Science.gov

Sample records for nlo qcd corrections

  1. NLO QCD corrections to graviton induced deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Stirling, W. J.; Vryonidou, E.

    2011-06-01

    We consider Next-to-Leading-Order QCD corrections to ADD graviton exchange relevant for Deep Inelastic Scattering experiments. We calculate the relevant NLO structure functions by calculating the virtual and real corrections for a set of graviton interaction diagrams, demonstrating the expected cancellation of the UV and IR divergences. We compare the NLO and LO results at the centre-of-mass energy relevant to HERA experiments as well as for the proposed higher energy lepton-proton collider, LHeC, which has a higher fundamental scale reach.

  2. NLO QCD corrections to ZZ jet production at hadron colliders

    SciTech Connect

    Binoth, T.; Gleisberg, T.; Karg, S.; Kauer, N.; Sanguinetti, G.; /Annecy, LAPTH

    2010-05-26

    A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new physics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.

  3. NLO QCD Corrections to Electroweak Higgs Boson Production in Association with Three Jets at the LHC

    NASA Astrophysics Data System (ADS)

    Figy, Terrance

    2017-01-01

    In this talk I will discuss the implementation of the next-to-leading order (NLO) perturbative QCD corrections to electroweak Higgs boson plus three jet production at the CERN Large Hadron Collider experiment within the Matchbox framework of the Herwig 7 event generator. Numerical results for integrated cross sections and kinematic distributions will be presented for a fixed-order NLO calculation and for a NLO calculation matched to a parton shower.

  4. NLO QCD corrections for J /ψ +c +c ¯ production in photon-photon collision

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Qiang; Chen, Long-Bin; Qiao, Cong-Feng

    2017-02-01

    The γ +γ →J /ψ +c +c ¯ inclusive process is an extremely important subprocess in J /ψ production via photon-photon scattering, like at LEPII or various types of future electron-positron colliders. In this work we perform the next-to-leading order (NLO) QCD corrections to this process in the framework of nonrelativistic QCD (NRQCD) factorization formalism, the first NLO calculation for two projectiles to the 3-body quarkonium inclusive production process. By setting the center-of-mass energy at LEPII, the √{s }=197 GeV , we conduct analyses of the pt2 distribution and total cross section of this process at the NLO accuracy. It turns out that the total cross section is moderately enhanced by the NLO correction with a K factor of about 1.46, and hence the predicted J /ψ inclusive productivity is increased while the DELPHI data still overshoot the theoretical prediction. At the future Circular Electron-Positron Collider, the NLO corrections are found to be more significant, with a K factor of about 1.76.

  5. NLO QCD corrections for χc J inclusive production at B factories

    NASA Astrophysics Data System (ADS)

    Chen, Long-Bin; Jiang, Jun; Qiao, Cong-Feng

    2015-05-01

    The next-to-leading-order quantum chromodynamics (QCD) corrections for χc J(P3 J [1 ],S3 1 [8 ]) P -wave charmonium-inclusive production at B factories are calculated utilizing the nonrelativistic QCD factorization formalism. Large next-to-leading-order corrections are found, especially for the P3 0 [1 ] and S3 1 [8 ] configurations. Numerical evaluation indicates that the total cross sections of χc J -inclusive production processes are of the order of 10 fb, which is accessible in the BELLE II (super-B) experiment.

  6. NLO QCD and electroweak corrections to Z + γ production with leptonic Z-boson decays

    NASA Astrophysics Data System (ADS)

    Denner, Ansgar; Dittmaier, Stefan; Hecht, Markus; Pasold, Christian

    2016-02-01

    The next-to-leading-order electroweak corrections to ppto {l}+{l}-/overline{ν}ν +\\upgamma +X production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected large corrections of tens of percent in the TeV range. Contributions from quark-photon and photon-photon initial states are taken into account as well, but their impact is found to be moderate or small. Moreover, the known next-to-leading-order QCD corrections are reproduced. In order to separate hard photons from jets, both a quark-to-photon fragmentation function á la Glover/Morgan and Frixione's cone isolation are employed. The calculation is available in the form of Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. Predictions for integrated cross sections are presented for the LHC at 7 TeV, 8 TeV, and 14 TeV, and differential distributions are discussed at 14 TeV for bare muons and dressed leptons. Finally, we consider the impact of anomalous ZZγ and Zγγ couplings.

  7. NLO corrections to electroweak and QCD production of W+W+ plus two jets in the POWHEG BOX

    NASA Astrophysics Data System (ADS)

    Jäger, Barbara; Zanderighi, Giulia

    2011-11-01

    We present the matching of the next-to-leading order QCD calculation for W + W + jj production via vector-boson fusion in hadronic collisions to parton-shower MonteCarlo programs according to the POWHEG method. Our implementation complements existing code for QCD-induced W + W + jj production in the POWHEG BOX package, thereby providing a platform for the complete Standard Model production of W + W + jj events via QCD and electroweak interactions. The impact of parton-shower effects is discussed for various distributions and found to be small in most cases. However, few observables that are relevant for analyses using a central jet veto, are modified significantly when they are interfaced to a parton shower program.

  8. Diphoton signals in theories with large extra dimensions to NLO QCD at hadron colliders

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.; Tripathi, Anurag

    2009-02-01

    We present a full next-to-leading order (NLO) QCD corrections to diphoton production at the hadron colliders in both standard model and ADD model. The invariant mass and rapidity distributions of the diphotons are obtained using a semi-analytical two cut-off phase space slicing method which allows for a successful numerical implementation of various kinematical cuts used in the experiments. The fragmentation photons are systematically removed using smooth-cone-isolation cuts on the photons. The NLO QCD corrections not only stabilise the perturbative predictions but also enhance the production cross section significantly.

  9. Vector boson production in association with KK modes of the ADD model to NLO in QCD at the LHC

    NASA Astrophysics Data System (ADS)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.; Seth, Satyajit

    2011-05-01

    Next-to-leading order (NLO) QCD corrections to the associated production of the vector boson (Z/W±) with the Kaluza-Klein (KK) modes of the graviton in large extra-dimensional model at the Large Hadron Collider (LHC) are presented. We have obtained various kinematic distributions using a Monte Carlo code which is based on the two-cutoff phase space slicing method that handles soft and collinear singularities appearing at the NLO level. We estimate the impact of the QCD corrections on various observables and find that they are significant. We also show the reduction in factorization scale uncertainty when QCD corrections are included.

  10. NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging

    NASA Astrophysics Data System (ADS)

    Kallweit, S.; Lindert, J. M.; Maierhöfer, P.; Pozzorini, S.; Schönherr, M.

    2016-04-01

    We present next-to-leading order (NLO) predictions including QCD and electroweak (EW) corrections for the production and decay of off-shell electroweak vector bosons in association with up to two jets at the 13 TeV LHC. All possible dilepton final states with zero, one or two charged leptons that can arise from off-shell W and Z bosons or photons are considered. All predictions are obtained using the automated implementation of NLO QCD+EW corrections in the O penLoops matrix-element generator combined with the Munich and Sherpa Monte Carlo frameworks. Electroweak corrections play an especially important role in the context of BSM searches, due to the presence of large EW Sudakov logarithms at the TeV scale. In this kinematic regime, important observables such as the jet transverse momentum or the total transverse energy are strongly sensitive to multijet emissions. As a result, fixed-order NLO QCD+EW predictions are plagued by huge QCD corrections and poor theoretical precision. To remedy this problem we present an approximate method that allows for a simple and reliable implementation of NLO EW corrections in the MePs@Nlo multijet merging framework. Using this general approach we present an inclusive simulation of vector-boson production in association with jets that guarantees NLO QCD+EW accuracy in all phase-space regions involving up to two resolved jets.

  11. NLO QCD Predictions for W+3 jets

    SciTech Connect

    Maitre, Daniel; Berger, Carola F.; Bern, Zvi; Febres Cordero, Fernando; Ita, Harald; Dixon, Lance J.; Forde, Darren; Gleisberg, Tanju; Kosower, David; /Saclay, SPhT

    2009-12-09

    In this contribution we present results from the NLO computation of the production of a W boson in association with three jets in hadronic collisions. The results are obtained by combining two programs: BlackHat for the virtual one-loop matrix elements and Sherpa for the real-emission contributions. We present results for the Tevatron and the LHC, and address the issue of the choice of a common factorization and renormalization scale for this process.

  12. Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction.

    PubMed

    Demartin, Federico; Maltoni, Fabio; Mawatari, Kentarou; Page, Ben; Zaro, Marco

    At the LHC the CP properties of the top-quark Yukawa interaction can be probed through Higgs production in gluon fusion or in association with top quarks. We consider the possibility for both CP-even and CP-odd couplings to the top quark to be present, and study CP-sensitive observables at next-to-leading order (NLO) in QCD, including parton-shower effects. We show that the inclusion of NLO corrections sizeably reduces the theoretical uncertainties, and confirm that di-jet correlations in [Formula: see text] jet production through gluon fusion and correlations of the top-quark decay products in [Formula: see text] production can provide sensitive probes of the CP nature of the Higgs interactions.

  13. Next-to-leading order perturbative QCD corrections to baryon correlators in matter

    SciTech Connect

    Groote, S.; Koerner, J. G.; Pivovarov, A. A.

    2008-08-01

    We compute the next-to-leading order (NLO) perturbative QCD corrections to the correlators of nucleon interpolating currents in relativistic nuclear matter. The main new result is the calculation of the O({alpha}{sub s}) perturbative corrections to the coefficient functions of the vector quark condensate in matter. This condensate appears in matter due to the violation of Lorentz invariance. The NLO perturbative QCD corrections turn out to be large which implies that the NLO corrections must be included in a sum rule analysis of the properties of both bound nucleons and relativistic nuclear matter.

  14. QCD corrections to [Formula: see text] in FDR.

    PubMed

    Pittau, Roberto

    I apply FDR-a recently introduced four-dimensional approach to quantum field theories (QFTs)-to the computation of the NLO QCD corrections to [Formula: see text] in the large top mass limit. The calculation involves all key ingredients of QCD-namely ultraviolet, infrared, and collinear divergences, besides [Formula: see text] renormalization-and paves the way for successful use of FDR in massless one-loop QFT computations. I show in detail how the correct result emerges in FDR, and discuss the translation rules to dimensional regularization.

  15. Penguin-dominated B{yields}PV decays in NLO perturbative QCD

    SciTech Connect

    Li Hsiangnan; Mishima, Satoshi

    2006-11-01

    We study the penguin-dominated B{yields}PV decays, with P (V) representing a pseudoscalar (vector) meson, in the next-to-leading-order (NLO) perturbative QCD (PQCD) formalism, concentrating on the B{yields}K{phi}, {pi}K*, {rho}K, and {omega}K modes. It is found that the NLO corrections dramatically enhance the B{yields}{rho}K, {omega}K branching ratios, which were estimated to be small under the naive factorization assumption. The patterns of the direct CP asymmetries A{sub CP}(B{sup 0}{yields}{rho}{sup {+-}}K{sup {+-}}){approx_equal}A{sub CP}(B{sup {+-}}{yields}{rho}{sup 0}K{sup {+-}}) and A{sub CP}(B{sup 0}{yields}{pi}{sup {+-}}K*{sup {+-}})>A{sub CP}(B{sup {+-}}{yields}{pi}{sup 0}K*{sup {+-}}) are predicted, differing from A{sub CP}(B{sup 0}{yields}{pi}{sup {+-}}K{sup {+-}})>>A{sub CP}(B{sup {+-}}{yields}{pi}{sup 0}K{sup {+-}}). The above patterns, if confirmed by data, will support the source of strong phases from the scalar penguin annihilation in PQCD. The results for the mixing-induced CP asymmetries S{sub f} are consistent with those obtained in the literature, except that our S{sub {rho}{sup 0}}{sub K{sub S}} is as low as 0.5.

  16. PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: B → ρ(ω, ø)η(') Decays and NLO Contributions in pQCD Approach

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qing; Xiao, Zhen-Jun

    2009-05-01

    By employing the perturbative QCD (pQCD) factorization approach, we calculate some important next-to-leading-order (NLO) contributions to the two-body charmless hadronic decays B+ → ρ+ η(') and B0 → ρ0 (ω, ø)η('), induced by the vertex QCD corrections, the quark-loops as well as the chromo-magnetic penguins. From the numerical results and phenomenological analysis we find that (a) for B± → ρ±η(') (B0 → ρ0 (ω, ø)η(') decays, the partial NLO contributions to branching ratios are small (large) in magnitude; and (b) the pQCD predictions for ACPdir(B± → ρ±η(')) are consistent with the data, while the predicted ACP(B0 → ρ0(ω)η(')) are generally large in magnitude and could be tested by the forthcoming LHCb experiments.

  17. Higgs production in association with off-shell top-antitop pairs at NLO EW and QCD at the LHC

    NASA Astrophysics Data System (ADS)

    Denner, Ansgar; Lang, Jean-Nicolas; Pellen, Mathieu; Uccirati, Sandro

    2017-02-01

    We present NLO electroweak corrections to Higgs production in association with off-shell top-antitop quark pairs. The full process ppto {e}+{ν}e{μ}-{overline{ν}}_{μ}boverline{b}H is considered, and hence all interference, off-shell, and non-resonant contributions are taken into account. The electroweak corrections turn out to be below one per cent for the integrated cross section but can exceed 10% in certain phase-space regions. In addition to its phenomenological relevance, the computation constitutes a major technical achievement as the full NLO virtual corrections involving up to 9-point functions have been computed exactly. The results of the full computation are supported by two calculations in the double-pole approximation. These also allow to infer the effect of off-shell contributions and emphasise their importance especially for the run II of the LHC. Finally, we present combined predictions featuring both NLO electroweak and QCD corrections in a common set-up that will help the experimental collaborations in their quest of precisely measuring the aforementioned process.

  18. QCD Corrections in Transversely Polarized Scattering

    SciTech Connect

    Vogelsang,W.

    2008-10-06

    We discuss two recent calculations of higher-order QeD corrections to scattering of transversely polarized hadrons. A basic concept underlying much of the theoretical description of high-energy hadronic scattering is the factorization theorem, which states that large momentum-transfer reactions may be factorized into long-distance pieces that contain information on the structure of the nucleon in terms of its parton densities, and parts that are short-distance and describe the hard interactions of the partons. Two crucial points are that on the one hand the long-distance contributions are universal, i.e., they are the same in any inelastic reaction under consideration, and that on the other hand the short-distance pieces depend only on the large scales related to the large momentum transfer in the overall reaction and, therefore, may be evaluated using QCD perturbation theory. The lowest order for the latter can generally only serve to give a rough description of the reaction under study. It merely captures the main features, but does not usually provide a quantitative understanding. The first-order ('next-to-leading order' (NLO)) corrections are generally indispensable in order to arrive at a firmer theoretical prediction for hadronic cross sections, and in some cases even an all-order resummation of large perturbative corrections is needed. In the present paper we win discuss two calculations [1, 2] of higher-order QeD corrections to transversely polarized scattering.

  19. Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion.

    PubMed

    Cullen, G; van Deurzen, H; Greiner, N; Luisoni, G; Mastrolia, P; Mirabella, E; Ossola, G; Peraro, T; Tramontano, F

    2013-09-27

    We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs boson and the leading jets. The results are obtained with the combined use of GOSAM, SHERPA, and the MADDIPOLE-MADEVENT framework.

  20. Next-to-leading order QCD corrections to Higgs boson decay to quarkonium plus a photon

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Song, Mao; Li, Gang; Zhou, Ya-Jin; Guo, Jian-You

    2016-12-01

    In this paper, we investigate the decay of the Higgs boson to J/ψ(ϒ) plus a photon based on NRQCD factorization. For the direct process, we calculate the decay width up to QCD NLO. We find that the decay width for process H → J/ψ(ϒ) + γ direct production at the LO is significantly reduced by the NLO QCD corrections. For the indirect process, we calculate the H → γ*γ with virtual γ substantially decaying to J/ψ(ϒ), including all the SM Feynman diagrams. The decay width of indirect production is much larger than the direct decay width. Since it is very clean in experiment, the H → J/ψ(ϒ) + γ decay could be observable at a 14 TeV LHC and it also offers a new way to probe the Yukawa coupling and New Physics at the LHC. Supported by National Natural Science Foundation of China (11305001, 11105083, 11205003)

  1. Nonperturbative QCD corrections to electroweak observables

    SciTech Connect

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  2. NLO corrections to c - and b -quark fragmentation into j /ψ and γ

    NASA Astrophysics Data System (ADS)

    Sepahvand, R.; Dadfar, S.

    2017-02-01

    We present the next-to-leading-order (NLO) corrections to the fragmentation process of a heavy quark to a 3S1 wave heavy quarkonium. The virtual and real corrections are calculated by using the dimensional regularization method. The divergences due to virtual NLO corrections are analytically extracted then we explain how the poles from phase-space integrals and from loop integrals are canceled by renormalization. We use the eikonal scheme to evaluate the soft real corrections in 4 -2 ɛ dimensions. Our numerical calculations show the fragmentation function (FF) at NLO is dependent on both the μ scale and the initial quark energy. These corrections have a significant effect on the shape and probability of the FF.

  3. QCD factorization for hadronic B decays: Proofs and higher-order corrections

    NASA Astrophysics Data System (ADS)

    Pecjak, Benjamin Dale

    Several issues related to the QCD factorization approach to exclusive hadronic B decays are discussed. This includes a proof of factorization in B → K*gamma using the soft-collinear effective theory, and an examination of higher-order corrections to QCD factorization for two-body decays into heavy-light states, such as B → Dpi, and light-light final states, such as B → Kpi,pipi. The proof of factorization in B → K*gamma is arguably the most complicated QCD factorization formula proven so far. It is shown that reparameterization invariance in the intermediate effective theory restricts the appearance of transverse momentum components and 3-particle Fock states to operators that can be absorbed into the QCD from factor. This proof also includes an extension of SCET to deal with two collinear directions. The examination of higher-order corrections to QCD factorization has implications for using this technique to extract CP violating weal; phases from data taken at the B factories. The renormalon calculus is used to calculate the b0a2s contributions to the hard scattering kernels, and also to analyze the strength of power corrections due to soft gluon exchange. It is shown that while power corrections are generally small, the higher-order perturbative contributions to the hard scattering kernels have much larger imaginary parts than those at next-to-leading order (NLO). This significantly enhances some CP asymmetries compared to the NLO results, which is an effect that would survive a two-loop calculation unless there were large multi-loop corrections not related to the b0a2s terms of the perturbative expansion.

  4. Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD

    NASA Astrophysics Data System (ADS)

    Maltoni, Fabio; Vryonidou, Eleni; Zhang, Cen

    2016-10-01

    We present the results of the computation of the next-to-leading order QCD corrections to the production cross section of a Higgs boson in association with a top-antitop pair at the LHC, including the three relevant dimension-six operators ( O tφ , O φG , O tG ) of the standard model effective field theory. These operators also contribute to the production of Higgs bosons in loop-induced processes at the LHC, such as inclusive Higgs, Hj and HH production, and modify the Higgs decay branching ratios for which we also provide predictions. We perform a detailed study of the cross sections and their uncertainties at the total as well as differential level and of the structure of the effective field theory at NLO including renormalisation group effects. Finally, we show how the combination of information coming from measurements of these production processes will allow to constrain the three operators at the current and future LHC runs. Our results lead to a significant improvement of the accuracy and precision of the deviations expected from higher-dimensional operators in the SM in both the top-quark and the Higgs-boson sectors and provide a necessary ingredient for performing a global EFT fit to the LHC data at NLO accuracy.

  5. Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD

    SciTech Connect

    Maltoni, Fabio; Vryonidou, Eleni; Zhang, Cen

    2016-10-24

    We present the results of the computation of the next-to-leading order QCD corrections to the production cross section of a Higgs boson in association with a top-antitop pair at the LHC, including the three relevant dimension-six operators (O, OφG, OtG) of the standard model effective field theory. These operators also contribute to the production of Higgs bosons in loop-induced processes at the LHC, such as inclusive Higgs, Hj and HH production, and modify the Higgs decay branching ratios for which we also provide predictions. We perform a detailed study of the cross sections and their uncertainties at the total as well as differential level and of the structure of the effective field theory at NLO including renormalisation group effects. Finally, we show how the combination of information coming from measurements of these production processes will allow to constrain the three operators at the current and future LHC runs. Finally, our results lead to a significant improvement of the accuracy and precision of the deviations expected from higher-dimensional operators in the SM in both the top-quark and the Higgs-boson sectors and provide a necessary ingredient for performing a global EFT fit to the LHC data at NLO accuracy.

  6. Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD

    DOE PAGES

    Maltoni, Fabio; Vryonidou, Eleni; Zhang, Cen

    2016-10-24

    We present the results of the computation of the next-to-leading order QCD corrections to the production cross section of a Higgs boson in association with a top-antitop pair at the LHC, including the three relevant dimension-six operators (Otφ, OφG, OtG) of the standard model effective field theory. These operators also contribute to the production of Higgs bosons in loop-induced processes at the LHC, such as inclusive Higgs, Hj and HH production, and modify the Higgs decay branching ratios for which we also provide predictions. We perform a detailed study of the cross sections and their uncertainties at the total asmore » well as differential level and of the structure of the effective field theory at NLO including renormalisation group effects. Finally, we show how the combination of information coming from measurements of these production processes will allow to constrain the three operators at the current and future LHC runs. Finally, our results lead to a significant improvement of the accuracy and precision of the deviations expected from higher-dimensional operators in the SM in both the top-quark and the Higgs-boson sectors and provide a necessary ingredient for performing a global EFT fit to the LHC data at NLO accuracy.« less

  7. Higher derivative corrections in holographic QCD

    SciTech Connect

    Basu, Anirban

    2007-12-15

    We consider the effect of the R{sup 4} term in type IIA string theory on the supergravity background dual to N{sub c} D4-branes compactified on a circle with supersymmetry breaking boundary conditions. We study the dynamics of D8-branes in this perturbed geometry in the probe approximation. This leads to an analysis of higher derivative corrections in holographic QCD beyond the supergravity approximation. We make a rough estimate of the corrections to the masses of some of the lightest (axial) vector mesons. The corrections are suppressed by a factor of (g{sub YM}{sup 2}N{sub c}){sup -3} compared to their supergravity values. We find that the masses of these mesons increase from their supergravity values.

  8. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; Schulze, Markus

    2016-11-01

    We analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the "energy peak" as an observable to determine the top quark mass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or new physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ± (1.2 ({exp}) + 0.6({th})) { GeV}. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.

  9. Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD

    NASA Astrophysics Data System (ADS)

    Hernández-Pinto, R. J.; Epele, M.; de Florian, D.; Sassot, R.; Stratmann, M.

    2016-10-01

    In this review, we discuss the results on the parton-to-pion fragmentation functions obtained in a combined NLO fit to data of single-inclusive hadron production in electron-positron annihilation, proton-proton collisions, and lepton-nucleon deep-inelastic scattering. A more complete discussion can be found in Ref. [1].

  10. Measurement of the strange - antistrange asymmetry at NLO in QCD from NuTeV dimuon data

    SciTech Connect

    Mason, David Alexander

    2006-03-01

    A measurement of the asymmetry between the strange and antistrange quark distributions, from a next to leading order QCD analysis of dimuon events measured by the NuTeV experiment at Fermilab is presented. Neutrino charged current events with two muons in the final state provide a direct means for studying charm production and measuring the strange sea. NuTeV's sign selected beam allows independent measurement of the strange and antistrange seas. An improved measurement of the neutrino and antineutrino forward dimuon cross section tables, using the complete charged current event sample for normalization is performed. These tables are then analyzed at NLO to measure the strange and antistrange seas. Detector acceptance is modeled using an NLO charm cross section differential in all variables required. The strange quark distribution is found to have an integrated momentum weighted asymmetry of +0.00196 ± 0.00046(stat) ± 0.00045(syst) ± 0.00182(external). The charm mass is found to be 1.41 ± 0.10(stat) ± 0.08(syst) ± 0.12(external) GeV.

  11. QCD Corrections to e{sup +}e{sup -}{yields}J/{psi}+gg at B Factories

    SciTech Connect

    Ma Yanqing; Zhang Yujie; Chao Kuangta

    2009-04-24

    In heavy quarkonium production, the measured ratio R{sub cc}={sigma}[J/{psi}+cc+X]/{sigma}[J/{psi}+X] at B factories is much larger than existing theoretical predictions. To clarify this discrepancy, in nonrelativistic QCD we find the next-to-leading-order (NLO) QCD correction to e{sup +}e{sup -}{yields}J/{psi}+gg can enhance the cross section by about 20%. Together with the calculated NLO result for e{sup +}e{sup -}{yields}J/{psi}+cc, we show that the NLO corrections can significantly improve the fit to the ratio R{sub cc}. The effects of leading logarithm resummation near the end point on the J/{psi} momentum distribution and total cross section are also considered. Comparison of the calculated cross section for e{sup +}e{sup -}{yields}J/{psi}+gg with the observed cross section for e{sup +}e{sup -}{yields}J/{psi}+non-(cc) is expected to provide unique information on the issue of color-octet contributions.

  12. Helac-Nlo

    NASA Astrophysics Data System (ADS)

    Bevilacqua, G.; Czakon, M.; Garzelli, M. V.; van Hameren, A.; Kardos, A.; Papadopoulos, C. G.; Pittau, R.; Worek, M.

    2013-03-01

    Based on the OPP technique and the HELAC framework, HELAC-1LOOP is a program that is capable of numerically evaluating QCD virtual corrections to scattering amplitudes. A detailed presentation of the algorithm is given, along with instructions to run the code and benchmark results. The program is part of the HELAC-NLO framework that allows for a complete evaluation of QCD NLO corrections. Catalogue identifier: AEOC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 290945 No. of bytes in distributed program, including test data, etc.: 3013326 Distribution format: tar.gz Programming language: Fortran (gfortran(http://gcc.gnu.org/fortran/), lahey95 (http://www.lahey.com), ifort3(http://software.intel.com)). Computer: Any. Operating system: Linux, Unix, Mac OS. Classification: 11.1. Nature of problem: The evaluation of virtual one-loop amplitudes for multi-particle scattering is a long-standing problem [1]. In recent years the OPP reduction technique [2] opened the road for a fully numerical approach based on the evaluation of the one-loop amplitude for well-defined values of the loop momentum. Solution method: By using HELAC [3-5] and CutTools [6], HELAC-1LOOP is capable of evaluating QCD virtual corrections [7]. The one-loop n-particle amplitudes are constructed as part of the n+2 tree-order ones, by using the basic recursive algorithm used in HELAC. A Les Houches Event (LHE) file is produced, combining the complete information from tree-order and virtual one-loop contributions. In conjunction with real corrections, obtained with the use of HELAC-DIPOLES [8], the full NLO corrections can be computed. The program has been successfully used in many applications.

  13. W+n-Jet Predictions With MC@NLO in Sherpa

    SciTech Connect

    Hoeche, Stefan; Krauss, Frank; Schonherr, Marek; Siegert, Frank; /Freiburg U.

    2012-03-20

    Results for the production of W-bosons in conjunction with up to three jets including parton shower corrections are presented and compared to recent LHC data. These results consistently incorporate the full next-to leading order QCD corrections through the MC{at}NLO method, as implemented in the SHERPA event generator, with the virtual corrections obtained from the BLACKHAT library.

  14. Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects.

    PubMed

    Maltoni, Fabio; Mawatari, Kentarou; Zaro, Marco

    Vector-boson fusion and associated production at the LHC can provide key information on the strength and structure of the Higgs couplings to the Standard Model particles. Using an effective field theory approach, we study the effects of next-to-leading order (NLO) QCD corrections matched to a parton shower on selected observables for various spin-0 hypotheses. We find that inclusion of NLO corrections is needed to reduce the theoretical uncertainties on the total rates as well as to reliably predict the shapes of the distributions. Our results are obtained in a fully automatic way via FeynRules and MadGraph5_aMC@NLO.

  15. QCD correction to single top quark production at the ILC

    SciTech Connect

    Penunuri, F.; Larios, F.; Bouzas, Antonio O.

    2011-04-01

    Single top quark production at the International Linear Collider (ILC) can be used to obtain high precision measurements of the V{sub tb} Cabibbo-Kobayashi-Maskawa quark-mixing matrix (CKM) element as well as the effective tbW coupling. We have calculated the QCD correction for the cross section in the context of an effective vector boson approximation. Our results show a {approx}10% increase due to the strong interaction.

  16. Electroweak Higgs boson plus three jet production at next-to-leading-order QCD.

    PubMed

    Campanario, Francisco; Figy, Terrance M; Plätzer, Simon; Sjödahl, Malin

    2013-11-22

    We calculate next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production. Both vector boson fusion (VBF) and Higgs-strahlung type contributions are included along with all interferences. The calculation is implemented within the Matchbox NLO framework of the Herwig++ event generator.

  17. Squark production and decay matched with parton showers at NLO

    NASA Astrophysics Data System (ADS)

    Gavin, R.; Hangst, C.; Krämer, M.; Mühlleitner, M.; Pellen, M.; Popenda, E.; Spira, M.

    2015-01-01

    Extending previous work on the predictions for the production of supersymmetric (SUSY) particles at the LHC, we present the fully differential calculation of the next-to-leading order (NLO) SUSY-QCD corrections to the production of squark and squark-antisquark pairs of the first two generations. The NLO cross sections are combined with the subsequent decay of the final state (anti)squarks into the lightest neutralino and (anti)quark at NLO SUSY-QCD. No assumptions on the squark masses are made, and the various subchannels are taken into account independently. In order to obtain realistic predictions for differential distributions the fixed-order calculations have to be combined with parton showers. Making use of the Powheg method we have implemented our results in the Powheg-Box framework and interfaced the NLO calculation with the parton shower Monte Carlo programs Pythia6 and Herwig++. The code is publicly available and can be downloaded from the Powheg-Box webpage. The impact of the NLO corrections on the differential distributions is studied and parton shower effects are investigated for different benchmark scenarios.

  18. Revisiting the Kπ puzzle in the pQCD factorization approach

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Liu, Min; Fan, Ying-Ying; Wang, Wen-Fei; Cheng, Shan; Xiao, Zhen-Jun

    2014-03-01

    In this paper, we calculated the branching ratios and direct CP violation of the four B→Kπ decays with the inclusion of all currently known next-to-leading order (NLO) contributions by employing the perturbative QCD (pQCD) factorization approach. We found that (a) Besides the 10% enhancement from the NLO vertex corrections, the quark-loops and magnetic penguins, the NLO contributions to the form factors can provide an additional ~15% enhancement to the branching ratios, and lead to a very good agreement with the data; (b) The NLO pQCD predictions are AdirCP (B0 → K+π-)=(-6.5±3.1)% and AdirCP (B+→K+π0)=(2.2±2.0)%, become well consistent with the data due to the inclusion of the NLO contributions.

  19. CT10 NLO and NNLO Parton Distribution Functions from the Coordinated Theoretical-Experimental Project on QCD

    DOE Data Explorer

    Huston, Joey [Co-Spokesperson; Ownes, Joseph [Co-Spokesperson

    The Coordinated Theoretical-Experimental Project on QCD is a multi-institutional collaboration devoted to a broad program of research projects and cooperative enterprises in high-energy physics centered on Quantum Chromodynamics (QCD) and its implications in all areas of the Standard Model and beyond. The Collaboration consists of theorists and experimentalists at 18 universities and 5 national laboratories. More than 65 sets of Parton Distribution Functions are available for public access. Links to many online software tools, information about Parton Distribution Functions, papers, and other resources are also available.

  20. Next-to-Leading-Order QCD Corrections to e{sup +}e{sup -}{yields}J/{psi}gg at the B Factories

    SciTech Connect

    Gong Bin; Wang Jianxiong

    2009-04-24

    We calculate the next-to-leading-order (NLO) QCD corrections to e{sup +}e{sup -}{yields}J/{psi}gg via color singlet J/{psi}({sup 3}S{sub 1}) at the B factories. The result shows that the cross section is enhanced to 0.373 pb by a K factor (NLO/LO) of about 1.21. By considering its dependence on the charm quark mass and renormalization scale, the NLO cross section can range from 0.294 to 0.409 pb. Further including the {psi}{sup '} feed-down, {sigma}[e{sup +}e{sup -}{yields}J/{psi}X(non-cc)] is enhanced by another factor of about 1.29 and reach 0.482 pb. In addition, the momentum distributions of J/{psi} production and polarization are presented. Recent measurements from Belle agree well with our prediction for the cross section and momentum distribution. It is expected that this process can serve as a very good channel to clarify the J/{psi} polarization puzzle by performing further experimental measurements.

  1. Monte Carlo simulations of Higgs-boson production at the LHC with the KrkNLO method

    NASA Astrophysics Data System (ADS)

    Jadach, S.; Nail, G.; Płaczek, W.; Sapeta, S.; Siódmok, A.; Skrzypek, M.

    2017-03-01

    We present numerical tests and predictions of the KrkNLO method for matching of NLO QCD corrections to hard processes with LO parton-shower Monte Carlo generators (NLO+PS). This method was described in detail in our previous publications, where it was also compared with other NLO+PS matching approaches ( MC@NLO and POWHEG) as well as fixed-order NLO and NNLO calculations. Here we concentrate on presenting some numerical results (cross sections and distributions) for Z/γ ^* (Drell-Yan) and Higgs-boson production processes at the LHC. The Drell-Yan process is used mainly to validate the KrkNLO implementation in the Herwig 7 program with respect to the previous implementation in Sherpa. We also show predictions for this process with the new, complete, MC-scheme parton distribution functions and compare them with our previously published results. Then we present the first results of the KrkNLO method for Higgs production in gluon-gluon fusion at the LHC and compare them with MC@NLO and POWHEG predictions from Herwig 7, fixed-order results from HNNLO and a resummed calculation from HqT, as well as with experimental data from the ATLAS collaboration.

  2. Second-order QCD corrections to jet production at hadron colliders: the all-gluon contribution.

    PubMed

    Gehrmann-De Ridder, A; Gehrmann, T; Glover, E W N; Pires, J

    2013-04-19

    We report the calculation of next-to-next-to-leading order QCD corrections in the purely gluonic channel to dijet production and related observables at hadron colliders. Our result represents the first next-to-next-to-leading order calculation of a massless jet observable at hadron colliders, and opens the path towards precision QCD phenomenology with the LHC.

  3. QCD CORRECTIONS TO DILEPTON PRODUCTION NEAR PARTONIC THRESHOLD IN PP SCATTERING.

    SciTech Connect

    SHIMIZU, H.; STERMAN, G.; VOGELSANG, W.; YOKOYA, H.

    2005-10-02

    We present a recent study of the QCD corrections to dilepton production near partonic threshold in transversely polarized {bar p}p scattering, We analyze the role of the higher-order perturbative QCD corrections in terms of the available fixed-order contributions as well as of all-order soft-gluon resummations for the kinematical regime of proposed experiments at GSI-FAIR. We find that perturbative corrections are large for both unpolarized and polarized cross sections, but that the spin asymmetries are stable. The role of the far infrared region of the momentum integral in the resummed exponent and the effect of the NNLL resummation are briefly discussed.

  4. NLO corrections to the DELTAF = 2 Hamiltonian in the MSSM with non-degenerate squarks

    SciTech Connect

    Virto, Javier

    2010-02-10

    We present the next-to-leading strong interaction corrections to the DELTAF = 2 Hamiltonian in the MSSM with exact diagonalization of the squark mass matrices. These results allow phenomenological studies of neutral meson mixing in scenarios with non-degenerate squarks, with control over the renormalization scale and scheme dependence.

  5. Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons

    SciTech Connect

    Frixione, Stefano; Hirschi, V.; Pagani, D.; Shao, H. -S.; Zaro, M.

    2015-06-26

    Here, we compute the contribution of order αS2α2 to the cross section of a top-antitop pair in association with at least one heavy Standard Model boson — Z, W±, and Higgs — by including all effects of QCD, QED, and weak origin and by working in the automated MadGraph5_aMC@NLO framework. Furthermore, this next-to-leading order contribution is then combined with that of order αS3α, and with the two dominant lowest-order ones, αS2α and αSα2, to obtain phenomenological results relevant to a 8, 13, and 100 TeV pp collider.

  6. Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons

    DOE PAGES

    Frixione, Stefano; Hirschi, V.; Pagani, D.; ...

    2015-06-26

    Here, we compute the contribution of order αS2α2 to the cross section of a top-antitop pair in association with at least one heavy Standard Model boson — Z, W±, and Higgs — by including all effects of QCD, QED, and weak origin and by working in the automated MadGraph5_aMC@NLO framework. Furthermore, this next-to-leading order contribution is then combined with that of order αS3α, and with the two dominant lowest-order ones, αS2α and αSα2, to obtain phenomenological results relevant to a 8, 13, and 100 TeV pp collider.

  7. Next-to-soft corrections to high energy scattering in QCD and gravity

    NASA Astrophysics Data System (ADS)

    Luna, A.; Melville, S.; Naculich, S. G.; White, C. D.

    2017-01-01

    We examine the Regge (high energy) limit of 4-point scattering in both QCD and gravity, using recently developed techniques to systematically compute all corrections up to next-to-leading power in the exchanged momentum i.e. beyond the eikonal approximation. We consider the situation of two scalar particles of arbitrary mass, thus generalising previous calculations in the literature. In QCD, our calculation describes power-suppressed corrections to the Reggeisation of the gluon. In gravity, we confirm a previous conjecture that next-to-soft corrections correspond to two independent deflection angles for the incoming particles. Our calculations in QCD and gravity are consistent with the well-known double copy relating amplitudes in the two theories.

  8. Next-to-Leading-Order QCD Corrections to tt+jet Production at Hadron Colliders

    SciTech Connect

    Dittmaier, S.; Uwer, P.; Weinzierl, S.

    2007-06-29

    We report on the calculation of the next-to-leading-order QCD corrections to the production of top-quark-top-antiquark pairs in association with a hard jet at the Fermilab Tevatron and the CERN Large Hadron Collider. We present results for the tt+jet cross section and the forward-backward charge asymmetry. The corrections stabilize the leading-order prediction for the cross section. The charge asymmetry receives large corrections.

  9. Next-to-leading order QCD predictions for graviton and photon associated production in the large extra dimensions model at the LHC

    SciTech Connect

    Gao Xiangdong; Li Chongsheng; Gao Jun; Wang Jian; Oakes, Robert J.

    2010-02-01

    We present the calculations of the complete next-to-leading order (NLO) QCD corrections to the inclusive total cross sections for the Kaluza-Klein (KK) graviton and photon associated production process pp{yields}{gamma}G{sub KK}+X in the large extra dimensions model at the LHC. We show that the NLO QCD corrections in general enhance the total cross sections and reduce the dependence of the total cross sections on the factorization and renormalization scales. When jet veto is considered, the NLO corrections reduce the total cross sections. We also calculate some important differential cross sections for this process at NLO: the missing transverse momentum distribution, the transverse momentum distribution, and the pseudorapidity distribution of photon.

  10. Two-flavor QCD correction to lepton magnetic moments at leading order in the electromagnetic coupling.

    PubMed

    Feng, Xu; Jansen, Karl; Petschlies, Marcus; Renner, Dru B

    2011-08-19

    We present a reliable nonperturbative calculation of the QCD correction, at leading order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon, and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes, and a broad range of quark masses to control the continuum, infinite-volume, and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43)×10(-12), 5.72(16)×10(-8), and 2.650(54)×10(-6) for the leading-order two-flavor QCD correction to the anomalous magnetic moment of the electron, muon, and tau, respectively, each accurate to better than 3%.

  11. Next-to-Leading-Order QCD Corrections to WW+Jet Production at Hadron Colliders

    SciTech Connect

    Dittmaier, S.; Kallweit, S.; Uwer, P.

    2008-02-15

    We report on the calculation of the next-to-leading-order QCD corrections to the production of W-boson pairs in association with a hard jet at the Fermilab Tevatron and CERN Large Hadron Collider, which is an important source of background for Higgs boson and new-physics searches. The corrections stabilize the leading-order prediction for the cross section considerably, in particular, if a veto against the emission of a second hard jet is applied.

  12. Charged-Higgs-boson production at the LHC: Next-to-leading-order supersymmetric QCD corrections

    SciTech Connect

    Dittmaier, Stefan; Kraemer, Michael; Spira, Michael; Walser, Manuel

    2011-03-01

    The dominant production process for heavy charged-Higgs bosons at the LHC is the associated production with heavy quarks. We have calculated the next-to-leading-order supersymmetric QCD corrections to charged-Higgs production through the parton processes qq,gg{yields}tbH{sup {+-}} and present results for total cross sections and differential distributions. The QCD corrections reduce the renormalization and factorization scale dependence and thus stabilize the theoretical predictions. We present a comparison of the next-to-leading-order results for the inclusive cross section with a calculation based on bottom-gluon fusion gb{yields}tH{sup {+-}} and discuss the impact of the next-to-leading-order corrections on charged-Higgs searches at the LHC.

  13. Large mass expansion in two-loop QCD corrections of paracharmonium decay

    SciTech Connect

    Hasegawa, K.; Pak, Alexey

    2008-01-01

    We calculate the two-loop QCD corrections to paracharmonium decays {eta}{sub c}{yields}{gamma}{gamma} and {eta}{sub c}{yields}gg involving light-by-light scattering diagrams with light quark loops. Artificial large mass expansion and convergence improvement techniques are used to evaluate these corrections. The obtained corrections to the decays {eta}{sub c}{yields}{gamma}{gamma} and {eta}{sub c}{yields}gg account for -1.25% and -0.73% of the leading order contribution, respectively.

  14. Next-to-leading order QCD corrections to paired Bc production in e+e- annihilation

    NASA Astrophysics Data System (ADS)

    Berezhnoy, A. V.; Likhoded, A. K.; Onishchenko, A. I.; Poslavsky, S. V.

    2017-02-01

    We present theoretical analysis of paired Bc mesons production in e+e- annihilation at different energy scales taking into account full next-to-leading order QCD corrections. Both possible electroweak channels are considered: production via virtual photon and via virtual Z-boson. We study in detail the role of radiative QCD corrections, which were found to be significant especially at low energies. It is shown that the contribution from Z-boson is significant at high energies (√{ s} >MZ / 2) especially in the case of paired production of pseudo-scalar and vector (Bc +Bc*) mesons. Azimuthal asymmetry induced by a P-violating weak interaction with Z-boson is also analyzed.

  15. Electroweak and QCD corrections to Higgs production via vector-boson fusion at the CERN LHC

    SciTech Connect

    Ciccolini, M.; Denner, A.; Dittmaier, S.

    2008-01-01

    The radiative corrections of the strong and electroweak interactions are calculated at next-to-leading order for Higgs-boson production in the weak-boson-fusion channel at hadron colliders. Specifically, the calculation includes all weak-boson fusion and quark-antiquark annihilation diagrams to Higgs-boson production in association with two hard jets, including all corresponding interferences. The results on the QCD corrections confirm that previously made approximations of neglecting s-channel diagrams and interferences are well suited for predictions of Higgs production with dedicated vector-boson fusion cuts at the LHC. The electroweak corrections, which also include real corrections from incoming photons and leading heavy Higgs-boson effects at two-loop order, are of the same size as the QCD corrections, viz. typically at the level of 5%-10% for a Higgs-boson mass up to {approx}700 GeV. In general, both types of corrections do not simply rescale differential distributions, but induce distortions at the level of 10%. The discussed corrections have been implemented in a flexible Monte Carlo event generator.

  16. Two-Loop QCD correction to massive spin-2 resonance → 3 gluons

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Mahakhud, Maguni; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2014-05-01

    We present the virtual QCD corrections to the process h → g + g + g due to interference of born and two-loop amplitudes, where h is a massive spin-2 particle and g is the gluon. We assume that the SM fields couple to h through the SM energy momentum tensor. Our result constitutes one of the ingredients to full NNLO QCD contribution to production of a massive spin-2 particle along with a jet in the scattering process at the LHC. In particular, this massive spin-2 could be a KK mode of a ADD graviton in large extra dimensional model or a RS KK mode in warped extra dimensional model or a generic massive spin-2. In addition, it provides an opportunity to study the ultraviolet and infrared structures of QCD amplitudes involving tensorial coupling resulting from energy momentum operator. Using dimensional regularization, we find that infrared poles of this amplitude are in agreement with the proposal by Catani confirming the factorization property of QCD amplitudes with tensorial insertion.

  17. QCD results at CDF

    SciTech Connect

    Norniella, Olga; /Barcelona, IFAE

    2005-01-01

    Recent QCD measurements from the CDF collaboration at the Tevatron are presented, together with future prospects as the luminosity increases. The measured inclusive jet cross section is compared to pQCD NLO predictions. Precise measurements on jet shapes and hadronic energy flows are compared to different phenomenological models that describe gluon emissions and the underlying event in hadron-hadron interactions.

  18. Next-To-Leading Order QCD Corrections to pp->ttbb+X at the LHC

    SciTech Connect

    Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S.

    2009-07-03

    We report on the calculation of the full next-to-leading-order QCD corrections to the production of ttbb final states at the LHC, which deliver a serious background contribution to the production of a Higgs boson (decaying into a bb pair) in association with a tt pair. While the corrections significantly reduce the unphysical scale dependence of the leading-order cross section, our results predict an enhancement of the ttbb production cross section by a K factor of about 1.8.

  19. BCFW tree level QCD corrections to WBF Higgs production

    NASA Astrophysics Data System (ADS)

    Fazio, A. R.; Vargas, S. C.

    2012-07-01

    We explicitly compute analytic tree level amplitudes for the production of a Higgs boson via Weak Boson Fusion (WBF) with one and two additional gluon emissions in the final state. Also, the computation for the additional emission of an arbitrary number of gluons is discussed, obtaining a general result related to the procedure of contraction of 2 Single Weak Boson (SWB) currents which are precisely characterized. The generalization of the Britto-Cachazo-Feng-Witten (BCFW) formula to the massive case is applied obtaining compact results which agree with those calculated with the conventional approach of Feynman diagrams. We show that, in relation to the latter method, the involved BCFW amplitudes are computed through a notably more efficient process (particularly for high numbers of external particles) suggesting that successive corrections to the WBF process can be obtained alike in a swift way. The explicit expressions are provided in a parallel presentation of both approaches, putting the emphasis on the fundamental features and advantages of the BCFW scheme.

  20. A Critical Appraisal of NLO+PS Matching Methods

    SciTech Connect

    Hoeche, Stefan; Krauss, Frank; Schonherr, Marek; Siegert, Frank; /Freiburg U.

    2012-03-19

    In this publication, uncertainties in and differences between the MC{at}NLO and POWHEG methods for matching next-to-leading order QCD calculations with parton showers are discussed. Implementations of both algorithms within the event generator SHERPA are employed to assess the impact on a representative selection of observables. In the MC{at}NLO approach a phase space restriction has been added to subtraction and parton shower, which allows to vary in a transparent way the amount of non-singular radiative corrections that are exponentiated. Effects on various observables are investigated, using the production of a Higgs boson in gluon fusion, with or without an associated jet, as a benchmark process. The case of H+jet production is presented for the first time in an NLO+PS matched simulation. Uncertainties due to scale choices and non-perturbative effects are explored in the production of W{sup {+-}} and Z bosons in association with a jet. Corresponding results are compared to data from the Tevatron and LHC experiments.

  1. Towards next-to-leading order corrections to the heavy quark potential in the effective string theory

    NASA Astrophysics Data System (ADS)

    Hwang, Sungmin

    2017-03-01

    We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO) via the effective string theory (EST). Full systematics of effective field theory (EFT) are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.

  2. The two-loop QCD correction to massive spin-2 resonance → q bar{q} g

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Das, Goutam; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2016-12-01

    The two-loop QCD correction to massive spin-2 graviton decaying to q + bar{q} + g is presented considering a generic universal spin-2 coupling to the SM through the conserved energy-momentum tensor. Such a massive spin-2 particle can arise in extra-dimensional models. The ultraviolet and infrared structure of the QCD amplitudes are studied. In dimensional regularization, the infrared pole structure is in agreement with Catani's proposal, confirming the universal factorization property of QCD amplitudes, even with the spin-2 tensorial coupling.

  3. Perturbative corrections to Λ b → Λ form factors from QCD light-cone sum rules

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming; Shen, Yue-Long

    2016-02-01

    We compute radiative corrections to Λ b → Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ b -baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ b -baryon correlation function is justified at leading power in Λ /m b , with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to- B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at {O}({α}_s) shift the Λ b → Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ b → Λ from factors we further investigate several decay observables in the electro-weak penguin Λ b → Λ ℓ + ℓ - transitions in the factorization limit (i.e., ignoring the "non-factorizable" hadronic effects which cannot be expressed in terms of the Λ b → Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.

  4. QCD corrections to flavor changing neutral coupling mediated rare top quark decays

    SciTech Connect

    Drobnak, Jure; Kamenik, Jernej F.; Fajfer, Svjetlana

    2010-10-01

    Recently we have presented an analysis of flavor changing neutral coupling mediated radiative top quark decays at next-to-leading order in QCD. In the present paper we provide the details of the calculation of QCD corrections to t{yields}q{gamma} and t{yields}qZ decays within the effective theory approach including operator mixing. In particular, we calculate virtual matrix element corrections and the corresponding bremsstrahlung contributions. In the case of t{yields}q{gamma} we study the effects of kinematic cuts on the extracted branching ratios. Analytical formulas are given at all stages of the calculation. We find that the t{yields}q{gamma} decay can be used to probe also the effective operators mediating t{yields}qg processes, since these can naturally contribute 10% or more to the radiative decay, given typical experimental cuts on the decay kinematics at hadron colliders. Conversely, we argue that any positive experimental signal of the t{yields}qg process would indicate a natural lower bound on t{yields}q{gamma} decay rate.

  5. Multi-jet Cross Sections at NLO with BlackHat and Sherpa

    SciTech Connect

    Berger, C.F.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Forde, D.; Gleisberg, T.; Ita, H.; Kosower, D.A.; Maitre, D.

    2009-05-20

    In this talk, we report on a recent next-to-leading order QCD calculation of the production of a W boson in association with three jets at hadron colliders. The computation is performed by combining two programs, BlackHat for the computation of the virtual one-loop matrix elements and Sherpa for the real emission part. The addition of NLO corrections greatly reduces the factorization and renormalization scale dependence of the theory prediction for this process. This result demonstrates the applicability of unitarity-based methods for hadron collider physics.

  6. NNLO QCD corrections to Higgs boson production at large transverse momentum

    NASA Astrophysics Data System (ADS)

    Chen, X.; Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Jaquier, M.

    2016-10-01

    We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to-leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.

  7. Two-loop QCD corrections to the MSSM Higgs masses beyond the effective-potential approximation.

    PubMed

    Degrassi, G; Di Vita, S; Slavich, P

    We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the Minimal Supersymmetric Standard Model, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of [Formula: see text] and [Formula: see text], i.e., all two-loop corrections that involve the strong gauge coupling when the only non-vanishing Yukawa coupling is the top one. We adopt either the [Formula: see text] renormalization scheme or a mixed on-shell (OS)-[Formula: see text] scheme where the top/stop parameters are renormalized on-shell. We compare our results with those of earlier calculations, pointing out an inconsistency in a recent result obtained in the mixed OS-[Formula: see text] scheme. The numerical impact of the new corrections on the prediction for the lightest-scalar mass is moderate, but already comparable to the accuracy of the Higgs-mass measurement at the Large Hadron Collider.

  8. Next-to-leading-order QCD corrections to the top-quark decay via model-independent flavor-changing neutral-current couplings.

    PubMed

    Zhang, Jia Jun; Li, Chong Sheng; Gao, Jun; Zhang, Hao; Li, Zhao; Yuan, C-P; Yuan, Tzu-Chiang

    2009-02-20

    D0 and CDF collaborations at the Fermilab Tevatron have searched for nonstandard-model single top-quark production and have set upper limits on the anomalous top-quark flavor-changing neutral-current (FCNC) couplings kappatcg/Lambda and kappatug/Lambda using the measurement of the total cross section calculated at the next-to-leading order (NLO) in QCD. In this Letter, we report on the effect of anomalous FCNC couplings to various decay branching ratios of the top quark, calculated at the NLO. This result is not only mandatory for a consistent treatment of both the top-quark production and decay via FCNC couplings by D0 and CDF at the Tevatron, but is also important for the study of ATLAS and CMS sensitivity to these anomalous couplings at the CERN LHC.

  9. Electroweak Corrections at the LHC with MCFM

    SciTech Connect

    Campbell, John M.; Wackeroth, Doreen; Zhou, Jia

    2015-07-10

    Electroweak (EW) corrections at the LHC can be enhanced at high energies due to soft/collinear radiation of W and Z bosons, being dominated by Sudakov-like corrections in the form of $\\alpha_W^l\\log^n(Q^2/M_W^2)$ $(n \\le 2l, \\alpha_W = \\alpha/(4\\pi\\sin\\theta_W^2))$ when the energy scale $Q$ enters the TeV regime. Thus, the inclusion of EW corrections in LHC predictions is important for the search of possible signals of new physics in tails of kinematic distributions. EW corrections should also be taken into account in virtue of their comparable size ($\\mathcal{O}(\\alpha)$) to that of higher order QCD corrections ($\\mathcal{O}(\\alpha_s^2)$). We calculated the next-to-leading-order (NLO) weak corrections to the neutral-current (NC) Drell-Yan process, top-quark pair production and di-jet producion, and implemented them in the Monte-Carlo program MCFM. This enables a combined study with the corresponding NLO QCD corrections. We provide both the full NLO weak corrections and their weak Sudakov approximation valid at high energies. The latter is often used for a fast evaluation of weak effects, and having the exact result available as well allows to quantify the validity of the Sudakov approximation.

  10. NLO Vector Boson Production With Light Jets

    SciTech Connect

    Bern, Z.; Diana, G.; Dixon, L.J.; Febres Cordero, F.; Forde, D.; Gleisberg, T.; Hoeche, S.; Ita, H.; Kosower, D.A.; Maitre, D.; Ozeren, K.

    2012-02-15

    In this contribution we present recent progress in the computation of next-to-leading order (NLO) QCD corrections for the production of an electroweak vector boson in association with jets at hadron colliders. We focus on results obtained using the virtual matrix element library BlackHat in conjunction with SHERPA, focusing on results relevant to understanding the background to top production. The production of a vector boson in association with several jets at the Large Hadron Collider (LHC) is an important background for other Standard Model processes as well as new physics signals. In particular, the production of a W boson in association with many jets is an important background for processes involving one or more top quarks. Precise predictions for the backgrounds are crucial to measurement of top-quark processes. Vector boson production in association with multiple jets is also a very important background for many SUSY searches, as it mimics the signatures of many typical decay chains. Here we will discuss how polarization information can be used as an additional handle to differentiate top pair production from 'prompt' W-boson production. More generally, ratios of observables, for example for events containing a W boson versus those containing a Z boson, are expected to be better-behaved as many uncertainties cancel in such ratios. Precise calculation of ratios, along with measurement of one of the two processes in the ratio, can be used in data-driven techniques for estimating backgrounds.

  11. The SM and NLO Multileg Working Group: Summary Report

    SciTech Connect

    Andersen, J.R.; Archibald, J.; Badger, S.; Ball, R.D.; Bevilacqua, G.; Bierenbaum, I.; Binoth, T.; Boudjema, F.; Boughezal, R.; Bredenstein, A.; Britto, R.; Campanelli, M.; Campbell, J.; Carminati, L.; Chachamis, G.; Ciulli, V.; Cullen, G.; Czakon, M.; Del Debbio, L.; Denner, A.; Dissertori, G.; /Edinburgh U. /Zurich, ETH /Michigan State U. /CAFPE, Granada /CERN /Durham U., IPPP /DESY, Zeuthen /Democritos Nucl. Res. Ctr. /Valencia U., IFIC /Annecy, LAPTH /Zurich U. /KEK, Tsukuba /Saclay, SPhT /University Coll. London /Fermilab /INFN, Milan /Milan U. /PSI, Villigen /Florence U. /INFN, Florence /RWTH Aachen U.

    2012-04-10

    higher order QCD corrections. On the theoretical side, it would also be interesting to categorize the impact of a jet veto on the size and stability of each of the NLO cross sections. The technology does exist to carry out a calculation for W/Z production at NNLO (QCD) and at NLO (EW). This process was placed on the wish-list in 2007 and it is unfortunate that the combined calculation has not yet been carried out, as this precision benchmark will be very useful and important at the LHC.

  12. Two-loop QED corrections to the Altarelli-Parisi splitting functions

    NASA Astrophysics Data System (ADS)

    de Florian, Daniel; Sborlini, Germán F. R.; Rodrigo, Germán

    2016-10-01

    We compute the two-loop QED corrections to the Altarelli-Parisi (AP) splitting functions by using a deconstructive algorithmic Abelianization of the well-known NLO QCD corrections. We present explicit results for the full set of splitting kernels in a basis that includes the leptonic distribution functions that, starting from this order in the QED coupling, couple to the partonic densities. Finally, we perform a phenomenological analysis of the impact of these corrections in the splitting functions.

  13. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    SciTech Connect

    Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2016-02-03

    We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  14. Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED.

    PubMed

    Fodor, Z; Hoelbling, C; Krieg, S; Lellouch, L; Lippert, Th; Portelli, A; Sastre, A; Szabo, K K; Varnhorst, L

    2016-08-19

    In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on N_{f}=2+1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ϵ=0.73(2)(5)(17), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, m_{u}=2.27(6)(5)(4) and m_{d}=4.67(6)(5)(4)  MeV in the modified minimal subtraction scheme at 2  GeV and the isospin breaking ratios m_{u}/m_{d}=0.485(11)(8)(14), R=38.2(1.1)(0.8)(1.4), and Q=23.4(0.4)(0.3)(0.4). Our results exclude the m_{u}=0 solution to the strong CP problem by more than 24 standard deviations.

  15. Low mass thermal dilepton production at NLO in a weakly coupled quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Moore, Guy D.

    2014-12-01

    We present a computation, within weakly-coupled thermal QCD, of the production rate of low invariant mass ( M 2 ~ g 2 T 2) dileptons, at next-to-leading order (NLO) in the coupling (which is ). This involves extending the NLO calculation of the photon rate which we recently presented to the case of small nonzero photon invariant mass. Numerical results are discussed and tabulated forms and code are provided for inclusion in hydrodynamical models. We find that NLO corrections can increase the dilepton rate by up to 30-40% relative to leading order. We find that the electromagnetic response of the plasma for real photons and for small invariant mass but high energy dilepton pairs (e.g., M 2 < (300 MeV)2 but p T > 1 GeV) are close enough that dilepton pair measurements really can serve as ersatz photon measurements. We also present a matching a la Ghisoiu and Laine between our results and results at larger invariant masses.

  16. Branching ratios and CP asymmetries of B{yields}K{eta}{sup (')} decays in the perturbative QCD approach

    SciTech Connect

    Xiao Zhenjun; Zhang Zhiqing; Liu Xin; Guo Libo

    2008-12-01

    We calculate the branching ratios and CP-violating asymmetries of the four B{yields}K{eta}{sup (')} decays in the perturbative QCD (pQCD) factorization approach. Besides the full leading-order contributions, the partial next-to-leading-order (NLO) contributions from the QCD vertex corrections, the quark-loops, and the chromomagnetic penguins are also taken into account. The NLO pQCD predictions for the CP-averaged branching ratios are Br(B{sup +}{yields}K{sup +}{eta}){approx_equal}3.2x10{sup -6}, Br(B{sup {+-}}{yields}K{sup {+-}}{eta}{sup '}){approx_equal}51.0x10{sup -6}, Br(B{sup 0}{yields}K{sup 0}{eta}){approx_equal}2.1x10{sup -6}, and Br(B{sup 0}{yields}K{sup 0}{eta}{sup '}){approx_equal}50.3x10{sup -6}. The NLO contributions can provide a 70% enhancement to the LO Br(B{yields}K{eta}{sup '}), but a 30% reduction to the LO Br(B{yields}K{eta}), which play the key role in understanding the observed pattern of branching ratios. The NLO pQCD predictions for the CP-violating asymmetries, such as A{sub CP}{sup dir}(K{sub S}{sup 0}{eta}{sup '}){approx}2.3% and A{sub CP}{sup mix}(K{sub S}{sup 0}{eta}{sup '}){approx}63%, agree very well with currently available data. This means that the deviation {delta}S=A{sub CP}{sup mix}(K{sub S}{sup 0}{eta}{sup '})-sin2{beta} in pQCD approach is also very small.

  17. Study of weak corrections to Drell-Yan, top-quark pair, and dijet production at high energies with MCFM

    NASA Astrophysics Data System (ADS)

    Campbell, John M.; Wackeroth, Doreen; Zhou, Jia

    2016-11-01

    Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real W and Z bosons that result in Sudakov-like corrections of the form αWllogn(Q2/MW,Z 2) , where αW=α /(4 π sin2θW) and n ≤2 l -1 . The inclusion of EW corrections in predictions for hadron colliders is, therefore, especially important when searching for signals of possible new physics in distributions probing the kinematic regime Q2≫MV2. Next-to-leading order (NLO) EW corrections should also be taken into account when their size [O (α )] is comparable to that of QCD corrections at next-to-next-to-leading order (NNLO) [O (αs2)]. To this end, we have implemented the NLO weak corrections to the neutral-current Drell-Yan process, top-quark pair production and dijet production in the parton-level Monte Carlo program MCFM. This enables a combined study with the corresponding QCD corrections at NLO and NNLO. We provide both the full NLO weak corrections and their Sudakov approximation since the latter is often used for a fast evaluation of weak effects at high energies and can be extended to higher orders. With both the exact and approximate results at hand, the validity of the Sudakov approximation can be readily quantified.

  18. Recent QCD results from CDF

    SciTech Connect

    I. Gorelov

    2001-12-28

    Experimental results on QCD measurements obtained in recent analyses and based on data collected with CDF Detector from the Run 1b Tevatron running cycle are presented. The scope of the talk includes major QCD topics: a measurement of the strong coupling constant {alpha}{sub s}, extracted from inclusive jet spectra and the underlying event energy contribution to a jet cone. Another experimental object of QCD interest, prompt photon production, is also discussed and the updated measurements by CDF of the inclusive photon cross section at 630 GeV and 1800 GeV, and the comparison with NLO QCD predictions is presented.

  19. NNLO QCD corrections to the Drell-Yan cross section in models of TeV-scale gravity

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Banerjee, Pulak; Dhani, Prasanna K.; Kumar, M. C.; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2017-01-01

    The first results on the complete next-to-next-to-leading order (NNLO) Quantum Chromodynamic (QCD) corrections to the production of di-leptons at hadron colliders in large extra dimension models with spin-2 particles are reported in this article. In particular, we have computed these corrections to the invariant mass distribution of the di-leptons taking into account all the partonic sub-processes that contribute at NNLO. In these models, spin-2 particles couple through the energy-momentum tensor of the Standard Model with the universal coupling strength. The tensorial nature of the interaction and the presence of both quark annihilation and gluon fusion channels at the Born level make it challenging computationally and interesting phenomenologically. We have demonstrated numerically the importance of our results at Large Hadron Collider energies. The two-loop corrections contribute an additional 10% to the total cross section. We find that the QCD corrections are not only large but also important to make the predictions stable under renormalisation and factorisation scale variations, providing an opportunity to stringently constrain the parameters of the models with a spin-2 particle.

  20. Experiences on QCD Monte Carlo simulations: a user point of view on the inclusive jet cross-section simulations

    NASA Astrophysics Data System (ADS)

    Francavilla, Paolo

    2011-11-01

    In the last years, important progresses in the theoretical description of the QCD high pT processes have been carried out. In this proceeding, a review of the tools and techniques used to simulate QCD cross sections will be presented from a user point of view. The benchmark process selected for the discussion is the inclusive jet cross section. The proceeding will focus on the uncertainties of the Next to Leading Order (NLO) cross sections, on the strategies adopted to correct for the non-perturbative effects such as the hadronization and the underlying event, and the new techniques derived during the last years to incorporate in a coherent way the NLO matrix elements in the Monte Carlo generators.

  1. Next-to-leading order QCD factorization for semi-inclusive deep inelastic scattering at twist 4.

    PubMed

    Kang, Zhong-Bo; Wang, Enke; Wang, Xin-Nian; Xing, Hongxi

    2014-03-14

    Within the framework of a high-twist approach, we calculate the next-to-leading order (NLO) perturbative QCD corrections to the transverse momentum broadening in semi-inclusive hadron production in deeply inelastic e+A collisions, as well as lepton pair production in p+A collisions. With explicit calculations of both real and virtual contributions, we verify, for the first time, the factorization theorem at twist 4 in NLO for the nuclear-enhanced transverse momentum weighted differential cross section and demonstrate the universality of the associated twist-4 quark-gluon correlation function. We also identify the QCD evolution equation for the twist-4 quark-gluon correlation function in a large nucleus, which can be solved to determine the scale dependence of the jet transport parameter in the study of jet quenching.

  2. A Study of Weak Corrections to Drell-Yan, Top-quark pair and Di-jet Production at High Energies with MCFM

    SciTech Connect

    Campbell, John M.; Wackeroth, Doreen; Zhou, Jia

    2016-08-10

    Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real $W$ and $Z$ bosons that result in Sudakov-like corrections of the form $\\alpha_W^l\\log^n(Q^2/M_{W,Z}^2)$, where $\\alpha_W =\\alpha/(4\\pi\\sin^2\\theta_W)$ and $n\\le 2l-1$. The inclusion of EW corrections in predictions for hadron colliders is therefore especially important when searching for signals of possible new physics in distributions probing the kinematic regime $Q^2 \\gg M_V^2$. Next-to-leading order (NLO) EW corrections should also be taken into account when their size ($\\mathcal{O}(\\alpha)$) is comparable to that of QCD corrections at next-to-next-to-leading order (NNLO) ($\\mathcal{O}(\\alpha_s^2)$). To this end we have implemented the NLO weak corrections to the Neutral-Current Drell-Yan process, top-quark pair production and di-jet production in the parton-level Monte-Carlo program MCFM. This enables a combined study with the corresponding QCD corrections at NLO and NNLO. We provide both the full NLO weak corrections and their Sudakov approximation since the latter is often used for a fast evaluation of weak effects at high energies and can be extended to higher orders. With both the exact and approximate results at hand, the validity of the Sudakov approximation can be readily quantified.

  3. High-Energy QCD Asymptotics of Photon--Photon Collisions

    SciTech Connect

    Brodsky, Stanley J.

    2002-07-26

    The high-energy behavior of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.

  4. Next-to-next-to-leading-order QCD corrections to χc 0 ,2→γ γ

    NASA Astrophysics Data System (ADS)

    Sang, Wen-Long; Feng, Feng; Jia, Yu; Liang, Shuang-Ran

    2016-12-01

    We calculate the next-to-next-to-leading-order perturbative corrections to P -wave quarkonia annihilation decay to two photons, in the framework of nonrelativistic QCD factorization. The order-αs2 short-distance coefficients associated with each helicity amplitude are presented in a semianalytic form, including the "light-by-light" contributions. With sizable next-to-next-to-leading-order corrections, we find a disquieting discrepancy when confronting our state-of-the-art predictions with the latest BESIII measurements, which especially fail to account for the measured χc 2→γ γ width. Incorporating the effects of spin-dependent forces would even exacerbate the situation, since it lifts the degeneracy between the nonperturbative nonrelativistic QCD matrix elements of χc 0 and χc 2 toward the wrong direction. We also present the order-αs2 predictions to χb 0 ,2→γ γ , which await the future experimental test.

  5. Next-to-Leading Order QCD Corrections to Three-Jet Cross Sections with Massive Quarks

    SciTech Connect

    Bernreuther, W.; Brandenburg, A.; Uwer, P.

    1997-07-01

    We calculate the cross section for e{sup +}e{sup {minus}} annihilation into three jets for massive quarks at next-to-leading order in perturbative QCD, both on and off the Z resonance. Our computation allows the implementation of any jet clustering algorithm. We give results for the three-jet cross section involving b quarks for the JADE and Durham algorithms at c.m.energies {radical}(s)=m{sub Z} . We also discuss a three-jet observable that is sensitive to the mass of the b quark. {copyright} {ital 1997} {ital The American Physical Society}

  6. On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model

    SciTech Connect

    Degrassi, Giuseppe; Giardino, Pier Paolo; Gröber, Ramona

    2016-07-21

    Here, we compute the next-to-leading order virtual QCD corrections to Higgs-pair production via gluon fusion. We also present analytic results for the two-loop contributions to the spin-0 and spin-2 form factors in the amplitude. The reducible contributions, given by the double-triangle diagrams, are evaluated exactly while the two-loop irreducible diagrams are evaluated by an asymptotic expansion in heavy top-quark mass up to and including terms of O(1/m$8\\atop{t}$). We estimate that mass effects can reduce the hadronic cross section by at most 10 %, assuming that the finite top-quark mass effects are of similar size in the entire range of partonic energies.

  7. On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model

    DOE PAGES

    Degrassi, Giuseppe; Giardino, Pier Paolo; Gröber, Ramona

    2016-07-21

    Here, we compute the next-to-leading order virtual QCD corrections to Higgs-pair production via gluon fusion. We also present analytic results for the two-loop contributions to the spin-0 and spin-2 form factors in the amplitude. The reducible contributions, given by the double-triangle diagrams, are evaluated exactly while the two-loop irreducible diagrams are evaluated by an asymptotic expansion in heavy top-quark mass up to and including terms of O(1/mmore » $$8\\atop{t}$$). We estimate that mass effects can reduce the hadronic cross section by at most 10 %, assuming that the finite top-quark mass effects are of similar size in the entire range of partonic energies.« less

  8. Logarithmic correction in the deformed AdS{sub 5} model to produce the heavy quark potential and QCD beta function

    SciTech Connect

    He Song; Huang Mei; Yan Qishu

    2011-02-15

    We study the holographic QCD model, which contains a quadratic term -{sigma}z{sup 2} and a logarithmic term -c{sub 0}log[(z{sub IR}-z)/z{sub IR}] with an explicit infrared cutoff z{sub IR} in the deformed AdS{sub 5} warp factor. We investigate the heavy-quark potential for three cases, i.e., with only a quadratic correction, with both quadratic and logarithmic corrections, and with only a logarithmic correction. We solve the dilaton field and dilation potential from the Einstein equation and investigate the corresponding beta function in the Guersoy-Kiritsis-Nitti framework. Our studies show that in the case with only a quadratic correction, a negative {sigma} or the Andreev-Zakharov model is favored to fit the heavy-quark potential and to produce the QCD beta function at 2-loop level; however, the dilaton potential is unbounded in the infrared regime. One interesting observation for the case of positive {sigma} is that the corresponding beta function exists in an infrared fixed point. In the case with only a logarithmic correction, the heavy-quark Cornell potential can be fitted very well, the corresponding beta function agrees with the QCD beta function at 2-loop level reasonably well, and the dilaton potential is bounded from below in the infrared. At the end, we propose a more compact model which has only a logarithmic correction in the deformed warp factor and has less free parameters.

  9. Precise QCD Predictions for the Production of a Z Boson in Association with a Hadronic Jet.

    PubMed

    Gehrmann-De Ridder, A; Gehrmann, T; Glover, E W N; Huss, A; Morgan, T A

    2016-07-08

    We compute the cross section and differential distributions for the production of a Z boson in association with a hadronic jet to next-to-next-to-leading order (NNLO) in perturbative QCD, including the leptonic decay of the Z boson. We present numerical results for the transverse momentum and rapidity distributions of both the Z boson and the associated jet at the LHC. We find that the NNLO corrections increase the NLO predictions by approximately 1% and significantly reduce the scale variation uncertainty.

  10. Renormalization scheme dependence of the two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM.

    PubMed

    Borowka, S; Hahn, T; Heinemeyer, S; Heinrich, G; Hollik, W

    Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, [Formula: see text], at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups presented the two-loop QCD momentum-dependent corrections to [Formula: see text] (Borowka et al., Eur Phys J C 74(8):2994, 2014; Degrassi et al., Eur Phys J C 75(2):61, 2015), using a hybrid on-shell-[Formula: see text] scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in Ref. Degrassi et al. (Eur Phys J C 75(2):61, 2015) of an inconsistency in Ref. Borowka et al. (Eur Phys J C 74(8):2994, 2014) is incorrect. We furthermore compare consistently the results for [Formula: see text] obtained with the top-quark mass renormalized on-shell and [Formula: see text]. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level.

  11. NLO Jet Physics with BlackHat

    SciTech Connect

    Berger, C.F.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Forde, D.; Gleisberg, T.; Ita, H.; Kosower, D.A.; Maitre, D.; /Durham U.

    2010-02-15

    We present several results obtained using the BLACKHAT next-to-leading order QCD program library, in conjunction with SHERPA. In particular, we present distributions for vector boson plus 1,2,3-jet production at the Tevatron and at the asymptotic running energy of the Large Hadron Collider, including new Z + 3-jet distributions. The Z + 2-jet predictions for the second-jet P{sub T} distribution are compared to CDF data. We present the jet-emission probability at NLO in W + 2-jet events at the LHC, where the tagging jets are taken to be the ones furthest apart in pseudorapidity. We analyze further the large left-handed W{sup {+-}} polarization, identified in our previous study, for W bosons produced at high P{sub T} at the LHC.

  12. Precision QCD measurements at HERA

    NASA Astrophysics Data System (ADS)

    Pirumov, Hayk

    2014-11-01

    A review of recent experimental results on perturbative QCD from the HERA experiments H1 and ZEUS is presented. All inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised ep scattering are combined. They span six orders of magnitude in negative four-momentum-transfer squared, Q2, and in Bjorken x. This data set is used as the sole input to NLO and NNLO QCD analyses to determine new sets of parton distributions, HERAPDF2.0, with small experimental uncertainties and an estimate of model and parametrisation uncertainties. Also shown are new results on inclusive jet, dijet and trijet differential cross sections measured in neutral current deep inelastic scattering. The precision jet data is used to extract the strong coupling αs at NLO with small experimental errors.

  13. Next-to-next-to-leading order QCD corrections in models of TeV-scale gravity

    NASA Astrophysics Data System (ADS)

    de Florian, Daniel; Mahakhud, Maguni; Mathews, Prakash; Mazzitelli, Javier; Ravindran, V.

    2014-04-01

    We compute the next-to-next-to-leading order QCD corrections to the graviton production in models of TeV-scale gravity, within the soft-virtual approximation. For the Arkani-Hamed, Dimopoulos and Dvali (ADD) model we evaluate the contribu-tion to the Drell-Yan cross section, and we present distributions for the di-lepton invariant mass at the LHC with a center-of-mass energy = 14 TeV. We find a large K factor ( K ≃ 1 .8) for large values of invariant mass, which is the region where the ADD graviton contribution dominates the cross section. The increase in the cross section with respect to the previous order result is larger than 10% in the same invariant mass region. We also observe a substantial reduction in the scale uncertainty. For the Randall-Sundrum (RS) model we computed the total single graviton production cross section at the LHC. We find an increase between 10% and 13% with respect to the next-to-leading order prediction, depending on the model parameters. We provide an analytic expression for the NNLO K factor as a function of the lightest RS graviton mass.

  14. Two-loop master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering

    NASA Astrophysics Data System (ADS)

    Bonciani, Roberto; Di Vita, Stefano; Mastrolia, Pierpaolo; Schubert, Ulrich

    2016-09-01

    We present the calculation of the master integrals needed for the two-loop QCD × EW corrections to q+overline{q}to {l}-+{l}+ and q+overline{q}^'to {l}-+overline{ν} , for massless external particles. We treat the W and Z bosons as degenerate in mass. We identify three types of diagrams, according to the presence of massive internal lines: the no-mass type, the one-mass type, and the two-mass type, where all massive propagators, when occurring, contain the same mass value. We find a basis of 49 master integrals and evaluate them with the method of the differential equations. The Magnus exponential is employed to choose a set of master integrals that obeys a canonical system of differential equations. Boundary conditions are found either by matching the solutions onto simpler integrals in special kinematic configurations, or by requiring the regularity of the solution at pseudothresholds. The canonical master integrals are finally given as Taylor series around d = 4 space-time dimensions, up to order four, with coefficients given in terms of iterated integrals, respectively up to weight four.

  15. NLO cross sections in 4 dimensions without DREG

    NASA Astrophysics Data System (ADS)

    Hernández-Pinto, R. J.; Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G. F. R.

    2016-10-01

    In this review, we present a new method for computing physical cross sections at NLO accuracy in QCD without using the standard Dimensional Regularisation. The algorithm is based on the Loop-Tree Duality theorem, which allow us to obtain loop integrals as a sum of phase-space integrals; in this way, transforming loop integrals into phase-space integrals, we propose a method to merge virtual and real contributions in order to find observables at NLO in d = 4 space-time dimensions. In addition, the strategy described is used for computing the γ* → qq̅(g) process. A more detailed discussion related on this topic can be found in Ref [1].

  16. Differential Higgs boson pair production at next-to-next-to-leading order in QCD

    NASA Astrophysics Data System (ADS)

    de Florian, Daniel; Grazzini, Massimiliano; Hanga, Catalin; Kallweit, Stefan; Lindert, Jonas M.; Maierhöfer, Philipp; Mazzitelli, Javier; Rathlev, Dirk

    2016-09-01

    We report on the first fully differential calculation for double Higgs boson production through gluon fusion in hadron collisions up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. The calculation is performed in the heavy-top limit of the Standard Model, and in the phenomenological results we focus on pp collisions at √{s}=14 TeV. We present differential distributions through NNLO for various observables including the transverse-momentum and rapidity distributions of the two Higgs bosons. NNLO corrections are at the level of 10%-25% with respect to the next-to-leading order (NLO) prediction with a residual scale uncertainty of 5%-15% and an overall mild phase-space dependence. Only at NNLO the perturbative expansion starts to converge yielding overlapping scale uncertainty bands between NNLO and NLO in most of the phase-space. The calculation includes NLO predictions for pp → HH + jet + X. Corrections to the corresponding distributions exceed 50% with a residual scale dependence of 20%-30%.

  17. QCD tests at CDF

    SciTech Connect

    Kovacs, E.; CDF Collaboration

    1996-02-01

    We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E{sub T}>200 GeV, or dijet masses > 400 GeV/c{sup 2}. We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k{sub T} smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution.

  18. Study of weak corrections to Drell-Yan, top-quark pair, and dijet production at high energies with MCFM

    SciTech Connect

    Campbell, John M.; Wackeroth, Doreen; Zhou, Jia

    2016-11-29

    Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real W and Z bosons that result in Sudakov-like corrections of the form α$l\\atop{W}$logn(Q2/M2$\\atop{W,Z}$), where αW=α/(4π sin2θW) and n ≤ 2l-1. The inclusion of EW corrections in predictions for hadron colliders is, therefore, especially important when searching for signals of possible new physics in distributions probing the kinematic regime Q2>>M$2\\atop{V}$. Next-to-leading order (NLO) EW corrections should also be taken into account when their size [O(α)] is comparable to that of QCD corrections at next-to-next-to-leading order (NNLO) [O(α$2\\atop{s}$)]. To this end, we have implemented the NLO weak corrections to the neutral-current Drell-Yan process, top-quark pair production and dijet production in the parton-level Monte Carlo program MCFM. This enables a combined study with the corresponding QCD corrections at NLO and NNLO. We provide both the full NLO weak corrections and their Sudakov approximation since the latter is often used for a fast evaluation of weak effects at high energies and can be extended to higher orders. Finally, with both the exact and approximate results at hand, the validity of the Sudakov approximation can be readily quantified.

  19. Study of weak corrections to Drell-Yan, top-quark pair, and dijet production at high energies with MCFM

    DOE PAGES

    Campbell, John M.; Wackeroth, Doreen; Zhou, Jia

    2016-11-29

    Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real W and Z bosons that result in Sudakov-like corrections of the form αmore » $$l\\atop{W}$$logn(Q2/M2$$\\atop{W,Z}$$), where αW=α/(4π sin2θW) and n ≤ 2l-1. The inclusion of EW corrections in predictions for hadron colliders is, therefore, especially important when searching for signals of possible new physics in distributions probing the kinematic regime Q2>>M$$2\\atop{V}$$. Next-to-leading order (NLO) EW corrections should also be taken into account when their size [O(α)] is comparable to that of QCD corrections at next-to-next-to-leading order (NNLO) [O(α$$2\\atop{s}$$)]. To this end, we have implemented the NLO weak corrections to the neutral-current Drell-Yan process, top-quark pair production and dijet production in the parton-level Monte Carlo program MCFM. This enables a combined study with the corresponding QCD corrections at NLO and NNLO. We provide both the full NLO weak corrections and their Sudakov approximation since the latter is often used for a fast evaluation of weak effects at high energies and can be extended to higher orders. Finally, with both the exact and approximate results at hand, the validity of the Sudakov approximation can be readily quantified.« less

  20. Finite-volume QED corrections to decay amplitudes in lattice QCD

    NASA Astrophysics Data System (ADS)

    Lubicz, V.; Martinelli, G.; Sachrajda, C. T.; Sanfilippo, F.; Simula, S.; Tantalo, N.

    2017-02-01

    We demonstrate that the leading and next-to-leading finite-volume effects in the evaluation of leptonic decay widths of pseudoscalar mesons at O (α ) are universal; i.e. they are independent of the structure of the meson. This is analogous to a similar result for the spectrum but with some fundamental differences, most notably the presence of infrared divergences in decay amplitudes. The leading nonuniversal, structure-dependent terms are of O (1 /L2) [compared to the O (1 /L3) leading nonuniversal corrections in the spectrum]. We calculate the universal finite-volume effects, which requires an extension of previously developed techniques to include a dependence on an external three-momentum (in our case, the momentum of the final-state lepton). The result can be included in the strategy proposed in Ref. [N. Carrasco et al.,Phys. Rev. D 91, 074506 (2015)., 10.1103/PhysRevD.91.074506] for using lattice simulations to compute the decay widths at O (α ), with the remaining finite-volume effects starting at order O (1 /L2). The methods developed in this paper can be generalized to other decay processes, most notably to semileptonic decays, and hence open the possibility of a new era in precision flavor physics.

  1. Constraints on hard spectator scattering and annihilation corrections in Bu,d → PV decays within QCD factorization

    NASA Astrophysics Data System (ADS)

    Sun, Junfeng; Chang, Qin; Hu, Xiaohui; Yang, Yueling

    2015-04-01

    In this paper, we investigate the contributions of hard spectator scattering and annihilation in B → PV decays within the QCD factorization framework. With available experimental data on B → πK* , ρK , πρ and Kϕ decays, comprehensive χ2 analyses of the parameters XA,Hi,f (ρA,Hi,f, ϕA,Hi,f) are performed, where XAf (XAi) and XH are used to parameterize the endpoint divergences of the (non)factorizable annihilation and hard spectator scattering amplitudes, respectively. Based on χ2 analyses, it is observed that (1) The topology-dependent parameterization scheme is feasible for B → PV decays; (2) At the current accuracy of experimental measurements and theoretical evaluations, XH = XAi is allowed by B → PV decays, but XH ≠ XAf at 68% C.L.; (3) With the simplification XH = XAi, parameters XAf and XAi should be treated individually. The above-described findings are very similar to those obtained from B → PP decays. Numerically, for B → PV decays, we obtain (ρA,Hi ,ϕA,Hi [ ° ]) = (2.87-1.95+0.66 , -145-21+14) and (ρAf, ϕAf [ ° ]) = (0.91-0.13+0.12 , -37-9+10) at 68% C.L. With the best-fit values, most of the theoretical results are in good agreement with the experimental data within errors. However, significant corrections to the color-suppressed tree amplitude α2 related to a large ρH result in the wrong sign for ACPdir (B- →π0K*-) compared with the most recent BABAR data, which presents a new obstacle in solving "ππ" and "πK" puzzles through α2. A crosscheck with measurements at Belle (or Belle II) and LHCb, which offer higher precision, is urgently expected to confirm or refute such possible mismatch.

  2. Supersymmetric QCD corrections to e{sup +}e{sup -}{yields}tbH{sup -} and the Bernstein-Tkachov method of loop integration

    SciTech Connect

    Kniehl, B. A.; Maniatis, M.; Weber, M. M.

    2011-01-01

    The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the standard model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM, completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method.

  3. Next-to-leading-order QCD corrections to Higgs boson production in association with a top quark pair and a jet.

    PubMed

    van Deurzen, H; Luisoni, G; Mastrolia, P; Mirabella, E; Ossola, G; Peraro, T

    2013-10-25

    We present the calculation of the cross section for Higgs boson production in association with a top quark pair plus one jet, at next-to-leading-order accuracy in QCD. All mass dependence is retained without recurring to any approximation. After including the complete next-to-leading-order QCD corrections, we observe a strong reduction in the scale dependence of the result. We also show distributions for the invariant mass of the top quark pair, with and without the additional jet, and for the transverse momentum and the pseudorapidity of the Higgs boson. Results for the virtual contributions are obtained with a novel reduction approach based on integrand decomposition via the Laurent expansion, as implemented in the library, NINJA. Cross sections and differential distributions are obtained with an automated setup which combines the GOSAM and SHERPA frameworks.

  4. Vibronic analysis of NLO spectra of PDA crystals and films

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Debasis; Soos, Zoltan G.

    1995-09-01

    A joint analysis of recent NLO spectra of polydiacetylene films and crystals is presented, using vibronic contributions in the Condon approximation and (pi) -electronic states from Pariser-Parr-Pople theory. Raman resonances are shown to be corrections to average excitations. An even-parity state above the photoconduction edge is found in two-photon absorption of PDA-PTS crystals and nondegenerate four-wave-mixing spectra of PDA- 4BCMU films. We incorporate linear and resonance Raman spectra in the joint NLO analysis and emphasize the different roles of electronic and vibrational contributions.

  5. Fully differential NLO predictions for the rare muon decay

    NASA Astrophysics Data System (ADS)

    Pruna, G. M.; Signer, A.; Ulrich, Y.

    2017-02-01

    Using the automation program GoSam, fully differential NLO corrections were obtained for the rare decay of the muon μ → eν ν bar ee. This process is an important Standard Model background to searches of the Mu3e Collaboration for lepton-flavor violation, as it becomes indistinguishable from the signal μ → 3 e if the neutrinos carry little energy. With our NLO program we are able to compute the branching ratio as well as custom-tailored observables for the experiment. With minor modifications, related decays of the tau can also be computed.

  6. Two-loop electroweak corrections to Higgs-gluon couplings to higher orders in the dimensional regularization parameter

    NASA Astrophysics Data System (ADS)

    Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo

    2017-03-01

    We compute the two-loop electroweak correction to the production of the Higgs boson in gluon fusion to higher orders in the dimensional-regularization parameter ε = (d - 4) / 2. We employ the method of differential equations augmented by the choice of a canonical basis to compute the relevant integrals and express them in terms of Goncharov polylogarithms. Our calculation provides useful results for the computation of the NLO mixed QCD-electroweak corrections to gg → H and establishes the necessary framework towards the calculation of the missing three-loop virtual corrections.

  7. NLO evolution of color dipoles in N=4 SYM

    SciTech Connect

    Chirilli, Giovanni A.; Balitsky, Ian

    2009-07-04

    Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformal ${\\cal N}$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.

  8. Triple vector boson production through Higgs-Strahlung with NLO multijet merging

    SciTech Connect

    Hoeche, Stefan; Kraus, Frank; Pozzorini, Stephano; Schoenherr, Marek; Thompson, Jennifer M.; Zapp, Korinna C.

    2014-07-25

    Triple gauge boson hadroproduction, in particular the production of three W-bosons at the LHC, is considered at next-to leading order accuracy in QCD. The NLO matrix elements are combined with parton showers. Multijet merging is invoked such that NLO matrix elements with one additional jet are also included. The studies here incorporate both the signal and all relevant backgrounds for V H production with the subsequent decay of the Higgs boson into W– or τ–- pairs. They have been performed using SHERPA+OPENLOOPS in combination with COLLIER.

  9. Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO

    DOE PAGES

    van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin; ...

    2016-04-22

    Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.

  10. Short-distance QCD corrections to {K}^0{overline{K}}^0 mixing at next-to-leading order in Left-Right models

    NASA Astrophysics Data System (ADS)

    Bernard, Véronique; Descotes-Genon, Sébastien; Silva, Luiz Vale

    2016-08-01

    Left-Right (LR) models are extensions of the Standard Model where left-right symmetry is restored at high energies, and which are strongly constrained by kaon mixing described in the framework of the |Δ S| = 2 effective Hamiltonian. We consider the short-distance QCD corrections to this Hamiltonian both in the Standard Model (SM) and in LR models. The leading logarithms occurring in these short-distance corrections can be resummed within a rigourous Effective Field Theory (EFT) approach integrating out heavy degrees of freedom progressively, or using an approximate simpler method of regions identifying the ranges of loop momentum generating large logarithms in the relevant two-loop diagrams. We compare the two approaches in the SM at next-to-leading order, finding a very good agreement when one scale dominates the problem, but only a fair agreement in the presence of a large logarithm at leading order. We compute the short-distance QCD corrections for LR models at next-to-leading order using the method of regions, and we compare the results with the EFT approach for the W W ' box with two charm quarks (together with additional diagrams forming a gauge-invariant combination), where a large logarithm occurs already at leading order. We conclude by providing next-to-leading-order estimates for cc, ct and tt boxes in LR models.

  11. Next-to-leading order QCD corrections to χc JW+b associated production from top-quark decay

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Li, Gang; Song, Mao; Ma, Wen-Gan; Zhang, Ren-You

    2016-11-01

    We calculate the next-to-leading order QCD corrections to the excited charmonium χc J associated with W+b production from top-quark decay. Our results show that detecting the χc 0 production from top-quark decay is very difficult, but the χc 1 and χc 2 productions have the potential to be detected at the LHC. If the prompt χc J production from top-quark decay is really detected at the LHC, it will be useful not only for investigating J /ψ production from top-quark decay but also for understanding the heavy quarkonium production mechanism.

  12. Next-to-leading-order QCD corrections to jet cross sections and jet rates in deeply inelastic electron-proton scattering

    SciTech Connect

    Graudenz, D. )

    1994-04-01

    Jet cross sections in deeply inelastic scattering in the case of transverse photon exchange for the production of (1+1) and (2+1) jets are calculated in next-to-leading-order QCD (here the +1'' stands for the target remnant jet, which is included in the jet definition). The jet definition scheme is based on a modified JADE cluster algorithm. The calculation of the (2+1) jet cross section is described in detail. Results for the virtual corrections as well as for the real initial- and final-state corrections are given explicitly. Numerical results are stated for jet cross sections as well as for the ratio [sigma][sub (2+1) jet]/[sigma][sub tot] that can be expected at E665 and DESY HERA. Furthermore the scale ambiguity of the calculated jet cross sections is studied and different parton density parametrizations are compared.

  13. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators.

    PubMed

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  14. Recent Developments in Perturbative QCD

    SciTech Connect

    Dixon, Lance J.; /SLAC

    2005-07-11

    I review recent progress in perturbative QCD on two fronts: extending next-to-next-to-leading order QCD corrections to a broader range of collider processes, and applying twistor-space methods (and related spinoffs) to computations of multi-parton scattering amplitudes.

  15. A SUSY GUT of flavour with S 4 × SU(5) to NLO

    NASA Astrophysics Data System (ADS)

    Hagedorn, Claudia; King, Stephen F.; Luhn, Christoph

    2010-06-01

    We construct a Supersymmetric (SUSY) Grand Unified Theory (GUT) of Flavour based on S 4 × SU(5), together with an additional (global or local) Abelian symmetry, and study it to next-to-leading order (NLO) accuracy. The model includes a successful description of quark and lepton masses and mixing angles at leading order (LO) incorporating the Gatto-Sartori-Tonin (GST) relation and the Georgi-Jarlskog (GJ) relations. We study the vacuum alignment arising from F-terms to NLO and such corrections are shown to have a negligible effect on the results for fermion masses and mixings achieved at LO. Tri-bimaximal (TB) mixing in the neutrino sector is predicted very accurately up to NLO corrections of order 0.1%. Including charged lepton mixing corrections implies small deviations from TB mixing described by a precise sum rule, accurately maximal atmospheric mixing and a reactor mixing angle close to three degrees.

  16. NLO evolution of color dipoles in N=4 SYM

    DOE PAGES

    Chirilli, Giovanni A.; Balitsky, Ian

    2009-07-04

    Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformalmore » $${\\cal N}$$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.« less

  17. Techniques for the treatment of IR divergences in decay processes at NLO and application to the top-quark decay.

    PubMed

    Basso, Lorenzo; Dittmaier, Stefan; Huss, Alexander; Oggero, Luisa

    We present the extension of two general algorithms for the treatment of infrared singularities arising in electroweak corrections to decay processes at next-to-leading order: the dipole subtraction formalism and the one-cutoff slicing method. The former is extended to the case of decay kinematics which has not been considered in the literature so far. The latter is generalised to production and decay processes with more than two charged particles, where new "surface" terms arise. Arbitrary patterns of massive and massless external particles are considered, including the treatment of infrared singularities in dimensional or mass regularisation. As an application of the two techniques we present the calculation of the next-to-leading order QCD and electroweak corrections to the top-quark decay width including all off-shell and decay effects of intermediate [Formula: see text] bosons. The result, e.g., represents a building block of a future calculation of NLO electroweak effects to off-shell top-quark pair ([Formula: see text]) production. Moreover, this calculation can serve as the first step towards an event generator for top-quark decays at next-to-leading order accuracy, which can be used to attach top-quark decays to complicated many-particle top-quark processes, such as for [Formula: see text] or [Formula: see text].

  18. Photon impact factor in the NLO

    SciTech Connect

    Balitsky, Ian

    2013-04-01

    The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as a NLO k{sub T}-factorization formula for the structure functions of small-x deep inelastic scattering.

  19. Baryons and QCD

    SciTech Connect

    Nathan Isgur

    1997-03-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.

  20. CGC/saturation approach: A new impact-parameter-dependent model in the next-to-leading order of perturbative QCD

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Levin, Eugene; Meneses, Rodrigo; Potashnikova, Irina

    2016-12-01

    This paper is the first attempt to build a color glass condensate/saturation model based on the next-to-leading-order (NLO) corrections to linear and nonlinear evolution in QCD. We assume that the renormalization scale is the saturation momentum and find that the scattering amplitude has geometric scaling behavior deep in the saturation domain with the explicit formula of this behavior at large τ =r2Qs2. We build a model that includes this behavior, as well as the known ingredients: (i) the behavior of the scattering amplitude in the vicinity of the saturation momentum, using the NLO Balitsky-Fadin-Kuraev-Lipatov kernel, (ii) the pre-asymptotic behavior of ln (Qs2(Y ) ) , as a function of Y , and (iii) the impact parameter behavior of the saturation momentum, which has exponential behavior ∝exp (-m b ) at large b . We demonstrate that the model is able to describe the experimental data for the deep inelastic structure function. Despite this, our model has difficulties that are related to the small value of the QCD coupling at Qs(Y0) and the large values of the saturation momentum, which indicate the theoretical inconsistency of our description.

  1. Resummation of threshold corrections in QCD to power accuracy: The Drell-Yan cross section as a case study

    SciTech Connect

    Beneke, M.; Braun, V.M.

    1996-05-01

    Resummation of large infrared logarithms in perturbation theory can, in certain circumstances, enhance the sensitivity to small gluon momenta and introduce spurious nonperturbative contributions. In particular, different procedures--equivalent in perturbation theory--to organize this resummation can differ by 1/Q power corrections. The question arises whether one can formulate resummation procedures that are explicitly consistent with the infrared behavior of finite-order Feynman diagrams. They explain how this problem can be treated and resolved in Drell-Yan (lepton pair) production and briefly discuss more complicated cases, such as top quark production and event shape variables in the e{sup +}e{sup {minus}} annihilation.

  2. Hard QCD and hadronic final state at HERA

    NASA Astrophysics Data System (ADS)

    Valkárová, Alice

    2017-03-01

    The production of inclusive jets, dijets and trijets was investigated with the high statistics HERA II DIS data. The H1 experiment has determined the corresponding cross sections with improved experimental precision and sophisticated method of unfolding, compared to previous measurements. The results were compared with NLO QCD and NNLO QCD calculations for the first time. Signals of QCD instanton-induced processes were searched for in neutral current deep-inelastic scattering with high momentum transfer Q2 by H1 collaboration. Compared to earlier publications, the limits were improved by an order of magnitude. A search for a narrow baryonic state in the p KS0 and p ¯KS0 system has been performed with the ZEUS detector. Measurements with the ZEUS data in DIS of isolated photons were reported, including studies of kinematic variables sensitive to the event dynamics. The measurements were compared to MC models and to theoretical calculations based on kt factorisation QCD approach.

  3. Organic NLO Polymers. 5. Homopolymerization of Indole Based NLO-phore: A Heterocycle Chi(2)NLO Main-Chain Polymer

    DTIC Science & Technology

    1994-05-28

    Lackrltz" and Lee-Yin Liu 2J. 1 wje I Oi School of Chemical SA~giiaeuiat, Purdue Unioersity, Wesit NK InOR Laftbyet ,. A 479071Z26 cHOI, coa 9t Ti (Os3...o /co m. c~ Introduction The design and synthesis of nw NLO materials for i .. CbYt and bucyl optoacave device appli&ctons an be accomplished...through a 2 variety of schemne.’ Tin development of polymeric J" NLO 2Qj:Q1j’TJ materials has boen approached firom a variety od ceative Is on design

  4. Organometallic NLO Polymers. Accordian Main-Chain NLO Polymers of Ferrocene

    DTIC Science & Technology

    1991-12-13

    suggest that the reaction conditions required to carry out the Lewis acid catalyzed transesterification polycondensation are having deleterious effects on...organometallic main-chain NLO polymers. Our research 1"n -U has continued to f--cus on ferrocene based NLO polymers . MFP because of the outstanding results...under rt-ad pressure. The crude product wargood functional group tolerance because of the mild base (i.e. dissolved in chloroform and precipitated in

  5. Electroweak corrections to top quark pair production in association with a hard photon at hadron colliders

    NASA Astrophysics Data System (ADS)

    Duan, Peng-Fei; Zhang, Yu; Wang, Yong; Song, Mao; Li, Gang

    2017-03-01

    We present the next-to-leading order (NLO) electroweak (EW) corrections to the top quark pair production associated with a hard photon at the current and future hadron colliders. The dependence of the leading order (LO) and NLO EW corrected cross sections on the photon transverse momentum cut are investigated. We also provide the LO and NLO EW corrected distributions of the transverse momentum of final top quark and photon and the invariant mass of top quark pair and top-antitop-photon system. The results show that the NLO EW corrections are significant in high energy regions due to the EW Sudakov effect.

  6. Ghost-gluon coupling, power corrections, and {Lambda}{sub MS} from twisted-mass lattice QCD at N{sub f}=2

    SciTech Connect

    Blossier, B.; Boucaud, Ph.; Gravina, M.; Pene, O.; De soto, F.; Morenas, V.

    2010-08-01

    We present results concerning the nonperturbative evaluation of the ghost-gluon running QCD coupling constant from N{sub f}=2 twisted-mass lattice calculations. A novel method for calibrating the lattice spacing, independent of the string tension and hadron spectrum, is presented with results in agreement with previous estimates. The value of {Lambda}{sub MS} is computed from the running of the QCD coupling only after extrapolating to zero dynamical quark mass and after removing a nonperturbative operator-product expansion contribution that is assumed to be dominated by the dimension-two gluon condensate. The effect due to the dynamical quark mass in the determination of {Lambda}{sub MS} is discussed.

  7. Continuous Advances in QCD 2008

    NASA Astrophysics Data System (ADS)

    Peloso, Marco M.

    2008-12-01

    1. High-order calculations in QCD and in general gauge theories. NLO evolution of color dipoles / I. Balitsky. Recent perturbative results on heavy quark decays / J. H. Piclum, M. Dowling, A. Pak. Leading and non-leading singularities in gauge theory hard scattering / G. Sterman. The space-cone gauge, Lorentz invariance and on-shell recursion for one-loop Yang-Mills amplitudes / D. Vaman, Y.-P. Yao -- 2. Heavy flavor physics. Exotic cc¯ mesons / E. Braaten. Search for new physics in B[symbol]-mixing / A. J. Lenz. Implications of D[symbol]-D[symbol] mixing for new physics / A. A. Petrov. Precise determinations of the charm quark mass / M. Steinhauser -- 3. Quark-gluon dynamics at high density and/or high temperature. Crystalline condensate in the chiral Gross-Neveu model / G. V. Dunne, G. Basar. The strong coupling constant at low and high energies / J. H. Kühn. Quarkyonic matter and the phase diagram of QCD / L. McLerran. Statistical QCD with non-positive measure / J. C. Osborn, K. Splittorff, J. J. M. Verbaarschot. From equilibrium to transport properties of strongly correlated fermi liquids / T. Schäfer. Lessons from random matrix theory for QCD at finite density / K. Splittorff, J. J. M. Verbaarschot -- 4. Methods and models of holographic correspondence. Soft-wall dynamics in AdS/QCD / B. Batell. Holographic QCD / N. Evans, E. Threlfall. QCD glueball sum rules and vacuum topology / H. Forkel. The pion form factor in AdS/QCD / H. J. Kwee, R. F. Lebed. The fast life of holographic mesons / R. C. Myers, A. Sinha. Properties of Baryons from D-branes and instantons / S. Sugimoto. The master space of N = 1 quiver gauge theories: counting BPS operators / A. Zaffaroni. Topological field congurations. Skyrmions in theories with massless adjoint quarks / R. Auzzi. Domain walls, localization and confinement: what binds strings inside walls / S. Bolognesi. Static interactions of non-abelian vortices / M. Eto. Vortices which do not abelianize dynamically: semi

  8. η(c) production at the LHC challenges nonrelativistic QCD factorization.

    PubMed

    Butenschoen, Mathias; He, Zhi-Guo; Kniehl, Bernd A

    2015-03-06

    We analyze the first measurement of η_{c} production, performed by the LHCb Collaboration, in the nonrelativistic QCD (NRQCD) factorization framework at next-to-leading order (NLO) in the strong-coupling constant α_{s} and the relative velocity v of the bound quarks including the feeddown from h_{c} mesons. Converting the long-distance matrix elements extracted by various groups from J/ψ yield and polarization data to the η_{c} case using heavy-quark spin symmetry, we find that the resulting NLO NRQCD predictions greatly overshoot the LHCb data, while the color-singlet model provides an excellent description.

  9. Corrections.

    PubMed

    2015-07-01

    Lai Y-S, Biedermann P, Ekpo UF, et al. Spatial distribution of schistosomiasis and treatment needs in sub-Saharan Africa: a systematic review and geostatistical analysis. Lancet Infect Dis 2015; published online May 22. http://dx.doi.org/10.1016/S1473-3099(15)00066-3—Figure 1 of this Article should have contained a box stating ‘100 references added’ with an arrow pointing inwards, rather than a box stating ‘199 records excluded’, and an asterisk should have been added after ‘1473 records extracted into GNTD’. Additionally, the positioning of the ‘§ and ‘†’ footnotes has been corrected in table 1. These corrections have been made to the online version as of June 4, 2015.

  10. Correction.

    PubMed

    2016-02-01

    In the article by Guessous et al (Guessous I, Pruijm M, Ponte B, Ackermann D, Ehret G, Ansermot N, Vuistiner P, Staessen J, Gu Y, Paccaud F, Mohaupt M, Vogt B, Pechère-Bertschi A, Martin PY, Burnier M, Eap CB, Bochud M. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions. Hypertension. 2015;65:691–696. doi: 10.1161/HYPERTENSIONAHA.114.04512), which published online ahead of print December 8, 2014, and appeared in the March 2015 issue of the journal, a correction was needed.One of the author surnames was misspelled. Antoinette Pechère-Berstchi has been corrected to read Antoinette Pechère-Bertschi.The authors apologize for this error.

  11. Sudakov resummation in QCD

    NASA Astrophysics Data System (ADS)

    Bolzoni, Paolo

    2007-09-01

    In this PhD thesis, we analyze and generalize the renormalization group approach to the resummation of large logarithms in the perturbative expansion due to soft and collinear multiparton emissions. In particular, we present a generalization of this approach to prompt photon production. It is interesting to see that also with the more intricate two-scale kinematics that characterizes prompt photon production in the soft limit, it remains true that resummation simply follows from general kinematic properties of the phase space. Also, this approach does not require a separate treatment of individual colour structures when more than one colour structure contributes to fixed order results. However, the resummation formulae obtained here turn out to be less predictive than previous results: this depends on the fact that here neither specific factorization properties of the cross section in the soft limit is assumed, nor that soft emission satisfies eikonal-like relations. We also derive resumation formulae to all logarithmic accuracy and valid for all values of rapidity for the prompt photon production and the Drell-Yan rapidity distributions. We show that for the fixed-target experiment E866/NuSea, the NLL resummation corrections are comparable to NLO fixed-order corrections and are crucial to obtain agreement with the data. Finally we outline also possible future applications of the renormalization group approach.

  12. Synthesis of Polymers Containing Covalently Bonded NLO Chromophores

    NASA Technical Reports Server (NTRS)

    Denga, Xiao-Hua; Sanghadasa, Mohan; Walton, Connie; Penn, Benjamin B.; Amai, Robert L. S.; Clark, Ronald D.

    1998-01-01

    Polymers containing covalently bonded nonlinear optical (NLO) chromophores are expected to possess special properties such as greater stability, better mechanical processing, and easier film formation than their non-polymeric equivalent. For the present work, polymethylmethacrylate (PMMA) was selected as the basic polymer unit on which to incorporate different NLO chromophores. The NLO components were variations of DIVA {[2-methoxyphenyl methylidene]-propanedinitrile} which we prepared from vanillin derivatives and malononitrile. These were esterified with methacrylic acid and polymerized either directly or with methyl methacrylate to form homopolymers or copolymers respectively. Characterization of the polymers and NLO property studies are underway.

  13. NLO Hierarchy of Wilson Lines Evolution

    SciTech Connect

    Balitsky, Ian

    2015-03-01

    The high-energy behavior of QCD amplitudes can be described in terms of the rapidity evolution of Wilson lines. I present the hierarchy of evolution equations for Wilson lines in the next-to-leading order.

  14. Correction

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars Geology, v. 26, p. 947 950 (October 1998) This article had the following printing errors: p. 947, Abstract, line 11, “sepia” should be “septa” p. 947, 1st paragraph under Introduction, line 2, “creep” should be “deep” p. 948, column 1, 2nd paragraph, line 7, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 1, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 5, “19774” should be “1977)” p. 949, column 1, 4th paragraph, line 7, “in particular” should be “In particular” CORRECTION Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming Geology, v. 26, p. 1011 1014 (November 1998) An error appeared in the References Cited. The correct reference appears below: Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D., 1998, Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming): Earth and Planetary Science Letters, v. 160, p. 193 208.

  15. Simple analytic QCD model with perturbative QCD behavior at high momenta

    SciTech Connect

    Contreras, Carlos; Espinosa, Olivier; Cvetic, Gorazd; Martinez, Hector E.

    2010-10-01

    Analytic QCD models are those where the QCD running coupling has the physically correct analytic behavior, i.e., no Landau singularities in the Euclidean regime. We present a simple analytic QCD model in which the discontinuity function of the running coupling at high momentum scales is the same as in perturbative QCD (just like in the analytic QCD model of Shirkov and Solovtsov), but at low scales it is replaced by a delta function which parametrizes the unknown behavior there. We require that the running coupling agree to a high degree with the perturbative coupling at high energies, which reduces the number of free parameters of the model from four to one. The remaining parameter is fixed by requiring the reproduction of the correct value of the semihadronic tau decay ratio.

  16. Heavy-quark fragmentation functions at next-to-leading perturbative QCD

    NASA Astrophysics Data System (ADS)

    Moosavi Nejad, S. M.; Sartipi Yarahmadi, P.

    2016-10-01

    It is well known that the dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. This mechanism is described by the fragmentation functions (FFs) which are the universal and process-independent functions. Here, we review the perturbative FFs formalism as an appropriate tool for studying these hadronization processes and detail the extension of this formalism at next-to-leading order (NLO). Using Suzuki's model, we calculate the perturbative QCD FF for a heavy quark to fragment into a S-wave heavy meson at NLO. As an example, we study the LO and NLO FFs for a charm quark to split into the S-wave D-meson and compare our analytic results both with experimental data and well-known phenomenological models.

  17. Off-shell single-top production at NLO matched to parton showers

    SciTech Connect

    Frederix, R.; Frixione, S.; Papanastasiou, A. S.; Prestel, S.; Torrielli, P.

    2016-06-06

    We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the Herwig6 and Pythia8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. Furthermore, we formulate our approach so that it can be applied to the general case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.

  18. Off-shell single-top production at NLO matched to parton showers

    DOE PAGES

    Frederix, R.; Frixione, S.; Papanastasiou, A. S.; ...

    2016-06-06

    We study the hadroproduction of a Wb pair in association with a light jet, focusing on the dominant t-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the Herwig6 and Pythia8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell t-channel single-top production. Furthermore, we formulate our approach so that it can be applied to the generalmore » case of matrix elements that feature coloured intermediate resonances and are matched to parton showers.« less

  19. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    PubMed

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-05

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  20. Top-pair production and decay at NLO matched with parton showers

    DOE PAGES

    Campbell, John M.; Ellis, R. Keith; Nason, Paolo; ...

    2015-04-21

    We present a next-to-leading order (NLO) calculation of tt¯ production in hadronic collisions interfaced to shower generators according to the POWHEG method. We start from an NLO result from previous work, obtained in the zero width limit, where radiative corrections to both production and decays are included. The POWHEG interface required an extension of the POWHEG BOX framework, in order to deal with radiation from the decay of resonances. This extension is fully general (i.e. it can be applied in principle to any process considered in the zero width limit), and is here applied for the first time. In ordermore » to perform a realistic simulation, we introduce finite width effects using different approximations, that we validated by comparing with published exact NLO results. We have interfaced our POWHEG code to the PYTHIA8 shower Monte Carlo generator. At this stage, we dealt with novel issues related to the treatment of resonances, especially with regard to the initial scale for the shower that needs to be set appropriately. This procedure affects, for example, the fragmentation function of the b quark, that we have studied with particular attention. We believe that the tool presented here improves over previous generators for all aspects that have to do with top decays, and especially for the study of issues related to top mass measurements that involve B hadrons or b jets. As a result, the work presented here also constitutes a first step towards a fully consistent matching of NLO calculations involving intermediate resonances decaying into coloured particles, with parton showers.« less

  1. On top quark mass effects to gg → ZH at NLO

    NASA Astrophysics Data System (ADS)

    Hasselhuhn, Alexander; Luthe, Thomas; Steinhauser, Matthias

    2017-01-01

    We compute next-to-leading order QCD corrections to the process gg → ZH. In the effective-theory approach we confirm the results in the literature. We consider top quark mass corrections via an asymptotic expansion and show that there is a good convergence below the top quark threshold which describes approximately a quarter of the total cross section. Our corrections are implemented in the publicly available C++ program ggzh.

  2. QCD analysis of DIS and SIDIS data with two alternative methods

    NASA Astrophysics Data System (ADS)

    Shevchenko, O. Yu.; Akhunzyanov, R. R.

    2014-01-01

    The global fit analysis of all published data on DIS and semi-inclusive DIS (SIDIS) asymmetries is performed in the next to leading (NLO) QCD order. The respective parameterization on polarized PDFs is constructed. The especial attention is paid to the impact of novel SIDIS data on the polarized distributions of light sea and strange quarks as well as on the polarized gluon distributions. The first moments of these distributions entering the nucleon spin are found to be surprisingly small quantities. The alternative direct (free of any fitting procedure) method of NLO QCD analysis is elaborated. Method is especially important for analysis of SIDIS data because it allows to avoid the problems arising in the conventional fitting procedure: functional arbitrariness at initial scale and ambiguities in the error band calculation. Within the alternative method the central values and uncertainties of the measured asymmetries directly propagate to the central values and uncertainties of the polarized PDFs we are interested in. The method is applied to all existing SIDIS data on pion production for an estimation in NLO QCD of the valence and sea quark contributions to the proton spin. As a result one arrives at the conclusion that, contrary to the valence contributions, the sea contributions to the proton spin are compatible with zero within the errors.

  3. Heavy Quarks, QCD, and Effective Field Theory

    SciTech Connect

    Thomas Mehen

    2012-10-09

    The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.

  4. NLO error propagation exercise: statistical results

    SciTech Connect

    Pack, D.J.; Downing, D.J.

    1985-09-01

    Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or /sup 235/U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, /sup 235/U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and /sup 235/U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods.

  5. Diffractive heavy quark production in AA collisions at the LHC at NLO

    SciTech Connect

    Machado, M. M.; Ducati, M. B. Gay; Machado, M. V. T.

    2011-07-15

    The single and double diffractive cross sections for heavy quarks production are evaluated at NLO accuracy for hadronic and heavy ion collisions at the LHC. Diffractive charm and bottom production is the main subject of this work, providing predictions for CaCa, PbPb and pPb collisions. The hard diffraction formalism is considered using the Ingelman-Schlein model where a recent parametrization for the Pomeron structure function (DPDF) is applied. Absorptive corrections are taken into account as well. The diffractive ratios are estimated and theoretical uncertainties are discussed. Comparison with competing production channels is also presented.

  6. Pinning down QCD-matter shear viscosity in A + A collisions via EbyE fluctuations using pQCD + saturation + hydrodynamics

    NASA Astrophysics Data System (ADS)

    Niemi, H.; Eskola, K. J.; Paatelainen, R.; Tuominen, K.

    2016-12-01

    We compute the initial energy densities produced in ultrarelativistic heavy-ion collisions from NLO perturbative QCD using a saturation conjecture to control soft particle production, and describe the subsequent space-time evolution of the system with hydrodynamics, event by event. The resulting centrality dependence of the low-pT observables from this pQCD + saturation + hydro ("EKRT") framework are then compared simultaneously to the LHC and RHIC measurements. With such an analysis we can test the initial state calculation, and constrain the temperature dependence of the shear viscosity-to-entropy ratio η / s of QCD matter. Using these constraints from the current RHIC and LHC measurements we then predict the charged hadron multiplicities and flow coefficients for the 5 TeV Pb + Pb collisions.

  7. Study of HERA e p data at low Q2 and low xBj and the need for higher-twist corrections to standard perturbative QCD fits

    NASA Astrophysics Data System (ADS)

    Abt, I.; Cooper-Sarkar, A. M.; Foster, B.; Myronenko, V.; Wichmann, K.; Wing, M.

    2016-08-01

    A detailed comparison of HERA data at low Bjorken-x and low four-momentum-transfer squared, Q2, with predictions based on ln Q2 evolution (DGLAP) in perturbative quantum chromodynamics suggests inadequacies of this framework. The standard DGLAP evolution was augmented by including an additional higher-twist term in the description of the longitudinal structure function, FL. This additional term, FLALHT/Q2 , improves the description of the reduced cross sections significantly. The resulting predictions for FL suggest that further corrections are required for Q2 less than about 2 GeV2 .

  8. Scale of dark QCD

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Schwaller, Pedro

    2014-03-01

    Most of the mass of ordinary matter has its origin from quantum chromodynamics (QCD). A similar strong dynamics, dark QCD, could exist to explain the mass origin of dark matter. Using infrared fixed points of the two gauge couplings, we provide a dynamical mechanism that relates the dark QCD confinement scale to our QCD scale, and hence provides an explanation for comparable dark baryon and proton masses. Together with a mechanism that generates equal amounts of dark baryon and ordinary baryon asymmetries in the early Universe, the similarity of dark matter and ordinary matter energy densities can be naturally explained. For a large class of gauge group representations, the particles charged under both QCD and dark QCD, necessary ingredients for generating the infrared fixed points, are found to have masses at 1-2 TeV, which sets the scale for dark matter direct detection and novel collider signatures involving visible and dark jets.

  9. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  10. W+W-+3 -jet production at the Large Hadron Collider in next-to-leading-order QCD

    NASA Astrophysics Data System (ADS)

    Febres Cordero, F.; Hofmann, P.; Ita, H.

    2017-02-01

    We present next-to-leading-order (NLO) QCD predictions to W+W- production in association with up to three jets at hadron colliders. We include contributions from couplings of the W bosons to light quarks as well as trilinear vector couplings. These processes are used in vector-boson coupling measurements, are background to Higgs signals and are needed to constrain many new physics scenarios. For the first time NLO QCD predictions are shown for electroweak di-vector boson production with three jets at a hadron collider. We show total and differential cross sections for the LHC with proton center-of-mass energies of 8 and 13 TeV. To perform the calculation we employ on-shell and unitarity methods implemented in the blackhat library along with the sherpa package. We have produced event files that can be accessed for future dedicated studies.

  11. QCD for Postgraduates (3/5)

    ScienceCinema

    None

    2016-07-12

    Modern QCD - Lecture 3 We will introduce processes with initial-state hadrons and discuss parton distributions, sum rules, as well as the need for a factorization scale once radiative corrections are taken into account. We will then discuss the DGLAP equation, the evolution of parton densities, as well as ways in which parton densities are extracted from data.

  12. Development of Polyimides-Based NLO Materials for Electrooptical Applications

    NASA Technical Reports Server (NTRS)

    Rutherford, Jacqueline; Li, Xiang; Mintz, Eric A.; Bu, Xiu R.

    1998-01-01

    Development of thermally stable optical materials for nonlinear optics have recently focused on the covalent incorporation of NLO chromophores into high performance polymers, especially thermally stable and processable polyamides. One key aspect for the incorporation of robust NLO chromophores into high Tg polymers is to sustain poling induced order. Other advantages include high loading level of chromophores, and elimination of possible phase separation as well as chromophore sublimation at processing or working temperature. We have prepared several polyimide based polymers which are covalently linked with thermally stable chromophores that we have developed, since polyamides generally exhibit high Tg and good film transparency. Here, we report the development and subsequent incorporation of indoline based chromophores into polyamides, leading to thermally stable NLO polymers.

  13. Global NLO Analysis of Nuclear Parton Distribution Functions

    SciTech Connect

    Hirai, M.; Kumano, S.; Nagai, T.-H.

    2008-02-21

    Nuclear parton distribution functions (NPDFs) are determined by a global analysis of experimental measurements on structure-function ratios F{sub 2}{sup A}/F{sub 2}{sup A{sup '}} and Drell-Yan cross section ratios {sigma}{sub DY}{sup A}/{sigma}{sub DY}{sup A{sup '}}, and their uncertainties are estimated by the Hessian method. The NPDFs are obtained in both leading order (LO) and next-to-leading order (NLO) of {alpha}{sub s}. As a result, valence-quark distributions are relatively well determined, whereas antiquark distributions at x>0.2 and gluon distributions in the whole x region have large uncertainties. The NLO uncertainties are slightly smaller than the LO ones; however, such a NLO improvement is not as significant as the nucleonic case.

  14. QCD sign problem for small chemical potential

    SciTech Connect

    Splittorff, K.; Verbaarschot, J. J. M.

    2007-06-01

    The expectation value of the complex phase factor of the fermion determinant is computed in the microscopic domain of QCD at nonzero chemical potential. We find that the average phase factor is nonvanishing below a critical value of the chemical potential equal to half the pion mass and vanishes exponentially in the volume for larger values of the chemical potential. This holds for QCD with dynamical quarks as well as for quenched and phase quenched QCD. The average phase factor has an essential singularity for zero chemical potential and cannot be obtained by analytic continuation from imaginary chemical potential or by means of a Taylor expansion. The leading order correction in the p-expansion of the chiral Lagrangian is calculated as well.

  15. Hadronic and nuclear interactions in QCD

    SciTech Connect

    Not Available

    1982-01-01

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.

  16. Highly Non-Linear Optical (NLO) organic crystals

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals.

  17. Parton Energy Loss and Momentum Broadening at NLO in High Temperature QCD Plasmas

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Teaney, Derek

    We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2 ↔ 2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.

  18. Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo; Teaney, Derek

    2015-10-01

    We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include ↔ scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light-cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.

  19. Bimetallic sandwichlike complexes as novel NLO chromophores

    NASA Astrophysics Data System (ADS)

    Heck, Juergen; Brussard, Hugo C.; Dabek, Sven; Meyer-Friedrichsen, Timo; Wong, Hans

    1997-10-01

    Mono- and dinuclear sesquifulvalene-type complexes [{LnM(l5C5H4)}Z{17C7H6)MLtn}mXm+i (m =0, 1 ; X = BF4, PF6) have been synthesized, particularly with regards to their nonlinear optical properties. Z =-: LM = CpFe, M'L' = -, la; LM = CpFe; M'L' = Cr(CO)3, ib; LM = CpFe, ML',, = RuCp, ic; LM = CpFe, L'M' = RUCP*, id; LM = CpRu; M'L' = -, le; LM =CpRu, M'L' RuCp, if, LM = CpRu, M'L' = RuCp*, ig - Z = C2: LM = CpFe, M'L' = Cr(CO)3, 2 - Z = C2H2:LM = CpFe, ML' = -, 3a; LM = CpFe, M'L' = Cr(CO)3, 3b; LM = CpFe, L'M' = RuCp, 3c; LM = Cp*Fe, M'L' = Cr(CO)3, 3d; LM = (Ph4C4)Co, M'L' = - 5; Z = thiophene-1,5-diyl (C4H2S): LM = CpFe, M'L' = -, 4a; LM = CpFe, M'L' = RuCp) (Cp = C5H5, Cp* C5Me5, Ph = C6H5). The ferrocenyl containing complexes reveal UV/vis spectra, showing long wave absorption bands beyond 550 nm which are assigned to a charge transfer (CT) transition between the cyclo-C5 and cyclo-C-, moieties. The corresponding transitions for the ruthenocenyl compounds if and ig are found below 500 nm. The CT transitions exhibit pronounced negative solvatochromism. Cyclic voltammetry studies and structural data of some of these compounds confirm the strong electronic coupling between the cyclo-C5 and the cyclo-C7 moieties. Hyper Rayleigh scattering (HRS) investigations of these mono- and dinuclear sesquifulvalene derivaties to determine the first hyperpolarizability 13 show several different important features: i) the measured 13 values of compounds with an additional spacer Z are the highest ever obtained for sandwich-type NLO chromophores; ii) the B values of the dinuclear sequifulvalene complexes surpass the 13 values of the mononuclear derivatives markedly; iii) the exchange of a monocationic electron accepting group (Cr(CO)3), with a dicationic one (RuCp) enhances 13 considerably, iv) the use of the (cyclobutadiene)(cyclopentadienyl)Co unit reveals a surprisingly large B value although this compound is mononuclear. The large experimental 13 values are in part assigned

  20. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.

  1. Lattice QCD for nuclei

    NASA Astrophysics Data System (ADS)

    Beane, Silas

    2016-09-01

    Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.

  2. Organic NLO Polymers. 2. Main-Chain and Guest-Host Chi(2)NLO Polymers: NLO-phore Structure Versus Poling

    DTIC Science & Technology

    1994-05-28

    34REPORT DOCUMENTATION PAGE Form APProvedT 00146 No. 0704.0188 0.I4( j’qwmol’ * Ufa " ’Of ".i :Ctli f ( tlij mft q r w•a€i€ * t aa ’a l u m, t orDerfewld i...The method of choice to purify the monomers is by crystallization from a mixture of ethyl acetate and hexanes. We prepared a series of NLO-phores and...materials. ’ 41.2 -4NLO- baM 1 0.8- S0.4 Z 0.4 0 0 g00 1000 1600 2000 2600 3000 1M• (au0 Figure L Second order NW response for guest-host PMMA films containng

  3. Impact factor for exclusive diffractive dijet production with NLO accuracy

    NASA Astrophysics Data System (ADS)

    Boussarie, R.; Grabovsky, A. V.; Szymanowski, L.; Wallon, S.

    2017-03-01

    Relying on the shockwave approach, we present the main steps of the computation of the impact factor for the exclusive diffractive photo- or electro- production of a forward dijet with NLO accuracy. We provide details of the cancellation mechanisms for all the divergences which appear in the intermediate results.

  4. Graphene in NLO Devices for High Energy Laser Protection

    DTIC Science & Technology

    2009-11-17

    including eye) protection can be achieved by blocking, scattering, diffracting, or absorbing incoming laser light. Current solutions include shutter...noticeable color distortion (filters), narrow band protection (filters), low saturation thresholds (Reverse-Saturable Absorbing (RSA) NLO dyes), and...protecting. Sensor (including eye) protection can be achieved by blocking, scattering, diffracting, or absorbing incoming laser light. Current solutions

  5. Resonances in QCD

    SciTech Connect

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  6. Soft QCD at Tevatron

    SciTech Connect

    Rangel, Murilo; /Orsay, LAL

    2010-06-01

    Experimental studies of soft Quantum Chromodynamics (QCD) at Tevatron are reported in this note. Results on inclusive inelastic interactions, underlying events, double parton interaction and exclusive diffractive production and their implications to the Large Hadron Collider (LHC) physics are discussed.

  7. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  8. Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations

    NASA Astrophysics Data System (ADS)

    Jadach, S.; Płaczek, W.; Skrzypek, M.; Stokłosa, P.

    2010-02-01

    We present the program EvolFMC v.2 that solves the evolution equations in QCD for the parton momentum distributions by means of the Monte Carlo technique based on the Markovian process. The program solves the DGLAP-type evolution as well as modified-DGLAP ones. In both cases the evolution can be performed in the LO or NLO approximation. The quarks are treated as massless. The overall technical precision of the code has been established at 5×10. This way, for the first time ever, we demonstrate that with the Monte Carlo method one can solve the evolution equations with precision comparable to the other numerical methods. New version program summaryProgram title: EvolFMC v.2 Catalogue identifier: AEFN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including binary test data, etc.: 66 456 (7407 lines of C++ code) No. of bytes in distributed program, including test data, etc.: 412 752 Distribution format: tar.gz Programming language: C++ Computer: PC, Mac Operating system: Linux, Mac OS X RAM: Less than 256 MB Classification: 11.5 External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: Solution of the QCD evolution equations for the parton momentum distributions of the DGLAP- and modified-DGLAP-type in the LO and NLO approximations. Solution method: Monte Carlo simulation of the Markovian process of a multiple emission of partons. Restrictions:Limited to the case of massless partons. Implemented in the LO and NLO approximations only. Weighted events only. Unusual features: Modified-DGLAP evolutions included up to the NLO level. Additional comments: Technical precision established at 5×10. Running time: For the 10 6 events at 100 GeV: DGLAP NLO: 27s; C-type modified DGLAP NLO: 150s (MacBook Pro with Mac OS X v.10

  9. QCD (&) event generators

    SciTech Connect

    Skands, Peter Z.; /Fermilab

    2005-07-01

    Recent developments in QCD phenomenology have spurred on several improved approaches to Monte Carlo event generation, relative to the post-LEP state of the art. In this brief review, the emphasis is placed on approaches for (1) consistently merging fixed-order matrix element calculations with parton shower descriptions of QCD radiation, (2) improving the parton shower algorithms themselves, and (3) improving the description of the underlying event in hadron collisions.

  10. On-Shell Unitarity Bootstrap for QCD Amplitudes

    SciTech Connect

    Berger, Carola F.; Bern, Zvi; Dixon, Lance J.; Forde, Darren; Kosower, David A.

    2006-10-17

    Seeking and measuring new physics at the imminent Large Hadron Collider (LHC) will require extensive calculations of high-multiplicity backgrounds in perturbative QCD to next-to-leading order (NLO). The Les Houches 2005 workshop defined a target list, reproduced in table 1, for theorists to attack. In addition to the processes in the table, one would also like to compute processes such as W, Z + 4 jets, which are important backgrounds to searches for supersymmetry and other models of new electroweak physics. Such computations require one-loop amplitudes with seven external particles, including the vector boson, as depicted in figure 1. These are challenging calculations and Feynman-diagrammatic computations have only recently reached six-point amplitudes. Some of this progress has been described in this conference.

  11. Theta dependence in holographic QCD

    NASA Astrophysics Data System (ADS)

    Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L.; Manenti, Andrea

    2017-02-01

    We study the effects of the CP-breaking topological θ-term in the large N c QCD model by Witten, Sakai and Sugimoto with N f degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the N f = 2 case, we consider the baryonic sector and determine, to leading order in the small θ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive O(θ ) corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating pion-nucleon coupling constant {overline{g}}_{π NN} , finding that it is zero to leading order in the large N c limit.

  12. FOREWORD: Extreme QCD 2012 (xQCD)

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Bazavov, Alexei; Liu, Keh-Fei

    2013-04-01

    The Extreme QCD 2012 conference, held at the George Washington University in August 2012, celebrated the 10th event in the series. It has been held annually since 2003 at different locations: San Carlos (2011), Bad Honnef (2010), Seoul (2009), Raleigh (2008), Rome (2007), Brookhaven (2006), Swansea (2005), Argonne (2004), and Nara (2003). As usual, it was a very productive and inspiring meeting that brought together experts in the field of finite-temperature QCD, both theoretical and experimental. On the experimental side, we heard about recent results from major experiments, such as PHENIX and STAR at Brookhaven National Laboratory, ALICE and CMS at CERN, and also about the constraints on the QCD phase diagram coming from astronomical observations of one of the largest laboratories one can imagine, neutron stars. The theoretical contributions covered a wide range of topics, including QCD thermodynamics at zero and finite chemical potential, new ideas to overcome the sign problem in the latter case, fluctuations of conserved charges and how they allow one to connect calculations in lattice QCD with experimentally measured quantities, finite-temperature behavior of theories with many flavors of fermions, properties and the fate of heavy quarkonium states in the quark-gluon plasma, and many others. The participants took the time to write up and revise their contributions and submit them for publication in these proceedings. Thanks to their efforts, we have now a good record of the ideas presented and discussed during the workshop. We hope that this will serve both as a reminder and as a reference for the participants and for other researchers interested in the physics of nuclear matter at high temperatures and density. To preserve the atmosphere of the event the contributions are ordered in the same way as the talks at the conference. We are honored to have helped organize the 10th meeting in this series, a milestone that reflects the lasting interest in this

  13. The Top Quark, QCD, And New Physics.

    DOE R&D Accomplishments Database

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  14. Electroweak radiative corrections to triple photon production at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Wei-Hua; Duan, Peng-Fei; Song, Mao; Li, Gang

    2016-07-01

    In this paper, we present the precision predictions for three photon production in the standard model (SM) at the ILC including the full next-to-leading (NLO) electroweak (EW) corrections, high order initial state radiation (h.o.ISR) contributions and beamstrahlung effects. We present the LO and the NLO EW + h.o.ISR + beamstrahlung corrected total cross sections for various colliding energy when √{ s} ≥ 200 GeV and the kinematic distributions of final photons with √{ s} = 500 GeV at ILC, and find that the NLO EW corrections, the h.o.ISR contributions and the beamstrahlung effects are important in exploring the process e+e- → γγγ.

  15. Graphene in NLO Devices for High Laser Energy Protection

    DTIC Science & Technology

    2010-10-01

    absorbing incoming laser light. Current solutions include shutter systems, fixed-line filters, dyes, and/or reflective technologies. Limitations of these...thresholds (Reverse-Saturable Absorbing (RSA) NLO dyes), and insufficient magnitude of the non-linear effect (metal nano-particles, carbon nanotubes and...scattering, diffracting, or absorbing incoming laser light. Current solutions include shutter systems, fixed-line filters, dyes, and/or reflective

  16. Subtractive Renormalization Group Invariance: Pionless EFT at NLO

    SciTech Connect

    Timoteo, Varese S.; Szpigel, Sergio; Duraes, Francisco O.

    2010-11-12

    We show some results concerning the renormalization group (RG) invariance of the nucleon-nucleon (NN) interaction in pionless effective field theory at next-to-leading order (NLO), using a non-relativistic Callan-Symanzik equation (NRCS) for the driving term of the Lippmann-Schwinger (LS) equation with three recursive subtractions. The phase-shifts obtained for the RG evolved potential are same as those for the original potential, apart from relative differences of order 10{sup -15}.

  17. Subtractive Renormalization Group Invariance: Pionless EFT at NLO

    NASA Astrophysics Data System (ADS)

    Timóteo, Varese S.; Szpigel, Sérgio; Durães, Francisco O.

    2010-11-01

    We show some results concerning the renormalization group (RG) invariance of the nucleon-nucleon (NN) interaction in pionless effective field theory at next-to-leading order (NLO), using a non-relativistic Callan-Symanzik equation (NRCS) for the driving term of the Lippmann-Schwinger (LS) equation with three recursive subtractions. The phase-shifts obtained for the RG evolved potential are same as those for the original potential, apart from relative differences of order 10-15.

  18. Continuous Advances in QCD 1996 - Proceedings of the ConfernceE

    NASA Astrophysics Data System (ADS)

    Polikarpov, M. I.

    1996-11-01

    Table of Contents for the full book PDF is as follows: * Foreword * SECTION 1. HEAVY QUARKS * Higher Moments of Heavy Quark Vacuum Polarization * Signatures of Color-Octet Quarkonium Production * Treating the Lifetimes of Charm and Beauty Hadrons with QCD Plus a Bit More! * Hadronic Spectral Moments in Inclusive B and D Decays * Measuring αs(Q2) in τ Decays * On Infrared Cancellations in Inclusive Heavy Particles Decays * Calculation of the B → π Transition Matrix Element in QCD * SECTION 2. HIGH ENERGY SCATTERING AND RENORMALONS * Leading 1/Q Power Corrections in QCD: Universality and KLN Cancellations * Effective Action for High-Energy Scattering in QCD * The Generalized Crewther Relation: The Peculiar Aspects of Analytical Perturbative QCD Calculations * Global QCD Analysis, the Gluon Distribution, αs, and New DIS & Inclusive Jet Data * Resummation of Threshold Corrections in QCD to Power Accuracy: The Drell-Yan Cross Section as a Case Study * SECTION 3. FINITE TEMPERATURE * Lifetime of Quasiparticle Excitations in Hot Gauge Theories * News About Instantons in QCD * The Intrinsic Glue Distribution at Very Small x and High Densities * Interfaces in Hot Gauge Theory * Cool Pions Move at Less Than the Speed of Light * Squeezed Gluons and Gauge Invariant Variational Wave Functional * SECTION 4. LATTICE * Evidence for the Observation of a Glueball * Testing Improved Actions * Perfect Lattice Actions for Quarks and Gluons * Dual Lattice Blockspin Transformation and Monopole Condensation in QCD * Properties of QCD Vacuum from Lattice * Dispersive Theory of Charmonium on the Lattice * SECTION 5. DYNAMICS OF GAUGE FIELDS * Higher Loops and Consistency Conditions in SUSY Gauge Theories * One-Loop QCD Amplitudes from Cutkosky Rules * On the Spectrum of the QCD Dirac Operator * Deep Inelastic Scattering and Light-Cone Wave Functions * Constituent Quark Model Versus Nonperturbative QCD * Phase Transitions in Non-Abelian Coulomb Gases at Large N * Non

  19. QCD Evolution 2015

    NASA Astrophysics Data System (ADS)

    These are the proceedings of the QCD Evolution 2015 Workshop which was held 26-30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.

  20. The QCD running coupling

    DOE PAGES

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled

  1. The QCD running coupling

    SciTech Connect

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge on $\\alpha_{s}$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $\\alpha_s(Q^2)$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $\\alpha_s(Q^2)$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $\\alpha_s(Q^2)$ in the high momentum transfer domain of QCD. We review how $\\alpha_s$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $\\alpha_s(Q^2)$ in the low momentum transfer domain, where there has been no consensus on how to define $\\alpha_s(Q^2)$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled regime and its prediction

  2. Measurement and QCD analysis of double-differential inclusive jet cross-sections in pp collisions at $\\sqrt{s} = $ 8 TeV and ratios to 2.76 and 7 TeV

    SciTech Connect

    Khachatryan, Vardan; et al.

    2016-09-17

    A measurement of the double-differential inclusive jet cross section as a function of the jet transverse momentum $p_{\\mathrm{T}}$ and the absolute jet rapidity $|y|$ is presented. Data from LHC proton-proton collisions at $ \\sqrt{s} = $ 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$, have been collected with the CMS detector. Jets are reconstructed using the anti-$k_{\\mathrm{T}}$ clustering algorithm with a size parameter of 0.7 in a phase space region covering jet $p_{\\mathrm{T}}$ from 74 GeV up to 2.5 TeV and jet absolute rapidity up to $|y|= $ 3.0. The low-$p_{\\mathrm{T}}$ jet range between 21 and 74 GeV is also studied up to $|y|= $ 4.7, using a dedicated data sample corresponding to an integrated luminosity of 5.6 pb$^{-1}$. The measured jet cross section is corrected for detector effects and compared with the predictions from perturbative QCD at next-to-leading order (NLO) using various sets of parton distribution functions (PDF). Cross section ratios to the corresponding measurements performed at 2.76 and 7 TeV are presented. From the measured double-differential jet cross section, the value of the strong coupling constant evaluated at the Z mass is $\\alpha_\\mathrm{S}(M_{\\mathrm{ Z }}) = 0.1164^{+0.0060}_{-0.0043}$, where the errors include the PDF, scale, nonperturbative effects and experimental uncertainties, using the CT10 NLO PDFs. Improved constraints on PDFs based on the inclusive jet cross section measurement are presented.

  3. Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at s=8$$ \\sqrt{s}=8 $$ TeV and cross section ratios to 2.76 and 7 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2017-03-01

    A measurement of the double-differential inclusive jet cross section as a function of the jet transverse momentum pT and the absolute jet rapidity abs(y) is presented. Data from LHC proton-proton collisions at sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns, have been collected with the CMS detector. Jets are reconstructed using the anti-kT clustering algorithm with a size parameter of 0.7 in a phase space region covering jet pT from 74 GeV up to 2.5 TeV and jet absolute rapidity up to abs(y) = 3.0. The low-pT jet range between 21 and 74 GeV ismore » also studied up to abs(y) = 4.7, using a dedicated data sample corresponding to an integrated luminosity of 5.6 inverse picobarns. The measured jet cross section is corrected for detector effects and compared with the predictions from perturbative QCD at next-to-leading order (NLO) using various sets of parton distribution functions (PDF). Cross section ratios to the corresponding measurements performed at 2.76 and 7 TeV are presented. From the measured double-differential jet cross section, the value of the strong coupling constant evaluated at the Z mass is alpha[S(M[Z]) = 0.1164 +0.0060 -0.0043, where the errors include the PDF, scale, nonperturbative effects and experimental uncertainties, using the CT10 NLO PDFs. Improved constraints on PDFs based on the inclusive jet cross section measurement are presented.« less

  4. The renormalization scale problem and novel perspectives for QCD

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2015-11-01

    I discuss a number of novel tests of QCD, measurements which can illuminate fundamental features of hadron physics. These include the origin of the “ridge” in proton-proton collisions; the production of the Higgs at high xF; the role of digluon-initiated processes for quarkonium production; flavor-dependent anti-shadowing; the effect of nuclear shadowing on QCD sum rules; direct production of hadrons at high transverse momentum; and leading-twist lensing corrections; and the breakdown of perturbative QCD factorization. I also review the “Principle of Maximum Conformalit” (PMC) which systematically sets the renormalization scale order-by-order in pQCD, independent of the choice of renormalization scheme, thus eliminating an unnecessary theoretical uncertainty.

  5. Novel QCD Phenomena

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2007-07-06

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable {zeta} which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions.

  6. Quark and gluon form factors to four-loop order in QCD: The Nf3 contributions

    NASA Astrophysics Data System (ADS)

    von Manteuffel, Andreas; Schabinger, Robert M.

    2017-02-01

    We calculate the four-loop massless QCD corrections with three closed quark lines to quark and gluon form factors. We apply a novel integration by parts algorithm based on modular arithmetic and compute all relevant master integrals for arbitrary values of the space-time dimension. This is the first calculation of a gluon form factor at this perturbative order in QCD.

  7. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  8. NLO vertex for a forward jet plus a rapidity gap at high energies

    DOE PAGES

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; ...

    2015-04-01

    Here we present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  9. NLO vertex for a forward jet plus a rapidity gap at high energies

    SciTech Connect

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-04-10

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets)

  10. Next-to-leading order QCD predictions for top-quark pair production with up to three jets

    NASA Astrophysics Data System (ADS)

    Höche, S.; Maierhöfer, P.; Moretti, N.; Pozzorini, S.; Siegert, F.

    2017-03-01

    We present theoretical predictions for the production of top-quark pairs with up to three jets at the next-to leading order in perturbative QCD. The relevant calculations are performed with Sherpa and OpenLoops. To address the issue of scale choices and related uncertainties in the presence of multiple scales, we compare results obtained with the standard scale H_{T}/2 at fixed order and the M iNLO procedure. Analyzing various cross sections and distributions for t\\bar{t}+0,1,2,3 jets at the 13 TeV LHC we find a remarkable overall agreement between fixed-order and M iNLO results. The differences are typically below the respective factor-two scale variations, suggesting that for all considered jet multiplicities missing higher-order effects should not exceed the ten percent level.

  11. QCD: Quantum Chromodynamics

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab’s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.

  12. Hadronic laws from QCD

    NASA Astrophysics Data System (ADS)

    Cahill, R. T.

    1992-06-01

    A review is given of progress in deriving the effective action for hadronic physics, S[π, ϱ, ω,.., overlineN, N,..] , from the fundamental defining action of QCD, S[ overlineq, q, A μa] . This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling.

  13. REGGE TRAJECTORIES IN QCD

    SciTech Connect

    Radyushkin, Anatoly V.; Efremov, Anatoly Vasilievich; Ginzburg, Ilya F.

    2013-04-01

    We discuss some problems concerning the application of perturbative QCD to high energy soft processes. We show that summing the contributions of the lowest twist operators for non-singlet $t$-channel leads to a Regge-like amplitude. Singlet case is also discussed.

  14. QCD: Quantum Chromodynamics

    SciTech Connect

    Lincoln, Don

    2016-06-17

    The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab’s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.

  15. QCD and Hadron Physics

    SciTech Connect

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  16. QCD results from CDF

    SciTech Connect

    Plunkett, R.; The CDF Collaboration

    1991-10-01

    Results are presented for hadronic jet and direct photon production at {radical}{bar s} = 1800 GeV. The data are compared with next-to-leading QCD calculations. A new limit on the scale of possible composite structure of the quarks is also reported. 12 refs., 4 figs.

  17. QCD physics at CDF

    SciTech Connect

    Devlin, T.; CDF Collaboration

    1996-10-01

    The CDF collaboration is engaged in a broad program of QCD measurements at the Fermilab Tevatron Collider. I will discuss inclusive jet production at center-of-mass energies of 1800 GeV and 630 GeV, properties of events with very high total transverse energy and dijet angular distributions.

  18. Progress in lattice QCD

    SciTech Connect

    Andreas S. Kronfeld

    2002-09-30

    After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.

  19. Phenomenology Using Lattice QCD

    NASA Astrophysics Data System (ADS)

    Gupta, R.

    2005-08-01

    This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.

  20. Phenomenology Using Lattice QCD

    NASA Astrophysics Data System (ADS)

    Gupta, R.

    This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.

  1. Diphoton production at the Tevatron and the LHC in the NLO approximation of the parton Reggeization approach

    NASA Astrophysics Data System (ADS)

    Nefedov, M. A.; Saleev, V. A.

    2015-11-01

    The hadroproduction of prompt isolated photon pairs at high energies is studied in the framework of the parton Reggeization approach. The real part of the NLO corrections is computed (the NLO⋆ approximation), and the procedure for the subtraction of double counting between real parton emissions in the hard-scattering matrix element and unintegrated parton distribution function is constructed for the amplitudes with Reggeized quarks in the initial state. The matrix element of the important next-to-next-to-leading-order subprocess R R →γ γ with full dependence on the transverse momenta of the initial-state Reggeized gluons is obtained. We compare obtained numerical results with diphoton spectra measured at the Tevatron and the LHC and find a good agreement of our predictions with experimental data at the high values of diphoton transverse momentum, pT, and especially at the pT larger than the diphoton invariant mass, M . In this multi-Regge kinematics region, the NLO correction is strongly suppressed, demonstrating the self-consistency of the parton Reggeization approach.

  2. The {Lambda}(1405) in Full QCD

    SciTech Connect

    Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. Selim

    2011-12-14

    At 1405.1 MeV, the lowest-lying negative-parity state of the {Lambda} baryon lies surprising low. Indeed, this is lower than the lowest negative-parity state of the nucleon, even though the {Lambda}(1405) possesses a valence strange quark. However, previous Lattice QCD studies have been unable to identify such a low-lying state. Using the PACS-CS (2+1)-flavour full-QCD ensembles, available through the ILDG, we utilise a variational analysis with source and sink smearing to isolate this elusive state. We find three low-lying odd-parity states, and for the first time reproduce the correct level ordering with respect to the nearby scattering thresholds.

  3. Baryons in holographic QCD

    NASA Astrophysics Data System (ADS)

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2007-04-01

    We study baryons in holographic QCD with D4/D8/D8¯ multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8¯ holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and ρ mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large Nc, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and ρ-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the ρ-meson profile G˜(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without ρ mesons. We analyze interaction terms of pions and ρ mesons in brane-induced Skyrmion, and find a significant ρ-meson component appearing in the core region of a baryon.

  4. Novel QCD Phenomenology

    SciTech Connect

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the LHC

  5. Novel QCD Phenomenology

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2011-04-01

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard QCD subprocess, rather than from jet fragmentation. Such "direct" higher-twist processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed {xT} = 2{pT}/√ s , as well as the "baryon anomaly, the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, soft-gluon rescattering associated with its Wilson line lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish "static" structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus "dynamical" structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. The elimination of the renormalization scale ambiguity would greatly improve the precision of QCD predictions and increase the sensitivity of searches for new physics at the LHC. Other novel

  6. Baryons in holographic QCD

    SciTech Connect

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2007-04-15

    We study baryons in holographic QCD with D4/D8/D8 multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8 holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and {rho} mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large N{sub c}, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and {rho}-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the {rho}-meson profile G-tilde(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without {rho} mesons. We analyze interaction terms of pions and {rho} mesons in brane-induced Skyrmion, and find a significant {rho}-meson component appearing in the core region of a baryon.

  7. W -boson plus jet differential distributions at NNLO in QCD

    NASA Astrophysics Data System (ADS)

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    2016-12-01

    We present a detailed phenomenological study of W -boson production in association with a jet through next-to-next-to-leading order (NNLO) in perturbative QCD. Fiducial cross sections and differential distributions for both 8 TeV and 13 TeV LHC collisions are presented, as are results for both the inclusive one-jet bin and the exclusive one-jet bin. Two different event selection criteria are considered: a general selection with standard cuts used in experimental analyses, and a boosted selection that focuses on high transverse momentum jets. We discuss the higher-order corrections in detail and identify for which observables and phase space regions the QCD perturbative expansion is under good theoretical control, and where additional work is needed. For most distributions and phase space regions the QCD perturbative expansion exhibits good convergence after the inclusion of the NNLO corrections.

  8. Phenomenological study of the interplay between IR-improved DGLAP-CS theory and the precision of an NLO ME matched parton shower MC

    SciTech Connect

    Majhi, S.K.; Mukhopadhyay, A.; Ward, B.F.L.; Yost, S.A.

    2014-11-15

    We present a phenomenological study of the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. We discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix-element matched parton shower MC’s in the Herwig6.5 environment as determined by comparison to recent LHC experimental observations on single heavy gauge boson production and decay. The level of agreement between the new theory and the data continues to be a reason for optimism. In the spirit of completeness, we discuss as well other approaches to the same theoretical predictions that we make here from the standpoint of physical precision with an eye toward the (sub-)1% QCD⊗EW total theoretical precision regime for LHC physics. - Highlights: • Using LHC data, we show that IR-improved DGLAP-CS kernels with exact NLO Shower/ME matching improves MC precision. • We discuss other possible approaches in comparison with ours. • We propose experimental tests to discriminate between competing approaches.

  9. Constructing QCD one-loop amplitudes

    SciTech Connect

    Forde, Darren; /SLAC /UCLA

    2008-02-22

    In the context of constructing one-loop amplitudes using a unitarity bootstrap approach we discuss a general systematic procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted after examining the behavior of the cut integrand as the unconstrained parameters of a specifically chosen parameterization of the cut loop momentum approach infinity. Measurements of new physics at the forthcoming experimental program at CERN's Large Hadron Collider (LHC) will require a precise understanding of processes at next-to-leading order (NLO). This places increased demands for the computation of new one-loop amplitudes. This in turn has spurred recent developments towards improved calculational techniques. Direct calculations using Feynman diagrams are in general inefficient. Developments of more efficient techniques have usually centered around unitarity techniques [1], where tree amplitudes are effectively 'glued' together to form loops. The most straightforward application of this method, in which the cut loop momentum is in D = 4, allows for the computation of 'cut-constructible' terms only, i.e. (poly)logarithmic containing terms and any related constants. QCD amplitudes contain, in addition to such terms, rational pieces which cannot be derived using such cuts. These 'missing' rational parts can be extracted using cut loop momenta in D = 4-2 {var_epsilon}. The greater difficulty of such calculations has restricted the application of this approach, although recent developments [3, 4] have provided new promise for this technique. Recently the application of on-shell recursion relations [5] to obtaining the 'missing' rational parts of one-loop processes [6] has provided an alternative very promising solution to this problem. In combination with unitarity methods an 'on-shell bootstrap' approach provides an efficient technique for computing complete one-loop QCD amplitudes [7]. Additionally

  10. The quark propagator in QCD and G2 QCD

    NASA Astrophysics Data System (ADS)

    Contant, Romain; Huber, Markus Q.

    2017-03-01

    QCD-like theories provide testing grounds for truncations of functional equations at non-zero density, since comparisons with lattice results are possible due to the absence of the sign problem. As a first step towards such a comparison, we determine for QCD and G2 QCD the chiral and confinement/deconfinement transitions from the quark propagator Dyson-Schwinger equation at zero chemical potential by calculating the chiral and dual chiral condensates, respectively.

  11. Characterization and investigation of NLO properties of electrodeposited polythiophenes

    NASA Astrophysics Data System (ADS)

    Figã, V.; Luc, J.; Kulyk, B.; Baitoul, M.; Sahraoui, B.

    2009-04-01

    this work we study the electronic properties of ClO4- doped polythiophenes and discuss the nonlinear optical properties of these organic compounds galvanostatically electrodeposited on ITO glasses. The investigation on the electronic properties (band gap, flat band potential) was performed by means of a non-destructive optical technique, photocurrent spectroscopy (PCS). The investigation on the nonlinear optical response was carried out by means of second and third harmonic generation measurements. In particular, the effect of the oxidation state of the polymeric films was studied by comparing the NLO response of oxidized and reduced polythiophenes. Reduced polymeric films show higher values of the second (?) and third (?) order nonlinear susceptibilities.

  12. Hybrid baryons in QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

  13. Hadron Resonances from QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  14. Charmonium from Lattice QCD

    SciTech Connect

    Jozef Dudek

    2007-08-05

    Charmonium is an attractive system for the application of lattice QCD methods. While the sub-threshold spectrum has been considered in some detail in previous works, it is only very recently that excited and higher-spin states and further properties such as radiative transitions and two-photon decays have come to be calculated. I report on this recent progress with reference to work done at Jefferson Lab.

  15. QCD tests with CDF

    SciTech Connect

    Flaugher, B.

    1992-09-01

    Measurement of scaling violations, the inclusive photon and diphoton cross sections as well as the photon-jet and jet-jet angular distributions are discussed and compared to leading order and next-to-leading order QCD. A study of four-jet events is described, with a limit on the cross section for double parton scattering. The multiplicity of jets in W boson events is compared to theoretical predictions.

  16. Hadronic Resonances from Lattice QCD

    SciTech Connect

    John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

    2007-06-16

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  17. Hadronic Resonances from Lattice QCD

    SciTech Connect

    Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.

    2007-10-26

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  18. QCD results from the Tevatron

    SciTech Connect

    C. Mesropian

    2002-07-12

    The Tevatron hadron collider provides the unique opportunity to study Quantum Chromodynamics, QCD, at the highest energies. The results summarized in this talk, although representing different experimental objects, as hadronic jets and electromagnetic clusters, serve to determine the fundamental input ingredients of QCD as well as to search for new physics. The authors present results from QCD studies at the Tevatron from Run 1 data, including jet and direct photon production, and a measurement of the strong coupling constant.

  19. One loop corrections on fragmentation function of 1S wave charmed mesons

    NASA Astrophysics Data System (ADS)

    Sepahvand, Reza; Dadfar, Sareh

    2017-04-01

    We present the contribution of the next to leading order (NLO) corrections in fragmentation a c-quark to 1S wave charmed mesons. These corrections are calculated by using the dimensional regularization method. We use two slicing methods that allow the phase space integrals to be evaluated in 4 dimensions. Technical details are discussed about virtual and real corrections in this scheme. Our numerical calculations show the NLO corrections to D mesons fragmentation function (FF) enhance the fragmentation probability (FP). The production ratio of vector mesons D* and D+* to all states is estimated. At NLO, it is obtained a bit smaller than the one at LO. Finally our analytic results are compared with available experimental data for D0 and D+* mesons.

  20. NLO+NLL squark and gluino production cross sections with threshold-improved parton distributions.

    PubMed

    Beenakker, Wim; Borschensky, Christoph; Krämer, Michael; Kulesza, Anna; Laenen, Eric; Marzani, Simone; Rojo, Juan

    We present updated predictions for the cross sections for pair production of squarks and gluinos at the LHC Run II. First of all, we update the calculations based on NLO+NLL partonic cross sections by using the NNPDF3.0NLO global analysis. This study includes a full characterization of theoretical uncertainties from higher orders, PDFs and the strong coupling. Then we explore the implications for this calculation of the recent NNPDF3.0 PDFs with NLO+NLL threshold resummation. We find that the shift in the results induced by the threshold-improved PDFs is within the total theory uncertainty band of the calculation based on NLO PDFs. However, we also observe that the central values of the NLO+NLL cross sections are modified both in a qualitative and a quantitative way, illustrating the relevance and impact of using threshold-improved PDFs together with resummed partonic cross sections. The updated NLO+NLL cross sections based on NNPDF3.0NLO are publicly available in the NLL-fast format, and should be an important ingredient for the interpretation of the searches for supersymmetric particles at Run II.

  1. QCD coupling constants and VDM

    SciTech Connect

    Erkol, G.; Ozpineci, A.; Zamiralov, V. S.

    2012-10-23

    QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.

  2. QCD: Questions, challenges, and dilemmas

    SciTech Connect

    Bjorken, J.

    1996-11-01

    An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs.

  3. QCD, with strings attached

    NASA Astrophysics Data System (ADS)

    Güijosa, Alberto

    2016-10-01

    In the nearly 20 years that have elapsed since its discovery, the gauge-gravity correspondence has become established as an efficient tool to explore the physics of a large class of strongly-coupled field theories. A brief overview is given here of its formulation and a few of its applications, emphasizing attempts to emulate aspects of the strong-coupling regime of quantum chromodynamics (QCD). To the extent possible, the presentation is self-contained, and does not presuppose knowledge of string theory.

  4. QCD and strings

    SciTech Connect

    Sakai, Tadakatsu; Sugimoto, Shigeki

    2005-12-02

    We propose a holographic dual of QCD with massless flavors on the basis of a D4/D8-brane configuration within a probe approximation. We are led to a five-dimensional Yang-Mills theory on a curved space-time along with a Chern-Simons five-form on it, both of which provide us with a unifying framework to study the massless pion and an infinite number of massive vector mesons. We make sample computations of the physical quantities that involve the mesons and compare them with the experimental data. It is found that most of the results of this model are compatible with the experiments.

  5. QCD THERMODYNAMICS AT ZERO AND NON-ZERO DENSITY.

    SciTech Connect

    SCHMIDT, C.

    2007-07-03

    We present recent results on thermodynamics of QCD with almost physical light quark masses and a physical strange quark mass value. These calculations have been performed with an improved staggered action especially designed for finite temperature lattice QCD. In detail we present a calculation of the transition temperature, using a combined chiral and continuum extrapolation. Furthermore we present preliminary results on the interaction measure and energy density at almost realistic quark masses. Finally we discuss the response of the pressure to a finite quark chemical potential. Within the Taylor expansion formalism we calculate quark number susceptibilities and leading order corrections to finite chemical potential. This is particularly useful for mapping out the critical region in the QCD phase diagram.

  6. Quenching parameter in a holographic thermal QCD

    NASA Astrophysics Data System (ADS)

    Patra, Binoy Krishna; Arya, Bhaskar

    2017-01-01

    We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.

  7. QCD for Postgraduates (1/5)

    ScienceCinema

    None

    2016-07-12

    Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.

  8. NLO evolution of 3-quark Wilson loop operator

    SciTech Connect

    Balitsky, I.; Grabovsky, A. V.

    2015-01-07

    It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in the next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.

  9. NLO evolution of 3-quark Wilson loop operator

    DOE PAGES

    Balitsky, I.; Grabovsky, A. V.

    2015-01-07

    It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in themore » next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.« less

  10. QCD and Supernovas

    NASA Astrophysics Data System (ADS)

    Barnes, T.

    2005-12-01

    In this contribution we briefly summarize aspects of the physics of QCD which are relevant to the supernova problem. The topic of greatest importance is the equation of state (EOS) of nuclear and strongly-interacting matter, which is required to describe the physics of the proto-neutron star (PNS) and the neutron star remnant (NSR) formed during a supernova event. Evaluation of the EOS in the regime of relevance for these systems, especially the NSR, requires detailed knowledge of the spectrum and strong interactions of hadrons of the accessible hadronic species, as well as other possible phases of strongly interacting matter, such as the quark-gluon plasma (QGP). The forces between pairs of baryons (both nonstrange and strange) are especially important in determining the EOS at NSR densities. Predictions for these forces are unfortunately rather model dependent where not constrained by data, and there are several suggestions for the QCD mechanism underlying these short-range hadronic interactions. The models most often employed for determining these strong interactions are broadly of two types, 1) meson exchange models (usually assumed in the existing neutron star and supernova literature), and 2) quark-gluon models (mainly encountered in the hadron, nuclear and heavy-ion literature). Here we will discuss the assumptions made in these models, and discuss how they are applied to the determination of hadronic forces that are relevant to the supernova problem.

  11. Hybrid baryons in QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  12. Constraints on the S=-1 meson-baryon interaction at NLO

    NASA Astrophysics Data System (ADS)

    Feijoo, A.; Magas, V. K.; Ramos, A.

    2017-03-01

    This work contains a study of the meson-baryon interaction in the S = -1 sector by means of a chiral SU(3) Lagrangian up to next-to-leading order (NLO) and implementing unitarization in coupled channels. In order to get more reliable values of the parameters which are present in the model, we performed several fits which take a large set of experimental scattering data in different two-body channels, threshold branching ratios, and the precise SIDDHARTA values of the energy shift and width of kaonic hidrogen into consideration. In previous studies, we had shown that the K- p → KΞ reactions are especially sensitive to the next to Weinberg-Tomozawa (WT) corrections in the hierarchy. In addition, we pointed out the need to employ processes which are described by pure isospin amplitudes as a tool to discern which models are more realistic among those which give small values for the χ2 in the fits. Following the former suggestion, we present results which include data from K- p → ηΛ, ηΣ reactions which have pure isospin I = 0 and I = 1 component respectively. Finally, to check the goodness of the new obtained parametrization of the model, we present a prediction for another process that filters the I = 1 isospin component: the pure I = 1 K_L^ - p \\to {K^ + }{Ξ^0} reaction which could be measured at the proposed secondary K0L beam at Jlab.

  13. Energy loss at NLO in a high-temperature Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Jacopo

    2016-12-01

    We present an extension of the Arnold-Moore-Yaffe kinetic equations for jet energy loss to NLO in the strong coupling constant. A novel aspect of the NLO analysis is a consistent description of wider-angle bremsstrahlung (semi-collinear emissions), which smoothly interpolates between 2 ↔ 2 scattering and collinear bremsstrahlung. We describe how many of the ingredients of the NLO transport equations (such as the drag coefficient) can be expressed in terms of Wilson line operators and can be computed using a Euclidean formalism or sum rules, both motivated by the analytic properties of amplitudes at light-like separations. We conclude with an outlook on the computation of the shear viscosity at NLO.

  14. Theta angle in holographic QCD

    NASA Astrophysics Data System (ADS)

    Järvinen, Matti

    2017-03-01

    V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the θ-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, Nf/Nc, and θ, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.

  15. Lattice QCD and Nuclear Physics

    SciTech Connect

    Konstantinos Orginos

    2007-03-01

    A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.

  16. Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO

    NASA Astrophysics Data System (ADS)

    Harris, B. W.; Smith, J.; Vogt, R.

    1996-02-01

    A calculation of the next-to-leading order exclusive extrinsic charm quark differential distributions in deeply inelastic electroproduction has recently been completed. Using these results we compare the NLO extrinsic contributions to the charm structure function F2( x, Q2, m2c) with the corresponding NLO intrinsic contributions. The results of this analysis are compared with the EMC DIS charm quark data and evidence for an intrinsic charm component in the proton is found.

  17. Organic nanoclusters for nonlinear optics: from model systems to cooperative nanoassemblies with enhanced NLO responses

    NASA Astrophysics Data System (ADS)

    Terenziani, Francesca; Parthasarathy, Venkatakrishnan; Ghosh, Sampa; Pandey, Ravindra; Das, Puspendu K.; Blanchard-Desce, Mireille

    2009-08-01

    While structure-properties relationships are quite actively and successfully investigated at the molecular level of engineering of optical nonlinear responses, supramolecular structure-property relationships are an appealing field. The realization that interchromophoric interactions between strongly polar/polarizable NLO chromophores can significantly affect the NLO response of each chromophoric unit as well as promote associations has opened new dimensions for molecular design. Several elegant routes have been implemented to hinder or counterbalance dipole-dipole interactions between dipolar NLO chromophores for the elaboration of second-order materials (for SHG or electro-optical modulation). At opposite, we have implemented a reverse strategy by confining discrete numbers of NLO push-pull chromophores in close proximity within covalent organic nanoclusters with the aim to exploit interchromophoric interactions in order to achieve enhanced NLO responses. As a proof of concept, we present here the investigation of two-series of multichromophoric covalent assemblies built from NLO push-pull chromophores showing that cooperative enhancement can be achieved both for second-order optical responses (first hyperpolarizabilities) or third-order responses (two-photon absorption cross-sections).

  18. The Symmetries of QCD

    ScienceCinema

    Sekhar Chivukula

    2016-07-12

    The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level.  Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter. 

  19. LATTICE QCD AT FINITE TEMPERATURE.

    SciTech Connect

    PETRECZKY, P.

    2005-03-12

    I review recent progress in lattice QCD at finite temperature. Results on the transition temperature will be summarized. Recent progress in understanding in-medium modifications of interquark forces and quarkonia spectral functions at finite temperatures is discussed.

  20. Precise tests of QCD in e{sup +}e{sup {minus}} annihilation

    SciTech Connect

    Burrows, P.N.

    1997-03-01

    A pedagogical review is given of precise tests of QCD in electron-positron annihilation. Emphasis is placed on measurements that have served to establish QCD as the correct theory of strong interactions, as well as measurements of the coupling parameter {alpha}{sub s}. An outlook is given for future important tests at a high-energy e{sup +}e{sup {minus}} collider.

  1. Leptonic decay of the ϒ(1S) meson at third order in QCD.

    PubMed

    Beneke, Martin; Kiyo, Yuichiro; Marquard, Peter; Penin, Alexander; Piclum, Jan; Seidel, Dirk; Steinhauser, Matthias

    2014-04-18

    We present the complete next-to-next-to-next-to-leading order short-distance and bound-state QCD correction to the leptonic decay rate Γ(ϒ(1S)→ℓ+ℓ-) of the lowest-lying spin-1 bottomonium state. The perturbative QCD prediction is compared to the measurement Γ(ϒ(1S)→e+e-)=1.340(18)  keV.

  2. Next-to-Leading Order QCD Predictions for Z, gamma^* 3-Jet Distributions at the Tevatron

    SciTech Connect

    Berger, C.F.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Forde, D.; Gleisberg, T.; Ita, H.; Kosower, D.A.; Maitre, D.; /Durham U.

    2010-06-02

    Using BlackHat in conjunction with SHERPA, we have computed next-to-leading order QCD predictions for a variety of distributions in Z, {gamma}{sup {asterisk}}+ 1, 2, 3-jet production at the Tevatron, where the Z boson or off-shell photon decays into an electron-positron pair. We find good agreement between the NLO results for jet {sub pT} distributions and measurements by CDF and D0. We also present jetproduction ratios, or probabilities of finding one additional jet. As a function of vector-boson {sub pT} , the ratios have distinctive features which we describe in terms of a simple model capturing leading logarithms and phase-space and parton-distribution-function suppression.

  3. On the loop approximation in nucleon QCD sum rules

    SciTech Connect

    Drukarev, E. G. Ryskin, M. G.; Sadovnikova, V. A.

    2015-10-15

    There was a general belief that the nucleon QCD sum rules which include only the quark loops and thus contain only the condensates of dimension d = 3 and d = 4 have only a trivial solution. We demonstrate that there is also a nontrivial solution. We show that it can be treated as the lowest order approximation to the solution which includes the higher terms of the Operator Product Expansion. Inclusion of the radiative corrections improves the convergence of the series.

  4. QCD at collider energies

    NASA Astrophysics Data System (ADS)

    Nicolaidis, A.; Bordes, G.

    1986-05-01

    We examine available experimental distributions of transverse energy and transverse momentum, obtained at the CERN pp¯ collider, in the context of quantum chromodynamics. We consider the following. (i) The hadronic transverse energy released during W+/- production. This hadronic transverse energy is made out of two components: a soft component which we parametrize using minimum-bias events and a semihard component which we calculate from QCD. (ii) The transverse momentum of the produced W+/-. If the transverse momentum (or the transverse energy) results from a single gluon jet we use the formalism of Dokshitzer, Dyakonov, and Troyan, while if it results from multiple-gluon emission we use the formalism of Parisi and Petronzio. (iii) The relative transverse momentum of jets. While for W+/- production quarks play an essential role, jet production at moderate pT and present energies is dominated by gluon-gluon scattering and therefore we can study the Sudakov form factor of the gluon. We suggest also how through a Hankel transform of experimental data we can have direct access to the Sudakov form factors of quarks and gluons.

  5. Induced QCD I: theory

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Lohmayer, Robert; Wettig, Tilo

    2016-11-01

    We explore an alternative discretization of continuum SU( N c ) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N b auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N b can be as small as N c . In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U( N c ) to SU( N c ), (ii) derive refined bounds on N b for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  6. Chiral limit of QCD

    SciTech Connect

    Gupta, R.

    1994-12-31

    This talk contains an analysis of quenched chiral perturbation theory and its consequences. The chiral behavior of a number of quantities such as the pion mass m{sub pi}{sup 2}, the Bernard-Golterman ratios R and {sub X}, the masses of nucleons, and the kaon B-parameter are examined to see if the singular terms induced by the additional Goldstone boson, {eta}{prime}, are visible in present data. The overall conclusion (different from that presented at the lattice meeting) of this analysis is that even though there are some caveats attached to the indications of the extra terms induced by {eta}{prime} loops, the standard expressions break down when extrapolating the quenched data with m{sub q} < m{sub s}/2 to physical light quarks. I then show that due to the single and double poles in the quenched {eta}{prime}, the axial charge of the proton cannot be calculated using the Adler-Bell-Jackiw anomaly condition. I conclude with a review of the status of the calculation of light quark masses from lattice QCD.

  7. Novel Spin Effects in QCD

    SciTech Connect

    Brodsky, S

    2004-01-15

    Measurements from HERMES, SMC, and Jlab show a significant single-spin asymmetry in semi-inclusive pion leptoproduction {gamma}*(q)p {yields} {pi}X when the proton is polarized normal to the photon-to-pion production plane. Hwang, Schmidt, and I [1] have shown that final-state interactions from gluon exchange between the outgoing quark and the target spectator system lead to such single-spin asymmetries at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-law suppressed at large photon virtuality Q{sup 2} at fixed x{sub bj}. The existence of such single-spin asymmetries (the Sivers effect) requires a phase difference between two amplitudes coupling the proton target with J{sub p}{sup z} = {+-} 1/2 to the same final-state, the same amplitudes which are necessary to produce a nonzero proton anomalous magnetic moment. The single-spin asymmetry which arises from such final-state interactions is in addition to the Collins effect which measures the transversity distribution {delta}q(x, Q). The Sivers effect also leads to a leading-twist target single-spin asymmetry for jet production in electroproduction where the thrust axis is used to define the production plane. More generally, Hoyer, Marchal, Peigne, Sannino, and I [2] have shown that one cannot neglect the interactions which occur between the times of the currents in the current correlator even in light-cone gauge. For example, the final-state interactions lead to the Bjorken-scaling diffractive component {gamma}*p {yields} pX of deep inelastic scattering. Since the gluons exchanged in the final state carry negligible k{sup +}, the Pomeron structure function closely resembles that of the primary gluon. The diffractive scattering of the fast outgoing quarks on spectators in the target in turn causes shadowing in the DIS cross section. These effects highlight the unexpected importance of final- and initial-state interactions in QCD observables, they lead to leading-twist single

  8. Recent QCD results from the Tevatron

    SciTech Connect

    Pickarz, Henryk; CDF and DO collaboration

    1997-02-01

    Recent QCD results from the CDF and D0 detectors at the Tevatron proton-antiproton collider are presented. An outlook for future QCD tests at the Tevatron collider is also breifly discussed. 27 refs., 11 figs.

  9. Various versions of analytic QCD and skeleton-motivated evaluation of observables

    SciTech Connect

    Cvetic, Gorazd; Valenzuela, Cristian

    2006-12-01

    We present skeleton-motivated evaluation of QCD observables. The approach can be applied in analytic versions of QCD in certain classes of renormalization schemes. We present two versions of analytic QCD which can be regarded as low-energy modifications of the ''minimal'' analytic QCD and which reproduce the measured value of the semihadronic {tau} decay ratio r{sub {tau}}. Further, we describe an approach of calculating the higher-order analytic couplings A{sub k} (k=2,3,...) on the basis of logarithmic derivatives of the analytic coupling A{sub 1}(Q{sup 2}). This approach can be applied in any version of analytic QCD. We adjust the free parameters of the aforementioned two analytic models in such a way that the skeleton-motivated evaluation reproduces the correct known values of r{sub {tau}} and of the Bjorken polarized sum rule (BjPSR) d{sub b}(Q{sup 2}) at a given point (e.g., at Q{sup 2}=2 GeV{sup 2}). We then evaluate the low-energy behavior of the Adler function d{sub v}(Q{sup 2}) and the BjPSR d{sub b}(Q{sup 2}) in the aforementioned evaluation approach, in the three analytic versions of QCD. We compare with the results obtained in the minimal analytic QCD and with the evaluation approach of Milton et al. and Shirkov.

  10. Subcritical string and large N QCD

    SciTech Connect

    Thorn, Charles B.

    2008-10-15

    We pursue the possibility of using subcritical string theory in 4 spacetime dimensions to establish a string dual for large N QCD. In particular we study the even G-parity sector of the 4 dimensional Neveu-Schwarz dual resonance model as the natural candidate for this string theory. Our point of view is that the open string dynamics given by this model will determine the appropriate subcritical closed string theory, a tree level background of which should describe the sum of planar multiloop open string diagrams. We examine the one-loop open string diagram, which contains information about the closed string spectrum at weak coupling. Higher loop open string diagrams will be needed to determine closed string interactions. We also analyze the field theory limit of the one-loop open string diagram and recover the correct running coupling behavior of the limiting gauge theory.

  11. Feynman rules for Coulomb gauge QCD

    SciTech Connect

    Andrasi, A.; Taylor, J.C.

    2012-10-15

    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel. - Highlights: Black-Right-Pointing-Pointer In Coulomb gauge QCD, we re-express Christ-Lee terms in the Hamiltonian as pseudo-Feynman integrals. Black-Right-Pointing-Pointer This gives a subgraph structure, and allows the ordinary renormalization process. Black-Right-Pointing-Pointer It also leads to cancellation of energy-divergences.

  12. Twisted mass QCD for weak matrix elements

    NASA Astrophysics Data System (ADS)

    Pena, Carlos

    2006-12-01

    I report on the application of tmQCD techniques to the computation of hadronic matrix elements of four-fermion operators. Emphasis is put on the computation of BK in quenched QCD performed by the ALPHA Collaboration. The extension of tmQCD strategies to the study of neutral B- meson mixing is briefly discussed. Finally, some remarks are made concerning proposals to apply tmQCD to the computation of K → ππ amplitudes.

  13. Quantum chromodynamics (QCD) and collider physics

    SciTech Connect

    Ellis, R.K. ); Stirling, W.J. )

    1990-08-14

    This report discusses: fundamentals of perturbative QCD; QCD in e{sup +}e{sup {minus}} {yields} hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p{sub T} jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks.

  14. LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.

    SciTech Connect

    EJIRI,S.

    2007-11-20

    We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.

  15. QCD inequalities for hadron interactions.

    PubMed

    Detmold, William

    2015-06-05

    We derive generalizations of the Weingarten-Witten QCD mass inequalities for particular multihadron systems. For systems of any number of identical pseudoscalar mesons of maximal isospin, these inequalities prove that near threshold interactions between the constituent mesons must be repulsive and that no bound states can form in these channels. Similar constraints in less symmetric systems are also extracted. These results are compatible with experimental results (where known) and recent lattice QCD calculations, and also lead to a more stringent bound on the nucleon mass than previously derived, m_{N}≥3/2m_{π}.

  16. Hadron scattering, resonances, and QCD

    SciTech Connect

    Briceno, Raul

    2016-12-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  17. Archeology and evolution of QCD

    NASA Astrophysics Data System (ADS)

    De Rújula, A.

    2017-03-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki -an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which -to my judgement- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  18. The supercritical pomeron in QCD.

    SciTech Connect

    White, A. R.

    1998-06-29

    Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory.

  19. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  20. Lattice QCD: Status and Prospect

    SciTech Connect

    Ukawa, Akira

    2006-02-08

    A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years.

  1. Recent QCD results from CDF

    SciTech Connect

    Yun, J.C.

    1990-10-10

    In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb{sup {minus}1} during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs.

  2. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  3. Rapidity distributions in Drell-Yan and Higgs productions at threshold to third order in QCD.

    PubMed

    Ahmed, Taushif; Mandal, M K; Rana, Narayan; Ravindran, V

    2014-11-21

    We present the threshold N(3)LO perturbative QCD corrections to the rapidity distributions of dileptons in the Drell-Yan process and Higgs boson in gluon fusion. Sudakov resummation of QCD amplitudes, renormalization group invariance, and the mass factorization theorem provide useful guidelines to obtain them in an elegant manner. We use various state of the art three loop results that have been recently available to obtain these distributions. For the Higgs boson, we demonstrate numerically the importance of these corrections at the LHC.

  4. Two-color QCD at high density

    SciTech Connect

    Boz, Tamer; Skullerud, Jon-Ivar; Giudice, Pietro; Hands, Simon; Williams, Anthony G.

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  5. Self Assembled Spin Coated and Bulk Films of a Novel Polydiacetylene as Second Order NLO Polymers

    DTIC Science & Technology

    1994-05-31

    NLO Polymers 6. AUTHOm(m) R&T Code: 4132016 W.H. Kim, B. Bihari, R. Moody, N. B. Kodali , J.Kumar,S.K. Dr. JoAnn MilUiken Tripathy. 7. PERFORMING...Polymers by W.H. Kim, B. Bihari, R. Moody, N. B. Kodali , J.Kumar,S.K. Tripathy. Submitted to Macromolecules University of Massachusetts Lowell Department...FILMS OF A NOVEL POLYDIACETYLENE AS SECOND ORDER NLO POLYMERS W. H. Kim, B. Bihari+, R. Moody+, N. B. Kodali , J. Kumar+, and S. K. Tripathy, University

  6. Relativistic correction to gluon fragmentation function into pseudoscalar quarkonium

    NASA Astrophysics Data System (ADS)

    Gao, Xiangrui; Jia, Yu; Li, Liuji; Xiong, Xiaonu

    2017-02-01

    Inspired by the recent measurements of the ηc meson production at LHC experiments, we investigate the relativistic correction effect for the fragmentation functions of gluon/charm quark fragmenting into ηc, which constitute the crucial nonperturbative element for the ηc production at high p T. Employing three distinct methods, we calculate the next-to-leading-order (NLO) relativistic correction to g → ηc fragmentation function in the NRQCD factorization framework, as well as verifying the existing NLO result for the c → ηc fragmentation function. We also study the evolution behavior of these fragmentation functions with the aid of the DGLAP equation. Supported by National Natural Science Foundation of China (11475188, 11261130311, 11575202, 11222549), IHEP Innovation (Y4545170Y2), State Key Lab for Electronics and Particle Detectors

  7. Strings, quarkonium and nuclear physics in lattice QCD

    NASA Astrophysics Data System (ADS)

    Stewart, Christopher Robert

    2000-11-01

    Quantum Chromodynamics, QCD, is currently accepted as the correct theory of quark and gluon interactions, a theory that embodies many of our modern notions about the links between mathematical symmetry and physical reality. It is also, for many interesting phenomena, a strongly-coupled theory. Traditional perturbation theory can not be applied to low-energy QCD; new, non-perturbative methods are required. Lattice QCD is the most successful non-perturbative, first-principles approach to investigations of QCD physics. The QCD field equations are discretised on a space-time grid, making them well-suited to numerical simulation. We have performed lattice simulations to investigate three separate problems in low-energy QCD. First, the nature of the strong nuclear force was examined through the simpler system of two interacting heavy-light mesons. The inter-meson binding potential was extracted from lattice simulations, and was in quantitative agreement with the Yukawa model of pion exchange. Next we investigated the phenomenon of string-breaking. The QCD static-quark potential is confining-the gluon field between spatially separated quarks forms a narrow flux `string', with energy that increases linearly with the quark separation. For large separations, the field energy is sufficient for the system to decay into a static-light meson pair. To date, evidence for this `string-breaking' effect has been elusive. We presented a lattice operator that produces the desired effect, even in the absence of light sea-quarks. This has implications for current string- breaking investigations. Finally, we attempted precision simulations of the charmonium ( cc¯) meson family using a non-relativistic effective theory of heavy-quark interactions known as NRQCD. The charm quark is a challenge for lattice simulations-large discrepancies exist between experimental measurements and lattice results for the charmonium spectrum. We performed NRQCD simulations of the charmonium system to examine

  8. Recent progress in lattice QCD

    SciTech Connect

    Sharpe, S.R.

    1992-12-01

    A brief overview of the status of lattice QCD is given, with emphasis on topics relevant to phenomenology. The calculation of the light quark spectrum, the lattice prediction of {alpha} {sub {ovr MS}} (M {sub Z}), and the calculation of f{sub B} are discussed. 3 figs., 3 tabs., 40 refs.

  9. Lattice QCD in Background Fields

    SciTech Connect

    William Detmold, Brian Tiburzi, Andre Walker-Loud

    2009-06-01

    Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume.

  10. Meson Resonances from Lattice QCD

    SciTech Connect

    Edwards, Robert G.

    2016-06-01

    There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems.

  11. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  12. QCD Phase Transitions, Volume 15

    SciTech Connect

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  13. Heavy quark production and QCD

    SciTech Connect

    Purohit, M.V.

    1988-12-01

    Recent results on charm and beauty production in fixed target experiments are reviewed. Particular emphasis is placed on the recent results, on the trend favored by the data, on companies with the recently improved QCD predictions and on what may be expected in the near future. 35 refs., 5 figs.

  14. New results in perturbative QCD

    SciTech Connect

    Ellis, R.K.

    1985-11-01

    Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: (2 2) jet phenomena calculated in O( sT); new techniques for the calculation of tree graphs; and colour coherence in jet phenomena. 31 refs., 6 figs.

  15. Nuclear reactions from lattice QCD

    DOE PAGES

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  16. Nuclear reactions from lattice QCD

    SciTech Connect

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  17. New insights into properties of large- N holographic thermal QCD at finite gauge coupling at (the non-conformal/next-to) leading order in N

    NASA Astrophysics Data System (ADS)

    Sil, Karunava; Misra, Aalok

    2016-11-01

    It is believed that large- N thermal QCD laboratories like strongly coupled QGP (sQGP) require not only a large `t Hooft coupling but also a finite gauge coupling (Natsuume, String theory and quark-gluon plasma. arXiv:hep-ph/0701201, 2007). Unlike almost all top-down holographic models in the literature, holographic large- N thermal QCD models, based on this assumption, therefore necessarily require addressing this limit from M-theory. This was initiated in Dhuria and Misra (JHEP 1311:001, 2013) which presented a local M-theory uplift of the string theoretic dual of large- N thermal QCD-like theories at finite gauge/string coupling of Mia et al. (Nucl. Phys. B 839:187, arXiv:0902.1540 [hep-th], 2010) (g_s corrections to the conformal results (but at finite g_s), respectively, for the speed of sound, the shear mode diffusion constant, and the shear viscosity η (and η /s). The new insight gained is that it turns out that these

  18. The QCD/SM working group: Summary report

    SciTech Connect

    W. Giele et al.

    2004-01-12

    Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron at Fermilab and the forthcoming LHC at CERN), First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate predictions for any signal of possible ''New Physics'' sought at hadron colliders, as well as the corresponding backgrounds, require an improvement in the control of uncertainties on the determination of PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF evolution codes used by the various groups fitting PDF's) need to be proposed and developed. The dynamics of colour also affects, both in normalization and shape, various observables of the signals of any possible ''New Physics'' sought at the TeV scale, such as, e.g. the production rate, or the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many backgrounds to the searches for this ''New Physics''. Large and important QCD corrections may come from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a catch-all name for efforts to extend the predictive power of QCD by summing the large logarithmic corrections to all orders in perturbation theory. In

  19. Report of the 2005 Snowmass Top/QCD Working Group

    SciTech Connect

    Juste, A.; Kiyo, Y.; Petriello, F.; Teubner, T.; Agashe, K.; Batra, P.; Baur, U.; Berger, C.F.; Cembranos, J.A.R.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.W.N.; Godfrey, S.; Hoang, A.; Perelstein, M.; Sullivan, Z.; Tait, T.; Zhu, S.; /Johns Hopkins U. /Princeton, Inst. Advanced Study /Syracuse U. /Argonne /SUNY, Buffalo /SLAC /UC, Irvine /Zurich, ETH /Zurich U. /Durham U., IPPP /Ottawa Carleton Inst. Phys. /Munich, Max Planck Inst. /Cornell U., CIHEP /Peking U.

    2006-01-17

    This report discusses several topics in both top quark physics and QCD at an International Linear Collider (ILC). Issues such as measurements at the t tbar threshold, including both theoretical and machine requirements, and the determination of electroweak top quark couplings are reviewed. New results concerning the potential of a 500 GeV e+e collider for measuring Wtb couplings and the top quark Yukawa coupling are presented. The status of higher order QCD corrections to jet production cross sections, heavy quark form factors, and longitudinal gauge boson scattering, needed for percent-level studies at the ILC, are reviewed. A new study of the measurement of the hadronic structure of the photon at a gamma gamma collider is presented. The effects on top quark properties from several models of new physics, including composite models, Little Higgs theories, and CPT violation, are studied.

  20. PDF and QCD effects in the precision measurement of the W boson mass at CDF

    SciTech Connect

    Beecher, Daniel

    2011-01-01

    A sample of W → ev (W → μν) and Z0 → e+e- (Z0 → μ+μ-) events recorded by the CDF detector for p$\\bar{p}$ collisions at √s = 1.96 TeV are used to evaluate the systematic uncertainty in the determination of the W boson mass arising from uncertainties in the parton distribution functions and higher-order QCD effects. The systematic contribution of PDFs is determined to be 10 MeV/c2 for MSTW2008 NLO and 12 MeV/c2 for CTEQ6.6. The total systematic contribution arising from higher-order QCD effects in 9 MeV/c2. The Z0 events are used to extract improved estimates of the phenomenological parameters in the BLNY model that describes low transverse momentum.

  1. Vector meson electroproduction in QCD

    NASA Astrophysics Data System (ADS)

    Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan

    2012-08-01

    Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.

  2. The QCD equation of state with charm quarks from lattice QCD

    NASA Astrophysics Data System (ADS)

    Cheng, Michael

    Recently, there have been several calculations of the QCD equation of state (EoS) on the lattice. These calculations take into account the two light quarks and the strange quark, but have ignored the effects of the charm quark, assuming that the charm mass (mc ≈ 1300 MeV) is exponentially suppressed at the temperatures which are explored. However, future heavy ion collisions, such as those planned at the LHC, may well probe temperature regimes where the charm quarks play an important role in the dynamics of the QGP. We present a calculation of the charm quark contribution to the QCD EoS using p4-improved staggered fermions at Nt = 4, 6, 8. This calculation is done with a quenched charm quark, i.e. the relevant operators are measured using a valence charm quark mass on a 2+1 flavor gauge field background. The charm quark masses are determined by calculating charmonium masses (metac and mJ/Psi) and fixing these mesons to their physical masses. The interaction measure, pressure, energy density, and entropy density are calculated. We find that the charm contribution makes a significant contribution, even down to temperatures as low as the pseudo-critical temperature, Tc. However, there are significant scaling corrections at the lattice spacings that we use, preventing a reliable continuum extrapolation.

  3. Dynamics for QCD on an Infinite Lattice

    NASA Astrophysics Data System (ADS)

    Grundling, Hendrik; Rudolph, Gerd

    2017-02-01

    We prove the existence of the dynamics automorphism group for Hamiltonian QCD on an infinite lattice in R^3, and this is done in a C*-algebraic context. The existence of ground states is also obtained. Starting with the finite lattice model for Hamiltonian QCD developed by Kijowski, Rudolph (cf. J Math Phys 43:1796-1808 [15], J Math Phys 46:032303 [16]), we state its field algebra and a natural representation. We then generalize this representation to the infinite lattice, and construct a Hilbert space which has represented on it all the local algebras (i.e., kinematics algebras associated with finite connected sublattices) equipped with the correct graded commutation relations. On a suitably large C*-algebra acting on this Hilbert space, and containing all the local algebras, we prove that there is a one parameter automorphism group, which is the pointwise norm limit of the local time evolutions along a sequence of finite sublattices, increasing to the full lattice. This is our global time evolution. We then take as our field algebra the C*-algebra generated by all the orbits of the local algebras w.r.t. the global time evolution. Thus the time evolution creates the field algebra. The time evolution is strongly continuous on this choice of field algebra, though not on the original larger C*-algebra. We define the gauge transformations, explain how to enforce the Gauss law constraint, show that the dynamics automorphism group descends to the algebra of physical observables and prove that gauge invariant ground states exist.

  4. Highly Non-Linear Optical (NLO) organic crystals and films. Electrooptical organic materials

    NASA Technical Reports Server (NTRS)

    Mcmanus, Samuel P.; Rosenberger, Franz; Matthews, John

    1987-01-01

    Devices employing nonlinear optics (NLO) hold great promise for important applications in integrated optics, optical information processing and telecommunications. Properly designed organics possess outstanding optical and electrooptical properties which will substantially advance many technologies including electrooptical switching, optical amplification for communications, and parallel processing for hybrid optical computers. A brief comparison of organic and inorganic materials is given.

  5. X-Ray Diffraction Analysis of NLO Crystals: Traditional Applications and More New Opportunities

    NASA Technical Reports Server (NTRS)

    Antipin, Mikhail Yu.; Clark, Ronald D.; Nesterov, Vladimir N.

    1998-01-01

    Single crystal X-ray diffraction analysis is one of the more important methods for the molecular and crystal structure determination of matter and therefore it has a great importance in material science including design and engineering of different compounds with non-linear optical (NLO) properties. It was shown in our previous publications that this method provides unique information about molecular structure of NLO compounds, their crystal symmetry and crystal packing arrays, molecular conformation and geometries and many other structural and electronic characteristics that are important for understanding the nature of NLO properties of solids. A very new application of the X-ray diffraction method is related to analysis of the electron density distribution p(r) in crystals and some of its characteristics (atomic and group charges, dipole and higher multipole moments, etc.), that may be obtained directly form the diffraction measurements. In the present work, we will discuss our preliminary low temperature high-resolution X-ray data for the m-nitroaniline (mNA) single crystal (VI). This is one of the "classical" organic NLO materials and electron density distribution analysis in this simple compound has a great scientific interest.

  6. Effective field theories for QCD with rooted staggered fermions

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal

    2008-04-01

    Even highly improved variants of lattice QCD with staggered fermions show significant violations of taste symmetry at currently accessible lattice spacings. In addition, the 'rooting trick' is used in order to simulate with the correct number of light sea quarks, and this makes the lattice theory nonlocal, even though there is good reason to believe that the continuum limit is in the correct universality class. In order to understand scaling violations, it is thus necessary to extend the construction of the Symanzik effective theory to include rooted staggered fermions. We show how this can be done, starting from a generalization of the renormalization-group approach to rooted staggered fermions recently developed by one of us. We then explain how the chiral effective theory follows from the Symanzik action, and show that it leads to 'rooted' staggered chiral perturbation theory as the correct chiral theory for QCD with rooted staggered fermions. We thus establish a direct link between the renormalization-group based arguments for the correctness of the continuum limit and the success of rooted staggered chiral perturbation theory in fitting numerical results obtained with the rooting trick. In order to develop our argument, we need to assume the existence of a standard partially-quenched chiral effective theory for any local partially-quenched theory. Other technical, but standard, assumptions are also required.

  7. anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models

    NASA Astrophysics Data System (ADS)

    Ayala, César; Cvetič, Gorazd

    2016-02-01

    We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings Aν(Q2) for complex or real squared momenta Q2. These couplings are holomorphic analogs of the powers a(Q2)ν of the underlying perturbative QCD (pQCD) coupling a(Q2) ≡αs(Q2) / π, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 δanQCD), and Massive Perturbation Theory (MPT). The index ν can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetič, 2015), but are now written in Fortran.

  8. LATTICE QCD AT FINITE DENSITY.

    SciTech Connect

    SCHMIDT, C.

    2006-07-23

    I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.

  9. Nuclear forces from lattice QCD

    SciTech Connect

    Ishii, Noriyoshi

    2011-05-06

    Lattice QCD construction of nuclear forces is reviewed. In this method, the nuclear potentials are constructed by solving the Schroedinger equation, where equal-time Nambu-Bethe-Salpeter (NBS) wave functions are regarded as quantum mechanical wave functions. Since the long distance behavior of equal-time NBS wave functions is controlled by the scattering phase, which is in exactly the same way as scattering wave functions in quantum mechanics, the resulting potentials are faithful to the NN scattering data. The derivative expansion of this potential leads to the central and the tensor potentials at the leading order. Some of numerical results of these two potentials are shown based on the quenched QCD.

  10. Form factors from lattice QCD

    SciTech Connect

    Dru Renner

    2012-04-01

    Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen precent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.

  11. Innovations in Lattice QCD Algorithms

    SciTech Connect

    Konstantinos Orginos

    2006-06-25

    Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.

  12. Berry Phase in Lattice QCD.

    PubMed

    Yamamoto, Arata

    2016-07-29

    We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  13. Lattice QCD: A Brief Introduction

    NASA Astrophysics Data System (ADS)

    Meyer, H. B.

    A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.

  14. Hadron physics from lattice QCD

    NASA Astrophysics Data System (ADS)

    Bietenholz, Wolfgang

    2016-07-01

    We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last, we address two outstanding issues: topological freezing and the sign problem.

  15. Lattice gauge theory for QCD

    SciTech Connect

    DeGrand, T.

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  16. {upsilon} spectrum and m{sub b} from full lattice QCD

    SciTech Connect

    Gray, A.; Gulez, E.; Shigemitsu, J.; Allison, I.; Davies, C.T.H.; Lepage, G.P.; Wingate, M.

    2005-11-01

    We show results for the {upsilon} spectrum calculated in lattice QCD including for the first time vacuum polarization effects for light u and d quarks as well as s quarks. We use gluon field configurations generated by the MILC collaboration. The calculations compare the results for a variety of u and d quark masses, as well as making a comparison to quenched results (in which quark vacuum polarization is ignored) and results with only u and d quarks. The b quarks in the {upsilon} are treated in lattice Nonrelativistic QCD through NLO in an expansion in the velocity of the b quark. We concentrate on accurate results for orbital and radial splittings where we see clear agreement with experiment once u, d and s quark vacuum polarization effects are included. This now allows a consistent determination of the parameters of QCD. We demonstrate this consistency through the agreement of the {upsilon} and B spectrum using the same lattice bare b quark mass. A one-loop matching to continuum QCD gives a value for the b quark mass in full lattice QCD for the first time. We obtain m{sub b}{sup MS}(m{sub b}{sup MS})=4.4(3) GeV. We are able to give physical results for the heavy quark potential parameters, r{sub 0}=0.469(7) fm and r{sub 1}=0.321(5) fm. Results for the fine structure in the spectrum and the {upsilon} leptonic width are also presented. We predict the {upsilon}-{eta}{sub b} splitting to be 61(14) MeV, the {upsilon}{sup '}-{eta}{sub b}{sup '} splitting as 30(19) MeV and the splitting between the h{sub b} and the spin-average of the {chi}{sub b} states to be less than 6 MeV. Improvements to these calculations that will be made in the near future are discussed.

  17. Low energy constants of SU(2) partially quenched chiral perturbation theory from Nf=2+1 domain wall QCD

    DOE PAGES

    Boyle, P. A.; Christ, N. H.; Garron, N.; ...

    2016-03-09

    Here, we have performed fits of the pseudoscalar masses and decay constants, from a variety of the RBC-UKQCD Collaboration’s domain wall fermion ensembles, to SU(2) partially quenched chiral perturbation theory at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low-energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low-energy constants to make predictions for mass splittings due to QCD isospin-breaking effects and the S-wave ππ scattering lengths.more » Lastly, we conclude that, for the range of pseudoscalar masses explored in this work, 115 MeV≲mPS≲430 MeV, the NNLO SU(2) expansion is quite robust and can fit lattice data with percent-scale accuracy.« less

  18. Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bołd, T.; Brümmer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P. J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Cantun Avila, K. B.; Capua, M.; Carlin, R.; Catterall, C. D.; Ceccopieri, F.; Cerny, K.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J. G.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Cvach, J.; D'Agostini, G.; Dainton, J. B.; Dal Corso, F.; Daum, K.; Delvax, J.; Dementiev, R. K.; Derrick, M.; Devenish, R. C. E.; De Pasquale, S.; De Wolf, E. A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B. A.; Dolinska, G.; Dossanov, A.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Elsen, E.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Y. A.; Göttlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bołd, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Hüttmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Henderson, R. C. W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K. H.; Hladký, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.-P.; Janssen, X.; Januschek, F.; Jones, T. W.; Jönsson, L.; Jüngst, M.; Jung, A. W.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, P.; Kaur, M.; Kenyon, I. R.; Keramidas, A.; Khein, L. A.; Kiesling, C.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kötz, U.; Koffeman, E.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, I.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kowalski, H.; Krämer, M.; Kretzschmar, J.; Krüger, K.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Löhr, B.; Lohmann, W.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukina, O. Y.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Martyn, H.-U.; Mastroberardino, A.; Mattingly, M. C. K.; Maxfield, S. J.; Mehta, A.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Meyer, A. B.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Morris, J. D.; Mujkic, K.; Müller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J. E.; Onishchuk, Y.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G. D.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perez, E.; Perlański, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pluciński, P.; Pokorny, B.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A. S.; Przybycień, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D. D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J. E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Šálek, D.; Samson, U.; Sankey, D. P. C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schönberg, V.; Schöning, A.; Schörner-Sadenius, T.; Schultz-Coulon, H.-C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Shushkevich, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Thompson, P. D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Tran, T. H.; Traynor, D.; Truöl, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vázquez, M.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Wegener, D.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wünsch, E.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Žáček, J.; Zálešák, J.; Zenaiev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Žlebčík, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D. S.; Żarnecki, A. F.

    2013-02-01

    Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections σ_red^{cbar{c}} for charm production are obtained in the kinematic range of photon virtuality 2.5≤ Q 2≤2000 GeV2 and Bjorken scaling variable 3ṡ10-5≤ x≤5ṡ10-2. The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W ± and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.

  19. QCD thermodynamics on a lattice

    NASA Astrophysics Data System (ADS)

    Levkova, Ludmila A.

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.

  20. Light-Front Holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light

  1. Lattice QCD Calculation of Nucleon Structure

    SciTech Connect

    Liu, Keh-Fei; Draper, Terrence

    2016-08-30

    It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs, the strangeness and charmness, the meson mass decomposition and the

  2. QCD for Postgraduates (2/5)

    ScienceCinema

    None

    2016-07-12

    Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD and will introduce the concept of infrared safe jets.

  3. Nucleon-nucleon scattering observables in large- Nc QCD

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.; Gelman, Boris A.

    2002-08-01

    Nucleon-nucleon scattering observables are considered in the context of the large Nc limit of QCD for initial states with moderately high momenta ( p∼ Nc). The scattering is studied in the framework of the time-dependent mean-field approximation. We focus on the dependence of those observables on the spin and isospin of the initial state which may be computed using time-dependent mean-field theory. We show that, up to corrections, all such observables must be invariant under simultaneous spin and isospin flips (i.e., rotations through π/2 in both spin and isospin) acting on either particle. All observables of this class obtained from spin unpolarized measurements must be isospin independent up to 1/ Nc corrections. Moreover, it can be shown that the leading correction is of relative order 1/ Nc2 rather than 1/ Nc.

  4. General QED/QCD aspects of simple systems

    SciTech Connect

    Telegdi, V.L.; Brodsky, S.J.

    1989-09-01

    This paper discusses the following topics: renormalization theory; the Kinoshita-Lee-Nauenberg theorem; the Yennie-Frautschi-Suura relation; scale invariance at large momentum transfer; scaling and scaling violation at large momentum transfers; low-energy theorem in Compton scattering; does the perturbation series in QED converge; renormalization of the weak angle /Theta//sub w/; the Nambu-Bethe-Salpeter (NBS) equation; the decay rate of /sup 3/S, positronium; radiative corrections to QCD Born cross section; and progress on the relativistic 2-body equation.

  5. Precise QCD Predictions for the Production of Dijet Final States in Deep Inelastic Scattering.

    PubMed

    Currie, James; Gehrmann, Thomas; Niehues, Jan

    2016-07-22

    The production of two-jet final states in deep inelastic scattering is an important QCD precision observable. We compute it for the first time to next-to-next-to-leading order (NNLO) in perturbative QCD. Our calculation is fully differential in the lepton and jet variables and allows one to impose cuts on the jets in both the laboratory and the Breit frame. We observe that the NNLO corrections are moderate in size, except at kinematical edges, and that their inclusion leads to a substantial reduction of the scale variation uncertainty on the predictions. Our results will enable the inclusion of deep inelastic dijet data in precision phenomenology studies.

  6. Associated Higgs-W-boson production at hadron colliders: a fully exclusive QCD calculation at NNLO.

    PubMed

    Ferrera, Giancarlo; Grazzini, Massimiliano; Tramontano, Francesco

    2011-10-07

    We consider QCD radiative corrections to standard model Higgs-boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bb pair. We present selected numerical results at the Tevatron and the LHC.

  7. Thermodynamics of Resonant Scalars in AdS/CFT and implications for QCD

    NASA Astrophysics Data System (ADS)

    Megías, Eugenio; Valle, Manuel

    2016-11-01

    We explore the thermodynamics of a simple 5D Einstein-dilaton gravity model with a massive scalar field, with asymptotically AdS behavior in the UV. The holographic renormalization is addressed in details, and analytical results are obtained at high temperatures. We study the power corrections predicted by the model, and compare with lattice data in the deconfined phase of gluodynamics. Finally, it is discussed the role played by the conformal anomaly for integer values of the dimension of the condensate dual to the scalar field. Talk given by E. Megías at the QCD@Work: International Workshop on QCD, 27-30 June 2016, Martina Franca, Italy.

  8. Two-photon collisions and QCD

    SciTech Connect

    Gunion, J.F.

    1980-05-01

    A critical review of the applications of QCD to low- and high-p/sub T/ interactions of two photons is presented. The advantages of the two-photon high-p/sub T/ tests over corresponding hadronic beam and/or target tests of QCD are given particular emphasis.

  9. Lattice QCD and High Baryon Density State

    SciTech Connect

    Nagata, Keitaro; Nakamura, Atsushi; Motoki, Shinji; Nakagawa, Yoshiyuki; Saito, Takuya

    2011-10-21

    We report our recent studies on the finite density QCD obtained from lattice QCD simulation with clover-improved Wilson fermions of two flavor and RG-improved gauge action. We approach the subject from two paths, i.e., the imaginary and chemical potentials.

  10. Solvable models and hidden symmetries in QCD

    SciTech Connect

    Yepez-Martinez, Tochtli; Hess, P. O.; Civitarese, O.; Lerma H., S.

    2010-12-23

    We show that QCD Hamiltonians at low energy exhibit an SU(2) structure, when only few orbital levels are considered. In case many orbital levels are taken into account we also find a semi-analytic solution for the energy levels of the dominant part of the QCD Hamiltonian. The findings are important to propose the structure of phenomenological models.

  11. A DFT study on NLO response of push-pull hybrid porphyrin-polyoxometalate complexes

    NASA Astrophysics Data System (ADS)

    Yao, Chan; Hu, Bo; Wang, Qingwei; Song, Ping; Su, Zhongmin

    2014-06-01

    Density functional theory (DFT) calculations were carried out to investigate the second-order nonlinear optical (NLO) properties of a series of proposed porphyrin-polyoxometalate-based complexes related to [5-(3,5-dimethyl-4-hexamolybdate amino-phenyl-ethynyl)-15-(4-nitrophenyl-ethynyl)porphinato]zinc(II) which have donor-π conjugated bridge-acceptor (D-π-A) configurations. Our calculations show that these species possess considerably large molecular total second-order polarizability (β0), ˜2000 × 10-30 esu. Furthermore, it can be seen that {W6O18} exhibits stronger electron-donating ability than {Mo6O18}. And two-dimensional (2D) system with A-π-D-π-A structure might be a promising candidate for NLO materials based on the large β0 (4583.5 × 10-30 esu) and in-plane nonlinear anisotropy.

  12. Photophysical studies of fused phenanthrimidazole derivatives as versatile π-conjugated systems for potential NLO applications

    NASA Astrophysics Data System (ADS)

    Jayabharathi, Jayaraman; Thanikachalam, Venugopal; Venkatesh Perumal, Marimuthu

    Two new heterocyclic imidazole derivatives consists of π-conjugated system attached to a phenanthrimidazole moiety have been synthesized in moderate yield by the condensation of 1,10-phenanthroline-5,6-dione with substituted aromatic aldehydes and 4-methoxyaniline in the presence of ammonium acetate in ethanol medium. The photophysical properties of these imidazole derivatives were studied in several solvents. These derivatives were evaluated concerning their solvatochromic properties and molecular optical nonlinearities. Their electric dipole moment (μ) and hyperpolarizability (β) have been calculated theoretically and the results indicate that the extension of the π-framework of the ligands has an effect on the NLO properties of these imidazole derivatives. The non-zero tensor components of these imidazole derivatives reveal that they possess potent non-linear optical (NLO) behavior. The energies of the HOMO and LUMO levels and the molecular electrostatic potential (MEP) energy surface studies have exploited the existence of intramolecular charge transfer (ICT) within the molecule.

  13. DFT calculations on spectroscopic, structural and NLO properties of silver (I) complex with picolinamide

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2017-02-01

    The molecular geometry optimization, vibrational frequencies, the molecular static polarizability (α), first-order static hyperpolarizability (β), second-order static hyperpolarizability (γ) and frontier molecular orbital (FMO) energies of silver (I) complex with picolinamide, [Ag(C6H6N2O)2](NO3).H2O, were investigated using density functional theory (DFT) HSEh1PBE and B3LYP methods with LANL2DZ basis set. The molecular hardness (η) and electronegativity (χ) parameters were also obtained by using FMO energies. The NLO parameters of the complex were compared with those of para-Nitroaniline (pNA) and urea which are typical NLO materials. Obtained data showed that there is an agreement between the predicted and experimental data.

  14. Holographic QCD for H-dibaryon (uuddss)

    NASA Astrophysics Data System (ADS)

    Suganuma, Hideo; Matsumoto, Kohei

    2017-03-01

    The H-dibaryon (uuddss) is studied in holographic QCD for the first time. In holographic QCD, four-dimensional QCD, i.e., SU(Nc) gauge theory with chiral quarks, can be formulated with S1-compactified D4/D8/\\overline {{{D8}}} -brane system. In holographic QCD with large (Nc, all the baryons appear as topological chiral solitons of Nambu-Goldstone bosons and (axial) vector mesons, and the H-dibaryon can be described as an SO(3)-type topological soliton with B = 2. We derive the low-energy effective theory to describe the H-dibaryon in holographic QCD. The H-dibaryon mass is found to be twice of the B = 1 hedgehog-baryon mass, MH ≃ 2.00MB=1HH, and is estimated about 1.7GeV, which is smaller than mass of two nucleons (flavor-octet baryons), in the chiral limit.

  15. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD.

    PubMed

    Ryttov, Thomas A

    2016-08-12

    We suggest how to consistently calculate the anomalous dimension γ_{*} of the ψ[over ¯]ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n+1 loop beta function and n loop anomalous dimension are known, then γ_{*} can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O(Δ_{f}^{n}), where Δ_{f}=N[over ¯]_{f}-N_{f}, N_{f} is the number of flavors, and N[over ¯]_{f} is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δ_{f}. We then compute γ_{*} through O(Δ_{f}^{2}) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ_{*} is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ_{*} through O(Δ_{f}^{3}) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ_{*} are observed for a large range of flavors.

  16. Nucleon Structure from Lattice QCD

    SciTech Connect

    Haegler, Philipp

    2011-10-24

    Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.

  17. Tetraquark states from lattice QCD

    SciTech Connect

    Mathur, Nilmani

    2011-10-24

    Recently there have been considerable interests in studying hadronic states beyond the usual two and three quark configurations. With the renewed experimental interests in {sigma}(600) and the inability of quark model to incorporate too many light scalar mesons, it is quite appropriate to study hadronic states with four quark configurations. Moreover, some of the newly observed charmed hadrons may well be described by four quark configurations. Lattice QCD is perhaps the most desirable tool to adjudicate the theoretical controversy of the scalar mesons and to interpret the structures of the newly observed charmed states. Here we briefly reviewed the lattice studies of four-quark hadrons.

  18. Nuclear Physics from Lattice QCD

    SciTech Connect

    William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage

    2011-01-01

    We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

  19. "Quantum Field Theory and QCD"

    SciTech Connect

    Jaffe, Arthur M.

    2006-02-25

    This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.

  20. Diphoton production in the ADD model to NLO + parton shower accuracy at the LHC

    NASA Astrophysics Data System (ADS)

    Frederix, R.; Mandal, Manoj K.; Mathews, Prakash; Ravindran, V.; Seth, Satyajit; Torrielli, P.; Zaro, M.

    2012-12-01

    In this paper, we present the next-to-leading order predictions for diphoton production in the ADD model, matched to the HERWIG parton shower using the MC@NLO formalism. A selection of the results is presented for d = 2-6 extra dimensions, using generic cuts as well as analysis cuts mimicking the search strategies as pursued by the ATLAS and CMS experiments.

  1. The decay of Λ _b→ p~K^- in QCD factorization approach

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ke, Hong-Wei; Wei, Zheng-Tao

    2016-05-01

    With only the tree-level operator, the decay of Λ _b→ pK is predicted to be one order smaller than the experimental data. The QCD penguin effects should be taken into account. In this paper, we explore the one-loop QCD corrections to the decay of Λ _b→ pK within the framework of QCD factorization approach. For the baryon system, the diquark approximation is adopted. The transition hadronic matrix elements between Λ _b and p are calculated in the light-front quark model. The branching ratio of Λ _b→ pK is predicted to be about 4.85× 10^{-6}, which is consistent with experimental data (4.9± 0.9)× 10^{-6}. The CP violation is about 5 % in theory.

  2. Chiral restoration of strong coupling QCD at finite temperature and baryon density

    NASA Astrophysics Data System (ADS)

    Fromm, Michael

    2009-04-01

    The strong coupling limit (β=0) of lattice QCD with staggered fermions enjoys the same non-perturbative properties as continuum QCD, namely confinement and chiral symmetry breaking. In contrast to the situation at weak coupling, the sign problem which appears at finite density can be brought under control for a determination of the full (μ,T) phase diagram by Monte Carlo simulations. Further difficulties with efficiency and ergodicity of the simulations, especially at the strongly first-order, low-T, finite-μ transition, are addressed respectively with a worm algorithm and multicanonical sampling. Our simulations reveal sizeable corrections to the old results of Karsch and Mütter. Comparison with analytic mean-field determinations of the phase diagram shows discrepancies of O(10) in the location of the QCD critical point.

  3. The chiral S = -1 meson-baryon interaction with new constraints on the NLO contributions

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Feijoo, A.; Magas, V. K.

    2016-10-01

    We present a study of the S = - 1 meson-baryon interaction, employing a chiral SU(3) Lagrangian up to next-to-leading order (NLO) and implementing unitarization in coupled channels. The parameters of the model have been fitted to a large set of experimental scattering data in different two-body channels, to threshold branching ratios, and to the precise SIDDHARTA value of the energy shift and width of kaonic hidrogen. In contrast to other groups, we have taken into consideration the K- p →K+Ξ- ,K0Ξ0 reaction data, since we found in a previous work to be especially sensitive to the NLO parameters of the chiral Lagrangian. In the present work we also include the Born terms, which usually have very little effect, and find them to be non-negligible in the K- p → KΞ channels, correspondingly causing significant modifications to the NLO parameters. We furthermore show that the importance of the Born terms becomes more visible in the isospin projected amplitudes of the K- p → KΞ reactions. The measurement of processes that filter single isospin components, like the KL0 p →K+Ξ0 reaction that could be measured at the proposed secondary KL0 beam at Jlab, would put valuable constraints on the chiral models describing the meson-baryon interaction in the S = - 1 sector.

  4. Characterizing the NLO chromophore orientation of polymeric film by electroabsorption spectroscopy[Nonlinear Optical

    SciTech Connect

    Yang, K.; Wang, X.; Kim, W.; Jain, A.; Li, L.; Kumar, J.; Tripathy, S.

    1998-07-01

    The dispersion of third-order nonlinear coefficients {chi}{sub 1133}{sup (3)} and {chi}{sub 3333}{sup (3)} of three different NLO (nonlinear optical) polymer films were determined by electroabsorption spectroscopy. The first material investigated is an epoxy-based polymer BP-2A-NT, with azobenzene NLO chromophore 4-[((4-nitrophenyl)(azo)phenyl)azo]aniline in its side chain. The other materials are two polydiacetylenes, poly(BPOD) and poly(4-BCMU), in which the delocalized polymer chains contribute to the third-order nonlinearity. The complex spectrum of {chi}{sub 3333}{sup (3)} of each material is very similar in shape to corresponding {chi}{sub 1133}{sup (3)} spectrum. The ratio of {chi}{sub 3333}{sup (3)} to {chi}{sub 1133}{sup (3)} is 3.2 for BP-2A-NT, 1.5 for both poly(BPOD) and poly(4-BCMU). These ratios indicate that the distribution of the side-chain NLO chromophores of BP-2A-NT is very close to three-dimensional isotropy, and the distribution of the main-chain chromophores of poly(BPOD) and poly(4-BCMU) is concentrated on the film plane.

  5. pi {sup 0} {yields} gamma gamma to NLO in CHPT

    SciTech Connect

    Jose Goity

    2003-05-01

    The pi 0 {yields} gamma gamma width is determined to next to leading order in the combined chiral and 1/Nc expansions. It is shown that corrections driven by chiral symmetry breaking produce an enhancement of about 4.5% with respect to the width calculated in terms of the chiral-limit amplitude leading to Gamma{sub {pi}}{sup 0} {yields} {gamma}{gamma} = 8.1 +/- 0.08 MeV. This theoretical prediction will be tested via pi 0 Primakoff production by the PRIMEX experiment at Jefferson Lab.

  6. QCD studies in ep collisions

    SciTech Connect

    Smith, W.H.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  7. QCD and the BlueGene

    SciTech Connect

    Vranas, P

    2007-06-18

    Quantum Chromodynamics is the theory of nuclear and sub-nuclear physics. It is a celebrated theory and one of its inventors, F. Wilczek, has termed it as '... our most perfect physical theory'. Part of this is related to the fact that QCD can be numerically simulated from first principles using the methods of lattice gauge theory. The computational demands of QCD are enormous and have not only played a role in the history of supercomputers but are also helping define their future. Here I will discuss the intimate relation of QCD and massively parallel supercomputers with focus on the Blue Gene supercomputer and QCD thermodynamics. I will present results on the performance of QCD on the Blue Gene as well as physics simulation results of QCD at temperatures high enough that sub-nuclear matter transitions to a plasma state of elementary particles, the quark gluon plasma. This state of matter is thought to have existed at around 10 microseconds after the big bang. Current heavy ion experiments are in the quest of reproducing it for the first time since then. And numerical simulations of QCD on the Blue Gene systems are calculating the theoretical values of fundamental parameters so that comparisons of experiment and theory can be made.

  8. AdS/QCD at finite density and temperature

    SciTech Connect

    Kim, Y.

    2012-07-15

    We review some basics of AdS/QCD following a non-standard path and list a few results from AdS/QCD or holographic QCD. The non-standard path here is to use the analogy of the way one obtains an effective model of QCD like linear sigma model and the procedure to construct an AdS/QCD model based on the AdS/CFT dictionary.

  9. Death to perturbative QCD in exclusive processes?

    SciTech Connect

    Eckardt, R.; Hansper, J.; Gari, M.F.

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  10. The QCD vacuum, hadrons and superdense matter

    SciTech Connect

    Shuryak, E.

    1986-01-01

    This is probably the only textbook available that gathers QCD, many-body theory and phase transitions in one volume. The presentation is pedagogical and readable. Contents: The QCD Vacuum: Introduction; QCD on the Lattice Topological Effects in Gauges Theories. Correlation Functions and Microscopic Excitations: Introduction; Operator Product Expansion; The Sum Rules beyond OPE; Nonpower Contributions to Correlators and Instantons; Hadronic Spectroscopy on the Lattice. Dense Matter: Hadronic Matter; Asymptotically Dense Quark-Gluon Plasma; Instantons in Matter; Lattice Calculations at Finite Temperature; Phase Transitions; Macroscopic Excitations and Experiments: General Properties of High Energy Collisions; ''Barometers'', ''Thermometers'', Interferometric ''Microscope''; Experimental Perspectives.

  11. Excited light isoscalar mesons from lattice QCD

    SciTech Connect

    Christopher Thomas

    2011-07-01

    I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.

  12. Shape of mesons in holographic QCD

    SciTech Connect

    Torabian, Mahdi; Yee, Ho-Ung

    2009-10-15

    Based on the expectation that the constituent quark model may capture the right physics in the large N limit, we point out that the orbital angular momentum of the quark-antiquark pair inside light mesons of low spins in the constituent quark model may provide a clue for the holographic dual string model of large N QCD. Our discussion, relying on a few suggestive assumptions, leads to a necessity of world-sheet fermions in the bulk of dual strings that can incorporate intrinsic spins of fundamental QCD degrees of freedom. We also comment on the interesting issue of the size of mesons in holographic QCD.

  13. QCD thermodynamics and missing hadron states

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter

    2016-03-01

    Equation of State and fluctuations of conserved charges in hot strongly interacting matter are being calculated with increasing accuracy in lattice QCD, and continuum results at physical quark masses become available. At sufficiently low temperature the thermodynamic quantities can be understood in terms of hadron resonance gas model that includes known hadrons and hadronic resonances from Particle Data Book. However, for some quantities it is necessary to include undiscovered hadronic resonances (missing states) that are, however, predicted by quark model and lattice QCD study of hadron spectrum. Thus, QCD thermodynamics can provide indications for the existence of yet undiscovered hadron states.

  14. QCD at the Large Hadron Collider—Higgs Searches and Some Non-SUSY Extensions Beyond the SM

    NASA Astrophysics Data System (ADS)

    Mathews, Prakash; Ravindran, V.

    We present a brief overview of the physics potential of the Large Hadron Collider (LHC) and the role of quantum chromody- namics (QCD) in predicting various observables at the LHC with unprecedented accuracy. We have studied the production of Standard Model (SM) Higgs boson through gluon fusion channel and various signals of physics beyond the Standard Model (BSM) restricted to non-supersymmetric scenarios. These are models with large extra-dimensions such as ADD and Randall- Sundrum models and also physics senario resulting from scale/conformal invariant sector, namely unparticle physics. We have presented QCD effects to several of the observables in these models through higher order perturbative QCD corrections and parton distribution functions. We have demonstrated how the these corrections reduce the scale ambiguities coming from renormalisation and factorisation. Our study shows that the precise and unambiguous predictions are possible for various BSM studies at the LHC.

  15. Mixed action simulations on a staggered background: Interpretation and result for the 2-flavor QCD chiral condensate

    SciTech Connect

    Hasenfratz, Anna; Hoffmann, Roland

    2006-12-01

    Growing evidence indicates that in the continuum limit the rooted staggered action is in the correct QCD universality class, the nonlocal terms arising from taste breaking can be viewed as lattice artifacts. In this paper we consider the 2-flavor Asqtad staggered action at lattice spacing a{approx_equal}0.13 fm and probe the properties of the staggered configurations by an overlap valence Dirac operator. By comparing the distribution of the overlap eigenmodes to continuum QCD predictions we investigate if/when the lattice artifacts are small as a function of the staggered quark mass. We define a matching overlap quark mass where the lattice corrections are minimal for the topological susceptibility and from the eigenmode distribution we predict the 2-flavor chiral condensate. Our results indicate that the staggered configurations are consistent with 2-flavor continuum QCD up to small lattice artifacts, and predict a consistent value for the infinite volume chiral condensate.

  16. Modeling QCD for Hadron Physics

    SciTech Connect

    Tandy, P. C.

    2011-10-24

    We review the approach to modeling soft hadron physics observables based on the Dyson-Schwinger equations of QCD. The focus is on light quark mesons and in particular the pseudoscalar and vector ground states, their decays and electromagnetic couplings. We detail the wide variety of observables that can be correlated by a ladder-rainbow kernel with one infrared parameter fixed to the chiral quark condensate. A recently proposed novel perspective in which the quark condensate is contained within hadrons and not the vacuum is mentioned. The valence quark parton distributions, in the pion and kaon, as measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.

  17. Electroweak symmetry breaking via QCD.

    PubMed

    Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred

    2014-08-29

    We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350  GeV≲mS≲3  TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem.

  18. Phenomenology of Large Nc QCD

    NASA Astrophysics Data System (ADS)

    Lebed, Richard F.

    1999-09-01

    These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, we demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c. We then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c, while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when large” N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions.

  19. QCD tests with polarized beams

    SciTech Connect

    Maruyama, Takashi; SLD Collaboration

    1996-09-01

    The authors present three QCD studies performed by the SLD experiment at SLAC, utilizing the highly polarized SLC electron beam. They examined particle production differences in light quark and antiquark hemispheres, and observed more high momentum baryons and K{sup {minus}}`s than antibaryons and K{sup +}`s in quark hemispheres, consistent with the leading particle hypothesis. They performed a search for jet handedness in light q- and {anti q}-jets. Assuming Standard Model values of quark polarization in Z{sup 0} decays, they have set an improved upper limit on the analyzing power of the handedness method. They studied the correlation between the Z{sup 0} spin and the event-plane orientation in polarized Z{sup 0} decays into three jets.

  20. Opportunities, challenges, and fantasies in lattice QCD

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    2003-05-01

    Some important problems in quantitative QCD will certainly yield to hard work and adequate investment of resources, others appear difficult but may be accessible, and still others will require essentially new ideas. Here I identify several examples in each class.

  1. Simplifying Multi-Jet QCD Computation

    SciTech Connect

    Peskin, Michael E.; /SLAC

    2011-11-04

    These lectures give a pedagogical discussion of the computation of QCD tree amplitudes for collider physics. The tools reviewed are spinor products, color ordering, MHV amplitudes, and the Britto-Cachazo-Feng-Witten recursion formula.

  2. Towards a theoretical description of dense QCD

    NASA Astrophysics Data System (ADS)

    Philipsen, Owe

    2017-03-01

    The properties of matter at finite baryon densities play an important role for the astrophysics of compact stars as well as for heavy ion collisions or the description of nuclear matter. Because of the sign problem of the quark determinant, lattice QCD cannot be simulated by standard Monte Carlo at finite baryon densities. I review alternative attempts to treat dense QCD with an effective lattice theory derived by analytic strong coupling and hopping expansions, which close to the continuum is valid for heavy quarks only, but shows all qualitative features of nuclear physics emerging from QCD. In particular, the nuclear liquid gas transition and an equation of state for baryons can be calculated directly from QCD. A second effective theory based on strong coupling methods permits studies of the phase diagram in the chiral limit on coarse lattices.

  3. Scheme variations of the QCD coupling

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon

    2017-03-01

    The Quantum Chromodynamics (QCD) coupling αs is a central parameter in the Standard Model of particle physics. However, it depends on theoretical conventions related to renormalisation and hence is not an observable quantity. In order to capture this dependence in a transparent way, a novel definition of the QCD coupling, denoted by â, is introduced, whose running is explicitly renormalisation scheme invariant. The remaining renormalisation scheme dependence is related to transformations of the QCD scale Λ, and can be parametrised by a single parameter C. Hence, we call â the C-scheme coupling. The dependence on C can be exploited to study and improve perturbative predictions of physical observables. This is demonstrated for the QCD Adler function and hadronic decays of the τ lepton.

  4. Excited light meson spectroscopy from lattice QCD

    SciTech Connect

    Christopher Thomas, Hadron Spectrum Collaboration

    2012-04-01

    I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.

  5. Strange Baryon Physics in Full Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-11-01

    Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles.

  6. Superfluid helium II as the QCD vacuum

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel

    2017-03-01

    We study the winding number susceptibility in a superfluid system and the topological susceptibility in QCD. We argue that both correlation functions exhibit similar structures, including the generation of the contact terms. We discuss the nature of the contact term in superfluid system and argue that it has exactly the same origin as in QCD, and it is related to the long distance physics which cannot be associated with conventional microscopical degrees of freedom such as phonons and rotons. We emphasize that the conceptual similarities between superfluid system and QCD may lead, hopefully, to a deeper understanding of the topological features of a superfluid system as well as the QCD vacuum.

  7. QCD for Postgraduates (4/5)

    ScienceCinema

    None

    2016-07-12

    Modern QCD - Lecture 4 We will consider some processes of interest at the LHC and will discuss the main elements of their cross-section calculations. We will also summarize the current status of higher order calculations.

  8. Revisiting charmless hadronic B{sub u,d} decays in QCD factorization

    SciTech Connect

    Cheng, H.-Y.; Chua, C.-K.

    2009-12-01

    Within the framework of QCD factorization, we consider two different types of power correction effects in order to resolve the CP puzzles and rate deficit problems with penguin-dominated two-body decays of B mesons and color-suppressed tree-dominated {pi}{sup 0}{pi}{sup 0} and {rho}{sup 0}{pi}{sup 0} modes: penguin annihilation and soft corrections to the color-suppressed tree amplitude. We emphasize that the electroweak penguin solution to the B{yields}K{pi} CP puzzle via new physics is irrelevant for solving the CP and rate puzzles related to tree-dominated decays. While some channels, e.g. K{sup -}{pi}{sup +}, K{sup -}{rho}{sup 0}, {pi}{sup +}{pi}{sup -}, {rho}{sup {+-}}{pi}{sup {+-}} need penguin annihilation to induce the correct magnitudes and signs for their CP violation, some other decays such as B{sup -}{yields}K{sup -}{pi}{sup 0}, {pi}{sup -}{eta}, K{sup -}{eta} and B{sup 0}{yields}K*{sup 0}{eta}, {pi}{sup 0}{pi}{sup 0} require the presence of both power corrections to account for the measured CP asymmetries. In general, QCD factorization predictions for the branching fractions and direct CP asymmetries of B{yields}PP, VP, VV decays are in good agreement with experiment. The predictions of perturbative QCD and soft-collinear effective theory are included for comparison.

  9. The QCD/SM working group: Summary report

    SciTech Connect

    Dobbs, Matt; Frixione, S.; Laenen, E.; De Roeck, A.; Tollefson, K.; Andersen, J.; Balazs, C.; Banfi, A.; Bernreuther, W.; Binoth, T.; Brandenburg, A.; Buttar, C.; Cao, C-H.; Cruz, A.; Dawson, I.; DelDuca, V.; Drollinger, V.; Dudko, L.; Eynck, T.; Field, R.; Grazzini, M.; Guillet, J.P.; Heinrich, G.; Huston, J.; Kauer, N.; Kidonakis, N.; Kulesza, A.; Lassila-Perini, K.; Magnea, L.; Mahmoudi, F.; Maina, E.; Maltoni, F.; Nolten, M.; Moraes, A.; Moretti, S.; Mrenna, S.; Nagy, Z.; Olness, F.; Puljak, I.; Ross, D.A.; Sabio-Vera, A.; Salam, G.P.; Sherstnev, A.; Si, Z.G.; Sjostrand, T.; Skands, P.; Thome, E.; Trocsanyi, Z.; Uwer, P.; Weinzierl, S.; Yuan, C.P.; Zanderighi,G.; Zanderighi, G.

    2004-04-09

    synopsis of it is included here as the first contribution to this report. This report reflects the hard and creative work by the many contributors which took place in the working group. After the MC guide description, the next contributions report on progress in describing multiple interactions, important for the LHC, and underlying events. An announcement of a Monte Carlo database, under construction, is followed by a number of contributions improving parton shower descriptions. Subsequently, a large number of contributions address resummations in various forms, after which follow studies of QCD effects in pion pair, top quark pair and photon pair plus jet production. After a study of electroweak corrections to hadronic precision observables, the report ends by presenting recent progress in methods to compute finite order corrections at one-loop with many legs, and at two-loop.

  10. The QCD/SM Working Group: Summary Report

    SciTech Connect

    M. Dobbs et al.

    2004-08-05

    synopsis of it is included here as the first contribution to this report. This report reflects the hard and creative work by the many contributors which took place in the working group. After the MC guide description, the next contributions report on progress in describing multiple interactions, important for the LHC, and underlying events. An announcement of a Monte Carlo database, under construction, is followed by a number of contributions improving parton shower descriptions. Subsequently, a large number of contributions address resummations in various forms, after which follow studies of QCD effects in pion pair, top quark pair and photon pair plus jet production. After a study of electroweak corrections to hadronic precision observables, the report ends by presenting recent progress in methods to compute finite order corrections at one-loop with many legs, and at two-loop.

  11. Novel QCD effects in nuclear collisions

    SciTech Connect

    Brodsky, S.J.

    1991-12-01

    Heavy ion collisions can provide a novel environment for testing fundamental dynamical processes in QCD, including minijet formation and interactions, formation zone phenomena, color filtering, coherent co-mover interactions, and new higher twist mechanisms which could account for the observed excess production and anomalous nuclear target dependence of heavy flavor production. The possibility of using light-cone thermodynamics and a corresponding covariant temperature to describe the QCD phases of the nuclear fragmentation region is also briefly discussed.

  12. Some new/old approaches to QCD

    SciTech Connect

    Gross, D.J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.

  13. Lattice and Phase Diagram in QCD

    SciTech Connect

    Lombardo, Maria Paola

    2008-10-13

    Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.

  14. Random walk through recent CDF QCD results

    SciTech Connect

    C. Mesropian

    2003-04-09

    We present recent results on jet fragmentation, jet evolution in jet and minimum bias events, and underlying event studies. The results presented in this talk address significant questions relevant to QCD and, in particular, to jet studies. One topic discussed is jet fragmentation and the possibility of describing it down to very small momentum scales in terms of pQCD. Another topic is the studies of underlying event energy originating from fragmentation of partons not associated with the hard scattering.

  15. Some New/Old Approaches to QCD

    DOE R&D Accomplishments Database

    Gross, D. J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.

  16. QCD and hard diffraction at the LHC

    SciTech Connect

    Albrow, Michael G.; /Fermilab

    2005-09-01

    As an introduction to QCD at the LHC the author gives an overview of QCD at the Tevatron, emphasizing the high Q{sup 2} frontier which will be taken over by the LHC. After describing briefly the LHC detectors the author discusses high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. The author introduces the FP420 project to measure the scattered protons 420m downstream of ATLAS and CMS.

  17. Two novel bi-functional hybrid materials constructed from POMs and a Schiff base with excellent third-order NLO and catalytic properties.

    PubMed

    Hu, Gonghao; Miao, Hao; Mei, Hua; Zhou, Shuai; Xu, Yan

    2016-05-10

    The first polyoxometalates modified by a porphyrin-resembling planar Schiff base have been successfully designed and synthesized under hydrothermal conditions. The third-order NLO responses indicated that they are excellent third-order NLO materials. Their catalytic performances are also investigated.

  18. Hadronic final states in high -pT QCD at CDF

    SciTech Connect

    Matera, Keith

    2013-11-18

    The heavy quark content of gauge boson events is of great interest to studies of QCD. These events probe the gluon and heavy-quark parton distribution functions of the proton, and also provide a measurement of the rate of final state gluon splitting to heavy flavor. In addition, gauge boson plus heavy quark events are representative of backgrounds to Higgs, single top, and supersymmetric particle searches. Recent work with the CDF II detector at the Fermilab Tevatron has measured the cross-section of several gauge boson plus heavy flavor production processes, including the first Tevatron observation of specific charm process p{p bar} → W +c. Results are found to be in agreement with NLO predictions that include an enhanced rate of g → {cc bar}/bb splitting. Lastly, a new analysis promises to probe a lower pT (c) region than has been previously explored, by fully reconstructing D* → D0(Kπ)π decays in the full CDF dataset (9.7 fb-1).

  19. Contact term, its holographic description in QCD and dark energy

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel R.

    2012-08-01

    In this work we study the well-known contact term, which is the key element in resolving the so-called U(1)A problem in QCD. We study this term using the dual holographic description. We argue that in the dual picture the contact term is saturated by the D2-branes which can be interpreted as the tunneling events in Minkowski space-time. We quote a number of direct lattice results supporting this identification. We also argue that the contact term receives a Casimir-like correction ˜(ΛQCDR)-1 rather than the naively expected exp⁡(-ΛQCDR) when the Minkowski space-time R3,1 is replaced by a large but finite manifold with a size R. Such a behavior is consistent with other quantum field theory (QFT)-based computations when powerlike corrections are due to nontrivial properties of topological sectors of the theory. In holographic description, such a behavior is due to a massless Ramond-Ramond (RR) field living in the bulk of multidimensional space when powerlike corrections is a natural outcome of a massless RR field. In many respects, the phenomenon is similar to the Aharonov-Casher effect when the “modular electric field” can penetrate into a superconductor where the electric field is exponentially screened. The role of “modular operator” from the Aharonov-Casher effect is played by a large-gauge transformation operator T in four-dimensional QCD, resulting in the transparency of the system to topologically nontrivial pure gauge configurations. We discuss some profound consequences of our findings. In particular, we speculate that a slow variation of the contact term in expanding universe might be the main source of the observed dark energy.

  20. Self Assembled Spin Coated and Bulk Films of a Novel Polydiacetylene as Second Order NLO Polymers

    DTIC Science & Technology

    1994-05-31

    T Code: 4132016 W.H. Kim, B. Bihari, R. Moody, N. B. Kodali , J.KumarS.K. Dr. JoAnn Milliken Tripathy. 7. PHI-OUHMING OFH-NIZATION NAMIE(S) AND...Self Assembled Spin Coated and Bulk Films of a Novel Polydiacetylene as Second Order NLO Polymers by W.H. Kim, B. Bihari, R. Moody, N. B. Kodali ...POLYMERS W. H. Kim, B. Bihari+, R. Moody+, N. B. Kodali , J. Kumar+, and S. K. Tripathy, University of Massachusetts-Lowell, Center for Advanced Materials

  1. Physico-chemical studies of fused phenanthrimidazole derivative as sensitive NLO material

    NASA Astrophysics Data System (ADS)

    Jayabharathi, Jayaraman; Thanikachalam, Venugopal; Sathishkumar, Ramalingam; Jayamoorthy, Karunamoorthy

    2013-01-01

    Heterocyclic phenanthrimidazole derivative, 2-(4-fluorophenyl)-1-p-tolyl-1H-imidazo[4,5-f] [1,10] phenanthroline (FPTIP) has been synthesized and characterised by NMR, mass and CHN analysis. The FPTIP was evaluated concerning their solvatochromic properties and molecular optical nonlinearities. Their electric dipole moment (μ), polarizability (α) and hyperpolarizability (β) have been calculated theoretically and the results indicate that the extension of the π-framework of the ligands has an effect on the NLO properties. The energies of the HOMO and LUMO levels and the molecular electrostatic potential (MEP) energy surface studies have exploited the existence of intramolecular charge transfer (ICT) within the molecule.

  2. Scaffold characterization using NLO multimodal microscopy in metrology for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Mortati, Leonardo; Divieto, Carla; Boffitto, Monica; Sartori, Susanna; Ciardelli, Gianluca; Sassi, Maria Paola

    2013-09-01

    Metrology in regenerative medicine aims to develop traceable measurement technologies for characterizing cellular and macromolecule behaviour in regenerative medicine products and processes. One key component in regenerative medicine is using three-dimensional porous scaffolds to guide cells during the regeneration process. The regeneration of specific tissues guided by tissue analogous substrates is dependent on diverse scaffold architectural properties that can be derived quantitatively from scaffolds images. This paper discuss the results obtained with the multimodal NLO microscope recently realized in our laboratory in characterizing 3D tissue engineered (TE) scaffolds colonized from human Mesenchimal stem cells (hMSC), focusing on the study of the three-dimensional metrological parameters.

  3. Growth, spectral and thermal studies of an efficient NLO material: Diaquadicinnamatocadmium(II)

    SciTech Connect

    Roy, Sunalya M.; Sudarsanakumar, M. R.; Dhanya, V. S.

    2014-01-28

    A nonlinear metal–organic crystal, diaquadicinnamatocadmium(II) has been grown by controlled gel diffusion technique. Sodium metasilicate was used to prepare the gel. The chemical composition of the crystal has been determined by CHN analysis. Powder X-ray diffraction studies confirm the crystalline nature of the grown crystal. Functional groups present in the compound were identified by FT-IR spectral analysis. The thermal decomposition of the compound was studied using thermogravimetry (TG). The optical transparency range and the lower cut-off wavelength were identified from the UV-Visible-NIR spectrum. The NLO activity of the grown crystal was confirmed using Kurtz and Perry powder test.

  4. Structure modulations in nonlinear optical (NLO) materials Cs(2)TB4O9 (T = Ge, Si).

    PubMed

    Zhou, Zhengyang; Xu, Xiang; Fei, Rao; Mao, Jianggao; Sun, Junliang

    2016-04-01

    Incommensurately modulated borate structures of a new type were studied in detail in the nonlinear optical (NLO) materials Cs(2)TB4O9 (T = Ge, Si) using single-crystal X-ray diffraction techniques. The structures were solved by the charge-flipping algorithm in the superspace group I2(αβ0)0. The refinement results strongly suggest that the main structure modulation feature of Cs(2)TB4O9 is the ordering of the O atoms. With these modulated structure models, the unreasonable B-O distances in the average structures were explained as the ordering of BO4 and BO3.

  5. Recent progress in backreacted bottom-up holographic QCD

    SciTech Connect

    Järvinen, Matti

    2016-01-22

    Recent progress in constructing holographic models for QCD is discussed, concentrating on the bottom-up models which implement holographically the renormalization group flow of QCD. The dynamics of gluons can be modeled by using a string-inspired model termed improved holographic QCD, and flavor can be added by introducing space filling branes in this model. The flavor fully backreacts to the glue in the Veneziano limit, giving rise to a class of models which are called V-QCD. The phase diagrams and spectra of V-QCD are in good agreement with results for QCD obtained by other methods.

  6. Can Nonrelativistic QCD Explain the γγ^{*}→η_{c} Transition Form Factor Data?

    PubMed

    Feng, Feng; Jia, Yu; Sang, Wen-Long

    2015-11-27

    Unlike the bewildering situation in the γγ^{*}→π form factor, a widespread view is that perturbative QCD can decently account for the recent BABAR measurement of the γγ^{*}→η_{c} transition form factor. The next-to-next-to-leading-order perturbative correction to the γγ^{*}→η_{c,b} form factor, is investigated in the nonrelativistic QCD (NRQCD) factorization framework for the first time. As a byproduct, we obtain, by far, the most precise order-α_{s}^{2} NRQCD matching coefficient for the η_{c,b}→γγ process. After including the substantial negative order-α_{s}^{2} correction, the good agreement between NRQCD prediction and the measured γγ^{*}→η_{c} form factor is completely ruined over a wide range of momentum transfer squared. This eminent discrepancy casts some doubts on the applicability of the NRQCD approach to hard exclusive reactions involving charmonium.

  7. Higgs boson gluon-fusion production in QCD at three loops.

    PubMed

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Herzog, Franz; Mistlberger, Bernhard

    2015-05-29

    We present the cross section for the production of a Higgs boson at hadron colliders at next-to-next-to-next-to-leading order (N^{3}LO) in perturbative QCD. The calculation is based on a method to perform a series expansion of the partonic cross section around the threshold limit to an arbitrary order. We perform this expansion to sufficiently high order to obtain the value of the hadronic cross at N^{3}LO in the large top-mass limit. For renormalization and factorization scales equal to half the Higgs boson mass, the N^{3}LO corrections are of the order of +2.2%. The total scale variation at N^{3}LO is 3%, reducing the uncertainty due to missing higher order QCD corrections by a factor of 3.

  8. Two-loop corrections to the triple Higgs boson production cross section

    NASA Astrophysics Data System (ADS)

    de Florian, Daniel; Mazzitelli, Javier

    2017-02-01

    In this paper we compute the QCD corrections for the triple Higgs boson production cross section via gluon fusion, within the heavy-top approximation. We present, for the first time, analytical results for the next-to-leading order corrections, and also compute the soft and virtual contributions of the next-to-next-to-leading order cross section. We provide predictions for the total cross section and the triple Higgs invariant mass distribution. We find that the QCD corrections are large at both perturbative orders, and that the scale uncertainty is substantially reduced when the second order perturbative corrections are included.

  9. Spin-2 form factors at three loop in QCD

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Das, Goutam; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2015-12-01

    Spin-2 fields are often candidates in physics beyond the Standard Model namely the models with extra-dimensions where spin-2 Kaluza-Klein gravitons couple to the fields of the Standard Model. Also, in the context of Higgs searches, spin-2 fields have been studied as an alternative to the scalar Higgs boson. In this article, we present the complete three loop QCD radiative corrections to the spin-2 quark-antiquark and spin-2 gluon-gluon form factors in SU(N) gauge theory with n f light flavors. These form factors contribute to both quark-antiquark and gluon-gluon initiated processes involving spin-2 particle in the hadronic reactions at the LHC. We have studied the structure of infrared singularities in these form factors up to three loop level using Sudakov integro-differential equation and found that the anomalous dimensions originating from soft and collinear regions of the loop integrals coincide with those of the electroweak vector boson and Higgs form factors confirming the universality of the infrared singularities in QCD amplitudes.

  10. The effective QCD phase diagram and the critical end point

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Bashir, Adnan; Cobos-Martínez, J. J.; Hernández-Ortiz, Saúl; Raya, Alfredo

    2015-08-01

    We study the QCD phase diagram on the temperature T and quark chemical potential μ plane, modeling the strong interactions with the linear sigma model coupled to quarks. The phase transition line is found from the effective potential at finite T and μ taking into account the plasma screening effects. We find the location of the critical end point (CEP) to be (μCEP /Tc, TCEP /Tc) ∼ (1.2, 0.8), where Tc is the (pseudo)critical temperature for the crossover phase transition at vanishing μ. This location lies within the region found by lattice inspired calculations. The results show that in the linear sigma model, the CEP's location in the phase diagram is expectedly determined solely through chiral symmetry breaking. The same is likely to be true for all other models which do not exhibit confinement, provided the proper treatment of the plasma infrared properties for the description of chiral symmetry restoration is implemented. Similarly, we also expect these corrections to be substantially relevant in the QCD phase diagram.

  11. Bootstrapping Multi-Parton Loop Amplitudes in QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.; /Saclay, SPhT

    2005-07-06

    The authors present a new method for computing complete one-loop amplitudes, including their rational parts, in non-supersymmetric gauge theory. This method merges the unitarity method with on-shell recursion relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e{sup +}e{sup -} {yields} Z, {gamma}* {yields} 4 jets and pp {yields} W + 2 jets. We illustrate the method by reproducing the one-loop color-ordered five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely A{sub 5;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}) and A{sub 5;1}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup +}). Then we describe the construction of the six- and seven-gluon amplitudes with two adjacent negative-helicity gluons, A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}) and A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), which uses the previously-computed logarithmic parts of the amplitudes as input. They present a compact expression for the six-gluon amplitude. No loop integrals are required to obtain the rational parts.

  12. The strong isospin-breaking correction for the gluonic penguin contribution to {epsilon}{prime}/{epsilon} at next-to-leading order in the chiral expansion

    SciTech Connect

    Wolfe, Carl E.; Maltman, Kim

    2001-01-01

    The strong isospin-breaking correction {Omega}{sub st}, which appears in estimates of the standard model value for the direct CP-violating ratio {epsilon}{prime}/{epsilon}, is evaluated to next-to-leading order (NLO) in the chiral expansion using chiral perturbation theory. The relevant linear combinations of the unknown NLO CP-odd weak low-energy constants (LEC's) which, in combination with one-loop and strong LEC contributions, are required for a complete determination at this order, are estimated using two different models. It is found that, to NLO, {Omega}{sub st}=0.08{+-}0.05, significantly reduced from the ''standard'' value, 0.25{+-}0.08, employed in recent analyses. The potentially significant numerical impact of this decrease on standard model predictions for {epsilon}{prime}/{epsilon}, associated with the decreased cancellation between gluonic penguin and electroweak penguin contributions, is also discussed.

  13. QCD Prediction of ATT for Small QT Dimuon Production in pp and pp-bar Collisions

    SciTech Connect

    Kawamura, Hiroyuki; Kodaira, Jiro; Tanaka, Kazuhiro

    2007-06-13

    We present QCD prediction of double-spin asymmetries (ATT) in transversely polarized Drell-Yan process at small transverse momentum QT of dimuon. Resummation of large logarithmic corrections, relevant in small QT region, is performed up to next-to-leading logarithmic (NLL) accuracy. ATT at RHIC, J-PARC and GSI are studied numerically in the corresponding kinematic regions. We show that the large ATT is obtained for small QT and moderate energies.

  14. QCD as a topologically ordered system

    SciTech Connect

    Zhitnitsky, Ariel R.

    2013-09-15

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1){sub A} problem where the would be η{sup ′} Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1){sub A} problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied.

  15. Nuclear reactions from lattice QCD

    NASA Astrophysics Data System (ADS)

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-02-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, quantum chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice quantum chromodynamics (LQCD) provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between LQCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from LQCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  16. Investigation of nonlinear optical (NLO) properties by charge transfer contributions of amine functionalized tetraphenylethylene

    NASA Astrophysics Data System (ADS)

    Rana, Meenakshi; Singla, Nidhi; Chatterjee, Amrita; Shukla, Abhishek; Chowdhury, Papia

    2016-12-01

    Nonlinear Optical (NLO) properties of amine functionalized tetraphenylethylene (TPE-NH2) have been recorded and analyzed. The structural geometry, bonding features, harmonic vibrational frequencies (FTIR and Raman) of TPE-NH2 have been investigated by B3LYP density functional theory (DFT). Charge (Mulliken and natural) analysis, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMOs), 13C and 1H nuclear magnetic resonance (NMR) and molecular electrostatic potential (MEP) indicate the delocalization of charges over the donor-acceptor region by the increase of C-N bond length. The vibrational analysis on the basis of potential energy distribution (PED) confirms the charge transfer interaction between donor and acceptor groups, and that in turn validates the presence of the larger dipole moment (μ), polarizability and hyperpolarizabilities (α, β and γ) in TPE-NH2. Higher value of ionization potential (IP), electronegativity (χ), hardness (η), chemical potential (CP) and smaller HOMO-LUMO energy gap (Δε) validate TPE-NH2's strong candidature to be used as an NLO active material.

  17. Spectroscopic analysis, AIM, NLO and VCD investigations of acetaldehyde thiosemicarbazone using quantum mechanical simulations

    NASA Astrophysics Data System (ADS)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Govindarajan, M.; Gnanamuthu, S. Joshua; Pandian, G. V.

    2016-08-01

    The prepared Acetaldehyde thiosemicarbazone (ATSC) have been investigated by both the experimental and theoretical methods; through this work, the essentiality of elucidation of molecular fragments source linear and non-linear optical properties was explored. The stability of the structure and entire calculations have been performed on HF and B3LYP methods with 6-311++G(d,p) level of basis set. The Mulliken charge profile, electronic, optical and hyper polarizability analyses have been carried out in order to evaluate nonlinear optical (NLO) performance of the present compound. The exact optical location of the ATSC was determined by executing UV-Visible calculations on TDSCF method. The existence of the molecular group for the inducement and tuning of NLO properties were thoroughly investigated by performing fundamental vibrational investigation. The optical energy transformation among frontier molecular levels has been described in UV-Visible region. The Gibbs energy coefficient of thermodynamic functions was monitored in different temperature and it was found constant irrespective of temperatures. The appearance of different chemical environment of H and C was monitored from the 1H and 13C NMR spectra. The vibrational optical polarization characteristics with respect to molecular composition in the compound have been studied by VCD spectrum. The bond critical point, Laplacian of electron density, electron kinetic energy density and total electron energy density have calculated and analysed using AIM study.

  18. Importance of proper renormalization scale-setting for QCD testing at colliders

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Gang; Wang, Sheng-Quan; Brodsky, Stanley J.

    2016-02-01

    A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived from the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant α s to eliminate all non-conformal { β i } terms in the pQCD series. The { β i } terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N C → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the "increasing-decreasing" behavior observed by the D0 collaboration for increasing t overline t invariant mass. At

  19. Importance of proper renormalization scale-setting for QCD testing at colliders

    SciTech Connect

    Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.

    2015-12-22

    A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived from the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the NC → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower

  20. Importance of proper renormalization scale-setting for QCD testing at colliders

    DOE PAGES

    Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.

    2015-12-22

    A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived frommore » the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the NC → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower

  1. Further enhancement of the second-order nonlinear optical (NLO) coefficient and the stability of NLO polymers that contain isolation chromophore moieties by using the "suitable isolation group" concept and the Ar/Ar(F) self-assembly effect.

    PubMed

    Wu, Wenbo; Ye, Cheng; Qin, Jingui; Li, Zhen

    2013-08-01

    For the first time, a series of second-order NLO poly(arylene-ethynylene)s, in which an isolation chromophore was introduced to enhance the NLO coefficients, were successfully designed and synthesized. Thanks to the isolation chromophore, these polymers demonstrated good NLO activities and optical transparency. To further improve the comprehensive performance of the polymers, different isolation groups of various sizes were introduced to subtly modify the structure of the polymers according to the "suitable isolation group" concept. The naphthalene (Np) group was found to be a "suitable isolation group" in this series of polymers and polymer P3 demonstrated the highest d33 value (122.1 pm V(-1)) of these five polymers. Interestingly, polymer P5, which contained a pentafluorophenyl ring as an isolation group, exhibited a much higher NLO effect and stability than polymer P2, which just contained normal phenyl rings as isolation groups (97.2 versus 62.5 pm V(-1)), thus indicating the advantages of the Ar-Ar(F) self-assembly effect in the field of non-linear optics.

  2. Scalar correlator, Higgs decay into quarks, and scheme variations of the QCD coupling

    NASA Astrophysics Data System (ADS)

    Jamin, Matthias; Miravitllas, Ramon

    2016-10-01

    In this work, the perturbative QCD series of the scalar correlation function Ψ( s) is investigated. Besides ImΨ( s), which is relevant for Higgs decay into quarks, two other physical correlators, Ψ'' ( s) and D L ( s), have been employed in QCD applications like quark mass determinations or hadronic τ decays. D L ( s) suffers from large higher-order corrections and, by resorting to the large- β 0 approximation, it is shown that this is related to a spurious renormalon ambiguity at u = 1. Hence, this correlator should be avoided in phenomenological analyses. Moreover, it turns out advantageous to express the quark mass factor, introduced to make the scalar current renormalisation group invariant, in terms of the renormalisation invariant quark mass {widehat{m}}_q .To further study the behaviour of the perturbative expansion, we introduce a QCD coupling {widehat{α}}_s , whose running is explicitly renormalisation scheme independent. The scheme dependence of {widehat{α}}_s is parametrised by a single parameter C, being related to transformations of the QCD scale parameter Λ. It is demonstrated that appropriate choices of C lead to a substantial improvement in the behaviour of the perturbative series for Ψ'' ( s) and ImΨ( s).

  3. QCD at nonzero chemical potential: Recent progress on the lattice

    SciTech Connect

    Aarts, Gert; Jäger, Benjamin; Attanasio, Felipe; Seiler, Erhard; Sexty, Dénes; Stamatescu, Ion-Olimpiu

    2016-01-22

    We summarise recent progress in simulating QCD at nonzero baryon density using complex Langevin dynamics. After a brief outline of the main idea, we discuss gauge cooling as a means to control the evolution. Subsequently we present a status report for heavy dense QCD and its phase structure, full QCD with staggered quarks, and full QCD with Wilson quarks, both directly and using the hopping parameter expansion to all orders.

  4. Exploring hyperons and hypernuclei with lattice QCD

    SciTech Connect

    Beane, S.R.; Bedaque, P.F.; Parreno, A.; Savage, M.J.

    2003-01-01

    In this work we outline a program for lattice QCD that wouldprovide a first step toward understanding the strong and weakinteractions of strange baryons. The study of hypernuclear physics hasprovided a significant amount of information regarding the structure andweak decays of light nuclei containing one or two Lambda's, and Sigma's.From a theoretical standpoint, little is known about the hyperon-nucleoninteraction, which is required input for systematic calculations ofhypernuclear structure. Furthermore, the long-standing discrepancies inthe P-wave amplitudes for nonleptonic hyperon decays remain to beunderstood, and their resolution is central to a better understanding ofthe weak decays of hypernuclei. We present a framework that utilizesLuscher's finite-volume techniques in lattice QCD to extract thescattering length and effective range for Lambda-N scattering in both QCDand partially-quenched QCD. The effective theory describing thenonleptonic decays of hyperons using isospin symmetry alone, appropriatefor lattice calculations, is constructed.

  5. Precision QCD measurements in DIS at HERA

    NASA Astrophysics Data System (ADS)

    Britzger, Daniel

    2016-08-01

    New and recent results on QCD measurements from the H1 and ZEUS experiments at the HERA ep collider are reviewed. The final results on the combined deep-inelastic neutral and charged current cross-sections are presented and their role in the extractions of parton distribution functions (PDFs) is studied. The PDF fits give insight into the compatibility of QCD evolution and heavy flavor schemes with the data as a function of kinematic variables such as the scale Q2. Measurements of jet production cross-sections in ep collisions provide direct proves of QCD and extractions of the strong coupling constants are performed. Charm and beauty cross-section measurements are used for the determination of the heavy quark masses. Their role in PDF fits is investigated. In the regime of diffractive DIS and photoproduction, dijet and prompt photon production cross-sections provide insights into the process of factorization and the nature of the diffractive exchange.

  6. Equation of State from Lattice QCD Calculations

    SciTech Connect

    Gupta, Rajan

    2011-01-01

    We provide a status report on the calculation of the Equation of State (EoS) of QCD at finite temperature using lattice QCD. Most of the discussion will focus on comparison of recent results obtained by the HotQCD and Wuppertal-Budapest collaborations. We will show that very significant progress has been made towards obtaining high precision results over the temperature range of T = 150-700 MeV. The various sources of systematic uncertainties will be discussed and the differences between the two calculations highlighted. Our final conclusion is that these lattice results of EoS are precise enough to be used in the phenomenological analysis of heavy ion experiments at RHIC and LHC.

  7. Holographic models and the QCD trace anomaly

    SciTech Connect

    Jose L. Goity, Roberto C. Trinchero

    2012-08-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative {beta}-functions are studied. It is shown that in the perturbative case, where the {beta}-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  8. 'T hooft anomaly matching for QCD

    SciTech Connect

    Terning, John

    1998-03-03

    I present a set of theories which display non-trivial 'tHooft anomaly matching for QCD with F flavors. The matching theories arenon-Abelian gauge theories with "dual" quarks and baryons, rather thanthe purely confining theories of baryons that 't Hooft originallysearched for. The matching gauge groups are required to have an Fpm 6dimensional representation. Such a correspondence is reminiscent ofSeiberg's duality for supersymmetric (SUSY) QCD, and these theories arecandidates for non-SUSY duality. However anomaly matching by itself isnot sufficiently restrictive, and duality for QCD cannot be establishedat present. At the very least, the existence of multiple anomaly matchingsolutions should provide a note of caution regarding conjectured non-SUSYdualities.

  9. New View of the QCD Phase Diagram

    SciTech Connect

    McLerran,L.

    2009-07-09

    Quarkyonic matter is confining but can have densities much larger than 3QCD. Its existence isargued in the large Nc limit of QCD and implies that there are at least three phases of QCD with greatly different bulk properties. These are a Confined Phase of hadrons, a Deconfined Phase ofquarks and gluons, and the Quarkyonic Phase. In the Quarkyonic Phase, the baryon density isaccounted for by a quasi-free gas of quarks, and the the antiquarks and gluons are confined intomesons, glueballs. Quarks near the Fermi surface also are treated as baryons. (In addition tothese phases, there is a color superconducting phase that has vastly different transport properties than the above, but with bulk properties, such as pressure and energy density, that are not greatlydifferent than that of Quarkyonic Matter.)

  10. Phase diagram of chirally imbalanced QCD matter

    SciTech Connect

    Chernodub, M. N.; Nedelin, A. S.

    2011-05-15

    We compute the QCD phase diagram in the plane of the chiral chemical potential and temperature using the linear sigma model coupled to quarks and to the Polyakov loop. The chiral chemical potential accounts for effects of imbalanced chirality due to QCD sphaleron transitions which may emerge in heavy-ion collisions. We found three effects caused by the chiral chemical potential: the imbalanced chirality (i) tightens the link between deconfinement and chiral phase transitions; (ii) lowers the common critical temperature; (iii) strengthens the order of the phase transition by converting the crossover into the strong first order phase transition passing via the second order end point. Since the fermionic determinant with the chiral chemical potential has no sign problem, the chirally imbalanced QCD matter can be studied in numerical lattice simulations.

  11. NLO QED contributions to top-pair production at hadron colliders

    SciTech Connect

    Hollik, W.; Kollar, M.

    2008-01-01

    Electroweak one-loop calculations for production of top-quark pairs at colliders are completed by providing the missing QED type contributions from real and virtual photons, where also effects from interference between QED and QCD contributions have to be taken into account. Moreover, photon-induced tt production is included as another partonic channel.

  12. Finite volume corrections to pi pi scattering

    SciTech Connect

    Sato, Ikuro; Bedaque, Paulo F.; Walker-Loud, Andre

    2006-01-13

    Lattice QCD studies of hadron-hadron interactions are performed by computing the energy levels of the system in a finite box. The shifts in energy levels proportional to inverse powers of the volume are related to scattering parameters in a model independent way. In addition, there are non-universal exponentially suppressed corrections that distort this relation. These terms are proportional to e-m{sub pi} L and become relevant as the chiral limit is approached. In this paper we report on a one-loop chiral perturbation theory calculation of the leading exponential corrections in the case of I=2 pi pi scattering near threshold.

  13. QCD and Light-Front Dynamics

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  14. Exploring the influence of carboxylic acids on nonlinear optical (NLO) and dielectric properties of KDP crystal for applications of NLO facilitated photonic devices

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Muley, G. G.; Hakeem, A.; Shirsat, M. D.; Hussaini, S. S.

    2015-08-01

    The aim of present investigation is to assess the impact of oxalic acid (OA) and maleic acid (MA) on nonlinearity (second and third order) and dielectric behavior of potassium dihydrogen phosphate (KDP) crystal by means of SHG efficiency test, Z-scan analysis and dielectric studies respectively. The enhancement in SHG efficiency of OA and MA doped KDP crystal has been confirmed by means of Kurtz-Perry powder test technique. The close and open aperture Z-scan technique has been employed to study the nature and origin of improved third order NLO behavior of doped KDP crystals at 632.8 nm. The magnitude of third order nonlinear susceptibility (χ3), nonlinear refraction (n2), nonlinear absorption coefficient (β) and figure of merit (FOM) of doped KDP crystals has been calculated using the Z-scan transmittance data to explore the suitability of crystals for distinct laser assisted applications. The dielectric constant and dielectric loss of pure, OA and MA doped KDP crystals were measured at different temperatures by means of dielectric studies.

  15. String breaking in four dimensional lattice QCD

    SciTech Connect

    Duncan, A.; Eichten, E.; Thacker, H.

    2001-06-01

    Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on a 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse [but O(a{sup 2}) improved] lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R{approx}>1 fm.

  16. Anomalous mass dimension in multiflavor QCD

    NASA Astrophysics Data System (ADS)

    Doff, A.; Natale, A. A.

    2016-10-01

    Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.

  17. Non-perturbative QCD and hadron physics

    NASA Astrophysics Data System (ADS)

    Cobos-Martínez, J. J.

    2016-10-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented.

  18. Experimental Study of Nucleon Structure and QCD

    SciTech Connect

    Jian-Ping Chen

    2012-03-01

    Overview of Experimental Study of Nucleon Structure and QCD, with focus on the spin structure. Nucleon (spin) Structure provides valuable information on QCD dynamics. A decade of experiments from JLab yields these exciting results: (1) valence spin structure, duality; (2) spin sum rules and polarizabilities; (3) precision measurements of g{sub 2} - high-twist; and (4) first neutron transverse spin results - Collins/Sivers/A{sub LT}. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; and (2) Precision extraction of transversity/tensor charge/TMDs.

  19. Hadron scattering and resonances in QCD

    SciTech Connect

    Dudek, Jozef J.

    2016-05-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study pi pi elastic scattering, including the rho resonance, as well as coupled-channel pi K, eta K scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  20. The Status of AdS/QCD

    SciTech Connect

    Reece, Matthew

    2011-05-23

    In this talk I give a brief assessment of the 'AdS/QCD correspondence', its successes, and its failures. I begin with a review of the AdS/CFT correspondence, with an emphasis on why the large N, large 't Hooft coupling limit is necessary for a calculable theory. I then briefly discuss attempts to extrapolate this correspondence to QCD-like theories, stressing why the failure of the large 't Hooft coupling limit is more important than the breakdown of the large N expansion. I sketch how event shapes can manifest stringy physics, and close with some brief remarks on the prospects for future improvements.

  1. Is Fractional Electric Charge Problematic for QCD?

    NASA Astrophysics Data System (ADS)

    Slansky, R.

    1982-11-01

    A model of broken QCD is described here; SU3c is broken to SO3g (``g'' for ``glow'') such that color triplets become glow triplets. With this breaking pattern, there should exist low-mass, fractionally-charged diquark states that are not strongly bound to nuclei, but are rarely produced at present accelerator facilities. The breaking of QCD can be done with a 27c, in which case, this strong interaction theory is easily embedded in unified models such as those based on SU5, SO10, or E6. This work was done in collaboration with Terry Goldman of Los Alamos and Gordon Shaw of U.C., Irvine.

  2. Geometric approach to condensates in holographic QCD

    SciTech Connect

    Hirn, Johannes; Rius, Nuria; Sanz, Veronica

    2006-04-15

    An SU(N{sub f})xSU(N{sub f}) Yang-Mills theory on an extra-dimensional interval is considered, with appropriate symmetry-breaking boundary conditions on the IR brane. UV-brane to UV-brane correlators at high energies are compared with the OPE of two-point functions of QCD quark currents. Condensates correspond to departure from the AdS metric of the (different) metrics felt by vector and axial combinations, away from the UV brane. Their effect on hadronic observables is studied: the extracted condensates agree with the signs and orders of magnitude expected from QCD.

  3. Hadron scattering and resonances in QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-05-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel π >K, ηK scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  4. Recent QCD Results from the Tevatron

    SciTech Connect

    Vellidis, Costas

    2015-10-10

    Four years after the shutdown of the Tevatron proton-antiproton collider, the two Tevatron experiments, CDF and DZero, continue producing important results that test the theory of the strong interaction, Quantum Chromodynamics (QCD). The experiments exploit the advantages of the data sample acquired during the Tevatron Run II, stemming from the unique pp initial state, the clean environment at the relatively low Tevatron instantaneous luminosities, and the good understanding of the data sample after many years of calibrations and optimizations. A summary of results using the full integrated luminosity is presented, focusing on measurements of prompt photon production, weak boson production associated with jets, and non-perturbative QCD processes.

  5. Novel Aspects of Hard Diffraction in QCD

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2005-12-14

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency.

  6. Resolving B-CP puzzles in QCD factorization

    SciTech Connect

    Cheng, H.-Y.; Chua, C.-K.

    2009-10-01

    Within the framework of QCD factorization (QCDF), power corrections due to penguin annihilation can account for the observed rates of penguin-dominated two-body decays of B mesons and direct CP asymmetries A{sub CP}(K{sup -}{pi}{sup +}), A{sub CP}(K*{sup -}{pi}{sup +}), A{sub CP}(K{sup -}{rho}{sup 0}) and A{sub CP}({pi}{sup +}{pi}{sup -}). However, the predicted direct CP-violating effects in QCDF for B{sup -}{yields}K{sup -}{pi}{sup 0}, K{sup -}{eta}, {pi}{sup -}{eta} and B{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} are wrong in signs when confronted with experiment. We show that subleading 1/m{sub b} power corrections to the color-suppressed tree amplitude due to spectator scattering or final-state interactions will yield correct signs for aforementioned CP asymmetries and accommodate the observed {pi}{sup 0}{pi}{sup 0} and {rho}{sup 0}{pi}{sup 0} rates simultaneously. Implications are discussed.

  7. A Study of the H-dibaryon in Holographic QCD

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kohei; Nakagawa, Yuya; Suganuma, Hideo

    We study the H-dibaryon (uuddss) in holographic QCD for the first time. Holographic QCD is derived from a QCD-equivalent D-brane system (S1-compactified D4/D8/overline{D8}) in the superstring theory via the gauge/gravity correspondence. In holographic QCD, all baryons appear as topological chiral solitons of Nambu-Goldstone bosons and (axial) vector mesons. In this framework, the H-dibaryon can be described as an SO(3)-type hedgehog state. We present the formalism of the H-dibaryon in holographic QCD, and perform the calculation to investigate its properties in the chiral limit.

  8. Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality

    SciTech Connect

    Brodsky, Stanley J.; Di Giustino, Leonardo; /SLAC

    2011-08-19

    A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale {mu} of the running coupling {alpha}{sub s}({mu}{sup 2}): The purpose of the running coupling in any gauge theory is to sum all terms involving the {beta} function; in fact, when the renormalization scale is set properly, all non-conformal {beta} {ne} 0 terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with {beta} = 0. The resulting scale-fixed predictions using the 'principle of maximum conformality' (PMC) are independent of the choice of renormalization scheme - a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice gauge theory. The number of active flavors nf in the QCD {beta} function is also correctly determined. We discuss several methods for determining the PMC/BLM scale for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from basic properties of the perturbative QCD cross section. The elimination of the renormalization scheme ambiguity using the PMC will not only increase the precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.

  9. Chiral logarithms in quenched QCD

    SciTech Connect

    Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang

    2004-08-01

    The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.

  10. Massive photons: An infrared regularization scheme for lattice QCD+QED

    DOE PAGES

    Endres, Michael G.; Shindler, Andrea; Tiburzi, Brian C.; ...

    2016-08-10

    The commonly adopted approach for including electromagnetic interactions in lattice QCD simulations relies on using finite volume as the infrared regularization for QED. The long-range nature of the electromagnetic interaction, however, implies that physical quantities are susceptible to power-law finite volume corrections, which must be removed by performing costly simulations at multiple lattice volumes, followed by an extrapolation to the infinite volume limit. In this work, we introduce a photon mass as an alternative means for gaining control over infrared effects associated with electromagnetic interactions. We present findings for hadron mass shifts due to electromagnetic interactions (i.e., for the proton,more » neutron, charged and neutral kaon) and corresponding mass splittings, and compare the results with those obtained from conventional QCD+QED calculations. Results are reported for numerical studies of three flavor electroquenched QCD using ensembles corresponding to 800 MeV pions, ensuring that the only appreciable volume corrections arise from QED effects. The calculations are performed with three lattice volumes with spatial extents ranging from 3.4 - 6.7 fm. As a result, we find that for equal computing time (not including the generation of the lattice configurations), the electromagnetic mass shifts can be extracted from computations on a single (our smallest) lattice volume with comparable or better precision than the conventional approach.« less

  11. Preparation, linear and NLO properties of DNA-CTMA-SBE complexes

    NASA Astrophysics Data System (ADS)

    Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia

    2013-10-01

    Synthesis of deoxyribonucleic acid (DNA) - was cetyltrimethylammonium (CTMA) - sea buckthorn extract (SBE) at different concentrations is decribed. The complexes were processed into good optical quality thin films by spin coating on different substrates such as: glass, silica and ITO covered glass substrates. SBE contains many bioactive substances that can be used in the treatment of several diseases, such as cardiovascular disease, cancer, and acute mountain sickness. The obtained thin films were characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties as function of SBE concentration. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1 064.2 nm fundamental wavelength.

  12. Fluorescence, spectroscopic and NLO properties of green tea extract in deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia

    2013-11-01

    Natural, purely biological deoxyribonucleic acid (DNA)-green tea extract (GTE) complexes at different concentrations were prepared and characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties. The complexes can be processed into good optical quality thin films by solution casting. They fluoresce when excited in UV absorption band, with a significantly larger quantum yield for the DNA-GTE complex than for a pure GTE solution. The thin film refractive indices were determined by Fabry-Perot (FP) interference patterns. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1064.2 nm fundamental wavelength. The phase of THG susceptibility was determined from the concentration variation of THG susceptibility. It reveals presence of a two-photon resonance with a band lying in the optical gap.

  13. Computing decay rates for new physics theories with FEYNRULES and MADGRAPH 5_AMC@NLO

    NASA Astrophysics Data System (ADS)

    Alwall, Johan; Duhr, Claude; Fuks, Benjamin; Mattelaer, Olivier; Öztürk, Deniz Gizem; Shen, Chia-Hsien

    2015-12-01

    We present new features of the FEYNRULES and MADGRAPH 5_AMC@NLO programs for the automatic computation of decay widths that consistently include channels of arbitrary final-state multiplicity. The implementations are generic enough so that they can be used in the framework of any quantum field theory, possibly including higher-dimensional operators. We extend at the same time the conventions of the Universal FEYNRULES Output (or UFO) format to include decay tables and information on the total widths. We finally provide a set of representative examples of the usage of the new functions of the different codes in the framework of the Standard Model, the Higgs Effective Field Theory, the Strongly Interacting Light Higgs model and the Minimal Supersymmetric Standard Model and compare the results to available literature and programs for validation purposes.

  14. Synthesis and electro-optic properties of the chromophore-containing NLO polyarylate polymers

    NASA Astrophysics Data System (ADS)

    Ren, Haohui; Peng, Chengcheng; Bo, Shuhui; Fan, Guofang; Xu, Guangming; Zhao, Hui; Zhen, Zhen; Liu, Xinhou

    2014-03-01

    Base on the same two monomers, diphenolic acid (DPA) and isophthaloyl chloride (IPC), three chromophore-containing nonlinear optical (NLO) polyarylate polymers were prepared. A tricyanofuran (TCF)-acceptor type chromophore group was in main-chain (mPAR-chr1), side-chain (sPAR-chr1) and side-chain with a 1,1-bis(4-hydroxyphenyl)-1-phenyl-2,2,2-trifluoroethane (BPAPF) group (sPAR-F-chr1), respectively. The obtained polymers were characterized and evaluated by UV-Vis, 1H NMR, DSC and TGA. All the polymers exhibited good electro-optic (EO) activity. The relationship between EO coefficients (r33) and the chromophore concentration of the three polymers were also characterized and discussed. There were no obvious differences found in EO activity between mPAR-chr1 and sPAR-chr1 polyarylates with the same chromophore. The fluorinated block polyarylate sPAR-F-chr1 has the largest r33 value in these three polyarylates which is 52 pm/V at the wavelength of 1310 nm (which is almost twice the r33 value of normal polymers contained the same chormophore at the same content), when the concentration of chromophore 1 is 18wt.%. 85% of the r33 value was retained in the sPAR-F-chr1 after being heated at 85°C for 600 hours. The polymer sPAR-F-chr1, with good solubility, high Tg (above 200 °C) and side functional group at the same time, may probably be a practical NLO material. These properties make the new polyarylates have potential applications in EO devices such as EO modulators and switches.

  15. Vibrational and electronic investigations, NLO, FMO analysis on a hetarylazoindole disperse dye by density functional theory

    NASA Astrophysics Data System (ADS)

    Çatıkkaş, Berna; Aktan, Ebru; Yalçın, Ergin

    2016-08-01

    This work deals with the optimized molecular structure, vibrational spectra, nonlinear optic (NLO) and frontier molecule orbital (FMO) properties of 1-Methyl-2-phenyl-3-(1,3,4-thiadiazol-2-yldiazenyl)-1H-indole (MPI) by quantum chemical calculations. The Fourier transform infrared (FT-MIR and FT-FIR) and Raman spectra of 1-Methyl-2-phenyl-3-(1,3,4-thiadiazol-2-yldiazenyl)-1H-indole (MPI) were recorded in the region (4000-400 cm-1 and 400-30 cm-1) and (3200-92 cm-1), respectively. The analysis and complete vibrational assignments of the fundamental modes of the MPI molecule were carried out by using the observed FT-IR and FT-Raman data and calculated Total Energy Distribution (TED) according to Scaled Quantum Mechanics procedure. The calculated geometrical parameters of the MPI molecule are in agreement with the obtained values from XRD studies. On the other hand, the difference between the scaled and observed wavenumber values of the most of the fundamentals are very small. 1H NMR and 13C NMR chemical shift values, and energy gap between LUMO-HOMO and molecular electrostatic potential (MEP) were investigated by using density functional theory (B3LYP) methods. UV/Visible spectra and λ maximum absorption values, the oscillator strengths in the chloroform, methanol and DMSO solvation in combination with different basis sets were calculated by using the time-dependent density functional theory (TD-DFT). Additionally, the predicted nonlinear optical (NLO) properties of the MPI are quite greater than that of urea at the B3LYP/6-31++G(d,p) level.

  16. QCD at D0 and CDF

    SciTech Connect

    Blazey, G.C.

    1995-05-01

    Selected recent Quantum Chromodynamics (QCD) results from the D0 and CDF experiments at the Fermilab Tevatron are presented and discussed. The inclusive jet and inclusive triple differential dijet cross sections are compared to next-to-leading order QCD calculations. The sensitivity of the dijet cross section to parton distribution functions (for hadron momentum fractions {approximately} 0.01 to {approximately} 0.4) will constrain the gluon distribution of the proton. Two analyses of dijet production at large rapidity separation are presented. The first analysis tests the contributions of higher order processes to dijet production and can be considered a test of BFKL or GLAP parton evolution. The second analysis yields a strong rapidity gap signal consistent with colorless exchange between the scattered partons. The prompt photon inclusive cross section is consistent with next-to-leading order QCD only at the highest transverse momenta. The discrepancy at lower momenta may be indicative of higher order processes impacting a transverse momentum or ``k{sub T}`` to the partonic interaction. The first measurement of the strong coupling constant from the Tevatron is also presented. The coupling constant can be determined from the ratio of W + 1jet to W + 0jet cross sections and a next-to-leading order QCD calculation.

  17. The CKM Matrix from Lattice QCD

    SciTech Connect

    Mackenzie, Paul B.; /Fermilab

    2009-07-01

    Lattice QCD plays an essential role in testing and determining the parameters of the CKM theory of flavor mixing and CP violation. Very high precisions are required for lattice calculations analyzing CKM data; I discuss the prospects for achieving them. Lattice calculations will also play a role in investigating flavor mixing and CP violation beyond the Standard Model.

  18. The Chroma Software System for Lattice QCD

    SciTech Connect

    Robert Edwards; Balint Joo

    2004-06-01

    We describe aspects of the Chroma software system for lattice QCD calculations. Chroma is an open source C++ based software system developed using the software infrastructure of the US SciDAC initiative. Chroma interfaces with output from the BAGEL assembly generator for optimized lattice fermion kernels on some architectures. It can be run on workstations, clusters and the QCDOC supercomputer.

  19. Exact adler function in supersymmetric QCD.

    PubMed

    Shifman, M; Stepanyantz, K

    2015-02-06

    The Adler function D is found exactly in supersymmetric QCD. Our exact formula relates D(Q(2)) to the anomalous dimension of the matter superfields γ(α(s)(Q(2))). En route we prove another theorem: the absence of the so-called singlet contribution to D. While such singlet contributions are present in individual supergraphs, they cancel in the sum.

  20. Exploring Hyperons and Hypernuclei with Lattice QCD

    SciTech Connect

    S.R. Beane; P.F. Bedaque; A. Parreno; M.J. Savage

    2005-01-01

    In this work we outline a program for lattice QCD that would provide a first step toward understanding the strong and weak interactions of strange baryons. The study of hypernuclear physics has provided a significant amount of information regarding the structure and weak decays of light nuclei containing one or two Lambda's, and Sigma's. From a theoretical standpoint, little is known about the hyperon-nucleon interaction, which is required input for systematic calculations of hypernuclear structure. Furthermore, the long-standing discrepancies in the P-wave amplitudes for nonleptonic hyperon decays remain to be understood, and their resolution is central to a better understanding of the weak decays of hypernuclei. We present a framework that utilizes Luscher's finite-volume techniques in lattice QCD to extract the scattering length and effective range for Lambda-N scattering in both QCD and partially-quenched QCD. The effective theory describing the nonleptonic decays of hyperons using isospin symmetry alone, appropriate for lattice calculations, is constructed.

  1. On-Shell Methods in Perturbative QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-04-25

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.

  2. Bottom-up holographic approach to QCD

    SciTech Connect

    Afonin, S. S.

    2016-01-22

    One of the most known result of the string theory consists in the idea that some strongly coupled gauge theories may have a dual description in terms of a higher dimensional weakly coupled gravitational theory — the so-called AdS/CFT correspondence or gauge/gravity correspondence. The attempts to apply this idea to the real QCD are often referred to as “holographic QCD” or “AdS/QCD approach”. One of directions in this field is to start from the real QCD and guess a tentative dual higher dimensional weakly coupled field model following the principles of gauge/gravity correspondence. The ensuing phenomenology can be then developed and compared with experimental data and with various theoretical results. Such a bottom-up holographic approach turned out to be unexpectedly successful in many cases. In the given short review, the technical aspects of the bottom-up holographic approach to QCD are explained placing the main emphasis on the soft wall model.

  3. Pluto results on jets and QCD

    SciTech Connect

    Pluto collaboration

    1981-02-01

    Results obtained with the PLUTO detector at PETRA are presented. Multihadron final states have been analysed with respect to clustering, energy-energy correlations and transverse momenta in jets. QCD predictions for hard gluon emission and soft gluon-quark cascades are discussed. Results on ..cap alpha../sub s/ and the gluon spin are given.

  4. QCD parton model at collider energies

    SciTech Connect

    Ellis, R.K.

    1984-09-01

    Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at ..sqrt..S = 0.54 TeV are compared with data. 21 references.

  5. Frontiers of finite temperature lattice QCD

    NASA Astrophysics Data System (ADS)

    Borsányi, Szabolcs

    2017-03-01

    I review a selection of recent finite temperature lattice results of the past years. First I discuss the extension of the equation of state towards high temperatures and finite densities, then I show recent results on the QCD topological susceptibility at high temperatures and highlight its relevance for dark matter search.

  6. Local topological and chiral properties of QCD.

    SciTech Connect

    de Forcrand, Ph.

    1998-10-30

    To elucidate the role played by instantons in chiral symmetry breaking, the authors explore their properties, in full QCD, around the critical temperature. They study in particular, spatial correlations between low-lying Dirac eigenmodes and instantons. Their measurements are compared with the predictions of instanton-based models.

  7. QCD PHASE TRANSITIONS-VOLUME 15.

    SciTech Connect

    SCHAFER,T.

    1998-11-04

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  8. Marking up lattice QCD configurations and ensembles

    SciTech Connect

    P.Coddington; B.Joo; C.M.Maynard; D.Pleiter; T.Yoshie

    2007-10-01

    QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.

  9. QCD subgroup on diffractive and forward physics

    SciTech Connect

    Albrow, M.G.; Baker, W.; Bhatti, A.

    1996-10-01

    The goal is to understand the pomeron, and hence the behavior of total cross sections, elastic scattering and diffractive excitation, in terms of the underlying theory, QCD. A description of the basic ideas and phenomenology is followed by a discussion of hadron-hadron and electron-proton experiments. An appendix lists recommended diffractive-physics terms and definitions. 44 refs., 6 figs.

  10. QCD results from D-Zero

    SciTech Connect

    Varelas, N.; D0 Collaboration

    1997-10-01

    We present recent results on jet production, dijet angular distributions, W+ Jets, and color coherence from p{anti p} collisions at {radical}s = 1.8 TeV at the Fermilab Tevatron Collider using the D0 detector. The data are compared to perturbative QCD calculations or to predictions of parton shower based Monte Carlo models.

  11. QCD in hadron-hadron collisions

    SciTech Connect

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  12. Visualization Tools for Lattice QCD - Final Report

    SciTech Connect

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge, our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.

  13. Top-quark decay at next-to-next-to-leading order in QCD.

    PubMed

    Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing

    2013-01-25

    We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.

  14. Predictions for diphoton production at the LHC through NNLO in QCD

    SciTech Connect

    Campbell, John M.; Ellis, R. Keith; Li, Ye; Williams, Ciaran

    2016-07-29

    In this paper we present a next-to-next-to-leading order (NNLO) calculation of the process $pp\\rightarrow \\gamma\\gamma$ that we have implemented into the parton level Monte Carlo code MCFM. We do not find agreement with the previous calculation of this process in the literature. In addition to the $\\mathcal{O}(\\alpha_s^2)$ corrections present at NNLO, we include some effects arising at $\\mathcal{O}(\\alpha_s^3)$, namely those associated with gluon-initiated closed fermion loops. We investigate the role of this process in the context of studies of QCD at colliders and as a background for searches for new physics, paying particular attention to the diphoton invariant mass spectrum. We demonstrate that the NNLO QCD prediction for the shape of this spectrum agrees well with functional forms used in recent data-driven fits.

  15. Predictions for diphoton production at the LHC through NNLO in QCD

    DOE PAGES

    Campbell, John M.; Ellis, R. Keith; Li, Ye; ...

    2016-07-29

    In this paper we present a next-to-next-to-leading order (NNLO) calculation of the processmore » $$pp\\rightarrow \\gamma\\gamma$$ that we have implemented into the parton level Monte Carlo code MCFM. We do not find agreement with the previous calculation of this process in the literature. In addition to the $$\\mathcal{O}(\\alpha_s^2)$$ corrections present at NNLO, we include some effects arising at $$\\mathcal{O}(\\alpha_s^3)$$, namely those associated with gluon-initiated closed fermion loops. We investigate the role of this process in the context of studies of QCD at colliders and as a background for searches for new physics, paying particular attention to the diphoton invariant mass spectrum. We demonstrate that the NNLO QCD prediction for the shape of this spectrum agrees well with functional forms used in recent data-driven fits.« less

  16. Non-degenerate light quark masses from 2+1f lattice QCD+QED

    SciTech Connect

    Drury, Shane; Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Sachrajda, Chris; Zhou, Ran

    2014-01-01

    We report on a calculation of the effects of isospin breaking in Lattice QCD+QED. This involves using Chiral Perturbation Theory with Electromagnetic corrections to find the renormalized, non-degenerate, light quark masses. The calculations are carried out on QCD ensembles generated by the RBC and UKQCD collaborations using Domain Wall Fermions and the Iwasaki and Iwasaki+DSDR Gauge Actions with unitary pion masses down to 170 MeV. Non-compact QED is treated in the quenched approximation. The simulations use a $32^3$ lattice size with $a^{-1}=2.28(3)$ GeV (Iwasaki) and 1.37(1) (Iwasaki+DSDR). This builds on previous work from the RBC/UKQCD collaboration with lattice spacing $a^{-1}=1.78(4)$ GeV.

  17. Light-front holographic QCD and emerging confinement

    SciTech Connect

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Erlich, Joshua

    2015-05-21

    In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. The light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.

  18. Corrective work.

    ERIC Educational Resources Information Center

    Hill, Leslie A.

    1978-01-01

    Discusses some general principles for planning corrective instruction and exercises in English as a second language, and follows with examples from the areas of phonemics, phonology, lexicon, idioms, morphology, and syntax. (IFS/WGA)

  19. BFKL equation with running QCD coupling and HERA data

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Potashnikova, Irina

    2014-02-01

    In this paper we developed approach based on the BFKL evolution in ln( Q 2). We show that the simplest diffusion approximation with running QCD coupling is able to describe the HERA experimental data on the deep inelastic structure function with good χ2 /d .o .f . ≈ 1 .3. From our description of the experimental data we learned several lessons; (i) the non-perturbative physics at long distances started to show up at Q 2 = 0 .25 GeV2; (ii) the scattering amplitude at Q 2 = 0 .25 GeV2 cannot be written as sum of soft Pomeron and the secondary Reggeon but the Pomeron interactions should be taken into account; (iii) the Pomeron interactions can be reduced to the enhanced diagrams and, therefore, we do not see any needs for the shadowing corrections at HERA energies; and (iv) we demonstrated that the shadowing correction could be sizable at higher than HERA energies without any contradiction with our initial conditions.

  20. Electrical conductivity of hot QCD matter.

    PubMed

    Cassing, W; Linnyk, O; Steinert, T; Ozvenchuk, V

    2013-05-03

    We study the electric conductivity of hot QCD matter at various temperatures T within the off-shell parton-hadron-string dynamics transport approach for interacting partonic, hadronic or mixed systems in a finite box with periodic boundary conditions. The response of the strongly interacting system in equilibrium to an external electric field defines the electric conductivity σ(0). We find a sizable temperature dependence of the ratio σ(0)/T well in line with calculations in a relaxation time approach for T(c)QCD matter even at T ≈ T(c) is a much better electric conductor than Cu or Ag (at room temperature).

  1. Exploring Three Nucleon Forces in Lattice QCD

    SciTech Connect

    Doi, Takumi

    2011-10-21

    We study the three nucleon force in N{sub f} = 2 dynamical clover fermion lattice QCD, utilizing the Nambu-Bethe-Salpeter wave function of the three nucleon system. Since parity-odd two nucleon potentials are not available in lattice QCD at this moment, we develop a new formulation to extract the genuine three nucleon force which requires only the information of parity-even two nucleon potentials. In order to handle the extremely expensive calculation cost, we consider a specific three-dimensional coordinate configuration for the three nucleons. We find that the linear setup is advantageous, where nucleons are aligned linearly with equal spacings. The lattice calculation is performed with 16{sup 3}x32 configurations at {beta} = 1.95, m{sub {pi}} = 1.13 GeV generated by CP-PACS Collaboration, and the result of the three nucleon force in triton channel is presented.

  2. Hadronization of QCD and effective interactions

    SciTech Connect

    Frank, M.R.

    1994-07-01

    An introductory treatment of hadronization through functional integral calculus and bifocal Bose fields is given. Emphasis is placed on the utility of this approach for providing a connection between QCD and effective hadronic field theories. The hadronic interactions obtained by this method are nonlocal due to the QCD substructure, yet, in the presence of an electromagnetic field, maintain the electromagnetic gauge invariance manifest at the quark level. A local chiral model which is structurally consistent with chiral perturbation theory is obtained through a derivative expansion of the nonlocalities with determined, finite coefficients. Tree-level calculations of the pion form factor and {pi} {minus} {pi} scattering, which illustrate the dual constituent-quark-chiral-model nature of this approach, are presented.

  3. Electrical Conductivity of Hot QCD Matter

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Linnyk, O.; Steinert, T.; Ozvenchuk, V.

    2013-05-01

    We study the electric conductivity of hot QCD matter at various temperatures T within the off-shell parton-hadron-string dynamics transport approach for interacting partonic, hadronic or mixed systems in a finite box with periodic boundary conditions. The response of the strongly interacting system in equilibrium to an external electric field defines the electric conductivity σ0. We find a sizable temperature dependence of the ratio σ0/T well in line with calculations in a relaxation time approach for TcQCD matter even at T≈Tc is a much better electric conductor than Cu or Ag (at room temperature).

  4. An Analytic Approach to Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Magradze, B. A.

    The two-loop invariant (running) coupling of QCD is written in terms of the Lambert W function. The analyticity structure of the coupling in the complex Q2-plane is established. The corresponding analytic coupling is reconstructed via a dispersion relation. We also consider some other approximations to the QCD β-function, when the corresponding couplings are solved in terms of the Lambert function. The Landau gauge gluon propagator has been considered in the renormalization group invariant analytic approach (IAA). It is shown that there is a nonperturbative ambiguity in determination of the anomalous dimension function of the gluon field. Several analytic solutions for the propagator at the one-loop order are constructed. Properties of the obtained analytical solutions are discussed.

  5. η and η' mesons from lattice QCD.

    PubMed

    Christ, N H; Dawson, C; Izubuchi, T; Jung, C; Liu, Q; Mawhinney, R D; Sachrajda, C T; Soni, A; Zhou, R

    2010-12-10

    The large mass of the ninth pseudoscalar meson, the η', is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the η and η' masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of θ=-14.1(2.8)°. Extrapolation to the physical light quark mass gives, with statistical errors only, mη=573(6) MeV and mη'=947(142) MeV, consistent with the experimental values of 548 and 958 MeV.

  6. Compositeness and QCD at the SSC

    SciTech Connect

    Barnes, V.; Blumenfeld, B.; Cahn, R.; Chivukula, S.; Ellis, S.; Freeman, J.; Heusch, C.; Huston, J.; Kondo, K.; Morfin, J.

    1987-10-12

    Compositeness may be signaled by an increase in the production of high transverse momentum hadronic jet pairs or lepton pairs. The hadronic jet signal competes with the QCD production of jets, a subject of interest in its own right. Tests of perturbative QCD at the SSC will be of special interest because the calculations are expected to be quite reliable. Studies show that compositeness up to a scale of 20 to 35 TeV would be detected in hadronic jets at the SSC. Leptonic evidence would be discovered for scales up to 10 to 20 TeV. The charge asymmetry for leptons would provide information on the nature of the compositeness interaction. Calorimetry will play a crucial role in the detection of compositeness in the hadronic jet signal. Deviations from an e/h response of 1 could mask the effect. The backgrounds for lepton pair production seem manageable. 30 refs., 19 figs., 10 tabs.

  7. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-06-01

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  8. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Lin, H.-W.

    2007-06-13

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  9. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    SciTech Connect

    Tevzadze, Alexander G.; Kisslinger, Leonard; Kahniashvili, Tina; Brandenburg, Axel

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  10. Nucleon Parton Structure from Continuum QCD

    NASA Astrophysics Data System (ADS)

    Bednar, Kyle; Cloet, Ian; Tandy, Peter

    2017-01-01

    The parton structure of the nucleon is investigated using QCD's Dyson-Schwinger equations (DSEs). This formalism builds in numerous essential features of QCD, for example, the dressing of parton propagators and dynamical formation of non-pointlike di-quark correlations. All needed elements of the approach, including the nucleon wave function solution from a Poincaré covariant Faddeev equation, are encoded in spectral-type representations in the Nakanishi style. This facilitates calculations and the necessary connections between Euclidean and Minkowski metrics. As a first step results for the nucleon quark distribution functions will be presented. The extension to the transverse momentum-dependent parton distributions (TMDs) also be discussed. Supported by NSF Grant No. PHY-1516138.

  11. Proton spin structure from lattice QCD

    SciTech Connect

    Fukugita, M.; Kuramashi, Y.; Okawa, M.; Ukawa, A. ||

    1995-09-11

    A lattice QCD calculation of the proton matrix element of the flavor singlet axial-vector current is reported. Both the connected and disconnected contributions are calculated, for the latter employing the variant method of wall source without gauge fixing. From simulations in quenched QCD with the Wilson quark action on a 16{sup 3}{times}20 lattice at {beta}=5.7 (the lattice spacing {ital a}{approx}0.14 fm), we find {Delta}{Sigma}={Delta}{ital u}+{Delta}{ital d}+{Delta}{ital s}=+0.638(54){minus}0.347(46){minus}0.109(30)=+0.18(10) with the disconnected contribution to {Delta}{ital u} and {Delta}{ital d} equal to {minus}0.119(44), which is reasonably consistent with the experiment.

  12. Phase transitions in QCD and string theory

    NASA Astrophysics Data System (ADS)

    Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.

    1991-02-01

    We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.

  13. The second- and third- order nonlinear optical properties and electronic transition of a NLO chromophore: A DFT study

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    It is well known that the practical applications of second-order and third-order nonlinear optical (NLO) materials have been reported in modern technology, such as optical data processing, transmission and storage, etc. In this respect, the linear and nonlinear optical parameters (the molecular static polarizability (α), and the first-order static hyperpolarizability (β0), the second-order static hyperpolarizability (γ)), UV-vis spectra and HOMO and LUMO energies of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole were investigated by using the HSEh1PBE/6-311G(d,p) level of density functional theory. The UV-vis spectra were simulated using TD/HSEh1PBE/6- 311G(d,p) level, and the major contributions to the electronic transitions were obtained. The molecular hardness (η) and electronegativity (χ) parameters were also obtained by using molecular frontier orbital energies. The NLO parameters of the title compound were calculated, and obtained data were compared with that of para-Nitroaniline (pNA) which is a typical NLO material and the corresponding experimental data. Obtained data of the chromosphere display significant molecular second-and third-nonlinearity.

  14. BB Potentials in Quenched Lattice QCD

    SciTech Connect

    William Detmold; Kostas Orginos; Martin J. Savage

    2007-12-01

    The potentials between two B-mesons are computed in the heavy-quark limit using quenched lattice QCD at $m_\\pi\\sim 400~{\\rm MeV}$. Non-zero central potentials are clearly evident in all four spin-isospin channels, (I,s_l) = (0,0) , (0,1) , (1,0) , (1,1), where s_l is the total spin of the light degrees of freedom. At short distance, we find repulsion in the $I\

  15. Advances in QCD sum-rule calculations

    SciTech Connect

    Melikhov, Dmitri

    2016-01-22

    We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions: (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.

  16. Bootstrapping One-Loop QCD Amplitudes

    SciTech Connect

    Berger, Carola F.; /SLAC

    2006-09-08

    We review the recently developed bootstrap method for the computation of high-multiplicity QCD amplitudes at one loop. We illustrate the general algorithm step by step with a six-point example. The method combines (generalized) unitarity with on-shell recursion relations to determine the not cut-constructible, rational terms of these amplitudes. Our bootstrap approach works for arbitrary configurations of gluon helicities and arbitrary numbers of external legs.

  17. Ultrahigh energy neutrinos and nonlinear QCD dynamics

    SciTech Connect

    Machado, Magno V.T.

    2004-09-01

    The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms.

  18. Hadron physics as Seiberg dual of QCD

    SciTech Connect

    Kitano, Ryuichiro

    2012-07-27

    We try to identify the light hadron world as the magnetic picture of QCD. We take both phenomenological and theoretical approaches to this hypothesis, and find that the interpretation seems to show interesting consistencies. In particular, one can identify the {rho} and {omega} mesons as the magnetic gauge bosons, and the Higgs mechanism for them provides a dual picture of the color confinement{sup 1}.

  19. Lattice QCD calculations of weak matrix elements

    NASA Astrophysics Data System (ADS)

    Detar, Carleton

    2017-01-01

    Lattice QCD has become the method of choice for calculating the hadronic environment of the electroweak interactions of quarks. So it is now an essential tool in the search for new physics beyond the Standard Model. Advances in computing power and algorithms have resulted in increasingly precise predictions and increasingly stringent tests of the Standard Model. I review results of recent calculations of weak matrix elements and discuss their implications for new physics. Supported by US NSF grant PHY10-034278.

  20. Theoretical overview: Hot and dense QCD in equilibrium

    SciTech Connect

    Hatsuda, Tetsuo

    1991-11-01

    Static and dynamical properties of QCD at finite temperature and density are reviewed. Non-perturbative aspects of the QCD plasma and modification of the hadron properties associated with the chiral transition are discussed on the basis of lattice data, effective theories and QCD sum rules. Special emphasis is laid on the importance of the finite baryon density to see the effects of the restoration of chiral symmetry in experiment.

  1. Quarkyonic Matter and the Phase Diagram of QCD

    SciTech Connect

    McLerran,L.

    2008-05-15

    Quarkyonic matter is a new phase of QCD at finite temperature and density which is distinct from the confined and de-confined phases. Its existence is unambiguously argued in the large numbers of colors limit, N{sub c} {yields} {infinity}, of QCD. Hints of its existence for QCD, N{sub c} = 3, are shown in lattice Monte-Carlo data and in heavy ion experiments.

  2. Structure and dynamical nature of hot and dense QCD matter

    SciTech Connect

    Hatsuda, Tetsuo.

    1991-07-01

    Static and dynamical properties of QCD at finite temperature and density are reviewed. Non-perturbative aspects of the QCD plasma and the modification of the hadron properties associated with the chiral transition are discussed on the basis of lattice data, effective theories and QCD sum rules. Special emphasis is laid on the importance of the finite baryon density to see the effects of the restoration of chiral symmetry in experiment.

  3. Gravitational waves from the cosmological QCD transition

    NASA Astrophysics Data System (ADS)

    Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.

    2014-09-01

    We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.

  4. Astrophysical Implications of the QCD Phase Transition

    SciTech Connect

    Schaffner-Bielich, J.; Sagert, I.; Hempel, M.; Pagliara, G.; Fischer, T.; Mezzacappa, Anthony; Thielemann, Friedrich-Karl W.; Liebendoerfer, Matthias

    2009-01-01

    The possible role of a first order QCD phase transition at nonvanishing quark chemical potential and temperature for cold neutron stars and for supernovae is delineated. For cold neutron stars, we use the NJL model with a nonvanishing color superconducting pairing gap, which describes the phase transition to the 2SC and the CFL quark matter phases at high baryon densities. We demonstrate that these two phase transitions can both be present in the core of neutron stars and that they lead to the appearance of a third family of solution for compact stars. In particular, a core of CFL quark matter can be present in stable compact star configurations when slightly adjusting the vacuum pressure to the onset of the chiral phase transition from the hadronic model to the NJL model. We show that a strong first order phase transition can have a strong impact on the dynamics of core collapse supernovae. If the QCD phase transition sets in shortly after the first bounce, a second outgoing shock wave can be generated which leads to an explosion. The presence of the QCD phase transition can be read off from the neutrino and antineutrino signal of the supernova.

  5. Hybrid model for QCD deconfining phase boundary

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Singh, C. P.

    2012-06-01

    Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature (T) and vanishing baryon chemical potential (μB). These calculations are of limited use at finite μB due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite T and μB=0. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite μB so that they can be tested in future. Finally we demonstrate the utility of the model in fixing the precise location, the order of the phase transition and the nature of CP existing on the QCD phase diagram. We thus emphasize the suitability of the hybrid model as formulated here in providing a realistic EOS for the strongly interacting matter.

  6. QCD with Chiral Imbalance: models vs. lattice

    NASA Astrophysics Data System (ADS)

    Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec

    2017-03-01

    In heavy ion collisions (HIC) at high energies there may appear new phases of matter which must be described by QCD. These phases may have different color and flavour symmetries associated with the constituents involved in collisions as well as various space-time symmetries of hadron matter. Properties of the QCD medium in such a matter can be approximately described, in particular, by a number of right-handed (RH) and left-handed (LH) light quarks. The chiral imbalance (ChI) is characterized by the difference between the numbers of RH and LH quarks and supposedly occurs in the fireball after HIC. Accordingly we have to introduce a quark chiral (axial) chemical potential which simulates a ChI emerging in such a phase. In this report we discuss the possibility of a phase with Local spatial Parity Breaking (LPB) in such an environment and outline conceivable signatures for the registration of LPB as well as the appearance of new states in the spectra of scalar, pseudoscalar and vector particles as a consequence of local ChI. The comparison of the results obtained in the effective QCD- motivated models with lattice data is also performed.

  7. QCD in heavy quark production and decay

    SciTech Connect

    Wiss, J.

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.

  8. Full CKM matrix with lattice QCD

    SciTech Connect

    Okamoto, Masataka; /Fermilab

    2004-12-01

    The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.

  9. QCD, Tevatron results and LHC prospects

    SciTech Connect

    Elvira, V.Daniel; /Fermilab

    2008-08-01

    We present a summary of the most recent measurements relevant to Quantum Chromodynamics (QCD) delivered by the D0 and CDF Tevatron experiments by May 2008. CDF and D0 are moving toward precision measurements of QCD based on data samples in excess of 1 fb-1. The inclusive jet cross sections have been extended to forward rapidity regions and measured with unprecedented precision following improvements in the jet energy calibration. Results on dijet mass distributions, bbbar dijet production using tracker based triggers, underlying event in dijet and Drell-Yan samples, inclusive photon and diphoton cross sections complete the list of measurements included in this paper. Good agreement with pQCD within errors is observed for jet production measurements. An improved and consistent theoretical description is needed for photon+jets processes. Collisions at the LHC are scheduled for early fall 2008, opening an era of discoveries at the new energy frontier, 5-7 times higher than that of the Tevatron.

  10. Lattice analysis for the energy scale of QCD phenomena.

    PubMed

    Yamamoto, Arata; Suganuma, Hideo

    2008-12-12

    We formulate a new framework in lattice QCD to study the relevant energy scale of QCD phenomena. By considering the Fourier transformation of link variable, we can investigate the intrinsic energy scale of a physical quantity nonperturbatively. This framework is broadly available for all lattice QCD calculations. We apply this framework for the quark-antiquark potential and meson masses in quenched lattice QCD. The gluonic energy scale relevant for the confinement is found to be less than 1 GeV in the Landau or Coulomb gauge.

  11. Nucleon QCD sum rules in the instanton medium

    SciTech Connect

    Ryskin, M. G.; Drukarev, E. G. Sadovnikova, V. A.

    2015-09-15

    We try to find grounds for the standard nucleon QCD sum rules, based on a more detailed description of the QCD vacuum. We calculate the polarization operator of the nucleon current in the instanton medium. The medium (QCD vacuum) is assumed to be a composition of the small-size instantons and some long-wave gluon fluctuations. We solve the corresponding QCD sum rule equations and demonstrate that there is a solution with the value of the nucleon mass close to the physical one if the fraction of the small-size instantons contribution is w{sub s} ≈ 2/3.

  12. ρ -meson longitudinal leading-twist distribution amplitude within QCD background field theory

    NASA Astrophysics Data System (ADS)

    Fu, Hai-Bing; Wu, Xing-Gang; Cheng, Wei; Zhong, Tao

    2016-10-01

    We revisit the ρ -meson longitudinal leading-twist distribution amplitude (DA) ϕ2;ρ ∥ by using the QCD sum rules approach within the background field theory. To improve the accuracy of the sum rules for its moments ⟨ξn;ρ ∥⟩ , we include the next-to-leading order QCD correction to the perturbative part and keep all nonperturbative condensates up to dimension-six consistently within the background field theory. The first two moments read ⟨ξ2;ρ ∥⟩|1 GeV=0.241 (28 ) and ⟨ξ4;ρ ∥⟩|1 GeV=0.109 (10 ) , indicating a double humped behavior for ϕ2;ρ ∥ at small energy scale. As an application, we apply them to the B →ρ transition form factors within the QCD light-cone sum rules, which are key components for the decay width Γ (B →ρ ℓνℓ) . To compare with the world average of Γ (B →ρ ℓνℓ) issued by Particle Data Group, we predict |Vub|=3.1 9-0.62+0.65 , which agrees with the BABAR and Omnès parametrization prediction within errors.

  13. Jitter Correction

    NASA Technical Reports Server (NTRS)

    Waegell, Mordecai J.; Palacios, David M.

    2011-01-01

    Jitter_Correct.m is a MATLAB function that automatically measures and corrects inter-frame jitter in an image sequence to a user-specified precision. In addition, the algorithm dynamically adjusts the image sample size to increase the accuracy of the measurement. The Jitter_Correct.m function takes an image sequence with unknown frame-to-frame jitter and computes the translations of each frame (column and row, in pixels) relative to a chosen reference frame with sub-pixel accuracy. The translations are measured using a Cross Correlation Fourier transformation method in which the relative phase of the two transformed images is fit to a plane. The measured translations are then used to correct the inter-frame jitter of the image sequence. The function also dynamically expands the image sample size over which the cross-correlation is measured to increase the accuracy of the measurement. This increases the robustness of the measurement to variable magnitudes of inter-frame jitter

  14. QCD and Light-Front Holography

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  15. A new promising nonlinear optical (NLO) crystal for visible and ultraviolet (UV) regions

    SciTech Connect

    Gheorghe, L.; Achim, A.; Voicu, F.

    2012-08-17

    Different La{sub 1−x}Gd{sub x}Sc{sub 3}(BO{sub 3}){sub 4} compounds with 0 ≤ x ≤ 0.5 were synthesized by solid-state reaction method. The X-ray diffraction studies revealed that the compounds containing more than 30 at.% Gd{sup 3+} ions have non-centrosymmetric trigonal structure (space group R32) and, consequently they are optically nonlinear. A crystal of La{sub x}Gd{sub y}Sc{sub z}(BO{sub 3}){sub 4} (x+y+z = 4) – LGSB with La{sub 0.75}Gd{sub 0.5}Sc{sub 2.75}(BO{sub 3}){sub 4} starting melt composition and relatively small dimensions (about 10 mm in diameter and 25 mm in length) was grown by the Czochralski method. In order to confirm the NLO property, the as-grown crystal was subjected to second-harmonic generation (SHG) test. The nonlinear coefficient d{sub 11} of LGSB crystal has been preliminary estimated to be about 1.9 pm/V, which is larger than that of YAl{sub 3}(BO{sub 3}){sub 4} (YAB) crystal. This article has been formally retracted, please refer to the article PDF for the full retraction notice.

  16. Characterization of NLO crystal absorption for wavelengths 1ω to 4ω

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.

    2016-12-01

    An overview is presented of the characteristic features for the sandwich concept used for NLO crystal bulk absorption measurements. The sandwich concept is a photo-thermal absorption measurement concept based on the laser induced deflection (LID) technique. Besides a strong sensitivity enhancement for photo-thermally insensitive materials, the focus of the paper is on the absolute calibration, one of the key criteria for photo-thermal techniques. Based on experimental results it is proven that absolute bulk absorption calibration is simplified by using the sandwich concept since it is insensitive to sample orientation or dopants. Furthermore, experimental results on a variety of materials reveal that in general the bulk absorption calibration sample can be made of just one material, e.g. Aluminum which is favorable because of its easy mechanical handling. However, for surface/coating calibration a different result is found. Finally, the sandwich concept is applied to characterize the bulk absorption of different nonlinear crystals at the wavelengths 1064, 532, 355 and 266nm.

  17. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  18. Growth and structural analysis of an organic NLO compound: L-lysinium picrate

    NASA Astrophysics Data System (ADS)

    Arthi, D.; Ilango, E.; Mercina, M.; Jayaraman, D.; Joseph, V.

    2017-01-01

    L-lysinium picrate (LLP), an organic material, has been synthesized and grown by solution growth method. The crystal structure of the grown material was solved by single crystal X-ray diffraction analysis and it was found that the material belongs to triclinic system with space group P1. The transmission range of the crystal was measured in the range of 470-1100 nm with lower cut off wavelength at 470 nm using UV-vis-NIR absorption spectrum. The optical band gap of the grown material was found to establish the dielectric behavior of the material. The main functional groups present in the material were identified using FTIR spectral analysis. Thermal stability and decomposition range were studied by means of TGA and DTA analyses. The microstructure of the grown crystal was studied using SEM analysis. The various chemical environments of the protons and carbons were studied by 1H and 13C NMR spectroscopy to confirm the molecular structure of the grown crystal. NLO behavior was confirmed by Kurtz and Perry technique and SHG efficiency was estimated as 1.4 times that of standard KDP.

  19. B ---> pi and B ---> K transitions from QCD sum rules on the light cone

    SciTech Connect

    Ball, P.

    1998-09-01

    I calculate the form factors describing semileptonic and penguin-induced decays of B mesons into light pseudoscalar mesons. The form factors are calculated from QCD sum rules on the light-cone including contributions up to twist 4, radiative corrections to the leading twist contribution and SU(3)-breaking effects. The theoretical uncertainty is estimated to be \\sim 15%. The heavy-quark-limit relations between semileptonic and penguin form factors are found to be valid in the full accessible range of momentum transfer.

  20. Higgs boson gluon-fusion production beyond threshold in N3LO QCD

    DOE PAGES

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; ...

    2015-03-18

    In this study, we compute the gluon fusion Higgs boson cross-section at N3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N3LO in perturbative QCD.

  1. Proton fragmentation functions considering finite-mass corrections

    NASA Astrophysics Data System (ADS)

    Moosavi Nejad, S. M.; Soleymaninia, M.; Maktoubian, A.

    2016-10-01

    We present new sets of proton fragmentation functions (FFs) describing the production of protons from the gluon and each of the quarks, obtained by the NLO QCD fits to all relevant data sets of single-inclusive electron-positron annihilation. Specifically, we determine their uncertainties using the Gaussian method for error estimation. Our analysis is in good agreement with the e + e - annihilation data. We also include finite-mass effects of the proton in our calculations, a topic to which very little attention is paid in the literature. Proton mass effects turn out to be appreciable for gluon and light quark FFs. The inclusion of finite-mass effects tends to improve the overall description of the data by reducing the minimized χ2 values significantly. As an application, we apply the extracted FFs to make predictions for the scaled-energy distribution of protons inclusively produced in top quark decays at next-to-leading order, relying on the universality and scaling violations of FFs.

  2. Quarkyonic Matter and the Revised Phase Diagram of QCD

    SciTech Connect

    McLerran,L.

    2009-03-30

    At high baryon number density, it has been proposed that a new phase of QCD matter controlsthe physics. This matter is confining but can have densities much larger than 3QCD. Its existenceis argued from large Nc approximations, and model computations. It is approximately chirallysymmetric.

  3. Renormalization group analysis in nonrelativistic QCD for colored scalars

    SciTech Connect

    Hoang, Andre H.; Ruiz-Femenia, Pedro

    2006-01-01

    The velocity nonrelativistic QCD Lagrangian for colored heavy scalar fields in the fundamental representation of QCD and the renormalization group analysis of the corresponding operators are presented. The results are an important ingredient for renormalization group improved computations of scalar-antiscalar bound state energies and production rates at next-to-next-to-leading-logarithmic (NNLL) order.

  4. Mechanisms of chiral symmetry breaking in QCD: A lattice perspective

    NASA Astrophysics Data System (ADS)

    Giusti, Leonardo

    2016-01-01

    I briefly review two recent studies on chiral symmetry breaking in QCD: (a) a computation of the spectral density of the Dirac operator in QCD Lite, (b) a precise determination of the topological charge distribution in the SU(3) Yang-Mills theory as defined by evolving the fundamental gauge field with the Yang-Mills gradient flow equation.

  5. Confinining properties of QCD in strong magnetic backgrounds

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco

    2017-03-01

    Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.

  6. Lattice QCD production on commodity clusters at Fermilab

    SciTech Connect

    D. Holmgren et al.

    2003-09-30

    We describe the construction and results to date of Fermilab's three Myrinet-networked lattice QCD production clusters (an 80-node dual Pentium III cluster, a 48-node dual Xeon cluster, and a 128-node dual Xeon cluster). We examine a number of aspects of performance of the MILC lattice QCD code running on these clusters.

  7. LATTICE QCD AT FINITE TEMPERATURE AND DENSITY.

    SciTech Connect

    BLUM,T.; CREUTZ,M.; PETRECZKY,P.

    2004-02-24

    With the operation of the RHIC heavy ion program, the theoretical understanding of QCD at finite temperature and density has become increasingly important. Though QCD at finite temperature has been extensively studied using lattice Monte-Carlo simulations over the past twenty years, most physical questions relevant for RHIC (and future) heavy ion experiments remain open. In lattice QCD at finite temperature and density there have been at least two major advances in recent years. First, for the first time calculations of real time quantities, like meson spectral functions have become available. Second, the lattice study of the QCD phase diagram and equation of state have been extended to finite baryon density by several groups. Both issues were extensively discussed in the course of the workshop. A real highlight was the study of the QCD phase diagram in (T, {mu})-plane by Z. Fodor and S. Katz and the determination of the critical end-point for the physical value of the pion mass. This was the first time such lattice calculations at, the physical pion mass have been performed. Results by Z Fodor and S. Katz were obtained using a multi-parameter re-weighting method. Other determinations of the critical end point were also presented, in particular using a Taylor expansion around {mu} = 0 (Bielefeld group, Ejiri et al.) and using analytic continuation from imaginary chemical potential (Ph. de Forcrand and O. Philipsen). The result based on Taylor expansion agrees within errors with the new prediction of Z. Fodor and S. Katz, while methods based on analytic continuation still predict a higher value for the critical baryon density. Most of the thermodynamics studies in full QCD (including those presented at this workshop) have been performed using quite coarse lattices, a = 0.2-0.3 fm. Therefore one may worry about cutoff effects in different thermodynamic quantities, like the transition temperature T{sub tr}. At the workshop U. Heller presented a study of the transition

  8. Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach

    SciTech Connect

    Song Huichao; Bass, Steffen A.; Heinz, Ulrich

    2011-02-15

    A hybrid transport approach for the bulk evolution of viscous QCD matter produced in ultra-relativistic heavy-ion collisions is presented. The expansion of the dense deconfined phase of the reaction is modeled with viscous hydrodynamics, while the dilute late hadron gas stage is described microscopically by the Boltzmann equation. The advantages of such a hybrid approach lie in the improved capability of handling large dissipative corrections in the late dilute phase of the reaction, including a realistic treatment of the nonequilibrium hadronic chemistry and kinetic freeze-out. By varying the switching temperature at which the hydrodynamic output is converted to particles for further propagation with the Boltzmann cascade we test the ability of the macroscopic hydrodynamic approach to emulate the microscopic evolution during the hadronic stage and extract the temperature dependence of the effective shear viscosity of the hadron resonance gas produced in the collision. We find that the extracted values depend on the prior hydrodynamic history and hence do not represent fundamental transport properties of the hadron resonance gas. We conclude that viscous fluid dynamics does not provide a faithful description of hadron resonance gas dynamics with predictive power, and that both components of the hybrid approach are needed for a quantitative description of the fireball expansion and its freeze-out.

  9. Is the Universal String Axion the QCD Axion

    SciTech Connect

    Gaillard, Mary K.; Kain, Ben

    2005-10-14

    We consider the class of effective supergravity theories from the weakly coupled heterotic string in which local supersymmetry is broken by gaugino condensation in a hidden sector, with dilaton stabilization achieved through corrections to the classical dilaton Kahler potential. If there is a single hidden condensing (simple) gauge group, the axion is massless (up to contributions from higher dimension operators) above the QCD condensation scale. We show how the standard relation between the axion mass and its Planck scale coupling constant is modified in this class of models due to a contribution to the axion-gluon coupling that appears below the scale of supersymmetry breaking when gluinos are integrated out. In particular there is a point of enhanced symmetry in parameter space where the axion mass is suppressed. We revisit the question of the universal axion as the Peccei-Quinn axion in the light of these results, and find that the strong CP problem is avoided in most compactifications of the weakly coupled heterotic string.

  10. Self-bound interacting QCD matter in compact stars

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Fogaça, D. A.; Navarra, F. S.; Horvath, J. E.

    2012-09-01

    The quark gluon plasma (QGP) at zero temperature and high baryon number is a system that may be present inside compact stars. It is quite possible that this cold QGP shares some relevant features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. In a previous work we have derived from the QCD Lagrangian an equation of state (EOS) for the cold QGP, which can be considered an improved version of the MIT bag-model EOS. Compared to the latter, our EOS reaches higher values of the pressure at comparable baryon densities. This feature is due to perturbative corrections and also to nonperturbative effects. Here we apply this EOS to the study of neutron stars, discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound (strange) stars. The maximum masses of the sequences exceed two solar masses, in agreement with the recently measured values of the mass of the pulsar PSR J1614-2230, and the corresponding radii of around 10-11 km.

  11. Rapid thermal co-annihilation through bound states in QCD

    NASA Astrophysics Data System (ADS)

    Kim, Seyong; Laine, M.

    2016-07-01

    The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. The additional enhancement is suggested to originate from bound state formation and subsequent decay. Making use of a Green's function based method to incorporate thermal corrections in perturbative co-annihilation rate computations, we show that qualitative agreement with lattice data can be found once thermally broadened bound states are accounted for. We suggest that our formalism may also be applicable to specific dark matter models which have complicated bound state structures.

  12. Effects of QCD bound states on dark matter relic abundance

    NASA Astrophysics Data System (ADS)

    Liew, Seng Pei; Luo, Feng

    2017-02-01

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ˜ 30-100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ˜ 2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.

  13. High energy hadron collisions in QCD

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Ryskin, M. G.

    1990-05-01

    In this review we present the microscopic approach to large cross section physics at high energy, based on the leading logarithmic approximation of perturbative QCD and the reggeon diagram technique. We insist that at high energy the main source of secondary hadrons is the production and fragmentation of the gluon minijets with transverse momentum qt ≈ q0, which rapidly growswith energy, namely q2t≈ q20≈Λ 2 exp(2.5√ln s). Such a large value of the transverse momentum allows us to adopt perturbative QCD for high hadron collisions. The completely avoid the unknown confinement problem, a new scale overlineQ0 ( overlineQ0≈1 GeV, α s( overlineQ20)<1) is introduced in our calculations and only momenta qt> overlineQ0 for gluons are taken into account in any integration. All our results only slightly depend on the value of overlineQ0. It is shown that perturbative QCD is able to describe the main properties of the hedron interactions at high energy, namely, the inclusive spectra of secondary hadrons as functions of y and qt, including small qt⪅300MeV, in a wide energy range √ s=50-900 GeV, the multiplicity distribution, the mean transverse momentum versus multiplicity and so on. We use only three phenomenological parameters in such a description of the experimental data; these values are in agreement with theoretical estimates. Our approach predicts a rapid increase of the mean transverse momentum for secondary hadrons, qt≈ q0, where q0=2.5 GeV at √ S=0.5 TeV, and q0⋍7 GeV at √ S=40 TeV, the total multiplicity N≈ q20, the total cross section σ t≈ln 2s and a comparatively slow increase of the diffraction dissociation cross section σ D≈ln s.

  14. Transversity from First Principles in QCD

    SciTech Connect

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2012-02-16

    Transversity observables, such as the T-odd Sivers single-spin asymmetry measured in deep inelastic lepton scattering on polarized protons and the distributions which are measured in deeply virtual Compton scattering, provide important constraints on the fundamental quark and gluon structure of the proton. In this talk I discuss the challenge of computing these observables from first principles; i.e.; quantum chromodynamics, itself. A key step is the determination of the frame-independent light-front wavefunctions (LFWFs) of hadrons - the QCD eigensolutions which are analogs of the Schroedinger wavefunctions of atomic physics. The lensing effects of initial-state and final-state interactions, acting on LFWFs with different orbital angular momentum, lead to T-odd transversity observables such as the Sivers, Collins, and Boer-Mulders distributions. The lensing effect also leads to leading-twist phenomena which break leading-twist factorization such as the breakdown of the Lam-Tung relation in Drell-Yan reactions. A similar rescattering mechanism also leads to diffractive deep inelastic scattering, as well as nuclear shadowing and non-universal antishadowing. It is thus important to distinguish 'static' structure functions, the probability distributions computed the target hadron's light-front wavefunctions, versus 'dynamical' structure functions which include the effects of initial- and final-state rescattering. I also discuss related effects such as the J = 0 fixed pole contribution which appears in the real part of the virtual Compton amplitude. AdS/QCD, together with 'Light-Front Holography', provides a simple Lorentz-invariant color-confining approximation to QCD which is successful in accounting for light-quark meson and baryon spectroscopy as well as hadronic LFWFs.

  15. Applying generalized Padé approximants in analytic QCD models

    NASA Astrophysics Data System (ADS)

    Cvetič, Gorazd; Kögerler, Reinhart

    2011-09-01

    A method of resummation of truncated perturbation series, related to diagonal Padé approximants but giving results independent of the renormalization scale, was developed more than ten years ago by us with a view of applying it in perturbative QCD. We now apply this method in analytic QCD models, i.e., models where the running coupling has no unphysical singularities, and we show that the method has attractive features, such as a rapid convergence. The method can be regarded as a generalization of the scale-setting methods of Stevenson, Grunberg, and Brodsky-Lepage-Mackenzie. The method involves the fixing of various scales and weight coefficients via an auxiliary construction of diagonal Padé approximant. In low-energy QCD observables, some of these scales become sometimes low at high order, which prevents the method from being effective in perturbative QCD, where the coupling has unphysical singularities at low spacelike momenta. There are no such problems in analytic QCD.

  16. Exploring dense and cold QCD in magnetic fields

    NASA Astrophysics Data System (ADS)

    Ferrer, E. J.; de la Incera, V.

    2016-08-01

    Strong magnetic fields are commonly generated in off-central relativistic heavy-ion collisions in the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Lab and in the Large Hadron Collider at CERN and have been used to probe the topological configurations of the QCD vacua. A strong magnetic field can affect the character and location of the QCD critical point, influence the QCD phases, and lead to anomalous transport of charge. To take advantage of the magnetic field as a probe of QCD at higher baryon densities, we are going to need experiments capable to scan the lower energy region. In this context, the nuclotron-based ion collider facility (NICA) at JINR offers a unique opportunity to explore such a region and complement alternative programs at RHIC and other facilities. In this paper we discuss some relevant problems of the interplay between QCD and magnetic fields and the important role the experiments at NICA can play in tackling them.

  17. Algorithms for Disconnected Diagrams in Lattice QCD

    SciTech Connect

    Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Konstantinos; Yoon, Boram; Gupta, Rajan; Syritsyn, Sergey

    2016-11-01

    Computing disconnected diagrams in Lattice QCD (operator insertion in a quark loop) entails the computationally demanding problem of taking the trace of the all to all quark propagator. We first outline the basic algorithm used to compute a quark loop as well as improvements to this method. Then, we motivate and introduce an algorithm based on the synergy between hierarchical probing and singular value deflation. We present results for the chiral condensate using a 2+1-flavor clover ensemble and compare estimates of the nucleon charges with the basic algorithm.

  18. Isoscalar meson spectroscopy from lattice QCD

    SciTech Connect

    Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas, Balint Joo, Michael Peardon

    2011-06-01

    We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.

  19. Numerical approach to Coulomb gauge QCD

    SciTech Connect

    Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.

    2008-07-01

    We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.

  20. The lowest Landau level in QCD

    NASA Astrophysics Data System (ADS)

    Bruckmann, Falk; Endrőodi, Gergely; Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc; Wellnhofer, Jacob

    2017-03-01

    The thermodynamics of Quantum Chromodynamics (QCD) in external (electro-)magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL). Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.