against the average (CBV(IAT) + CBV(Cr))/2, the mean of the bias was -1.1 +/- 6.9 mL and the limits of agreement (mean difference +/-2 SD) were -14.9 and 12.7 mL. Lin's concordance correlation coefficient p(c) = 0.988. Thus, both methods are in close agreement. The development of a new method that allows a correct estimation of the CBV without using radioactivity, avoiding blood manipulation, and decreasing the possibility of blood contamination with similar accuracy and precision of that of the "gold standard method" is an innovative proposal.

  11. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice.

    PubMed

    Feliciano, Chitho P; Tsuboi, Koji; Suzuki, Kenshi; Kimura, Hiroyuki; Nagasaki, Yukio

    2017-06-01

    Radioprotective agents have been developed to protect patients against the damaging and lethal effects of ionizing radiation. However, in addition to the intrinsic ability to target reactive oxygen species (ROS), the ability to retain a significant level of bioavailability is desirable in radioprotective agents because that would increase and prolong their radioprotective efficacy and improve its safety. Here, we report the development of a novel nanoparticle-based radioprotective agent with improved bioavailability, which suppressed the adverse effects typically associated with low-molecular-weight (LMW) antioxidants. We developed biocompatible and colloidally stable nanoparticles in which nitroxide radicals that were covalently conjugated (redox nanoparticles, RNP N ) effectively scavenged radiation-induced ROS with a characteristically prolonged bioavailability and tissue-residence time compared with that of conventional LMW antioxidants. The confinement of the nitroxide radicals in the RNP N core prevented its rapid metabolism and excretion out of the body. The nano-sized formulation prevented internalization of RNP N in healthy cells, thereby preserving the normal function of the redox reactions in the cell. This improved pharmacological performance dramatically reduced the radiation-induced organ dysfunctions and increased the survival time of the lethally irradiated mice when the nanoparticles were administered 3-24 h before whole-body irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nitroxidative chemistry interferes with fluorescent probe chemistry: implications for nitric oxide detection using 2,3-diaminonaphthalene.

    PubMed

    Hu, Teh-Min; Chiu, Shih-Jiuan; Hsu, Yu-Ming

    2014-08-22

    Simultaneous production of nitric oxide (NO) and superoxide generates peroxynitrite and causes nitroxidative stress. The fluorometric method for NO detection is based on the formation of a fluorescent product from the reaction of a nonfluorescent probe molecule with NO-derived nitrosating species. Here, we present an example of how nitroxidative chemistry could interact with fluorescent probe chemistry. 2,3-Naphthotriazole (NAT) is the NO-derived fluorescent product of 2,3-diaminonaphthalene (DAN), a commonly used NO-detecting molecule. We show that NO/superoxide cogeneration, and particularly peroxynitrite, mediates the chemical decomposition of NAT. Moreover, the extent of NAT decomposition depends on the relative fluxes of NO and superoxide; the maximum effect being reached at almost equivalent generation rates for both radicals. The rate constant for the reaction of NAT with peroxynitrite was determined to be 2.2×10(3)M(-1)s(-1). Further, various peroxynitrite scavengers were shown to effectively inhibit NO/superoxide- and peroxynitrite-mediated decomposition of NAT. Taken together, the present study suggests that the interference of a fluorometric NO assay can be originated from the interaction between the final fluorescent product and the formed reactive nitrogen and oxygen species. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Interaction of H2 @C60 and nitroxide through conformationally constrained peptide bridges.

    PubMed

    Garbuio, Luca; Li, Yongjun; Antonello, Sabrina; Gascón, José A; Lawler, Ronald G; Lei, Xuegong; Murata, Yasujiro; Turro, Nicholas J; Maran, Flavio

    2014-01-01

    We synthesized two molecular systems, in which an endofullerene C60 , incarcerating one hydrogen molecule (H2 @C60 ) and a nitroxide radical are connected by a folded 310 -helical peptide. The difference between the two molecules is the direction of the peptide orientation. The nuclear spin relaxation rates and the para → ortho conversion rate of the incarcerated hydrogen molecule were determined by (1) H NMR spectroscopy. The experimental results were analyzed using DFT-optimized molecular models. The relaxation rates and the conversion rates of the two peptides fall in the expected distance range. One of the two peptides is particularly rigid and thus ideal to keep the H2 @C60 /nitroxide separation, r, as large and controlled as possible, which results in particularly low relaxation and conversion rates. Despite the very similar optimized distance, however, the rates measured with the other peptide are considerably higher and thus are compatible with a shorter effective distance. The results strengthen the outcome of previous investigations that while the para → ortho conversion rates satisfactorily obey the Wigner's theory, the nuclear spin relaxation rates are in excellent agreement with the Solomon-Bloembergen equation predicting a 1/r(6) dependence. © 2013 The American Society of Photobiology.

  14. Chemistry and Antihypertensive Effects of Tempol and Other Nitroxides

    PubMed Central

    WILCOX, CHRISTOPHER S.; PEARLMAN, ADAM

    2009-01-01

    Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension. PMID:19112152

  15. Powering up the future: radical polymers for battery applications.

    PubMed

    Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2012-12-18

    Our society's dependency on portable electric energy, i.e., rechargeable batteries, which permit power consumption at any place and in any time, will eventually culminate in resource wars on limited commodities like lithium, cobalt, and rare earth metals. The substitution of conventional metals as means of electric charge storage by organic and polymeric materials, which may ultimately be derived from renewable resources, appears to be the only feasible way out. In this context, the novel class of organic radical batteries (ORBs) excelling in rate capability (i.e., charging speed) and cycling stability (>1000 cycles) sets new standards in battery research. This review examines stable nitroxide radical bearing polymers, their processing to battery systems, and their promising performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of a new free radical absorption capacity assay method for antioxidants: aroxyl radical absorption capacity (ARAC).

    PubMed

    Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo

    2013-10-23

    A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.

  17. Relaxation-based distance measurements between a nitroxide and a lanthanide spin label

    NASA Astrophysics Data System (ADS)

    Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.

    2008-10-01

    Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.

  18. Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants.

    PubMed

    Rayner, Cassie L; Bottle, Steven E; Gole, Glen A; Ward, Micheal S; Barnett, Nigel L

    2016-01-01

    Nitroxides have been exploited as profluorescent probes for the detection of oxidative stress. In addition, they deliver potent antioxidant action and attenuate reactive oxygen species (ROS) in various models of oxidative stress, with these results ascribed to superoxide dismutase or redox and radical-scavenging actions. Our laboratory has developed a range of novel, biostable, isoindoline nitroxide-based antioxidants, DCTEIO and CTMIO. In this study we compared the efficiency of these novel compounds as antioxidant therapies in reducing ROS both in vivo (rat model) and in vitro (661W photoreceptor cells), with the established antioxidant resveratrol. By assessing changes in fluorescence intensity of a unique redox-responsive probe in the rat retina in vivo, we evaluated the ability of antioxidant therapy to (1) ameliorate ROS production and (2) reverse the accumulation of ROS after complete, acute ischemia followed by reperfusion (I/R). I/R injury induced a marked decrease in fluorescence intensity over 60 min of reperfusion, which was successfully ameliorated with each of the antioxidants. DCTEIO and CTMIO reversed the accumulation of ROS when administered intraocularly post ischemic insult, whereas, the effect of resveratrol was not significant. We also investigated our novel agents' capacity to prevent ROS-mediated metabolic dysfunction in the 661W photoreceptor cell line. Cellular stress induced by the oxidant, tert-butyl hydroperoxide, resulted in a loss of spare mitochondrial respiratory capacity (SMRC) and in the extracellular acidification rate in 661W cells. DCTEIO antioxidant administration successfully reduced the loss of SMRC. Together, these findings show we can quantify dynamic changes in cellular oxidative status in vivo and suggest that nitroxide-based antioxidants may provide greater protection against oxidative stress than the current state-of-the-art antioxidant treatments for ROS-mediated diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Product yield-detected ESR on magnetic field-dependent photoreduction of quinones in SDS micellar solution

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; Sakata, S.; Konaka, R.; Shiga, T.

    1987-06-01

    Transient free radicals in the magnetic field-dependent photoreduction of quinones (menadione or anthraquinone) in a sodium dodecyl sulfate (SDS) micellar solution, were converted to stable nitroxide radicals by the ``spin trapping'' technique with or without the microwave irradiation. Upon irradiating the microwave at 160 mW, the product yield (``spin adduct'' of the alkyl radical generated from SDS molecule) decreased by up to 14% at certain magnetic fields in a resonant manner. Although only one component of the postulated radical pair was converted to the spin adduct, the decrease in the yield as a function of external magnetic field revealed the ESR spectra of both component radicals of the radical pair, i.e., the semiquinone radical and the alkyl radical from SDS. This experiment not only gives the direct evidence for the radical pair model, but also suggests the possibility for this method to be applied in controlling the chemical reactions by the microwave. A simple calculation was made to simulate the observed ``product yield-detected ESR.'' Agreements were achieved semiquantitatively between the observed reductions in the spin adduct yields and those calculated. The estimated exchange interaction between the component radicals in the radical pair of the present systems was lower than 0.3 mT.

  20. Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene

    NASA Astrophysics Data System (ADS)

    Nardali, Ş.; Ucun, F.; Karakaya, M.

    2017-11-01

    The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.

  1. Production of superoxide in chloroplast thylakoid membranes ESR study with cyclic hydroxylamines of different lipophilicity.

    PubMed

    Kozuleva, Marina; Klenina, Irina; Proskuryakov, Ivan; Kirilyuk, Igor; Ivanov, Boris

    2011-04-06

    Accumulation of nitroxide radicals, DCP· or TMT·, under illumination of a thylakoid suspension containing either hydrophilic, DCP-H, or lipophilic, TMT-H, cyclic hydroxylamines that have high rate constants of the reaction with superoxide radicals, was measured using ESR. A slower accumulation of TMT· in contrast with DCP· accumulation was explained by re-reduction of TMT· by the carriers of the photosynthetic electron transport chain within the membrane. Superoxide dismutase suppressed TMT· accumulation to a lesser extent than DCP· accumulation. The data are interpreted as evidencing the production of intramembrane superoxide in thylakoids. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. When combined X-ray and polarized neutron diffraction data challenge high-level calculations: spin-resolved electron density of an organic radical.

    PubMed

    Voufack, Ariste Bolivard; Claiser, Nicolas; Lecomte, Claude; Pillet, Sébastien; Pontillon, Yves; Gillon, Béatrice; Yan, Zeyin; Gillet, Jean Michel; Marazzi, Marco; Genoni, Alessandro; Souhassou, Mohamed

    2017-08-01

    Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.

  3. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marcos; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Magon, Claudio José; Eckert, Hellmut

    2015-03-01

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and 11B, 14N, and 31P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to 14N and 31P, the ESEEM and HYSCORE spectra contain important information about the 11B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  4. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Marcos de; Magon, Claudio José; Wiegand, Thomas

    2015-03-28

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that differentmore » from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.« less

  5. Assessment of novel maleic anhydride copolymers prepared via nitroxide-mediated radical polymerization as CaSO4 crystal growth inhibitors.

    PubMed

    Al-Roomi, Yousef Mohammad; Hussain, Kaneez Fatema

    2017-04-01

    Calcium sulfate is one of the dominant scales which, unlike carbonate scale, are not easily removable by acid. To inhibit CaSO 4 scale formation in artificial cooling water systems, well-defined low molecular weight maleic anhydride and n-alkylacrylamide copolymers (YMR-S series) were synthesized via nitroxide-mediated radical polymerization initiated by benzoyl peroxide in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy at varying concentrations. These polymerizations exhibit living polymerization characteristics; that is, they show linear growth in chain length as a function of monomer conversion, and have narrow molecular weight distributions. Resultant polymers were characterized by means of 1 H-NMR and 13 C-NMR. The inhibition behavior of these YMR-S series polymers against CaSO 4 was evaluated using the static scale inhibition method and a dynamic tube block test. The inhibition ability on the CaSO 4 scale is 99.5% with 9 ppm dosage level at pH 10.45 and temperature 70°C. Scanning electronic microscope analysis proved the morphological changes of the CaSO 4 scales due to the strong inhibition action of YMR-S polymers. It is also observed that the antiscaling effect of the copolymers greatly depends on the molecular weight, and the optimum range is below 20,000 and approximately in the range 500-2000.

  6. Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework

    DOE PAGES

    Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; ...

    2015-10-27

    Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C 6 H 4 CH 2 ) 3 N] 3- (TriNO x 3- ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNO x )thf][BAr F 4 ], in which Ar F =3,5-(CF 3 ) 2 -C 6 H 3 , and [Ce(TriNO x )py][OTf] . A rare complete Ce-halide series, Ce(TriNO x )X, in which X=F - , Clmore » - , Br - , I - , was also synthesized. We explored the solution chemistry of these complexes through detailed solution-phase electrochemistry and 1 H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X - group. DFT calculations on the series of calculations corroborated the experimental findings. Also, the use of a bulky and strongly donating tethered tripodal nitroxide ligand allowed the controlled redox chemistry at cerium. As a result, rare examples of cationic Ce IV complexes were synthesized and fully characterized. The full Ce-halide series supported by the tripodal ligand framework is also reported (see scheme).« less

  7. Protein Immobilization Capabilities of Sucrose and Trehalose Glasses: The Effect of Protein/Sugar Concentration Unraveled by High-Field EPR.

    PubMed

    Malferrari, Marco; Savitsky, Anton; Lubitz, Wolfgang; Möbius, Klaus; Venturoli, Giovanni

    2016-12-01

    Disaccharide glasses are increasingly used to immobilize proteins at room temperature for structural/functional studies and long-term preservation. To unravel the molecular basis of protein immobilization, we studied the effect of sugar/protein concentration ratios in trehalose or sucrose matrixes, in which the bacterial photosynthetic reaction center (RC) was embedded as a model protein. The structural, dynamical, and H-bonding characteristics of the sugar-protein systems were probed by high-field W-band EPR of a matrix-dissolved nitroxide radical. We discovered that RC immobilization and thermal stabilization, being independent of the protein concentration in trehalose, occur in sucrose only at sufficiently low sugar/protein ratios. EPR reveals that only under such conditions does sucrose form a microscopically homogeneous matrix that immobilizes, via H-bonds, the nitroxide probe. We conclude that the protein immobilization capability depends critically on the propensity of the glass-forming sugar to create intermolecular H-bond networks, thus establishing long-range, homogeneous connectivity within the matrix.

  8. N-tert-butylmethanimine N-oxide is an efficient spin-trapping probe for EPR analysis of glutathione thiyl radical

    PubMed Central

    Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.

    2016-01-01

    The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944

  9. Long-Life and High-Power Binder-Free Cathode Based on One-Step Synthesis of Radical Polymers with Multi-Pendant Groups.

    PubMed

    Chen, Yaoguang; Zhang, Yangfan; Liu, Xiu; Fan, Xuliang; Bai, Bing; Yang, Kang; Liang, Zhongxin; Zhang, Zishou; Mai, Kancheng

    2018-05-16

    The main bottlenecks for the widespread application of radical polymers in organic radical batteries are poor cycling stability, due to the dissolution of radical polymers into the electrolyte, and the low efficiency of multi-step synthesis strategies. Herein, a kind of electrolyte-resistant radical polymer bearing multi-pendant groups (poly(ethylene-alt-TEMPO maleate) (PETM)) is designed and synthesized through a one-step esterification reaction to graft 4-hydroxy-2,2,6,6-teramethylpiperidinyl-1-oxy into the commercially available poly(ethylene-alt-maleic anhydride). Interestingly, PETM is hardly soluble in the ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate-based electrolyte, showing an extremely low solubility of 0.59 mg mL -1 , but is easily soluble in tetrahydrofuran and N-Methyl pyrrolidone. The derived binder-free PETM cathode exhibits nearly 100% utilization of the grafted nitroxide radicals (88 mA h g -1 ) and excellent rate capability with almost invariant capacitance from 10 C to 40 C. Significantly, the PETM cathodes retain 94% of the initial capacity after 1000 cycles, outperforming most reported radical polymer-based cathodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In vivo imaging of free radicals produced by multivitamin-mineral supplements.

    PubMed

    Rabovsky, Alexander B; Buettner, Garry R; Fink, Bruno

    2015-12-01

    Redox active minerals in dietary supplements can catalyze unwanted and potentially harmful oxidations. To determine if this occurs in vivo we employed electron paramagnetic (EPR) imaging. We used 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) as a reporter for one-electron oxidations, e.g . free radical-mediated oxidations; the one-electron oxidation product of CPH, 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CP • ), is a nitroxide free radical that is relatively persistent in vivo and detectable by EPR. As model systems, we used research formulations of vitamin mineral supplements (RVM) that are typical of commercial products. In in vitro experiments, upon suspension of RVM in aqueous solution, we observed: (1) the uptake of oxygen in the solution, consistent with oxidation of the components in the RVM; (2) the ascorbate free radical, a real-time indicator of ongoing oxidations; and (3) when amino acid/oligosaccharide (AAOS; glycinate or aspartate with non-digestible oligofructose) served as the matrix in the RVM, the rate of oxidation was significantly slowed. In a murine model, EPR imaging showed that the ingestion of RVM along with CPH results in the one-electron oxidation of CPH by RVM in the digestive system. The resulting CP • distributes throughout the body. Inclusion of AAOS in the RVM formulation diminished the oxidation of CPH to CP • in vivo. These data demonstrate that typical formulations of multivitamin/multimineral dietary supplements can initiate the oxidation of bystander substances and that AAOS-complexes of essential redox active metals, e.g . copper and iron, have reduced ability to catalyze free radical formation and associated detrimental oxidations when a part of a multivitamin/multimineral formulation.

  11. In vivo imaging of free radicals produced by multivitamin-mineral supplements

    PubMed Central

    Buettner, Garry R.; Fink, Bruno

    2015-01-01

    Background Redox active minerals in dietary supplements can catalyze unwanted and potentially harmful oxidations. Methods To determine if this occurs in vivo we employed electron paramagnetic (EPR) imaging. We used 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) as a reporter for one-electron oxidations, e.g. free radical-mediated oxidations; the one-electron oxidation product of CPH, 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (CP•), is a nitroxide free radical that is relatively persistent in vivo and detectable by EPR. As model systems, we used research formulations of vitamin mineral supplements (RVM) that are typical of commercial products. Results In in vitro experiments, upon suspension of RVM in aqueous solution, we observed: (1) the uptake of oxygen in the solution, consistent with oxidation of the components in the RVM; (2) the ascorbate free radical, a real-time indicator of ongoing oxidations; and (3) when amino acid/oligosaccharide (AAOS; glycinate or aspartate with non-digestible oligofructose) served as the matrix in the RVM, the rate of oxidation was significantly slowed. In a murine model, EPR imaging showed that the ingestion of RVM along with CPH results in the one-electron oxidation of CPH by RVM in the digestive system. The resulting CP• distributes throughout the body. Inclusion of AAOS in the RVM formulation diminished the oxidation of CPH to CP• in vivo. Conclusions These data demonstrate that typical formulations of multivitamin/multimineral dietary supplements can initiate the oxidation of bystander substances and that AAOS-complexes of essential redox active metals, e.g. copper and iron, have reduced ability to catalyze free radical formation and associated detrimental oxidations when a part of a multivitamin/multimineral formulation. PMID:26705481

  12. Redox-Active Nitroxide Radical Polymers: From Green Catalysts to Energy Storage Devices

    NASA Astrophysics Data System (ADS)

    Waskitoaji, Wihatmoko; Suga, Takeo; Nishide, Hiroyuki

    2009-09-01

    Robust but redox-active radical polymers bearing 2, 2, 6, 6-tetramethylpiperidin-N-oxy (TEMPO) were investigated as a metal-free, green mediator/catalyst for the oxidation of alcohol derivatives, and as a new electrode-active and charge-storage material. The TEMPO-mediated oxidation of the primary alcohol group of the natural cellulose improved the water-dispersivity of cellulose, and the polymer-supported catalysts or redox resins allow facile removal of catalysts from products by simple filtration. Other radical molecule (e.g. galvinoxyl) was also used as a mediator, which is coupled with the molecular oxygen. A reversible one-electron redox reaction of TEMPO allowed its application as an electrode-active material featuring high cyclability (>500 cycles), relatively high battery electrode capacity (100-135 mAh/g), and fast electrode kinetics, leading to the high power rate capability of the battery. The radical polymer-based electrodes also provided good processability and shape flexibility, which promised the paper-like and wearable energy-storage devices.

  13. EPR investigation of zinc/iodine exchange between propargyl iodides and diethylzinc: detection of propargyl radical by spin trapping.

    PubMed

    Maury, Julien; Jammi, Suribabu; Vibert, François; Marque, Sylvain R A; Siri, Didier; Feray, Laurence; Bertrand, Michèle

    2012-10-19

    The production of propargyl radicals in the reaction of dialkylzincs with propargyl iodides in nondegassed medium was investigated by EPR using tri-tert-butylnitrosobenzene (TTBNB) as a spin trap. The radical mechanism and the nature of the observed species were confirmed by the trapping of propargyl radicals generated by an alternative pathway: i.e., upon irradiation of propargyl iodides in the presence of hexa-n-butyldistannane. In dialkylzinc-mediated experiments a high concentration of adduct was instantaneously observed, whereas no spontaneous production of spin adduct was detected in a blank experiment performed with the propargylic iodide and TTBNB in the absence of diethylzinc. Under irradiation in the presence of distannane, two different species were observed at the very beginning of the irradiation; the nitroxide resulting from the trapping of propargyl radical at the propargyl carbon remained the only species detected after irradiating for several minutes. The absence of adducts resulting from the trapping of allenyl canonical forms was supported by DFT calculations and by the preparation of an authentic sample.

  14. Valence-band structure of organic radical p-CF3PNN investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Anzai, Hiroaki; Takakura, Ryosuke; Ono, Yusuke; Ishihara, Suzuna; Sato, Hitoshi; Namatame, Hirofumi; Taniguchi, Masaki; Matsui, Toshiyuki; Noguchi, Satoru; Hosokoshi, Yuko

    2018-05-01

    We study the electronic structure of p-trifluoromethylphenyl nitronyl nitroxide (p-CF3PNN), which forms a one-dimensional alternating antiferromagnetic chain of molecules, using angle-resolved photoemission spectroscopy. A singly occupied molecular orbital (SOMO) is observed clearly at ∼ 2 eV in the valence-band spectra. The small band gap and the overlap between the SOMO orbitals in the NO groups are associated with the antiferromagnetic interaction between neighboring spins.

  15. Nitroxide amide-BODIPY probe behavior in fibroblasts analyzed by advanced fluorescence microscopy.

    PubMed

    Liras, M; Simoncelli, S; Rivas-Aravena, A; García, O; Scaiano, J C; Alarcon, E I; Aspée, A

    2016-04-26

    A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered.

  16. (Charge separation in photoredox reactions). Informal annual technical progress report, October 1, 1981-October 1, 1982. [N,N,N',N'tetramethylbenzidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevan, L.

    1982-10-21

    During this period work has focused on the structural aspects of photoinduced charge separation in micellar media with initial forays into vesicular media. The primary techniques utilized are electron spin resonance and electron spin echo spectrometry. The analysis of electron spin echo modulation gives a unique handle on very weak hyperfine interactions thus providing a new structural tool for this general problem. Electron spin resonance and electron spin echo studies of the photoionization of N,N,N',N'tetramethylbenzidine (TMB) to give the cation radical have been carried out in anionic, cationic and nonionic micellar solutions frozen to 77/sup 0/K. The photoionization efficiency ofmore » TMB has also been studied in micelles with varying alkyl chain lengths of the surfactant. Stearic acid nitroxide spin probes have also been used to determine some structural aspects of the location of the neutral TMB molecule in anionic micelles before photoionization. The nitroxide work in which the nitroxide is acting as an electron acceptor also shows that a suitable electron acceptor can be located within the micellar structure. The effect of inorganic solutes on the efficiency of the photoionization of TMB in frozen micelles has also been studied. A series of electron scavenger studies have been initiated to study the effect on TMB photoionization efficiency. Electron spin echo detection of laser photogenerated TMB cation in liquid sodium dodecyl sulfate solutions at room temperature has recently been observed.« less

  17. Dynamics of 4-oxo-TEMPO-d16-15N nitroxide-propylene glycol system studied by ESR and ESE in liquid and glassy state in temperature range 10-295 K

    NASA Astrophysics Data System (ADS)

    Goslar, Janina; Hoffmann, Stanislaw K.; Lijewski, Stefan

    2016-08-01

    ESR spectra and electron spin relaxation of nitroxide radical in 4-oxo-TEMPO-d16-15N in propylene glycol were studied at X-band in the temperature range 10-295 K. The spin-lattice relaxation in the liquid viscous state determined from the resonance line shape is governed by three mechanisms occurring during isotropic molecular reorientations. In the glassy state below 200 K the spin-lattice relaxation, phase relaxation and electron spin echo envelope modulations (ESEEM) were studied by pulse spin echo technique using 2-pulse and 3-pulse induced signals. Electron spin-lattice relaxation is governed by a single non-phonon relaxation process produced by localized oscillators of energy 76 cm-1. Electron spin dephasing is dominated by a molecular motion producing a resonance-type peak in the temperature dependence of the dephasing rate around 120 K. The origin of the peak is discussed and a simple method for the peak shape analysis is proposed, which gives the activation energy of a thermally activated motion Ea = 7.8 kJ/mol and correlation time τ0 = 10-8 s. The spin echo amplitude is strongly modulated and FT spectrum contains a doublet of lines centered around the 2D nuclei Zeeman frequency. The splitting into the doublet is discussed as due to a weak hyperfine coupling of nitroxide unpaired electron with deuterium of reorienting CD3 groups.

  18. Side reactions of nitroxide-mediated polymerization: N-O versus O-C cleavage of alkoxyamines.

    PubMed

    Hodgson, Jennifer L; Roskop, Luke B; Gordon, Mark S; Lin, Ching Yeh; Coote, Michelle L

    2010-09-30

    Free energies for the homolysis of the NO-C and N-OC bonds were compared for a large number of alkoxyamines at 298 and 393 K, both in the gas phase and in toluene solution. On this basis, the scope of the N-OC homolysis side reaction in nitroxide-mediated polymerization was determined. It was found that the free energies of NO-C and N-OC homolysis are not correlated, with NO-C homolysis being more dependent upon the properties of the alkyl fragment and N-OC homolysis being more dependent upon the structure of the aminyl fragment. Acyclic alkoxyamines and those bearing the indoline functionality have lower free energies of N-OC homolysis than other cyclic alkoxyamines, with the five-membered pyrrolidine and isoindoline derivatives showing lower free energies than the six-membered piperidine derivatives. For most nitroxides, N-OC homolysis is normally favored above NO-C homolysis only when a heteroatom that is α to the NOC carbon center stabilizes the NO-C bond and/or the released alkyl radical is not sufficiently stabilized. As part of this work, accurate methods for the calculation of free energies for the homolysis of alkoxyamines were determined. Accurate thermodynamic parameters to within 4.5 kJ mol(-1) of experimental values were found using an ONIOM approximation to G3(MP2)-RAD combined with PCM solvation energies at the B3-LYP/6-31G(d) level.

  19. A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement

    NASA Astrophysics Data System (ADS)

    Yang, Zhongyu; Bridges, Michael D.; López, Carlos J.; Rogozhnikova, Olga Yu.; Trukhin, Dmitry V.; Brooks, Evan K.; Tormyshev, Victor; Halpern, Howard J.; Hubbell, Wayne L.

    2016-08-01

    Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy has become an important tool for measuring distances in proteins on the order of a few nm. For this purpose pairs of spin labels, most commonly nitroxides, are site-selectively introduced into the protein. Recent efforts to develop new spin labels are focused on tailoring the intrinsic properties of the label to either extend the upper limit of measurable distances at physiological temperature, or to provide a unique spectral lineshape so that selective pairwise distances can be measured in a protein or complex containing multiple spin label species. Triarylmethyl (TAM) radicals are the foundation for a new class of spin labels that promise to provide both capabilities. Here we report a new methanethiosulfonate derivative of a TAM radical that reacts rapidly and selectively with an engineered cysteine residue to generate a TAM containing side chain (TAM1) in high yield. With a TAM1 residue and Cu2+ bound to an engineered Cu2+ binding site, enhanced T1 relaxation of TAM should enable measurement of interspin distances up to 50 Å at physiological temperature. To achieve favorable TAM1-labeled protein concentrations without aggregation, proteins are tethered to a solid support either site-selectively using an unnatural amino acid or via native lysine residues. The methodology is general and readily extendable to complex systems, including membrane proteins.

  20. In vitro photostability and photoprotection studies of a novel 'multi-active' UV-absorber.

    PubMed

    Venditti, E; Spadoni, T; Tiano, L; Astolfi, P; Greci, L; Littarru, G P; Damiani, E

    2008-08-01

    This paper reports on the synthesis and properties of a new UV-absorber (OC-NO) based on the most popular UV filter worldwide, ethylhexyl methoxycinnamate (OMC) in which the methoxy group has been replaced with a pyrrolidine nitroxide bearing antioxidant activity. This sunscreen active has therefore both UV-absorbing and antioxidant properties which could ideally address both the UV-B and UV-A skin photo-damage. For broad-spectrum coverage, the combinations of OC-NO with two commonly used UV-A absorbers (BMDBM and DHHB) were also studied. The results obtained reveal that OC-NO: (a) is as photostable as OMC after UV-A exposure; (b) acts as free radical scavenger as demonstrated by EPR and chemical studies; (c) reduces UV-A and UV-A+BMDBM induced lipid peroxidation in liposomes and cells, measured as reduced TBARS levels and increased C11-BODIPY red fluorescence, respectively; (d) has comparable antioxidant activity to that of vitamin E and BHT commonly used in skin care formulations; (e) is non-cytotoxic to human skin fibroblasts as assessed with the MTT assay when exposed to increasing doses of UV-A; and (f) OC-NO+DHHB is a promising, photostable broad spectrum UV-filter combination that concomitantly reduces UV-induced free radical damage. These results suggest that nitroxide/antioxidant-based UV-absorbers may pave the way for the utilization of 'multi-active' ingredients in sunscreens thereby reducing the number of ingredients in these formulations.

  1. Continuous Diffusion Model for Concentration Dependence of Nitroxide EPR Parameters in Normal and Supercooled Water.

    PubMed

    Merunka, Dalibor; Peric, Miroslav

    2017-05-25

    Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.

  2. The evaluation of new and isotopically labeled isoindoline nitroxides and an azaphenalene nitroxide for EPR oximetry

    PubMed Central

    Khan, Nadeem; Blinco, James P.; Bottle, Steven E.; Hosokawa, Kazuyuki; Swartz, Harold M.; Micallef, Aaron S.

    2011-01-01

    Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogues (2H12- and/or 2H12-15N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O2 concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O2 sensitivity. Labeling the nitroxides with 15N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation. PMID:21665499

  3. Glutathione: new roles in redox signaling for an old antioxidant

    PubMed Central

    Aquilano, Katia; Baldelli, Sara; Ciriolo, Maria R.

    2014-01-01

    The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signaling. In particular, GSH is involved in nutrient metabolism, antioxidant defense, and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signaling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy, and viral infection. PMID:25206336

  4. Glutathione: new roles in redox signaling for an old antioxidant.

    PubMed

    Aquilano, Katia; Baldelli, Sara; Ciriolo, Maria R

    2014-01-01

    The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signaling. In particular, GSH is involved in nutrient metabolism, antioxidant defense, and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signaling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy, and viral infection.

  5. The first radical-based spintronic memristors: Towards resistive RAMs made of organic magnets

    NASA Astrophysics Data System (ADS)

    Goss, Karin; Krist, Florian; Seyfferle, Simon; Hoefel, Udo; Paretzki, Alexa; Dressel, Martin; Bogani, Lapo; Institut Fuer Anorganische Chemie, University of Stuttgart Collaboration; 1. Physikalisches Institut, University of Stuttgart Team

    2014-03-01

    Using molecules as building blocks for electronic devices offers ample possibilities for new device functionalities due to a chemical tunability much higher than that of standard inorganic materials, and at the same time offers a decrease in the size of the electronic component down to the single-molecule level. Purely organic molecules containing no metallic centers such as organic radicals can serve as an electronic component with magnetic properties due to the unpaired electron in the radical state. Here we present memristive logic units based on organic radicals of the nitronyl-nitroxide kind. Integrating these purely molecular units as a spin coated layer into crossbar arrays, electrically induced unipolar resistive switching is observed with a change in resistance of up to 100%. We introduce a model based on filamentary reorganization of molecules of different oxidation state revealing the importance of the molecular nature for the switching properties. The major role of the oxidation state of these paramagnetic molecules introduces a magnetic field dependence to the device functionality, which goes along with magnetoresistive charactistics observed for the material. These are the first steps towards a spintronic implementation of organic radicals in electronic devices.

  6. Clearance and Biodistribution of Liposomally Encapsulated Nitroxides: A Model for Targeted Delivery of Electron Paramagnetic Resonance Imaging Probes to Tumors

    PubMed Central

    Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.

    2011-01-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567

  7. Truncated Cross Effect Dynamic Nuclear Polarization: An Overhauser Effect Doppelgänger.

    PubMed

    Equbal, Asif; Li, Yuanxin; Leavesley, Alisa; Huang, Shengdian; Rajca, Suchada; Rajca, Andrzej; Han, Songi

    2018-05-03

    The discovery of a truncated cross-effect (CE) in dynamic nuclear polarization (DNP) NMR that has the features of an Overhauser-effect DNP (OE-DNP) is reported here. The apparent OE-DNP, where minimal μw power achieved optimum enhancement, was observed when doping Trityl-OX063 with a pyrroline nitroxide radical that possesses electron-withdrawing tetracarboxylate substituents (tetracarboxylate-ester-pyrroline or TCP) in vitrified water/glycerol at 6.9 T and at 3.3 to 85 K, in apparent contradiction to expectations. While the observations are fully consistent with OE-DNP, we discover that a truncated cross-effect ( tCE) is the underlying mechanism, owing to TCP's shortened T 1e . We take this observation as a guideline and demonstrate that a crossover from CE to tCE can be replicated by simulating the CE of a narrow-line (Trityl-OX063) and a broad-line (TCP) radical pair, with a significantly shortened T 1e of the broad-line radical.

  8. Redox properties of the nitronyl nitroxide antioxidants studied via their reactions with nitroxyl and ferrocyanide.

    PubMed

    Bobko, A A; Khramtsov, V V

    2015-01-01

    Nitronyl nitroxides (NNs) are the paramagnetic probes that are capable of scavenging physiologically relevant reactive oxygen (ROS) and nitrogen (RNS) species, namely superoxide, nitric oxide (NO), and nitroxyl (HNO). NNs are increasingly considered as potent antioxidants and potential therapeutic agents. Understanding redox chemistry of the NNs is important for their use as antioxidants and as paramagnetic probes for discriminative detection of NO and HNO by electron paramagnetic resonance (EPR) spectroscopy. Here we investigated the redox properties of the two most commonly used NNs, including determination of the equilibrium and rate constants of their reduction by HNO and ferrocyanide, and reduction potential of the couple NN/hydroxylamine of nitronyl nitroxide (hNN). The rate constants of the reaction of the NNs with HNO were found to be equal to (1-2) × 10(4) M(-1)s(- 1) being close to the rate constants of scavenging superoxide and NO by NNs. The reduction potential of the NNs and iminonitroxides (INs, product of NNs reaction with NO) were calculated based on their reaction constants with ferrocyanide. The obtained values of the reduction potential for NN/hNN (E'0 ≈ 285 mV) and IN/hIN (E' ≈ 495 mV) are close to the corresponding values for vitamin C and vitamin E, correspondingly. The "balanced" scavenging rates of the NNs towards superoxide, NO, and HNO, and their low reduction potential being thermodynamically close to the bottom of the pecking order of oxidizing radicals, might be important factors contributing into their antioxidant activity.

  9. Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1:1 complexes.

    PubMed

    Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Poussereau, Sandrine; Sorace, Lorenzo

    2004-04-07

    We use the strategy of diamagnetic substitution for obtaining information on the crystal field effects in paramagnetic rare earth ions using the homologous series of compounds with the diamagnetic tropolonato ligand, Ln(Trp)(HBPz(3))(2), and the paramagnetic semiquinone ligand, Ln(DTBSQ)(HBPz(3))(2), (DTBSQ = 3,5-di-tert-butylsemiquinonato, Trp = tropolonate, HBPz(3)= hydrotrispyrazolylborate) for Ln = Sm(iii), Eu(iii), Gd(iii), Tb(iii), Dy(iii), Ho(iii), Er(iii) or Yb(iii). The X-ray crystal structure of a new form of tropolonate derivative is presented, which shows, as expected, a marked similarity with the structure of the semiquinonate derivative. The Ln(Trp)(HBPz(3))(2) derivatives were then used as a reference for the qualitative determination of crystal field effects in the exchange coupled semiquinone derivatives. Through magnetisation and susceptibility measurements this empirical diamagnetic substitution method evidenced for Er(iii), Tb(iii), Dy(iii) and Yb(iii) derivatives a dominating antiferromagnetic coupling. The increased antiferromagnetic contribution compared to other radical-rare earth metal complexes formed by nitronyl nitroxide ligands may be related to the increased donor strength of the semiquinone ligand.

  10. Roles of free radicals in type 1 phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates.

    PubMed

    Lin, Tien-Sung; Rajagopalan, Raghavan; Shen, Yuefei; Park, Sungho; Poreddy, Amruta R; Asmelash, Bethel; Karwa, Amolkumar S; Taylor, John-Stephen A

    2013-07-03

    Detailed analyses of the electron spin resonance (ESR) spectra, cell viability, and DNA degradation studies are presented for the photolyzed Type I phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates. The ESR studies provided evidence that copious free radicals can be generated from these N-H, N-S, and S-O containing compounds upon photoirradiation with UV/visible light. The analyses of spectral data allowed us to identify the free radical species. The cell viability studies showed that these agents after exposure to light exert cytotoxicity to kill cancer cells (U937 leukemia cell lines HTC11, KB, and HT29 cell lines) in a dosage- and time-dependent manner. We examined a possible pathway of cell death via DNA degradation by a plasmid cleavage assay for several compounds. The effects of photosensitization with benzophenone in the presence of oxygen were examined. The studies indicate that planar tricyclic amines and sulfenamides tend to form π-electron delocalized aminyl radicals, whereas nonplanar ones tend to yield nitroxide radicals resulting from the recombination of aminyl radicals with oxygen. The ESR studies coupled with the results of cell viability measurements and DNA degradation reveal that planar N-centered radicals can provide higher potency in cell death and allow us to provide some insights on the reaction mechanisms. We also found the formation of azatropylium cations possessing high aromaticity derived from azepines can facilitate secondary electron transfer to form toxic O2(•-) radicals, which can further exert oxidative stress and cause cell death.

  11. In search of a new class of stable nitroxide: synthesis and reactivity of a peri-substituted N,N-bissulfonylhydroxylamine.

    PubMed

    Patel, Bhaven; Carlisle, Julie; Bottle, Steven E; Hanson, Graeme R; Kariuki, Benson M; Male, Louise; McMurtrie, John C; Spencer, Neil; Grainger, Richard S

    2011-04-07

    Acyclic bissulfonylnitroxides have never been isolated, and degrade through fragmentation. In an approach to stabilising a bissulfonylnitroxide radical, the cyclic, peri-substituted N,N-bissulfonylhydroxylamine, 2-hydroxynaphtho[1,8-de][1,3,2]dithiazine 1,1,3,3-tetraoxide (1), has been prepared by formal nitrogen insertion into the sulfur-sulfur bond of a sulfinylsulfone, naphtho[1,8-cd][1,2]dithiole 1,1,2-trioxide. The heterocyclic ring of 1 is shown to adopt a sofa conformation by X-ray crystallography, with a pseudo-axial hydroxyl group. N,N-Bissulfonylhydroxylamine 1 displays high thermal, photochemical and hydrolytic stability compared to acyclic systems. EPR analysis reveals formation of the corresponding bissulfonylnitroxide 2 upon oxidation of 1 with the Ce(IV) salts CAN and CTAN. Although 2 does not undergo fragmentation, it cannot be isolated, since hydrogen atom abstraction to reform 1 occurs in situ. The stability and reactivity of 1 and 2 are compared with the known cyclic benzo-fused N,N-bissulfonylhydroxylamine, N-hydroxy-O-benzenedisulfonimide (6), for which the X-ray data, and EPR of the corresponding nitroxide 10, are also reported for the first time.

  12. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen

    PubMed Central

    Weaver, John; Burks, Scott R.; Liu, Ke Jian; Kao, Joseph P.Y.; Rosen, Gerald M.

    2017-01-01

    Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethox ycarbonyl-2,2,5,5-tetra(2H3)methyl-1-(3,4,4-2H3,1-15N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ~2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain. PMID:27567323

  13. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen

    NASA Astrophysics Data System (ADS)

    Weaver, John; Burks, Scott R.; Liu, Ke Jian; Kao, Joseph P. Y.; Rosen, Gerald M.

    2016-10-01

    Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethoxycarbonyl-2,2,5,5-tetra(2H3)methyl-1-(3,4,4-2H3,1-15N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ∼2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain.

  14. Homoleptic Ce(III) and Ce(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogart, Justin A.; Lewis, Andrew J.; Medling, Scott A.

    2014-06-25

    Electrochemical experiments performed on the complex Ce-IV[2-((BuNO)-Bu-t)py](4), where [2-((BuNO)-Bu-t)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(Bu4N)-Bu-n](2)[Ce(NO3)(6)] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with delta symmetry. The results speak to the behavior of CeO2 and related solid solutions inmore » oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.« less

  15. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    PubMed Central

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  16. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    NASA Astrophysics Data System (ADS)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  17. Fluorescence quenching by TEMPO: a sub-30 A single-molecule ruler.

    PubMed

    Zhu, Peizhi; Clamme, Jean-Pierre; Deniz, Ashok A

    2005-11-01

    A series of DNA molecules labeled with 5-carboxytetramethylrhodamine (5-TAMRA) and the small nitroxide radical TEMPO were synthesized and tested to investigate whether the intramolecular quenching efficiency can be used to measure short intramolecular distances in small ensemble and single-molecule experiments. In combination with distance calculations using molecular mechanics modeling, the experimental results from steady-state ensemble fluorescence and fluorescence correlation spectroscopy measurements both show an exponential decrease in the quenching rate constant with the dye-quencher distance in the 10-30 A range. The results demonstrate that TEMPO-5-TAMRA fluorescence quenching is a promising method to measure short distance changes within single biomolecules.

  18. Partitioning of nitroxides in dispersed systems investigated by ultrafiltration, EPR and NMR spectroscopy.

    PubMed

    Krudopp, Heimke; Sönnichsen, Frank D; Steffen-Heins, Anja

    2015-08-15

    The partitioning behavior of paramagnetic nitroxides in dispersed systems can be determined by deconvolution of electron paramagnetic resonance (EPR) spectra giving equivalent results with the validated methods of ultrafiltration techniques (UF) and pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). The partitioning behavior of nitroxides with increasing lipophilicity was investigated in anionic, cationic and nonionic micellar systems and 10 wt% o/w emulsions. Apart from EPR spectra deconvolution, the PFG-NMR was used in micellar solutions as a non-destructive approach, while UF based on separation of very small volume of the aqueous phase. As a function of their substituent and lipophilicity, the proportions of nitroxides that were solubilized in the micellar or emulsion interface increased with increasing nitroxide lipophilicity for all emulsifier used. Comparing the different approaches, EPR deconvolution and UF revealed comparable nitroxide proportions that were solubilized in the interfaces. Those proportions were higher than found with PFG-NMR. For PFG-NMR self-diffusion experiments the reduced nitroxides were used revealing a high dynamic of hydroxylamines and emulsifiers. Deconvolution of EPR spectra turned out to be the preferred method for measuring the partitioning behavior of paramagnetic molecules as it enables distinguishing between several populations at their individual solubilization sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting.

    PubMed

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.

    PubMed

    Voinov, Maxim A; Smirnov, Alex I

    2015-01-01

    Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. © 2015 Elsevier Inc. All rights reserved.

  1. Conformationally Constrained, Stable, Triplet Ground State (S = 1) Nitroxide Diradicals. Antiferromagnetic Chains of S = 1 Diradicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajca, Andrzej; Takahashi, Masahiro; Pink, Maren

    2008-06-30

    Nitroxide diradicals, in which nitroxides are annelated to m-phenylene forming tricyclic benzobisoxazine-like structures, have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, as well as magnetic studies in solution and in solid state. For the octamethyl derivative of benzobisoxazine nitroxide diradical, the conformationally constrained nitroxide moieties are coplanar with the m-phenylene, leading to large values of 2J (2J/k > 200 K in solution and 2J/k >> 300 K in the solid state). For the diradical, in which all ortho and para positions of the m-phenylene are sterically shielded, distortion of the nitroxide moietiesmore » from coplanarity is moderate, such that the singlet-triplet gaps remain large in both solution (2J/k > 200 K) and the solid state (2J/k {approx} 400-800 K), though an onset of thermal depopulation of the triplet ground state is detectable near room temperature. These diradicals have robust triplet ground states with strong ferromagnetic coupling and good stability at ambient conditions. Magnetic behavior of the nitroxide diradicals at low temperature is best fit to the model of one-dimensional S = 1 Heisenberg chains with intrachain antiferromagnetic coupling. The antiferromagnetic coupling between the S = 1 diradicals may be associated with the methyl nitroxide C-H {hor_ellipsis} O contacts, including nonclassical hydrogen bonds. These unprecedented organic S = 1 antiferromagnetic chains are highly isotropic, compared to those of the extensively studied Ni(II)-based chains.« less

  2. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping.

    PubMed

    Mason, Ronald Paul

    2016-08-01

    The accurate and sensitive detection of biological free radicals in a reliable manner is required to define the mechanistic roles of such species in biochemistry, medicine and toxicology. Most of the techniques currently available are either not appropriate to detect free radicals in cells and tissues due to sensitivity limitations (electron spin resonance, ESR) or subject to artifacts that make the validity of the results questionable (fluorescent probe-based analysis). The development of the immuno-spin trapping technique overcomes all these difficulties. This technique is based on the reaction of amino acid- and DNA base-derived radicals with the spin trap 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) to form protein- and DNA-DMPO nitroxide radical adducts, respectively. These adducts have limited stability and decay to produce the very stable macromolecule-DMPO-nitrone product. This stable product can be detected by mass spectrometry, NMR or immunochemistry by the use of anti-DMPO nitrone antibodies. The formation of macromolecule-DMPO-nitrone adducts is based on the selective reaction of free radical addition to the spin trap and is thus not subject to artifacts frequently encountered with other methods for free radical detection. The selectivity of spin trapping for free radicals in biological systems has been proven by ESR. Immuno-spin trapping is proving to be a potent, sensitive (a million times higher sensitivity than ESR), and easy (not quantum mechanical) method to detect low levels of macromolecule-derived radicals produced in vitro and in vivo. Anti-DMPO antibodies have been used to determine the distribution of free radicals in cells and tissues and even in living animals. In summary, the invention of the immuno-spin trapping technique has had a major impact on the ability to accurately and sensitively detect biological free radicals and, subsequently, on our understanding of the role of free radicals in biochemistry, medicine and toxicology. Published by Elsevier B.V.

  3. EPR-based distance measurements at ambient temperature.

    PubMed

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T<80K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Fluorescence Quenching by TEMPO: A Sub-30 Å Single-Molecule Ruler

    PubMed Central

    Zhu, Peizhi; Clamme, Jean-Pierre; Deniz, Ashok A.

    2005-01-01

    A series of DNA molecules labeled with 5-carboxytetramethylrhodamine (5-TAMRA) and the small nitroxide radical TEMPO were synthesized and tested to investigate whether the intramolecular quenching efficiency can be used to measure short intramolecular distances in small ensemble and single-molecule experiments. In combination with distance calculations using molecular mechanics modeling, the experimental results from steady-state ensemble fluorescence and fluorescence correlation spectroscopy measurements both show an exponential decrease in the quenching rate constant with the dye-quencher distance in the 10–30 Å range. The results demonstrate that TEMPO-5-TAMRA fluorescence quenching is a promising method to measure short distance changes within single biomolecules. PMID:16199509

  5. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  6. Self-assembled organic radicals on Au(111) surfaces: a combined ToF-SIMS, STM, and ESR study.

    PubMed

    Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Piras, Federica M; Caneschi, Andrea; Magnani, Agnese; Menichetti, Stefano; Gatteschi, Dante

    2007-02-27

    Electron spin resonance (ESR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and scanning tunneling microscopy (STM) have been used in parallel to characterize the deposition on gold surface of a series of nitronyl nitroxide radicals. These compounds have been specifically synthesized with methyl-thio linking groups suitable to interact with the gold surface to form self-assembled monolayers (SAMs), which can be considered relevant in the research for molecular-based spintronics devices, as suggested in recent papers. The degree of the expected ordering on the surface of these SAMs has been tuned by varying the chemical structure of synthesized radicals. ToF-SIMS has been used to support the evidence of the occurrence of the deposition process. STM has shown the different qualities of the obtained SAMs, with the degree of local order increasing as the degree of freedom of the molecules on the surface is decreased. Finally, ESR has confirmed that the deposition process does not affect the paramagnetic characteristics of radicals and that it affords a complete single-layered coverage of the surface. Further, the absence of angular dependence in the spectra indicates that the small regions of local ordering do not give rise to a long-range order and suggests a quite large mobility of the radical on the surface, probably due to the weak interaction with gold provided by the methyl-thio linking group.

  7. Ferrocene-based diradicals of imino nitroxide, nitronyl nitroxide and verdazyl, and their cations are possible SMM: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Pal, Arun K.; Datta, Sambhu N.

    2017-05-01

    Six diradicals designed from imino nitroxide, verdazyl and nitronyl nitroxide monoradicals coupled via the ferrocene moiety and six corresponding triradical cations are quantum chemically investigated. The transoid conformation is employed for considerations of general stability. All biradicals are found as very weakly and antiferromagnetically coupled. This agrees with experiment. The cations have strong antiferromagnetic spin-coupling. The charge and spin population distributions, spin alternation pattern, and the disjoint nature of SOMOs can be used to explain the nature and extent of magnetic interaction. Calculated EPR characteristics identify the neutral species as well as their cations as possible single molecule magnets.

  8. Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents.

    PubMed

    Maiocchi, Sophie L; Morris, Jonathan C; Rees, Martin D; Thomas, Shane R

    2017-07-01

    The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H 2 O 2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is also described. PMID:26477252

  10. Synthesis of polystyrene coated SiC nanowires as fillers in a polyurethane matrix for electromechanical conversion.

    PubMed

    Rybak, Andrzej; Warde, Micheline; Beyou, Emmanuel; Chaumont, Philippe; Bechelany, Mikhael; Brioude, Arnaud; Toury, Bérangère; Cornu, David; Miele, Philippe; Guiffard, Benoit; Seveyrat, Laurence; Guyomar, Daniel

    2010-04-09

    Grafting of polystyrene (PS) from silica coating of silicon carbide nanowires (SiCNWs) has been performed by a two-step nitroxide mediated free radical polymerization (NMP) of styrene. First, an alkoxyamine based on N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide (DEPN) was covalently attached onto NWs through free surface silanol groups. To immobilize the alkoxyamine initiator on the silica surface, alkoxylamine was formed in situ by the simultaneous reaction of polymerizable acryloxy propyl trimethoxysilane (APTMS), azobis isobutyronitrile (AIBN), and DEPN, which was used as a radical trap. Polystyrene chains with controlled molecular weights and narrow polydispersity were then grown from the alkoxyamine-functionalized NWs surface in the presence of a 'free' sacrificial styrylDEPN alkoxyamine. Both the initiator and polystyrene chains were characterized by FTIR and (13)C solid-state NMR and quantified by TGA. Ensuing nanocomposites were characterized by FEG-SEM, TEM and Raman spectroscopy. EDX analysis performed on functionalized nanowires during FEG-SEM analysis also gave evidence of grafting by a strong increase in the average C/Si atomic ratio. Incorporation of 2 wt% NWs into the polyurethane (PU) matrix has been carried out to prepare homogeneous nanocomposite films. The electric field induced thickness strain response has been investigated for the polystyrene-grafted silica coated SiC NWs (PU-SiC@SiO(2)@PS) nanocomposites and compared to pure polyurethane film and PU-SiC@SiO(2) nanocomposite without polystyrene grafting. At a moderate electric field of 10 V microm(-1), SiC@SiO(2)@PS loading increased the strain level of pure PU by a factor of 2.2. This improvement came partially due to polystyrene grafting since PU-SiC@SiO(2) films showed only a 1.7 times increase. The observed higher strain response of these nanocomposites makes them very attractive for micro-electromechanical applications.

  11. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Oxidative potential of logwood and pellet burning particles assessed by a novel profluorescent nitroxide probe.

    PubMed

    Miljevic, B; Heringa, M F; Keller, A; Meyer, N K; Good, J; Lauber, A; Decarlo, P F; Fairfull-Smith, K E; Nussbaumer, T; Burtscher, H; Prevot, A S H; Baltensperger, U; Bottle, S E; Ristovski, Z D

    2010-09-01

    This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.

  13. In vivo EPR imaging of differential tumor targeting using cis-3,4-di(acetoxymethoxycarbonyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl

    PubMed Central

    Redler, Gage; Barth, Eugene D.; Bauer, Kenneth S.; Kao, Joseph P.Y.; Rosen, Gerald M.; Halpern, Howard J.

    2015-01-01

    Purpose EPR spectroscopy promises quantitative images of important physiologic markers of animal tumors and normal tissues, such as pO2, pH, and thiol redox status. These parameters of tissue function are conveniently reported by tailored nitroxides. For defining tumor physiology, it is vital that nitroxides are selectively localized in tumors relative to normal tissue. Furthermore, these paramagnetic species should be specifically taken up by cells of the tumor, thereby reporting on both the site of tumor formation and the physiological status of the tissue. This study investigates the tumor localization of the novel nitroxide, cis-3,4-di(acetoxymethoxycarbonyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl 3 relative to the corresponding di-acid 4. Methods We obtained images of nitroxide 3 infused intravenously into C3H mice bearing 0.5-cm3 FSa fibrosarcoma on the leg, and compared these with images of similar tumors infused with nitroxide 4. Results The ratio of spectral intensity from within the tumor-bearing region to that of normal tissue was higher in the mice injected with 3 relative to 4. Conclusion This establishes the possibility of tumor imaging with a nitroxide with intracellular distribution and provides the basis for EPR images of animal models to investigate the relationship between crucial aspects of tumor microenvironment and malignancy and its response to therapy. PMID:23776127

  14. The Development of Nitroxide Based Coatings for Biofilm Remediation- 154020

    DTIC Science & Technology

    2017-06-05

    AFRL-AFOSR-JP-TR-2017-0048 The Development of Nitroxide Based Coatings for Biofilm Remediation Kathryn Fairfull-Smith QUEENSLAND UNIVERSITY OF...for Biofilm Remediation - 154020 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4087 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Kathryn...llisapi.dll Annual Report for AOARD Grant 15IOA087-154020 “The Development of Nitroxide Based Coatings for Biofilm Remediation ” 7th June 2017 PI and Co

  15. Efficient DNP NMR of Membrane Proteins: Sample Preparation Protocols, Sensitivity, and Radical Location

    PubMed Central

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei

    2016-01-01

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390

  16. 13 C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals.

    PubMed

    Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Lumata, Lloyd

    2016-12-01

    The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15 N and/or 2 H isotopic labeling of 4-oxo-TEMPO free radical on 13 C DNP of 3 M [1- 13 C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13 C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO- 15 N, 4-oxo-TEMPO-d 16 and 4-oxo-TEMPO- 15 N,d 16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13 C DNP efficiency of these 15 N and/or 2 H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with 13 C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13 C DNP signals of these samples all doubled in the same manner, and the 13 C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the 13 C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Stability of SG1 nitroxide towards unprotected sugar and lithium salts: a preamble to cellulose modification by nitroxide-mediated graft polymerization

    PubMed Central

    Moreira, Guillaume; Charles, Laurence; Major, Mohamed; Vacandio, Florence; Guillaneuf, Yohann

    2013-01-01

    Summary The range of applications of cellulose, a glucose-based polysaccharide, is limited by its inherently poor mechanical properties. The grafting of synthetic polymer chains by, for example, a “grafting from” process may provide the means to broaden the range of applications. The nitroxide-mediated polymerization (NMP) method is a technique of choice to control the length, the composition and the architecture of the grafted copolymers. Nevertheless, cellulose is difficult to solubilize in organic media because of inter- and intramolecular hydrogen bonds. One possibility to circumvent this limitation is to solubilize cellulose in N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) with 5 to 10 wt % of lithium salts (LiCl or LiBr), and carry out grafted polymerization in this medium. The stability of nitroxides such as SG1 has not been studied under these conditions yet, even though these parameters are of crucial importance to perform the graft modification of polysaccharide by NMP. The aim of this work is to offer a model study of the stability of the SG1 nitroxide in organic media in the presence of unprotected glucose or cellobiose (used as a model of cellulose) and in the presence of lithium salts (LiBr or LiCl) in DMF or DMA. Contrary to TEMPO, SG1 proved to be stable in the presence of unprotected sugar, even with an excess of 100 molar equivalents of glucose. On the other hand, lithium salts in DMF or DMA clearly degrade SG1 nitroxide as proven by electron-spin resonance measurements. The instability of SG1 in these lithium-containing solvents may be explained by the acidification of the medium by the hydrolysis of DMA in the presence of LiCl. This, in turn, enables the disproportionation of the SG1 nitroxide into an unstable hydroxylamine and an oxoammonium ion. Once the conditions to perform an SG1-based nitroxide-mediated graft polymerization from cellobiose have been established, the next stage of this work will be the modification of cellulose and cellulose derivatives by NMP. PMID:23946859

  18. Preparation of Robust Metal-Free Magnetic Nanoemulsions Encapsulating Low-Molecular-Weight Nitroxide Radicals and Hydrophobic Drugs Directed Toward MRI-Visible Targeted Delivery.

    PubMed

    Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2017-11-07

    With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd L.; Merritt, Matthew E.; Malloy, Craig R.; Sherry, A. Dean; van Tol, Johan; Song, Likai; Kovacs, Zoltan

    2013-02-01

    The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio γ such as 13C and 15N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest 13C nuclear polarization (approximately 6% for [1-13C]ethyl acetate) at 3.35 T and 1.4 K was found to be around 40 mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of 13C and 15N compounds with long spin-lattice relaxation time T1. In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy.

  20. Novel redox nanomedicine improves gene expression of polyion complex vector

    NASA Astrophysics Data System (ADS)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  1. Redox nanoparticles as a novel treatment approach for inflammation and fibrosis associated with nonalcoholic steatohepatitis

    PubMed Central

    Eguchi, Akiko; Yoshitomi, Toru; Lazic, Milos; Johnson, Casey D; Vong, Long Binh; Wree, Alexander; Povero, Davide; Papouchado, Bettina G; Nagasaki, Yukio; Feldstein, Ariel E

    2015-01-01

    Aim: Oxidative stress (OS) is largely thought to be a central mechanism responsible for liver damage, inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Our aim was to investigate whether suppression of OS in the liver via redox nanoparticles (RNPs) reduces liver damage in a mouse model of NASH. Materials & methods: RNPs were prepared by self-assembly of redox polymers possessing antioxidant nitroxide radicals and were orally administered by daily gavage for 4 weeks. Results: The redox polymer was delivered to the liver after disintegration of nanoparticle in the stomach. RNP treatment in NASH mice via gavage led to a reduction of liver OS, improvement of fibrosis, and significant reduction of inflammation. Conclusion: These findings uncover RNP as a novel potential NASH therapy. PMID:26020857

  2. Motion of spin label side chains in cellular retinol-binding protein: correlation with structure and nearest-neighbor interactions in an antiparallel beta-sheet.

    PubMed

    Lietzow, Michael A; Hubbell, Wayne L

    2004-03-23

    A goal in the development of site-directed spin labeling in proteins is to correlate the motion of a nitroxide side chain with local structure, interactions, and dynamics. Significant progress toward this goal has been made using alpha-helical proteins of known structure, and the present study is the first step in a similar exploration of a beta-sheet protein, cellular retinol-binding protein (CRBP). Nitroxide side chains were introduced along both interior and edge strands. At sites in interior strands, the side-chain motion is strongly influenced by interactions with side chains of neighboring strands, giving rise to a rich variety of dynamic modes (weakly ordered, strongly ordered, immobilized) and complex electron paramagnetic resonance spectra that are modulated by strand twist. The interactions giving rise to the dynamic modes are explored using mutagenesis, and the results demonstrate the particular importance of the non-hydrogen-bonded neighbor residue in giving rise to highly ordered states. Along edge strands of the beta-sheet, the motion of the side chain is simple and weakly ordered, resembling that at solvent-exposed surfaces of an alpha-helix. A simple working model is proposed that can account for the wide variety of dynamic modes encountered. Collectively, the results suggest that the nitroxide side chain is an effective probe of side-chain interactions, and that site-directed spin labeling should be a powerful means of monitoring conformational changes that involve changes in beta-sheet topology.

  3. Interactions of Nitroxide-Conjugated and Non-Conjugated Glycodendrimers with Normal and Cancer Cells and Biocompatibility Studies.

    PubMed

    Andreozzi, Elisa; Antonelli, Antonella; Cangiotti, Michela; Canonico, Barbara; Sfara, Carla; Pianetti, Anna; Bruscolini, Francesca; Sahre, Karin; Appelhans, Dietmar; Papa, Stefano; Ottaviani, Maria Francesca

    2017-02-15

    Poly(propyleneimine) glycodendrimers fully modified with maltose units were administered to different cancer cell lines and their effect on cell viability was evaluated by using MTS assay and flow cytometry. The mechanism of dendrimer-cell interactions was investigated by the electron paramagnetic resonance (EPR) technique by using a new nitroxide-conjugated glycodendrimer. The nitroxide groups did not modify both the biological properties (cell viability and apoptosis degree) of the dendrimers in the presence of the cells and the dendrimer-cell interactions. Since this class of dendrimers is already known to be biocompatible for human healthy cells, noncancer cells such as human peripheral blood mononuclear cells (PBMCs) and macrophages were also treated with the glycodendrimer, and EPR spectra of the nitroxide-conjugated glycodendrimer were compared for cancer and noncancer cells. It was found that this dendrimer selectively affects the cell viability of tumor cells, while, surprisingly, PBMC proliferation is induced. Moreover, H-bond-active glycodendrimer-cell interactions were different for the different cancer cell lines and noncancer cells. The nitroxide-conjugated glycodendrimer was able to interact with the cell membrane and eventually cross it, getting in contact with cytosol antioxidants. This study helps to clarify the potential anticancer effect of this class of dendrimers opening to future applications of these macromolecules as new antitumor agents.

  4. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  5. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    PubMed Central

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2014-01-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz) / proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3–carbamoyl–proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease. PMID:22296801

  6. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    NASA Astrophysics Data System (ADS)

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2012-03-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.

  7. Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo

    PubMed Central

    Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He

    2016-01-01

    In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843

  8. Global Structure of a Three-Way Junction in a Phi29 Packaging RNA Dimer Determined Using Site-Directed Spin Labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojun; Tung, Chang-Shung; Sowa, Glenna

    2012-02-08

    The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and servesmore » as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron-Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (HT and HL) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which HT and HL stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial.« less

  9. Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2013-05-01

    The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.

  10. Saturation recovery EPR and ELDOR at W-band for spin labels

    PubMed Central

    Froncisz, Wojciech; Camenisch, Theodore G.; Ratke, Joseph J.; Anderson, James R.; Subczynski, Witold K.; Strangeway, Robert A.; Sidabras, Jason W.; Hyde, James S.

    2008-01-01

    A reference-arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) (J.W. Sidabras et al., Rev. Sci. Instrum. 78 (2007) 034701). The high efficiency parameter (8.2 GW−1/2 with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T1e previously reported for these molecules in the range of 2 to 35 GHz (J.S. Hyde et al., J. Phys. Chem. B 108 (2004) 9524–9529). The values of T1e decrease at 94 GHz relative to values at 35 GHz. PMID:18547848

  11. New Amino-Acid-Based β-Phosphorylated Nitroxides for Probing Acidic pH in Biological Systems by EPR Spectroscopy.

    PubMed

    Thétiot-Laurent, Sophie; Gosset, Gaëlle; Clément, Jean-Louis; Cassien, Mathieu; Mercier, Anne; Siri, Didier; Gaudel-Siri, Anouk; Rockenbauer, Antal; Culcasi, Marcel; Pietri, Sylvia

    2017-02-01

    There is increasing interest in measuring pH in biological samples by using nitroxides with pH-dependent electron paramagnetic resonance (EPR) spectra. Aiming to improve the spectral sensitivity (Δa X ) of these probes (i.e., the difference between the EPR hyperfine splitting (hfs) in their protonated and unprotonated forms), we characterized a series of novel linear α-carboxy, α'-diethoxyphosphoryl nitroxides constructed on an amino acid core and featuring an (α or α')-C-H bond. In buffer, the three main hfs (a N , a H , and a P ) of their EPR spectra vary reversibly with pH and, from a P or a H titration curves, a two- to fourfold increase in sensitivity was achieved compared to reference imidazoline or imidazolidine nitroxides. The crystallized carboxylate 10 b (pK a ≈3.6), which demonstrated low cytotoxicity and good resistance to bioreduction, was applied to probe stomach acidity in rats. The results pave the way to a novel generation of highly sensitive EPR pH markers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Cytidine Phosphoramidite with Protected Nitroxide Spin Label: Synthesis of a Full-Length TAR RNA and Investigation by In-Line Probing and EPR Spectroscopy.

    PubMed

    Weinrich, Timo; Jaumann, Eva A; Scheffer, Ute; Prisner, Thomas F; Göbel, Michael W

    2018-04-20

    EPR studies on RNA are complicated by three major obstacles related to the chemical nature of nitroxide spin labels: Decomposition while oligonucleotides are chemically synthesized, further decay during enzymatic strand ligation, and undetected changes in conformational equilibria due to the steric demand of the label. Herein possible solutions for all three problems are presented: A 2-nitrobenzyloxymethyl protective group for nitroxides that is stable under all conditions of chemical RNA synthesis and can be removed photochemically. By careful selection of ligation sites and splint oligonucleotides, high yields were achieved in the assembly of a full-length HIV-1 TAR RNA labeled with two protected nitroxide groups. PELDOR measurements on spin-labeled TAR in the absence and presence of arginine amide indicated arrest of interhelical motions on ligand binding. Finally, even minor changes in conformation due to the presence of spin labels are detected with high sensitivity by in-line probing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates.

    PubMed

    Freyaldenhoven, M A; Lloyd, R V; Samokyszyn, V M

    1996-06-01

    Due to the importance of all-trans-retinoic acid (RA) in the treatment of various dermatological conditions and the wide distribution of prostaglandin H synthase (PGHS) in tissues, we have further examined the mechanisms involved in the hydroperoxide-dependent cooxidation of RA and its isomer, 13-cis-retinoic acid ((13Z)-RA), by PGHS. Hydroperoxide-dependent, PGHS-catalyzed oxidation of RA and (13Z)-RA was shown to form free radical adducts, using electron spin resonance (ESR) spin trapping techniques and 5-phenyl-4-penten-1-yl hydroperoxide (PPHP) or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-OOH-18:2) as hydroperoxide substrates. Utilization of the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) resulted in the detection of (13Z)-RA-PBN and RA-PBN adducts whose spectra were characterized by hyperfine coupling constants of aH = 4.16/aN = 15.69 and aH = 3.01/aN =15.92, respectively. Identical experiments under anaerobic conditions were carried out using the spin trap 2-methyl-2-nitrosopropane (NtB) which yielded nitroxide adducts whose spectra were characterized by a triplet of doublets with values of aH = 3.49/aN = 15.84 for the (13Z)-RA adduct and aH = 3.49/aN = 15.88 for the RA adduct. These results are indicative of secondary carbon-centered radical formation. We also used (+)-benzo[a]pyrene 7(S),8(S)-dihydrodiol ((+)-BP-7,8-diol) as a peroxyl radical probe. The results demonstrated the formation of (+)-BP-7,8-diol-derived tetrols, with the trans-anti tetrol representing the major oxidation product in systems undergoing PPHP-dependent, PGHS-catalyzed oxidation of (13Z)-RA or RA. These results are consistent with the formation of peroxyl radicals in these systems. In all experiments, the (13Z)-RA isomer appeared to be a better substrate for the enzyme compared to the all-trans isomer. Collectively these results provide further evidence to support the previously proposed mechanism for retinoid oxidation by PGHS involving the intermediacy of C4 carbon-centered radicals which subsequently react with dioxygen, yielding retinoid-derived peroxyl radicals.

  14. Surface electrostatics of lipid bilayers by EPR of a pH-sensitive spin-labeled lipid.

    PubMed

    Voinov, Maxim A; Rivera-Rivera, Izarys; Smirnov, Alex I

    2013-01-08

    Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids' polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Surface Electrostatics of Lipid Bilayers by EPR of a pH-Sensitive Spin-Labeled Lipid

    PubMed Central

    Voinov, Maxim A.; Rivera-Rivera, Izarys; Smirnov, Alex I.

    2013-01-01

    Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids’ polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. PMID:23332063

  16. Ising-type magnetic anisotropy in a cobalt(II) nitronyl nitroxide compound: a key to understanding the formation of molecular magnetic nanowires.

    PubMed

    Caneschi, A; Gatteschi, Dante; Lalioti, N; Sessoli, R; Sorace, L; Tangoulis, V; Vindigni, A

    2002-01-04

    The compound [Co(hfac)2-(NITPhOMe)2] (2) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) crystallizes in the triclinic P1 space group, a= 10.870(5), b = 11.520(5), c = 19.749(5) A, alpha = 78.05(5), beta = 84.20(5), gamma = 64.51(5) degrees, Z = 2. It can be considered a model system for studying the nature of the magnetic anisotropy of [Co(hfac)2(NITPhOMe)] (1), which was recently reported to behave as a molecular magnetic wire. The magnetic anisotropy of 2 was investigated by EPR spectroscopy and SQUID magnetometry both in the polycrystalline powder and in a single crystal. The experimental magnetic anisotropy was related to the anisotropy of the central ion and to the exchange interaction between the cobalt(II) ion and the radicals.

  17. Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Clauss, Conrad; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Bogani, Lapo; Scheffler, Marc; Dressel, Martin

    2013-04-01

    We present non-conventional electron spin resonance (ESR) experiments based on microfabricated superconducting Nb thin film waveguides. A very broad frequency range, from 0.5 to 40 GHz, becomes accessible at low temperatures down to 1.6 K and in magnetic fields up to 1.4 T. This allows for an accurate inspection of the ESR absorption position in the frequency domain, in contrast to the more common observation as a function of magnetic field. We demonstrate the applicability of frequency-swept ESR on Cr3+ atoms in ruby as well as on organic radicals of the nitronyl-nitroxide family. Measurements between 1.6 and 30 K reveal a small frequency shift of the ESR and a resonance broadening below the critical temperature of Nb, which we both attribute to a modification of the magnetic field configuration due to the appearance of shielding supercurrents in the waveguide.

  18. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Dressel, Martin; Scheffler, Marc

    2015-05-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  19. Probing the inner space of resorcinarene molecular capsules with nitroxide guests.

    PubMed

    Mileo, Elisabetta; Yi, Song; Bhattacharya, Papri; Kaifer, Angel E

    2009-01-01

    In quarantine: Nitroxide spin probes are encapsulated by hexameric resorcinarene molecular capsules in dichloromethane solutions (see picture). A substantial reduction in the tumbling rates occurs upon encapsulation of two cationic probes and one neutral probe. As the molecular volume of the probe increases, the tumbling rate of the probe reflects the overall tumbling rate of the entire supramolecular assembly.

  20. Scanned-probe detection of electron spin resonance from a nitroxide spin probe

    PubMed Central

    Moore, Eric W.; Lee, SangGap; Hickman, Steven A.; Wright, Sarah J.; Harrell, Lee E.; Borbat, Peter P.; Freed, Jack H.; Marohn, John A.

    2009-01-01

    We report an approach that extends the applicability of ultrasensitive force-gradient detection of magnetic resonance to samples with spin-lattice relaxation times (T 1) as short as a single cantilever period. To demonstrate the generality of the approach, which relies on detecting either cantilever frequency or phase, we used it to detect electron spin resonance from a T 1 = 1 ms nitroxide spin probe in a thin film at 4.2 K and 0.6 T. By using a custom-fabricated cantilever with a 4 μm-diameter nickel tip, we achieve a magnetic resonance sensitivity of 400 Bohr magnetons in a 1 Hz bandwidth. A theory is presented that quantitatively predicts both the lineshape and the magnitude of the observed cantilever frequency shift as a function of field and cantilever-sample separation. Good agreement was found between nitroxide T 1 's measured mechanically and inductively, indicating that the cantilever magnet is not an appreciable source of spin-lattice relaxation here. We suggest that the new approach has a number of advantages that make it well suited to push magnetic resonance detection and imaging of nitroxide spin labels in an individual macromolecule to single-spin sensitivity. PMID:20018707

  1. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  2. Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR

    PubMed Central

    Altenbach, Christian; Froncisz, Wojciech; Hemker, Roy; Mchaourab, Hassane; Hubbell, Wayne L.

    2005-01-01

    In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (Wex) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of Wex are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Π. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of Wex can be determined from Π, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < ρ < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. PMID:15994891

  3. Low-Temperature Dynamic Nuclear Polarization at 9.4 Tesla With a 30 Milliwatt Microwave Source

    PubMed Central

    Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2010-01-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 Tesla (400 MHz resonant frequency for 1H, 264 GHz for electron spins in organic radicals) in the 7–80 K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to 1H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of 1H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the 1H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80 K. PMID:20392658

  4. Synthesis and Characterization of a Magnetically Active 19F Molecular Beacon.

    PubMed

    Dempsey, Megan E; Marble, Hetal D; Shen, Tun-Li; Fawzi, Nicolas L; Darling, Eric M

    2018-02-21

    Gene expression is used extensively to describe cellular characteristics and behaviors; however, most methods of assessing gene expression are unsuitable for living samples, requiring destructive processes such as fixation or lysis. Recently, molecular beacons have become a viable tool for live-cell imaging of mRNA molecules in situ. Historically, beacon-mediated imaging has been limited to fluorescence-based approaches. We propose the design and synthesis of a novel molecular beacon for magnetic resonance detection of any desired target nucleotide sequence. The biologically compatible synthesis incorporates commonly used bioconjugation reactions in aqueous conditions and is accessible for laboratories without extensive synthesis capabilities. The resulting beacon uses fluorine ( 19 F) as a reporter, which is broadened, or turned "off", via paramagnetic relaxation enhancement from a stabilized nitroxide radical spin label when the beacon is not bound to its nucleic acid target. Therefore, the 19 F NMR signal of the beacon is quenched in its hairpin conformation when the spin label and the 19 F substituent are held in proximity, but the signal is recovered upon beacon hybridization to its specific complementary nucleotide sequence by physical separation of the radical from the 19 F reporter. This study establishes a path for magnetic resonance-based assessment of specific mRNA expression, providing new possibilities for applying molecular beacon technology in living systems.

  5. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.

    PubMed

    Ozawa, T; Miura, Y; Ueda, J

    1996-01-01

    The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap the ClO2 radical. This result indicates that an unpaired electron of the ClO2 radical is localized on oxygen atom, because nitroso spin-traps cannot form the stable spin adduct with oxygen-centered radical.

  6. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.

    PubMed

    Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th

    2005-03-01

    The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.

  7. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    PubMed

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2018-05-20

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.

  8. Rapid-scan EPR of immobilized nitroxides

    NASA Astrophysics Data System (ADS)

    Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J.; Boratyński, Przemysław J.; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S.; Eaton, Gareth R.

    2014-10-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes.

  9. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    PubMed

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A family of rare-earth-based single chain magnets: playing with anisotropy.

    PubMed

    Bernot, Kevin; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante; Sessoli, Roberta

    2006-06-21

    The first family of rare-earth-based single chain magnets is presented. Compounds of general formula [M(hfac)3(NITPhOPh)], where M = Eu, Gd, Tb, Dy, Ho, Er, or Yb, and PhOPh is the nitronyl-nitroxide radical (2,4'-benzoxo-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), have been structurally characterized and found to be isostructural. The characterization of both static and dynamic magnetic properties of the whole family is reported. Dy, Tb, and Ho compounds display slow relaxation of the magnetization, and ac susceptibility shows a thermally activated regime with energy barriers of 69, 45, and 34 K for Dy, Tb, and Ho compounds, respectively, while only a frequency-dependent susceptibility is observed for Er below 2.0 K. In Gd and Yb derivatives, antiferromagnetic interactions dominate. The pre-exponential factors differ by about 4 orders of magnitude. Finite size effects, due to naturally occurring defects, affect the static and dynamic properties of the compounds differently.

  11. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application formore » the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.« less

  12. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  13. Hydrodynamic interpretation on the rotational diffusion of peroxylamine disulfonate solute dissolved in room temperature ionic liquids as studied by electron paramagnetic resonance spectroscopy.

    PubMed

    Miyake, Yusuke; Akai, Nobuyuki; Kawai, Akio; Shibuya, Kazuhiko

    2011-06-23

    Rotational motion of a nitroxide radical, peroxylamine disulfonate (PADS), dissolved in room temperature ionic liquids (RTILs) was studied by analyzing electron paramagnetic resonance spectra of PADS in various RTILs. We determined physical properties of PADS such as the hyperfine coupling constant (A), the temperature dependence of anisotropic rotational correlation times (τ(∥) and τ(⊥)), and rotational anisotropy (N). We observed that the A values remain unchanged for various RTILs, which indicates negligible interaction between the N-O PADS group and the cation of RTIL. Large N values suggest strong interaction of the negative sulfonyl parts of PADS with the cations of RTILs. Most of the τ(∥), τ(⊥), and (τ(∥)τ(⊥))(1/2) values are within the range calculated on the basis of a hydrodynamic theory with stick and slip boundary conditions. It was deduced that this theory could not adequately explain the measured results in some RTILs with smaller BF(4) and PF(6) anions.

  14. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source.

    PubMed

    Thurber, Kent R; Yau, Wai-Ming; Tycko, Robert

    2010-06-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 T (400 MHz resonant frequency for (1)H, 264 GHz for electron spins in organic radicals) in the 7-80K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to (1)H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of (1)H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the (1)H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80K. (c) 2010 Elsevier Inc. All rights reserved.

  15. Clinical physiology and mechanism of dizocilpine (MK-801): electron transfer, radicals, redox metabolites and bioactivity.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2010-01-01

    Dizocilpine (MK-801), an extensively investigated drug possessing secondary amine and benzenoid functions, displays a wide array of biological properties, including anticonvulsant and anesthetic. There is scant discussion of biomechanism. A relevant, important finding is formation of oxidative metabolites in the hydroxylamine and phenolic categories. Analogy to cocaine metabolites suggests participation of redox entities, such as, hydroxylamine, nitroxide and nitrosonium, which can lead to electron transfer and radical formation. There is also similarity to metabolism by 3,3'-iminodipropionitrile and phencyclidine. Alternatively, the phenolic metabolites are well-known precursors of ET quinones. The review documents various physiological effects, mainly involving the central nervous system. Also of interest are the pro- and ant-oxidant properties. Considerable attention has been paid to MK-801 as an antagonist of the N-methyl-D-aspartate receptor in the glutamate category. This aspect is often associated with effects on the central nervous system. The review also provides recent literature dealing with MK-801/NMDA receptor in various areas of bioactivity. Studies were made of MK-801 involvement in working memory processing. Deficits in behavior were noted after administration of the drug. Treatment of mice with dizocilpine induced learning impairment. The influence of MK-801 on fear has been investigated. The substance is known to exert an analgesic effect in pain control. A number of reports deal with anesthetic properties.

  16. Nitroxide paramagnet-induced para-ortho conversion and nuclear spin relaxation of H2 in organic solvents.

    PubMed

    Sartori, Elena; Ruzzi, Marco; Lawler, Ronald G; Turro, Nicholas J

    2008-09-24

    The kinetics of para-ortho conversion and nuclear spin relaxation of H 2 in chloroform- d 1 were investigated in the presence of nitroxides as paramagnetic catalysts. The back conversion from para-hydrogen ( p-H 2) to ortho-hydrogen ( o-H 2) was followed by NMR by recording the increase in the intensity of the signal of o-H 2 at regular intervals of time. The nitroxides proved to be hundreds of times more effective at inducing relaxation among the spin levels of o-H 2 than they are in bringing about transitions between p-H 2 and the levels of o-H 2. The value of the encounter distance d between H 2 and the paramagnetic molecule, calculated from the experimental bimolecular conversion rate constant k 0, using the Wigner theory of para-ortho conversion, agrees perfectly with that calculated from the experimental relaxivity R 1 using the force free diffusion theory of spin-lattice relaxation.

  17. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers.

    PubMed

    Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K

    2007-04-01

    Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.

  18. Plasma protein adsorption to zwitterionic poly (carboxybetaine methacrylate) modified surfaces: chain chemistry and end-group effects on protein adsorption kinetics, adsorbed amounts and immunoblots.

    PubMed

    Abraham, Sinoj; Bahniuk, Markian S; Unsworth, Larry D

    2012-12-01

    Protein-surface interactions are crucial to the overall biocompatability of biomaterials, and are thought to be the impetus towards the adverse host responses such as blood coagulation and complement activation. Only a few studies hint at the ultra-low fouling potential of zwitterionic poly(carboxybetaine methacrylate) (PCBMA) grafted surfaces and, of those, very few systematically investigate their non-fouling behavior. In this work, single protein adsorption studies as well as protein adsorption from complex solutions (i.e. human plasma) were used to evaluate the non-fouling potential of PCBMA grafted silica wafers prepared by nitroxide-mediated free radical polymerization. PCBMAs used for surface grafting varied in charge separating spacer groups that influence the overall surface charges, and chain end-groups that influence the overall hydrophilicity, thereby, allows a better understanding of these effects towards the protein adsorption for these materials. In situ ellipsometry was used to quantify the adsorbed layer thickness and adsorption kinetics for the adsorption of four proteins from single protein buffer solutions, viz, lysozyme, α-lactalbumin, human serum albumin and fibrinogen. Total amount of protein adsorbed on surfaces differed as a function of surface properties and protein characteristics. Finally, immunoblots results showed that human plasma protein adsorption to these surfaces resulted, primarily, in the adsorption of human serum albumin, with total protein adsorbed amounts being the lowest for PCBMA-3 (TEMPO). It was apparent that surface charge and chain hydrophilicity directly influenced protein adsorption behavior of PCBMA systems and are promising materials for biomedical applications.

  19. Radical scavenging propensity of Cu2 +, Fe3 + complexes of flavonoids and in-vivo radical scavenging by Fe3 +-primuletin

    NASA Astrophysics Data System (ADS)

    Jabeen, Erum; Janjua, Naveed Kausar; Ahmed, Safeer; Murtaza, Iram; Ali, Tahir; Hameed, Shahid

    2017-01-01

    Cu2 + and Fe3 + complexes of three flavonoids (morin or mo, quercetin or quer and primuletin or prim) were synthesized with the objective of improving antioxidant capacities of flavonoids. The radical scavenging activities of pure flavonoids and their metal complexes were assayed to monitor their tendencies towards sequestering of radicals at physiological conditions. The scavenger potencies of metal-flavonoid complexes were significantly higher than those of the parent flavonoids. Further, influence of the solvent polarity on the radical capturing by flavonoids and their metal complexes was in favor for the polar solvent. Fe3 +-prim displayed its radical scavenging ability via up gradation of CAT and SOD activities in in-vivo antioxidant assays.

  20. The Interaction between Central and Peripheral Processing in Chinese Handwritten Production: Evidence from the Effect of Lexicality and Radical Complexity

    PubMed Central

    Zhang, Qingfang; Feng, Chen

    2017-01-01

    The interaction between central and peripheral processing in written word production remains controversial. This study aims to investigate whether the effects of radical complexity and lexicality in central processing cascade into peripheral processing in Chinese written word production. The participants were asked to write characters and non-characters (lexicality) with different radical complexity (few- and many-strokes). The findings indicated that regardless of the lexicality, the writing latencies were longer for characters with higher complexity (the many-strokes condition) than for characters with lower complexity (the few-strokes condition). The participants slowed down their writing execution at the radicals' boundary strokes, which indicated a radical boundary effect in peripheral processing. Interestingly, the lexicality and the radical complexity affected the pattern of shift velocity and writing velocity during the execution of writing. Lexical processing cascades into peripheral processing but only at the beginning of Chinese characters. In contrast, the radical complexity influenced the execution of handwriting movement throughout the entire character, and the pattern of the effect interacted with the character frequency. These results suggest that the processes of the lexicality and the radical complexity function during the execution of handwritten word production, which suggests that central processing cascades over peripheral processing during Chinese characters handwriting. PMID:28348536

  1. Rapid-scan EPR imaging.

    PubMed

    Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R

    2017-07-01

    In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. EPR Detection of Cellular and Mitochondrial Superoxide Using Cyclic Hydroxylamines

    PubMed Central

    Dikalov, Sergey I.; Kirilyuk, Igor A.; Voinov, Maxim; Grigor’ev, Igor A.

    2014-01-01

    Superoxide (O2•) has been implicated in the pathogenesis of many human diseases but detection of the O2• radicals in biological systems is limited due to inefficiency of O2• spin trapping and lack of site-specific information. In this work we studied production of extracellular, intracellular and mitochondrial O2• in neutrophils, cultured endothelial cells and isolated mitochondria using new set of cationic, anionic and neutral hydroxylamine spin probes with various lipophilicity and cell permeability. Cyclic hydroxylamines rapidly react with O2• producing stable nitroxides and allowed site-specific O2• detection in intracellular, extracellular and mitochondrial compartments. Negatively charged 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H) and positively charged 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium (CAT1-H) detected only extramitochondrial O2•. Inhibition of EPR signal by SOD2 overexpression showed that mitochondria targeted mitoTEMPO-H detected intramitochondrial O2• both in isolated mitochondria and intact cells. Both 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CM-H) detected increase in cytoplasm O2• stimulated by PMA but only CM-H and mitoTEMPO-H showed increase in rotenone-induced mitochondrial O2•. These data show that new set of hydroxylamine spin probes provide unique information about site-specific production of O2• radical in extracellular or intracellular compartments, cytoplasm or mitochondria. PMID:21128732

  3. Assay for the transbilayer distribution of glycolipids. Selective oxidation of glucosylceramide to glucuronylceramide by TEMPO nitroxyl radicals.

    PubMed

    Sillence, D J; Raggers, R J; Neville, D C; Harvey, D J; van Meer, G

    2000-08-01

    In the present study, 2,2,6,6-tetramethylpiperidinooxy nitroxide (TEMPO) has been applied successfully to discriminate between glucosylceramide in the outer and inner leaflets of closed membrane bilayers. The nitroxyl radicals TEMPO and carboxy-TEMPO, once oxidized to nitrosonium ions, are capable of oxidizing residues that contain primary hydroxyl and amino groups. When applied to radiolabeled glucosylceramide in liposomes, oxidation with TEMPO led to an oxidized product that was easily separated from the original lipid by thin-layer chromatography, and that was identified by mass spectrometric analysis as the corresponding acid glucuronylceramide. To test whether oxidation was confined to the external leaflet, TEMPO was applied to large unilamellar vesicles (LUVs) consisting of egg phosphatidylcholine- egg phosphatidylethanolamine;-cholesterol 55:5:40 (mol/mol). TEMPO oxidized most radiolabeled phosphatidylethanolamine, whereas carboxy-TEMPO oxidized only half. Hydrolysis by phospholipase A(2) confirmed that 50% of the phosphatidylethanolamine was accessible in the external bilayer leaflet, suggesting that TEMPO penetrated the lipid bilayer and carboxy-TEMPO did not. When applied to LUVs containing <1 mol% radiolabeled glucosylceramide or short-chain C(6)-glucosylceramide, carboxy-TEMPO oxidized half the glucosylceramide. However, if surface C(6)-glucosylceramide was first depleted by bovine serum albumin (BSA) (extracting 49 +/- 1%), 94% of the remaining C(6)-glucosylceramide was resistant to oxidation. Carboxy-TEMPO oxidized glucosylceramide on the surface of LUVs without affecting inner leaflet glucosylceramide. At pH 9.5 and at 0 degrees C, the reaction reached completion by 20 min.

  4. Spatial proximity and sequence localization of the reactive sulfhydryls of porphobilinogen synthase.

    PubMed Central

    Markham, G. D.; Myers, C. B.; Harris, K. A.; Volin, M.; Jaffe, E. K.

    1993-01-01

    The zinc metalloenzyme porphobilinogen synthase (PBGS) contains several functionally important, but previously unidentified, reactive sulfhydryl groups. The enzyme has been modified with the reversible sulfhydryl-specific nitroxide spin label derivative of methyl methanethiosulfonate (MMTS), (1-oxyl-2,2,5,5-tetramethyl-delta 3-pyrroline-3-methyl)methanethiosulfonate (SL-MMTS) (Berliner, L. J., Grunwald, J., Hankovszky, H. O., & Hideg, K., 1982, Anal. Biochem. 119, 450-455). EPR spectra show that SL-MMTS labels three groups per PBGS subunit (24 per octamer), as does MMTS. EPR signals reflecting nitroxides of different mobilities are observed. Two of the three modified cysteines have been identified as Cys-119 and Cys-223 by sequencing peptides produced by an Asp-N protease digest of the modified protein. Because MMTS-reactive thiols have been implicated as ligands to the required Zn(II), EPR spectroscopy has been used to determine the spatial proximity of the modified cysteine residues. A forbidden (delta m = 2) EPR transition is observed indicating a through-space dipolar interaction between at least two of the nitroxides. The relative intensity of the forbidden and allowed transitions show that at least two of the unpaired electrons are within at most 7.6 A of each other. SL-MMTS-modified PBGS loses all Zn(II) and cannot catalyze product formation. The modified enzyme retains the ability to bind one of the two substrates at each active site. Binding of this substrate has no influence on the EPR spectral properties of the spin-labeled enzyme, or on the rate of release of the nitroxides when 2-mercaptoethanol is added.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8382991

  5. Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions

    PubMed Central

    2015-01-01

    The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole–dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups. This adsorption is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules.) However, there is no anionic dependence of RE for model membranes made from negatively charged lipids devoid of choline groups. We used Ni-induced RE to study the thermodynamics and electrostatics of ion/membrane interactions. We also studied the effect of membrane composition and the phase state on the RE values. In membranes with cholesterol a significant difference is observed between PC labels with nitroxide tethers long enough vs not long enough to reach deep into the membrane hydrophobic core behind the area of fused cholesterol rings. This study indicates one must be cautious in interpreting data obtained by PC labels in fluid membranes in terms of probing membrane properties at different immersion depths when it can be affected by paramagnetic species at the membrane surface. PMID:26490692

  6. Photoionization of N,N,N',N'-tetramethylbenzidine in anionic-cationic mixed micelles of sodium dodecyl sulfate-dodecyltrimethylammonium chloride: electron spin resonance and electron spin echo modulation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivara-Minten, E.; Baglioni, P.; Kevan, L.

    1988-05-05

    Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen mixed micelles of dodecyltrimethylammonium chloride (DTAC) and sodium dodecyl sulfate (SDS) have been studied as a function of the mixed micelle composition. ESEM effects due to TMB/sup +/ interactions with deuterium in D/sub 2/O show a decrease of the TMB/sup +/-water interaction that depends on the SDS-DTAC mixed micelle composition and reaches a minimum for the equimolar mixed micelle. The efficiency of charge separation upon photoionization of TMB to produce TMB/sup +/ measured by ESR correlates with the degreemore » of water penetration into the micelle. ESEM effects due to interaction of x-doxylstearic acid nitroxide probes with deuterium in D/sub 2/O show that the decrease of water penetration is due to higher surface packing due to electrostatic attraction among the polar headgroups of the two surfactants.« less

  7. {sup 19}F NMR measurements of NO production in hypertensive ISIAH and OXYS rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobko, Andrey A.; Sergeeva, Svetlana V.; Bagryanskaya, Elena G.

    2005-05-06

    Recently we demonstrated the principal possibility of application of {sup 19}F NMR spin-trapping technique for in vivo {sup {center_dot}}NO detection [Free Radic. Biol. Med. 36 (2004) 248]. In the present study, we employed this method to elucidate the significance of {sup {center_dot}}NO availability in animal models of hypertension. In vivo {sup {center_dot}}NO-induced conversion of the hydroxylamine of the fluorinated nitronyl nitroxide (HNN) to the hydroxylamine of the iminonitroxide (HIN) in hypertensive ISIAH and OXYS rat strains and normotensive Wistar rat strain was measured. Significantly lower HIN/HNN ratios were measured in the blood of the hypertensive rats. The NMR data weremore » found to positively correlate with the levels of nitrite/nitrate evaluated by Griess method and negatively correlate with the blood pressure. In comparison with other traditionally used methods {sup 19}F NMR spectroscopy allows in vivo evaluation of {sup {center_dot}}NO production and provides the basis for in vivo {sup {center_dot}}NO imaging.« less

  8. Reversible Reduction of Nitroxides to Hydroxylamines: the Roles for Ascorbate and Glutathione

    PubMed Central

    Bobko, Andrey A.; Kirilyuk, Igor A.; Grigor'ev, Igor A.; Zweier, Jay L.; Khramtsov, Valery V.

    2007-01-01

    Biological applications of stable nitroxyl radicals, NR, include their use as contrast agents for magnetic resonance imaging, spin labels, superoxide dismutase mimics, and antioxidants. The rapid reduction of NR in biological samples into hydroxylamines, HA, significantly limits their application. In its turn, reoxidation of HA back to the NR has been used for detection of reactive oxygen species, ROS. In this work comparative studies of the reduction of pyrrolidine, imidazoline and imidazolidine NR by ascorbate were performed taking advantage of recently synthesized tetraethyl substituted NR with much higher stability towards reduction both in vitro and in vivo. Surprisingly, these NR kept 10-50% of initial intensity of electron paramagnetic resonance signal for about 1 h in the presence of hundred fold excess of ascorbate. To explain this data, reoxidation of the corresponding HA by ascorbate radical and dehydroascorbic acid back to the NR was proposed. This hypothesis was supported by direct measurement of the NR appearance from the HA upon ascorbate radical generation by ascorbate oxidase, or in the presence of the dehydroascorbic acid. The reversible reaction between NR and ascorbate was observed for the various types of the NR, and the rate constants for direct and reverse reactions were determined. The equilibrium constants for one-electron reduction of the tetraethyl substituted NR by ascorbate were found to be in the range from 2.65×10−6 to 10−5 which is significantly lower than corresponding values for the tetramethyl substituted NR (less or about 10−4). This explains an establishment of EPR-detectable quasi-equilibrium level of tetraethyl substituted NR in the presence of excess of ascorbate. The redox reactions of the NR-HA couple in ascorbate containing medium was found to be significantly affected by glutathione, GSH. This effect was attributed to the reduction of ascorbate radical by GSH, and the rate constant of this reaction was found to be equal to 10 M−1s−1. In summary, the data provide new insight into the redox chemistry of NR and HA, and significantly affect interpretation and strategy of their use as redox- and ROS-sensitive probes, or as antioxidants. PMID:17210453

  9. Drug binding to the acetylcholine receptor: Nitroxide analogs of phencyclidine and a local anesthetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palma, A.L.

    1988-01-01

    The interaction of noncompetitive inhibitors (NCIs) with Torpedo californica native nicotinic acetylcholine receptor (nAChR) membranes was examined primarily by the technique of electron paramagnetic resonance (EPR) spectroscopy. The goal of this work being to define some of the physical characteristics for the site(s) of association between an NCI and the nAChR membrane. A nitroxide labeled analog of a quaternary amine local anesthetic, 2-(N,N-dimethyl-N-4-(2,2,6,6-tetramethylpiperidinoxyl)amino)-ethyl 4-hexyloxybenzoate iodide (C6SLMeI), displays a strongly immobilized EPR component when added to nAChR membranes in the presence of carbamylcholine (carb). To further this work, a nitroxide labeled analog of phencyclidine (PCP), a potent NCI, was synthesized. 4-phenyl-4-(1-piperidinyl)-2,2,6,6-tetramethylpiperidinoxylmore » (PPT) exhibited one-third the potency of PCP in inhibiting nAChR mediated ion flux, and from competition binding studies with ({sup 3}H)PCP displayed a K{sub D} of 0.21 {mu}M towards a carb desensitized nAChR and a K{sub 0.5} of 18 {mu}M for a resting {alpha}-bungarotoxin treated nAChR.« less

  10. Complex Biotransformations Catalyzed by Radical S-Adenosylmethionine Enzymes*

    PubMed Central

    Zhang, Qi; Liu, Wen

    2011-01-01

    The radical S-adenosylmethionine (AdoMet) superfamily currently comprises thousands of proteins that participate in numerous biochemical processes across all kingdoms of life. These proteins share a common mechanism to generate a powerful 5′-deoxyadenosyl radical, which initiates a highly diverse array of biotransformations. Recent studies are beginning to reveal the role of radical AdoMet proteins in the catalysis of highly complex and chemically unusual transformations, e.g. the ThiC-catalyzed complex rearrangement reaction. The unique features and intriguing chemistries of these proteins thus demonstrate the remarkable versatility and sophistication of radical enzymology. PMID:21771780

  11. Double quantum coherence ESR spectroscopy and quantum chemical calculations on a BDPA biradical.

    PubMed

    Haeri, Haleh Hashemi; Spindler, Philipp; Plackmeyer, Jörn; Prisner, Thomas

    2016-10-26

    Carbon-centered radicals are interesting alternatives to otherwise commonly used nitroxide spin labels for dipolar spectroscopy techniques because of their narrow ESR linewidth. Herein, we present a novel BDPA biradical, where two BDPA (α,α,γ,γ-bisdiphenylene-β-phenylallyl) radicals are covalently tethered by a saturated biphenyl acetylene linker. The inter-spin distance between the two spin carrier fragments was measured using double quantum coherence (DQC) ESR methodology. The DQC experiment revealed a mean distance of only 1.8 nm between the two unpaired electron spins. This distance is shorter than the predictions based on a simple modelling of the biradical geometry with the electron spins located at the central carbon atoms. Therefore, DFT (density functional theory) calculations were performed to obtain a picture of the spin delocalization, which may give rise to a modified dipolar interaction tensor, and to find those conformations that correspond best to the experimentally observed inter-spin distance. Quantum chemical calculations showed that the attachment of the biphenyl acetylene linker at the second position of the fluorenyl ring of BDPA did not affect the spin population or geometry of the BDPA radical. Therefore, spin delocalization and geometry optimization of each BDPA moiety could be performed on the monomeric unit alone. The allylic dihedral angle θ 1 between the fluorenyl rings in the monomer subunit was determined to be 30° or 150° using quantum chemical calculations. The proton hyperfine coupling constant calculated from both energy minima was in very good agreement with literature values. Based on the optimal monomer geometries and spin density distributions, the dipolar coupling interaction between both BDPA units could be calculated for several dimer geometries. It was shown that the rotation of the BDPA units around the linker axis (θ 2 ) does not significantly influence the dipolar coupling strength when compared to the allylic dihedral angle θ 1 . A good agreement between the experimental and calculated dipolar coupling was found for θ 1 = 30°.

  12. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.

    PubMed

    Vazquez Reyes, Carolina; Tangprasertchai, Narin S; Yogesha, S D; Nguyen, Richard H; Zhang, Xiaojun; Rajan, Rakhi; Qin, Peter Z

    2017-06-01

    In a type II clustered regularly interspaced short palindromic repeats (CRISPR) system, RNAs that are encoded at the CRISPR locus complex with the CRISPR-associated (Cas) protein Cas9 to form an RNA-guided nuclease that cleaves double-stranded DNAs at specific sites. In recent years, the CRISPR-Cas9 system has been successfully adapted for genome engineering in a wide range of organisms. Studies have indicated that a series of conformational changes in Cas9, coordinated by the RNA and the target DNA, direct the protein into its active conformation, yet details on these conformational changes, as well as their roles in the mechanism of function of Cas9, remain to be elucidated. Here, nucleic acid-dependent conformational changes in Streptococcus pyogenes Cas9 (SpyCas9) were investigated using the method of site-directed spin labeling (SDSL). Single nitroxide spin labels were attached, one at a time, at one of the two native cysteine residues (Cys80 and Cys574) of SpyCas9, and the spin-labeled proteins were shown to maintain their function. X-band continuous-wave electron paramagnetic resonance spectra of the nitroxide attached at Cys80 revealed conformational changes of SpyCas9 that are consistent with a large-scale domain re-arrangement upon binding to its RNA partner. The results demonstrate the use of SDSL to monitor conformational changes in CRISPR-Cas9, which will provide key information for understanding the mechanism of CRISPR function.

  13. EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines.

    PubMed

    Dikalov, Sergey I; Kirilyuk, Igor A; Voinov, Maxim; Grigor'ev, Igor A

    2011-04-01

    Superoxide (O₂ⁱ⁻) has been implicated in the pathogenesis of many human diseases, but detection of the O(2)(•-) radicals in biological systems is limited due to inefficiency of O₂ⁱ⁻ spin trapping and lack of site-specific information. This work studied production of extracellular, intracellular and mitochondrial O₂ⁱ⁻ in neutrophils, cultured endothelial cells and isolated mitochondria using a new set of cationic, anionic and neutral hydroxylamine spin probes with various lipophilicity and cell permeability. Cyclic hydroxylamines rapidly react with O₂ⁱ⁻, producing stable nitroxides and allowing site-specific cO₂ⁱ⁻ detection in intracellular, extracellular and mitochondrial compartments. Negatively charged 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H) and positively charged 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium (CAT1-H) detected only extramitochondrial O₂ⁱ⁻. Inhibition of EPR signal by SOD2 over-expression showed that mitochondria targeted mitoTEMPO-H detected intramitochondrial O₂ⁱ⁻ both in isolated mitochondria and intact cells. Both 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CM-H) detected an increase in cytoplasm O₂ⁱ⁻ stimulated by PMA, but only CM-H and mitoTEMPO-H showed an increase in rotenone-induced mitochondrial O₂ⁱ⁻. These data show that a new set of hydroxylamine spin probes provide unique information about site-specific production of the O₂ⁱ⁻ radical in extracellular or intracellular compartments, cytoplasm or mitochondria.

  14. Spin-labeled small unilamellar vesicles with the T1-sensitive saturation-recovery EPR display as an oxygen sensitive analyte for measurement of cellular respiration

    PubMed Central

    Mainali, Laxman; Vasquez-Vivar, Jeannette; Hyde, James S.; Subczynski, Witold K.

    2015-01-01

    This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer. PMID:26441482

  15. Spin-labeled small unilamellar vesicles with the T1-sensitive saturation-recovery EPR display as an oxygen sensitive analyte for measurement of cellular respiration.

    PubMed

    Mainali, Laxman; Vasquez-Vivar, Jeannette; Hyde, James S; Subczynski, Witold K

    2015-08-01

    This study validated the use of small unilamellar vesicles (SUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine with 1 mol% spin label of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine (16-PC) as an oxygen sensitive analyte to study cellular respiration. In the analyte the hydrocarbon environment surrounds the nitroxide moiety of 16-PC. This ensures high oxygen concentration and oxygen diffusion at the location of the nitroxide as well as isolation of the nitroxide moiety from cellular reductants and paramagnetic ions that might interfere with spin-label oximetry measurements. The saturation-recovery EPR approach was applied in the analysis since this approach is the most direct method to carry out oximetric studies. It was shown that this display (spin-lattice relaxation rate) is linear in oxygen partial pressure up to 100% air (159 mmHg). Experiments using a neuronal cell line in suspension were carried out at X-band for closed chamber geometry. Oxygen consumption rates showed a linear dependence on the number of cells. Other significant benefits of the analyte are: the fast effective rotational diffusion and slow translational diffusion of the spin-probe is favorable for the measurements, and there is no cross reactivity between oxygen and paramagnetic ions in the lipid bilayer.

  16. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    PubMed Central

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201

  17. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    NASA Astrophysics Data System (ADS)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  18. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR.

    PubMed

    Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.

  19. Nitroxide derivatives of non-steroidal anti-inflammatory drugs exert anti-inflammatory and superoxide dismutase scavenging properties in A459 cells.

    PubMed

    Flores-Santana, Wilmarie; Moody, Terry; Chen, Weibin; Gorczynski, Michael J; Shoman, Mai E; Velázquez, Carlos; Thetford, Angela; Mitchell, James B; Cherukuri, Murali K; King, S Bruce; Wink, David A

    2012-02-01

    Inflammation and reactive oxygen species are associated with the promotion of various cancers. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in cancer prevention treatments has been promising in numerous cancers. We report the evaluation of NSAIDs chemically modified by the addition of a redox-active nitroxide group. TEMPO-aspirin (TEMPO-ASA) and TEMPO-indomethacin (TEMPO-IND) were synthesized and evaluated in the lung cancer cell line A549. We evaluated physico-chemical properties of TEMPO-ASA and TEMPO-IND by electron paramagnetic resonance and cyclic voltammetry. Superoxide dismutase-like properties was assayed by measuring cytochrome c reduction and anti-inflammatory effects were assayed by measuring production of prostaglandin E(2) (PGE(2) ) and leukotriene B(4) (LTB(4) ). MTT proliferation assay and clonogenic assay were evaluated in the A549 lung carcinoma cell line. Maximum tolerated doses (MTD) and acute ulcerogenic index were also evaluated in in vivo. MTD were: TEMPO (140 mg·kg(-1) ), ASA (100 mg·kg(-1) ), indomethacin (5 mg·kg(-1) ), TEMPO-ASA (100 mg·kg(-1) ) and TEMPO-IND (40 mg·kg(-1) ). While TEMPO-ASA was as well tolerated as ASA, TEMPO-IND showed an eightfold improvement over indomethacin. TEMPO-IND showed markedly less gastric toxicity than the parent NSAID. Both TEMPO-ASA and TEMPO-IND inhibited production of PGE(2) and LTB(4) in A549 cells with maximum effects at 100 µg·mL(-1) or 10 µg·mL(-1) respectively. The nitroxide-NSAIDs retained superoxide scavenging capacity of the parent nitroxide and anti-inflammatory effects, inhibiting cyclooxygenase and 5-lipoxygenase enzymes. These redox-modified NSAIDs might be potential drug candidates, as they exhibit the pharmacological properties of the parent NSAID with antioxidant activity decreasing NSAID-associated toxicity. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  20. Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress

    PubMed Central

    Rojas, Fabiola; Cortes, Nicole; Abarzua, Sebastian; Dyrda, Agnieszka; van Zundert, Brigitte

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder caused by dysfunction and degeneration of motor neurons. Multiple disease-causing mutations, including in the genes for SOD1 and TDP-43, have been identified in ALS. Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that media conditioned by astrocytes carrying mutant SOD1G93A contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Nav) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity. Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1G93A and ACM-SOD1G86R) or TDP43 (ACM-TDP43A315T) mutants; we show that such exposure rapidly (within 30–60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Nav channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death. Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Nav channel activity. PMID:24570655

  1. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.

  2. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Feasibility and preliminary safety of nitric oxide releasing solution as a treatment for bovine mastitis.

    PubMed

    Regev, Gilly; Martins, James; Sheridan, Michael P; Leemhuis, Jonathan; Thompson, James; Miller, Christopher

    2018-06-01

    Nitric oxide-releasing solution (NORS) is a liquid formulation that releases nitric oxide, a broad spectrum antimicrobial, single electron nitroxide radical. This solution was investigated as a potential antimicrobial treatment for bovine mastitis (BM). Three experiments were performed: a) NORS' effect on Staphylococcus aureus and Escherichia coli in an in vitro model; b) NORS' effect on milk obtained from dairy cows showing symptoms of clinical mastitis; and c) the consequences of administering NORS to healthy milking cattle using a dose-escalating in vivo study. Metabolite concentrations were estimated in their blood for methaemoglobin and nitrite; also, milk nitrite concentration and somatic cell count (SCC) were measured to study possible mammary gland inflammation following treatment. NORS lowered the bacterial concentration in all infected samples, in a time- and milk-diluted dependant fashion. Blood methemoglobin concentrations following treatment were all within the normal range for cattle. However, blood and milk nitrite concentrations increased initially but, during the next 24 h, returned to normal range, as did SCC, without any clinical signs of mammary gland inflammation. NORS, if shown to be effective, could be an alternative treatment for mastitis with a shorter clearance time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Direct EPR irradiation of a sample using a quartz oscillator operating at 250 MHz for EPR measurements.

    PubMed

    Yokoyama, Hidekatsu

    2012-01-01

    Direct irradiation of a sample using a quartz oscillator operating at 250 MHz was performed for EPR measurements. Because a quartz oscillator is a frequency fixed oscillator, the operating frequency of an EPR resonator (loop-gap type) was tuned to that of the quartz oscillator by using a single-turn coil with a varactor diode attached (frequency shift coil). Because the frequency shift coil was mobile, the distance between the EPR resonator and the coil could be changed. Coarse control of the resonant frequency was achieved by changing this distance mechanically, while fine frequency control was implemented by changing the capacitance of the varactor electrically. In this condition, EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) were made. To compare the presented method with a conventional method, the EPR measurements were also done by using a synthesizer at the same EPR frequency. In the conventional method, the noise level increased at high irradiation power. Because such an increase in the noise was not observed in the presented method, high sensitivity was obtained at high irradiation power. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Acquisition of Chinese characters: the effects of character properties and individual differences among second language learners

    PubMed Central

    Kuo, Li-Jen; Kim, Tae-Jin; Yang, Xinyuan; Li, Huiwen; Liu, Yan; Wang, Haixia; Hyun Park, Jeong; Li, Ying

    2015-01-01

    In light of the dramatic growth of Chinese learners worldwide and a need for cross-linguistic research on Chinese literacy development, this study drew upon theories of visual complexity effect (Su and Samuels, 2010) and dual-coding processing (Sadoski and Paivio, 2013) and investigated (a) the effects of character properties (i.e., visual complexity and radical presence) on character acquisition and (b) the relationship between individual learner differences in radical awareness and character acquisition. Participants included adolescent English-speaking beginning learners of Chinese in the U.S. Following Kuo et al. (2014), a novel character acquisition task was used to investigate the process of acquiring the meaning of new characters. Results showed that (a) characters with radicals and with less visual complexity were easier to acquire than characters without radicals and with greater visual complexity; and (b) individual differences in radical awareness were associated with the acquisition of all types of characters, but the association was more pronounced with the acquisition of characters with radicals. Theoretical and practical implications of the findings were discussed. PMID:26379562

  6. EFFECT OF MICROWAVE POWER ON SHAPE OF EPR SPECTRA--APPLICATION TO EXAMINATION OF COMPLEX FREE RADICAL SYSTEM IN THERMALLY STERILIZED ACIDUM BORICUM.

    PubMed

    Ramos, Paweł; Pieprzyca, Małgorzata; Pilawa, Barbara

    2016-01-01

    Complex free radical system in thermally sterilized acidum boricum (AB) was studied. Acidum boricum was sterilized at temperatures and times given by pharmaceutical norms: 160 degrees C and 120 min, 170 degrees C and 60 min and 180 degrees C and 30 min. The advanced spectroscopic tests were performed. The EPR spectra of free radicals were measured as the first derivatives with microwaves of 9.3 GHz frequency and magnetic modulation of 100 kHz. The Polish X-band electron paramagnetic resonance spectrometer of Radiopan (Poznań) was used. EPR lines were not observed for the nonheated AB. The broad EPR asymmetric lines were obtained for all the heated AB samples. The influence of microwave power in the range of 2.2-70 mW on the shape of EPR spectra of the heated drug samples was tested. The following asymmetry parameters: A1/A2, A1-A2, B1/B2, and B1-B2, were analyzed. The changes of these parameters with microwave power were observed. The strong dependence of shape and its parameters on microwave power proved the complex character of free radical system in thermally sterilized AB. Changes of microwave power during the detection of EPR spectra indicated complex character of free radicals in AB sterilized in hot air under all the tested conditions. Thermolysis, interactions between free radicals and interactions of free radicals with oxygen may be responsible for the complex free radicals system in thermally treated AB. Usefulness of continuous microwave saturation of EPR lines and shape analysis to examine free radicals in thermally sterilized drugs was confirmed.

  7. Catalysts For Hydrogenation And Hydrosilylation Methods Of Making And Using The Same

    DOEpatents

    Dioumaev, Vladimir K.; Bullock, R. Morris

    2004-05-18

    A compound is provided including an organometallic complex represented by the formula I: wherein M is an atom of molybdenum or tangsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5 Q.sup.1 Q.sup.2 Q.sup.3 Q.sup.4 Q.sup.5 ], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2 R', --SiR'.sub.3 and --NR'R", wherein R' and R" are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complex as catalyst for hydrogenation of aldehydes and ketones are provided. Processes using the organometallic complex as catalyst for the hydrosilylation of aldehydes, ketones and esters are also provided.

  8. Non-invasive imaging of the levels and effects of glutathione on the redox status of mouse brain using electron paramagnetic resonance imaging.

    PubMed

    Emoto, Miho C; Matsuoka, Yuta; Yamada, Ken-Ichi; Sato-Akaba, Hideo; Fujii, Hirotada G

    2017-04-15

    Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of the redox status in vivo and mapped as a "redox map". The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A novel nitroxide is an effective brain redox imaging contrast agent and in vivo radioprotector.

    PubMed

    Davis, Ryan M; Sowers, Anastasia L; DeGraff, William; Bernardo, Marcelino; Thetford, Angela; Krishna, Murali C; Mitchell, James B

    2011-08-01

    Individuals are exposed to ionizing radiation during medical procedures and nuclear disasters, and this exposure can be carcinogenic, toxic, and sometimes fatal. Drugs that protect individuals from the adverse effects of radiation may therefore be valuable countermeasures against the health risks of exposure. In the current study, the LD(50/30) (the dose resulting in 50% of exposed mice surviving 30 days after exposure) was determined in control C3H mice and mice treated with the nitroxide radioprotectors Tempol, 3-CP, 16c, 22c, and 23c. The pharmacokinetics of 22c and 23c were measured with magnetic resonance imaging (MRI) in the brain, blood, submandibular salivary gland, liver, muscle, tongue, and myocardium. It was found that 23c was the most effective radioprotector of the five studied: 23c increased the LD(50/30) in mice from 7.9±0.15Gy (treated with saline) to 11.47±0.13Gy (an increase of 45%). Additionally, MRI-based pharmacokinetic studies revealed that 23c is an effective redox imaging agent in the mouse brain, and that 23c may allow functional imaging of the myocardium. The data in this report suggest that 23c is currently the most potent known nitroxide radioprotector, and that it may also be useful as a contrast agent for functional imaging. Published by Elsevier Inc.

  10. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  11. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin:haptoglobin complex.

    PubMed

    Vallelian, Florence; Garcia-Rubio, Ines; Puglia, Michele; Kahraman, Abdullah; Deuel, Jeremy W; Engelsberger, Wolfgang R; Mason, Ronald P; Buehler, Paul W; Schaer, Dominik J

    2015-08-01

    Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Autocatalytic formation of an iron(IV)-oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate.

    PubMed

    Nishida, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2014-06-04

    A non-heme iron(IV)-oxo complex, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), was formed by oxidation of an iron(II) complex ([(TMC)Fe(II)](2+)) with dioxygen (O2) and tetraphenylborate (BPh4(-)) in the presence of scandium triflate (Sc(OTf)3) in acetonitrile at 298 K via autocatalytic radical chain reactions rather than by a direct O2 activation pathway. The autocatalytic radical chain reaction is initiated by scandium ion-promoted electron transfer from BPh4(-) to [(TMC)Fe(IV)(O)](2+) to produce phenyl radical (Ph(•)). The chain propagation step is composed of the addition of O2 to Ph(•) and the reduction of the resulting phenylperoxyl radical (PhOO(•)) by scandium ion-promoted electron transfer from BPh4(-) to PhOO(•) to produce phenyl hydroperoxide (PhOOH), accompanied by regeneration of phenyl radical. PhOOH reacts with [(TMC)Fe(II)](2+) to yield phenol (PhOH) and [(TMC)Fe(IV)(O)](2+). Biphenyl (Ph-Ph) was formed via the radical chain autoxidation of BPh3 by O2. The induction period of the autocatalytic radical chain reactions was shortened by addition of a catalytic amount of [(TMC)Fe(IV)(O)](2+), whereas addition of a catalytic amount of ferrocene that can reduce [(TMC)Fe(IV)(O)](2+) resulted in elongation of the induction period. Radical chain autoxidation of BPh4(-) by O2 also occurred in the presence of Sc(OTf)3 without [(TMC)Fe(IV)(O)](2+), initiating the autocatalytic oxidation of [(TMC)Fe(II)](2+) with O2 and BPh4(-) to yield [(TMC)Fe(IV)(O)](2+). Thus, the general view for formation of non-heme iron(IV)-oxo complexes via O2-binding iron species (e.g., Fe(III)(O2(•-))) without contribution of autocatalytic radical chain reactions should be viewed with caution.

  13. Development of a local anesthetic lidocaine-loaded redox-active injectable gel for postoperative pain management.

    PubMed

    Nagasaki, Yukio; Mizukoshi, Yutaro; Gao, Zhenyu; Feliciano, Chitho P; Chang, Kyungho; Sekiyama, Hiroshi; Kimura, Hiroyuki

    2017-07-15

    Although local anesthesia is commonly applied for pain relief, there are several issues such as its short duration of action and low effectiveness at the areas of inflammation due to the acidic pH. The presence of excessive amount of reactive oxygen species (ROS) is known to induce inflammation and aggravate pain. To resolve these issues, we developed a redox-active injectable gel (RIG) with ROS-scavenging activity. RIG was prepared by mixing polyamine-b-poly(ethylene glycol)-b-polyamine with nitroxide radical moieties as side chains on the polyamine segments (PMNT-b-PEG-b-PMNT) with a polyanion, which formed a flower-type micelle via electrostatic complexation. Lidocaine could be stably incorporated in its core. When the temperature of the solution was increased to 37°C, the PIC-type flower micelle transformed to gel. The continuous release of lidocaine from the gel was observed for more than three days, without remarkable initial burst, which is probably owing to the stable entrapment of lidocaine in the PIC core of the gel. We evaluated the analgesic effect of RIG in carrageenan-induced arthritis mouse model. Results showed that lidocaine-loaded RIG has stronger and longer analgesic effect when administered in inflamed areas. In contrast, while the use of non-complexed lidocaine did not show analgesic effect one day after its administration. Note that no effect was observed when PIC-type flower micelle without ROS-scavenging ability was used. These findings suggest that local anesthetic-loaded RIG can effectively reduce the number of injection times and limit the side effects associated with the use of anti-inflammatory drugs for postoperative pain management. 1. We have been working on nanomaterials, which effectively eliminate ROS, avoiding dysfunction of mitochondria in healthy cells. 2. We designed redox injectable gel using polyion complexed flower type micelle, which can eliminates ROS locally. 3. We could prepare local anesthesia-loaded redox injectable gel (lido@RIG). 4. Drug release could be extended by local administration of lido@RIG. 5. Deprotonation of lidocaine improved anesthetic effect because ROS were eliminated locally by RIG. 6. Local inflammation could be also suppressed by lido@RIG. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. EPR spin probe and spin label studies of some low molecular and polymer micelles

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.

    1998-12-01

    The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.

  15. Heterobimetallic Pd–K carbene complexes via one-electron reductions of palladium radical carbenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Peng; Hoffbauer, Melissa R.; Vyushkova, Mariya

    2016-03-24

    Unprecedented sequential substitution/reduction synthetic strategy on the Pd radical carbenes afforded heterobimetallic Pd–K carbene complexes, which features novel Pd–C carbene–K structural moieties.

  16. Heterobimetallic Pd–K carbene complexes via one-electron reductions of palladium radical carbenes

    DOE PAGES

    Cui, Peng; Hoffbauer, Melissa R.; Vyushkova, Mariya; ...

    2016-01-01

    Unprecedented sequential substitution/reduction synthetic strategy on the Pd radical carbenes afforded heterobimetallic Pd–K carbene complexes, which features novel Pd–C carbene–K structural moieties.

  17. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings.

    PubMed

    Streuff, Jan; Himmel, Daniel; Younas, Sara L

    2018-04-03

    The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.

  18. Investigation of Phenols Activity in Early Stage Oxidation of Edible Oils by Electron Paramagnetic Resonance and 19F NMR Spectroscopies Using Novel Lipid Vanadium Complexes As Radical Initiators.

    PubMed

    Drouza, Chryssoula; Dieronitou, Anthi; Hadjiadamou, Ioanna; Stylianou, Marios

    2017-06-21

    A novel dynamic method for the investigation of the phenols activity in early stage oxidation of edible oils based on the formation of α-tocopheryl radicals initiated by oil-soluble vanadium complexes is developed. Two new vanadium complexes in oxidation states V and IV were synthesized by reacting 2,2'-((2-hydroxyoctadecyl)azanediyl)bis(ethan-1-ol) (C18DEA) with [VO(acac) 2 ] and 1-(bis(pyridin-2-ylmethyl)amino)octadecan-2-ol (C18DPA) with VOCl 2 . Addition of a solution of either complex in edible oils resulted in the formation of α-tocopheryl radical, which was monitored by electron paramagnetic resonance (EPR) spectroscopy. The intensity of the α-tocopheryl signal in the EPR spectra was measured versus time. It was found that the profile of the intensity of the α-tocopheryl signal versus time depends on the type of oil, the phenolic content, and the storage time of the oil. The time interval until the occurrence of maximum peak intensity be reached (t m ), the height of the maximum intensity, and the rate of the quenching of the α-tocopheryl radical were used for the investigation of the mechanism of the edible oils oxidation. 19 F NMR of the 19 F labeled phenolic compounds (through trifluoroacetate esters) and radical trap experiments showed that the vanadium complexes in edible oil activate the one electron reduction of dioxygen to superperoxide radical. Superperoxide reacts with the lipids to form alkoperoxyl and alkoxyl lipid radicals, and all these radicals react with the phenols contained in oils.

  19. The reactions of SO3 with HO2 radical and H2O...HO2 radical complex. Theoretical study on the atmospheric formation of HSO5 and H2SO4.

    PubMed

    Gonzalez, Javier; Torrent-Sucarrat, Miquel; Anglada, Josep M

    2010-03-07

    The influence of a single water molecule on the gas-phase reactivity of the HO(2) radical has been investigated by studying the reactions of SO(3) with the HO(2) radical and with the H(2)O...HO(2) radical complex. The naked reaction leads to the formation of the HSO(5) radical, with a computed binding energy of 13.81 kcal mol(-1). The reaction with the H(2)O...HO(2) radical complex can give two different products, namely (a) HSO(5) + H(2)O, which has a binding energy that is computed to be 4.76 kcal mol(-1) more stable than the SO(3) + H(2)O...HO(2) reactants (Delta(E + ZPE) at 0K) and an estimated branching ratio of about 34% at 298K and (b) sulfuric acid and the hydroperoxyl radical, which is computed to be 10.51 kcal mol(-1) below the energy of the reactants (Delta(E + ZPE) at 0K), with an estimated branching ratio of about 66% at 298K. The fact that one of the products is H(2)SO(4) may have relevance in the chemistry of the atmosphere. Interestingly, the water molecule acts as a catalyst, [as it occurs in (a)] or as a reactant [as it occurs in (b)]. For a sake of completeness we have also calculated the anharmonic vibrational frequencies for HO(2), HSO(5), the HSO(5)...H(2)O hydrogen bonded complex, H(2)SO(4), and two H(2)SO(4)...H(2)O complexes, in order to help with the possible experimental identification of some of these species.

  20. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content.

    PubMed

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-04-15

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical-lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)-MS/MS (tandem MS), four E,Z-linoleate allyl radical-CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical-CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content.

  1. Photochemistry and reactivity of the phenyl radical-water system: a matrix isolation and computational study.

    PubMed

    Mardyukov, Artur; Crespo-Otero, Rachel; Sanchez-Garcia, Elsa; Sander, Wolfram

    2010-08-02

    The reaction of the phenyl radical 1 with water has been investigated by using matrix isolation spectroscopy and quantum chemical calculations. The primary thermal product of the reaction between 1 and water is a weakly bound complex stabilized by an OH...pi interaction. This complex is photolabile, and visible-light irradiation (lambda>420 nm) results in hydrogen atom transfer from water to radical 1 and the formation of a highly labile complex between benzene and the OH radical. This complex is stable under the conditions of matrix isolation, however, continuous irradiation with lambda>420 nm light results in the complete destruction of the aromatic system and formation of an acylic unsaturated ketene. The mechanisms of all reaction steps are discussed in the light of ab initio and DFT calculations.

  2. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 3. Antioxidant properties and radical production capability.

    PubMed

    Sanna, Daniele; Ugone, Valeria; Fadda, Angela; Micera, Giovanni; Garribba, Eugenio

    2016-08-01

    The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. ESR, spectroscopic, and quantum-chemical studies on the electronic structures of complexes formed by Cu(I) with radicals (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsan, N.P.; Usov, O.M.; Shokhirev, N.V.

    1986-07-01

    The optical and ESR spectra have been examined for complexes of Cu(I) with various radicals, which contain various numbers of Cl/sup -/ ions in the central-atom coordination sphere. The spin-Hamiltonian parameters have been determined for all these radical complexes, and the observed ESR spectra have been compared with those calculated with allowance for second-order effects. The observed values for the isotropic and anisotropic components of the HFI constant from the central ion have been used to estimate the contributions from the 4s and 3d/sup 2//sub z/ orbitals of the copper ion to the unpaired-electron MO. Quantum-chemical calculations have been performedmore » by the INDO method on the electronic structures and geometries of complexes formed by CH/sub 2/OH with Cu(I) for various Cl/sup -/ contents in the coordination sphere. The radical is coordinated by the ..pi.. orbital on the carbon atom, and the stabilities of the radical complexes decrease as the number of Cl/sup -/ ions in the coordination sphere increases. A geometry close to planar for the CuCl/sub 4//sup 3 -/ fragment in a complex containing four Cl/sup -/ ions.« less

  4. One-electron oxidation of electronically diverse manganese(III) and nickel(II) salen complexes: transition from localized to delocalized mixed-valence ligand radicals.

    PubMed

    Kurahashi, Takuya; Fujii, Hiroshi

    2011-06-01

    Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society

  5. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals

    NASA Astrophysics Data System (ADS)

    Kern, Nicolas; Plesniak, Mateusz P.; McDouall, Joseph J. W.; Procter, David J.

    2017-12-01

    The rapid generation of molecular complexity from simple starting materials is a key challenge in synthesis. Enantioselective radical cyclization cascades have the potential to deliver complex, densely packed, polycyclic architectures, with control of three-dimensional shape, in one step. Unfortunately, carrying out reactions with radicals in an enantiocontrolled fashion remains challenging due to their high reactivity. This is particularly the case for reactions of radicals generated using the classical reagent, SmI2. Here, we demonstrate that enantioselective SmI2-mediated radical cyclizations and cascades that exploit a simple, recyclable chiral ligand can convert symmetrical ketoesters to complex carbocyclic products bearing multiple stereocentres with high enantio- and diastereocontrol. A computational study has been used to probe the origin of the enantioselectivity. Our studies suggest that many processes that rely on SmI2 can be rendered enantioselective by the design of suitable ligands.

  6. EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.

    PubMed

    Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.

  7. Real-time monitoring of drug-induced changes in the stomach acidity of living rats using improved pH-sensitive nitroxides and low-field EPR techniques

    NASA Astrophysics Data System (ADS)

    Potapenko, Dmitrii I.; Foster, Margaret A.; Lurie, David J.; Kirilyuk, Igor A.; Hutchison, James M. S.; Grigor'ev, Igor A.; Bagryanskaya, Elena G.; Khramtsov, Valery V.

    2006-09-01

    New improved pH-sensitive nitroxides were applied for in vivo studies. An increased stability of the probes towards reduction was achieved by the introduction of the bulky ethyl groups in the vicinity of the paramagnetic N sbnd O fragment. In addition, the range of pH sensitivity of the approach was extended by the synthesis of probes with two ionizable groups, and, therefore, with two p Ka values. Stability towards reduction and spectral characteristics of the three new probes were determined in vitro using 290 MHz radiofrequency (RF)- and X-band electron paramagnetic resonance (EPR), longitudinally detected EPR (LODEPR), and field-cycled dynamic nuclear polarization (FC-DNP) techniques. The newly synthesized probe, 4-[bis(2-hydroxyethyl)amino]-2-pyridine-4-yl-2,5,5-triethyl-2,5-dihydro-1 H-imidazol-oxyl, was found to be the most appropriate for the application in the stomach due to both higher stability and convenient pH sensitivity range from pH 1.8 to 6. LODEPR, FC-DNP and proton-electron double resonance imaging (PEDRI) techniques were used to detect the nitroxide localization and acidity in the rat stomach. Improved probe characteristics allowed us to follow in vivo the drug-induced perturbation in the stomach acidity and its normalization afterwards during 1 h or longer period of time. The results show the applicability of the techniques for monitoring drug pharmacology and disease in the living animals.

  8. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling.

    PubMed

    DeGayner, Jordan A; Jeon, Ie-Rang; Harris, T David

    2015-11-13

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N , N ', N '', N '''-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone ( NMePh LH 2 ) was metalated to give the series of dinuclear complexes [(TPyA) 2 M 2 ( NMePh L 2- )] 2+ (TPyA = tris(2-pyridylmethyl)amine, M = Mn II , Fe II , Co II ). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = -1.64(1) and -2.16(2) cm -1 for M = Mn II and Fe II , respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA) 2 M 2 ( NMePh L 3- ˙)] + . Following a slightly different synthetic procedure, the related complex [(TPyA) 2 CrIII2( NMePh L 3- ˙)] 3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePh L 3- ˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = -626(7), -157(7), -307(9), and -396(16) cm -1 for M = Cr III , Mn II , Fe II , and Co II , respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M-L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA) 2 Fe 2 ( NMePh L 3- ˙)] + behaves as a single-molecule magnet with a relaxation barrier of U eff = 52(1) cm -1 . These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal-radical coupling trends across a transmetallic series of complexes.

  9. Strategies for generating peptide radical cations via ion/ion reactions.

    PubMed

    Gilbert, Joshua D; Fisher, Christine M; Bu, Jiexun; Prentice, Boone M; Redwine, James G; McLuckey, Scott A

    2015-02-01

    Several approaches for the generation of peptide radical cations using ion/ion reactions coupled with either collision induced dissociation (CID) or ultraviolet photo dissociation (UVPD) are described here. Ion/ion reactions are used to generate electrostatic or covalent complexes comprised of a peptide and a radical reagent. The radical site of the reagent can be generated multiple ways. Reagents containing a carbon-iodine (C-I) bond are subjected to UVPD with 266-nm photons, which selectively cleaves the C-I bond homolytically. Alternatively, reagents containing azo functionalities are collisionally activated to yield radical sites on either side of the azo group. Both of these methods generate an initial radical site on the reagent, which then abstracts a hydrogen from the peptide while the peptide and reagent are held together by either electrostatic interactions or a covalent linkage. These methods are demonstrated via ion/ion reactions between the model peptide RARARAA (doubly protonated) and various distonic anionic radical reagents. The radical site abstracts a hydrogen atom from the peptide, while the charge site abstracts a proton. The net result is the conversion of a doubly protonated peptide to a peptide radical cation. The peptide radical cations have been fragmented via CID and the resulting product ion mass spectra are compared to the control CID spectrum of the singly protonated, even-electron species. This work is then extended to bradykinin, a more broadly studied peptide, for comparison with other radical peptide generation methods. The work presented here provides novel methods for generating peptide radical cations in the gas phase through ion/ion reaction complexes that do not require modification of the peptide in solution or generation of non-covalent complexes in the electrospray process. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Crystalline bipyridinium radical complexes and uses thereof

    DOEpatents

    Fahrenbach, Albert C.; Barnes, Jonathan C.; Li, Hao; Stoddart, J. Fraser; Basuray, Ashish Neil; Sampath, Srinivasan

    2015-09-01

    Described herein are methods of generating 4,4'-bipyridinium radical cations (BIPY.sup..cndot.+), and methods for utilizing the radical-radical interactions between two or more BIPY.sup..cndot.+ radical cations that ensue for the creation of novel materials for applications in nanotechnology. Synthetic methodologies, crystallographic engineering techniques, methods of physical characterization, and end uses are described.

  11. Persistent four-coordinate iron-centered radical stabilized by π-donation† †Electronic supplementary information (ESI) available: Experimental, crystallographic, computational details, and crystal data for 2, 4, 5 and 8. CCDC 1057111–1057113 and 1425703. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc02601f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Ishida, Shintaro; Hirakawa, Fumiya; Shiota, Yoshihito; Yoshizawa, Kazunari; Kanegawa, Shinji; Sato, Osamu; Nagashima, Hideo

    2016-01-01

    Dinuclear iron carbonyl complex 2, which contains an elongated unsupported Fe–Fe bond, was synthesized by the reaction between Fe2(CO)9 and phosphinyl radical 1. Thermal Fe–Fe bond homolysis led to the generation of a four-coordinate carbonyl-based iron-centered radical, 3, which is stabilized by π-donation. Complex 3 exhibited high reactivity toward organic radicals to form diamagnetic five-coordinate Fe(ii) complexes. PMID:28758000

  12. Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential

    PubMed Central

    Rebouças, Júlio S.; Spasojević, Ivan

    2010-01-01

    Abstract Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia–reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO3·−, peroxyl radical, and less efficiently H2O2. By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds. Antioxid. Redox Signal. 13, 877–918. PMID:20095865

  13. Broadband W-band Rapid Frequency Sweep Considerations for Fourier Transform EPR.

    PubMed

    Strangeway, Robert A; Hyde, James S; Camenisch, Theodore G; Sidabras, Jason W; Mett, Richard R; Anderson, James R; Ratke, Joseph J; Subczynski, Witold K

    2017-12-01

    A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T 1 values using pulse saturation recovery. An overview of that work is provided.

  14. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content

    PubMed Central

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-01-01

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical–lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)–MS/MS (tandem MS), four E,Z-linoleate allyl radical–CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical–CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content. PMID:16396633

  15. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    NASA Astrophysics Data System (ADS)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  16. Notable effects of metal salts on UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl radicals in acetonitrile solution. The complex formation between tocopheroxyls and metal cations.

    PubMed

    Mukai, Kazuo; Kohno, Yutaro; Ouchi, Aya; Nagaoka, Shin-ichi

    2012-08-02

    The measurements of the UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl (α-, β-, γ-, and δ-Toc(•)) radicals were performed by reacting aroxyl (ArO(•)) radical with α-, β-, γ-, and δ-tocopherol (α-, β-, γ-, and δ-TocH), respectively, in acetonitrile solution including three kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), and Mg(ClO(4))(2)) (MX or MX(2)), using stopped-flow spectrophotometry. The maximum wavelengths (λ(max)) of the absorption spectra of the α-, β-, γ-, and δ-Toc(•) located at 425-428 nm without metal salts increased with increasing concentrations of metal salts (0-0.500 M) in acetonitrile and approached some constant values, suggesting (Toc(•)···M(+) (or M(2+))) complex formations. Similarly, the values of the apparent molar extinction coefficient (ε(max)) increased drastically with increasing concentrations of metal salts in acetonitrile and approached some constant values. The result suggests that the formations of Toc(•) dimers were suppressed by the metal ion complex formations of Toc(•) radicals. The stability constants (K) were determined for Li(+), Na(+), and Mg(2+) complexes of α-, β-, γ-, and δ-Toc(•). The K values increased in the order of NaClO(4) < LiClO(4) < Mg(ClO(4))(2), being independent of the kinds of Toc(•) radicals. Furthermore, the K values increased in the order of δ- < γ- < β- < α-Toc(•) radicals for each metal salt. The alkali and alkaline earth metal salts having a smaller ionic radius of the cation and a larger charge of the cation gave a larger shift of the λ(max) value, a larger ε(max) value, and a larger K value. The result of the DFT molecular orbital calculations indicated that the α-, β-, γ-, and δ-Toc(•) radicals were stabilized by the (1:1) complex formation with metal cations (Li(+), Na(+), and Mg(2+)). Stabilization energy (E(S)) due to the complex formation increased in the order of Na(+) < Li(+) < Mg(2+) complexes, being independent of the kinds of Toc(•) radicals. The calculated result also indicated that the metal cations coordinate to the O atom at the sixth position of α-, β-, γ-, and δ-Toc(•) radicals.

  17. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue

    NASA Astrophysics Data System (ADS)

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-01

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  18. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue.

    PubMed

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-13

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO 4 :Eu 3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  19. High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture.

    PubMed

    Li, D Q; Zhao, J; Li, S P

    2014-06-06

    Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A novel detection approach based on chromophore-decolorizing with free radical and application to photometric determination of copper with acid chrome dark blue.

    PubMed

    Gao, Hong-Wen; Chen, Fang-Fang; Chen, Ling; Zeng, Teng; Pan, Lu-Ting; Li, Jian-Hua; Luo, Hua-Fei

    2007-03-21

    A novel detection approach named chromophore-decolorizing with free radicals is developed for determination of trace heavy metal. The hydroxyl radicals (HO) generated from Fe(III) and hydrogen peroxide will oxidize the free chromophore into almost colorless products. The copper-acid chrome dark blue (ACDB) complexation was investigated at pH 5.07. In the presence of Fe(III) and hydrogen peroxide, the excess ACDB was decolorized in the Cu-ACDB reaction solution, and the final solution contained only one color compound, the Cu-ACDB complex. After oxidation of free hydroxyl radicals, the complexation becomes sensitive and selective and it has been used for the quantitation of trace amounts of Cu(II) dissolved in natural water. Beer's law is obeyed in the range from 0 to 0.500 microg mL(-1) Cu(II) and the limit of detection is only 6 microg L(-1) Cu(II). Besides, the Cu-ACDB complex formed was characterized.

  1. CIDME: Short distances measured with long chirp pulses.

    PubMed

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10μs, however, CIDME appears rather susceptible to artifacts. For nitroxide-nitroxide experiments, these currently inhibit a faithful data analysis. To facilitate further developments, the artifacts are characterized experimentally. In addition, effects that are specific to the high spin of S=7/2 Gd-centers are examined. Herein, population transfer within the observer spin's multiplet due to the pump pulse as well as excitation of dipolar harmonics are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Model of Rapid Radicalization Behavior Using Agent-Based Modeling and Quorum Sensing

    NASA Technical Reports Server (NTRS)

    Schwartz, Noah; Drucker, Nick; Campbell, Kenyth

    2012-01-01

    Understanding the dynamics of radicalization, especially rapid radicalization, has become increasingly important to US policy in the past several years. Traditionally, radicalization is considered a slow process, but recent social and political events demonstrate that the process can occur quickly. Examining this rapid process, in real time, is impossible. However, recreating an event using modeling and simulation (M&S) allows researchers to study some of the complex dynamics associated with rapid radicalization. We propose to adapt the biological mechanism of quorum sensing as a tool to explore, or possibly explain, rapid radicalization. Due to the complex nature of quorum sensing, M&S allows us to examine events that we could not otherwise examine in real time. For this study, we employ Agent Based Modeling (ABM), an M&S paradigm suited to modeling group behavior. The result of this study was the successful creation of rapid radicalization using quorum sensing. The Battle of Mogadishu was the inspiration for this model and provided the testing conditions used to explore quorum sensing and the ideas behind rapid radicalization. The final product has wider applicability however, using quorum sensing as a possible tool for examining other catalytic rapid radicalization events.

  3. Hydrogen peroxide and dioxygen activation by dinuclear copper complexes in aqueous solution: hydroxyl radical production initiated by internal electron transfer.

    PubMed

    Zhu, Qing; Lian, Yuxiang; Thyagarajan, Sunita; Rokita, Steven E; Karlin, Kenneth D; Blough, Neil V

    2008-05-21

    Dinuclear Cu(II) complexes, CuII2Nn (n = 4 or 5), were recently found to specifically cleave DNA in the presence of a reducing thiol and O2 or in the presence of H2O2 alone. However, CuII2N3 and a closely related mononuclear Cu(II) complex exhibited no selective reaction under either condition. Spectroscopic studies indicate an intermediate is generated from CuII2Nn (n = 4 or 5) and mononuclear Cu(II) solutions in the presence of H2O2 or from CuI2Nn (n = 4 or 5) in the presence of O2. This intermediate decays to generate OH radicals and ligand degradation products at room temperature. The lack of reactivity of the intermediate with a series of added electron donors suggests the intermediate discharges through a rate-limiting intramolecular electron transfer from the ligand to the metal peroxo center to produce an OH radical and a ligand-based radical. These results imply that DNA cleavage does not result from direct reaction with a metal-peroxo intermediate but instead arises from reaction with either OH radicals or ligand-based radicals.

  4. Recyclable catalysts methods of making and using the same

    DOEpatents

    Dioumaev, Vladimir K.; Bullock, R. Morris

    2006-02-28

    Organometallic complexes are provided, which include a catalyst containing a transition metal, a ligand and a component having the formula GAr.sup.F. Ar.sup.F is an aromatic ring system selected from phenyl, naphthalenyl, anthracenyl, fluorenyl, or indenyl. The aromatic ring system has at least a substituent selected from fluorine, hydrogen, hydrocarbyl or fluorinated hydrocarbyl, G is substituted or unsubstituted (CH.sub.2).sub.n or (CF.sub.2).sub.n, wherein n is from 1 to 30, wherein further one or more CH.sub.2 or CF.sub.2 groups are optionally replaced by NR, PR, SiR.sub.2, BR, O or S, or R is hydrocarbyl or substituted hydrocarbyl, GAr.sup.F being covalently bonded to either said transition metal or said ligand of said catalyst, thereby rendering said cationic organometallic complex liquid. The catalyst of the organometallic complex can be [CpM(CO).sub.2(NHC)L.sub.k].sup.+A.sup.-, wherein M is an atom of molybdenum or tungsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5Q.sup.1Q.sup.2Q.sup.3Q.sup.4Q.sup.5], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, GAr.sup.F C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, substituted hydrocarbyl radical substituted by GAr.sup.F, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2R', --SiR'.sub.3 and --NR'R'', wherein R' and R'' are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complexes as catalysts in catalytic reactions, such as for example, the hydrosilylation of aldehydes, ketones and esters are also provided.

  5. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals

    NASA Astrophysics Data System (ADS)

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K.; Tureček, František

    2016-09-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2 ':6 ',2 ″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.

  6. Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde

    NASA Astrophysics Data System (ADS)

    Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry

    2016-09-01

    Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.

  7. Interplay of stereoelectronic and enviromental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach.

    PubMed

    Pavone, Michele; Cimino, Paola; De Angelis, Filippo; Barone, Vincenzo

    2006-04-05

    The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.

  8. A complex of antioxidant vitamins effectively inhibits free-radical oxidation of LDL phospholipids in blood plasma and membrane structures of the liver and myocardium.

    PubMed

    Konovalova, G G; Lisina, M O; Tikhaze, A K; Lankin, V Z

    2003-02-01

    Antioxidant effect of a complex preparation including antioxidant vitamins C, E, provitamin A and selenium was studied on the model of Cu(2+)-initiated free-radical oxidation of LDL isolated from human blood plasma. The antioxidant effect of combined administration of alpha-tocopherol+ascorbic acid and alpha-tocopherol+beta-carotene is far more pronounced that the antioxidant effect of individual components of these cocktails. Moreover, in the model system the combined action of all antioxidant components completely inhibited free-radical oxidation of LDL. A 30-day course of peroral administration of antioxidant vitamin cocktail and selenium to rats pronouncedly enhanced the antioxidant potential of liver and completely suppressed free-radical processes in the myocardium. It is suggested that preparations containing antioxidant vitamins and selenium can be perspective for prevention and complex therapy of atherosclerosis.

  9. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    PubMed

    Pathak, Vinay; Prasad, Ankush; Pospíšil, Pavel

    2017-01-01

    Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  10. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II

    PubMed Central

    Pathak, Vinay; Prasad, Ankush

    2017-01-01

    Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. PMID:28732060

  11. Biosynthetic versatility and coordinated action of 5'-deoxyadenosyl radicals in deazaflavin biosynthesis.

    PubMed

    Philmus, Benjamin; Decamps, Laure; Berteau, Olivier; Begley, Tadhg P

    2015-04-29

    Coenzyme F420 is a redox cofactor found in methanogens and in various actinobacteria. Despite the major biological importance of this cofactor, the biosynthesis of its deazaflavin core (8-hydroxy-5-deazaflavin, F(o)) is still poorly understood. F(o) synthase, the enzyme involved, is an unusual multidomain radical SAM enzyme that uses two separate 5'-deoxyadenosyl radicals to catalyze F(o) formation. In this paper, we report a detailed mechanistic study on this complex enzyme that led us to identify (1) the hydrogen atoms abstracted from the substrate by the two radical SAM domains, (2) the second tyrosine-derived product, (3) the reaction product of the CofH-catalyzed reaction, (4) the demonstration that this product is a substrate for CofG, and (5) a stereochemical study that is consistent with the formation of a p-hydroxybenzyl radical at the CofH active site. These results enable us to propose a mechanism for F(o) synthase and uncover a new catalytic motif in radical SAM enzymology involving the use of two 5'-deoxyadenosyl radicals to mediate the formation of a complex heterocycle.

  12. Positive Effect of Propolis on Free Radicals in Burn Wounds

    PubMed Central

    Olczyk, Pawel; Ramos, Pawel; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara

    2013-01-01

    Concentration and properties of free radicals in the burn wounds treated with propolis were examined by the use of electron paramagnetic resonance spectroscopy. Magnetic spin-spin interactions and complex free radicals structures in wound beds were studied. The results were compared to those obtained for silver sulphadiazine used as a standard pharmaceutical agent. The changes of free radicals in the matrix of injury with time of exposition on these substances were tested. The aim of this study was to check the hypothesis about the best influence of propolis on the burn wounds healing. It was confirmed that a relatively lower concentration of free radicals exists in the burn wounds treated with propolis. The homogeneously broadened spectra and a complex free radical system characterize the tested tissue samples. The fastening of spin-lattice relaxation processes in the matrix of injury after treatment with propolis and silver sulphadiazine was observed. Practical usefulness of electron paramagnetic resonance spectroscopy in alternative medicine was proved. PMID:23762125

  13. Dynamic, in vivo, real-time detection of retinal oxidative status in a model of elevated intraocular pressure using a novel, reversibly responsive, profluorescent nitroxide probe.

    PubMed

    Rayner, Cassie L; Gole, Glen A; Bottle, Steven E; Barnett, Nigel L

    2014-12-01

    Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements

    PubMed Central

    Klose, Daniel; Klare, Johann P.; Grohmann, Dina; Kay, Christopher W. M.; Werner, Finn; Steinhoff, Heinz-Jürgen

    2012-01-01

    Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions. PMID:22761805

  15. Non-invasive imaging of the levels and effects of glutathione on the redox status of mouse brain using electron paramagnetic resonance imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emoto, Miho C.; Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556; Matsuoka, Yuta

    Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index ofmore » the redox status in vivo and mapped as a “redox map”. The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. - Highlights: • Redox status of glutathione-depleted mouse brain was examined with EPR imaging. • Redox status of mouse brain changed depending on glutathione (GSH) levels in brains. • Linear relationship between GSH levels and redox status in brains was found. • Using this relation, estimation of GSH levels in brains is possible from EPR images.« less

  16. Tempol Moderately Extends Survival in a hSOD1G93A ALS Rat Model by Inhibiting Neuronal Cell Loss, Oxidative Damage and Levels of Non-Native hSOD1G93A Forms

    PubMed Central

    Linares, Edlaine; Seixas, Luciana V.; dos Prazeres, Janaina N.; Ladd, Fernando V. L.; Ladd, Aliny A. B. L.; Coppi, Antonio A.; Augusto, Ohara

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1G93A . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS. PMID:23405225

  17. Elucidation of a side reaction occurring during nitroxide-mediated polymerization of cyclic ketene acetals by tandem mass spectrometric end-group analysis of aliphatic polyesters.

    PubMed

    Albergaria Pereira, Bruna de Fátima; Tardy, Antoine; Monnier, Valérie; Guillaneuf, Yohann; Gigmes, Didier; Charles, Laurence

    2015-12-15

    In order to prevent side reactions while developing new polymerization processes, their mechanism has to be understood and one first key insight is the structure of the end-groups in polymeric by-products. The synthetic method scrutinized here is the nitroxide-mediated polymerization (NMP) of a cyclic ketene acetal, a promising alternative process to the production of polyesters. Polymer end-group characterization was performed by mass spectrometry (MS), combining elemental composition information derived from accurate mass data in the MS mode with fragmentation features recorded in the MS/MS mode. Electrospray was used as the ionization method to ensure the integrity of original chain terminations and a quadrupole time-of-flight (QTOF) instrument was employed for high-resolution mass measurements in both MS and tandem mass spectrometry (MS/MS) modes. Occurrence of side reactions in the studied polymerization method, first evidenced by an unusual increase in dispersity with conversion, was confirmed in MS with the detection of two polymeric impurities in addition to the expected species. Fragmentation rules were first established for this new polyester family in order to derive useful structural information from MS/MS data. In addition to a usual NMP by-product, the initiating group of the second polymeric impurities revealed the degradation of the nitroxide moiety. Unambiguous MS/MS identification of end-groups in by-products sampled from the polymerization medium allowed an unusual side reaction to be identified during the NMP preparation of polyesters. On-going optimization of the polymerization method aims at preventing this undesired process. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Mapping Local Protein Electrostatics by EPR of pH-Sensitive Thiol-Specific Nitroxide† ¶

    PubMed Central

    Voinov, Maxim A.; Ruuge, Andres; Reznikov, Vladimir A.; Grigor’ev, Igor A.; Smirnov, Alex I.

    2013-01-01

    A first thiol-specific pH-sensitive nitroxide spin label of the imidazolidine series -methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL) - has been synthesized and characterized. X- (9 GHz) and W-band (94 GHz) EPR spectral parameters of the new spin label in its free form and covalently attached to an amino acid cysteine and a tripeptide glutathione were studied as a function of pH and solvent polarity. pKa value of protonatable tertiary amino group of the spin label was found to be unaffected by other ionizable groups present in side chains of unstructured small peptides. The W-band EPR spectra were shown to allow for pKa determination from precise g-factor measurements. Is has been demonstrated that high accuracy of pKa determination for pH-sensitive nitroxides could be achieved regardless the frequency of measurements or the regime of spin exchange: fast at X-band and slow at W-band. IMTSL was found to react specifically with a model protein - iso-1-cytochrome c from yeast Saccharomyces cerevisiae - giving EPR spectra very similar to those of the most commonly employed cysteine-specific label MTSL. CD data indicated no perturbations to the overall protein structure upon IMTSL labeling. It was found that for IMTSL, giso correlates linearly with Aiso but the slopes are different for the neutral and charged forms of the nitroxide. This finding was attributed to the solvent effects on the spin density at the oxygen atom of the N–O group and on the excitation energy of the oxygen lone-pair orbital. PMID:18426227

  19. Kinetics and Near-Infrared Spectroscopy of Organic Peroxy Radicals

    NASA Astrophysics Data System (ADS)

    Smarte, M. D.; Okumura, M.

    2016-12-01

    Organic peroxy radicals are important intermediates in atmospheric chemistry with fates that control the rate of radical propagation in an oxidation mechanism. Laboratory methods for detecting peroxy radicals are essential to measuring precise rate constants that constrain these fates. In this work, we discuss the use of near-infrared cavity ringdown spectroscopy to detect organic peroxy radicals for the purpose of laboratory kinetics measurements. We focus on chlorine-substituted peroxy radicals generated in the oxidation of alkenes by chlorine, a minor tropospheric oxidant found in marine and coastal regions. Previous kinetics experiments on peroxy radicals have largely used UV absorption spectroscopy via the dissociative B-X transition. However, the spectra produced are featureless and exhibit substantial overlap; determining the concentration profile of an individual peroxy radical can be an arduous task. In our work, we probe the forbidden peroxy radical A-X transition in the near-infrared. While this approach requires overcoming small cross sections ( 10-21 cm2), the A state is bound and leads to structured absorption spectra that may be useful in constraining the kinetics of mixtures of organic peroxy radicals formed in the oxidation of complex hydrocarbons. Only a few kinetics studies utilizing the A-X transition exist in the literature and they are focused on small, unsubstituted species. This presentation explores the ability of the A-X transition to unravel the kinetics of more complex peroxy radicals in laboratory experiments using several example systems: (1) Determining rate constants for the self and cross reactions of β-chloroethylperoxy and HO2. (2) Detecting the second generation of peroxy radicals formed from alkoxy radical decomposition in the chlorine-initiated oxidation of 2-butene. (3) Observing different rates of reactivity with NO across the pool of peroxy radical isomers formed in the chlorine-initiated oxidation of isoprene.

  20. Dynamic nuclear polarization enhanced nuclear magnetic resonance and electron spin resonance studies of hydration and local water dynamics in micelle and vesicle assemblies.

    PubMed

    McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi

    2008-09-16

    We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.

  1. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    PubMed Central

    Greenberger, Joel S.; Clump, David; Kagan, Valerian; Bayir, Hülya; Lazo, John S.; Wipf, Peter; Li, Song; Gao, Xiang; Epperly, Michael W.

    2011-01-01

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development. PMID:22655254

  2. DEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR

    PubMed Central

    2016-01-01

    This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron–electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368

  3. Modulating effect of new potential antimelanomic agents, spin-labeled triazenes and nitrosoureas on the DOPA-oxidase activity of tyrosinase.

    PubMed

    Gadjeva, V; Zheleva, A; Raikova, E

    1999-07-01

    The modulating effect of newly synthesized alkylating spin labeled triazene and spin labeled nitrosourea derivatives on the DOPA-oxidase activity of mushroom tyrosinase has been investigated by Bumett's spectrophotometric method (Burnett et al., 1967). All spin labeled triazenes have exhibited activating effect on DOPA-oxidase activity of tyrosinase, whereas clinically used triazene (DTIC), which does not contain nitroxide moiety, have showed inhibiting effect. At the same experimental conditions the spin labeled aminoacid nitrosoureas have showed dual effect - activating, in the beginning of the enzyme reaction and inhibiting later on. It is deduced that the activating effect of the spin labeled compounds is due to the nitroxide moiety and the inhibiting effect of all compounds depends on their half-life time. This study might contribute to make more clear the mechanism of action of the new compounds and on the other hand would come in quite useful as a preliminary prognosis for their antimelanomic activity.

  4. DEVELOPMENT OF IMPROVED TITANIUM ORGANIC COMPOUNDS FOR USE AS HYDRAULIC FLUIDS

    DTIC Science & Technology

    HYDRAULIC FLUIDS, *METALORGANIC COMPOUNDS, *TITANATES, *TITANIUM COMPOUNDS, ALKYL RADICALS, CATALYSTS , CHLORIDES, COMPLEX COMPOUNDS, FLUIDS, PHOSPHORIC ACIDS, PROPYL RADICALS, VISCOSITY, ZINC COMPOUNDS

  5. Exposing the Complex III Qo semiquinone radical

    PubMed Central

    Zhang, Haibo; Osyczka, Artur; Dutton, P. L.; Moser, Christopher C.

    2012-01-01

    Complex III Qo site semiquinone has been assigned pivotal roles in productive energy-conversion and destructive superoxide generation. After a 30 year search, a genetic heme bH knockout arrests this transient semiquinone EPR radical, revealing the natural engineering balance pitting energy-conserving, short-circuit minimizing, split electron transfer and catalytic speed against damaging oxygen reduction. PMID:17560537

  6. Unprecedented H-atom transfer from water to ketyl radicals mediated by Cp(2)TiCl.

    PubMed

    Paradas, Miguel; Campaña, Araceli G; Marcos, Maria Luisa; Justicia, Jose; Haidour, Ali; Robles, Rafael; Cárdenas, Diego J; Oltra, J Enrique; Cuerva, Juan M

    2010-10-07

    The H-atom transfer (HAT) from water to ketyl radicals, mediated by titanocene(iii) aqua-complexes, can explain the Ti(III)-promoted reduction of ketones in aqueous medium better than the conventional House mechanism. Moreover, we also report novel evidences supporting the existence of these titanocene(iii) aqua-complexes.

  7. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    PubMed

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids.

    PubMed

    Tangprasertchai, Narin S; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S; Qin, Peter Z

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. © 2015 Elsevier Inc. All rights reserved.

  9. Clinical physiology and mechanism of dizocilpine (MK-801)

    PubMed Central

    Somanathan, Ratnasamy

    2010-01-01

    Dizocilpine (MK-801), an extensively investigated drug possessing secondary amine and benzenoid functions, displays a wide array of biological properties, including anticonvulsant and anesthetic. There is scant discussion of biomechanism. A relevant, important finding is formation of oxidative metabolites in the hydroxylamine and phenolic categories. Analogy to cocaine metabolites suggests participation of redox entities, such as, hydroxylamine, nitroxide and nitrosonium, which can lead to electron transfer and radical formation. There is also similarity to metabolism by 3,3′-iminodipropionitrile and phencyclidine. Alternatively, the phenolic metabolites are well-known precursors of ET quinones. The review documents various physiological effects, mainly involving the central nervous system. Also of interest are the pro- and anti-oxidant properties. Considerable attention has been paid to MK-801 as an antagonist of the N-methyl-D-aspartate receptor in the glutamate category. This aspect is often associated with effects on the central nervous system. The review also provides recent literature dealing with MK-801/NMDA receptor in various areas of bioactivity. Studies were made of MK-801 involvement in working memory processing. Deficits in behavior were noted after administration of the drug. Treatment of mice with dizocilpine induced learning impairment. The influence of MK-801 on fear has been investigated. The substance is known to exert an analgesic effect in pain control. A number of reports deal with anesthetic properties. PMID:20716924

  10. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane.

    PubMed

    Serio, A; Chiarini, M; Tettamanti, E; Paparella, A

    2010-08-01

    To evaluate the effect of oregano essential oil on Listeria monocytogenes cytoplasmic membrane. Nitroxide free-radical Electron Paramagnetic Resonance was applied on L. monocytogenes after 30 min exposure to oregano essential oil concentrations ranging from 0 to 1.25%. The impact of essential oil on the number of viable cells was evaluated by plate count. Growth dynamics of survivors in BHI and TSB were evaluated by turbidometry. After exposure to essential oil concentrations up to 0.50%, the membrane fluidity was changed and its order increased. When L. monocytogenes was exposed to higher concentrations, membrane order parameters slightly returned to the values of untreated cells. However, when the cells were exposed to EO in the presence of sodium azide, which impairs energy metabolism, the membrane fluidity was progressively enhanced, even at the lowest EO concentration (0.25%). Microbiological analyses confirmed a progressive reduction of viable count, at increasing essential oil concentrations. Both in BHI and TSB, the Lag phase length increased in treated cells with respect to controls, suggesting a cell damage recovery. The combined approach including microbiological and EPR analyses provided relevant information on membrane modification and cell response to essential oils. EPR approach was demonstrated to be an effective and helpful tool to comprehend the modifications exerted by essential oil on the bacterial membrane.

  11. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids

    PubMed Central

    Tangprasertchai, Narin S.; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S.; Qin, Peter Z.

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve “correct” all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260

  12. Pulse radiolytic study of the oxidation reactions of uric acid in presence of bovine serum albumin. Evidence of possible complex formation in the transient state

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Joshi, R.; Gopinathan, C.

    1997-01-01

    The pulse radiolytic and spectrophotometric study of uric acid in presence of bovine serum albumin (BSA) has been carried out. In the spectrophotometric study there is no evidence for ground state interaction between BSA and uric acid. The oxidation reactions of uric acid in presence and absence of BSA employing CCl 3OO and Br radicals have been carried out. In a composition of equal concentration of uric acid and BSA, the CCl 3OO and Br radicals produce a transient absorption spectrum which show two peaks at 330 and 360 nm. The peak at 360 nm is ascribed due to weak complex formation between semioxidised BSA and uric acid radicals. The rate constant of CCl 3OO . radical with uric acid increases with the increase in BSA concentration which is explained as protection of BSA by uric acid from radical attack. The Br radical attacks uric acid and BSA in a manner similar to CCl 3OO radical. The bimolecular rate constants for the reaction of Br radical with BSA and uric acid have been found as 2.9 × 10 10 dm 3 mol -1 s -1 and 6.33 × 10 9 dm 3 mol -1 s -, respectively.

  13. C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products.

    PubMed

    Yokoyama, Kenichi; Lilla, Edward A

    2018-04-10

    Covering: up to the end of 2017C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.

  14. Ellagic acid inhibits iron-mediated free radical formation

    NASA Astrophysics Data System (ADS)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  15. Spatial Stroop interference occurs in the processing of radicals of ideogrammic compounds.

    PubMed

    Luo, Chunming; Proctor, Robert W; Weng, Xuchu; Li, Xinshan

    2014-06-01

    In this study, we investigated whether the meanings of radicals are involved in reading ideogrammic compounds in a spatial Stroop task. We found spatial Stroop effects of similar size for the simple characters [symbol: see text] ("up") and [symbol: see text] ("down") and for the complex characters [symbol: see text] ("nervous") and [symbol: see text] ("nervous"), which are ideogrammic compounds containing a radical [symbol: see text] or [symbol: see text], in Experiments 1 and 2. In Experiment 3, the spatial Stroop effects were also similar for the simple characters [symbol: see text] ("east") and [symbol: see text] ("west") and for the complex characters [symbol: see text] ("state") and [symbol: see text] ("spray"), which contain [symbol: see text] and [symbol: see text] as radicals. This outcome occurred regardless of whether the task was to identify the character (Exps. 1 and 3) or its location (Exp. 2). Thus, the spatial Stroop effect emerges in the processing of radicals just as it does for processing simple characters. This finding suggests that when reading ideogrammic compounds, (a) their radicals' meanings can be processed and (b) ideogrammic compounds have little or no influence on their radicals' semantic processing.

  16. Fragmentation of alpha-Radical Cations of Arginine-Containing Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Yang, Zhibo; Ng, Dominic C.

    2010-04-01

    Fragmentation pathways of peptide radical cations, M+, with well-defined initial location of the radical site were explored using collision-induced dissociation (CID) experiments. Peptide radical cations were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes [salen = N,N´-ethylenebis (salicylideneaminato)]. Subsequent hydrogen abstraction from the -carbon of the side chain followed by Ca-C bond cleavage results in the loss of a neutral side chain and formation of an a-radical cation with the radical site localized on the a-carbon of the backbone. Similar CID spectra dominated by radical-driven dissociation products were obtained for a number of a-radicals when the basic arginine side chain wasmore » present in the sequence. In contrast, proton-driven fragmentation dominates CID spectra of a-radicals produced via the loss of the arginine side chain. Our results suggest that in most cases radical migration precedes fragmentation of large peptide radical cations.« less

  17. The QSAR study of flavonoid-metal complexes scavenging rad OH free radical

    NASA Astrophysics Data System (ADS)

    Wang, Bo-chu; Qian, Jun-zhen; Fan, Ying; Tan, Jun

    2014-10-01

    Flavonoid-metal complexes have antioxidant activities. However, quantitative structure-activity relationships (QSAR) of flavonoid-metal complexes and their antioxidant activities has still not been tackled. On the basis of 21 structures of flavonoid-metal complexes and their antioxidant activities for scavenging rad OH free radical, we optimised their structures using Gaussian 03 software package and we subsequently calculated and chose 18 quantum chemistry descriptors such as dipole, charge and energy. Then we chose several quantum chemistry descriptors that are very important to the IC50 of flavonoid-metal complexes for scavenging rad OH free radical through method of stepwise linear regression, Meanwhile we obtained 4 new variables through the principal component analysis. Finally, we built the QSAR models based on those important quantum chemistry descriptors and the 4 new variables as the independent variables and the IC50 as the dependent variable using an Artificial Neural Network (ANN), and we validated the two models using experimental data. These results show that the two models in this paper are reliable and predictable.

  18. Radicalizing Learning: Adult Education for a Just World

    ERIC Educational Resources Information Center

    Brookfield, Stephen D.; Holst, John D.

    2010-01-01

    This book offers new readings of the theory, politics, policy, and practice of radical adult education and learning where people's lives are understood as complex and interrelated matters. Brookfield and Holst's poetics and deeply human prose sound rebellious; the authors confront some of the main radical trends in the field of adult education…

  19. On the complex •OH/•O--induced free radical chemistry of arylalkylamines with special emphasis on the contribution of the alkylamine side chain.

    PubMed

    Szabó, László; Mile, Viktória; Tóth, Tünde; Balogh, György T; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-02-01

    A full account of the • OH-induced free radical chemistry of an arylalkylamine is given taking all the possible reaction pathways quantitatively into consideration. Such knowledge is indispensable when the alkylamine side chain plays a crucial role in biological activity. The fundamental reactions are investigated on the model compound N-methyl-3-phenypropylamine (MPPA), and extended to its biologically active analog, to the antidepressant fluoxetine (FLX). Pulse radiolysis techniques were applied including redox titration and transient spectral analysis supplemented with DFT calculations. The contribution of the amine moiety to the free radical-induced oxidation mechanism appeared to be appreciable. • O - was used to observe hydrogen atom abstraction events at pH 14 giving rise to the strongly reducing α-aminoalkyl radicals (∼38% of the radical yield) and to benzyl (∼4%), β-aminoalkyl (∼24%), and aminyl radicals (∼31%) of MPPA. One-electron transfer was also observed yielding aminium radicals with low efficiency (∼3%). In the • OH-induced oxidation protonated α-aminoalkyl (∼49%), β-aminoalkyl (∼27%), benzyl radicals (∼4%), and aminium radicals (∼5%) are initially generated on the side chain of MPPA at pH 6, whereas hydroxycyclohexadienyl radicals (∼15%) were also produced. These initial events are followed by complex protonation-deprotonation reactions establishing acid-base equilibria; however, these processes are limited by the transient nature of the radicals and the kinetics of the ongoing reactions. The contribution of the radicals from the side chain alkylamine substituent of FLX totals up to ∼54% of the initially available oxidant yield.

  20. Path to Collagenolysis

    PubMed Central

    Prior, Stephen H.; Byrne, Todd S.; Tokmina-Roszyk, Dorota; Fields, Gregg B.

    2016-01-01

    Collagenolysis is essential in extracellular matrix homeostasis, but its structural basis has long been shrouded in mystery. We have developed a novel docking strategy guided by paramagnetic NMR that positions a triple-helical collagen V mimic (synthesized with nitroxide spin labels) in the active site of the catalytic domain of matrix metalloproteinase-12 (MMP-12 or macrophage metalloelastase) primed for catalysis. The collagenolytically productive complex forms by utilizing seven distinct subsites that traverse the entire length of the active site. These subsites bury ∼1,080 Å2 of surface area, over half of which is contributed by the trailing strand of the synthetic collagen V mimic, which also appears to ligate the catalytic zinc through the glycine carbonyl oxygen of its scissile G∼VV triplet. Notably, the middle strand also occupies the full length of the active site where it contributes extensive interfacial contacts with five subsites. This work identifies, for the first time, the productive and specific interactions of a collagen triple helix with an MMP catalytic site. The results uniquely demonstrate that the active site of the MMPs is wide enough to accommodate two strands from collagen triple helices. Paramagnetic relaxation enhancements also reveal an extensive array of encounter complexes that form over a large part of the catalytic domain. These transient complexes could possibly facilitate the formation of collagenolytically active complexes via directional Brownian tumbling. PMID:26887942

  1. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling† †Electronic supplementary information (ESI) available: Experimental details, UV/Vis/NIR spectra for 2–8, additional magnetic data for 4–8, crystallographic data, selected bond distances, and crystallographic information files (CIFs) for 1, 2·0.4THF, 3·2.5THF, 4·2.5THF, and 5·2.9MeCN (CCDC 1414648–1414652). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc02725j

    PubMed Central

    DeGayner, Jordan A.; Jeon, Ie-Rang

    2015-01-01

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N,N′,N′′,N′′′-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone (NMePhLH2) was metalated to give the series of dinuclear complexes [(TPyA)2M2(NMePhL2–)]2+ (TPyA = tris(2-pyridylmethyl)amine, M = MnII, FeII, CoII). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = –1.64(1) and –2.16(2) cm–1 for M = MnII and FeII, respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA)2M2(NMePhL3–˙)]+. Following a slightly different synthetic procedure, the related complex [(TPyA)2CrIII2(NMePhL3–˙)]3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePhL3–˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = –626(7), –157(7), –307(9), and –396(16) cm–1 for M = CrIII, MnII, FeII, and CoII, respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M–L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA)2Fe2(NMePhL3–˙)]+ behaves as a single-molecule magnet with a relaxation barrier of Ueff = 52(1) cm–1. These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal–radical coupling trends across a transmetallic series of complexes. PMID:29435213

  2. Ligand effects on the ferro- to antiferromagnetic exchange ratio in bis(o-semiquinonato)copper(II).

    PubMed

    Ovcharenko, Victor I; Gorelik, Elena V; Fokin, Sergey V; Romanenko, Galina V; Ikorskii, Vladimir N; Krashilina, Anna V; Cherkasov, Vladimir K; Abakumov, Gleb A

    2007-08-29

    Heterospin complexes [Cu(SQ)2Py].C7H8, Cu(SQ)2DABCO, and [Cu(SQ)2NIT-mPy].C6H6, where Cu(SQ)2 is bis(3,6-di-tert-butyl-o-benzosemiquinonato)copper(II), DABCO is 1,4-diazabicyclo(2,2,2)octane, and NIT-mPy is the nitronyl nitroxide 2-(pyridin-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, have been synthesized. The molecules of these complexes have a specific combination of the intramolecular ferro- and antiferromagnetic exchange interactions between the odd electrons of Cu(II) and SQ ligands, characterized by large exchange coupling parameters |J| approximately 100-300 cm(-1). X-ray and magnetochemical studies of a series of mixed-ligand compounds revealed that an extra ligand (Py, NIT-mPy, or DABCO) coordinated to the metal atom produces a dramatic effect on the magnetic properties of the complex, changing the multiplicity of the ground state. Quantum chemical analysis of magnetostructural correlations showed that the energy of the antiferromagnetic exchange interaction between the odd electrons of the SQ ligands in the Cu(SQ)2 bischelate is extremely sensitive to both the nature of the extra ligand and structural distortions of the coordination unit, arising from extra ligand coordination.

  3. A facile route to steady redox-modulated nitroxide spin-labeled surfaces based on diazonium chemistry.

    PubMed

    Cougnon, Charles; Boisard, Séverine; Cador, Olivier; Dias, Marylène; Levillain, Eric; Breton, Tony

    2013-05-18

    A TEMPO derivative was covalently grafted onto carbon and gold surfaces via the diazonium chemistry. The acid-dependent redox properties of the nitroxyl group were exploited to elaborate electro-switchable magnetic surfaces. ESR characterization demonstrated the reversible and permanent magnetic character of the material.

  4. ORAC-fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins.

    PubMed

    Lucas-Abellán, C; Mercader-Ros, M T; Zafrilla, M P; Fortea, M I; Gabaldón, J A; Núñez-Delicado, E

    2008-03-26

    The effect of the complexation of resveratrol with hydroxypropyl-beta-cyclodextrins (HP-beta-CDs) on the antioxidant capacity of the polyphenol is studied for the first time by means of the oxygen radical absorbance capacity (ORAC) method, using fluorescein (FL) as the fluorescent probe. The method is validated through its linearity, precision, and accuracy for measuring the ORAC of resveratrol in the absence or presence of cyclodextrins (CDs). The complexation of resveratrol in CDs increased the net area under the FL decay curve (net AUC) of resveratrol up to its saturation level, at which the polyphenol showed almost double the antioxidant activity it shows in the absence of CDs. The complexation constant ( K c) between resveratrol and HP-beta-CDs was calculated by linear regression of the phase solubility diagram ( K c = 18048 M (-1)). The antioxidant activity of resveratrol was dependent on the complexed resveratrol because CDs acts as a controlled dosage reservoir that protects resveratrol against rapid oxidation by free radicals. In this way, its antioxidant activity is prolonged and only reaches its maximum when all the resveratrol is complexed.

  5. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage.

    PubMed

    Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K

    2014-02-21

    The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the complexes was further established by EPR spectroscopy using a stable free radical, the DPPH, as a probe. The experimental results of DNA binding are further supported by molecular docking studies.

  6. Mössbauer effect study of iron(III) inidazolidine nitroxyl-free radical ligand complex

    NASA Astrophysics Data System (ADS)

    Mulaba, A.; Kiremire, E.; Pollak, H.; Boeyens, J.

    1999-09-01

    A new complex, [Fe(acac)L2], bearing inidazolidine nitroxyl-free radical ligand (L-) was recently synthesised for biological studies. It proved to be biologically active against African sleeping sickness, plasmodium falciparum (malaria), leishmaniasis and chaga disease causative agents. Three ESR well resolved peaks indicated the presence of a free (unpaired) and chemically active electron in the complex. The structural complex ferric iron was found at the centre of two electric gradient whose the biggest is suggested to be initiated by the unpaired charge. No distinction between different cis isomers could be made.

  7. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides.

    PubMed

    Polívka, Tomas; Niedzwiedzki, Dariusz; Fuciman, Marcel; Sundström, Villy; Frank, Harry A

    2007-06-28

    The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.

  8. Some aspects of radical cascade and relay reactions

    PubMed Central

    Quiclet-Sire, Béatrice; Zard, Samir Z.

    2017-01-01

    The ability to create carbon–carbon bonds is at the heart of organic synthesis. Radical processes are particularly apt at creating such bonds, especially in cascade or relay sequences where more than one bond is formed, allowing for a rapid assembly of complex structures. In the present brief overview, examples taken from the authors' laboratory will serve to illustrate the strategic impact of radical-based approaches on synthetic planning. Transformations involving nitrogen-centred radicals, electron transfer from metallic nickel and the reversible degenerative exchange of xanthates will be presented and discussed. The last method has proved to be a particularly powerful tool for the intermolecular creation of carbon–carbon bonds by radical additions even to unactivated alkenes. Various functional groups can be brought into the same molecule in a convergent manner and made to react together in order to further increase the structural complexity. One important benefit of this chemistry is the so-called RAFT/MADIX technology for the manufacture of block copolymers of almost any desired architecture. PMID:28484329

  9. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    PubMed Central

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  10. An O({radical}nL) primal-dual affine scaling algorithm for linear programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Siming

    1994-12-31

    We present a new primal-dual affine scaling algorithm for linear programming. The search direction of the algorithm is a combination of classical affine scaling direction of Dikin and a recent new affine scaling direction of Jansen, Roos and Terlaky. The algorithm has an iteration complexity of O({radical}nL), comparing to O(nL) complexity of Jansen, Roos and Terlaky.

  11. Applicability of samarium(III) complexes for the role of luminescent molecular sensors for monitoring progress of photopolymerization processes and control of the thickness of polymer coatings

    NASA Astrophysics Data System (ADS)

    Topa, Monika; Ortyl, Joanna; Chachaj-Brekiesz, Anna; Kamińska-Borek, Iwona; Pilch, Maciej; Popielarz, Roman

    2018-06-01

    Applicability of 15 trivalent samarium complexes as novel luminescent probes for monitoring progress of photopolymerization processes or thickness of polymer coatings by the Fluorescence Probe Technique (FPT) was studied. Three groups of samarium(III) complexes were evaluated in cationic photopolymerization of triethylene glycol divinyl ether monomer (TEGDVE) and free-radical photopolymerization of trimethylolpropane triacrylate (TMPTA). The complexes were the derivatives of tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate)samarium(III), tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionate)samarium(III) and tris(4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate)samarium(III), which were further coordinated with auxiliary ligands, such as 1,10-phenanthroline, triphenylphosphine oxide, tributylphosphine oxide and trioctylphosphine oxide. It has been found that most of the complexes studied are sensitive enough to be used as luminescent probes for monitoring progress of cationic photopolymerization of vinyl ether monomers over entire range of monomer conversions. In the case of free-radical polymerization processes, the samarium(III) complexes are not sensitive enough to changes of microviscosity and/or micropolarity of the medium, so they cannot be used to monitor progress of the polymerization. However, high stability of luminescence intensity of some of these complexes under free-radical polymerization conditions makes them good candidates for application as thickness sensors for polymer coatings prepared by free-radical photopolymerization. A quantitative relationship between a coating thickness and the luminescence intensity of the samarium(III) probes has been derived and verified experimentally within a broad range of the thicknesses.

  12. Radical-initiated controlled synthesis of homo- and copolymers based on acrylonitrile

    NASA Astrophysics Data System (ADS)

    Grishin, D. F.; Grishin, I. D.

    2015-07-01

    Data on the controlled synthesis of polyacrylonitrile and acrylonitrile copolymers with other (meth)acrylic and vinyl monomers upon radical initiation and metal complex catalysis are analyzed. Primary attention is given to the use of metal complexes for the synthesis of acrylonitrile-based (co)polymers with defined molecular weight and polydispersity in living mode by atom transfer radical polymerization. The prospects for using known methods of controlled synthesis of macromolecules for the preparation of acrylonitrile homo- and copolymers as carbon fibre precursors are estimated. The major array of published data analyzed in the review refers to the last decade. The bibliography includes 175 references.

  13. Intramolecular addition of cysteine thiyl radical to phenylalanine and tyrosine in model peptides, Phe (CysS•) and Tyr(CysS•): a computational study

    PubMed Central

    Naumov, Sergej; Schöneich, Christian

    2009-01-01

    Density Functional Theory (DFT) and ab initio calculations were carried out to evaluate the potential for intramolecular addition of cysteine (Cys) thiyl radicals (CysS•) to aromatic amino acids (Phe and Tyr) in water. These calculations yielded stable cyclic conformations, in which π-complexes were more stable than cyclohexadienyl radicals in water. In these π-complexes, the C2-S distances were significantly shorter compared to the C1-S and C3-S distances. Comparable results on the relative stabilities were obtained for model calculations for the addition of HS•/CH3S• to toluene and para-hydroxytoluene. The adduct of thiyl radicals with Phe was more stable than that with Tyr, and the stabilization energies depended on the C-terminal substituents. PMID:19309133

  14. Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate*

    PubMed Central

    Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank

    2014-01-01

    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035

  15. Superoxide radical anion scavenging and dismutation by some Cu2+ and Mn2+ complexes: A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi

    2017-10-01

    Copper (Cu) and manganese (Mn) ions are catalytic centers, in complexed form, in scavenging and dismutation process of superoxide radicals anion (O2.-) by superoxide dismutase enzyme. In the present work, fast reaction kinetics and mechanism of scavenging and dismutation of O2.- by Cu2+, Mn2+ and their complexes formed with some natural ligands have been studied using pulse radiolysis technique. Catechol, gentisic acid, tetrahydroxyquinone, tyrosine, tryptophan, embelin and bilirubin have been used as low molecular weight natural ligands for Cu2+ and Mn2+ to understand superoxide radical scavenging and dismutation reactions. These complexes have been found to be efficient scavengers of O2.- (k 107-109 M-1 s-1). The effects of nature of metal ion and ligand, and stoichiometry of complex on scavenging reaction rate constants are reported. Higher scavenging rate constants have been observed with complexes of: (1) Cu2+ as compared to Mn2+, and (2) at [ligand]/[metal] ratio of one as compared to two. A clear evidence of O2.- dismutation by free metal ions and some of the complexes has been observed. The study suggests that complexes of Cu2+ and Mn2+ with small natural ligands can also act as SOD mimics.

  16. Cracking the Chinese Character: Radical Sensitivity in Learners of Chinese as a Foreign Language and Its Relationship to Chinese Word Reading

    ERIC Educational Resources Information Center

    Tong, Xiuli; Yip, Joanna Hew Yan

    2015-01-01

    Radicals are building blocks of Chinese complex characters and exhibit certain positional, phonological and semantic regularities. This study investigated whether adult non-native learners of Mandarin Chinese as a foreign language (CFL) were aware of the positional (orthographic), phonological and semantic information of radicals, and whether such…

  17. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparablemore » to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.« less

  18. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.

    PubMed

    Leyva-Porras, César; Ornelas-Gutiérrez, C; Miki-Yoshida, M; Avila-Vega, Yazmín I; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite.

  19. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide

    PubMed Central

    Leyva-Porras, César; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.; Avila-Vega, Yazmín I.; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536

  20. Radical behaviorist interpretation: Generating and evaluating an account of consumer behavior.

    PubMed

    Foxall, G R

    1998-01-01

    This article considers an approach to the radical behaviorist interpretation of complex human social behavior. The chosen context is consumer psychology, a field currently dominated by cognitive models of purchase and consumption. The nature of operant interpretation is considered, and several levels of operant analysis of complex economic behavior in affluent marketing-oriented economies are developed. Empirical evidence for the interpretation is considered, and a case is made for the qualified use of the hypothetico-deductive method in the appraisal of operant interpretations of complex behaviors.

  1. Radical behaviorist interpretation: Generating and evaluating an account of consumer behavior

    PubMed Central

    Foxall, Gordon R.

    1998-01-01

    This article considers an approach to the radical behaviorist interpretation of complex human social behavior. The chosen context is consumer psychology, a field currently dominated by cognitive models of purchase and consumption. The nature of operant interpretation is considered, and several levels of operant analysis of complex economic behavior in affluent marketing-oriented economies are developed. Empirical evidence for the interpretation is considered, and a case is made for the qualified use of the hypothetico-deductive method in the appraisal of operant interpretations of complex behaviors. PMID:22478315

  2. Trinuclear Mn(II) complex with paramagnetic bridging 1,2,3-dithiazolyl ligands.

    PubMed

    Sullivan, David J; Clérac, Rodolphe; Jennings, Michael; Lough, Alan J; Preuss, Kathryn E

    2012-11-18

    The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.

  3. Spectroscopic characterization of the ethyl radical-water complex.

    PubMed

    Lin, Chen; Finney, Brian A; Laufer, Allan H; Anglada, Josep M; Francisco, Joseph S

    2016-10-14

    An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol -1 . The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm -1 , and a shift of all UV absorption bands to higher energies.

  4. Dynamic changes in the distribution and time course of blood-brain barrier-permeative nitroxides in the mouse head with EPR imaging: visualization of blood flow in a mouse model of ischemia.

    PubMed

    Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G

    2014-09-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis.

    PubMed

    Miquel, Ernesto; Cassina, Adriana; Martínez-Palma, Laura; Souza, José M; Bolatto, Carmen; Rodríguez-Bottero, Sebastián; Logan, Angela; Smith, Robin A J; Murphy, Michael P; Barbeito, Luis; Radi, Rafael; Cassina, Patricia

    2014-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motor neuron degeneration that ultimately results in progressive paralysis and death. Growing evidence indicates that mitochondrial dysfunction and oxidative stress contribute to motor neuron degeneration in ALS. To further explore the hypothesis that mitochondrial dysfunction and nitroxidative stress contribute to disease pathogenesis at the in vivo level, we assessed whether the mitochondria-targeted antioxidant [10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl]triphenylphosphonium methane sulfonate (MitoQ) can modify disease progression in the SOD1(G93A) mouse model of ALS. To do this, we administered MitoQ (500 µM) in the drinking water of SOD1(G93A) mice from a time when early symptoms of neurodegeneration become evident at 90 days of age until death. This regime is a clinically plausible scenario and could be more easily translated to patients as this corresponds to initiating treatment of patients after they are first diagnosed with ALS. MitoQ was detected in all tested tissues by liquid chromatography/mass spectrometry after 20 days of administration. MitoQ treatment slowed the decline of mitochondrial function, in both the spinal cord and the quadriceps muscle, as measured by high-resolution respirometry. Importantly, nitroxidative markers and pathological signs in the spinal cord of MitoQ-treated animals were markedly reduced and neuromuscular junctions were recovered associated with a significant increase in hindlimb strength. Finally, MitoQ treatment significantly prolonged the life span of SOD1(G93A) mice. Our results support a role for mitochondrial nitroxidative damage and dysfunction in the pathogenesis of ALS and suggest that mitochondria-targeted antioxidants may be of pharmacological use for ALS treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    PubMed

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  8. Guided and magnetic self-assembly of tunable magnetoceptive gels

    NASA Astrophysics Data System (ADS)

    Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U.

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  9. Guided and magnetic self-assembly of tunable magnetoceptive gels

    PubMed Central

    Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U.

    2014-01-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents. PMID:25175148

  10. Free radical scavenging activity and neuroprotective potentials of D138, one Cu(II)/Zn(II) Schiff-base complex derived from N,N'-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine.

    PubMed

    Wang, Che; Cai, Zheng-Xu; You, Zhong-Lu; Guo, Hui-Shu; Shang, De-Jing; Wang, Xiao-Ling; Zhang, Liang; Ma, Li-Jie; Tan, Jun; Le, Wei-Dong; Li, Song

    2014-09-01

    There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.

  11. The Chemistry of Separations Ligand Degradation by Organic Radical Cations

    DOE PAGES

    Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.; ...

    2016-12-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less

  12. The Chemistry of Separations Ligand Degradation by Organic Radical Cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less

  13. Synthesis, characterization and antioxidant activity copper-quercetin complex.

    PubMed

    Bukhari, S Birjees; Memon, Shahabuddin; Mahroof-Tahir, M; Bhanger, M I

    2009-01-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of Cu(II) in methanol. The spectroscopic studies (UV-vis, (1)H NMR and IR) were useful to assess the relevant interaction of Quercetin with Cu(II) ions, the chelation sites and dependence of the complex structure from the metal/ligand ratio. A 1:2 (L:M) complex was indicated by Job's method of continuous variation, which was applied to ascertain the stoichiometric composition of the complex. The antioxidant activities of the compounds were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. The complexed flavonoid was much more effective free radical scavengers than the free flavonoids.

  14. Synthesis, characterization and antioxidant activity copper-quercetin complex

    NASA Astrophysics Data System (ADS)

    Bukhari, S. Birjees; Memon, Shahabuddin; Mahroof-Tahir, M.; Bhanger, M. I.

    2009-01-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of Cu(II) in methanol. The spectroscopic studies (UV-vis, 1H NMR and IR) were useful to assess the relevant interaction of Quercetin with Cu(II) ions, the chelation sites and dependence of the complex structure from the metal/ligand ratio. A 1:2 (L:M) complex was indicated by Job's method of continuous variation, which was applied to ascertain the stoichiometric composition of the complex. The antioxidant activities of the compounds were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. The complexed flavonoid was much more effective free radical scavengers than the free flavonoids.

  15. Radical pathway in catecholase activity with zinc-based model complexes of compartmental ligands.

    PubMed

    Guha, Averi; Chattopadhyay, Tanmay; Paul, Nanda Dulal; Mukherjee, Madhuparna; Goswami, Somen; Mondal, Tapan Kumar; Zangrando, Ennio; Das, Debasis

    2012-08-20

    Four dinuclear and three mononuclear Zn(II) complexes of phenol-based compartmental ligands (HL(1)-HL(7)) have been synthesized with the aim to investigate the viability of a radical pathway in catecholase activity. The complexes have been characterized by routine physicochemical studies as well as X-ray single-crystal structure analysis: [Zn(2)(H(2)L(1))(OH)(H(2)O)(NO(3))](NO(3))(3) (1), [Zn(2)L(2)Cl(3)] (2), [Zn(2)L(3)Cl(3)] (3), [Zn(2)(L(4))(2)(CH(3)COO)(2)] (4), [Zn(HL(5))Cl(2)] (5), [Zn(HL(6))Cl(2)] (6), and [Zn(HL(7))Cl(2)] (7) [L(1)-L(3) and L(5)-L(7) = 2,6-bis(R-iminomethyl)-4-methylphenolato, where R= N-ethylpiperazine for L(1), R = 2-(N-ethyl)pyridine for L(2), R = N-ethylpyrrolidine for L(3), R = N-methylbenzene for L(5), R = 2-(N-methyl)thiophene for L(6), R = 2-(N-ethyl)thiophene for L(7), and L(4) = 2-formyl-4-methyl-6-N-methylbenzene-iminomethyl-phenolato]. Catecholase-like activity of the complexes has been investigated in methanol medium by UV-vis spectrophotometric study using 3,5-di-tert-butylcatechol as model substrate. All complexes are highly active in catalyzing the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ). Conversion of 3,5-DTBC to 3,5-DTBQ catalyzed by mononuclear complexes (5-7) is observed to proceed via formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically, a finding reported for the first time in any Zn(II) complex catalyzed oxidation of catechol. On the other hand, no such enzyme-substrate adduct has been identified, and 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by the dinuclear complexes (1-4) very smoothly. EPR experiment suggests generation of radicals in the presence of 3,5-DTBC, and that finding has been strengthened by cyclic voltammetric study. Thus, it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complexes of redox-innocent Zn(II) ion. The ligand-centered radical generation has further been verified by density functional theory calculation.

  16. PHOTOCHEMICAL PRODUCTION OF REACTIVE OXYGEN SPECIES BY CONSTITUENTS OF COLORED DISSOLVED ORGANIC MATTER AND COASTAL RIVER WATERS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Using a previously developed method to measure OH production, formation rates were obtained for several water systems. Employing an amino-nitroxide probe and DMSO, an action
    spectrum for the product consistent with the production of OH by quinone moieties within humic material...

  17. Combining the Power of Irmpd with Ion-Molecule Reactions: the Structure and Reactivity of Radical Ions of Cysteine and its Derivatives

    NASA Astrophysics Data System (ADS)

    Lesslie, Michael; Osburn, Sandra; Berden, Giel; Oomens, J.; Ryzhov, Victor

    2015-06-01

    Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the "mobile proton". Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures.

  18. Radiation damage to DNA in DNA-protein complexes.

    PubMed

    Spotheim-Maurizot, M; Davídková, M

    2011-06-03

    The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.

  19. [Lower urinary tract dysfunction following radical hysterectomy].

    PubMed

    Aoun, F; Roumeguère, T

    2015-12-01

    Radical hysterectomy is associated with a significant amount of urinary functional complications and a negative impact on quality of life. The aim of this review is to provide a comprehensive overview of the neurological etiology of lower urinary tract dysfunction following radical hysterectomy and to establish an optimal postoperative management strategy. We performed a comprehensive overview using the following terms: "radical hysterectomy" and "urologic diseases etiology" or "urologic disease prevention and control". The reported incidence of lower urinary tract dysfunction after radical hysterectomy varies from 12 to 85%. Several animal and clinical urodynamic studies corroborate the neurologic etiology of the dysfunction. Lower urinary tract dysfunction is a common postoperative finding (70-85%) but spontaneous recovery is to be expected within 6-12 months after surgery. The most frequent long term sequela is stress urinary incontinence (40% of cases) and its management is complex and challenging. Postoperative refractory overactive bladder and bladder underactivity can be treated by neuromodulation of sacral roots and superior hypogastric plexus, respectively. In the absence of good clinical predictors, preoperative urodynamic examinations could have a role in understanding the pathophysiology of the dysfunction before such interventions. The pathophysiology of lower urinary tract dysfunction following radical hysterectomy is multifactorial. Its management is complex and should be multidisciplinary. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Kinetics of the reduction of cobalt(III) amine complexes by 1-hydroxy-1-methylethyl radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusaba, K.; Ogino, Hiroshi; Bakac, A.

    1989-03-08

    In order to better understand the rate constants for the reduction of several cobalt complexes by 1-hydroxy-1-methylene radicals ({sup {sm bullet}}C(CH{sub 3}){sub 2}OH), the reactions of {sup {sm bullet}}(CH{sub 3}){sub 2}OH with several cobalt(III) complexes of bidentate amines have been studied. The Marcus-Hush theory was deemed the most appropriate for analysis of the kinetic data. The correlation between the kinetics of the reduction of the Co(III) amines by C(CH{sub 3}){sub 2}OH and the reduction of the first d-d band for Co(III) complexes is discussed. 21 refs., 2 figs., 1 tab.

  1. Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid.

    PubMed

    Razzaq, Humaira; Saira, Farhat; Yaqub, Azra; Qureshi, Rumana; Mumtaz, Misbah; Saleemi, Samia

    2016-08-01

    The present study investigates the interaction of citrate stabilized gold nanoparticles (12±1.5nm) (GNPs) with free radicals; 1,1-diphenyl-2-picrylhydrazyl (DPPH) stable and electrochemically generated superoxide, O2(-). Different experiments were designed to understand the interaction between GNPs and DPPH by employing cyclic voltammetry, UV-vis spectroscopy and computational chemistry using 6-311G basis set. The increase in heterogeneous rate constant, ksh, of DPPH upon addition of GNPs pointed towards possible complex formation, DPPH-GNPs which were further explained by a model assuming surface adsorption of DPPH on GNPs. Further, the model was validated by studying interaction of GNPs with a biologically important free radical, O2(-). Exciting result in terms of disappearance of anodic peak after GNPs addition confirmed that gold nanoparticles interacted with stable as well as unstable free radicals. Also, the stoichiometry of the most stable complex GNP-DPPH was determined from UV-vis spectroscopy by applying Job's method. The GNP-DPPH complex was found to be active with 46.0% reduction of the IC50 value of standard antioxidant, ascorbic acid (AA), indicating its role in enhancing antioxidant activity. Hence, this study presents a simple and potential approach to enhance the efficiency of natural antioxidants without modifying their structure, or involving the complex functionalization of GNPs with antioxidants. Copyright © 2016. Published by Elsevier B.V.

  2. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  3. Oxidative Degradation of Methyl Orange Solution by Fe-MKSF Catalyst: Identification of Radical Species

    NASA Astrophysics Data System (ADS)

    Abdullah, N. H.; Selamat, M. K. A.; Nasuha, N.; Hassan, H.; Zubir, N. A.

    2018-06-01

    Iron–immobilized montmorillonite KSF (Fe-MKSF) has been recognized as promising catalyst in degrading persistence organic contaminants. However, detailed mechanistic insight during the catalysis which involving the formation and identification of radical species were remained indeterminate due to complex reaction. Inspiring by this gap, iron-immobilized clay (Fe-MKSF) was synthesized and used as heterogeneous catalyst in the oxidative degradation of methyl orange (MO) solution. Identification of radical species were determined through the inclusion of different types of radical scavenging agent during the Fenton-like reaction at optimum condition. Interestingly, dominant radical species were found to be hydroperoxyl radicals (•OOH) which subsequently followed by hydroxyl radicals (•OH) during the catalysis. Based on the percentage of MO removal, it was suggested that approximately 88% of the •OOH radicals existed at the interface of catalyst while 39% presence in bulk solution. Meanwhile, the interface •OH radicals promoted 38% of MO removal, whilst 4% by the bulk •OH radicals. Hence, these findings have conveyed novel insight on detailed radicals’ identification as well as its’ interaction during the catalysis.

  4. A surprisingly complex aqueous chemistry of the simplest amino acid. A pulse radiolysis and theoretical study on H/D kinetic isotope effects in the reaction of glycine anions with hydroxyl radicals.

    PubMed

    Stefanić, I; Ljubić, I; Bonifacić, M; Sabljić, A; Asmus, K-D; Armstrong, D A

    2009-04-07

    A pulse radiolysis study was carried out of the reaction rate constants and kinetic isotope effects of hydroxyl-radical-induced H/D abstraction from the most-simple alpha-amino acid glycine in its anionic form in water. The rate constants and yields of three predominantly formed radical products, glycyl (NH2-*CH-CO2-), aminomethyl (NH2-*CH2), and aminyl (*NH-CH2-CO2-) radicals, as well as of their partially or fully deuterated analogs, were found to be of comparable magnitude. The primary, secondary, and primary/secondary H/D kinetic isotope effects on the rate constants were determined with respect to each of the three radicals. The unusual variety of products for such an elementary reaction between two small and simple species indicates a complex mechanism with several reactions taking place simultaneously. Thus, a theoretical modeling of the reaction mechanism and kinetics in the gas- and aqueous phase was performed by using the unrestricted density functional theory with the BB1K functional (employing the polarizable continuum model for the aqueous phase), unrestricted coupled cluster UCCSD(T) method, and improved canonical variational theory. Several hydrogen-bonded prereaction complexes and transition states were detected. In particular, the calculations pointed to a significant mechanistic role of the three-electron two-orbital (sigma/sigma* N therefore O) hemibonded prereaction complexes in the aqueous phase. A good agreement with the experimental rate constants and kinetic isotope effects was achieved by downshifting the calculated reaction barriers by 3 kcal mol(-1) and damping the NH(D) stretching frequency by a factor of 0.86.

  5. Rethinking the Organizational Culture Approach.

    ERIC Educational Resources Information Center

    Sotirin, Patty

    Arguing for a feminist appropriation of the organizational culture approach to the study of complex formal organizations, this paper contends that, far from being an alternative approach that facilitates asking radically different questions about organizational life, the organizational culture approach's radical intentions are undermined by the…

  6. High-field EPR on membrane proteins - crossing the gap to NMR.

    PubMed

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Reactivity of [K₃(phen)₈][Cu(NPh₂)₂]₃--a possible intermediate in the copper(I)-catalyzed N-arylation of N-phenylaniline.

    PubMed

    Tseng, Chia-Kai; Lee, Chi-Rung; Tseng, Mei-Chun; Han, Chien-Chung; Shyu, Shin-Guang

    2014-05-21

    Complex [K3(phen)8][Cu(NPh2)2]3 (1, phen = phenanthroline) was isolated from the catalytic C-N cross coupling reaction based on the CuI-phen-tBuOK catalytic system. Complex 1 can react with 4-iodotoluene to give 4-methyl-N,N-diphenylaniline (3a) in 50% yield (based on all available NPh2(-) ligands of complex 1). In addition, 1 can also work as an effective catalyst for the C-N coupling reactions under the same reaction conditions, indicating that 1 may be an effective intermediate of the catalytic system. In the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), a radical scavenger, the stoichiometric reaction between complex 1 and 4-iodotoluene was significantly quenched to give a low yield of 12%. The results suggest that the radical path dominates in the reaction, with (phen)KNPh2 as the possible radical source. The structures of 1 and (phen)KNPh2 were both determined by single crystal X-ray diffraction studies.

  8. Dinuclear PhotoCORMs: Dioxygen-Assisted Carbon Monoxide Uncaging from Long-Wavelength-Absorbing Metal-Metal-Bonded Carbonyl Complexes.

    PubMed

    Li, Zhi; Pierri, Agustin E; Huang, Po-Ju; Wu, Guang; Iretskii, Alexei V; Ford, Peter C

    2017-06-05

    We describe a new strategy for triggering the photochemical release of caged carbon monoxide (CO) in aerobic media using long-wavelength visible and near-infrared (NIR) light. The dinuclear rhenium-manganese carbonyl complexes (CO) 5 ReMn(CO) 3 (L), where L = phenanthroline (1), bipyridine (2), biquinoline (3), or phenanthrolinecarboxaldehyde (4), each show a strong metal-metal-bond-to-ligand (σ MM → π L *) charge-transfer absorption band at longer wavelengths. Photolysis with deep-red (1 and 2) or NIR (3 and 4) light leads to homolytic cleavage of the Re-Mn bonds to give mononuclear metal radicals. In the absence of trapping agents, these radicals primarily recombine to reform dinuclear complexes. In oxygenated media, however, the radicals react with dioxygen to form species much more labile toward CO release via secondary thermal and/or photochemical reactions. Conjugation of 4, with an amine-terminated poly(ethylene glycol) oligomer, gives a water-soluble derivative with similar photochemistry. In this context, we discuss the potential applications of these dinuclear complexes as visible/NIR-light-photoactivated CO-releasing moieties (photoCORMs).

  9. Ionization dynamics of the water trimer: A direct ab initio MD study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Takada, Tomoya

    2013-03-01

    Ionization dynamics of the cyclic water trimer (H2O)3 have been investigated by means of direct ab initio molecular dynamics (AIMD) method. Two reaction channels, complex formation and OH dissociation, were found following the ionization of (H2O)3. In both channels, first, a proton was rapidly transferred from H2O+ to H2O (time scale is ˜15 fs after the ionization). In complex channel, an ion-radical contact pair (H3O+-OH) solvated by the third water molecule was formed as a long-lived H3O+(OH)H2O complex. In OH dissociation channel, the second proton transfer further takes place from H3O+(OH) to H2O (time scale is 50-100 fs) and the OH radical is separated from the H3O+. At the same time, the OH dissociation takes place when the excess energy is efficiently transferred into the kinetic energy of OH radical. The OH dissociation channel is significantly minor, and almost all product channels were the complex formation. The reaction mechanism was discussed on the basis of theoretical results.

  10. Mangifera indica L. extract (Vimang) inhibits Fe2+-citrate-induced lipoperoxidation in isolated rat liver mitochondria.

    PubMed

    Pardo Andreu, Gilberto; Delgado, René; Velho, Jesus; Inada, Natalia M; Curti, Carlos; Vercesi, Anibal E

    2005-05-01

    The extract of Mangifera indica L. (Vimang) is able to prevent iron mediated mitochondrial damage by means of oxidation of reduced transition metals required for the production of superoxide and hydroxyl radicals and direct free radical scavenging activity. In this study we report for the first time the iron-complexing ability of Vimang as a primary mechanism for protection of rat liver mitochondria against Fe2+ -citrate-induced lipoperoxidation. Thiobarbituric acid reactive substances (TBARS) and antimycin A-insensitive oxygen consumption were used as quantitative measures of lipoperoxidation. Vimang at 10 microM mangiferin concentration equivalent induced near-full protection against 50 microM Fe2+ -citrate-induced mitochondrial swelling and loss of mitochondrial transmembrane potential (DeltaPsi). The IC50 value for Vimang protection against Fe2+ -citrate-induced mitochondrial TBARS formation (7.89+/-1.19 microM) was around 10 times lower than that for tert-butylhydroperoxide mitochondrial induction of TBARS formation. The extract also inhibited the iron citrate induction of mitochondrial antimycin A-insensitive oxygen consumption, stimulated oxygen consumption due to Fe2+ autoxidation and prevented Fe3+ ascorbate reduction. The extracted polyphenolic compound, mainly mangiferin, could form a complex with Fe2+, accelerating Fe2+ oxidation and the formation of more stable Fe3+ -polyphenol complexes, unable to participate in Fenton-type reactions and lipoperoxidation propagation phase. The strong DPPH radical scavenging activity with an apparent IC50 of 2.45+/-0.08 microM suggests that besides its iron-complexing capacity, Vimang could also protect mitochondria from Fe2+ -citrate lipoperoxidation through direct free radical scavenging ability, mainly lipoperoxyl and alcoxyl radicals, acting as both a chain-breaking and iron-complexing antioxidant. These results are of pharmacological relevance since Vimang could be a potential candidate for antioxidant therapy in diseases related to abnormal intracellular iron distribution or iron overload.

  11. Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.

    PubMed

    Pramod, G; Prasanthkumar, K P; Mohan, Hari; Manoj, V M; Manoj, P; Suresh, C H; Aravindakumar, C T

    2006-10-12

    Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the abstraction reactions will not occur in the present case. Finally, the time dependent density functional theory (TDDFT) calculations predicted an absorption maximum of 292 nm for the N3-OH_5Ac* adduct, which is close to the experimentally observed spectral maxima at 290 nm. Hence, it is assumed that the addition to the most reactive center N3, which results the N3-OH_5Ac* radical, occurs via a kinetically driven process.

  12. Duct-to-duct biliary reconstruction after radical resection of Bismuth IIIa hilar cholangiocarcinoma.

    PubMed

    Wu, Wen-Guang; Gu, Jun; Dong, Ping; Lu, Jian-Hua; Li, Mao-Lan; Wu, Xiang-Song; Yang, Jia-Hua; Zhang, Lin; Ding, Qi-Chen; Weng, Hao; Ding, Qian; Liu, Ying-Bin

    2013-04-21

    At present, radical resection remains the only effective treatment for patients with hilar cholangiocarcinoma. The surgical approach for R0 resection of hilar cholangiocarcinoma is complex and diverse, but for the biliary reconstruction after resection, almost all surgeons use Roux-en-Y hepaticojejunostomy. A viable alternative to Roux-en-Y reconstruction after radical resection of hilar cholangiocarcinoma has not yet been proposed. We report a case of performing duct-to-duct biliary reconstruction after radical resection of Bismuth IIIa hilar cholangiocarcinoma. End-to-end anastomosis between the left hepatic duct and the distal common bile duct was used for the biliary reconstruction, and a single-layer continuous suture was performed along the bile duct using 5-0 prolene. The patient was discharged favorably without biliary fistula 2 wk later. Evidence for tumor recurrence was not found after an 18 mo follow-up. Performing bile duct end-to-end anastomosis in hilar cholangiocarcinoma can simplify the complex digestive tract reconstruction process.

  13. Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite.

    PubMed

    Karaj-Abad, Saber Ghasemi; Abbasian, Mojtaba; Jaymand, Mehdi

    2016-11-05

    For the first time, nitroxide-mediated polymerization (NMP) was used for synthesis of graft and block copolymers using cellulose (Cell) as a backbone, and polystyrene (PSt) and poly(methyl metacrylate) (PMMA) as the branches. For this purpose, Cell was acetylated by 2-bromoisobutyryl bromide (BrBiB), and then the bromine group was converted to 4-oxy-2,2,6,6-tetramethylpiperidin-1-oxyl group by a substitution nucleophilic reaction to afford a macroinitiator (Cell-TEMPOL). The macroinitiator obtained was subsequently used in controlled graft and block copolymerizations of St and MMA monomers to yield Cell-g-PSt and Cell-g-(PMMA-b-PSt). The chemical structures of all samples as representatives were characterized by FTIR and (1)H NMR spectroscopies. In addition, Cell-g-(PMMA-b-PSt)/organophilic montmorillonite nanocomposite was prepared through a solution intercalation method. TEM was used to evaluate the morphological behavior of the polymer-clay system. It was demonstrated that the addition of small percent of organophilic montmorillonite (O-MMT; 3wt.%) was enough to improve the thermal stability of the nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism

    PubMed Central

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna; Hardy, Micael; Ouari, Olivier; Joseph, Joy; Dwinell, Michael B.; Kalyanaraman, Balaraman

    2015-01-01

    One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide. PMID:26004344

  15. The benzylperoxyl radical as a source of hydroxyl and phenyl radicals.

    PubMed

    Sander, Wolfram; Roy, Saonli; Bravo-Rodriguez, Kenny; Grote, Dirk; Sanchez-Garcia, Elsa

    2014-09-26

    The benzyl radical (1) is a key intermediate in the combustion and tropospheric oxidation of toluene. Because of its relevance, the reaction of 1 with molecular oxygen was investigated by matrix-isolation IR and EPR spectroscopy as well as computational methods. The primary reaction product of 1 and O2 is the benzylperoxyl radical (2), which exists in several conformers that can easily interconvert even at cryogenic temperatures. Photolysis of radical 2 at 365 nm results in a formal [1,3]-H migration and subsequent cleavage of the O-O bond to produce a hydrogen-bonded complex between the hydroxyl radical and benzaldehyde (4). Prolonged photolysis produces the benzoyl radical (5) and water, which finally yield the phenyl radical (7), CO, and H2O. Thus, via a sequence of exothermic reactions 1 is transformed into radicals of even higher reactivity, such as OH and 7. Our results have implications for the development of models for the highly complicated process of combustion of aromatic compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Koolivand, Amir

    Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid phase of the bilayer was higher in smaller vesicles likely due to a larger number of defects in smaller vesicles allowing more water soluble molecules partitioning into lipid bilayers. However, the rotational correlation time for TEMPO slows down in smaller vesicles indicating an increase in the lipid packing. Pulsed EPR techniques, HYSCORE and ESEEM spectroscopy, were used to detect local water concentration and distinguish the hydrogen bonded water to the nitroxide from the bulk one. HYSCORE was then employed to investigate the effect of bilayer curvature on the water penetration into lipid bilayer and it was found that the higher curved lipids allow more water to penetrate into lipid bilayer as a result of more defects in the highly curved lipid vesicles. Nanopore-confined lipid bilayers formed inside ordered nanochannels of anodic aluminum oxide (AAO) have found many practical applications, serving as thermodynamically stable biophysical models of cellular membranes of concave curvature and allowing for stabilization of membrane proteins in functional conformations. It was found that surface potential of POPG lipids inside the AAO pores are higher than that of vesicles---the effect that is attributed to highly ordered and packed lipids inside the AAO nanopores. At pH=7.0 the AAO zeta potential was found to be -29+/-0.64 mV. Cytochrome C and poly glutamic acid as positively and negatively charged macromolecules in physiological pH (7.4) were used to prepare multilayer protein nanotubes and cytochrome c interaction with AAO was studied by CD and UV-Vis spectroscopy. Lipid nanotube arrays containing a transmembrane WALP peptide were also formed and these macroscopically aligned lipid nanotubes were studied by CD spectroscopy. The lipid phase transition of DMPC and binding of melittin, an antibacterial peptide model, were observed from a frequency change for the QCM quartz-AAO-Lipid as a promising "biosensor".

  17. Functionalized graphene quantum dots loaded with free radicals combined with liquid chromatography and tandem mass spectrometry to screen radical scavenging natural antioxidants from Licorice and Scutellariae.

    PubMed

    Wang, Guoying; Niu, XiuLi; Shi, Gaofeng; Chen, Xuefu; Yao, Ruixing; Chen, Fuwen

    2014-12-01

    A novel screening method was developed for the detection and identification of radical scavenging natural antioxidants based on a free radical reaction combined with liquid chromatography with tandem mass spectrometry. Functionalized graphene quantum dots were prepared for loading free radicals in the complex screening system. The detection was performed with and without a preliminary exposure of the samples to specific free radicals on the functionalized graphene quantum dots, which can facilitate charge transfer between free radicals and antioxidants. The difference in chromatographic peak areas was used to identify potential antioxidants. This is a novel approach to simultaneously evaluate the antioxidant power of a component versus a free radical, and to identify it in a vegetal matrix. The structures of the antioxidants in the samples were identified using tandem mass spectrometry and comparison with standards. Fourteen compounds were found to possess potential antioxidant activity, and their free radical scavenging capacities were investigated. The order of scavenging capacity of 14 compounds was compared according to their free radical scavenging rate. 4',5,6,7-Tetrahydroxyflavone (radical scavenging rate: 0.05253 mL mg(-1) s(-1) ) showed the strongest capability for scavenging free radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The rotational spectrum of the water-hydroperoxy radical (H2O-HO2) complex.

    PubMed

    Suma, Kohsuke; Sumiyoshi, Yoshihiro; Endo, Yasuki

    2006-03-03

    Peroxy radicals and their derivatives are elusive but important intermediates in a wide range of oxidation processes. We observed pure rotational transitions of the water-hydroperoxy radical complex, H2O-HO2, in a supersonic jet by means of a Fourier transform microwave spectrometer combined with a double-resonance technique. The observed rotational transitions were found to split into two components because of the internal rotation of the water moiety. The molecular constants for the two components were determined precisely, supporting a molecular structure in which HO2 acts as a proton donor to form a nearly planar five-membered ring, and one hydrogen atom of water sticks out from the ring plane. The structure and the spectral splittings due to internal rotation provide information on the nature of the bonding interaction between open- and closed-shell species, and they also provide accurate transition frequencies that are applicable to remote sensing of this complex, which may elucidate its potential roles in atmospheric and combustion chemistry.

  19. Monolignol radical-radical coupling networks in western red cedar and Arabidopsis and their evolutionary implications

    NASA Technical Reports Server (NTRS)

    Kim, Myoung K.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.

    2002-01-01

    The discovery of a nine-member multigene dirigent family involved in control of monolignol radical-radical coupling in the ancient gymnosperm, western red cedar, suggested that a complex multidimensional network had evolved to regulate such processes in vascular plants. Accordingly, in this study, the corresponding promoter regions for each dirigent multigene member were obtained by genome-walking, with Arabidopsis being subsequently transformed to express each promoter fused to the beta-glucuronidase (GUS) reporter gene. It was found that each component gene of the proposed network is apparently differentially expressed in individual tissues, organs and cells at all stages of plant growth and development. The data so obtained thus further support the hypothesis that a sophisticated monolignol radical-radical coupling network exists in plants which has been highly conserved throughout vascular plant evolution.

  20. Tropospheric reactions of the haloalkyl radicals formed from hydroxyl radical reaction with a series of alternative fluorocarbons

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger

    1990-01-01

    In the present assessment, the hydrogen containing halocarbons being considered as alternatives to the the presently used chlorofluorocarbons are the hydrochlorofluorocarbons (HCFCs) 123 (CF3CHCl2), 141b (CFCl2CH3), 142b (CF2ClCH3), 22 (CHF2Cl) and 124 (CF3CHFCl) and the hydrofluorocarbons (HFCs) 134a (CF3CH2F), 152a (CHF2CH3) and 125 (CF3CHF2). All of these HCFCs and HFCs will react with the hydroxyl (OH) radical in the troposphere, giving rise to haloalkyl radicals which then undergo a complex series of reactions in the troposphere. These reactions of the haloalkyl radicals formed from the initial OH radical reactions with the HCFCs and HFCs under tropospheric conditions are the focus here.

  1. A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, S.; Soda, H.; McLean, A.

    2000-01-01

    A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a doublemore » binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.« less

  2. PHOTOCHEICAL PRODUCTION OF HYDROXYL RADICAL IN NATURAL WATER - THE ROLE OF IRON AND DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...

  3. Peptide Fragmentation by Corona Discharge Induced Electrochemical Ionization

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2010-01-01

    Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species [M]+•, thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: 1. Complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; 2. Electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e− → Fe +•); 3. Radical fragmentation of the complexed compound. 4. Electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites. PMID:20869880

  4. Process for functionalizing alkanes

    DOEpatents

    Bergman, Robert G.; Janowicz, Andrew H.; Periana, Roy A.

    1988-01-01

    Process for functionalizing saturated hydrocarbons comprising: (a) reacting said saturated hydrocarbons of the formula: R.sub.1 H wherein H represents a hydrogen atom; and R.sub.1 represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRh[P(R.sub.2).sub.3 ]H.sub.2 wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical; Rh represents a rhodium atom; P represents a phosphorus atom; R.sub.2 represents a hydrocarbon radical; H represents a hydrogen atom, in the presence of ultraviolet radiation to form a hydridoalkyl complex of the formula: CpRh[P(R.sub.2).sub.3 ](R.sub.1)H (b) reacting said hydridoalkyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X''X'''X'''' or CHX'X''X''' wherein X', X'', X'", X"" represent halogens selected from bromine, iodine or chlorine atom, at a temperature in the range of about -60.degree. to -17.degree. C. to form the corresponding haloalkyl complex of step (a) having the formula: CpRhPMe.sub.3 RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X.sub.2) at a temperature in the range of about -60.degree. to 25.degree. C. (i.e., ambient) to form a functional haloalkyl compound.

  5. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    NASA Astrophysics Data System (ADS)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  6. Strong Ferromagnetic Exchange Coupling Mediated by a Bridging Tetrazine Radical in a Dinuclear Nickel Complex.

    PubMed

    Woods, Toby J; Stout, Heather D; Dolinar, Brian S; Vignesh, Kuduva R; Ballesteros-Rivas, Maria F; Achim, Catalina; Dunbar, Kim R

    2017-10-16

    The radical bridged compound [(Ni(TPMA)) 2 -μ-bmtz •- ](BF 4 ) 3 ·3CH 3 CN (bmtz = 3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine, TPMA = tris(2-pyridylmethyl)amine) exhibits strong ferromagnetic exchange between the S = 1 Ni II centers and the bridging S = 1/2 bmtz radical with J = 96 ± 5 cm -1 (-2J Ni-rad S Ni S rad ). DFT calculations support the existence of strong ferromagnetic exchange.

  7. Superalkali atoms bonding to the phenalenyl radical: structures, intermolecular interaction and nonlinear optical properties.

    PubMed

    Chen, Sa; Xu, Hong-Liang; Sun, Shi-Ling; Zhao, Liang; Su, Zhong-Min

    2015-08-01

    Due to unpaired electrons, both radicals and superalkali are investigated widely. In this work, two interesting complexes (Li3O-PLY and Li3-PLY) were constructed by phenalenyl radical and superalkali atoms. Why are they interesting? Firstly, for Li3O-PLY and Li3-PLY, although the charge transfer between superalkali atoms and PLY is similar, the sandwich-like charge distribution for Li3O-PLY causes a smaller dipole moment than that of Li3-PLY. Secondly, their UV-vis absorption show that the maximum wavelengths for Li3O-PLY and Li3-PLY display a bathochromic shift compared to PLY. Moreover, Li3-PLY has two new peaks at 482 and 633 nm. Significantly, the β 0 values of Li3-PLY (4943-5691 a.u.) are much larger than that of Li3O-PLY (225-347 a.u.). Further, the β HRS values of Li3O-PLY decrease slightly while β HRS of Li3-PLY increase dramatically with increasing frequency. It is our expectation that these results might provide beneficial information for theoretical and experimental studies on complexes with superalkali and PLY radicals. Graphical Abstract Two interesting complexes (Li3O-PLY and Li3-PLY) were constructed by phenalenyl radical and superalkali atoms. We explore their structures, Wiberg bond indices, interaction energies and the static first hyperpolarizabilities (β 0). The β 0 values of Li3-PLY (4943-5691 a.u.) were much larger than those of Li3O-PLY (225-347 a.u.).

  8. Translation of the assembling trajectory by preorganisation: a study of the magnetic properties of 1D polymeric unpaired electrons immobilised on a discrete nanoscopic scaffold.

    PubMed

    Praveen, Vakayil K; Yamamoto, Yohei; Fukushima, Takanori; Tsunobuchi, Yoshihide; Nakabayashi, Koji; Ohkoshi, Shin-ichi; Kato, Kenichi; Takata, Masaki; Aida, Takuzo

    2015-01-25

    A nitronyl nitroxide (NN)-appended hexabenzocoronene (HBC(NN)), when allowed to coassemble with bis(hexafluoroacetylacetonato)cobalt(II), forms a coaxial nanotubular architecture featuring NN-Co(II) coordinated copolymer chains immobilised on the outer and inner nanotube surfaces. Upon lowering the temperature, this nanotube has enhanced magnetic susceptibility below 10 K.

  9. Growing up Radical: Investigation of Benzyl-Like Radicals with Increasing Chain Lengths

    NASA Astrophysics Data System (ADS)

    Korn, Joseph A.; Jawad, Khadija M.; Hewett, Daniel M.; Zwier, Timothy S.

    2015-06-01

    Combustion processes involve complex chemistry including pathways leading to polyaromatic hydrocarbons (PAHs) from small molecule precursors. Resonance stabilized radicals (RSRs) likely play an important role in the pathways to PAHs due to their unusual stability. Benzyl radical is a prototypical RSR that is stabilized by conjugation with the phenyl ring. Earlier work on α-methyl benzyl radical showed perturbations to the spectroscopy due to a hindered methyl rotor. If the alkyl chain is lengthened then multiple conformations become possible. This talk will discuss the jet-cooled spectroscopy of α-ethyl benzyl radical and α-propyl benzyl radical produced from the discharge of 1-phenyl propanol and 1-phenyl butanol respectively. Electronic spectra were obtained via resonant two-photon ionization, and IR spectra were obtained by resonant ion-dip infrared spectroscopy. Kidwell, N. M.; Reilly, N. J.; Nebgen, B.; Mehta-Hurt, D. N.; Hoehn, R. D.; Kokkin, D. L.; McCarthy, M. C.; Slipchenko, L. V.; Zwier, T. S. The Journal of Physical Chemistry A 2013, 117, 13465.

  10. Putting a New Spin on Supramolecular Metallacycles: Co3 Triangle and Co4 Square Bearing Tetrazine-Based Radicals as Bridges.

    PubMed

    Alexandropoulos, Dimitris I; Dolinar, Brian S; Vignesh, Kuduva R; Dunbar, Kim R

    2017-08-16

    The synthesis of two new radical-bridged compounds [Co 3 (bptz) 3 (dbm) 3 ]·2toluene (1) and [Co 4 (bptz) 4 (dbm) 4 ]·4MeCN (2) (bptz = 3,6-bis(pyridyl)-1,2,4,5-tetrazine; dbm = 1,3-diphenyl-1,3-propanedionate) is reported. The presence of the ligand-centered radical has been confirmed by X-ray crystallography and SQUID magnetometry. These complexes are the first metallacycles bearing nitrogen heterocyclic radicals as bridges. Magnetic studies reveal strong antiferromagnetic metal···radical coupling with coupling constants of J = -67.5 and -66.8 cm -1 for 1 and 2, respectively. DFT calculations further support the strong antiferromagnetic coupling between Co II ions and bptz radicals and confirm S = 3 and S = 4 spin ground states for 1 and 2, respectively.

  11. FREE RADICALS IN THERMALLY STERILIZED ACIDUM BORICUM AND OPTIMIZATION OF THIS PROCESS.

    PubMed

    Ramos, Paweł; Pilawa, Barbara

    2015-01-01

    Free radicals formation in the acidum boricum (AB) during thermal sterilization process was examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. Acidum boricum was sterilized according to the pharmacopea norms at temperatures 160°C (120 min), 170°C (60 min), and 180°C (30 min). Free radicals (~10(17) spin/g) were thermally formed in these drug. The free radicals system revealed complex character, and the asymmetrical EPR spectra were measured. Mainly oxygen free radicals exist in the tested heated AB. Slower spin-lattice relaxation processes exist in AB sterilized at 160, 170 and 180°C. AB may be sterilized at temperatures 160, 170 and 180°C. For AB thermal sterilization at temperature 170°C is recommended. Free radicals concentrations changes during storage of the examined AB, and probably interactions with oxygen molecules may be responsible for this effect.

  12. Oxygen radical-mediated mutagenic effect of asbestos on human lymphocytes: suppression by oxygen radical scavengers.

    PubMed

    Korkina, L G; Durnev, A D; Suslova, T B; Cheremisina, Z P; Daugel-Dauge, N O; Afanas'ev, I B

    1992-02-01

    The mutagenic effect of chrysotile asbestos fibers and zeolite and latex particles on human lymphocytes in whole blood has been studied. It was concluded that their mutagenic activities were mediated by oxygen radicals because they were inhibited by antioxidant enzymes (SOD and catalase) and oxygen radical scavengers (rutin, ascorbic acid, and bemitil). It was proposed that oxygen radicals were released by phagocytes activated upon exposure to mineral dusts and fibers. The study of lucigenin- and luminol-amplified chemiluminescence of peritoneal macrophages stimulated by chrysotile fibers and zeolite and latex particles has shown that their mutagenic action is probably mediated by different oxygen species, namely, by the iron-oxygen complexes (perferryl ions) plus hydrogen peroxide, hydrogen peroxide, and superoxide ion, respectively. From the oxygen radical scavengers studied, rutin was the most effective inhibitor of the mutagenic effect of mineral fibers and dusts.

  13. Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study.

    PubMed

    Giannakopoulos, E; Isari, E; Bourikas, K; Karapanagioti, H K; Psarras, G; Oron, G; Kalavrouziotis, I K

    2017-06-15

    This study investigates the oxidation of municipal wastewater (WW) by complexation with natural polyphenols having radical scavenging activity, such as (3,4,5 tri-hydroxy-benzoic acid) gallic acid (GA) in alkaline pH (>7), under ambient O 2 and temperature. Physicochemical and structural characteristics of GA-WW complex-forming are evaluated by UV/Vis spectroscopy. The comparative analysis among UV/Vis spectra of GA monomer, GA-GA polymer, WW compounds, and GA-WW complex reveals significant differences within 350-450 and 500-900 nm. According to attenuated total reflectance (ATR) spectroscopy and thermogravimetric analysis (TGA), these spectra differences correspond to distinct complexes formed. This study suggests a novel role of natural polyphenols on the degradation and humification of wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Even free radicals should follow some rules: a guide to free radical research terminology and methodology.

    PubMed

    Forman, Henry Jay; Augusto, Ohara; Brigelius-Flohe, Regina; Dennery, Phyllis A; Kalyanaraman, Balaraman; Ischiropoulos, Harry; Mann, Giovanni E; Radi, Rafael; Roberts, L Jackson; Vina, Jose; Davies, Kelvin J A

    2015-01-01

    Free radicals and oxidants are now implicated in physiological responses and in several diseases. Given the wide range of expertise of free radical researchers, application of the greater understanding of chemistry has not been uniformly applied to biological studies. We suggest that some widely used methodologies and terminologies hamper progress and need to be addressed. We make the case for abandonment and judicious use of several methods and terms and suggest practical and viable alternatives. These changes are suggested in four areas: use of fluorescent dyes to identify and quantify reactive species, methods for measurement of lipid peroxidation in complex biological systems, claims of antioxidants as radical scavengers, and use of the terms for reactive species. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. UV-Vis Action Spectroscopy Reveals a Conformational Collapse in Hydrogen-Rich Dinucleotide Cation Radicals.

    PubMed

    Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František

    2017-09-07

    We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.

  16. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    PubMed

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  17. Evaluation of antitumor, immunomodulatory and free radical scavenging effects of a new herbal prescription seaweed complex preparation

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shao, Changlun; Kong, Wenwen; Fang, Yuchun; Wang, Changyun

    2013-09-01

    Seaweed Complex Preparation (SCP) is a clinical traditional Chinese medicine preparation which is composed of seven traditional Chinese herbs, and it has been used for treatment of lung cancer, liver cancer and digestive cancer. However, little information is available about the pharmacodynamic basis. The antitumor, immunomodulatory and free radical scavenging effects of SCP were evaluated in this study. Transplanted tumor in vivo method was used to determine the antitumor effect. The effects on splenocyte proliferation and phagocytosis of macrophages in tumor-bearing mice were measured by the MTT method and the phagocytizing cock red blood cell (CRBC) method respectively. The scavenging activities of SCP on DPPH and hydroxyl radicals in vitro were investigated. It was found that the medium-dose and high-dose of SCP could significantly inhibit the growth of transplanted hepatic tumor of murine hepatocarcinoma cell line H22, and promote proliferation of splenocytes and phagocytosis of macrophages. SCP possessed noticeable scavenging activities on DPPH and hydroxyl radicals. The antitumor effects of SCP might be achieved by improving immune system and scavenging free radicals, which is in accordance with the viewpoint of traditional Chinese medicine in promoting the body resistance and eliminating pathogenic factors for cancer treatment.

  18. Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source

    PubMed Central

    Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige

    2009-01-01

    We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928

  19. High-field/ high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation.

    PubMed

    Georgieva, Elka R; Pardi, Luca; Jeschke, Gunnar; Gatteschi, Dante; Sorace, Lorenzo; Yordanov, Nicola D

    2006-06-01

    The EPR spectrum of sucrose irradiated by high-energy radiation is complex due to the presence of more than one radical species. In order to decompose the spectrum and elucidate the radical magnetic parameters a high-field (HF(-)EPR) study on stable free radicals in gamma-irradiated polycrystalline sucrose (table sugar) was performed at three different high frequencies--94, 190 and 285 GHz as well as at the conventional X-band. We suggest a presence of three stable radicals R1, R2 and R3 as the main radical species. Due to the increase of g-factor resolution at high fields the g-tensors of these radicals could be extracted by accurate simulations. The moderate g-anisotropy suggests that all three radicals are carbon-centred. Results from an earlier ENDOR study on X-irradiated sucrose single crystals (Vanhaelewyn et al., Appl Radiat Isot, 52, 1221 (2000)) were used for analyzing of the spectra in more details. It was confirmed that the strongest hyperfine interaction has a relatively small anisotropy, which indicates either the absence of alpha-protons or a strongly distorted geometry of the radicals.

  20. Energy levels and exchange interactions of spin clusters

    NASA Astrophysics Data System (ADS)

    Belorizky, E.

    1993-02-01

    We first describe a simple method for diagonalizing the isotropic exchange Hamiltonian of a cluster of N spins in the most general case where all the exchange constants are different. The technique, based on the rotation invariance of the system, leads to a considerable reduction of the total matrix. Simple expressions of the magnetization and susceptibility are provided and an example of the determination of the exchange constants of a complex with five Cu^{2+} ions is given. It is also shown that for a large variety of spin configurations occuring in metal complexes, it is possible to diagonalize the dominant isotropic exchange spin hamiltonian in a straightforward way by using recoupling techniques. This allows to solve problems up to a nine spin cluster with spins having different g values. This survey is pursued by the theoretical approach of the magnetic properties of interacting spins on a finite ring with a detailed study of an oligonuclear metal nitroxide complex formed by six Mn^{2+}(S = 5/2) and six free radicals (s = 1/2). The temperature behaviour of the susceptibility is interpreted with a semi-classical model of a cyclic alternate finite chain. Finally we give a procedure for determining the three exchange constants of three spin 1/2 coupled by isotropic exchange constants in the unsolved case where these constants are all dilferent. Nous décrivons d'abord une méthode simple pour diagonaliser l'Hamiltonien d'échange isotrope d'un cluster de N spins dans le cas le plus général où toutes les constantes d'échange sont différentes. La technique, basée sur l'invariance rotationnelle du système, conduit à une réduction considérable de la matrice totale. On donne des expressions simples de l'aimantation et de la susceptibilité et la méthode est appliquée à la détermination des interactions d'échange d'un complexe comprenant cinq ions Cu^{2+}. On montre également que pour une assez grande variété de configurations de spins présentes dans les complexes métalliques, on peut résoudre l'Hamiltonien de spin d'échange isotrope dominant de manière directe par des techniques de recouplage. Ceci permet de traiter des clusters jusqu'à neuf spins, ces derniers pouvant avoir des facteurs g différents. Nous poursuivons cette revue par une étude théorique des propriétés magnétiques de spins en interaction sur un anneau avec une étude détaillée d'un complexe oligonucléaire métal-nitroxyde formé de six ions Mn^{2+}(S = 5/2) et de six radicaux libres (s = 1/2). Le comportement en fonction de la température de la susceptibilité est interprété à l'aide d'un modèle semi-classique de chaine alternée cyclique. Enfin, nous donnons un procédé pour déterminer les trois constantes d'échange d'un système de trois spins 1/2 couplés par échange isotrope dans le cas non résolu où ces trois constantes sont toutes différentes.

  1. Ionizing Collisions of Electrons with Radical Species OH, H2 O2 and HO2; Theoretical Calculations

    NASA Astrophysics Data System (ADS)

    Joshipura, K. N.; Pandya, S. H.; Vaishnav, B. G.; Patel, U. R.

    2016-05-01

    In this paper we present our calculated total ionization cross sections (TICS) of electron impact on radical targets OH, H2 O2 and HO2 at energies from threshold to 2000 eV. Reactive species such as these pose difficulties in measurements of electron scattering cross sections. No measured data have been reported in this regard except an isolated TICS measurement on OH radical, and hence the present work on the title radicals hold significance. These radical species are present in an environment in which water molecules undergo dissociation (neutral or ionic) in interactions with photons or electrons. The embedding environments could be quite diverse, ranging from our atmosphere to membranes of living cells. Ionization of OH, H2 O2 or HO2 can give rise to further chemistry in the relevant bulk medium. Therefore, it is appropriate and meaningful to examine electron impact ionization of these radicals in comparison with that of water molecules, for which accurate da are available. For the OH target single-centre scattering calculations are performed by starting with a 4-term complex potential, that describes simultaneous elastic plus inelastic scattering. TICS are obtained from the total inelastic cross sections in the complex scattering potential - ionization contribution formalism , a well established method. For H2 O2 and HO2 targets, we employ the additivity rule with overlap or screening corrections. Detailed results will be presented in the Conference.

  2. Cycloheximide and 4-OH-TEMPO suppress chloramphenicol-induced apoptosis in RL-34 cells via the suppression of the formation of megamitochondria.

    PubMed

    Karbowski, M; Kurono, C; Wozniak, M; Ostrowski, M; Teranishi, M; Soji, T; Wakabayashi, T

    1999-02-04

    Toxic effects of chloramphenicol, an antibiotic inhibitor of mitochondrial protein synthesis, on rat liver derived RL-34 cell line were completely blocked by a combined treatment with substances endowed with direct or indirect antioxidant properties. A stable, nitroxide free radical scavenger, 4-hydroxy-2,2,6, 6-tetramethylpiperidine-1-oxyl, and a protein synthesis inhibitor, cycloheximide, suppressed in a similar manner the following manifestations of the chloramphenicol cytotoxicity: (1) Oxidative stress state as evidenced by FACS analysis of cells loaded with carboxy-dichlorodihydrofluorescein diacetate and Mito Tracker CMTH2MRos; (2) megamitochondria formation detected by staining of mitochondria with MitoTracker CMXRos under a laser confocal microscopy and electron microscopy; (3) apoptotic changes of the cell detected by the phase contrast microscopy, DNA laddering analysis and cell cycle analysis. Since increases of ROS generation in chloramphenicol-treated cells were the first sign of the chloramphenicol toxicity, we assume that oxidative stress state is a mediator of above described alternations of RL-34 cells including MG formation. Pretreatment of cells with cycloheximide or 4-hydroxy-2,2, 6,6-tetramethylpiperidine-1-oxyl, which is known to be localized into mitochondria, inhibited the megamitochondria formation and succeeding apoptotic changes of the cell. Protective effects of cycloheximide, which enhances the expression of Bcl-2 protein, may further confirm our hypothesis that the megamitochondria formation is a cellular response to an increased ROS generation and raise a possibility that antiapoptotic action of the drug is exerted via the protection of the mitochondria functions.

  3. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F., E-mail: takuya.segawa@alumni.ethz.ch; Doppelbauer, Maximilian; Garbuio, Luca

    2016-05-21

    Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the {sup 1}H NMR spectrum of H{sub 2}O at a Larmormore » frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10–20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.« less

  4. A novel microfluidic rapid freeze-quench device for trapping reactions intermediates for high field EPR analysis.

    PubMed

    Kaufmann, Royi; Yadid, Itamar; Goldfarb, Daniella

    2013-05-01

    Rapid freeze quench electron paramagnetic resonance (RFQ)-EPR is a method for trapping short lived intermediates in chemical reactions and subjecting them to EPR spectroscopy investigation for their characterization. Two (or more) reacting components are mixed at room temperature and after some delay the mixture is sprayed into a cold trap and transferred into the EPR tube. A major caveat in using commercial RFQ-EPR for high field EPR applications is the relatively large amount of sample needed for each time point, a major part of which is wasted as the dead volume of the instrument. The small sample volume (∼2μl) needed for high field EPR spectrometers, such as W-band (∼3.5T, 95GHz), that use cavities calls for the development of a microfluidic based RFQ-EPR apparatus. This is particularly important for biological applications because of the difficulties often encountered in producing large amounts of intrinsically paramagnetic proteins and spin labeled nucleic acid and proteins. Here we describe a dedicated microfluidic based RFQ-EPR apparatus suitable for small volume samples in the range of a few μl. The device is based on a previously published microfluidic mixer and features a new ejection mechanism and a novel cold trap that allows collection of a series of different time points in one continuous experiment. The reduction of a nitroxide radical with dithionite, employing the signal of Mn(2+) as an internal standard was used to demonstrate the performance of the microfluidic RFQ apparatus. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.

    PubMed

    Segawa, Takuya F; Doppelbauer, Maximilian; Garbuio, Luca; Doll, Andrin; Polyhach, Yevhen O; Jeschke, Gunnar

    2016-05-21

    Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the (1)H NMR spectrum of H2O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10-20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.

  6. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.

    PubMed

    Duan, Wentao; Vemuri, Rama S; Hu, Dehong; Yang, Zheng; Wei, Xiaoliang

    2017-02-13

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, non-aqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of non-aqueous electrolytes. However, significant technical hurdles exist currently limiting non-aqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we recently reported a non-aqueous flow battery based on a highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox material exhibits an ambipolar electrochemical property, and therefore can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry. Moreover, we demonstrated that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC), as cross-validated by electron spin resonance (ESR) measurements. Herein we present a video protocol for the electrochemical evaluation and SOC diagnosis of the PTIO symmetric flow battery. With a detailed description, we experimentally demonstrated the route to achieve such purposes. This protocol aims to spark more interests and insights on the safety and reliability in the field of non-aqueous redox flow batteries.

  7. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    PubMed

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  8. Fluorinated Dodecaphenylporphyrins: Synthetic and Electrochemical Studies Including the First Evidence of Intramolecular Electron Transfer Between an Fe(II) Porphyrin -Anion Radical and an Fe(I) Porphyrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, F.; Forsyth, T.P.; Fukuzumi, S.

    1998-10-19

    Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compoundmore » FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.« less

  9. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    PubMed

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  10. On Reinventing Education in the Age of Complexity: A Vygotsky-­Inspired Generative Complexity Approach

    ERIC Educational Resources Information Center

    Jörg, Ton

    2017-01-01

    Reinventing education is the ultimate aim of this contribution. The approach taken is a radical new complexity-inspired bottom-up approach which shows complexity as the fount of creativity and innovation. Organizing complexity accordingly may be the foundation for a new complexified vision of education. It all starts with new thinking in…

  11. Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase.

    PubMed

    Chakraborty, Saumen; Reed, Julian; Ross, Matthew; Nilges, Mark J; Petrik, Igor D; Ghosh, Soumya; Hammes-Schiffer, Sharon; Sage, J Timothy; Zhang, Yong; Schulz, Charles E; Lu, Yi

    2014-02-24

    A major barrier to understanding the mechanism of nitric oxide reductases (NORs) is the lack of a selective probe of NO binding to the nonheme FeB center. By replacing the heme in a biosynthetic model of NORs, which structurally and functionally mimics NORs, with isostructural ZnPP, the electronic structure and functional properties of the FeB nitrosyl complex was probed. This approach allowed observation of the first S=3/2 nonheme {FeNO}(7) complex in a protein-based model system of NOR. Detailed spectroscopic and computational studies show that the electronic state of the {FeNO}(7) complex is best described as a high spin ferrous iron (S=2) antiferromagnetically coupled to an NO radical (S=1/2) [Fe(2+)-NO(.)]. The radical nature of the FeB -bound NO would facilitate N-N bond formation by radical coupling with the heme-bound NO. This finding, therefore, supports the proposed trans mechanism of NO reduction by NORs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of the DNA structure on the free radical induction due to proflavine and light treatment.

    PubMed

    Piette, J; Calberg-Bacq, C M; Van de Vorst, A

    1979-04-30

    Induction of peroxide free radicals (detected by Electron Paramagnetic Resonance at 77 K) due to the photodynamic activity of proflavine was measured on bacteriophage phi X174 DNA either single-stranded (ss) as isolated from the virion, or double-stranded supercoiled (RFI) as isolated from the infected bacteria. Comparison was made with calf thymus DNA photosensitization. In order to use equivalent DNA-proflavine complexes, binding of the dye to the three DNA's was first determined under those conditions of high ionic strength favourable to the photodynamic reaction. Free radical induction was maximal for definite amounts of bound proflavine (which varied depending upon the DNA substrate) and at an ionic strength value of 0.5. The level of the maximal reaction increased in the following order: from phi Xss DNA to calf thymus DNA and finally to phi XRFI DNA. The conformation of the proflavine-DNA complex was thus a determinant for the efficiency of the photodynamic process. The ionic strength effect could not be explained by the evolution of the proflavine triplet state in irradiated proflavine-calf thymus DNA complexes.

  13. Novel Nitroxide Resuscitation Strategies in Experimental Traumatic Brain Injury

    DTIC Science & Technology

    2010-03-01

    comprehensive study showing its utility in combined TBI + HS in our model and demonstrated that HS indeed produces critical CBF levels after TBI...TBI alone—which would even further broaden its potential utility in TBI resuscitation. Our data strongly suggest a beneficial hemodynamic effect of...in potential utility of HBOCs in TBI resuscitation; namely, PNPH is a novel Hb that confers direct neuroprotective rather than neurotoxic effects

  14. Tritiation and Stability Measurements of Nitroxide for Betavoltaic Cells

    DTIC Science & Technology

    2016-09-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY...September 2016 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 February–1 May 2016 4. TITLE AND SUBTITLE Tritiation and Stability...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Beta radioisotope

  15. Lipid-protein interaction in the phosphatidylcholine exchange protein.

    PubMed Central

    Devaux, P F; Moonen, P; Bienvenue, A; Wirtz, K W

    1977-01-01

    Incorporation of 2-acyl spin-labeled lecithin into the phosphatidylcholine protein from bovine liver results in an immobilization of the spin-label at the methyl and the carboxyl terminal end of the acyl chain. The nitroxide group on the protein-bound lecithin molecule is not accessible to ascorbate. This suggests that lecithin is buried in a pocket on the protein, which effectively shields the acyl chains from the medium. PMID:194240

  16. Reversible double oxidation and protonation of the non-innocent bridge in a nickel(II) salophen complex.

    PubMed

    de Bellefeuille, David; Askari, Mohammad S; Lassalle-Kaiser, Benedikt; Journaux, Yves; Aukauloo, Ally; Orio, Maylis; Thomas, Fabrice; Ottenwaelder, Xavier

    2012-12-03

    Substitution on the aromatic bridge of a nickel(II) salophen complex with electron-donating dimethylamino substituents creates a ligand with three stable, easily and reversibly accessible oxidation states. The one-electron-oxidized product is characterized as a nickel(II) radical complex with the radical bore by the central substituted aromatic ring, in contrast to other nickel(II) salen or salophen complexes that oxidize on the phenolate moieties. The doubly oxidized product, a singlet species, is best described as having an iminobenzoquinone bridge with a vinylogous distribution of bond lengths between the dimethylamino substituents. Protonation of the dimethylamino substituents inhibits these redox processes on the time scale of cyclovoltammetry, but electrolysis and chemical oxidation are consistent with deprotonation occurring concomitantly with electron transfer to yield the mono- and dioxidized species described above.

  17. Nuclear spin-lattice relaxation in nitroxide spin-label EPR.

    PubMed

    Marsh, Derek

    2016-11-01

    Nuclear relaxation is a sensitive monitor of rotational dynamics in spin-label EPR. It also contributes competing saturation transfer pathways in T 1 -exchange spectroscopy, and the determination of paramagnetic relaxation enhancement in site-directed spin labelling. A survey shows that the definition of nitrogen nuclear relaxation rate W n commonly used in the CW-EPR literature for 14 N-nitroxyl spin labels is inconsistent with that currently adopted in time-resolved EPR measurements of saturation recovery. Redefinition of the normalised 14 N spin-lattice relaxation rate, b=W n /(2W e ), preserves the expressions used for CW-EPR, whilst rendering them consistent with expressions for saturation recovery rates in pulsed EPR. Furthermore, values routinely quoted for nuclear relaxation times that are deduced from EPR spectral diffusion rates in 14 N-nitroxyl spin labels do not accord with conventional analysis of spin-lattice relaxation in this three-level system. Expressions for CW-saturation EPR with the revised definitions are summarised. Data on nitrogen nuclear spin-lattice relaxation times are compiled according to the three-level scheme for 14 N-relaxation: T 1 n =1/W n . Results are compared and contrasted with those for the two-level 15 N-nitroxide system. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Topical Mitochondria-Targeted Redox Cycling Nitroxide Mitigates Oxidative Stress Induced Skin Damage

    PubMed Central

    Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.

    2017-01-01

    Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421

  19. Experimental mapping of DNA duplex shape enabled by global lineshape analyses of a nucleotide-independent nitroxide probe

    PubMed Central

    Ding, Yuan; Zhang, Xiaojun; Tham, Kenneth W.; Qin, Peter Z.

    2014-01-01

    Sequence-dependent variation in structure and dynamics of a DNA duplex, collectively referred to as ‘DNA shape’, critically impacts interactions between DNA and proteins. Here, a method based on the technique of site-directed spin labeling was developed to experimentally map shapes of two DNA duplexes that contain response elements of the p53 tumor suppressor. An R5a nitroxide spin label, which was covalently attached at a specific phosphate group, was scanned consecutively through the DNA duplex. X-band continuous-wave electron paramagnetic resonance spectroscopy was used to monitor rotational motions of R5a, which report on DNA structure and dynamics at the labeling site. An approach based on Pearson's coefficient analysis was developed to collectively examine the degree of similarity among the ensemble of R5a spectra. The resulting Pearson's coefficients were used to generate maps representing variation of R5a mobility along the DNA duplex. The R5a mobility maps were found to correlate with maps of certain DNA helical parameters, and were capable of revealing similarity and deviation in the shape of the two closely related DNA duplexes. Collectively, the R5a probe and the Pearson's coefficient-based lineshape analysis scheme yielded a generalizable method for examining sequence-dependent DNA shapes. PMID:25092920

  20. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane.

    PubMed

    Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri

    2007-06-29

    Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.

  1. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.

    PubMed

    Jena, N R; Mishra, P C

    2005-07-28

    Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of guanine with H2O2, the latter molecule is dissociated into a hydrogen atom and an OOH* group which become bonded to the N7 and C8 atoms of guanine, respectively. At the second step of this mechanism, the OOH* group is dissociated into an oxygen atom and an OH* group, the former becomes bonded to the C8 atom of guanine while the latter abstracts the H8 atom bonded to C8, thus producing 8OG complexed with a water molecule. Solvent effects of the aqueous medium on certain reaction barriers and released energies are appreciable. 5MI works as a satisfactory model for a qualitative study of the reactions of two separate OH* radicals or H2O2 occurring at the C8 position of guanine.

  2. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    NASA Astrophysics Data System (ADS)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  3. Reaction of an Iron(IV) Nitrido Complex with Cyclohexadienes: Cycloaddition and Hydrogen-Atom Abstraction

    PubMed Central

    2015-01-01

    The iron(IV) nitrido complex PhB(MesIm)3Fe≡N reacts with 1,3-cyclohexadiene to yield the iron(II) pyrrolide complex PhB(MesIm)3Fe(η5-C4H4N) in high yield. The mechanism of product formation is proposed to involve sequential [4 + 1] cycloaddition and retro Diels–Alder reactions. Surprisingly, reaction with 1,4-cyclohexadiene yields the same iron-containing product, albeit in substantially lower yield. The proposed reaction mechanism, supported by electronic structure calculations, involves hydrogen-atom abstraction from 1,4-cyclohexadiene to provide the cyclohexadienyl radical. This radical is an intermediate in substrate isomerization to 1,3-cyclohexadiene, leading to formation of the pyrrolide product. PMID:25068927

  4. Synthesis of the iron phthalocyaninate radical cation μ-nitrido dimer and its interaction with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Grishina, E. S.; Makarova, A. S.; Kudrik, E. V.; Makarov, S. V.; Koifman, O. I.

    2016-03-01

    The iron phthalocyaninate μ-nitrido dimer radical cation, as well as the μ-nitrido dimer complexes of iron phthalocyaninate, was found to have high catalytic activity in the oxidation of organic compounds. It was concluded that this compound is of interest as a model of active intermediates—catalase and oxidase enzymes.

  5. Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes.

    PubMed

    Fu, Gregory C

    2017-07-26

    Classical methods for achieving nucleophilic substitutions of alkyl electrophiles (S N 1 and S N 2) have limited scope and are not generally amenable to enantioselective variants that employ readily available racemic electrophiles. Radical-based pathways catalyzed by chiral transition-metal complexes provide an attractive approach to addressing these limitations.

  6. Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes

    PubMed Central

    2017-01-01

    Classical methods for achieving nucleophilic substitutions of alkyl electrophiles (SN1 and SN2) have limited scope and are not generally amenable to enantioselective variants that employ readily available racemic electrophiles. Radical-based pathways catalyzed by chiral transition-metal complexes provide an attractive approach to addressing these limitations. PMID:28776010

  7. Complex of vitamins and antioxidants protects low-density lipoproteins in blood plasma from free radical oxidation and activates antioxidants enzymes in erythrocytes from patients with coronary heart disease.

    PubMed

    Konovalova, G G; Lankin, V Z; Tikhaze, A K; Nezhdanova, I B; Lisina, M O; Kukharchuk, V V

    2003-08-01

    We studied the effect of a complex containing antioxidant vitamins C and E, provitamin A, and antioxidant element selenium on the contents of primary (lipid peroxides) and secondary products (malonic dialdehyde) of free radical lipid oxidation in low-density lipoproteins isolated from the plasma of patients with coronary heart disease and hypercholesterolemia by means of preparative ultracentrifugation. Activity of key antioxidant enzymes in the blood was measured during treatment with the antioxidant preparation. Combination treatment with antioxidant vitamins and antioxidant element selenium sharply decreased the contents of primary and secondary free radical oxidation products in circulating low-density lipoproteins and increased activity of antioxidant enzymes in erythrocytes. Activities of superoxide dismutase and selenium-containing glutathione peroxidase increased 1 and 2 months after the start of therapy, respectively.

  8. Maturation of nitrogenase cofactor—the role of a class E radical SAM methyltransferase NifB

    PubMed Central

    Hu, Yilin; Ribbe, Markus W.

    2016-01-01

    Nitrogenase catalyzes the important reactions of N2-, CO- and CO2-reduction at its active cofactor site. Designated the M-cluster, this complex metallocofactor is assembled through the generation of a characteristic 8Fe-core prior to the insertion of Mo and homocitrate that completes the stoichiometry of the M-cluster. NifB catalyzes the critical step of radical SAM-dependent carbide insertion that occurs concomitant with the insertion a “9th” sulfur and the rearrangement/coupling of two 4Fe-clusters into a complete 8Fe-core of the M-cluster. Further categorization of a family of NifB proteins as a new class of radical SAM methyltransferases suggests a general function of these proteins in complex metallocofactor assembly and provides a new platform for unveiling unprecedented chemical reactions catalyzed by biological systems. PMID:26969410

  9. Configuration and energy landscape of the benzonitrile anion

    NASA Astrophysics Data System (ADS)

    Kirnosov, Nikita; Adamowicz, Ludwik

    2017-05-01

    Quantum chemical calculations are employed to study the configurational isomers of the anion formed by benzene substituted with a cyano group. It is found that an excess electron can form dipole-bound (DB) states with benzonitrile and phenyl-isocyanide isomers. It can also attach to the cyano group, if this group is separated from the benzene ring by some distance, forming a covalent CN- anion. There are four positions at peripherals of the benzene ring where this anion can localize and form stable complexes with the benzene radical. In these complexes CN- is connected to the benzene radical via non-covalent interactions.

  10. Two-dimensional imaging of two types of radicals by the CW-EPR method

    NASA Astrophysics Data System (ADS)

    Czechowski, Tomasz; Krzyminiewski, Ryszard; Jurga, Jan; Chlewicki, Wojciech

    2008-01-01

    The CW-EPR method of image reconstruction is based on sample rotation in a magnetic field with a constant gradient (50 G/cm). In order to obtain a projection (radical density distribution) along a given direction, the EPR spectra are recorded with and without the gradient. Deconvolution, then gives the distribution of the spin density. Projection at 36 different angles gives the information that is necessary for reconstruction of the radical distribution. The problem becomes more complex when there are at least two types of radicals in the sample, because the deconvolution procedure does not give satisfactory results. We propose a method to calculate the projections for each radical, based on iterative procedures. The images of density distribution for each radical obtained by our procedure have proved that the method of deconvolution, in combination with iterative fitting, provides correct results. The test was performed on a sample of polymer PPS Br 111 ( p-phenylene sulphide) with glass fibres and minerals. The results indicated a heterogeneous distribution of radicals in the sample volume. The images obtained were in agreement with the known shape of the sample.

  11. Microscopic progression in the free radical addition reaction: modeling, geometry, energy, and kinetics.

    PubMed

    Zhang, Yun; Huang, Hong; Liang, Zhiling; Liu, Houhe; Yi, Ling; Zhang, Jinhong; Zhang, Zhiqiang; Zhong, Cheng; Huang, Yugang; Ye, Guodong

    2017-03-01

    The free radical addition reaction is very important in UV curing. The benzoyl radical is the most commonly observed radical. In the addition process, the benzoyl radical adds to an acrylate monomer, forming a primary radical that has great value for subsequent research. In this article, a quantum chemical method was used to study the microscopic progression from the reactive complex to the saddle point. The reactions of three monomers (amylene, allyl methyl ether and methyl acrylate) with a benzoyl radical were evaluated in terms of geometry and energy. The results were also interpreted with an expanded version of the Polanyi rules and the interaction/deformation theory. The deformation energy of methyl acrylate was found to be the smallest, and the bond formation index showed that the transition state in the methyl acrylate system forms early, and can easily reach the saddle point. The activity of the monomer was ascertained by charge analysis and was further confirmed by the reaction rate. Mayer bond order curves depicted the constantly changing chemical bonds during formation and dissociation. Reduced density gradient analysis showed a weak interaction between the monomer and the benzoyl radical.

  12. Location and ion-binding of membrane-associated valinomycin, a proton nuclear magnetic resonance study.

    PubMed

    Meers, P; Feigenson, G W

    1988-03-03

    Valinomycin, incorporated in small unilamellar vesicles of perdeuterated dimyristoylphosphatidylcholine, reveals several well-resolved 1H-NMR resonances. These resonances were used to examine the location, orientation and ion-binding of membrane-bound valinomycin. The order of affinity of membrane-bound valinomycin for cations is Rb+ greater than K+ greater than Cs+ greater than Ba2+, and binding is sensitive to surface change. The exchange between bound and free forms is fast on the NMR time scale. The intrinsic binding constants, extrapolated to zero anion concentration, are similar to those determined in aqueous solution. Rb+ and K+ show 1:1 binding to valinomycin, whereas the stoichiometry of Cs+ and Ba2+ is not certain. Paramagnetic chemical shift reagents and nitroxide spin label relaxation probes were used to study the location and orientation of valinomycin in the membrane. Despite relatively fast exchange of bound cations, the time average location of the cation-free form of valinomycin is deep within the bilayer under the conditions of these experiments. Upon complexation to K+, valinomycin moves closer to the interfacial region.

  13. Dynamic Nuclear Polarization NMR in Human Cells Using Fluorescent Polarizing Agents.

    PubMed

    Albert, Brice J; Gao, Chukun; Sesti, Erika L; Saliba, Edward P; Alaniva, Nicholas; Scott, Faith J; Sigurdsson, Snorri Th; Barnes, Alexander B

    2018-06-20

    Solid-state nuclear magnetic resonance (NMR) enables atomic resolution characterization of molecular structure and dynamics within complex heterogeneous samples, but it is typically insensitive. Dynamic nuclear polarization (DNP) increases NMR signal intensity by orders of magnitude and can be performed in combination with magic angle spinning (MAS) for sensitive, high-resolution spectroscopy. Here we report MAS DNP experiments, for the first time, within intact human cells with >40-fold DNP enhancement and a sample temperature below 6 K. In addition to cryogenic MAS results below 6 K, we also show in-cell DNP enhancements of 57-fold at 90 K. In-cell DNP is demonstrated using biradicals and sterically-shielded monoradicals as polarizing agents. A novel trimodal polarizing agent is introduced for DNP, which contains a nitroxide biradical, a targeting peptide for cell penetration, and a fluorophore for subcellular localization with confocal microscopy. The fluorescent polarizing agent provides in-cell DNP enhancements of 63-fold at a concentration of 2.7 mM. These experiments pave the way for structural characterization of biomolecules in an endogenous cellular context.

  14. Radical-Mediated Enzymatic Carbon Chain Fragmentation-Recombination

    PubMed Central

    Zhang, Qi; Li, Yuxue; Chen, Dandan; Yu, Yi; Duan, Lian; Shen, Ben; Liu, Wen

    2010-01-01

    The radical S-adenosylmethionine (S-AdoMet) superfamily contains thousands of proteins that catalyze highly diverse conversions, most of which are poorly understood due to a lack of information regarding chemical products and radical-dependent transformations. We here report that NosL, involved in forming the indole side ring of the thiopeptide nosiheptide (NOS), is a radical S-AdoMet 3-methyl-2-indolic acid (MIA) synthase. NosL catalyzed an unprecedented carbon chain reconstitution of L-Trp to give MIA, showing removal of the Cα-N unit and shift of the carboxylate to the indole ring. Dissection of the enzymatic process upon the identification of products and a putative glycyl intermediate uncovered a radical-mediated, unusual fragmentation-recombination reaction. This finding unveiled a key step in radical S-AdoMet enzyme-catalyzed structural rearrangements during complex biotransformations. Additionally, NosL tolerated fluorinated L-Trps as the substrates, allowing for production of a regiospecifically halogenated thiopeptide that has not been found in over 80 entity-containing, naturally occurring thiopeptide family. PMID:21240261

  15. Protein Tyrosine Nitration: Biochemical Mechanisms and Structural Basis of its Functional Effects

    PubMed Central

    Radi, Rafael

    2012-01-01

    CONSPECTUS The nitration of protein tyrosine residues to 3-nitrotyrosine represents an oxidative postranslational modification that unveils the disruption of nitric oxide (•NO) signaling and metabolism towards pro-oxidant processes. Indeed, excess levels of reactive oxygen species in the presence of •NO or •NO-derived metabolites lead to the formation of nitrating species such as peroxynitrite. Thus, protein 3-nitrotyrosine has been established as a biomarker of cell, tissue and systemic “nitroxidative stress”. Moreover, tyrosine nitration modifies key properties of the amino acid (i.e. phenol group pKa, redox potential, hydrophobicity and volume). Thus, the incorporation of a nitro group (−NO2) to protein tyrosines can lead to profound structural and functional changes, some of which contribute to altered cell and tissue homeostasis. In this Account, I describe our current efforts to define 1) biologically-relevant mechanisms of protein tyrosine nitration and 2) how this modification can cause changes in protein structure and function at the molecular level. First, the relevance of protein tyrosine nitration via free radical-mediated reactions (in both peroxynitrite-dependent or independent pathways) involving the intermediacy of tyrosyl radical (Tyr•) will be underscored. This feature of the nitration process becomes critical as Tyr• can take variable fates, including the formation of 3-nitrotyrosine. Fast kinetic techniques, electron paramagnetic resonance (EPR) studies, bioanalytical methods and kinetic simulations have altogether assisted to characterize and fingerprint the reactions of tyrosine with peroxynitrite and one-electron oxidants and its further evolution to 3-nitrotyrosine. Recent findings show that nitration of tyrosines in proteins associated to biomembranes is linked to the lipid peroxidation process via a connecting reaction that involves the one-electron oxidation of tyrosine by lipid peroxyl radicals (LOO•). Second, immunochemical and proteomic-based studies indicate that protein tyrosine nitration is a selective process in vitro and in vivo, preferentially directed to a subset of proteins, and within those proteins, typically one or two tyrosine residues are site-specifically modified. The nature and site(s) of formation of the proximal oxidizing/nitrating species, the physico-chemical characteristics of the local microenvironment and also structural features of the protein account for part of this selectivity. Then, how this relatively subtle chemical modification in one tyrosine residue can sometimes cause dramatic changes in protein activity has remained elusive. Herein, I will analyze recent structural biology data of two pure and homogenously nitrated mitochondrial proteins (i.e. cytochrome c and MnSOD) to illustrate regio-selectivity and structural effects of tyrosine nitration, and subsequent impact in protein loss- or even gain-of-function. PMID:23157446

  16. Hydroxo radicals, C-H activation, and Pt-C bond formation from 77 K photolysis of a platinum(IV) hydroxo complex.

    PubMed

    Wickramasinghe, Lasantha A; Sharp, Paul R

    2014-11-17

    Photolysis (380 nm) of trans,cis-Pt(PEt3)2(Cl)2(OH)(4-tft) (4-tft = 4-trifluoromethylphenyl) at 77 K in 2-methyltetrahydrofuran gives triplet emission, platinum(III), and a hydroxo radical. Benzyl radical emission is observed in toluene from the reaction of a portion of the OH radicals with toluene. Warming the photolyzed solutions gives platinacycle trans-Pt(CH2CH2PEt2)(PEt3)(Cl)2(4-tft) by hydrogen-atom abstraction from a PEt3 ligand and trans-Pt(PEt3)2(Cl)(4-tft) from net HOCl photoelimination. The platinacycle undergoes thermal reductive elimination at 298 K or photolytic reductive elimination, even at 77 K.

  17. Enantioselective Cyanation of Benzylic C–H Bonds via Copper-Catalyzed Radical Relay

    PubMed Central

    Zhang, Wen; Wang, Fei; McCann, Scott D.; Wang, Dinghai; Chen, Pinhong; Stahl, Shannon; Liu, Guosheng

    2017-01-01

    Direct methods for stereoselective functionalization of C(sp3)–H bonds in complex organic molecules could facilitate much more efficient preparation of therapeutics and agrochemicals. Here, we report a copper-catalyzed radical relay pathway for enantioselective conversion of benzylic C–H bonds into benzylic nitriles. Hydrogen-atom abstraction affords an achiral benzylic radical that undergoes asymmetric C(sp3)–CN bond upon reaction with a chiral copper catalyst. The reactions proceed efficiently at room temperature with the benzylic substrate as limiting reagent, exhibit broad substrate scope with high enantioselectivity (typically 90-99% enantiomeric excess), and afford products that are key precursors to important bioactive molecules. Mechanistic studies provide evidence for diffusible organic radicals and highlight the difference between these reactions and C–H oxidations mediated by enzymes and other catalysts that operate via radical rebound pathways. PMID:27701109

  18. Teaching Statistics--Despite Its Applications

    ERIC Educational Resources Information Center

    Ridgway, Jim; Nicholson, James; McCusker, Sean

    2007-01-01

    Evidence-based policy requires sophisticated modelling and reasoning about complex social data. The current UK statistics curricula do not equip tomorrow's citizens to understand such reasoning. We advocate radical curriculum reform, designed to require students to reason from complex data.

  19. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    PubMed

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  20. Formation of hydroxyl radicals and Co3+ in the reaction of Co(2+)-EDTA with hydrogen peroxide. Catalytic effect of Fe3+.

    PubMed

    Eberhardt, M K; Santos, C; Soto, M A

    1993-05-07

    Co2+ ions (Co(NO3)2.6H2O) react with H2O2 only in presence of EDTA to yield OH radicals and Co3+. This reaction was carried out in unbuffered aqueous solutions (pH = 2.6). The formation of Co3+ was confirmed by spectroscopy. The Co(3+)-EDTA complex shows two typical absorptions at 382 nm and 532 nm. The Co(3+)-EDTA complex can be prepared by a number of oxidizing agents, like Fe3+, Fe(3+)-EDTA, Ag+, Ag2+, Ce4+, and hydroxyl radicals. Since Fe3+ oxidizes Co(2+)-EDTA to Co(3+)-EDTA and Fe2+ we initiate a chain reaction for .OH formation. Our results show that there are two modes for H2O2 decomposition: (1) One electron transfer to give OH radicals and (2) Decomposition of H2O2 to H2O and O2 without intermediate .OH formation. This reaction depends strongly on the pH of the buffer. The H2O2 decomposition increases with increasing pH and increasing Co2+ concentration.

  1. Metal Complexes and Free Radical Toxins Produced by Pfiesteria piscicida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller,P.; Beauchesne, K.; Huncik, K.

    2007-01-01

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile inmore » purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.« less

  2. Metal Complexes And Free Radical Toxins Produced By Pfiesteria Piscicida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, P.D.R.; Beauchesne, K.R.; Huncik, K.M.

    2009-06-03

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICPMS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile inmore » purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.« less

  3. Synthesis of the (N2)3- radical from Y2+ and its protonolysis reactivity to form (N2H2)2- via the Y[N(SiMe3)2]3/KC8 reduction system.

    PubMed

    Fang, Ming; Lee, David S; Ziller, Joseph W; Doedens, Robert J; Bates, Jefferson E; Furche, Filipp; Evans, William J

    2011-03-23

    Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.

  4. Mechanisms on the Impacts of Alkalinity, pH, and Chloride on Persulfate-Based Groundwater Remediation.

    PubMed

    Li, Wei; Orozco, Ruben; Camargos, Natalia; Liu, Haizhou

    2017-04-04

    Persulfate (S 2 O 8 2- )-based in situ chemical oxidation (ISCO) has gained more attention in recent years due to the generation of highly reactive and selective sulfate radical (SO 4 •- ). This study examined the effects of important groundwater chemical parameters, i.e., alkalinity, pH, and chloride on benzene degradation via heterogeneous persulfate activation by three Fe(III)- and Mn(IV)-containing aquifer minerals: ferrihydrite, goethite, and pyrolusite. A comprehensive kinetic model was established to elucidate the mechanisms of radical generation and mineral surface complexation. Results showed that an increase of alkalinity up to 10 meq/L decreased the rates of persulfate decomposition and benzene degradation, which was associated with the formation of unreactive surface carbonato complexes. An increase in pH generally accelerated persulfate decomposition due to enhanced formation of reactive surface hydroxo complexation. A change in the chloride level up to 5 mM had a negligibly effect on the reaction kinetics. Kinetics modeling also suggested that SO 4 •- was transformed to hydroxyl radical (HO • ) and carbonate radical (CO 3 •- ) at higher pHs. Furthermore, the yields of two major products of benzene oxidation, i.e., phenol and aldehyde, were positively correlated with the branching ratio of SO 4 •- reacting with benzene, but inversely correlated with that of HO • or CO 3 •- , indicating that SO 4 •- preferentially oxidized benzene via pathways involving fewer hydroxylation steps compared to HO • or CO 3 •- .

  5. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.

    PubMed

    Asatryan, Rubik; Bozzelli, Joseph W

    2008-04-07

    Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.

  6. Gas-phase kinetics study of reaction of OH radical with CH3NHNH2 by second-order multireference perturbation theory.

    PubMed

    Sun, Hongyan; Zhang, Peng; Law, Chung K

    2012-05-31

    The gas-phase kinetics of H-abstraction reactions of monomethylhydrazine (MMH) by OH radical was investigated by second-order multireference perturbation theory and two-transition-state kinetic model. It was found that the abstractions of the central and terminal amine H atoms by the OH radical proceed through the formation of two hydrogen bonded preactivated complexes with energies of 6.16 and 5.90 kcal mol(-1) lower than that of the reactants, whereas the abstraction of methyl H atom is direct. Due to the multireference characters of the transition states, the geometries and ro-vibrational frequencies of the reactant, transition states, reactant complexes, and product complexes were optimized by the multireference CASPT2/aug-cc-pVTZ method, and the energies of the stationary points of the potential energy surface were refined at the QCISD(T)/CBS level via extrapolation of the QCISD(T)/cc-pVTZ and QCISD(T)/cc-pVQZ energies. It was found that the abstraction reactions of the central and two terminal amine H atoms of MMH have the submerged energy barriers with energies of 2.95, 2.12, and 1.24 kcal mol(-1) lower than that that of the reactants respectively, and the abstraction of methyl H atom has a real energy barrier of 3.09 kcal mol(-1). Furthermore, four MMH radical-H(2)O complexes were found to connect with product channels and the corresponding transition states. Consequently, the rate coefficients of MMH + OH for the H-abstraction of the amine H atoms were determined on the basis of a two-transition-state model, with the total energy E and angular momentum J conserved between the two transition-state regions. In units of cm(3) molecule(-1) s(-1), the rate coefficient was found to be k(1) = 3.37 × 10(-16)T(1.295) exp(1126.17/T) for the abstraction of the central amine H to form the CH(3)N(•)NH(2) radical, k(2) = 2.34 × 10(-17)T(1.907) exp(1052.26/T) for the abstraction of the terminal amine H to form the trans-CH(3)NHN(•)H radical, k(3) = 7.41 × 10(-20)T(2.428) exp(1343.20/T) for the abstraction of the terminal amine H to form the cis-CH(3)NHN(•)H radical, and k(4) = 9.13 × 10(-21)T(2.964) exp(-114.09/T) for the abstraction of the methyl H atom to form the C(•)H(2)NHNH(2) radical, respectively. Assuming that the rate coefficients are additive, the total rate coefficient of these theoretical predictions quantitatively agrees with the measured rate constant at temperatures of 200-650 K, with no adjustable parameters.

  7. Syntheses, crystal structures and magnetic properties of complexes based on [Ni(L-L)3]2+ complex cations with dimethylderivatives of 2,2‧-bipyridine and TCNQ

    NASA Astrophysics Data System (ADS)

    Černák, Juraj; Hegedüs, Michal; Váhovská, Lucia; Kuchár, Juraj; Šoltésová, Daniela; Čižmár, Erik; Feher, Alexander; Falvello, L. R.

    2018-03-01

    From the aqueous-methanolic systems Ni(NO3)2 - LiTCNQ - 5,5‧-dmbpy and Ni(NO3)2 - LiTCNQ - 4,4‧-dmbpy three novel complexes [Ni(5,5‧-dmbpy)3](TCNQ)2 (1), [Ni(4,4‧-dmbpy)3](TCNQ)2 (2) and [Ni(4,4‧-dmbpy)3]2(TCNQ-TCNQ)(TCNQ)2•0.60H2O (3), were isolated in single crystal form. The new compounds were identified using chemical analyses and IR spectroscopy. Single crystal studies of all samples corroborated their compositions and have shown that their ionic structures contain the complex cations [Ni(5,5‧-dmbpy)]2+ (1) or [Ni(4,4‧-dmbpy)]2+ (2 and 3). The anionic parts of the respective crystal structures 1-3 are formed by TCNQṡ- anion-radicals and in 3 also by a σ-dimerized dianion (TCNQ-TCNQ)2- with a C-C distance of 1.663(5) Å. The supramolecular structures are governed by weak hydrogen bonding interactions. The variable-temperature (2-300 K) magnetic studies of 1 and 3 confirmed the presence of magnetically active Ni(II) atoms with S = 1 and TCNQṡ- anion-radicals with S = 1/2 while the (TCNQ-TCNQ)2- dianion is magnetically silent. The magnetic behavior was described by a complex magnetic model assuming strong antiferromagnetic interactions between some TCNQṡ- anion-radicals.

  8. Investigation of metal ligand affinities of atom transfer radical polymerization catalysts with a quadrupole ion trap.

    PubMed

    di Lena, Fabio; Matyjaszewski, Krzysztof

    2009-11-07

    An electrospray ionization mass spectrometer equipped with a quadrupole ion trap as the mass analyzer provided a powerful tool for the investigation of metal ligand affinities of catalysts for atom transfer radical polymerization. It allowed, in particular, (i) the identification, in a library of ligands, of the most stable, and thus active, copper catalysts; (ii) the assessment of the effects of the reaction medium on the relative stabilities of the catalyst complexes; and (iii) the evaluation of the influence of the nature of the ligand on both the complex halogenophilicity and the metal-ligand stabilities in the gas-phase.

  9. Different Dark Conformations Function in Color-Sensitive Photosignaling by the Sensory Rhodopsin I-HtrI Complex

    PubMed Central

    Sasaki, Jun; Phillips, Brian J.; Chen, Xinpu; Van Eps, Ned; Tsai, Ah-Lim; Hubbell, Wayne L.; Spudich, John L.

    2007-01-01

    The haloarchaeal phototaxis receptor sensory rhodopsin I (SRI) in complex with its transducer HtrI delivers an attractant signal from excitation with an orange photon and a repellent signal from a second near-UV photon excitation. Using a proteoliposome system with purified SRI in complex with its transducer HtrI, we identified by site-directed fluorescence labeling a site (Ser155) on SRI that is conformationally active in signal relay to HtrI. Using site-directed spin labeling of Ser155Cys with a nitroxide side chain, we detected a change in conformation following one-photon excitation such that the spin probe exhibits a splitting of the outer hyperfine extrema (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}2{\\mathrm{A^{\\prime}_{zz}}}\\end{equation*}\\end{document}) significantly smaller than that of the electron paramagnetic resonance spectrum in the dark state. The dark conformations of five mutant complexes that do not discriminate between orange and near-UV excitation show shifts to lower or higher \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}2{\\mathrm{A^{\\prime}_{zz}}}\\end{equation*}\\end{document} values correlated with the alterations in their motility behavior to one- and two-photon stimuli. These data are interpreted in terms of a model in which the dark complex is populated by two conformers in the wild type, one that inhibits the CheA kinase (A) and the other that activates it (R), shifted in the dark by mutations and shifted in the wild-type SRI-HtrI complex in opposite directions by one-photon and two-photon reactions. PMID:17351006

  10. Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension

    NASA Astrophysics Data System (ADS)

    Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.

    2014-10-01

    In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).

  11. A radical pathway in catecholase activity with nickel(II) complexes of phenol based "end-off" compartmental ligands.

    PubMed

    Ghosh, Totan; Adhikary, Jaydeep; Chakraborty, Prateeti; Sukul, Pradip K; Jana, Mahendra Sekhar; Mondal, Tapan Kumar; Zangrando, Ennio; Das, Debasis

    2014-01-14

    Seven dinuclear and one dinuclear based dicyanamide bridged polymeric Ni(II) complexes of phenol based compartmental ligands (HL(1)-HL(4)) have been synthesized with the aim to investigate their catecholase-like activity and to evaluate the most probable mechanistic pathway involved in this process. The complexes have been characterized by routine physicochemical studies as well as by X-ray single crystal structure analyses namely [Ni2(L(2))(SCN)3(H2O)(CH3OH)] (), [Ni2(L(4))(SCN)3(CH3OH)2] (), [Ni2(L(2))(SCN)2(AcO)(H2O)] (), [Ni2(L(4))(SCN)(AcO)2] (), [Ni2(L(2))(N3)3(H2O)2] (), [Ni2(L(4))(N3)3(H2O)2] (), [Ni2(L(1))(AcO)2(N(CN)2)]n () and [Ni2(L(3))(AcO)2(N(CN)2)] (), [SCN = isothiocyanate, AcO = acetate, N3 = azide, and N(CN)2 = dicyanamide anion; L(1-4) = 2,6-bis(R2-iminomethyl)-4-R1-phenolato, where R1 = methyl and tert-butyl, R2 = N,N-dimethyl ethylene for L(1-2) and R1 = methyl and tert-butyl, R2 = 2-(N-ethyl) pyridine for L(3-4)]. A UV-vis spectrophotometric study using 3,5-di-tert butylcatechol (3,5-DTBC) reveals that all the complexes are highly active in catalyzing the aerobic oxidation of (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) in methanol medium with the formation of hydrogen peroxide. An EPR study confirms the generation of radicals during the catalysis. Cyclic voltammetric studies of the complexes in the presence and absence of 3,5-DTBC have been performed. Reduction of Ni(II) to Ni(I) and that of the imine bond of the ligand system have been detected at ∼-1.0 V and ∼-1.5 V, respectively. Coulometric separation of the species at -1.5 V followed by the EPR study at 77 K confirms the species as an organic radical and thus most probably reduced imine species. Spectroelectrochemical analysis at -1.5 V clearly indicates the oxidation of 3,5-DTBC and thus suggests that the radical pathway is supposed to be responsible for the catecholase-like activity exhibited by the nickel complexes. The ligand centred radical generation has further been verified by density functional theory calculation.

  12. Free radicals properties of gamma-irradiated penicillin-derived antibiotics: piperacillin, ampicillin, and crystalline penicillin.

    PubMed

    Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł

    2014-03-01

    The aim of this work was to determine the concentrations and properties of free radicals in piperacillin, ampicillin, and crystalline penicillin after gamma irradiation. The radicals were studied by electron paramagnetic resonance (EPR) spectroscopy using an X-band spectrometer (9.3 GHz). Gamma irradiation was performed at a dose of 25 kGy. One- and two-exponential functions were fitted to the experimental data, in order to assess the influence of the antibiotics' storage time on the measured EPR lines. After gamma irradiation, complex EPR lines were recorded confirming the presence of a large number of free radicals formed during the irradiation. For all tested antibiotics, concentrations of free radicals and parameters of EPR spectra changed with storage time. The results obtained demonstrate that concentration of free radicals and other spectroscopic parameters can be used to select the optimal parameters of radiation sterilization of β-lactam antibiotics. The most important parameters are the constants τ (τ (1(A),(I)) and τ (2(A),(I))) and K (K (0(A),(I)), K (1(A),(I)), K (2(A),(I))) of the exponential functions that describe free radicals decay during samples storage.

  13. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE PAGES

    Burke, Michael P.; Klippenstein, Stephen J.

    2017-08-14

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  14. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Klippenstein, Stephen J.

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  15. Influence of constitution and charge on radical pairing interactions in tris-radical tricationic complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chuyang; Cheng, Tao; Xiao, Hai

    The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis-(paraquat-p-phenylene) bisradical dicationic (CBPQT 2 (•+)) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY •+) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY +) and/or neutral 3,5- dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT 4+ ring and the dumbbells containing BIPY 2+ units with zinc dust in acetonitrile solutions. Whereas UV–Vis–NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexesmore » depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (K a) for complex formation vary over a wide range, from 800 M–1 for the weakest to 180 000 M –1 for the strongest. While Coulombic repulsions emanating from PY + groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY •+ units stand to gain some additional stabilization from C–H···π interactions between the CBPQT 2(•+) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY •+ units influence their non-covalent bonding interactions with CBPQT 2(•+) rings. Different secondary effects (Coulombic repulsions versus C–H···π interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT calculations at the M06-D3 level. Lastly, a fundamental understanding of molecular recognition in radical complexes has relevance when it comes to the design and synthesis of non-equilibrium systems.« less

  16. Influence of constitution and charge on radical pairing interactions in tris-radical tricationic complexes

    DOE PAGES

    Cheng, Chuyang; Cheng, Tao; Xiao, Hai; ...

    2016-07-06

    The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis-(paraquat-p-phenylene) bisradical dicationic (CBPQT 2 (•+)) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY •+) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY +) and/or neutral 3,5- dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT 4+ ring and the dumbbells containing BIPY 2+ units with zinc dust in acetonitrile solutions. Whereas UV–Vis–NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexesmore » depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (K a) for complex formation vary over a wide range, from 800 M–1 for the weakest to 180 000 M –1 for the strongest. While Coulombic repulsions emanating from PY + groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY •+ units stand to gain some additional stabilization from C–H···π interactions between the CBPQT 2(•+) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY •+ units influence their non-covalent bonding interactions with CBPQT 2(•+) rings. Different secondary effects (Coulombic repulsions versus C–H···π interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT calculations at the M06-D3 level. Lastly, a fundamental understanding of molecular recognition in radical complexes has relevance when it comes to the design and synthesis of non-equilibrium systems.« less

  17. Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes

    PubMed Central

    Kapralov, Alexandr A.; Yanamala, Naveena; Tyurina, Yulia Y.; Castro, Laura; Arias, Alejandro Samhan; Vladimirov, Yuri A.; Maeda, Akihiro; Weitz, Andrew A.; Peterson, Jim; Mylnikov, Danila; Demicheli, Verónica; Tortora, Verónica; Klein-Seetharaman, Judith; Radi, Rafael; Kagan, Valerian E.

    2011-01-01

    Formation of cytochrome c (cyt c)/cardiolipin (CL) peroxidase complex selective towards peroxidation of polyunsaturated CLs is a pre-requisite for mitochondrial membrane permeabilization. Tyrosine residues – via the generation of tyrosyl radicals (Tyr•) - are likely reactive intermediates of the peroxidase cycle leading to CL peroxidation. We used mutants of horse heart cyt c in which each of the four Tyr residues was substituted for Phe and assessed their contribution to the peroxidase catalysis. Tyr67Phe mutation was associated with a partial loss of the oxygenase function of the cyt c/CL complex and the lowest concentration of H2O2-induced Tyr radicals in electron paramagnetic resonance (EPR) spectra. Our MS experiments directly demonstrated decreased production of CL-hydroperoxides (CL-OOH) by Tyr67Phe mutant. Similarly, oxidation of a phenolic substrate, Amplex Red, was affected to a greater extent in Tyr67Phe than in three other mutants. Tyr67Phe mutant exerted high resistance to H2O2-induced oligomerization. Measurements of Tyr fluorescence, hetero-nuclear magnetic resonance (NMR) and computer simulations position Tyr67 in close proximity to the porphyrin ring heme iron and one of the two axial heme-iron ligand residues, Met80. Thus, the highly conserved Tyr67 is a likely electron-donor (radical acceptor) in the oxygenase half-reaction of the cyt c/CL peroxidase complex. PMID:21550335

  18. Herbal medicine, radical scavenger and metal detoxification: bioinorganic, complexity and nano science perspectives

    NASA Astrophysics Data System (ADS)

    Sumitro, Sutiman B.; Alit, Sukmaningsih

    2018-03-01

    Developing Complexity Science and Nano Biological perspective giving the ideas of interfacing between modern physical and biological sciences for more comprehensive understanding of life. The study of bioinorganic is a trans-disciplinary, and will initiate the way to more comprehensive and better understanding life. We can talk about energy generation, motive forces and energy transfer at the level of macromolecules. We can then develop understanding biological behavior on nano size biological materials and its higher order using modern physics as well as thermodynamic law. This is a necessity to ovoid partial understanding of life that are not match with holism. In animal tissues, the accumulation or overwhelmed production of free radicals can damage cells and are believed to accelerate the progression of cancer, cardiovascular disease, and age-related diseases. Thus a guarded balance of radical species is imperative. Edward Kosower [1] proposed an idea of biradical in an aromatic organic compounds. Each of which having unpaired electrons. The magnetic force of this compound used for making agregation based on their magnetic characters. Bioinorganic low molecular weight complex compounds composing herbal medicine can bind toxic metals. This low molecular weight complex molecules then easily excerted the metals from the body, removing them from their either intracellular or extracellular existences. This bioinorganic chelation potential is now inspiring a new therapeutic strategies.

  19. Transformation of [M + 2H](2+) Peptide Cations to [M - H](+), [M + H + O](+), and M(+•) Cations via Ion/Ion Reactions: Reagent Anions Derived from Persulfate.

    PubMed

    Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A

    2015-07-01

    The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.

  20. Uncovering the Roles of Oxygen in Cr(III) Photoredox Catalysis.

    PubMed

    Higgins, Robert F; Fatur, Steven M; Shepard, Samuel G; Stevenson, Susan M; Boston, David J; Ferreira, Eric M; Damrauer, Niels H; Rappé, Anthony K; Shores, Matthew P

    2016-04-27

    A combined experimental and theoretical investigation aims to elucidate the necessary roles of oxygen in photoredox catalysis of radical cation based Diels-Alder cycloadditions mediated by the first-row transition metal complex [Cr(Ph2phen)3](3+), where Ph2phen = bathophenanthroline. We employ a diverse array of techniques, including catalysis screening, electrochemistry, time-resolved spectroscopy, and computational analyses of reaction thermodynamics. Our key finding is that oxygen acts as a renewable energy and electron shuttle following photoexcitation of the Cr(III) catalyst. First, oxygen quenches the excited Cr(3+)* complex; this energy transfer process protects the catalyst from decomposition while preserving a synthetically useful 13 μs excited state and produces singlet oxygen. Second, singlet oxygen returns the reduced catalyst to the Cr(III) ground state, forming superoxide. Third, the superoxide species reduces the Diels-Alder cycloadduct radical cation to the final product and reforms oxygen. We compare the results of these studies with those from cycloadditions mediated by related Ru(II)-containing complexes and find that the distinct reaction pathways are likely part of a unified mechanistic framework where the photophysical and photochemical properties of the catalyst species lead to oxygen-mediated photocatalysis for the Cr-containing complex but radical chain initiation for the Ru congener. These results provide insight into how oxygen can participate as a sustainable reagent in photocatalysis.

  1. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Terry

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work hasmore » demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.« less

  2. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  3. Isoprene Peroxy Radical Dynamics.

    PubMed

    Teng, Alexander P; Crounse, John D; Wennberg, Paul O

    2017-04-19

    Approximately 500 Tg of 2-methyl-1,3-butadiene (isoprene) is emitted by deciduous trees each year. Isoprene oxidation in the atmosphere is initiated primarily by addition of hydroxyl radicals (OH) to C 4 or C 1 in a ratio 0.57 ± 0.03 (1σ) to produce two sets of distinct allylic radicals. Oxygen (O 2 ) adds to these allylic radicals either δ (Z or E depending on whether the allylic radical is cis or trans) or β to the OH group forming six distinct peroxy radical isomers. Due to the enhanced stability of the allylic radical, however, these peroxy radicals lose O 2 in competition with bimolecular reactions. In addition, the Z-δ hydroxy peroxy radical isomers undergo unimolecular 1,6 H-shift isomerization. Here, we use isomer-resolved measurements of the reaction products of the peroxy radicals to diagnose this complex chemistry. We find that the ratio of δ to β hydroxy peroxy radicals depends on their bimolecular lifetime (τ bimolecular ). At τ bimolecular ≈ 0.1 s, a transition occurs from a kinetically to a largely thermodynamically controlled distribution at 297 K. Thus, in nature, where τ bimolecular > 10 s, the distribution of isoprene hydroxy peroxy radicals will be controlled primarily by the difference in the relative stability of the peroxy radical isomers. In this regime, β hydroxy peroxy radical isomers comprise ∼95% of the radical pool, a much higher fraction than in the nascent (kinetic) distribution. Intramolecular 1,6 H-shift isomerization of the Z-δ hydroxy peroxy radical isomers produced from OH addition to C 4 is estimated to be ∼4 s -1 at 297 K. While the Z-δ isomer is initially produced in low yield, it is continually reformed via decomposition of the β hydroxy peroxy radicals. As a result, unimolecular chemistry from this isomer contributes about half of the atmospheric fate of the entire pool of peroxy radicals formed via addition of OH at C 4 for typical atmospheric conditions (τ bimolecular = 100 s and T = 25 C). In contrast, unimolecular chemistry following OH addition at C 1 is slower and less important.

  4. Fluorophore-based sensor for oxygen radicals in processing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu; Sabat, Grzegorz

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye thatmore » is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.« less

  5. Reactions of nitroxides 15. Cinnamates bearing a nitroxyl moiety synthesized using a Mizoroki–Heck cross-coupling reaction

    PubMed Central

    Huras, Bogumiła

    2015-01-01

    Summary Cinnamic acid derivatives bearing a nitroxyl moiety (2,2,6,6-tetramethyl-1-oxyl-4-piperidyl 3-E-aryl acrylates) were synthesized in 30–100% yield using a Mizoroki–Heck cross-coupling reaction between 4-acryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and iodobenzene derivatives in the presence of palladium(II) acetate coordinated with a tri(o-tolyl)phosphine ligand immobilized in a polyurea matrix. PMID:26199672

  6. Structure and reactivity of the distonic and aromatic radical cations of tryptophan.

    PubMed

    Piatkivskyi, Andrii; Osburn, Sandra; Jaderberg, Kendall; Grzetic, Josipa; Steill, Jeffrey D; Oomens, Jos; Zhao, Junfang; Lau, Justin Kai-Chi; Verkerk, Udo H; Hopkinson, Alan C; Siu, K W Michael; Ryzhov, Victor

    2013-04-01

    In this work, we regiospecifically generate and compare the gas-phase properties of two isomeric forms of tryptophan radical cations-a distonic indolyl N-radical (H3N(+) - TrpN(•)) and a canonical aromatic π (Trp(•+)) radical cation. The distonic radical cation was generated by nitrosylating the indole nitrogen of tryptophan in solution followed by collision-induced dissociation (CID) of the resulting protonated N-nitroso tryptophan. The π-radical cation was produced via CID of the ternary [Cu(II)(terpy)(Trp)](•2+) complex. CID spectra of the two isomeric species were found to be very different, suggesting no interconversion between the isomers. In gas-phase ion-molecule reactions, the distonic radical cation was unreactive towards n-propylsulfide, whereas the π radical cation reacted by hydrogen atom abstraction. DFT calculations revealed that the distonic indolyl radical cation is about 82 kJ/mol higher in energy than the π radical cation of tryptophan. The low reactivity of the distonic nitrogen radical cation was explained by spin delocalization of the radical over the aromatic ring and the remote, localized charge (at the amino nitrogen). The lack of interconversion between the isomers under both trapping and CID conditions was explained by the high rearrangement barrier of ca.137 kJ/mol. Finally, the two isomers were characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy in the ~1000-1800 cm(-1) region. It was found that some of the main experimental IR features overlap between the two species, making their distinction by IRMPD spectroscopy in this region problematic. In addition, DFT theoretical calculations showed that the IR spectra are strongly conformation-dependent.

  7. Effects of tempol and redox-cycling nitroxides in models of oxidative stress

    PubMed Central

    Wilcox, Christopher S.

    2010-01-01

    Tempol is a redox cycling nitroxide that promotes the metabolism of many reactive oxygen species (ROS) and improves nitric oxide bioavailability. It has been studied extensively in animal models of oxidative stress. Tempol has been shown to preserve mitochondria against oxidative damage and improve tissue oxygenation. Tempol improved insulin responsiveness in models of diabetes mellitus and improved the dyslipidemia, reduced the weight gain and prevented diastolic dysfunction and heart failure in fat-fed models of the metabolic syndrome. Tempol protected many organs, including the heart and brain, from ischemia/reperfusion damage. Tempol prevented podocyte damage, glomerulosclerosis, proteinuria and progressive loss of renal function in models of salt and mineralocorticosteroid excess. It reduced brain or spinal cord damage after ischemia or trauma and exerted a spinal analgesic action. Tempol improved survival in several models of shock. It protected normal cells from radiation while maintaining radiation sensitivity of tumor cells. Its paradoxical pro-oxidant action in tumor cells accounted for a reduction in spontaneous tumor formation. Tempol was effective in some models of neurodegeneration. Thus, tempol has been effective in preventing several of the adverse consequences of oxidative stress and inflammation that underlie radiation damage and many of the diseases associated with aging. Indeed, tempol given from birth prolonged the life span of normal mice. However, presently tempol has been used only in human subjects as a topical agent to prevent radiation-induced alopecia. PMID:20153367

  8. Radical anionic versus neutral 2,2'-bipyridyl coordination in uranium complexes supported by amide and ketimide ligands.

    PubMed

    Diaconescu, Paula L; Cummins, Christopher C

    2015-02-14

    The synthesis and characterization of (bipy)(2)U(N[t-Bu]Ar)(2) (1-(bipy)(2), bipy = 2,2'-bipyridyl, Ar = 3,5-C(6)H(3)Me(2)), (bipy)U(N[(1)Ad]Ar)(3) (2-bipy), (bipy)(2)U(NC[t-Bu]Mes)(3) (3-(bipy)(2), Mes = 2,4,6-C(6)H(2)Me(3)), and IU(bipy)(NC[t-Bu]Mes)(3) (3-I-bipy) are reported. X-ray crystallography studies indicate that bipy coordinates as a radical anion in 1-(bipy)(2) and 2-bipy, and as a neutral ligand in 3-I-bipy. In 3-(bipy)(2), one of the bipy ligands is best viewed as a radical anion, the other as a neutral ligand. The electronic structure assignments are supported by NMR spectroscopy studies of exchange experiments with 4,4'-dimethyl-2,2'-bipyridyl and also by optical spectroscopy. In all complexes, uranium was assigned a +4 formal oxidation state.

  9. Probing Complex Free-Radical Reaction Pathways of Fuel Model Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan III, A C; Kidder, Michelle; Beste, Ariana

    2012-01-01

    Fossil (e.g. coal) and renewable (e.g. woody biomass) organic energy resources have received considerable attention as possible sources of liquid transportation fuels and commodity chemicals. Knowledge of the reactivity of these complex materials has been advanced through fundamental studies of organic compounds that model constituent substructures. In particular, an improved understanding of thermochemical reaction pathways involving free-radical intermediates has arisen from detailed experimental kinetic studies and, more recently, advanced computational investigations. In this presentation, we will discuss our recent investigations of the fundamental pyrolysis pathways of model compounds that represent key substructures in the lignin component of woody biomass withmore » a focus on molecules representative of the dominant beta-O-4 aryl ether linkages. Additional mechanistic insights gleaned from DFT calculations on the kinetics of key elementary reaction steps will also be presented, as well as a few thoughts on the significant contributions of Jim Franz to this area of free radical chemistry.« less

  10. Spectroscopic comparison of effects of electron radiation on mechanical properties of two polyimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.

    1987-01-01

    The differences in the radiation durabilities of two polyimide materials, Du Pont Kapton and General Electric Ultem, are compared. An explanation of the basic mechanisms which occur during exposure to electron radiation from analyses of infrared (IR) and electron paramagnetic resonance (EPR) spectroscopic data for each material is provided. The molecular model for Kapton was, in part, established from earlier modeling for Ultem (pp. 1293-1298 of IEEE Transactions on Nuclear Science, December 1984). Techniques for understanding the durability of one complex polymer based on the understanding of a different and equally complex polymer are demonstrated. The spectroscopic data showed that the primary radiation-generated change in the tensile properties of Ultem (a large reduction in tensile elongation) was due to crosslinking, which followed the capture by phenyl radicals of hydrogen atoms removed from gem-dimethyl groups. In contrast, the tensile properties of Kapton remained unchanged because radical-radical recombination, a self-mending process, took place.

  11. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation.

    PubMed

    Contreras, David; Rodríguez, Jaime; Freer, Juanita; Schwederski, Brigitte; Kaim, Wolfgang

    2007-09-01

    Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (.OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring .OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of .OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the .OH production was observed, suggesting participation of such complexes in the radical production.

  12. Does Metal Ion Complexation Make Radical Clocks Run Fast? An Experimental Perspective.

    PubMed

    Abdel Latif, Marwa K; Spencer, Jared N; Paradzinsky, Mark; Tanko, James M

    2017-12-28

    The rate constant for the β-scission of the cumyloxyl radical (k β ) was measured in the presence of various added electrolytes in acetonitrile and DMSO solvent. The results show that in CH 3 CN, k β increases in the presence of added electrolyte, roughly paralleling the size of the cation: Li + > Mg 2+ ≈ Na + > n Bu 4 N + > no added electrolyte. As suggested by Bietti et al. earlier, this effect is attributable to stabilizing ion-dipole interactions in the transition state of the developing carbonyl group, a conclusion further amplified by MO calculations (gas phase) reported herein. Compared to the gas phase predictions, however, this effect is seriously attenuated in solution because complexation of the cation to the electrophilic alkoxyl radical (relative to the solvent, CH 3 CN) is very weak. Because the interaction of Li + and Na + is much stronger with DMSO than with CH 3 CN, addition of these ions has no effect on the rate of β-scission.

  13. Chemical Evolution of a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Semenov, Dmitry A.

    2011-12-01

    In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.

  14. Tandem catalysis of ring-closing metathesis/atom transfer radical reactions with homobimetallic ruthenium–arene complexes

    PubMed Central

    Borguet, Yannick; Sauvage, Xavier; Zaragoza, Guillermo; Demonceau, Albert

    2010-01-01

    Summary The tandem catalysis of ring-closing metathesis/atom transfer radical reactions was investigated with the homobimetallic ruthenium–indenylidene complex [(p-cymene)Ru(μ-Cl)3RuCl(3-phenyl-1-indenylidene)(PCy3)] (1) to generate active species in situ. The two catalytic processes were first carried out independently in a case study before the whole sequence was optimized and applied to the synthesis of several polyhalogenated bicyclic γ-lactams and lactones from α,ω-diene substrates bearing trihaloacetamide or trichloroacetate functionalities. The individual steps were carefully monitored by 1H and 31P NMR spectroscopies in order to understand the intimate details of the catalytic cycles. Polyhalogenated substrates and the ethylene released upon metathesis induced the clean transformation of catalyst precursor 1 into the Ru(II)–Ru(III) mixed-valence compound [(p-cymene)Ru(μ-Cl)3RuCl2(PCy3)], which was found to be an efficient promoter for atom transfer radical reactions under the adopted experimental conditions. PMID:21160564

  15. Detection of Redox Imbalance in Normal Lymphocytes with Induced Mitochondrial Dysfunction - EPR Study.

    PubMed

    Georgieva, Ekaterina; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana; Higashi, Tatsuya

    2016-10-01

    The present study describes a new approach for direct imaging of redox status in live cells using paramagnetic spin-probes, which allows evaluation of the level of oxidative stress due to overproduction of superoxide. The method is based on redox cycling of cell/mitochondria-penetrating nitroxide radicals (e.g. mito-TEMPO) and their electron-paramagnetic resonance (EPR) contrast, which makes them useful molecular sensors for analysis of redox status and oxidative stress in cells and tissues. Oxidative stress was induced in normal human lymphocytes by treatment with 2-methoxyestradiol and rotenone (ME/Rot) at different concentrations. This combination provokes mitochondrial dysfunction, which is accompanied by overproduction of superoxide. The EPR measurements were performed in dynamics on X-Band spectrometer after addition of mito-TEMPO to cell suspensions. The intensity of the EPR signal in untreated cells decreased significantly, which indicates a conversion of paramagnetic mito-TEMPO to its non-contrast diamagnetic form (hydroxylamine - mito-TEMPOH) due to reduction. In ME/Rot-treated cells, the signal decreased more slowly and to a lower level with increasing the concentration of ME/Rot. These data indicate an induction of oxidative stress in the cells in a concentration-dependent manner. A very good positive correlation between the intensity of EPR signal of mito-TEMPO and the intracellular level of superoxide was found, analyzed by conventional dihydroethidium test (R=0.9143, p<0.001). In conclusion, our study demonstrated that cell-penetrating paramagnetic spin-probes, such as mito-TEMPO, are valuable tools for EPR imaging of the superoxide level in live cells, as well as for EPR imaging of mitochondrial dysfunction and metabolic activity, accompanied by superoxide imbalance. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism

    PubMed Central

    Sainz, Martha; Calvo-Begueria, Laura; Pérez-Rontomé, Carmen; Wienkoop, Stefanie; Abián, Joaquín; Staudinger, Christiana; Bartesaghi, Silvina; Radi, Rafael; Becana, Manuel

    2015-01-01

    SUMMARY Protein Tyr nitration is a post-translational modification yielding 3-nitrotyrosine (NO2-Tyr). Formation of NO2-Tyr is generally considered as a marker of nitroxidative stress and is involved in some human pathophysiological disorders, but it has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as O2 transporter. Liquid chromatography coupled to tandem mass spectrometry was used for a targeted search and quantification of NO2-Tyr in Lbs. For all Lbs examined, Tyr30, located in the distal heme pocket, is the major target of nitration. Lower amounts were found for NO2-Tyr25 and NO2-Tyr133. Nitrated Lb and other as yet unidentified nitrated proteins were also detected in nodules of plants not receiving NO3− and were found to decrease during senescence. This demonstrates formation of nitric oxide (•NO) and NO2− by alternative means to nitrate reductase, probably via a NO synthase-like enzyme, and strongly suggests that nitrated proteins perform biological functions and are not merely metabolic byproducts. In vitro assays with purified Lbs revealed that Tyr nitration requires NO2− + H2O2 and that peroxynitrite is not an efficient inducer of nitration, possibly by isomerizing it to NO3−. Nitrated Lb is formed via oxoferryl Lb, which generates nitrogen dioxide and tyrosyl radicals. This mechanism is distinctly different from that involved in heme nitration. Formation of NO2-Tyr in Lbs is a consequence of active metabolism in functional nodules, where Lbs may act as a sink of toxic peroxynitrite and may play a protective role in the symbiosis. PMID:25603991

  17. W-Band Frequency-Swept EPR

    PubMed Central

    Hyde, James S.; Strangeway, Robert A.; Camenisch, Theodore G.; Ratke, Joseph J.; Froncisz, Wojciech

    2010-01-01

    This paper describes a novel experiment on nitroxide radical spin labels using a multiarm EPR W-band bridge with a loop-gap resonator (LGR). We demonstrate EPR spectroscopy of spin labels by linear sweep of the microwave frequency across the spectrum. The high bandwidth of the LGR, about 1 GHz between 3 dB points of the microwave resonance, makes this new experiment possible. A frequency-tunable yttrium iron garnet (YIG) oscillator provides sweep rates as high as 1.8 × 105 GHz/s, which corresponds to 6.3 kT/s in magnetic field-sweep units over a 44 MHz range. Two experimental domains were identified. In the first, linear frequency sweep rates were relatively slow, and pure absorption and pure dispersion spectra were obtained. This appears to be a practical mode of operation at the present level of technological development. The main advantage is the elimination of sinusoidal magnetic field modulation. In the second mode, the frequency is swept rapidly across a portion of the spectrum, and then the frequency sweep is stopped for a readout period; FID signals from a swept line oscillate at a frequency that is the difference between the spectral position of the line in frequency units and the readout position. If there is more than one line, oscillations are superimposed. The sweep rates using the YIG oscillator were too slow, and the portion of the spectrum too narrow to achieve the full EPR equivalent of Fourier transform (FT) NMR. The paper discusses technical advances required to reach this goal. The hypothesis that trapezoidal frequency sweep is an enabling technology for FT EPR is supported by this study. PMID:20462775

  18. Magnetic Resonance Imaging of Mitochondrial Dysfunction and Metabolic Activity, Accompanied by Overproduction of Superoxide.

    PubMed

    Bakalova, Rumiana; Georgieva, Ekaterina; Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2015-12-16

    This study shows that a mitochondria-penetrating nitroxide probe (mito-TEMPO) allows detection of superoxide and visualization of mitochondrial dysfunction in living cells due to the effect of T1 shortening in MRI. Mitochondrial dysfunction was induced by treatment of cells with rotenone and 2-methoxyestradiol (2-ME/Rot). The MRI measurements were performed on 7T MRI. The 2-ME/Rot-treated cells were characterized by overproduction of superoxide, which was confirmed by a conventional dihydroethidium test. In the presence of mito-TEMPO, the intensity of MRI signal in 2-ME/Rot-treated cells was ∼30-40% higher, in comparison with that in untreated cells or culture media. In model (cell-free) systems, we observed that superoxide, but not hydrogen peroxide, increased the intensity of T1-weighted MRI signal of mito-TEMPO. Moreover, the superoxide restores the T1-weighted MRI contrast of mito-TEMPOH, a noncontrast (diamagnetic) analogue of mito-TEMPO. This was also confirmed by using EPR spectroscopy. The results demonstrate that superoxide radical is involved in the enhancement of T1-weighted MRI contrast in living cells, in the absence and presence of mito-TEMPO. This report gives a direction for discovering new opportunities for functional MRI, for detection of metabolic activity, accompanied by overproduction of superoxide, as well as by disturbance of the balance between superoxide and hydrogen peroxide, a very important approach to clarify the fine molecular mechanisms in the regulation of many pathologies. The visualization of mitochondrial activity in real-time can be crucial to clarify the molecular mechanism of the functional MRI in its commonly accepted definition, as a method for detection of neurovascular coupling.

  19. Oral nanotherapeutics: Redox nanoparticles attenuate ultraviolet B radiation-induced skin inflammatory disorders in Kud:Hr- hairless mice.

    PubMed

    Feliciano, Chitho P; Nagasaki, Yukio

    2017-10-01

    The active participation of an anti-inflammatory drug in the biological pathways of inflammation is crucial for the achievement of beneficial and therapeutic effects. This study demonstrated the development of redox nanoparticles that can circulate in the blood at significantly high levels, thus increasing their efficacy as an oral treatment against the deleterious effects of reactive oxygen species (ROS) in an in vivo inflammatory skin model. To confirm the blood bioavailability of the nanoparticles, mice were injected with the nanoparticles solution (RNP N ) via oral gavage. Using electron spin resonance and radioactive labeling techniques, the blood circulation of the redox polymer that forms the nanoparticles was confirmed 24 h after oral administration. This contrasted with its low molecular weight counterpart (NH 2 -TEMPO), which peaked 15 min post injection and was found to be cleared rapidly within minutes after the peak. We then tested its efficacy in the inflammatory skin model. Kud:Hr-hairless mice were irradiated with UVB (302 nm) to induce skin damage and inflammation. Throughout the entire period of UVB irradiation, RNP N was administered to mice by free drinking. NH 2 -TEMPO was used as the control. The results showed that oral supplementation of RNP N significantly improved the therapeutic effects of the core nitroxide radical compared with its low molecular weight counterpart. Furthermore, RNP N significantly reduced UVB-induced skin aging, epidermal thickening, edema, erythema, skin lesions, and various pathological skin inflammatory disorders in vivo. From the obtained data, we concluded that the use of long-circulating redox nanoparticles (RNP N ) provided an effective treatment against the damaging effects of excessive ROS in the body. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Wentao; Vemuri, Rama S.; Hu, Dehong

    Redox flow batteries have been considered as one of the most promising stationary energy storage solutions for improving the reliability of the power grid and deployment of renewable energy technologies. Among the many flow battery chemistries, nonaqueous flow batteries have the potential to achieve high energy density because of the broad voltage windows of nonaqueous electrolytes. However, significant technical hurdles exist currently limiting nonaqueous flow batteries to demonstrate their full potential, such as low redox concentrations, low operating currents, under-explored battery status monitoring, etc. In an attempt to address these limitations, we report a nonaqueous flow battery based on amore » highly soluble, redox-active organic nitronyl nitroxide radical compound, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). This redox materials exhibits an ambipolar electrochemical property with two reversible redox pairs that are moderately separated by a voltage gap of ~1.7 V. Therefore, PTIO can serve as both anolyte and catholyte redox materials to form a symmetric flow battery chemistry, which affords the advantages such as high effective redox concentrations and low irreversible redox material crossover. The PTIO flow battery shows decent electrochemical cyclability under cyclic voltammetry and flow cell conditions; an improved redox concentration of 0.5 M PTIO and operational current density of 20 mA cm-2 were achieved in flow cell tests. Moreover, we show that Fourier transform infrared (FTIR) spectroscopy could measure the PTIO concentrations during the PTIO flow battery cycling and offer reasonably accurate detection of the battery state of charge (SOC) as cross-validated by electron spin resonance measurements. This study suggests FTIR can be used as a reliable online SOC sensor to monitor flow battery status and ensure battery operations stringently in a safe SOC range.« less

  1. Fourier-transform MW spectroscopy of the SH({sup 2}{Pi}{sub i})-Ar and SD-Ar radical complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumiyoshi, Yoshihiro; Endo, Yasuki; Ohshima, Yasuhiro

    1996-12-31

    The authors have studied the SH({sup 2}{Pi}{sub i})-Ar and SD-Ar radical complexes with FTMW spectroscopy. The complexes were produced in a supersonic free jet by a pulsed discharge of H{sub 2}S or D{sub 2}S, which was diluted to 0.35% in Ar with a stagnation pressure of 2 atm. R-branch transitions in the lower spin-orbit component ({Omega}=3/2) for the linear {sup 2}{Pi}{sub i} radicals were observed for J{double_prime} = 3/2 to J{double_prime} = 15/2 in the 8-26 GHz region. The transitions were split into two parity components owing to the parity doubling. Each parity component was split further due to themore » magnetic hyperfine interaction associated with the H/D nucleus. Rotational constants for SH-Ar and SD-Ar were determined to be 1569.656(2) and 1567.707(2)MHz respectively. The value for SH-Ar agrees well with that of a previous LIF study. From the SH/SD data, it was confirmed that the argon atom is located at the hydrogen side of the SH radical. With an assumption that the S-H bond length is equal to that in the monomer, the H-Ar distance is calculated to be 2.900 {Angstrom}, which is about 0.1 {Angstrom} longer than that in OH-Ar. The effective D{sub J} constants of SH-Ar and SD-Ar were found to have negative values of -58.4(7) and -50.7(6), kHz respectively.« less

  2. A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy.

    PubMed

    Walz, Jochen; Burnett, Arthur L; Costello, Anthony J; Eastham, James A; Graefen, Markus; Guillonneau, Bertrand; Menon, Mani; Montorsi, Francesco; Myers, Robert P; Rocco, Bernardo; Villers, Arnauld

    2010-02-01

    Detailed knowledge of the anatomy of the prostate and adjacent tissues is mandatory during radical prostatectomy to ensure reliable oncologic and functional outcomes. To review critically and to summarize the available literature on surgical anatomy of the prostate and adjacent structures involved in cancer control, erectile function, and urinary continence. A search of the PubMed database was performed using the keywords radical prostatectomy, anatomy, neurovascular bundle, fascia, pelvis, and sphincter. Relevant articles and textbook chapters were reviewed, analyzed, and summarized. Anatomy of the prostate and the adjacent tissues varies substantially. The fascia surrounding the prostate is multilayered, sometimes either fused with the prostate capsule or clearly separated from the capsule as a reflection of interindividual variations. The neurovascular bundle (NVB) is situated between the fascial layers covering the prostate. The NVB is composed of numerous nerve fibers superimposed on a scaffold of veins, arteries, and variable amounts of adipose tissue surrounding almost the entire lateral and posterior surfaces of the prostate. The NVB is also in close, cage-like contact to the seminal vesicles. The external urethral sphincter is a complex structure in close anatomic and functional relationship to the pelvic floor, and its fragile innervation is in close association to the prostate apex. Finally, the shape and size of the prostate can significantly modify the anatomy of the NVB, the urethral sphincter, the dorsal vascular complex, and the pubovesical/puboprostatic ligaments. The surgical anatomy of the prostate and adjacent tissues involved in radical prostatectomy is complex. Precise knowledge of all relevant anatomic structures facilitates surgical orientation and dissection during radical prostatectomy and ideally translates into both superior rates of cancer control and improved functional outcomes postoperatively. Copyright 2009 European Association of Urology. All rights reserved.

  3. On the identity of the last known stable radical in X-irradiated sucrose

    NASA Astrophysics Data System (ADS)

    Kusakovskij, Jevgenij; De Cooman, Hendrik; Sagstuen, Einar; Callens, Freddy; Vrielinck, Henk

    2017-04-01

    Identification of radiation-induced radicals in relatively simple molecules is a prerequisite for the understanding of reaction pathways of the radiation chemistry of complex systems. Sucrose presents an additional practical interest as a versatile radiation dosimetric system. In this work, we present a periodic density functional theory study aimed to identify the fourth stable radical species in this carbohydrate. The proposed model is a fragment suspended in the lattice by hydrogen bonds with an unpaired electron at the original C5' carbon of the fructose unit. It requires a double scission of the ring accompanied by substantial chemical and geometric reorganization.

  4. Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes.

    PubMed

    Silvi, Mattia; Sandford, Christopher; Aggarwal, Varinder K

    2017-04-26

    Vinyl boronates react with electron-deficient alkyl iodides in the presence of visible light to give boronic esters in which two new C-C bonds have been created. The reaction occurs by radical addition of an electron-deficient alkyl radical to the vinyl boronate followed by electron transfer with another molecule of alkyl iodide, continuing the chain, and triggering a 1,2-metalate rearrangement. In a number of cases, the use of a photoredox catalyst enhances yields significantly. The scope of the radical precursor includes α-iodo ketones, esters, nitriles, primary amides, α-fluorinated halo-acetates and perfluoroalkyl iodides.

  5. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    PubMed

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  6. Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries.

    PubMed

    Raudonis, Raimondas; Raudone, Lina; Jakstas, Valdas; Janulis, Valdimaras

    2012-04-13

    ABTS and FRAP post-column techniques evaluate the antioxidant characteristics of HPLC separated compounds with specific reagents. ABTS characterize their ability to scavenge free radicals by electron-donating antioxidants, resulting in the absorbance decrease of the chromophoric radical. FRAP - is based on the reduction of Fe(III)-tripyridyltriazine complex to Fe(II)-tripyridyltriazine at low pH by electron-donating antioxidants, resulting in an absorbance increase. Both post-column assays were evaluated and compared according to the following validation parameters: specificity, precision, limit of detection (LoD), limit of quantitation (LoQ) and linearity. ABTS and FRAP post-column assays were specific, repeatable and sensitive and thus can be used for the evaluation of antioxidant active compounds. Antioxidant active compounds were quantified according to TEAC for each assay and ABTS/FRAP ratio was derived. No previous records of antioxidative activity of leaves and fruits of strawberries (Fragaria viridis, Fragaria moschata) research have been found. The research results confirm the reliability of ABTS and FRAP post-column assays for screening of antioxidants in complex mixtures and the determination of radical scavenging and ferric reducing ability by their TEAC values. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The Complexity Turn in Studies of Organisations and Leadership: Relevance and Implications

    ERIC Educational Resources Information Center

    Johannessen, Stig O.

    2009-01-01

    The widespread experience of complexity is the experience of radical unpredictability and loss of clear connections between cause and effect. The typical response from leaders and researchers is to suggest that more complex contexts require new ways of management control and that particular ways of organising and leading are better than others in…

  8. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain

    PubMed Central

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2011-01-01

    Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. PMID:21483483

  9. DNA bases ring-expanded with a cyclopentadiene free radical: a theoretical investigation of building blocks with diradical character.

    PubMed

    Zhao, Peiwen; Bu, Yuxiang

    2016-01-14

    In this work, we computationally design radical nucleobases which possess improved electronic properties, especially diradical properties through introducing a cyclopentadiene radical. We predict that the detailed electromagnetic features of base assemblies are based on the orientation of the extra five-membered cyclopentadiene ring. Broken symmetry DFT calculations take into account the relevant structures and properties. Our results reveal that both the radicalized DNA bases and the base pairs formed when they combine with their counterparts remain stable and display larger spin delocalization. The mode of embedding the cyclopentadiene free radical in the structures has some influence on the degree of π-conjugation, which results in various diradical characteristics. Single-layered radical base pairs all have an open-shell singlet ground state, but the energy difference between singlet and triplet is not significant. For two-layered radical base pairs, the situation is more complex. All of them have an open-shell state as their ground state, including an open-shell singlet state and an open-shell triplet state. That is, the majority of radical base pairs possess anti-ferromagnetic or ferromagnetic characteristics. We present here a more in-depth discussion and analyses to study the magnetic characteristics of radical bases and base pairs. As an important factor, two-layered radical base pairs also have been carefully analyzed. We hope that all the measurements and results presented here will stimulate further detailed insights into the related mechanisms in modified DNA bases and the design of better ring-expanded DNA magnetic materials.

  10. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins.

    PubMed

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea

    2011-10-19

    The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    PubMed

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  12. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    DOE PAGES

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-02-24

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems in this paper. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion–molecule reactionsmore » and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. Finally, new directions in coupling VUV radiation to interrogate complex chemical systems are discussed.« less

  13. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  14. Mulliken Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    NASA Astrophysics Data System (ADS)

    Rosokha, S. V.; Newton, M. D.; Head-Gordon, M.; Kochi, J. K.

    2006-05-01

    The paramagnetic [1:1] encounter complex (TCNE)2-rad is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor ( TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE)2-rad by its intervalence absorption band at the solvent-dependent wavelength of λIV ˜ 1500 nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of HDA = 1000 cm -1. The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of HDA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy ( λ) and the electronic coupling element ( HDA) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes.

  15. Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies.

    PubMed

    Bors, W; Michel, C

    1999-12-01

    Reactivities of several proanthocyanidins (monomers of condensed tannins) and gallate esters (representing hydrolyzable tannins) with hydroxyl radicals, azide radicals, and superoxide anions were investigated using pulse radiolysis combined with kinetic spectroscopy. We determined the scavenging rate constants and the decay kinetics of the aroxyl radicals both at the wavelength of the semiquinone absorption (275 nm) and the absorption band of the gallate ester ketyl radical (400-420 nm). For most compounds second-order decay kinetics were observed, which reflect disproportionation of the semiquinones. In the case of the oligomeric hydrolysable tannins, pentagalloyl glucose and tannic acid, the decay kinetics were more complex involving sequential first-order and second-order reactions, which could only be resolved by kinetic modeling. A correlation of the reaction rates with hydroxyl radicals (k*OH) with the number of adjacent aromatic hydroxyl groups (i.e., representing catechol and/or pyrogallol structures) was obtained for both condensed and hydrolyzable tannins. Similar correlation for the reactions with azide radicals and superoxide anions are less obvious, but exist as well. We consider proanthocyanidins superior radical scavenging agents as compared with the monomeric flavonols and flavones and propose that these substances rather than the flavonoids proper represent the antioxidative principle in red wine and green tea.

  16. Unique magnetic and thermoelectric properties of chemically functionalized narrow carbon polymers.

    PubMed

    Zberecki, K; Wierzbicki, M; Swirkowicz, R; Barnaś, J

    2017-02-01

    We analyze magnetic, transport and thermoelectric properties of narrow carbon polymers, which are chemically functionalized with nitroxide groups. Numerical calculations of the electronic band structure and the corresponding transmission function are based on density functional theory. Transport and thermoelectric parameters are calculated in the linear response regime, with particular interest in charge and spin thermopowers (charge and spin Seebeck effects). Such nanoribbons are shown to have thermoelectric properties described by large thermoelectric efficiency, which makes these materials promising from the application point of view.

  17. Photochemistry and photooxidation of tetraphenyl-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, M.V.; Kumar, C.V.; Scaiano, J.C.

    1979-09-20

    Laser flash photolysis studies of tetraphenyl-p-dioxin have led to the characterization of its triplet state. The T-T absorption spectra shows maxima at 350 and 545 nm; the triplet has a lifetime of 535 ns in methanol and can be quenched by di-tert-butyl nitroxide, paraquat dications, oxygen, and di-tert-butyl selenoketone. The interaction of the triplet with oxygen leads to the formation of singlet oxygen which in turn reacts with the title compound to yield benzil.

  18. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    NASA Astrophysics Data System (ADS)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  19. Non-Ionic Highly Permeable Polymer Shells for Encapsulation of Living Cells

    DTIC Science & Technology

    2011-05-01

    I would like to thank Irina Drachuk for her extensive assistance in data collection and analysis , and Drs. Veronika Kozlovskaya and Olga Shchepelina...considered complete when the intensity of the photobleached region stabilized. The quantitative analysis was performed using ImageJ software, and curve...E., Tannin -protein complexes as radical scavengers and radical sinks. J Agric Food Chem 2001, 49 (10), 4917-23. 53. Lopes, G. K.; Schulman, H. M

  20. Bismesitoylphosphinic Acid (BAPO-OH): A Ligand for Copper Complexes and Four-Electron Photoreductant for the Preparation of Copper Nanomaterials.

    PubMed

    Beil, Andreas; Müller, Georgina; Käser, Debora; Hattendorf, Bodo; Li, Zhongshu; Krumeich, Frank; Rosenthal, Amos; Rana, Vijay Kumar; Schönberg, Hartmut; Benkő, Zoltán; Grützmacher, Hansjörg

    2018-05-16

    Bismesitoylphosphinic acid, (HO)PO(COMes) 2 (BAPO-OH), is an efficient photoinitiator for free-radical polymerizations of olefins in aqueous phase. Described here are the structures of various copper(II) and copper(I) complexes with BAPO-OH as the ligand. The complex Cu II (BAPO-O) 2 (H 2 O) 2 is photoactive, and under irradiation with UV light in aqueous phase, it serves as a source of metallic copper in high purity and yield (>80 %). Simultaneously, the radical polymerization of acrylates can be initiated and allows the preparation of nanoparticle/polymer nanocomposites in which the metallic Cu nanoparticles are protected against oxidation. The determination of the stoichiometry of the photoreductions suggests an almost quantitative conversion from Cu II into Cu 0 with half an equivalent of BAPO-OH, which serves as a four-electron photoreductant. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. INFRARED AND ULTRAVIOLET SPECTRA OF METHANE DILUTED IN SOLID NITROGEN AND IRRADIATED WITH ELECTRONS DURING DEPOSITION AT VARIOUS TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Chih-Hao; Chen, Sian-Cong; Liu, Meng-Chen

    We recorded the infrared and ultraviolet absorption spectra of CH{sub 4}:N{sub 2} matrix samples that underwent electron bombardment during deposition in the temperature range of 10–44 K. In contrast to a previous experiment on the IR spectroscopy of electron-bombarded icy samples, methyl and azide radicals became the main products upon electron bombardment during deposition; furthermore, reduced production of nitrile species was observed for deposition at 10 and 20 K. On the other hand, for deposition above 33 K, the observed bands of the radical species (such as methyl and azide) decreased, and bands of large nitriles appeared. This observation maymore » suggest that radical species easily diffuse and recombine to form more complex molecules in solid nitrogen at higher temperatures. Further measurements of similar samples at 10–33 K in the UV region revealed the intense band of azide radicals at 272.5 nm and weak, broad, overlapping features of methyl and azide radicals in the 225–197 nm region. For deposition at 44 K, only a broad feature centered at 219.4 nm was observed, and the possible carriers of nitrile species were proposed based on the corresponding IR spectrum and theoretical predictions of excitation energy. This band is similar to the observed absorption feature of Pluto’s surface recorded by the Hubble telescope in terms of both band position and bandwidth. Our findings therefore further support the suggestion that complex nitrile species may exist on the surface of Pluto.« less

  2. Infrared Spectroscopy of the Entrance Channel Complex Formed Between the Hydroxyl Radical and Methane in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raston, Paul L.; Obi, Emmanuel I.; Douberly, Gary E.

    Here, the entrance channel complex in the exothermic OH + CH 4 → H 2O + CH 3 reaction has been isolated in helium nanodroplets following the sequential pick-up of the hydroxyl radical and methane. The a-type OH stretching band was probed with infrared depletion spectroscopy, revealing a spectrum qualitatively similar to that previously reported in the gas phase, but with additional substructure that is due to the different internal rotation states of methane (j CH4 = 0, 1, or 2) in the complex. We fit the spectra by assuming the rotational constants of the complex are the same formore » all internal rotation states; however, subband origins are found to decrease with increasing j CH4. Measurements of deuterated complexes have also been made (OD–CH 4, OH–CD 4, and OD–CD 4), the relative linewidths of which provide information about the flow of vibrational energy in the complexes; vibrational lifetime broadening is prominent for OH–CH 4 and OD–CD 4, for which the excited OX stretching state has a nearby CY 4 stretching fundamental (X, Y = H or D).« less

  3. Infrared Spectroscopy of the Entrance Channel Complex Formed Between the Hydroxyl Radical and Methane in Helium Nanodroplets

    DOE PAGES

    Raston, Paul L.; Obi, Emmanuel I.; Douberly, Gary E.

    2017-09-22

    Here, the entrance channel complex in the exothermic OH + CH 4 → H 2O + CH 3 reaction has been isolated in helium nanodroplets following the sequential pick-up of the hydroxyl radical and methane. The a-type OH stretching band was probed with infrared depletion spectroscopy, revealing a spectrum qualitatively similar to that previously reported in the gas phase, but with additional substructure that is due to the different internal rotation states of methane (j CH4 = 0, 1, or 2) in the complex. We fit the spectra by assuming the rotational constants of the complex are the same formore » all internal rotation states; however, subband origins are found to decrease with increasing j CH4. Measurements of deuterated complexes have also been made (OD–CH 4, OH–CD 4, and OD–CD 4), the relative linewidths of which provide information about the flow of vibrational energy in the complexes; vibrational lifetime broadening is prominent for OH–CH 4 and OD–CD 4, for which the excited OX stretching state has a nearby CY 4 stretching fundamental (X, Y = H or D).« less

  4. Carotenoid radical cation formation in LH2 of purple bacteria: a quantum chemical study.

    PubMed

    Wormit, Michael; Dreuw, Andreas

    2006-11-30

    In LH2 complexes of Rhodobacter sphaeroides the formation of a carotenoid radical cation has recently been observed upon photoexcitation of the carotenoid S2 state. To shed more light onto the yet unknown molecular mechanism leading to carotenoid radical formation in LH2, the interactions between carotenoid and bacteriochlorophyll in LH2 are investigated by means of quantum chemical calculations for three different carotenoids--neurosporene, spheroidene, and spheroidenone--using time-dependent density functional theory. Crossings of the calculated potential energy curve of the electron transfer state with the bacteriochlorophyll Qx state and the carotenoid S1 and S2 states occur along an intermolecular distance coordinate for neurosporene and spheroidene, but for spheroidenone no crossing of the electron transfer state with the carotenoid S1 state could be found. By comparison with recent experiments where no formation of a spheroidenone radical cation has been observed, a molecular mechanism for carotenoid radical cation formation is proposed in which it is formed via a vibrationally excited carotenoid S1 or S*state. Arguments are given why the formation of the carotenoid radical cation does not proceed via the Qx, S2, or higher excited electron transfer states.

  5. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins

    PubMed Central

    Oldham, William M.; Van Eps, Ned; Preininger, Anita M.; Hubbell, Wayne L.; Hamm, Heidi E.

    2007-01-01

    Heterotrimeric G proteins function as molecular relays that mediate signal transduction from heptahelical receptors in the cell membrane to intracellular effector proteins. Crystallographic studies have demonstrated that guanine nucleotide exchange on the Gα subunit causes specific conformational changes in three key “switch” regions of the protein, which regulate binding to Gβγ subunits, receptors, and effector proteins. In the present study, nitroxide side chains were introduced at sites within the switch I region of Gαi to explore the structure and dynamics of this region throughout the G protein cycle. EPR spectra obtained for each of the Gα(GDP), Gα(GDP)βγ heterotrimer and Gα(GTPγS) conformations are consistent with the local environment observed in the corresponding crystal structures. Binding of the heterotrimer to activated rhodopsin to form the nucleotide-free (empty) complex, for which there is no crystal structure, causes prominent changes relative to the heterotrimer in the structure of switch I and contiguous sequences. The data identify a putative pathway of allosteric changes triggered by receptor binding and, together with previously published data, suggest elements of a mechanism for receptor-catalyzed nucleotide exchange. PMID:17463080

  6. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds.

    PubMed

    Kalyanaraman, Balaraman; Cheng, Gang; Hardy, Micael; Ouari, Olivier; Lopez, Marcos; Joseph, Joy; Zielonka, Jacek; Dwinell, Michael B

    2018-04-01

    The present review is a sequel to the previous review on cancer metabolism published in this journal. This review focuses on the selective antiproliferative and cytotoxic effects of mitochondria-targeted therapeutics (MTTs) in cancer cells. Emerging research reveals a key role of mitochondrial respiration on tumor proliferation. Previously, a mitochondria-targeted nitroxide was shown to selectively inhibit colon cancer cell proliferation at submicromolar levels. This review is centered on the therapeutic use of MTTs and their bioenergetic profiling in cancer cells. Triphenylphosphonium cation conjugated to a parent molecule (e.g., vitamin-E or chromanol, ubiquinone, and metformin) via a linker alkyl chain is considered an MTT. MTTs selectively and potently inhibit proliferation of cancer cells and, in some cases, induce cytotoxicity. MTTs inhibit mitochondrial complex I activity and induce mitochondrial stress in cancer cells through generation of reactive oxygen species. MTTs in combination with glycolytic inhibitors synergistically inhibit tumor cell proliferation. This review discusses how signaling molecules traditionally linked to tumor cell proliferation affect tumor metabolism and bioenergetics (glycolysis, TCA cycle, and glutaminolysis). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Rapid Three-Dimensional Printing in Water Using Semiconductor-Metal Hybrid Nanoparticles as Photoinitiators.

    PubMed

    Pawar, Amol Ashok; Halivni, Shira; Waiskopf, Nir; Ben-Shahar, Yuval; Soreni-Harari, Michal; Bergbreiter, Sarah; Banin, Uri; Magdassi, Shlomo

    2017-07-12

    Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.

  8. Synthesis, X-ray crystallography, spectroscopic characterization and spectroscopic/electrochemical evidence of formation of phenoxy free radical in active center analogs of galactose oxidase - [Cu(Salgly)H₂O] and [Cu(Salphenylalanine)H₂O].

    PubMed

    Das, Biva; Medhi, Okhil K

    2013-03-01

    The formation of phenolate free radical is the factor of high turnover for catalytic activity of galactose oxidase (GO) compared to that by inorganic complexes. A new active center analog of GO, [Cu(II)(Salphenylalanine)H(2)O] have been synthesized and its single crystal X-ray analysis was done. In aqueous surfactant micellar solution chemical oxidation as well as electrochemical oxidation of structural models of galactose oxidase - [Cu(II)Salgly·H(2)O] and [Cu(II)(Salphenylalanine)·H(2)O], have been found to generate free radical originating at the phenolate group. Formation of the free radical have been proved by electron paramagnetic resonance spectroscopy, electronic spectroscopy and electrochemistry. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study.

    PubMed

    Tejero, Ismael; Gonzalez-García, Núria; Gonzalez-Lafont, Angels; Lluch, José M

    2007-05-09

    The catechol functionality present in the catechins is responsible for the protective effects exerted by green tea against a wide range of human diseases. High-level electronic structure calculations and canonical variational transition-state theory including multidimensional tunneling corrections have allowed us to understand the key factors of the antioxidant effectiveness of the catechol group. This catechol group forms two hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very compact reactant complex. This fact produces an extremely narrow adiabatic potential-energy profile corresponding to the hydrogen abstraction by the peroxyl radical, which makes it possible for a huge tunneling contribution to take place. So, quantum-mechanical tunneling highly increases the corresponding rate constant value, in such a way that catechins become able to trap the lipid peroxyl radicals in a dominant competition with the very damaging free-radical chain-lipid peroxidation reaction.

  10. Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements.

    PubMed

    Rabovsky, Alexander B; Komarov, Andrei M; Ivie, Jeremy S; Buettner, Garry R

    2010-11-23

    Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present.

  11. Interaction between alpha and upsilon-crystallin, common to the eye of the Australian platypus, by radical probe mass spectrometry.

    PubMed

    Issa, Samah; Downard, Kevin M

    2006-10-01

    The interaction between alpha-crystallin and upsilon-crystallin, a class recently discovered in the eye of the Australian platypus, has been shown by native shift gel assay and examined by radical probe mass spectrometry in the context of the ability of alpha-crystallin to protect upsilon-crystallin from oxidation and oxidative damage through radical-based oxidative stress mechanisms. Residues 22-41, 132-148, 212-227 and 245-264 of upsilon-crystallin display the greatest protection when interacted with alpha-crystallin at a ratio of 2 : 1 observed for the complex, which is commensurate with their levels measured in the eye of the platypus. Across each domain, a delay in the onset of oxidative damage is observed as the time of exposure to radicals is increased. The results are discussed in the context of the structure of the porcine homologue of upsilon-crystallin. Copyright 2006 John Wiley & Sons, Ltd.

  12. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.

  13. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    PubMed Central

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  14. The use of high field/frequency EPR in studies of radical and metal sites in proteins and small inorganic models

    NASA Astrophysics Data System (ADS)

    Andersson, K. Kristoffer; Barra, Anne-Laure

    2002-04-01

    Low temperature electron paramagnetic resonance (EPR) spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T have been used to study radicals and metal sites in proteins and small inorganic model complexes. We have studied radicals, Fe, Cu and Mn containing proteins. For S=1/2 systems, the high frequency method can resolve the g-value anisotropy. It was used in mouse ribonucleotide reductase (RNR) to show the presence of a hydrogen bond to the tyrosyl radical oxygen. At 285 GHz the type 2 Cu(II) signal in the complex enzyme laccase is clearly resolved from the Hg(II) containing laccase peroxide adduct. For simple metal sites, the systems over S=1/2 can be described by the spin Hamiltonian: HS= BgS+ D[ Sz2- S( S+1)/3+ E/ D ( Sx2- Sy2)]. From the high frequency EPR the D-value can be determined directly by, (I) shifts of geff for half-integer spin systems with large D-values as observed at 345 GHz on an Fe(II)NOEDTA complex, which is best described as S=3/2 system with D=11.5 cm -1, E=0.1 cm -1 and gx= gy= gz=2.0; (II) measuring the outermost signal, for systems with small D values, distant of (2 S-1)*∣ D∣ from the center of the spectrum as observed in S=5/2 Fe(III)EDTA. In Mn(II) substituted mouse RNR R2 protein the weakly interacting Mn(II) at X-band could be observed as decoupled Mn(II) at 285 GHz.

  15. Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands.

    PubMed

    Hewage, Jeewantha S; Wanniarachchi, Sarath; Morin, Tyler J; Liddle, Brendan J; Banaszynski, Megan; Lindeman, Sergey V; Bennett, Brian; Gardinier, James R

    2014-10-06

    Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).

  16. Direct Prediction of EPR Spectra from Lipid Bilayers: Understanding Structure and Dynamics in Biological Membranes.

    PubMed

    Catte, Andrea; White, Gaye F; Wilson, Mark R; Oganesyan, Vasily S

    2018-06-02

    Of the many biophysical techniques now being brought to bear on studies of membranes, electron paramagnetic resonance (EPR) of nitroxide spin probes was the first to provide information about both mobility and ordering in lipid membranes. Here, we report the first prediction of variable temperature EPR spectra of model lipid bilayers in the presence and absence of cholesterol from the results of large scale fully atomistic molecular dynamics (MD) simulations. Three types of structurally different spin probes were employed in order to study different parts of the bilayer. Our results demonstrate very good agreement with experiment and thus confirm the accuracy of the latest lipid force fields. The atomic resolution of the simulations allows the interpretation of the molecular motions and interactions in terms of their impact on the sensitive EPR line shapes. Direct versus indirect effects of cholesterol on the dynamics of spin probes are analysed. Given the complexity of structural organisation in lipid bilayers, the advantage of using a combined MD-EPR simulation approach is two-fold. Firstly, prediction of EPR line shapes directly from MD trajectories of actual phospholipid structures allows unambiguous interpretation of EPR spectra of biological membranes in terms of complex motions. Secondly, such an approach provides an ultimate test bed for the up-to-date MD simulation models employed in the studies of biological membranes, an area that currently attracts great attention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Theoretical study on the multi-channel reaction of OH radical with 5-methylcytosine

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Jin, Lingxia; Wang, Weina; Lu, Jian; Yang, Jianming

    2007-08-01

    All the possible addition and hydrogen abstraction reactions of OH radical with 5-methylcytosine (5-MeC) have been investigated at B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p)+ZPE level. The results indicate that OH radical may form complexes with 5-MeC, and the reaction is assumed to occur from these complexes. The estimated activation energies corresponding to addition reactions at N3, C4, C5 and C6 sites of the 5-MeC are 80.96, 63.41, 0.00 and 0.30 kJ/mol, respectively. The order of stability of adducts is P4(C6) > P3(C5) > P2(C4) > P1(N3). The activation energies corresponding to the H9, H10, H11, and H14 abstraction reactions from the 5-MeC are all small, and the stabilization of the products is P8(H14) > P6(H10) > P5(H9) > P7(H11).

  18. Reexamination of the ORAC assay: effect of metal ions.

    PubMed

    Nkhili, E; Brat, P

    2011-05-01

    The oxygen radical absorbance capacity (ORAC) assay method has been employed extensively in the field of antioxidant and oxidative stress. It uses fluorescein as probe for oxidation by peroxyl radical. Hundreds of reports have been published on the use of this method to determine antioxidant capacity in food and biological samples. The question is whether the results of all these reports are influenced by antioxidant autoxidation, which occurs during the ORAC test. Indeed, the presence of metal ions in the studied matrix will influence antioxidant stability, thereby leading to the underestimation of their antioxidant properties. Ethylenediaminetetraacetic acid hydrate (EDTA) can be used as a metal complexation agent. This paper examines the effect of the addition of EDTA on the ORAC values of pure compounds (quercetin, ascorbic, and dehydroascorbic acid) and five food juices (kiwi, orange, tomato, red grape, and apple). Metal complexation by EDTA (80 μM) clearly increased the ORAC values, given that the antioxidant was protected against rapid autoxidation incited by trace metal ions within samples and then by free radicals. Our finding also undoubtedly demonstrated that the number of literature values is potentially underestimated.

  19. Synthesis, crystal structure and bioactivity of manganese complexes with asymmetric chiral Schiff base

    NASA Astrophysics Data System (ADS)

    Zhang, Enfeng; Wei, Yi; Huang, Fuping; Yu, Qing; Bian, Hedong; Liang, Hong; Lei, Fuhou

    2018-03-01

    A couple of chiral unsymmtrical Schiff base ligands, (1R,2R) (-)chxn (salH) (naftalH) and (1S,2S) (-)chxn (salH) (naftalH) had been synthesized by the condensation of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with two isomers of (1R,2R)-trans-1,2-cyclohexanediamin and (1S,2S)-trans-1,2-cyclohexanediamin, respectively. At the same time, two manganese complexes have been synthesized and fully characterized by FT-IR spectrum, elemental analyses, single crystal X-ray diffraction. The interaction of the two Mn (III) complexes with bovine serum albumin (BSA) was investigated by spectroscopic techniques. The result reveals that the complexes can strongly quench the intrinsic fluorescence of BSA through a static quenching mechanism. The binding constant and binding mode has been determined. The secondary structure and the amino acid residues microenvironment of BSA change in the presence of these complexes. SOD-like activity and ABTS free radical scavenging ability were also studied. The antioxidant capacity of the compounds showed that the complexes and their corresponding BSA adducts showed some SOD activity. The results of ABTS free radical scavenging showed that the activity of the BSA adduct was more obvious than that of the complex.

  20. Temperature optimum of insulin-stimulated 2-deoxy-D-glucose uptake in rat adipocytes. Correlation of cellular transport with membrane spin-label and fluorescence-label data.

    PubMed Central

    Hyslop, P A; Kuhn, C E; Sauerheber, R D

    1984-01-01

    The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells. PMID:6324752

Top