Spectrum of Transient ASASSN-13at
NASA Astrophysics Data System (ADS)
Garnavich, Peter; Deal, Shanel
2013-06-01
We observed the transient ASASSN-13at (ATEL 5168) on June 28.3 (UT) with the Vatican Advanced Technology Telescope (VATT) and VATTSPEC instrument. The resulting spectrum covers the wavelength range between 365 nm and 750 nm with a resolution of 1100. The spectrum of ASASSN-13at shows a blue continuum with strong Balmer absorption lines. Helium absorption at 447 nm and 588 nm is also seen. Blue-shifted emission lines are visible within the Halpha and Hbeta absorption features.
Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M
2012-04-23
A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)). © 2012 Optical Society of America
NASA Technical Reports Server (NTRS)
Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.
1991-01-01
Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.
NASA Astrophysics Data System (ADS)
Yoon, S. J.; Mackenzie, J. I.
2014-05-01
We present our measurements of the key spectroscopic properties over the temperature range of 77 K to 450 K for Nd3+ ions doped in Y3Al5O12 (YAG). From room to liquid nitrogen temperature (LNT), the peak absorption cross section around 808 nm increased by almost 3 times, in conjunction the bandwidth of this absorption line reduced by the same factor. At LNT the peak of the absorption line was blue shifted by 0.25 nm with respect to that at 300 K. The fluorescence spectrum between 850 nm - 1450 nm was measured, from which the emission cross sections for the three main transitions were calculated. One note of particular interest for the dominant emission wavelengths around 1064nm and 1061nm (4F3/2 --> 4I11/2) was the switch in their relative strength below 170K, and at LNT the 1061 nm line has almost twice the cross section as at 1064nm.. The fluorescence and lifetime of the upper laser level (4F3/2) was measured and the effective emission cross section determined by the Fuchtbauer-Ladenburg (F-L) method. The effective emission cross section for 946 nm (R1 --> Z5) increased by more than two times over the 300 K to 77 K range. A numerical fit for the temperature dependent emission cross section at 946 nm and 1064 nm and also calculated absorption coefficient at 808 nm pump diode laser have also obtained from the measured spectroscopic data.
NASA Astrophysics Data System (ADS)
Kowalewska, Zofia; Laskowska, Hanna; Gzylewski, Michał
2017-06-01
High-resolution continuum source and line source flame atomic absorption spectrometry (HR-CS FAAS and LS FAAS, respectively) were applied for Pb determination in unleaded aviation or automotive gasoline that was dissolved in methyl-isobutyl ketone. When using HR-CS FAAS, a structured background (BG) was registered in the vicinity of both the 217.001 nm and 283.306 nm Pb lines. In the first case, the BG, which could be attributed to absorption by the OH molecule, directly overlaps with the 217 nm line, but it is of relatively low intensity. For the 283 nm line, the structured BG occurs due to uncompensated absorption by OH molecules present in the flame. BG lines of relatively high intensity are situated at a large distance from the 283 nm line, which enables accurate analysis, not only when using simple variants of HR-CS FAAS but also for LS FAAS with a bandpass of 0.1 nm. The lines of the structured spectrum at 283 nm can have ;absorption; (maxima) or ;emission; (minima) character. The intensity of the OH spectra can significantly depend on the flame character and composition of the investigated organic solution. The best detection limit for the analytical procedure, which was 0.01 mg L- 1 for Pb in the investigated solution, could be achieved using HR-CS FAAS with the 283 nm Pb line, 5 pixels for the analyte line measurement and iterative background correction (IBC). In this case, least squares background correction (LSBC) is not recommended. However, LSBC (available as the ;permanent structures; option) would be recommended when using the 217 nm Pb line. In LS FAAS, an additional phenomenon related to the nature of the organic matrix (for example, isooctane or toluene) can play an important role. The effect is of continuous character and probably due to the simultaneous efficient correction of the continuous background (IBC) it is not observed in HR-CS FAAS. The fact that the effect does not depend on the flame character indicates that it is not radiation scattering. For LS FAAS, the determination of Pb using the 283 nm line, a 0.1 nm bandpass and a fuel lean flame is strongly recommended. The analysis of certified reference materials, recovery studies and the analysis of real samples with low Pb content supported the satisfactory accuracy of Pb determination in automotive or aviation gasoline when the recommended analytical variants are applied. The studies in this work shed new light on spectral phenomena in air-acetylene flames. The structured background due to absorption by the OH molecules must be taken into account during Pb determination in other materials as well as in some other elemental determinations, especially at low absorbance levels. The usefulness of HR-CS FAAS for revealing and investigating a structured background was demonstrated. HR-CS FAAS does not reveal fully corrected spectral effects with a continuous character, which can be found in LS FAAS.
Mid-infrared GaSb-based resonant tunneling diode photodetectors for gas sensing applications
NASA Astrophysics Data System (ADS)
Rothmayr, F.; Pfenning, A.; Kistner, C.; Koeth, J.; Knebl, G.; Schade, A.; Krueger, S.; Worschech, L.; Hartmann, F.; Höfling, S.
2018-04-01
We present resonant tunneling diode-photodetectors (RTD-PDs) with GaAs0.15Sb0.85/AlAs0.1Sb0.9 double barrier structures combined with an additional quaternary Ga0.64In0.36As0.33Sb0.67 absorption layer covering the fingerprint absorption lines of various gases in the mid-infrared wavelength spectral region. The absorption layer cut-off wavelength is determined to be 3.5 μm, and the RTD-PDs show peak-to-valley current ratios up to 4.3 with a peak current density of 12 A/cm-2. The incorporation of the quaternary absorption layer enables the RTD-PDs to be sensitive to illumination with light up to the absorption lines of HCl at 3395 nm. At this wavelength, the detector shows a responsivity of 6.3 mA/W. At the absorption lines of CO2 and CO at 2004 nm and 2330 nm, respectively, the RTD-PDs reach responsivities up to 0.97 A/W. Thus, RTD-PDs pave the way towards high sensitive mid-infrared detectors that can be utilized in tunable laser absorption spectroscopy.
Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2
NASA Astrophysics Data System (ADS)
Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.
2011-12-01
Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an accurate characterization of the CO2 and dry air vertical density profiles for each flight. Using this data, we have also computed some representative vertical weighting functions for CO2 lines near 1572 nm and the and O2 lines near 764 and 1270 nm and compared to the weighting functions of the NASA Langley's Continuous-Wave Laser Absorption Spectrometer for several flights in the ASCENDS airborne campaigns. The analysis provides guidance for measurement wavelength selection, retrieval algorithm development and ASCENDS mission simulation studies. Details of the methodology and computations for the airborne and future space measurements will be presented.
Aequorea green fluorescent protein analysis by flow cytometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ropp, J.D.; Cuthbertson, R.A.; Donahue, C.J.
The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types. The longer wavelength peak (470 nm) of GFP`s bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered atmore » 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T- GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm. 29 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.
2007-05-01
Quantitative near-infrared absorption spectroscopy of water-vapour overtone and combination bands at high pressures is complicated by pressure broadening and shifting of individual lines and the blending of neighbouring transitions. An experimental and computational methodology is developed to determine accurate high-pressure absorption spectra. This case study investigates two water-vapour transitions, one near 1388 nm (7203.9 cm-1) and the other near 1345 nm (7435.6 cm-1), for potential two-line absorption measurements of temperature in the range of 400-1050 K with a pressure varying from 5-25 atm. The required quantitative spectroscopy data (line strength, collisional broadening, and pressure-induced frequency shift) of the target transitions and their neighbours (a total of four H2O vapour transitions near 1388 nm and six transitions near 1345 nm) are measured in neat H2O vapour, H2O-air and H2O-CO2 mixtures as a function of temperature (296-1000 K) at low pressures (<800 Torr). Precise values of the line strength S(T), pressure-broadening coefficients γair(T) and \\gamma _{CO_2 } (T), and pressure-shift coefficients δair(T) and \\delta _{CO_2 } (T) for the ten transitions were inferred from the measured spectra and compared with data from HITRAN 2004. A hybrid spectroscopic database was constructed by modifying HITRAN 2004 to incorporate these values for simulation of water-vapour-absorption spectra at high pressures. Simulations using this hybrid database are in good agreement with high pressure experiments and demonstrate that data collected at modest pressures can be used to simulate high-pressure absorption spectra.
Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.
2011-01-01
We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.
Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian
2007-09-01
A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.
An Erupting Active Region Filament: Three-Dimensional Trajectory and Hydrogen Column Density
NASA Astrophysics Data System (ADS)
Penn, M. J.
2000-12-01
From 15:33 through 16:02 UT on 13 June 1998, observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SOHO/CDS instruments as part of the SOHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region between 12-14 June 1998, and that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy data covered 512 × 512 arc sec of the disk center and were spectrally centered at the Hei 1083 nm line and captured +/-1.0 nm of surrounding solar spectrum. The Hei absorption line is seen blue-shifted to velocities of between 200 and 300 km s^-1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s^-1 along a path inclined roughly 49 deg to the solar surface and rises to a height of just over 1.5 solar radii before it becomes too diffuse to follow. The filament also shows internal motions with multiple Doppler components shifted by +/-25 km s^-1. Finally, the KPVT data show no Stokes V profiles in the Doppler-shifted Hei 1083.03 nm absorption to a limit of roughly 3×10^-3 times the continuum intensity. The SOHO/CDS scanned the center of the KPVT FOV using seven EUV lines; Doppler-shifted filament emission is seen in lines from Hei 58.4 nm, Heii 30.4 nm, Oiv 55.5 nm, Ov 63.0 nm, Nevi 56.3 nm, and Mgx 61.0 nm representing temperatures from about 2×10^4K through 1×10^6K. Bound-free continuum absorption from Hi, without confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density ξ_H I =4.8+/-2.5×10^17 cm^-2. Spatial maps show that this filament absorption is more confined than the regions which show emission.
NASA Technical Reports Server (NTRS)
Ponsardin, Patrick L.; Browell, Edward V.
1997-01-01
The linestrengths for 40 absorption lines of H2 16-O water vapor that were located between 813 and 820 nm were measured; most of these lines were selected for their potential usefulness in laser remote measurements of atmospheric humidity using the differential absorption lidar technique. The air-induced pressure-broadening coefficients were also measured for 32 of these lines and the air-induced pressure shift coefficients were measured for 29 lines. These spectroscopic parameters were derived from spectra obtained with an AlGaAs diode laser and two long-path absorption cells. Collisional narrowing effects were observed and were accurately described by a Galatry profile. Comparisons were made with previous experimental work or theoretical calculations as available.
Temperature Dependence of Molecular Line Strengths and Fei 1565 nm Zeeman Splitting in a Sunspot
NASA Astrophysics Data System (ADS)
Penn, M. J.; Walton, S.; Chapman, G.; Ceja, J.; Plick, W.
2003-03-01
Spectroscopic observations at 1565 nm were made in the eastern half of the main umbra of NOAA 9885 on 1 April 2002 using the National Solar Observatory McMath-Pierce Telescope at Kitt Peak with a tip-tilt image stabilization system and the California State University Northridge-National Solar Observatory infrared camera. The line depth of the OH blend at 1565.1 nm varies with the observed continuum temperature; the variation fits previous observations except that the continuum temperature is lower by 600 K. The equivalent width of the OH absorption line at 1565.2 nm shows a temperature dependence similar to previously published umbral molecular observations at 640 nm. A simple model of expected OH abundance based upon an ionization analogy to molecular dissociation is produced and agrees well with the temperature variation of the line equivalent width. A CN absorption line at 1564.6 nm shows a very different temperature dependence, likely due to complicated formation and destruction processes. Nonetheless a numerical fit of the temperature variation of the CN equivalent width is presented. Finally a comparison of the Zeeman splitting of the Fei 1564.8 nm line with the sunspot temperature derived from the continuum intensity shows an umbra somewhat cooler for a given magnetic field strength than previous comparisons using this infrared 1564.8 nm line, but consistent with these previous infrared measurements the umbra is hotter for a given magnetic field strength than magnetic and temperature measurements at 630.2 nm would suggest. Differences between the 630.2 nm and 1564.8 nm umbral temperature and magnetic field relations are explained with the different heights of formation of the lines and continua at these wavelengths.
Absolute frequency atlas from 915 nm to 985 nm based on laser absorption spectroscopy of iodine
NASA Astrophysics Data System (ADS)
Nölleke, Christian; Raab, Christoph; Neuhaus, Rudolf; Falke, Stephan
2018-04-01
This article reports on laser absorption spectroscopy of iodine gas between 915 nm and 985 nm. This wavelength range is scanned utilizing a narrow linewidth and mode-hop-free tunable diode-laser whose frequency is actively controlled using a calibrated wavelength meter. This allows us to provide an iodine atlas that contains almost 10,000 experimentally observed reference lines with an uncertainty of 50 MHz. For common lines, good agreement is found with a publication by Gerstenkorn and Luc (1978). The new rich dataset allows existing models of the iodine molecule to be refined and can serve as a reference for laser frequency calibration and stabilization.
Er:YAG laser technology for remote sensing applications
NASA Astrophysics Data System (ADS)
Chen, Moran; Burns, Patrick M.; Litvinovitch, Viatcheslav; Storm, Mark; Sawruk, Nicholas W.
2016-10-01
Fibertek has developed an injection locked, resonantly pumped Er:YAG solid-state laser operating at 1.6 μm capable of pulse repetition rates of 1 kHz to 10 kHz for airborne methane and water differential absorption lidars. The laser is resonantly pumped with a fiber-coupled 1532 nm diode laser minimizing the quantum defect and thermal loading generating tunable single-frequency output of 1645-1646 nm with a linewidth of < 100 MHz. The frequency-doubled 1.6 μm Er:YAG laser emits wavelengths in the 822-823 nm spectrum, coincident with water vapor lines. Various cavity designs were studied and optimized for compactness and performance, with the optimal design being an injection seeded and locked five-mirror ring cavity. The laser generated 4 W of average power at pulse repetition frequencies (PRFs) of 1 kHz and 10 kHz, corresponding to 4 mJ and 400 μJ pulse energies, respectively. The 1645 nm was subsequently frequency doubled to 822.5 nm with a 600 pm tuning range covering multiple water absorption lines, with a pulse energy of 1 mJ and a pulse repetition frequency of 1 kHz. The resonator cavity was locked to the seed wavelength via a Pound Drever Hall (PDH) technique and an analog Proportional Integral Derivative (PID) Controller driving a high-bandwidth piezoelectric (PZT)-mounted cavity mirror. Two seed sources lasing on and off the methane absorption line were optically switched to tune the resonator wavelength on and off the methane absorption line between each sequential output pulse. The cavity locking servo maintained the cavity resonance for each pulse.
NASA Technical Reports Server (NTRS)
Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.
1994-01-01
A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.
Laboratory Measurements of SO2 and N2 Absorption Spectra for Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Stark, Glenn
2003-01-01
This laboratory project focuses on the following topics: 1) Measurement of SO2 ultraviolet absorption cross sections; and 2) N2 band and Line Oscillator Strengths and Line Widths in the 80 to 100 nm region. Accomplishments for these projects are summarized.
NASA Astrophysics Data System (ADS)
Cubeddu, Rinaldo; Canti, Gianfranco L.; Pifferi, Antonio; Taroni, Paola; Valentini, Gianluca
1995-03-01
The absorption spectrum of disulphonated aluminum phthalocyanine (AlS2Pc) between 650 nm and 695 nm was measured in vivo by means of time-resolved reflectance. The experiments were performed on mice bearing the L1210 leukemia 1, 4, and 7 hr after the i.p. administration of 2.5 mg/kg body weight (b.w.) of AlS2Pc. The absorption peak is centered at 685 nm, red-shifted of 10 - 15 nm with respect to the spectra obtained in solution in various environments. Measurements performed in vitro confirm the results in vivo and seem to suggest that the extracellular environment can cause the shift in the absorption line shape.
Magnetic circular dichroism of CdTe nanoparticles
NASA Astrophysics Data System (ADS)
Malakhovskii, A. V.; Sokolov, A. E.; Tsipotan, A. S.; Zharkov, S. M.; Zabluda, V. N.
2018-04-01
Magnetic circular dichroism (MCD) of water-soluble CdTe nanoparticles was observed in the visible spectral range for the first time. Diameter of nanoparticles varied from 2.3 to 4.5 nm. Absorption and photoluminescence spectra were also recorded. Absorption line at 19400 cm-1 and luminescent line at 18200 cm-1 were observed. Splitting of value 960 cm-1 was revealed in the MCD spectrum. Approximately the same splitting was extracted from the absorption spectrum. The MCD was identified as the temperature independent paramagnetic mixing effect. Nature of the absorption line and of its splitting are discussed.
NASA Technical Reports Server (NTRS)
Miller, George E.
1992-01-01
Differential absorption of laser radiation by various molecular species represents both a selective and a sensitive method of measuring specific atmospheric constituents. DIAL measurements can be carried out via two different means. Both involve using two laser pulses with slightly different wavelengths (lambda), (one lambda at a strong absorption line of the molecule of interest, the other detuned into the wing of the line), and comparing the attenuation of the pulses. One approach relies on scattering of the radiation from some conveniently located topographical target. In the other technique elastic scattering from atmospheric aerosols and particulates is used to return the radiation to the lidar receiver system. This case is referred to as the differential absorption and scattering technique, and is the technique we are interested in to measure water vapor at 940 nm. The 940 nm wavelength is extremely desirable to atmospheric scientist interested in accurate DIAL measurements of H2O in the upper and lower troposphere. Simulated measurements using approximately 940 nm and 815 nm lasers at a range of altitudes and experimental conditions are shown. By offering access to larger absorption cross-sections, injected seeded, 940 nm DIAL laser transmitters would allow for more accurate water profile measurements at altitudes from 6 to 16 km than is currently possible with 730 nm and 815 nm DIAL laser transmitters. We have demonstrated the operation of an injected seeded titanium-sapphire (TS) laser operating at approximately 940 nm with an energy of more than 90 mJ per pulse. The TS laser is pumped by a commercial, 600 mJ, 532 nm, 10 Hz Nd:YAG laser. The slope efficiency of the laser using a flat 50 percent R output coupler and a 10 m end-mirror is shown. The laser was injected seeded with a CW, AlGaAs, semiconductor diode laser which had an output of 83 mW. The CW diode seed beam was introduced into the TS laser cavity through a HR end-mirror. When the diode beam is aligned to the TS resonator, it controls the TS laser output wavelength and its spectral line width with the required resolution for DIAL applications. This work supports the need for the development of 940 nm, titanium-sapphire DIAL transmitters.
Lidar Measurements of Methane and Applications for Aircraft and Spacecraft
NASA Technical Reports Server (NTRS)
Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli
2010-01-01
Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65,2.2,3.4 and 7.8 micron. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed laser near 1651 nm from a wavelength tunable diode laser. Incident photons from the pump laser pulse are converted into two photons, with one at the wavelength of the injection seeder. The wavelength of the OPA output is tuned via the wavelength of diode laser. Our laser is tunable, operates near 1651 nm and generates approximately 4 uJ/pulse at 6 KHz. We vary the emission wavelengths within this band by tuning the diode laser's wavelength. We have used this OPA transmitter to make measurements of CH4 at various pressures in a gas cell and over open outdoor horizontal paths. We have measured the lineshape of methane in a 6 cm long cell at various energy levels with this transmitter, with excellent agreement with the lineshape calculated by HITRAN. We have also measured the absorption lineshape of atmospheric methane in an open 3 km outdoor path. The agreement between the measurements and HITRAN, for 1746 ppb and 760 Torr was quite good. We have also made pulsed two wavelength lidar measurements of methane line absorption in the column to a tower at 1.5 km range. These used on- and off-line wavelengths of 1650.957 nm, and 1651.072 nm, and a 20 cm diameter receiver telescope with an infrared PMT detector. The absorption of the on-line photons was 30%. The methane column absorption was estimated via HITRAN, and was in good agreement with the expected methane absorption for a concentration of 1750 ppm. Finally we have calculated the measurement performance of an airborne methane lidar using this transmitter, as well as the energy and telescope scaling needed for a lidar for space. These results, and more details of our experiments will be described in the presentation.
Lidar Measurements of Methane and Applications for Aircraft and Spacecraft
NASA Astrophysics Data System (ADS)
Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli
2010-05-01
Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65, 2.2, 3.4 and 7.8 μm. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed laser near 1651 nm from a wavelength tunable diode laser. Incident photons from the pump laser pulse are converted into two photons, with one at the wavelength of the injection seeder. The wavelength of the OPA output is tuned via the wavelength of diode laser. Our laser is tunable, operates near 1651 nm and generates ~4 uJ/pulse at 6 KHz. We vary the emission wavelengths within this band by tuning the diode laser's wavelength. We have used this OPA transmitter to make measurements of CH4 at various pressures in a gas cell and over open outdoor horizontal paths. We have measured the lineshape of methane in a 6 cm long cell at various energy levels with this transmitter, with excellent agreement with the lineshape calculated by HITRAN. We have also measured the absorption lineshape of atmospheric methane in an open 3 km outdoor path. The agreement between the measurements and HITRAN, for 1746 ppb and 760 Torr was quite good. We have also made pulsed two wavelength lidar measurements of methane line absorption in the column to a tower at 1.5 km range. These used on- and off-line wavelengths of 1650.957 nm, and 1651.072 nm, and a 20 cm diameter receiver telescope with an infrared PMT detector. The absorption of the on-line photons was 30%. The methane column absorption was estimated via HITRAN, and was in good agreement with the expected methane absorption for a concentration of 1750 ppm. Finally we have calculated the measurement performance of an airborne methane lidar using this transmitter, as well as the energy and telescope scaling needed for a lidar for space. These results, and more details of our experiments will be described in the presentation.
Comparative study of the photodynamic effect in tumor and nontumor animal cell lines
NASA Astrophysics Data System (ADS)
Stoykova, Elena V.; Alexandrova, R.; Shurulinkov, Stanislav; Sabotinov, O.; Minchev, Georgi
2004-09-01
In this study we evaluate the cytotoxicity of two photosensitisers with absorption peaks in the green and red part of the spectrum on animal cell lines. The cytotoxicity assessment was performed for a tumor cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, a tumor line LSR-SF-SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin and for normal mouse and bovine cell lines. Up to now the effect of the photodynamic therapy on virus-induced cancers has not been clarified. The cells were treated with 5,10,15,20 - tetra (4-sulfophenyl) porphyrin with main absorption peak at 519 nm and a dye activated with a red light. The cells were seeded in 96-well plates at 2 x 104 cells/well. The cells were exposed to irradiation from a pulsed CuBr vapor laser at 510.6 nm and 578.2 nm and exposure rate 50 mW/cm2, from an Ar-ion laser at 514 nm and 1 mW/cm2 and to 655 nm-irradiation from a semiconductor laser at 10 mW/cm2. The biological activity of the tested compounds was measured by the neutral red uptake cytotoxicity test. The light dose-response curves and light exposures that ensure 50% drop in the treated cells viability in comparison with the cells grown in non-modified medium were obtained for each cell line. The cytotoxic effect of both photosensitisers is most distinguished for the tumor line LSCC-SF-Mc29. The 2-4 times higher viability of the normal cell lines in comparison with the tumor lines is established. The bovine cell lines are more vulnerable than the mouse lines.
NASA Astrophysics Data System (ADS)
Ma, Liu Hao; Lau, Lok Yin; Ren, Wei
2017-03-01
We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.
VUV spectroscopic study of the ? state of H2
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Ubachs, W.
2014-04-01
Spectral lines, probing rotational quantum states J‧ = 0, 1, 2 of the inner well vibrations (υ‧ ≤ 8) in the ? state of molecular hydrogen, were recorded in high resolution using a vacuum ultraviolet Fourier transform absorption spectrometer in the wavelength range 73-86 nm. Accurate line positions and predissociation widths are determined from a fit to the absorption spectra. Improved values for the line positions are obtained, while the predissociation widths agree well with previous investigations.
NASA Technical Reports Server (NTRS)
Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.
2007-01-01
A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.
NASA Astrophysics Data System (ADS)
Narusawa, Shin-ya; Aota, Tatusya; Kishimoto, Ryo
2018-04-01
In the case of radio SETI, there are predicted frequencies which extraterrestrial beings select to send messages to other civilizations. Those are called ;magic frequencies. Considering the optical region, terrestrial technologies can not transmit arbitrary wavelengths of high-power optical lasers, easily. In this article, we discuss communications among civilizations with the same level of technology as us to enhance the persuasive power. It might be possible to make a reasonable assumption about the laser wavelengths transmitted by extraterrestrial intelligences to benefit optical SETI (OSETI) methods. Therefore, we propose some ;magic wavelengths; for spectroscopic OSETI observations in this article. From the senders point of view, we argue that the most favorable wavelength used for interstellar communication would be the one of YAG lasers, at 1.064 μm or its Second Harmonic Generation (532.1 nm). On the contrary, there are basic absorption lines in the optical spectra, which are frequently observed by astrophysicists on Earth. It is possible that the extraterrestrials used lasers, which wavelengths are tuned to such absorption lines for sending messages. In that case, there is a possibility that SHG and/or Sum Frequency Generation of YAG and YLF lasers are used. We propose three lines at, 393.8 nm (near the Ca K line), 656.5 nm (near the Hα line) and 589.1 nm (Na D2 line) as the magic wavelengths.
NASA Technical Reports Server (NTRS)
Giver, Lawrence P.; Pilewskie, P.; Gore, Warren J.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.
2001-01-01
Several groups have recently been working to improve the near-infrared spectrum of water vapor on HITRAN. The unit-conversion errors found by Giver, et al have now been corrected on the recently released HITRAN-2000. The most important aspect of this article for atmospheric absorption was increasing all the HITRAN-1996 intensities of the 940 nm band by nearly 15%. New intensity measurements of this band by Brown, et al (submitted to J. Mol. Spec.) have now been included in the latest HITRAN. However, Belmiloud, et al discuss new data in the 633-1175 nm region which they expect will substantially increase the calculated absorption of solar radiation by water vapor. They suggest the 4 bands at 725, 820, 940, and 1130 nm are all stronger than the sum of the line intensities currently on HITRAN. For the 725 and 820 nm bands, their recommended intensity increases are 10% and 15%, about the same as previously noted by Grossmann and Browell and Ponsardin and Browell. Belmiloud, et al only suggest a 6% increase for the 940 nm. band over the corrected HITRAN-1996 intensities, but a large 38% increase for the 1130 nm band. The new data discussed by Belmiloud, et al have now been published in greater detail by Schermaul, et al. The intensity increase for the 1130 nm band discussed by Belmiloud, et al is very substantial; it is important to quickly determine if the HITRAN intensity values are in error by as much as they claim. Only intensity errors for the strong lines could result in the total band intensity being in error by such a large amount. To quickly get a number of spectra of the entire near-infrared region from 650 to 1650 nm, we used the Solar Spectral Flux Radiometer with our 25-meter base path White absorption cell. This moderate resolution spectrometer is a flight instrument that has flown on the Sandia Twin Otter for the ARESE 11 experiment. The measured band profiles were then compared to calculated spectra using the latest HITRAN line intensities, convolved with the instrumental resolution. Our spectra for the 725 and 820 nm bands show somewhat more absorption than the HITRAN simulations, about as expected by Belmiloud, el al. The total absorption for our spectra of the 940 nm band agrees well with the HITRAN simulations; this HITRAN spectral region now has the new measurements of Brown, et al. Our spectra of the 1130 nm band have somewhat more absorption than the HITRAN simulations, but not as much as the 38% intensity increase for this band suggested by Belmiloud, et al. An intensity increase of about 20% on average would be more compatible with our data. Finally, our spectra of the 1370 nm band are fairly well modeled by the HITRAN simulations, despite the known problems of the older HITRAN data in this region.
NASA Astrophysics Data System (ADS)
Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.
2017-11-01
Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.
Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles
NASA Technical Reports Server (NTRS)
Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.
2001-01-01
We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.
Interatomic potentials for Cd, Zn, and Hg from absorption spectra
NASA Astrophysics Data System (ADS)
Su, Ching-Hua; Liao, Pok-Kai; Huang, Yu; Liou, Shian-Shyang; Brebrick, R. F.
1984-07-01
The absorption coefficient has been measured over a 65 nm range in the red wing of the 213.8 nm line for Zn vapor at 1000 °C. It has also been measured in the blue wing and over a 60 nm range in the red wing of the 228.7 nm line for Cd vapor at five temperatures between 642 and 955 °C and over a 75 nm range in the red wing of the 253.7 nm line for Hg vapor at five temperatures between 460 and 860 °C. These data are analyzed in terms of the statistical theory of broadening. Oscillator strengths of 1.42±0.01 and 1.61±0.06 are obtained for, respectively, the Cd line and the Zn line. Pair potentials for both the ground and lowest excited state are also obtained in all three cases. For Cd this is done assuming no functional form and then assuming Lennard-Jones potentials. Both methods agree and give a ground state minimum of -47.5 meV at 0.482 nm separation and an excited state minimum of -1.06 eV at 0.410 nm. A functional form is required for the less extensive Zn data and the Lennard-Jones form leads to a range of possibilities including ground and excited state minima of -56 meV at 0.400 nm and -1.30 eV at 0.330 nm, respectively, which are in fair agreement with the theoretical calculations. For Hg the experiments indicate a single excited state and a ground state with a minimum of -55 meV. Assuming no functional form for the pair potentials, taking the excited state as doubly degenerate, and assuming the transition probability from the ground to excited state is one-sixth of the free atom value gives points along the ground and excited state potentials that join smoothly with other experimental results and agree well with the calculation of Baylis for the ground state.
Solar wind speed and He I (1083 nm) absorption line intensity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakamada, Kazuyuki; Kojima, Masayoshi; Kakinuma, Takakiyo
1991-04-01
Since the pattern of the solar wind was relatively steady during Carrington rotations 1,748 through 1,752 in 1984, an average distribution of the solar windspeed on a so-called source surface can be constructed by superposed epoch analysis of the wind values estimated by the interplanetary scintillation observations. The average distribution of the solar wind speed is then projected onto the photosphere along magnetic field lines computed by a so-called potential model with the line-of-sight components of the photospheric magnetic fields. The solar wind speeds projected onto the photosphere are compared with the intensities of the He I (1,083 nm) absorptionmore » line at the corresponding locations in the chromosphere. The authors found that there is a linear relation between the speeds and the intensities. Since the intensity of the He I (1,083 nm) absorption line is coupled with the temperature of the corona, this relation suggests that some physical mechanism in or above the photosphere accelerates coronal plasmas to the solar wind speed in regions where the temperature is low. Further, it is suggested that the efficiency of the solar wind acceleration decreases as the coronal temperature increases.« less
Temperature dependence of the ozone absorption cross section at the 253.7-nm mercury line
NASA Technical Reports Server (NTRS)
Barnes, J.; Mauersberger, K.
1987-01-01
The temperature dependence of the ozone absorption cross section at 253.7 nm has been measured between 195 and 351 K. The experimental technique employed circumvents the necessity to determine the absolute ozone concentration for each temperature measurement. Below 273 K the cross section increases approximately 0.6 percent, while toward higher temperatures the cross section decreases rapidly. In a comparison, good agreement with other recently made measurements is shown.
NASA Astrophysics Data System (ADS)
Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Mao, J.; Hasselbrack, W.
2009-04-01
Accurate measurements of tropospheric CO2 abundances with global-coverage are needed to quantify processes that regulate CO2 exchange with the land and oceans. The 2007 Decadal Survey for Earth Science by the US National Research Council recommended a space-based CO2 measuring mission called ASCENDS. We have been developing a technique for the remote measurement of tropospheric CO2 concentrations from aircraft and as a candidate for the ASCENDS mission. It uses the 1570-nm CO2 band and a dual channel laser absorption spectrometer (ie DIAL used in altimeter mode). It uses several tunable laser transmitters allowing simultaneous measurement of the absorption from a CO2 absorption line in the 1570 nm band, O2 extinction in the oxygen A-band, and surface height and aerosol backscatter in the same path. It directs the narrow co-aligned laser beams toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. During the measurement, the lasers are stepped in wavelength across the CO2 line and an O2 line (near 765 nm) at a ~ 1 kHz rate. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. We use pulsed laser signals and time gating to isolate the laser echo signals from the surface, and to reject photons scattered from thin clouds and aerosols in the path. Previously we had constructed breadboard versions of our CO2 and O2 sensors, using tunable diode lasers, fiber laser amplifiers and 20 cm diameter telescopes. We have used them to make measurements of gas absorptions over 0.2, 0.4 and 1.3 km long outdoor paths. We also have also calculated several characteristics of the technique for space and have performed an initial space mission accommodation study. During 2008 we reconfigured our lidar for airborne use and made measurements of atmospheric CO2 absorption in the nadir column from the aircraft to the surface during 5 flights. The airborne lidar sweeps the laser wavelength across the CO2 line in either 10 or 20 steps per measurement. The line scan rate is ~ 1 KHz and the laser pulse widths are 1 usec. The time resolved laser backscatter is collected by the telescope and detected by a photomultiplier and recorded by a photon counting timing system. We installed our lidar on the NASA Glenn Lear-25 aircraft in October and first made measurements using the 1571.4 nm CO2 absorption line while flying in northern Ohio. We made laser backscatter and absorption measurements over a variety of land surface types, water surfaces and through thin clouds, broken clouds and to cloud tops. Strong laser signals were observed at altitudes from 2.5 to 11 km on two flights. We completed three additional flights during December 2008 and gathered over 6 hours of atmospheric CO2 column measurements using the 1572.02 and 1572.33 nm CO2 lines. Airborne CO2 line shape and absorption measurements were made while flying at 3-11 km altitudes over southwestern Ohio. Subsequently two flights were made from Ponca City OK, just east of the US Department of Energy's (DOE) ARM site. We made 4 hours of airborne measurements in square patterns around the ARM site at altitudes from 3-8 km. The increased CO2 line absorptions at higher altitudes were evident in all flights. The December flights were also coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft inside the CO2 sounder's flight pattern. These yielded two height resolved profiles of CO2 concentrations from 5 km to the surface, which are being analyzed with radiosonde measurements for comparisons. More details of the flights, measurements and their analysis will be described in the presentation.
NASA Astrophysics Data System (ADS)
Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao
2013-09-01
Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.
Laser induced fluorescence of dental caries
NASA Technical Reports Server (NTRS)
Albin, S.; Byvik, C. E.; Buoncristiani, A. M.
1988-01-01
Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.
Amplification of spontaneous emission on sodium D-lines using nonresonance broadband optical pumping
NASA Astrophysics Data System (ADS)
Petukhov, T. D.; Evtushenko, G. S.; Tel'minov, E. N.
2018-04-01
This work describes an experimental study of obtaining the amplified spontaneous emission (ASE) on sodium D-lines using nonresonance broadband optical pumping. ASE is observed at transitions D2 and D1 line: 589 nm (32 P3/2 - 32 S1/2) and 589.6 nm (32 P1/2 - 32 S1/2). The active medium was pumped by the dye laser with FWHM of 5 nm, maximum radiation in the range 584.5-586.5 nm, and pulse energy above 2 mJ. The working temperature of the active medium was 260 °C, initial pressure of buffer gas-helium was 300 torr (operating pressure - 500 torr). A change in the absorption spectra at D lines at different temperatures of the active medium and buffer gas pressures was observed
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.
2000-01-01
A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.
NASA Astrophysics Data System (ADS)
Tasoglou, A.; Ramachandran, S.; Khlystov, A.; Saha, P.; Grieshop, A. P.; Pandis, S. N.
2015-12-01
Secondary organic aerosol (SOA) is a major contributor to the global aerosol burden. Black carbon (BC) is a significant climate warming agent, while light-absorbing organic carbon (brown carbon, BrC), also impacts the atmospheric radiative balance. The optical properties of ambient aerosols can be affected by biogenic SOA through the lensing effect (coating of BC cores by semivolatile SOA), and by the potential formation of BrC from biogenic sources influenced by anthropogenic sources. To evaluate these effects, measurements of ambient aerosol optical properties and BC concentrations were made in rural Centreville, AL (a remote site with little anthropogenic influence) in summer 2013 and at Duke Forest in Chapel Hill, NC (a site close to high density vehicular traffic and industrial sources), during summer 2015. Photoacoustic extinctiometers (PAX, 405 nm and 532 nm) measured particulate light absorption and a single particle soot photometer (SP2) measured BC mass at both locations. A seven-wavelength Aethalometer and a three-wavelength nephelometer were also deployed at Duke Forest. A third PAX (870 nm) was deployed at Centreville. For absorption and BC measurements, the sample was cycled between a dry line and a dry/thermally-denuded line. Hourly samples were collected with a steam jet aerosol collector (SJAC) for online (2013) and offline (2015) chemical composition analysis. BC concentrations were generally higher at Duke Forest compared to the rural Centreville site. The Aethalometer readings at Duke Forest show greater absorption at the shorter wavelengths (370 nm and 470 nm) than expected from the absorption at 880 nm coupled with an inverse wavelength dependence, suggesting the presence of brown carbon. This presentation will examine the evidence for brown carbon at the two sites, as well as the effect of non-BC coatings on BC light absorption (the lensing effect.)
Diode-Laser Absorption Sensor for Line-of-Sight Gas Temperature Distributions
NASA Astrophysics Data System (ADS)
Sanders, Scott T.; Wang, Jian; Jeffries, Jay B.; Hanson, Ronald K.
2001-08-01
Line-of-sight diode-laser absorption techniques have been extended to enable temperature measurements in nonuniform-property flows. The sensing strategy for such flows exploits the broad wavelength-scanning abilities ( >1.7 nm ~ 30 cm-1 ) of a vertical cavity surface-emitting laser (VCSEL) to interrogate multiple absorption transitions along a single line of sight. To demonstrate the strategy, a VCSEL-based sensor for oxygen gas temperature distributions was developed. A VCSEL beam was directed through paths containing atmospheric-pressure air with known (and relatively simple) temperature distributions in the 200 -700 K range. The VCSEL was scanned over ten transitions in the R branch of the oxygen A band near 760 nm and optionally over six transitions in the P branch. Temperature distribution information can be inferred from these scans because the line strength of each probed transition has a unique temperature dependence; the measurement accuracy and resolution depend on the details of this temperature dependence and on the total number of lines scanned. The performance of the sensing strategy can be optimized and predicted theoretically. Because the sensor exhibits a fast time response ( ~30 ms) and can be adapted to probe a variety of species over a range of temperatures and pressures, it shows promise for industrial application.
A novel multiplex absorption spectrometer for time-resolved studies
NASA Astrophysics Data System (ADS)
Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.
2018-02-01
A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ˜500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.
OH line selection for nadir airglow gravity wave imaging in the auroral zone
NASA Astrophysics Data System (ADS)
Kumer, J. B.; Hecht, J.; Geballe, T. R.; Mergenthaler, J. L.; Rinaldi, M.; Claflin, E. S.; Swenson, G. R.
2003-04-01
For satellite borne nadir OH airglow wave imaging in the auroral zone the observed lines must be strong enough to give good signal to noise, coincident with strong atmospheric absorption lines to suppress structure in the image due to reflection of airglow and moonlight from tops of clouds and from high altitude terrain, and in a spectral region coincident with relatively weak aurora that its contribution to the observed structure can be corrected by data obtained in a guard band containing relatively strong auroral emission, and relatively weak, or no airglow. OH airglow spectra observed from high altitude, in our case Mauna Kea by the UKIRT CGS4 grating instrument, (see website http://www.jach.hawaii.edu/JACpublic/UKIRT/instruments/cgs4/maunakea/ohlines.html) provide an opportunity to identify lines that ARE NOT observed at that high altitude. These are most absorbed in the earths atmosphere. These occur in the regions near 1400 and 1900 nm of strong water vapor absorption. Our preliminary determination is that the 7-5 p1(2) line at 1899.01 nm and the p1(3) at 1911.41 nm are the best candidates. These are missing in the observed spectra, and this is confirmed by running FASCODE transmission calculations from top of Mauna Kea to space at .01 cm-1 resolution. Similar calculations for conditions at which the high resolution Kitt peak atlas data were taken confirmed the calculations. OH line positions and relative strengths within the band were derived from the HITRAN data base, and transmitted lines in the 7-5 band were used to determine the strength of these lines. Each are the order 10 kR, and are about four to six times brighter than atmospheric absorbed candidate lines in the 1400 nm region. Also, the aurora in the 1900nm region is considerably weaker than in the 1400nm region. In fact the region 1351 to 1358 contains relatively strong aurora, and practically no airglow, and is candidate for an instrumental auroral guard band. The nadir imaging instrument which utilizes a radiatively cooled near infrared two dimensional array detector will be described.
Barium Nitrate Raman Laser Development for Remote Sensing of Ozone
NASA Technical Reports Server (NTRS)
McCray, Christopher L.; Chyba, Thomas H.
1997-01-01
In order to understand the impact of anthropogenic emissions upon the earth's environment, scientists require remote sensing techniques which are capable of providing range-resolved measurements of clouds, aerosols, and the concentrations of several chemical constituents of the atmosphere. The differential absorption lidar (DIAL) technique is a very promising method to measure concentration profiles of chemical species such as ozone and water vapor as well as detect the presence of aerosols and clouds. If a suitable DIAL system could be deployed in space, it would provide a global data set of tremendous value. Such systems, however, need to be compact, reliable, and very efficient. In order to measure atmospheric gases with the DIAL technique, the laser transmitter must generate suitable on-line and off-line wavelength pulse pairs. The on-line pulse is resonant with an absorption feature of the species of interest. The off-line pulse is tuned so that it encounters significantly less absorption. The relative backscattered power for the two pulses enables the range-resolved concentration to be computed. Preliminary experiments at NASA LaRC suggested that the solid state Raman shifting material, Ba(NO3)2, could be utilized to produce these pulse pairs. A Raman oscillator pumped at 532 nm by a frequency-doubled Nd:YAG laser can create first Stokes laser output at 563 nm and second Stokes output at 599 nm. With frequency doublers, UV output at 281 nm and 299 nm can be subsequently obtained. This all-solid state system has the potential to be very efficient, compact, and reliable. Raman shifting in Ba(NO3)2, has previously been performed in both the visible and the infrared. The first Raman oscillator in the visible region was investigated in 1986 with the configurations of plane-plane and unstable telescopic resonators. However, most of the recent research has focused on the development of infrared sources for eye-safe lidar applications.
Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo
2017-08-01
In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.
An Erupting Active Region Filament: Three-Dimensional Trajectory and Hydrogen Column Density
NASA Astrophysics Data System (ADS)
Penn, M. J.
2000-05-01
From 15:33-16:02 UT on 13 June 1998 observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SoHO/CDS instruments as part of the SoHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region from 12 through 14 June 1998, that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy sho the He I 1083 nm absorption line blue-shifted to velocities of between 200 and 300 km s-1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s-1 along a path inclined roughly 49 degrees to the solar surface and rises to a height of just over 1.5 solar radii. The KPVT data show no Stokes V profiles in the Doppler shifted He I 1083 nm absorption to a limit of roughly 3 x 10-3 times the continuum intensity. The SoHO/CDS data scanned the center of the KPVT FOV using seven EUV lines; Doppler shifted filament emission is seen in six lines from representing temperatures from about 2 x 104K through 1 x 106K. Bound-free continuum absorption from H I, free from confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density ξ HI = 1.7 x 1018cm-2. Spatial maps show that this filament absorption is more confined than the regions which show emission. This work was made possible by 1997 and 1999 SoHO Guest Investigator awards NASA #W-19,142 Basic and NASA NAG5-8004.
Castilho, Ivan N B; Welz, Bernhard; Vale, Maria Goreti R; de Andrade, Jailson B; Smichowski, Patricia; Shaltout, Abdallah A; Colares, Lígia; Carasek, Eduardo
2012-01-15
Three different procedures for sample preparation have been compared for the determination of Cu, Mo and Sb in airborne particulate matter (APM) collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). Direct solid sample analysis of the ground filters was compared with microwave-assisted acid leaching with aqua regia and ultrasound-assisted extraction also using aqua regia. The main absorption line at 324.754 nm or the secondary line at 216.509 nm was used for the determination of Cu, depending on the analyte content in the samples. The primary absorption line at 313.259 nm was used for Mo and the secondary line at 212.739 nm for Sb determination. The limits of detection (LOD, 3σ) found for the direct solid sampling method, based on ten atomizations of an unused filter were 15 μg g(-1) for all three analytes, corresponding to 40 ng m(-3) for a typical air volume of 1,440 m(3) collected over a period of 24h. The LOD for the other two methods were less than a factor of two inferior, but the total time required for an analysis was significantly longer. The repeatability of the measurements was between 3 and 9% (n=5), and the results obtained with the three methods did not show any significant difference. The ratio between the three analytes on the filters from areas of intense traffic was found to be around Cu:Mo:Sb≈4:1:1.4, which suggests that the source of all three elements is brake linings, i.e., related to automobile traffic. When the ratio deviated significantly from the above values, the source of contamination was assumed to be of different origin. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Halpern, Joshua B.; Barts, Samuel A.
1989-01-01
The absorption, emission, and photodissociation yield spectra of C2N2 were measured in the 220 and 210 nm region near the 4(0)1 and 1(0)1 4(0)1 bands of the A 1 sigma + from the X 1 sigma + system. The emission spectrum showed very few lines which appeared in the absorption spectrum. Moreover, the emission had 660 ns lifetime and, at 210 nm a very large electronic emission quenching rate. Laser induced fluorescence was used to measure the relative yield of CN radicals as a function of photolysis wavelength. This spectrum seemed to follow the absorption spectrum below the dissociation threshold. Energy in the CN fragments appeared to be statistically distributed.
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Martyshkin, D. V.; Fedorov, V. V.
2010-09-01
The temperature dependences and mechanisms of broadening of zero-phonon lines of F+3 (488 nm) and N1 (523 nm) colour centres in LiF crystals are investigated. The results obtained make it possible to determine the quadratic electronic—vibrational coupling constant for N1 colour centres. The experimental data on the spectral hole burning in zero-phonon lines of F+3 and N1 colour centres indicate that the latter are positively charged.
GOMOS serendipitous data products
NASA Astrophysics Data System (ADS)
Fussen, D.; Gomos Team
The GOMOS experiment on board ENVISAT has been measuring more than 200 000 star occultations through the Earth's limb since March 2002. With 4 spectrometers, the wavelength coverage of 245 nm to 942 nm allows to monitor ozone, H2O, NO2, NO3, BrO, OClO, air, aerosols, O2 and the temperature profiles. During the commissioning phase, GOMOS turned out to be a successful remote sounder of the Earth's atmosphere between 10 and 120 km. On the other hand, an intensive statistical processing of a large data set (about 5000 occultations) has produced high quality transmittance spectra. A preliminary investigation allowed the discovery of extremely interesting spectral signatures in the GOMOS spectra. Keeping in mind that all possible instrument artefacts should be carefully checked, we nevertheless obtained the following results that may become unexpected GOMOS data products in a near future: the excited oxygen "green line" (O(1S)->O(3P)) at 557.7 nm has been clearly identified and will be inverted the D2 sodium absorption at 589.1 nm is easily recognized in the mesosphere. The inversion of the slant path optical thickness (about 0.0025) has produced the first GOMOS Na vertical profile, in close agreement with the local climatological lidar data of Fort Collins a few possible emission or absorption lines are under investigation and need more statistical tests. However a spectral signature at 280 nm and h=˜ 103 km might probably be attributed to a mesospheric Mg+ layer a group of not yet identified stratospheric emission lines between 390 and 400 nm has been detected. Interestingly, the same lines seem to have also been observed by the SALOMON balloon borne experiment operated in night time conditions.
Rugged TDLAS system for High Energy Laser atmospheric propagation characterization
NASA Astrophysics Data System (ADS)
Perram, Glen; Rice, Christopher
2008-10-01
An active remote sensing instrument for the characterization of atmospheric absorption, scattering, and scintillation at several key high energy laser wavelengths is in development. The instrument is based on narrow band tunable diode lasers fiber coupled to a 12'' Ritchey-Chretien transmit telescope and a second receive telescope with visible or near infrared imager. For example, tunable diode lasers have been used to obtain absorption spectra in the laboratory for the Cs D2 lines near 852 nm and the oxygen X-b lines near 760 nm, key to the Diode Pumped Alkali Laser (DPAL) concept. Absorbencies of less than 0.5% are observable. Applications will be assessed including effects to HEL atmospheric propagation from molecular and aerosol absorption and scattering, Cn2 estimation from atmospheric turbulence, hazardous chemical emission detection, and laser communication interception from side scattering. The system will soon be deployed to a military laser test range to characterize path lengths of greater than 1 km.
Single diode laser sensor for wide-range H2O temperature measurements.
Gharavi, Mohammadreza; Buckley, Steven G
2004-04-01
A single diode laser absorption sensor (near 1477 nm) useful for simultaneous temperature and H2O concentration measurements is developed. The diode laser tunes approximately 1.2 cm(-1) over three H2O absorption transitions in each measurement. The line strengths of the transitions are measured over a temperature range from 468 to 977 K, based on high-resolution absorption measurements in a heated static cell. The results indicate that the selected transitions are suitable for sensitive temperature measurements in atmospheric pressure combustion systems using absorption line ratios. Comparing the results with HITRAN 96 data, it appears that these transitions will be sensitive over a wide range of temperatures (450-2000 K), suggesting applicability for combustion measurements.
Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling
NASA Technical Reports Server (NTRS)
Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.
2011-01-01
Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayramian, A.J.; Marshall, C.D.; Schaffers, K.I.
Ytterbium-doped Sr{sub 5}(PO{sub 4}){sub 3}F (S-FAP) has been shown to be a useful material for diode pumping, since it displays high gain, low loss, and a long radiative lifetime. One of the issues with S-FAP is that it has a relatively narrow absorption bandwidth ({approximately}5 nm) at 900 nm, the diode-pumping wavelength, while the diode`s output bandwidth can be large ({approximately}10 nm). By changing the host slightly, the absorption feature can be broadened to better match the pump bandwidth. Four mixed crystal boules of Yb{sup 3+}:Sr{sub 5{minus}x}Ba{sub x}(PO{sub 4}){sub 3}F were grown by the Czochralski method with x = 0.25,more » 0.5, 1, and 2. The bandwidth of the 900-nm absorption feature was found to grow with increasing barium concentration from 4.7 nm to a maximum of 15.9 nm. Emission spectra showed a similar bandwidth increase with barium content from 4.9 nm to a maximum of 10 nm. Emission cross sections for these materials were deduced by the methods of reciprocity, the Einstein method, and small-signal gain. The absorption feature`s homogeneity was probed using a tunable pump source which qualitatively showed that the barium-broadened lines were at least partly inhomogeneous. Each of these materials lased with a variety of output couplers. This family of materials was found to provide suitable laser hosts where a broader absorption and/or emission bandwidth is desired.« less
Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+)
NASA Astrophysics Data System (ADS)
Daniel, D. Joseph; Madhusoodanan, U.; Nithya, R.; Ramasamy, P.
2014-03-01
Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Effects induced by irradiation on europium doped LiBaF3 (lithium barium fluoride) single crystals were monitored by optical absorption, photoluminescence and thermoluminescence studies. The absorption bands of Eu2+ ions with peaks at 240, 290 and 320 nm were observed in the LiBaF3:Eu2+ crystal. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the radiation dose. The additional absorption peak at around 570 nm was observed in irradiated crystal due to the ionization process Eu2+(-)e-→Eu3+. Photoluminescence of Eu2+ doped LiBaF3 single crystal shows sharp line peaked at ~359 nm and a broad band extending between 370 and 450 nm which shows a considerable reduction in Eu2+ PL intensity after gamma irradiation. Irradiated LiBaF3:Eu2+ sample has revealed three intense TL glow peaks at 128 °C (peak-1), 281 °C (peak-2) and 407 °C (peak-3). Activation energy (E) and frequency factor (s) of the latter two peaks were determined by various heating rate (VHR) method and graphical method.
High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui
2017-05-01
This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.
NASA Technical Reports Server (NTRS)
Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark
2016-01-01
Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.
NASA Astrophysics Data System (ADS)
Robinson, Iain; Jack, James W.; Rae, Cameron F.; Moncrieff, John B.
2015-10-01
We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be set up within a few hours in the field. The laser source is a pulsed optical parametric oscillator (OPO) which outputs light at a wavelength tunable near 1.6 μm. This wavelength region, which is also used in telecommunications devices, provides access to absorption lines in both carbon dioxide at 1573 nm and methane at 1646 nm. To achieve the critical temperature stability required for a laserbased field instrument the four-mirror OPO cavity is machined from a single aluminium block. A piezoactuator adjusts the cavity length to achieve resonance and this is maintained over temperature changes through the use of a feedback loop. The laser output is continuously monitored with pyroelectric detectors and a custom-built wavemeter. The OPO is injection seeded by a temperature-stabilized distributed feedback laser diode (DFB-LD) with a wavelength locked to the absorption line centre (on-line) using a gas cell containing pure carbon dioxide. A second DFB-LD is tuned to a nearby wavelength (off-line) to provide the reference required for differential absorption measurements. A similar system has been designed and built to provide the injection seeding wavelengths for methane. The system integrates the DFB-LDs, drivers, locking electronics, gas cell and balanced photodetectors. The results of test measurements of carbon dioxide are presented and the development of the system is discussed, including the adaptation required for the measurement of methane.
The imaging study of a novel photopolymer used in I-line negative-tone resist
NASA Astrophysics Data System (ADS)
Liu, Lu; Zou, Yingquan
2010-04-01
By copolymerization of 2-(2-diazo-3-oxo-3-(4-dimethylaminophenyl)propionyloxy)ethyl methacrylate (DODMAPPEA), methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA), a photoactive polymer for negative-tone resist is synthesized and its photolithographic properties are investigated. Since the maximum-absorption wavelength of the photoactive monomer DODMAPPEA is 356nm and it still has a comparatively large absorption at 365nm (I-line), the copolymer poly(DODMAPPEA -co-MMA-co-HEMA) is anticipated to be used in I-line single component negative-tone resist. Upon irradiaton, the diazoketo groups which are in the side chains of the copolymers undergo the wolff rearrangement, affording ketenes that react with hydroxyl to provide cross-linking photoproducts and a negative image is obtained. Besides that, cross-linking agent hexamethoxymethylmelamine (HMMM) is added to the resist system and high sensitivity is expected. This kind of copolymer has great value in I-line non-CARs, TFT-LCD and IC discrete devices processing and the anti-dry etching ability is enhanced by the introduction of the benzene ring. In addition, this copolymer still has potential value in Ultra-violate lithographic plate.
Headridge, J B; Smith, D R
1971-03-01
An induction furnace coupled to a Unicam SP90 atomic-absorption spectrophotometer is described for the determination of traces of volatile elements in solutions and volatile matrices. The apparatus has been used to obtain calibration graphs for 1-20 and 50-750 ng of cadmium in microl-volumes of solution, the 228.8 and 326.2 nm resonance lines respectively being used, and to determine cadmium in 5-mg samples of zinc-base metals within the concentration range 5-400 microg g by using the less sensitive 326-2-nm line. A furnace temperature of 1,350 degrees was used. Data on accuracy and precision are presented. The apparatus could readily be used to determine trace elements in volatile materials at concentrations of 10-1000 ng/g .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greb, Arthur, E-mail: ag941@york.ac.uk; Niemi, Kari; O'Connell, Deborah
2014-12-08
A diagnostic method for the simultaneous determination of atomic oxygen densities and mean electron energies is demonstrated for an atmospheric pressure radio-frequency plasma jet. The proposed method is based on phase resolved optical emission measurements of the direct and dissociative electron-impact excitation dynamics of three distinct emission lines, namely, Ar 750.4 nm, O 777.4 nm, and O 844.6 nm. The energy dependence of these lines serves as basis for analysis by taking into account two line ratios. In this frame, the method is highly adaptable with regard to pressure and gas composition. Results are benchmarked against independent numerical simulations and two-photon absorption laser-inducedmore » fluorescence experiments.« less
Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.
2004-01-01
We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well
NASA Astrophysics Data System (ADS)
Seeger, Tassia S.; Machado, Eduarda Q.; Flores, Erico M. M.; Mello, Paola A.; Duarte, Fabio A.
2018-03-01
In this study, Na and K were determined in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry (DS-GF AAS), with the use of a Zeeman-effect background correction system with variable magnetic field. The analysis was performed in low and high sensitivity conditions. Sodium determination was performed in two low-sensitivity conditions: 1) main absorption line (589.0 nm), gas stop flow during the atomization step and 3-field dynamic mode (0.6-0.8 T); and 2) secondary absorption line (330.3 nm), gas stop flow during the atomization and 2-field mode (0.8 T). In K determination, some parameters, such as high-sensitivity mode, main absorption line (766.5 nm), gas stop flow during the atomization and 2-field mode (0.8 T), were used. Suitability of chemical modifiers, such as Pd and W-Ir was also evaluated. The heating program for Na and K was based on the pyrolysis and atomization curves. Calibration was performed by aqueous standards. Accuracy was evaluated by the analysis of Green Petroleum Coke (SRM NIST 2718) and Trace Elements in Fuel Oil (SRM NIST 1634c). Recovery tests were also performed and results were compared with those obtained by GF AAS after crude oil digestion by microwave-assisted digestion. The characteristic mass of Na was 17.1 pg and 0.46 ng in conditions 1 and 2, respectively, while the one of K was 1.4 pg. Limits of detection and quantification by DS-GF AAS were 30 and 40 ng g-1 for Na and 3.2 and 4.2 ng g-1 for K, respectively. Sodium and K were determined in three crude oil samples with API density ranging from 20.9 to 28.0. Sodium and K concentration ranged from 1.5 to 73 μg g-1 and from 23 to 522 ng g-1, respectively.
NASA Astrophysics Data System (ADS)
Cole, Ryan Kenneth; Schroeder, Paul James; Diego Draper, Anthony; Rieker, Gregory Brian
2018-06-01
Modelling absorption spectra in high pressure, high temperature environments is complicated by the increased relevance of higher order collisional phenomena (e.g. line mixing, collision-induced absorption, finite duration of collisions) that alter the spectral lineshape. Accurate reference spectroscopy in these conditions is of interest for mineralogy and radiative transfer studies of Venus as well as other dense planetary atmospheres. We present a new, high pressure, high temperature absorption spectroscopy facility at the University of Colorado Boulder. This facility employs a dual frequency comb absorption spectrometer to record broadband (500nm), high resolution (~0.002nm) spectra in conditions comparable to the Venus surface (730K, 90bar). Measurements of the near-infrared spectrum of carbon dioxide at high pressure and temperature will be compared to modeled spectra extrapolated from the HITRAN 2016 database as well as other published models that include additional collisional physics. This comparison gives insight into the effectiveness of existing absorption databases for modeling the lower Venus atmosphere as well as the need to expand absorption models to suit these conditions.
dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut
2009-11-11
A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.
Svensson, Tomas; Lewander, Märta; Svanberg, Sune
2010-08-02
We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.
NASA Astrophysics Data System (ADS)
Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong
2016-07-01
Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.
Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki
2017-01-01
We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skelly, E.M.
A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine,more » blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.« less
High resolution laser patterning of ITO on PET substrate
NASA Astrophysics Data System (ADS)
Zhang, Tao; Liu, Di; Park, Hee K.; Yu, Dong X.; Hwang, David J.
2013-03-01
Cost-effective laser patterning of indium tin oxide (ITO) thin film coated on flexible polyethylene terephthalate (PET) film substrate for touch panel was studied. The target scribing width was set to the order of 10 μm in order to examine issues involved with higher feature resolution. Picosecond-pulsed laser and Q-switched nanosecond-pulsed laser at the wavelength of 532nm were applied for the comparison of laser patterning in picosecond and nanosecond regimes. While relatively superior scribing quality was achieved by picosecond laser, 532 nm wavelength showed a limitation due to weaker absorption in ITO film. In order to seek for cost-effective solution for high resolution ITO scribing, nanosecond laser pulses were applied and performance of 532nm and 1064nm wavelengths were compared. 1064nm wavelength shows relatively better scribing quality due to the higher absorption ratio in ITO film, yet at noticeable substrate damage. Through single pulse based scribing experiments, we inspected that reduced pulse overlapping is preferred in order to minimize the substrate damage during line patterning.
NASA Astrophysics Data System (ADS)
McCarren, Dustin; Vandervort, Robert; Carr, Jerry, Jr.; Scime, Earl
2012-10-01
In this work, we compare two spectroscopic methods for measuring the velocity distribution functions (VDFs) of argon ions and neutrals in a helicon plasma: laser induced florescence (LIF) and continuous wave cavity ring down spectroscopy (CW-CRDS). An established and powerful technique, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. In most cases, this requirement limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. However, CRDS is a line integrated technique that lacks the spatial resolution of LIF. CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a CW diode laser that has a sufficiently narrow linewidth, the Doppler broadened absorption line, i.e., the VDFs, can be measured. We present CW-CRDS and LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II and the 667.9125 nm (in vacuum) line of Ar I.
Communication: Saturated CO2 absorption near 1.6 μm for kilohertz-accuracy transition frequencies
NASA Astrophysics Data System (ADS)
Burkart, Johannes; Sala, Tommaso; Romanini, Daniele; Marangoni, Marco; Campargue, Alain; Kassi, Samir
2015-05-01
Doppler-free saturated-absorption Lamb dips were measured on weak rovibrational lines of 12C16O2 between 6189 and 6215 cm-1 at sub-Pa pressures using optical feedback frequency stabilized cavity ring-down spectroscopy. By referencing the laser source to an optical frequency comb, transition frequencies for ten lines of the 30013←00001 band P-branch and two lines of the 31113←01101 hot band R-branch were determined with an accuracy of a few parts in 1011. Involving rotational quantum numbers up to 42, the data were used for improving the upper level spectroscopic constants. These results provide a highly accurate reference frequency grid over the spectral interval from 1599 to 1616 nm.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
NASA Technical Reports Server (NTRS)
Meyer, Scott Andrew
1995-01-01
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.
NASA Technical Reports Server (NTRS)
Theisen, Arnold F.
2000-01-01
Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A passive instrument designed to monitor R/FR chlorophyll fluorescence (i.e. vegetation stress) from orbit could be built today.
NASA Astrophysics Data System (ADS)
de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira
2015-12-01
The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.
Edge dislocations as sinks for sub-nanometric radiation induced defects in α-iron
NASA Astrophysics Data System (ADS)
Anento, N.; Malerba, L.; Serra, A.
2018-01-01
The role of edge dislocations as sinks for small radiation induced defects in bcc-Fe is investigated by means of atomistic computer simulation. In this work we investigate by Molecular Statics (T = 0K) the interaction between an immobile dislocation line and defect clusters of small sizes invisible experimentally. The study highlights in particular the anisotropy of the interaction and distinguishes between absorbed and trapped defects. When the considered defect intersects the dislocation glide plane and the distance from the dislocation line to the defect is on the range between 2 nm and 4 nm, either total or partial absorption of the cluster takes place leading to the formation of jogs. Residual defects produced during partial absorption pin the dislocation. By the calculation of stress-strain curves we have assessed the strength of those residues as obstacles for the motion of the dislocation, which is reflected on the unpinning stresses and the binding energies obtained. When the defect is outside this range, but on planes close to the dislocation glide plane, instead of absorption we have observed a capture process. Finally, with a view to introducing explicitly in kinetic Monte Carlo models a sink with the shape of a dislocation line, we have summarized our findings on a table presenting the most relevant parameters, which define the interaction of the dislocation with the defects considered.
Temperature influence on diode pumped Yb:GGAG laser
NASA Astrophysics Data System (ADS)
Veselský, Karel; Boháček, Pavel; Šulc, Jan; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin
2017-05-01
We present temperature influence (in range from 78 up to 400,K) on spectroscopic properties and laser performance of new Yb-doped mixed garnet Gd3GaxAl5-xO12 (Yb:GGAG). The sample was 2.68 mm thick plane-parallel face-polished Yb:GGAG single-crystal plate which was AR coated for pump (930 nm) and generated (1030 nm) laser radiation wavelength. The composition of sample was Gd3.098Yb0:0897Ga2:41Al2.41O12 (3 at % Yb/Gd). The Yb:GGAG crystal was mounted in temperature controlled copper holder of the liquid nitrogen cryostat. The 138 mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (T > 90 % @ 930 nm, HR @ 1030 nm) placed inside cryostat, and a curved output coupler (r = 150 mm, R = 94.5 % @ 1030 nm) placed outside cryostat. For longitudinal pumping a fiber coupled laser diode was used. The diode was operating in the pulse regime (5 ms pulse length, 20 Hz repetition rate) at wavelength 928.5 nm. The absorption spectrum was measured for the temperatures from 78 to 400 K, and absorption lines narrowing was observed with temperature decrease. Zero-phonon line at 970 nm has width 1 nm (FWHM) at 100 K. The fluorescence intensity decay time was measured and it increased linearly with temperature from 864 μs @ 78 K to 881 μs @ 300 K. The temperature of active medium has strong influence mainly on laser threshold which was 5 times lower at 100 K than at 300 K, and on slope efficiency which was 3 times higher at 100 K than at 300 K.
New stable tunable solid-state dye laser in the red
NASA Astrophysics Data System (ADS)
Gvishi, Raz; Reisfeld, Renata; Burshtein, Zeev; Miron, Eli
1993-08-01
A red perylene derivative was impregnated into a composite silica-gel glass, and characterized as a dye laser material. The absorption spectrum in the range 480 - 600 nm belongs to the S0 - S1 electronic transition, with a structure reflecting the perylene skeletal vibrations, of typical energy 1100 - 1200 cm-1. An additional peak between 400 and 460 nm belongs to the S0 - S2 transition. The fluorescence exhibits a mirror image relative to the S0 - S1 absorption, with a Stokes shift of about 40 nm for the 0 - 0 transition. Laser tunability was obtained in the range 605 - 630 nm using a frequency-doubled Nd:YAG laser for pumping ((lambda) equals 532 nm). This wavelength range is important for medical applications, such as photodynamic therapy of some cancer tumors. Maximum laser efficiency of approximately 2.5% was obtained at 617 nm. Maximum output was approximately 0.36 mJ/pulse at a repetition rate of 10 Hz. Minimum laser threshold obtained was 0.45 mJ/pulse. The medium losses are attributed to an excited-state singlet-singlet absorption, with an upper limit cross-section of approximately 2.5 X 10-16 cm2. The laser output was stable over more than approximately 500,000 pulses, under excitation with the green line of a copper vapor laser (510 nm), of energy density approximately 40 mJ/cm2 per pulse. Good prospects exist for a considerable enhancement in laser output efficiency.
Cummings, Beth; Hamilton, Michelle L.; Ciaffoni, Luca; Pragnell, Timothy R.; Peverall, Rob; Ritchie, Grant A. D.; Hancock, Gus
2011-01-01
The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations. PMID:21512147
Cummings, Beth; Hamilton, Michelle L; Ciaffoni, Luca; Pragnell, Timothy R; Peverall, Rob; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A
2011-07-01
The use of sidestream analyzers for respired gas analysis is almost universal. However, they are not ideal for measurements of respiratory gas exchange because the analyses are both temporally dissociated from measurements of respiratory flow and also not generally conducted under the same physical conditions. This study explores the possibility of constructing an all optical, fast response, in-line breath analyzer for oxygen and carbon dioxide. Using direct absorption spectroscopy with a diode laser operating at a wavelength near 2 μm, measurements of expired carbon dioxide concentrations were obtained with an absolute limit of detection of 0.04% at a time resolution of 10 ms. Simultaneously, cavity enhanced absorption spectroscopy at a wavelength near 760 nm was employed to obtain measurements of expired oxygen concentrations with an absolute limit of detection of 0.26% at a time resolution of 10 ms. We conclude that laser-based absorption spectroscopy is a promising technology for in-line analysis of respired carbon dioxide and oxygen concentrations.
Er-doped sesquioxides for 1.5-micron lasers - spectroscopic comparisons
NASA Astrophysics Data System (ADS)
Merkle, Larry D.; Ter-Gabrielyan, Nikolay
2013-05-01
Due to the favorable thermal properties of sesquioxides as hosts for rare earth laser ions, we have recently studied the spectroscopy of Er:Lu2O3 in the 1400-1700 nm wavelength range, and here report its comparison with our earlier results on Er:Y2O3 and Er:Sc2O3. These studies include absorption and fluorescence spectra, fluorescence lifetimes, and inference of absorption and stimulated emission cross sections, all as a function of temperature. At room temperature, optical absorption limits practical laser operation to wavelengths longer than about 1620 nm. In that spectral range, the strongest stimulated emission peak is that at 1665 nm in Er:Sc2O3, with an effective cross section considerably larger than those of Er:Y2O3 and Er:Lu2O3. At 77K, the absorption is weak enough for efficient laser operation at considerably shorter wavelengths, where there are peaks with much larger stimulated emission cross sections. The three hosts all have peaks near 1575-1580 nm with comparably strong cross sections. As we have reported earlier, it is possible to lase even shorter wavelengths efficiently at this temperature, in particular the line at 1558 nm in Er:Sc2O3. Our new spectroscopic studies of Er:Lu2O3 indicate that its corresponding peak, like that of Er:Sc2O3, has a less favorable ratio of stimulated emission to absorption cross sections. Reasons for the differences will be discussed. We conclude that for most operating scenarios, Er:Sc2O3 is the most promising of the Er-doped sesquioxides studied for laser operation around 1.5-1.6 microns.
Light-induced Changes in Allophycocyanin 1
Ohad, Itzhak; Schneider, Hans-Jörg A. W.; Gendel, Steven; Bogorad, Lawrence
1980-01-01
Several lines of evidence indicate that allophycocyanin is the previously unidentified “phycochrome” observed in extracts of blue-green algae. Fractions containing phycoerythrin, phycocyanin, and allophycocyanin and exhibiting light-induced absorbance changes were prepared from extracts of Nostoc muscorum and Fremyella diplosiphon by isoelectric focusing. Illumination of such fractions with red light (650 nanometers) causes a reduction in absorbance at 620 nm (≃1 to 2%) and an increase at 560 nm. The effect, (previously observed by Björn and Björn [1976 Physiol Plant 36: 297-304]) is reversible, upon illumination with green light (550 nm). Selective immunoprecipitation of the phycobiliproteins indicates that allophycocyanin is the photoresponsive pigment. At pH 4.0 to 4.2, allophycocyanin purified from the same algae or from Phormidium luridum exhibits a light-induced absorbance change at 620 nm, which coincides with its absorption maximum at this pH; the fluorescence emission of allophycocyanin under these conditions is at 647 nm and its S20,w is 2.28, compatible with an α1β1 polypeptide composition. At neutral pH (5.8 to 7.0), allophycocyanin aggregates have a sedimentation coefficient of 4.8 (≃α3β3) and an additional absorption peak at 640 nm appears while that at 620 nm remains unaffected. The fluorescence emission maximum of the larger aggregate is at 667 nm and the light-induced change in its absorption is shifted to 650 nm. The effect of pH changes in the range 4.0 to 7.0 on the spectral and aggregation properties of allophycocyanin is completely reversible. Changes in pH which affect allophycocyanin aggregation have parallel effects on absorption and fluorescence maxima as well as on the light-induced absorbance changes of the biliprotein. No evidence is provided to resolve whether this phycochrome plays the role of an adaptochrome. PMID:16661143
Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space
NASA Technical Reports Server (NTRS)
Abshire, James B.; Riris, Haris; Kawa, S. Randy; Sun, Xiaoli; Chen, Jeffrey; Stephen, Mark A.; Collatz, G. James; Mao, Jianping; Allan, Graham
2007-01-01
Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band. This band is free from interference from other gases and has temperature insensitive absorption lines. During the measurement the lasers are tuned on- and off- a selected CO2 line near 1572 nm and a selected O2 line near 768 nm in the Oxygen A band at kHz rates. The lasers use tunable diode seed lasers followed by fiber amplifiers, and have spectral widths much narrower than the gas absorption lines. The receiver uses a 1-m diameter telescope and photon counting detectors and measures the background light and energies of the laser echoes from the surface. The extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on and offline surface echo via the differential optical absorption technique. Our technique rapidly alternates between several on-line wavelengths set to the sides of the selected gas absorption lines. It exploits the atmospheric pressure broadening of the lines to weight the measurement sensitivity to the atmospheric column below 5 km. This maximizes sensitivity to CO2 in the boundary layer, where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column will use an identical approach with an O2 line. Thee laser frequencies are tunable and have narrow (MHz) line widths. In combination with sensitive photon counting detectors these enables much higher spectral resolution and precision than is possible with passive spectrometer. 1aser backscatter profiles are also measured, which permits identifying measurements made to cloud tops and through aerosol layers. The measurement approach using lasers in common-nadir-zenith path allows retrieving CO2 column mixing ratios in the lower troposphere irrespective of sun angle. Pulsed laser signals, time gated receiver and a narrow receiver field-of-view are used to isolate the surface laser echo signals and to exclude photons scattered from clouds and aerosols. Nonetheless, the optical absorption change due to a change of a few ppO2 is small, <1 % which makes achieving the needed measurement sensitivities and stabilities quite challenging. Measurement SNRs and stabilities of >600:1 are needed to estimate CO2 mixing ratio at the 1-2 ppm level. We have calculated characteristics of the technique and have demonstrated aspects of the laser, detector and receiver approaches in th e laboratory We have also measured O2 in an absorption cell, and made C02 measurements over a 400 m long (one way) horizontal path using a sensor breadboard. We will describe these and more details of our approach in the paper.
NASA Astrophysics Data System (ADS)
Liu, J. T. C.; Jeffries, J. B.; Hanson, R. K.
Multiplexed fiber-coupled diode lasers are used to probe second-harmonic line shapes of two near-infrared water absorption features, at 1343 nm and 1392 nm, in order to infer temperatures in gases containing water vapor, such as combustion flows. Wavelength modulation is performed at 170 kHz, and is superimposed on 1-kHz wavelength scans in order to recover full second-harmonic line shapes. Digital waveform generation and lock-in detection are performed using a data-acquisition card installed in a PC. An optimal selection of the modulation indices is shown to greatly simplify data interpretation over extended temperature ranges and to minimize the need for calibration when performing 2 f ratio thermometry. A theoretical discussion of this optimized strategy for 2 f ratio thermometry, as well as results from experimental validations in a heated cell, at pressures up to atmospheric, are presented in order to illustrate the utility of this technique for rapid temperature measurements in gaseous flow fields.
Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G
2017-06-15
This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-01-01
Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates. PMID:24959110
NASA Astrophysics Data System (ADS)
Tanahashi, Ichiro; Harada, Yoshiyuki
2014-06-01
Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates.
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.
2009-01-01
We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. This spring we improved the aircraft's nadir window. During July and August 2009 we made 9 additional 2 hour long flights and measured the atmospheric C02 absorption and line shapes using the 1572.33 nm C02 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and Virginia. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. The Oklahoma and east coast t1ights were coordinated with a LaRC/ITT C02 lidar on the LaRC UC-12 aircraft, a LaRC insitu C02 sensor, and the Oklahoma flights also included a JPL C02 lidar on a Twin Otter aircraft. Ed Browell and Gary Spiers led the LaRC and JPL teams. More details of the t1ights, measurements and analysis will be described in the presentation.
Overtone spectroscopy of N2H+ molecular ions—application of cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Kálosi, Á.; Dohnal, P.; Shapko, D.; Roučka, Š.; Plašil, R.; Johnsen, R.; Glosík, J.
2017-10-01
A stationary afterglow apparatus in conjunction with a laser absorption cavity ring-down spectrometer has been employed to observe absorption lines in the P- and R-branches of the (200) <-- (000) and (2110) <-- (0110) vibrational bands of the N2H+ molecular ion as a part of an ongoing study of the electron-ion recombination of N2H+ in afterglow plasmas. The probed absorption lines lie in the near-infrared spectral region around 1580 nm. The observed transition wavenumbers were fitted to experimental accuracy and improved molecular constants for the (200) vibrational state were obtained. The employed experimental technique enables probing of the translational, rotational and vibrational temperature of the studied ions as well as the determination of the number densities of different quantum states of the ion in discharge and afterglow plasma.
NASA Technical Reports Server (NTRS)
Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.;
1994-01-01
An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.
Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo
2016-11-04
Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPR MAX ), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS). Copyright © 2016 Elsevier B.V. All rights reserved.
Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses.
Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J
2015-08-01
In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.
Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses
NASA Astrophysics Data System (ADS)
Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J.
2015-08-01
In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.
Quantitative spectroscopy for the analysis of GOME data
NASA Technical Reports Server (NTRS)
Chance, K.
1997-01-01
Accurate analysis of the global ozone monitoring experiment (GOME) data to obtain atmospheric constituents requires reliable, traceable spectroscopic parameters for atmospheric absorption and scattering. Results are summarized for research that includes: the re-determination of Rayleigh scattering cross sections and phase functions for the 200 nm to 1000 nm range; the analysis of solar spectra to obtain a high-resolution reference spectrum with excellent absolute vacuum wavelength calibration; Ring effect cross sections and phase functions determined directly from accurate molecular parameters of N2 and O2; O2 A band line intensities and pressure broadening coefficients; and the analysis of absolute accuracies for ultraviolet and visible absorption cross sections of O3 and other trace species measurable by GOME.
Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals
NASA Astrophysics Data System (ADS)
Kalita, Amarjyoti; Kalita, Manos P. C.
2017-08-01
We apply Williamson-Hall (WH) method of X-ray diffraction (XRD) line profile analysis for lattice strain estimation of small sized ZnO nanocrystals (crystallite size≈4 nm). The ZnO nanocrystals are synthesized by room temperature chemical co-precipitation followed by heating at 40 °C. Zinc acetate, sodium hydroxide and 2-mercaptoethanol (ME) are used for the synthesis of the nanocrystals. {100}, {002}, {101} and {200}, {112}, {201} line profiles in the XRD pattern are significantly merged, therefore determination of the full width at half maximum values and peak positions of the line profiles required for WH analysis has been carried out by executing Rietveld refinement of the XRD pattern. Lattice strain of the 4 nm sized ZnO nanocrystals is found to be 5.8×10-3 which is significantly higher as compared to the literature reported values for larger ones (crystallite size≈17-47 nm). Role of ME as capping agent is confirmed by Fourier transform infrared spectroscopy. The band gap of the nanocrystals is determined from the UV-Visible absorption spectrum and is found to be 3.68 eV. The photoluminescence spectrum exhibits emissions in the visible (408 nm-violet, 467 nm-blue and 538 nm-green) regions showing presence of zinc interstitial and oxygen vacancy in the ZnO nanocrystals.
NASA Astrophysics Data System (ADS)
Hamish, A.; Christenson, B. W.; Mazot, A.
2014-12-01
The major volatile species in volcanic plume emissions (i.e., H2O, CO2, SO2, HCl, HF) are all strongly infrared (IR)-active, and lend themselves to infrared spectroscopic analysis. However, physical/optical access to plume gases along pathways which include a suitable natural or active IR radiation source is often difficult or impossible to achieve, particularly for timeframes extending beyond short campaign periods. In this study, we present results from preliminary tests conducted on three volcanic CO2 plume emissions using a tunable diode NIR laser system (TDL, Boreal Laser Inc.). The approach is proving itself as a good candidate for continuous monitoring of volcanic plume CO2, and by default all other IR-active constituents for which lasers of appropriate wavelength are available. The CO2 system is configured with a TDL in a transceiver generating laser light which can be tuned to coincide with one of several absorption lines in the CO2 absorption band between 1575 nm and 1585 nm. This beam propagates through the atmosphere (and plume) to a retro-reflector, which returns the beam to a photodiode detector in the transceiver which processes the signal to report real time CO2 column densities. The CO2 absorption line at 1579.1 nm was used to good effect on Mt Ruapehu (NZ) where volcanic gases emanate through a 100 m deep crater lake, resulting in CO2 concentrations of > 78 ppm above background in the mixing zone varying from 4 to 30 m above the lake surface. Subsequent tests on the main plume at White Island, however, generated only poor results with indicated CO2 amounts being less than atmospheric. We concluded that this was the result of interference from a neighboring but comparatively minor H2O absorption band which in the proximal, higher temperature plume (estimated 50-70 °C), had H2O concentrations some 4-5 times greater than ambient. A change to a less sensitive absorption line further removed from potential H2O band interference (1567.9 nm) appears to have solved this problem, and yielded maximum CO2 concentrations along the 730 m pathway in excess of 500 ppm.This approach holds promise for continuous, real-time monitoring of volcanic plume chemistry, and we will now turn our focus to the detection of SO2, HCl and HF plume species.
Wang, Yu; Li, Jia-xi
2009-05-01
A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.
NASA Technical Reports Server (NTRS)
Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.
1982-01-01
Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.
Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph
2015-01-01
Objectives: To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Materials and methods: Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. Results: 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Conclusion: Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs. PMID:26069372
Raghavan, Rahul; Cheriyamundath, Sanith; Madassery, Joseph
2015-01-01
To investigate the effect of DMSO on cisplatin induced cytotoxicity (invitro) against K562 (Human mylogenous leukemia) cell line and to study the cisplatin-DMSO adduct formation using UV-spectrophotometer. Effect of DMSO on the cytotoxicity of cisplatin was studied in K562 (Chronic mylogenous leukemia) cell line by MTT assay. Cisplatin-DMSO adduct formation was studied by continuously monitoring the increase in absorption peaks for 30 minutes using UV-spectrophotometer. 0.1-0.3% DMSO markedly reduced the cytotoxic activity of cisplatin in K562 cells. Cisplatin-DMSO adduct formation was detected using UV-spectrophotometer. Continuous increase in UV absorbance between 250nm-290nm was observed when cisplatin (0.5mg/ml) and DMSO (10%) were mixed. Present study revealed that DMSO inactivates the cytotoxicity of cisplatin. Cisplatin-DMSO mixture showed increased absorbance at 250-290nm. Therefore, using DMSO in invitro assays might result in misinterpretation of actual efficacy of drugs.
High-resolution fluorescence imaging for red and far-red SIF retrieval at leaf and canopy scales
NASA Astrophysics Data System (ADS)
Albert, L.; Alonso, L.; Cushman, K.; Kellner, J. R.
2017-12-01
New commercial-off-the-shelf imaging spectrometers promise the combination of high spatial and spectral resolution needed to retrieve solar induced fluorescence (SIF) at multiple wavelengths for individual plants and even individual leaves from low-altitude airborne or ground-based platforms. Data from these instruments could provide insight into the status of the photosynthetic apparatus at scales of space and time not observable from high-altitude and space-based platforms, and could support calibration and validation activities of current and forthcoming space missions to quantify SIF (OCO-2, OCO-3, FLEX, and GEOCARB). High-spectral resolution enables SIF retrieval from regions of strong telluric absorption by molecular oxygen, and also within numerous solar Fraunhofer lines in atmospheric windows not obscured by oxygen or water absorptions. Here we evaluate algorithms for SIF retrieval using a commercial-off-the-shelf diffraction-grating imaging spectrometer with a spectral sampling interval of 0.05 nm and a FWHM < 0.2 nm throughout the 670 - 780 nm range. We demonstrate the tradeoffs between spatial resolution and signal-to-noise ratio using frame stacking and binning, and evaluate the consequences of these tradeoffs for SIF retrieval using three approaches: (1) oxygen-A and B retrieval; (2) retrieval based exclusively on solar Fraunhofer lines outside regions of telluric gas absorption; and (3) a retrieval based on the combination of these approaches. We evaluate the quality of these methods by comparison with coincident SIF spectra of leaves measured using a hand-held field spectrometer and short-pass filters that block incoming light at wavelengths > 650 or 700 nm. These filters enable a direct measurement of SIF emission > 650 or 700 nm that serves as a benchmark against which retrievals from reflectance spectra can be evaluated. We repeated this comparison between leaf-level SIF emission spectra and retrieved SIF emission spectra for leaves treated with drought stress and an herbicide (DCMU) that inhibits electron transfer from QA to QB of PSII.
Laser Amplifier Development for the Remote Sensing of CO2 from Space
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Abshire, James B.; Storm, Mark; Betin, Alexander
2015-01-01
Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the approximately x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a approximately 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.
NASA Astrophysics Data System (ADS)
Rutkowski, Lucile; Masłowski, Piotr; Johansson, Alexandra C.; Khodabakhsh, Amir; Foltynowicz, Aleksandra
2018-01-01
Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadband high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution matched to the comb mode spacing. Here we describe in detail the experimental and numerical steps needed to achieve sub-nominal resolution and retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3ν1 + ν3 band of CO2 around 1575 nm with line widths narrower than the nominal resolution. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.
Polarizers tuned at key far-UV spectral lines for space instrumentation
NASA Astrophysics Data System (ADS)
Larruquert, Juan I.; Malvezzi, A. Marco; Rodríguez-de Marcos, Luis; Giglia, Angelo; Gutiérrez-Luna, Nuria; Espinosa-Yáñez, Lucía.; Honrado-Benítez, Carlos; Aznárez, José A.; Massone, Giuseppe; Capobianco, Gerardo; Fineschi, Silvano; Nannarone, Stefano
2017-05-01
Polarimetry is a valuable technique to help us understand the role played by the magnetic field of the coronal plasma in the energy transfer processes from the inner parts of the Sun to the outer space. Polarimetry in the far ultraviolet (FUV: 100-200 nm), which must be performed from space due to absorption in terrestrial atmosphere, supplies fundamental data of processes that are governed by the Doppler and Hanle effects on resonantly scattered line-emission. To observe these processes there are various key spectral lines in the FUV, from which H I Lyman α (121.6 nm) is the strongest one. Hence some solar physics missions that have been proposed or are under development plan to perform polarimetry at 121.6 nm, like the suborbital missions CLASP I (2015) and CLASP II (2018), and the proposed solar missions SolmeX and COMPASS and stellar mission Arago. Therefore, the development of efficient FUV linear polarizers may benefit these and other possible future missions. C IV (155 nm) and Mg II (280 nm) are other spectral lines relevant for studies of solar and stellar magnetized atmospheres. High performance polarizers can be obtained with optimized coatings. Interference coatings can tune polarizers at the spectral line(s) of interest for solar and stellar physics. Polarizing beamsplitters consist in polarizers that separate one polarization component by reflection and the other by transmission, which enables observing the two polarization components simultaneously with a single polarizer. They involve the benefit of a higher efficiency in collection of polarization data due to the use of a single polarizer for the two polarization components and they may also facilitate a simplified design for a space polarimeter. We present results on polarizing beamsplitters tuned either at 121.6 nm or at the pair of 155 and 280 nm spectral lines.
NASA Astrophysics Data System (ADS)
Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.
2012-04-01
Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included different efficiencies of laser performance (e.g., frequency doubling) at the two wavelengths and temperature dependence. We will discuss improvements on the control of our system to eliminate drift due to conversion efficiency and temperature dependence. We will detail complications with operating this instrument from a mobile platform for in situ measurements in the field. Finally, we will present data acquisition and processing approaches along with results of calibration curves, and comparisons to conventional mercury analyzers (i.e., a Tekran 2537 mercury vapor analyzer) during ambient air measurements.
Ozbek, Nil; Akman, Suleyman
2012-05-30
Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca
2018-02-01
Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.
Infrared absorption of 2-hydroxyethyl (HOCH2CH2) in solid Ar
NASA Astrophysics Data System (ADS)
Kuo, Yu-Ping; Wann, Gwo-Huei; Lee, Yuan-Pern
1993-09-01
An argon matrix containing C2H4 and H2O2 was irradiated at 12 K with the 248 nm emission of a KrF excimer laser; IR spectra were recorded after various periods of photolysis. In addition to lines ascribed to ethylene oxide, acetaldehyde, and vinyl alcohol, absorptions at 2991.0, 2842.7, 1355.4, 1172.5, and 1040.1 cm-1 have been assigned to HOCH2CH2; weaker lines at 3625.8, 2922.4, and 873.9 cm-1 may also be due to HOCH2CH2. Corresponding lines at 2970.6, 2829.3, 1346.5, 1171.3, and 1020.5 (and probably 3625.8, 2915.1, and 860.7) cm-1 were observed for HO13CH2 13CH2. The results are consistent with ab initio calculations.
Saturated CO{sub 2} absorption near 1.6 μm for kilohertz-accuracy transition frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkart, Johannes, E-mail: johannes.burkart@ujf-grenoble.fr; Romanini, Daniele; Campargue, Alain
2015-05-21
Doppler-free saturated-absorption Lamb dips were measured on weak rovibrational lines of {sup 12}C{sup 16}O{sub 2} between 6189 and 6215 cm{sup −1} at sub-Pa pressures using optical feedback frequency stabilized cavity ring-down spectroscopy. By referencing the laser source to an optical frequency comb, transition frequencies for ten lines of the 30013←00001 band P-branch and two lines of the 31113←01101 hot band R-branch were determined with an accuracy of a few parts in 10{sup 11}. Involving rotational quantum numbers up to 42, the data were used for improving the upper level spectroscopic constants. These results provide a highly accurate reference frequency gridmore » over the spectral interval from 1599 to 1616 nm.« less
NASA Astrophysics Data System (ADS)
Guo, Chongshen; Yin, Shu; Yu, Haijun; Liu, Shaoqin; Dong, Qiang; Goto, Takehiro; Zhang, Zhiwen; Li, Yaping; Sato, Tsugio
2013-06-01
Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy.Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy. Electronic supplementary information (ESI) available: EDS spectra, XRD patterns, TG plot of CsxWO3 nanorod are provided in the ESI. Additionally, linear correlations between NIR absorbance and CsxWO3-PEGS nanorod concentrations, cytotoxicity results, TEM image of intracellular distribution of CsxWO3-PEGS nanorods and fluorescence images can be found in the ESI. See DOI: 10.1039/c3nr01025b
SO_2 Absorption Cross Sections and N_2 VUV Oscillator Strengths for Planetary Atmosphere Studies
NASA Astrophysics Data System (ADS)
Smith, Peter L.; Stark, G.; Rufus, J.; Pickering, J. C.; Cox, G.; Huber, K. P.
1998-09-01
The determination of the chemical composition of the atmosphere of Io from Hubble Space Telescope observations in the 190-220 nm wavelength region requires knowledge of the photoabsorption cross sections of SO_2 at temperatures ranging from about 110 K to 300 K. We are engaged in a laboratory program to measure SO_2 absorption cross sections with very high resolving power (lambda /delta lambda =~ 450,000) and at a range of temperatures appropriate to the Io atmosphere. Previous photoabsorption measurements, with lambda /delta lambda =~ 100,000, have been unable to resolve the very congested SO_2 spectrum, and, thus, to elucidate the temperature dependence of the cross sections. Our measurements are being performed at Imperial College, London, using an ultraviolet Fourier transform spectrometer. We will present our recently completed room temperature measurements of SO_2 cross sections in the 190-220 nm region and plans for extending these to ~ 195 K. Analyses of Voyager VUV occultation measurements of the N_2-rich atmospheres of Titan and Triton have been hampered by the lack of fundamental spectroscopic data for N_2, in particular, by the lack of reliable f-values and line widths for electronic bands of N_2 in the 80-100 nm wavelength region. We are continuing our program of measurements of band oscillator strengths for the many (approximately 100) N_2 bands between 80 and 100 nm. We report new f-values, derived from data obtained at the Photon Factory (Tsukuba, Japan) synchrotron radiation facility with lambda /delta lambda =~ 130,000, of 37 bands in the 80-86 nm region and 21 bands in the 90-95 nm region. We have also begun the compilation of a searchable archive of N_2 data on the World Wide Web; see http://cfa-www.harvard. edu/amp/data/n2/n2home.html. The archive, covering the spectroscopy of N_2 between 80 and 100 nm, will include published and unpublished (14) N_2, (14) N(15) N, and (15) N_2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N_2 literature.
Spectral Classification of PSN J15381795+2544173
NASA Astrophysics Data System (ADS)
Silverman, J. M.; Cohen, D. P.; Filippenko, A. V.
2012-06-01
We report that inspection of a noisy CCD spectrum (range 340-1000 nm), obtained on June 27.3 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that PSN J15381795+2544173 (ATEL 4200) is a Type Ia supernova (SN Ia). After removal of the host-galaxy recession velocity of 26,952 km/s (Sloan Digital Sky Survey Data Release 6), we find the absorption minimum of the Si II 635.5-nm line to be blueshifted by about 11,700 km/s.
NASA Astrophysics Data System (ADS)
Schwarzer, H.; Börner, A.; Fix, A.; Günther, B.; Hübers, H.-W.; Raugust, M.; Schrandt, F.; Wirth, M.
2007-09-01
At the German Aerospace Center an airborne multi-wavelength differential absorption LIDAR for the measurement of atmospheric water vapour is currently under development. This instrument will enable the retrieval of the complete humidity profile from the surface up to the lowermost stratosphere with high vertical and horizontal resolution at a systematic error below 5%. The LIDAR will work in the wavelength region around 935 nm at three different water vapour absorption lines and one reference wavelength. A major sub-system of this instrument is a highly frequency stabilized seed laser system for the optical parametrical oscillators which generate the narrowband high energy light pulses. The development of the seed laser system includes the control software, the electronic control unit and the opto-mechanical layout. The seed lasers are Peltier-cooled distributed feedback laser diodes with bandwidths of about 30 MHz, each one operating for 200 μs before switching to the next one. The required frequency stability is +/- 30 MHz ≅ +/- 10 -4 nm under the rough environmental conditions aboard an aircraft. It is achieved by locking the laser wavelength to a water vapour absorption line. The paper describes the opto-mechanical layout of the seed laser system, the stabilization procedure and the results obtained with this equipment.
Exoplanet Transits of Stellar Active Regions
NASA Astrophysics Data System (ADS)
Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano
2018-01-01
We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.
Nardelli, Schuyler C; Twardowski, Michael S
2016-10-31
The relationship between absorption at 676 nm normalized to chlorophyll-a, i.e., specific absorption aph*(676), and various optical and environmental properties is examined in extensive data sets from Case I and Case II waters found globally to assess drivers of variability such as pigment packaging. A better understanding of this variability could lead to more accurate estimates of chlorophyll concentrations from in situ optical measurements that may be made autonomously. Values of aph*(676) ranged from 0.00006 to 0.0944 m2/mg Chl a across all sites studied, but converged on median and mean values (n = 563) of 0.0108 and 0.0139 m2/mg Chl a respectively, with no apparent relationship with various optical properties, latitude, coastal or open ocean environment, depth, temperature, salinity, photoadaptation, ecosystem health, or albedo. Relative consistency in aph* across such diverse water types and the full range in chlorophyll concentration suggests a single aph* may be used to estimate chlorophyll concentration from absorption measurements with better accuracy than currently thought.
Uncertainties of the Intensity of the 1130 nm Band of Water Vapor
NASA Technical Reports Server (NTRS)
Giver, L. P.; Pilewskie, P.; Gore, W. J.; Chackerian, C., Jr.; Varanasi, P.; Bergstrom, R.; Freedman, R. S.
2001-01-01
Belmiloud, et al have recently suggested that the HITRAN line intensities in the 1130 nm water vapor band are much too weak. Giver, et at corrected unit conversion errors to make the HITRAN intensities compatible with the original measurements of Mandin, et al, but Belmiloud, et al believe that many of those line intensity measurements were too weak, and they propose the total intensity of the 1130 nm water vapor band is 38% stronger than the sum of the HITRAN line intensities in this region. We have made independent assessments of this proposal using 2 spectra obtained with the Ames 25 meter base path White cell. The first was made using the moderate resolution (8 nm) solar spectral flux radiometer (SSFR) flight instrument with a White cell absorbing path of 506 meters and 10 torr water vapor pressure. Modeling this spectrum using the HITRAN linelist gives a reasonable match, and the model is not compatible when the HITRAN line intensities are increased by 38%. The second spectrum was obtained with a White cell path of 1106 meters and 12 torr water vapor pressure, using a Bomem FTIR with near Doppler width resolution. This spectrum is useful for measuring intensities of isolated weak lines to compare with the measurements of Mandin, et al. Unfortunately, as Belmiloud et al point out, at these conditions the strong lines are much too saturated for good intensity measurements. Our measurements of the weak lines are in reasonable agreement with those of Mandin, et al. Neither of our spectra supports the proposal of Belmiloud et al for a general 38% increase of the absorption intensity in the 1130 nm water vapor band.
Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús, E-mail: jesus.garduno@ccadet.unam.mx
2015-08-15
In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low powermore » consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.« less
Ultrafast optical measurements of surface waves on a patterned layered nanostructure
NASA Astrophysics Data System (ADS)
Daly, Brian; Bjornsson, Matteo; Connolly, Aine; Mahat, Sushant; Rachmilowitz, Bryan; Antonelli, George; Myers, Alan; Yoo, Hui-Jae; Singh, Kanwal; King, Sean
2015-03-01
We report ultrafast optical pump-probe measurements of 12 - 54 GHz surface acoustic waves (SAWs) on patterned layered nanostructures. These very high frequency SAWs were generated and detected on the following patterned film stack: 25 nm physically vapor deposited TiN / 180 nm porous PECVD-grown a-SiOC:H dielectric / 12 nm non-porous PECVD-grown a-SiOC:H etch-stop / 100 nm CVD-grown a-SiO2 / Si (100) substrate. The TiN layer was dry plasma etched to form lines of rectangular cross section with pitches of 420 nm, 250 nm, 180 nm, and 168 nm and the lines were oriented parallel to the [110] direction on the wafer surface. The absorption of ultrafast pulses from a Ti:sapphire oscillator operating at 800 nm generated SAWs that were detected by time-delayed probe pulses from the same oscillator via a reflectivity change (ΔR) . In each of the four cases the SAW frequency increased with decreasing pitch, but not in a linear way as had been seen in previous experiments of this sort. By comparing the results with mechanical simulations, we present evidence for the detection of different types of SAWs in each case, including Rayleigh-like waves, Sezawa waves, and leaky or radiative waves. This work was supported by NSF Award DMR1206681.
Voigt deconvolution method and its applications to pure oxygen absorption spectrum at 1270 nm band.
Al-Jalali, Muhammad A; Aljghami, Issam F; Mahzia, Yahia M
2016-03-15
Experimental spectral lines of pure oxygen at 1270 nm band were analyzed by Voigt deconvolution method. The method gave a total Voigt profile, which arises from two overlapping bands. Deconvolution of total Voigt profile leads to two Voigt profiles, the first as a result of O2 dimol at 1264 nm band envelope, and the second from O2 monomer at 1268 nm band envelope. In addition, Voigt profile itself is the convolution of Lorentzian and Gaussian distributions. Competition between thermal and collisional effects was clearly observed through competition between Gaussian and Lorentzian width for each band envelope. Voigt full width at half-maximum height (Voigt FWHM) for each line, and the width ratio between Lorentzian and Gaussian width (ΓLΓG(-1)) have been investigated. The following applied pressures were at 1, 2, 3, 4, 5, and 8 bar, while the temperatures were at 298 K, 323 K, 348 K, and 373 K range. Copyright © 2015 Elsevier B.V. All rights reserved.
A shock-tube measurement of the SiO/E 1 Sigma + - X 1 Sigma +/ transition moment
NASA Technical Reports Server (NTRS)
Park, C.
1978-01-01
The sum of the squares of the electronic transition moments for the (E 1 Sigma +) - (X 1 Sigma +) band system of SiO has been determined from absorption measurements conducted in the reflected-shock region of a shock tube. The test gas produced by shock-heating a mixture of SiCl4, N2O, and Ar, and the spectra were recorded photographically in the 150-230-nm wavelength range. The values of the sum of the squares were determined by comparing the measured absorption spectra with those produced by a line-by-line synthetic spectrum calculation. The value so deduced at an r-centroid value of 3.0 bohr was 0.86 + or - 0.10 atomic unit.
Sezer, Banu; Velioglu, Hasan Murat; Bilge, Gonca; Berkkan, Aysel; Ozdinc, Nese; Tamer, Ugur; Boyaci, Ismail Hakkı
2018-01-01
The use of Li salts in foods has been prohibited due to their negative effects on central nervous system; however, they might still be used especially in meat products as Na substitutes. Lithium can be toxic and even lethal at higher concentrations and it is not approved in foods. The present study focuses on Li analysis in meatballs by using laser induced breakdown spectroscopy (LIBS). Meatball samples were analyzed using LIBS and flame atomic absorption spectroscopy. Calibration curves were obtained by utilizing Li emission lines at 610nm and 670nm for univariate calibration. The results showed that Li calibration curve at 670nm provided successful determination of Li with 0.965 of R 2 and 4.64ppm of limit of detection (LOD) value. While Li Calibration curve obtained using emission line at 610nm generated R 2 of 0.991 and LOD of 22.6ppm, calibration curve obtained at 670nm below 1300ppm generated R 2 of 0.965 and LOD of 4.64ppm. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Sugiyama, Makoto; Fujimoto, Yutaka; Yanagida, Takayuki; Yokota, Yuui; Pejchal, Jan; Furuya, Yuki; Tanaka, Hidehiko; Yoshikawa, Akira
2011-04-01
Nd 0.1%, 0.5%, 1% and 3% doped Lu 3Al 5O 12 (Nd:LuAG) single crystals were grown in the nitrogen atmosphere by the micro-pulling down (μ-PD) method. The grown crystals had a single-phase confirmed by powder XRD analysis. In absorption spectra, some weak absorption lines due to Nd 3+ 4f-4f transitions were observed and their intensity increased with the increase of Nd concentration. When excited by 241Am α-ray, a broad emission peak due to defects in the host lattice at 320 nm and some sharp lines due to Nd 3+ 4f-4f transitions at wavelength longer than 400 nm were observed. The decay time profiles of Nd:LuAG under γ-ray excitation were well approximated by two exponential function of 340-760 ns and 3-5 μs for each sample. By pulse height measurement using 137Cs, Nd 0.5%:LuAG showed the highest light yield of 7600 ± 760 photons/MeV.
Frequency Stabilization of DFB Laser Diodes at 1572 nm for Spaceborne Lidar Measurements of CO2
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.; Abshire, James B.; Krainak, Michael A.
2010-01-01
We report a fiber-based, pulsed laser seeder system that rapidly switches among 6 wavelengths across atmospheric carbon dioxide (CO2) absorption line near 1572.3 nm for measurements of global CO2 mixing ratios to 1-ppmv precision. One master DFB laser diode has been frequency-locked to the CO2 line center using a frequency modulation technique, suppressing its peak-to-peak frequency drifts to 0.3 MHz at 0.8 sec averaging time over 72 hours. Four online DFB laser diodes have been offset-locked to the master laser using phase locked loops, with virtually the same sub-MHz absolute accuracy. The 6 lasers were externally modulated and then combined to produce the measurement pulse train.
NASA Astrophysics Data System (ADS)
Lin, Cheng-ming; Chang, Keh-wen; Lee, Ming-der; Loong, Wen-An
1999-07-01
Abstract-Five materials which are PdSixOy, CrAlxOy, SiNx, TiSixNy, and TiSixOyNz as absorptive shifters for attenuated phase-shifting mask in 193 nm wavelength lithography are presented. PdSixOy films were deposited by dual e-gun evaporation. CrAlxOy, TiSixNy and TiSixOyNz films were formed by plasma sputtering and SiNx films were formed with LPCVD. All of these materials are shown to be capable of achieving 4 percent - 15 percent transmittance in 193 nm with thickness that produce a 180 degrees phase shift. Under BCl3:Cl2 equals 14:70 sccm; chamber pressure 5 mtorr and RF power 1900W, the dry etching selectivity of TiSixNy over DQN positive resist and fused silica, were found to be 2:1 and 4,8:1 respectively. An embedded layer TiSixNy with 0.5 micrometers line/space was successfully patterned.
Zhou, Yimin; Cheung, Ying-Kit; Ma, Chao; Zhao, Shirui; Gao, Di; Lo, Pui-Chi; Fong, Wing-Ping; Wong, Kam Sing; Ng, Dennis K P
2018-05-10
Two advanced boron dipyrromethene (BODIPY) based photosensitizers have been synthesized and characterized. With a glibenclamide analogous moiety, these compounds can localize in the endoplasmic reticulum (ER) of HeLa human cervical carcinoma cells and HepG2 human hepatocarcinoma cells. The BODIPY π skeleton is conjugated with two styryl or carbazolylethenyl groups, which can substantially red-shift the Q-band absorption and fluorescence emission and impart two-photon absorption (TPA) property to the chromophores. The TPA cross section of the carbazole-containing analogue reaches a value of 453 GM at 1010 nm. These compounds also behave as singlet oxygen generators with high photostability. Upon irradiation at λ > 610 nm, these photosensitizers cause photocytotoxicity to these two cell lines with IC 50 values down to 0.09 μM, for which the cell death is triggered mainly by ER stress. The two-photon photodynamic activity of the distyryl derivative upon excitation at λ = 800 nm has also been demonstrated.
Çelik, S Esin; Özyürek, Mustafa; Güçlü, Kubilay; Çapanoğlu, Esra; Apak, Reşat
2014-01-01
Development and application of an on-line cupric reducing anti-oxidant capacity (CUPRAC) assay coupled with HPLC for separation and on-line determination of phenolic anti-oxidants in elderflower (Sambucus nigra L.) extracts for their anti-oxidant capacity are significant for evaluating health-beneficial effects. Moreover, this work aimed to assay certain flavonoid glycosides of elderflower that could not be identified/quantified by other similar on-line HPLC methods (i.e. 2,2-diphenyl-1-picrylhdrazyl and 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid). To identify anti-oxidant constituents in elderflower by HPLC and to evaluate their individual anti-oxidant capacities by on-line HPLC-CUPRAC assay with a post-column derivatisation system. The separation and UV detection of polyphenols were performed on a C18 -column using gradient elution with two different mobile phase solutions, that is acetonitrile and 1% glacial acetic acid, with detection at 340 nm. The HPLC-separated anti-oxidant polyphenols in column effluent react with copper(II)-neocuproine in a reaction-coil to reduce the latter to copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The detection limits of tested compounds at 450 nm after post-column derivatisation were compared with those of at 340 nm UV-detection without derivatisation. LOD values (µg/mL) of quercetin and its glycosides at 450 nm were lower than those of UV detection at 340 nm. This method was applied successfully to elderflower extract. The flavonol glycosides of quercetin and kaempferol bound to several sugar components (glucose, rhamnose, galactose and rutinose) were identified in the sample. The on-line HPLC-CUPRAC method was advantageous over on-line ABTS and DPPH methods for measuring the flavonoid glycosides of elderflower. Copyright © 2014 John Wiley & Sons, Ltd.
Cavity mode-width spectroscopy with widely tunable ultra narrow laser.
Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman
2013-12-02
We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.
NASA Astrophysics Data System (ADS)
Yuwen, Lihui; Zhou, Jiajia; Zhang, Yuqian; Zhang, Qi; Shan, Jingyang; Luo, Zhimin; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui
2016-01-01
Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation.Photothermal therapy (PTT) is a promising cancer treatment with both high effectiveness and fewer side effects. However, an ideal PTT agent not only needs strong absorption of near-infrared (NIR) light and high photothermal conversion efficiency, but also needs good biocompatibility, stability, and small size, which makes the design and preparation of a novel PTT agent a great challenge. In this work, we developed an ultrasonication-assisted liquid exfoliation method for the direct preparation of ultrasmall (2-3 nm) MoSe2 nanodots (NDs) in aqueous solution and demonstrated their superior properties as a PTT agent. The as-prepared MoSe2 NDs have strong absorption of NIR light and high photothermal conversion efficiency of about 46.5%. In vitro cellular experiments demonstrate that MoSe2 NDs have negligible cytotoxicity and can efficiently kill HeLa cells (human cervical cell line) under NIR laser (785 nm) irradiation. Electronic supplementary information (ESI) available: Characterization, size distribution and EDS spectrum of MoSe2 NDs, calculation of the extinction coefficient and photothermal conversion efficiency of MoSe2 NDs. See DOI: 10.1039/c5nr08166a
NASA Astrophysics Data System (ADS)
Smith, P. L.; Stark, G.; Rufus, J.
2000-10-01
The determination of the chemical composition of the atmosphere of Io in the 190-220 nm wavelength region requires a knowledge of the photoabsorption cross section of SO2 at temperatures ranging from 110 to 300 K. We are continuing our laboratory program to measure SO2 absorption cross sections with very high resolving power (450,000) at a range of temperatures appropriate to the Io atmosphere. Previous photoabsorption measurements have been unable to resolve the very congested SO2 spectrum. Out measurements are being undertaken at Imperial College, London, using an ultraviolet Fourier transform spectrometer. We recently completed room temperature measurements of SO2 cross sections in the 190-220 nm region (Stark et al., JGR Planets 104, 16,585 (1999)). Current laboratory work is focusing on a complementary set of measurements at 160 K. Preliminary results will be presented. Analyses of Voyager VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2, in particular, by the lack of reliable f-values and line widths for electronic bands of N2 in the 80-100 nm wavelength region. We are continuing our program to measure band oscillator strengths for about 100 N2 bands between 80-100 nm. We have begun an on-line molecular spectroscopic atlas [http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html]. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. This work was supported in part by NASA Grant NAG5-6222 and the Smithsonian Institution Atherton Seidel Grant Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluvshtein, Nir; Lin, Peng; Flores, J. Michel
The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders ofmore » magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.« less
Open-path atmospheric transmission for a diode-pumped cesium laser.
Rice, Christopher A; Lott, Gordon E; Perram, Glen P
2012-12-01
A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.
Karpf, Andreas; Rao, Gottipaty N
2015-07-01
We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400 mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.
NASA Technical Reports Server (NTRS)
Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William
2010-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.
Werblinski, Thomas; Fendt, Peter; Zigan, Lars; Will, Stefan
2017-05-20
The first results under fired internal combustion engine conditions based on a supercontinuum absorption spectrometer are presented and discussed. Temperature, pressure, and water mole fraction are inferred simultaneously from broadband H 2 O absorbance spectra ranging from 1340 nm to 1440 nm. The auto-ignition combustion process is monitored for two premixed n-heptane/air mixtures with 10 kHz in a rapid compression machine. Pressure and temperature levels during combustion exceed 65 bar and 1900 K, respectively. To allow for combustion measurements, the robustness of the spectrometer against beam steering has been improved compared to its previous version. Additionally, the detectable wavelength range has been extended further into the infrared region to allow for the acquisition of distinct high-temperature water transitions located in the P-branch above 1410 nm. Based on a theoretical study, line-of-sight (LOS) effects introduced by temperature stratification on the broadband fitting algorithm in the complete range from 1340 nm to 1440 nm are discussed. In this context, the recorded spectra during combustion were evaluated only within a narrower spectral region exhibiting almost no interference from low-temperature molecules (here, P-branch from 1410 nm to 1440 nm). It is shown that this strategy mitigates almost all of the LOS effects introduced by cold molecules and the evaluation of the spectrum in the entirely recorded wavelength range at engine combustion conditions.
In situ measurement of inelastic light scattering in natural waters
NASA Astrophysics Data System (ADS)
Hu, Chuanmin
Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda < 510nm is negligible for the whole water column, and this percentage increases with depth at /lambda > 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching and photoinhibition.
Pulsed-induced electromagnetically induced transparency in the acetylene-filled hollow-core fibers
NASA Astrophysics Data System (ADS)
Rodríguez, Nayeli Casillas; Stepanov, Serguei; Miramontes, Manuel Ocegueda; Hernández, Eliseo Hernández
2017-06-01
Experimental results on pulsed excitation of electromagnetically induced transparency (EIT) in the acetylene-filled hollow-core photonic crystal fiber (HC-PCF) at pressures 0.1-0.4 Torr are reported. The EIT was observed both in Λ and V interaction configurations with the continuous probe wave tuned to R9 (1520.08 nm) acetylene absorption line and with the control pulses tuned to P11 (1531.58 nm) and P9 (1530.37 nm) lines, respectively. The utilized control pulses were of up to 40 ns duration with <2.5 ns fronts and with maximum input power 1 W. The maximum modulation depth of the initial probe wave absorption via EIT was up to 40 and 15% for the co- and counter-propagation of the probe and control waves, respectively, and importance of the waves polarization matching was demonstrated. For a qualitative explanation of reduction in the counter-propagation EIT efficiency a simple model of the accelerated mismatch of the two-frequency EIT resonance with deviation of the molecule thermal velocity from the resonance value was utilized. It was shown experimentally that the EIT efficiencies in both configurations do not depend on the longitudinal velocity of the molecules. The characteristic relaxation time of the of the EIT response was found to be about 9 ns, i.e., is close to the relaxation times T 1,2 of the acetylene molecules under the utilized experimental conditions.
Collison-Induced Absorption of Oxygen Molecule as Studied by High Sensitivity Spectroscopy
NASA Astrophysics Data System (ADS)
Kashihara, Wataru; Shoji, Atsushi; Kawai, Akio
2017-06-01
Oxygen dimol is transiently generated when two oxygen molecules collide. At this short period, the electron clouds of molecules are distorted and some forbidden transition electronic transitions become partially allowed. This transition is called CIA (Collision-induced absorption). There are several CIA bands appearing in the spectral region from UV to near IR. Absorption of solar radiation by oxygen dimol is a small but significant part of the total budget of incoming shortwave radiation. However, a theory predicting the lineshape of CIA is still under developing. In this study, we measured CIA band around 630 nm that is assigned to optical transition, a^{1}Δ_{g}(v=0):a^{1}Δ_{g}(v=0)-X^{3}Σ_{g}^{-}(v=0):X^{3}Σ_{g}^{-}(v=0) of oxygen dimol. CRDS(Cavity Ring-down Spectroscopy) was employed to measure weak absorption CIA band of oxygen. Laser beam around 630 nm was generated by a dye laser that was pumped by a YAG Laser. Multiple reflection of the probe light was performed within a vacuum chamber that was equipped with two high reflective mirrors. We discuss the measured line shape of CIA on the basis of collision pair model.
NASA Technical Reports Server (NTRS)
Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.
2007-01-01
New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based, airborne and satellite s ensor for gases such as carbon dioxide (1570 nm), oxygen (762 nm and 768 nm lines sensitive to changes in oxygen pressure and oxygen temper ature) and water vapor (940 nm). Our current goal is to develop an ul tra precise, inexpensive, ground based device suitable for wide deplo yment as a validation instrument for the Orbiting Carbon Observatory (OCO) satellite. We show sensitivity measurements for CO2, 02, and H2 O, compare our measurements to those obtained using other types of sensors and discuss some of the peculiarities that must be addressed in order to provide the very high quality column detection required for solving problems about global distribution of greenhouse gases and cl imatological models. In another area of research we are interested in developing a small-size channel for CO2 capable of doing simultaneous measurements with the AERONET (Aerosol Robotic Network) at NASA, God dard to study the hypothesis that atmospheric aerosols affect the reg ional terrestrial carbon cycle. We present recent data from our groun d based measurements of O2, CO2, H2O and (13)CO2 and discuss extensio n of the technique to new species and applications.
Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.
Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T
2005-08-01
A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.
Leaf absorbance and photosynthesis
NASA Technical Reports Server (NTRS)
Schurer, Kees
1994-01-01
The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.
[Two-photon up-conversion fluorescence of a neodymium organic framework Nd(BTC)].
Xu, Hui; Jin, Run-zhi; Wu, Chun-yang; Yang, Yu; Qian, Guo-dong
2008-08-01
In the present work, a neodymium organic framework Nd(BTC) was synthesized by the solvothermal reaction of Nd(NO3)3 x 5H2O and H3BTC (BTC = 1,3,5-benzenetricarboxylate) in mixed solvents of DMF, ethanol and water, and was identified by elemental analysis. This MOF complex was characterized using X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TGA-DSC) analysis, UV-visible absorption spectra and fluorescence spectra. This polycrystalline powder lost DMF and H2O when heated to 120 degrees C, then remained stable till the temperature reached 500 degrees C. Near infrared fluorescence at 1064 nm due to the 4 F3/2--> 4 I11/2 transition of Nd3+ ions was exhibited when excited by 808 nm laser beam. It was also been found that up-conversion fluorescence of Nd(BTC) peaked at about 450 nm due to 2 D5/2 -->4 I11/2 transition of Nd3+ ions can be observed under the excitation of a 580 nm laser line. The mechanism of the up-conversion fluorescence of Nd(BTC) at around 450 nm under the excitation of 580 nm laser can be ascribed to both excited-state absorption and energy transfer up-conversion. This result indicated that such MOF can be employed as an up-conversion luminescence material in many potential application areas such as bio-labeling and fluorescence image.
[Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].
Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming
2009-08-01
The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.
NASA Technical Reports Server (NTRS)
Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George
2013-01-01
A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.
NASA Astrophysics Data System (ADS)
John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.
2015-07-01
This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.
NASA Astrophysics Data System (ADS)
Liu, Huawei; Zheng, Shu; Zhou, Huaichun; Qi, Chaobo
2016-02-01
A generalized method to estimate a two-dimensional (2D) distribution of temperature and wavelength-dependent emissivity in a sooty flame with spectroscopic radiation intensities is proposed in this paper. The method adopts a Newton-type iterative method to solve the unknown coefficients in the polynomial relationship between the emissivity and the wavelength, as well as the unknown temperature. Polynomial functions with increasing order are examined, and final results are determined as the result converges. Numerical simulation on a fictitious flame with wavelength-dependent absorption coefficients shows a good performance with relative errors less than 0.5% in the average temperature. What’s more, a hyper-spectral imaging device is introduced to measure an ethylene/air laminar diffusion flame with the proposed method. The proper order for the polynomial function is selected to be 2, because every one order increase in the polynomial function will only bring in a temperature variation smaller than 20 K. For the ethylene laminar diffusion flame with 194 ml min-1 C2H4 and 284 L min-1 air studied in this paper, the 2D distribution of average temperature estimated along the line of sight is similar to, but smoother than that of the local temperature given in references, and the 2D distribution of emissivity shows a cumulative effect of the absorption coefficient along the line of sight. It also shows that emissivity of the flame decreases as the wavelength increases. The emissivity under wavelength 400 nm is about 2.5 times as much as that under wavelength 1000 nm for a typical line-of-sight in the flame, with the same trend for the absorption coefficient of soot varied with the wavelength.
Synthesis of NiAu alloy and core-shell nanoparticles in water-in-oil microemulsions
NASA Astrophysics Data System (ADS)
Chiu, Hsin-Kai; Chiang, I.-Chen; Chen, Dong-Hwang
2009-07-01
NiAu alloy nanoparticles with various Ni/Au molar ratios were synthesized by the hydrazine reduction of nickel chloride and hydrogen tetrachloroaurate in the microemulsion system. They had a face-centered cubic structure and a mean diameter of 6-13 nm, decreasing with increasing Au content. As Au nanoparticles did, they showed a characteristic absorption peak at about 520 nm but the intensity decreased with increasing Ni content. Also, they were nearly superparamagnetic, although the magnetization decreased significantly with increasing Au content. Under an external magnetic field, they could be self-organized into the parallel lines. In addition, the core-shell nanoparticles, Ni3Au1@Au, were prepared by the Au coating on the surface of Ni3Au1 alloy nanoparticles. By increasing the hydrogen tetrachloroaurate concentration for Au coating, the thickness of Au shells could be raised and led to an enhanced and red-shifted surface plasmon absorption.
Synthesis of nanocrystalline CdS thin film by SILAR and their characterization
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.
2015-01-01
Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.
Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors
Akselrod, Gleb M.; Ming, Tian; Argyropoulos, Christos; ...
2015-04-07
Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths–critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nanocavity based on a nanopatch antenna design that has two tunable resonant modes in the visible spectrum separated by 350 nm and with line widths of ~60 nm. The importance of utilizing two resonances simultaneously is demonstrated by integrating monolayer MoS 2, a two-dimensional semiconductor, into the colloidally synthesized nanocavities. Here, we observe a 2000-fold enhancement in the PLmore » intensity of MoS 2– which has intrinsically low absorption and small quantum yield–at room temperature, enabled by the combination of tailored absorption enhancement at the first harmonic and PL quantum-yield enhancement at the fundamental resonance.« less
The far ultraviolet spectrum of Pluto and the discovery of its ionosphere
NASA Astrophysics Data System (ADS)
Steffl, A.; Stern, A.; Gladstone, R.; Parker, J. W.; Greathouse, T. K.; Retherford, K. D.; Young, L. A.; Schindhelm, E.; Kammer, J.; Strobel, D. F.; Summers, M. E.; Versteeg, M.; Olkin, C.; Weaver, H. A., Jr.; Hinson, D. P.; Linscott, I.
2016-12-01
During the New Horizons spacecraft's encounter with Pluto in July 2015, the Alice far ultraviolet spectrograph made numerous observations of Pluto and its atmosphere. We present here the far ultraviolet spectrum of Pluto. We observe faint emission (<0.01 Rayleighs/Ångstrom) from singly ionized nitrogen at 108.6 nm-the first detection of an ionosphere at Pluto. This N+ line is produced primarily by dissociative photoionization of molecular N2 by solar EUV photons (energy > 34.7 eV; wavelength < 36nm). Notably absent from Pluto's spectrum are emission lines from argon at 104.8 and 106.7 nm. We place upper limits on the amount of argon in Pluto's atmosphere above the tau=1 level (observed to be at 750km tangent altitude) that are significantly lower than previous models. We also identify and derive column densities for various hydrocarbon species such as C2H4 through their absorption of sunlight reflected from Pluto's surface.
A quantum rings based on multiple quantum wells for 1.2-2.8 THz detection
NASA Astrophysics Data System (ADS)
Mobini, Alireza; Solaimani, M.
2018-07-01
In this paper optical properties of a new QR based on MQWs have been investigated for detection in the THz range. The QR composed of a periodic effective quantum sites that each one considered as QW in theta direction. Using Tight binding method, eigen value problem for a QR with circumstance of 100 nm number with different number of wells i.e. 2, 4, 6 and 8 are solved and the absorption spectrum have been calculated. The results show that absorption has maximum value in range of (1.2-2.88 THz) that can be used for THz detection. Finally, it is realized that by increasing the number of wells, the numbers of absorption line also increase.
Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046
2014-05-07
In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less
Blood absorption during 970 and 1470 nm laser radiation in vitro.
Shaydakov, E; Ilyukhin, E; Rosukhovskiy, D
2015-10-01
Soon after introduction of water lasers in medical practice for EVLA, less power and energy line density have been used. However, there are no experimental grounds for different energy modes and there is no clear evidence for a difference in the effect of the two wavelengths dealt with in this study. The goal of this study was to evaluate the temperature profile of various laser action modes with testing devices. Three experimental testing devices consisted of cylinders filled with whole donor blood and a set of temperature sensors installed in different positions. We have determined the range of temperatures around the fiber tip of 970 and 1470 nm lasers. The average temperature of 970 nm laser at 1 mm distance along the axis from the fiber tip substantially differed from that of 1470 nm laser, power being equal. Statistically substantial differences were found in endovenous laser ablation simulation in vitro for the 970 nm and 1470 nm laser radiation. Similar temperatures can be reached with 970 nm lasers if power is increased.
Nitrogen dioxide sensing using a novel gas correlation detector
NASA Astrophysics Data System (ADS)
Kebabian, Paul L.; Annen, Kurt D.; Berkoff, Timothy A.; Freedman, Andrew
2000-05-01
A nitrogen dioxide point sensor, based on a novel nondispersive gas filter spectroscopic scheme, is described. The detection scheme relies on the fact that the absorption spectrum of nitrogen dioxide in the 400-550 nm region consists of a complicated line structure superimposed on an average broadband absorption. A compensating filter is used to remove the effect of the broadband absorption, making the sensor insensitive both to small particles in the optical path and to potentially interfering gases with broadband absorption features in the relevant wavelength region. Measurements are obtained using a remote optical absorption cell that is linked via multimode fibre optics to the source and detection optics. The incorporation of blue light emitting diodes which spectrally match the nitrogen dioxide absorption allows the employment of electronic (instead of mechanical) switching between optical paths. A sensitivity of better than 1.0 ppm m column density (1 s integration time) has been observed; improvements in electronics and thermal stabilization should increase this sensitivity.
High-resolution, VUV (147-201 nm) photoabsorption cross sections for C2H2 at 195 and 295 K
NASA Technical Reports Server (NTRS)
Smith, Peter L.; Yoshino, Kouichi; Parkinson, W. H.; Ito, Kenji; Stark, Glenn
1991-01-01
Results of measurements of photoabsorption cross sections of acetylene at 195 and 295 K in the wavelength range of 147-201 nm are reported. Short-wavelength data are obtained at 0.002 nm intervals, but no structure was observed on that scale. Emission and absorption lines from contaminant species in xenon and hydrogen discharges are used to determine the correct wavelength scale for the data. The uncertainty in the relative wavelengths is estimated to be about 0.004 nm, whereas the absolute wavelength values are accurate to + or - 0.043 nm. No significant photodestruction of C2H2 was found during the measurements. Cross-section values determined at the beginning portions of the measurements are indistinguishable from the values determined at the ends, thus demonstrating that there was no loss of absorbers.
NASA Astrophysics Data System (ADS)
Kruger, Pamela C.; Parsons, Patrick J.
2007-03-01
Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass ( m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3 SD) for Al were very similar: 3.0, 3.2, and 4.1 μg L - 1 for the Z5100, 4100ZL, and 3110, respectively. Serum Al method detection limits (3 SD) were 9.8, 6.9, and 7.3 μg L - 1 , respectively. Accuracy was assessed using archived serum (and plasma) reference materials from various external quality assessment schemes (EQAS). Values found with all three instruments were within the acceptable EQAS ranges. The data indicate that relatively modest ETAAS instrumentation equipped with continuum background correction is adequate for routine serum Al monitoring.
Thalman, Ryan; Volkamer, Rainer
2013-10-07
The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.
Lin, Sung-Yao; Sun, Xing-Han; Hsiao, Yu-Hsuan; Chang, Shao-En; Li, Guan-Syun; Hu, Nien-Jen
2016-01-01
Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC) has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC) at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins.
NASA Astrophysics Data System (ADS)
Hirabayashi, A.; Okuda, S.; Nambu, Y.; Fujimoto, T.
1987-01-01
We have developed a new method for determination of atomic transition probabilities based on laser-induced-fluorescence spectroscopy (LIFS). In the method one produces a known population of atoms in the upper level under investigation and relates it to an observed absolute line intensity. We have applied this method to the argon 430.0-nm line (1s4-3p8): In an argon discharge plasma the 1s5-level population and spatial distribution are determined by the self-absorption method combined with LIFS under conditions where the 3p8-level population is much lower than that of the 1s5 level. When intense laser light of 419.1 nm (1s5-3p8) irradiates the plasma and saturates the 3p8-level population, the produced 3p8-level population and its alignment can be determined from the 1s5-level parameters as determined above, by solving the master equation on the basis of broad-line excitation. By comparing the observed absolute fluorescence intensity of the 430.0-nm line with the above population, we have determined the transition probability to be A=(3.94+/-0.60)×105 s-1. We also determined the 3p8-level lifetime by LIFS. Several factors which might affect the measurement are discussed. The result is τ=127+/-10 ns.
[UV-Vis spectrum characteristics of phycocyanin in water from Taihu lake].
Zhang, Jing; Wei, Yu-Chun; Wang, Guo-Xiang; Cheng, Chun-Mei; Xia, Xiao-Rui
2014-05-01
The present paper analyzed the UV-Vis spectrum characteristics of phycocyanin extracted from 75 water samples around Meiliang Bay of Taihu Lake, China in spring, summer and autumn, 2011, taking standard sample of phycocyanin, Micro-cystic aeruginosa and Anabaena cultured indoor as the reference, and discussed the difference and relation of spectrum among water samples, standard sample and single algae samples. According to the number of absorption peak in the wavelength range from 500 to 700 nm, phycocyanin spectrum of water sampling in Taihu Lake can be divided into three patterns: no peak, single peak and two peaks. In the first pattern, the absorbance changed smoothly and no absorption peak was observed around 620 nm. Depending on the absorption difference in the wavelength range from 300 to 450 nm, this pattern can be divided into type I and type II. Type I only had a absorption peak near 260 nm, with the similar spectrum of chromophoric dissolved organic matter (CDOM) in the wavelength range from 250 to 800 nm. Type II had absorption peak respectively near 260 and 330 nm. In single peak pattern and two peaks pattern, significant absorption peak of phycocyanin appeared around 620 nm. Compared to the other patterns, single peak pattern was more similar to that of standard sample and single algae samples, but different in their maximum absorption peaks position and relative absorption intensity in the wavelength range of 250 approximately 300, 300 approximately 450 and 500 approximately 700 nm, because of different algae species and purity after extraction. In the two peaks pattern, another absorption peak appeared at 670nm, with the absorption shoulder from 350 to 450 nm, and shared the absorption characteristics of phycocyanin and chlorophyll complex protein. The research can provide a basic support for the phycocyanin quantitation and blooms monitoring in Taihu Lake.
Optical frequency stabilization in infrared region using improved dual feed-back loop
NASA Astrophysics Data System (ADS)
Ružička, B.; Číp, O.; Lazar, J.
2007-03-01
Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550 nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-IR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelengthmeters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.
Three Way Comparison between Two OMI/Aura and One POLDER/PARASOL Cloud Pressure Products
NASA Technical Reports Server (NTRS)
Sneep, M.; deHaan, J. F.; Stammes, P.; Vanbaunce, C.; Joiner, J.; Vasilkov, A. P.; Levelt, P. F.
2007-01-01
The cloud pressures determined by three different algorithms, operating on reflectances measured by two space-borne instruments in the "A" train, are compared with each other. The retrieval algorithms are based on absorption in the oxygen A-band near 760 nm, absorption by a collision induced absorption in oxygen near 477nm, and the filling in of Fraunhofer lines by rotational Raman scattering. The first algorithm operates on data collected by the POLDER instrument on board PARASOL, while the latter two operate on data from the OMI instrument on board Aura. The satellites sample the same air mass within about 15 minutes. Using one month of data, the cloud pressures from the three algorithms are found to show a similar behavior, with correlation coefficients larger than 0.85 between the data sets for thick clouds. The average differences in the cloud pressure are also small, between 2 and 45 hPa, for the whole data set. For optically thin to medium thick clouds, the cloud pressure the distribution found by POLDER is very similar to that found by OMI using the O2 - O2 absorption. Somewhat larger differences are found for very thick clouds, and we hypothesise that the strong absorption in the oxygen A-band causes the POLDER instrument to retrieve lower pressures for those scenes.
Shi, Kun; Li, Yun-mei; Wang, Qiao; Yang, Yu; Jin, Xin; Wang, Yan-fei; Zhang, Hong; Yin, Bin
2010-05-01
Field experiments are conducted separately in Taihu Lake and Chaohu Lake on Apr. and Jun. 2009. The changes in absorption spectra of chromophoric dissolved organic matter (CDOM) characteristics are analyzed using spectral differential analysis technology. According the spectral differential characteristic of absorption coefficient; absorption coefficient from 240 to 450 nm is divided into different stages, and the value of spectral slope S is calculated in each stage. In Stage A, S value of CDOM in Taihu Lake and Chaohu Lake are 0.0166-0.0102 nm(-1) [average (0.0132 +/- 0.0017) nm(-1)], 0.029-0.017 nm(-1) [average (0.0214 +/- 0.0024) nm(-1)]. In Stage B, S values are 0.0187-0.0148 nm(-1) [average (0.0169 +/- 0.001) nm(-1)], 0.0179-0.0055 nm(-1) [average (0.0148 +/- 0.002) nm(-1)]. In Stage C, S values are 0.0208-0.0164 nm(-1) [average (0.0186 +/- 0.0009) nm(-1)], 0.0253-0.0161 nm(-1) [average (0.0197 +/- 0.002) nm(-1)]. The results can be concluded as: (1) Absorption coefficient of water in Taihu Lake, and its contribution to absorption of each component is less than that of water in Chaohu Lake, however the standardized absorption coefficient is larger than that in Chaohu Lake. (2) Both in Taihu Lake and Chaohu Lake, derivative spectra of CDOM absorption coefficient reached valley at 260nm, then rise to top at 290 nm, CDOM absorption coefficient can be delivered into three stages. (3) Generally speaking, content of CDOM in Taihu Lake is less than in Chaohu Lake. (4) pectrum slope (S value) of CDOM is related to composition of CDOM, when content of humic acid in CDOM gets higher, S value of Stage B is the most sensitive value, then is the S value of Stage C. Oppositely, S value of Stage B gets the most sensitive value, then is the S value of Stage A; the least sensitive value is in Stage B.
Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R
2017-08-01
A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
Conformal doping of topographic silicon structures using a radial line slot antenna plasma source
NASA Astrophysics Data System (ADS)
Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru
2014-06-01
Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.
Nonlinearly enhanced linear absorption under filamentation in mid-infrared (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shipilo, Daniil; Panov, Nicolay; Andreeva, Vera; Kosareva, Olga G.; Saletski, Alexander M.; Xu, Huai-Liang; Polynkin, Pavel
2017-05-01
The mid-infrared OPCPA-based laser facilities have recently reached the critical power for self-focusing in air [1]. This ensures the demonstration of the major difference between the mid- and near-infrared filamentation in air: the odd optical harmonics, harshly suppressed by the material dispersion and phase-mismatch in the near-infrared (800 nm), gain reliable energies in the mid-infrared (3.9 µm) filament [1,2]. Another issue that makes mid-infrared filamentation different from the near-infrared one is a lot of molecular vibrational lines belonging to atmospheric constituents and located in the mid-infrared range [3]. As the result the mid-infrared region of interest becomes subdivided into the bands of normal and anomalous dispersion, the former of which leads to the pulse splitting in temporal domain, while the latter produces the confined light bullet. We simulate the 3.9-µm filamentation using Forward Maxwell equation. We include the tunnel ionization and transient photocurrent as the collapse arresting mechanism, which balances dynamically the instantaneous third-order medium response (similarly to 800-nm filamentation). The key feature that allows us to quantify the losses due to absorption bands is the accurate account of the complex linear absorption index. The absorption index obtained from Mathar model [3] is interpolated to the fine frequency grid (step of about 0.1 THz), and the refractive index is matched according to Kramers-Krönig relations [4]. If the initial Gaussian pulse has a center wavelength of 3.9 µm and a duration of 80 fs FWHM, the energy loss in the carbon dioxide (CO_2) absorption band at 4.3 µm is about 1% in the linear propagation regime. But when we take the 80-mJ pulse (about 3 critical powers for self-focusing), the Kerr-induced spectral broadening develops significantly before the clamping level of intensity is reached. In the collimated beam geometry about 2% of the initial pulse energy is absorbed on the CO_2 band before the filament is formed. In the developed filament all the partial losses due to plasma, harmonic generation and absorption on vibrational lines grow up rapidly with the propagation distance, and the absorption on vibrational lines overwhelms all the rest ones. Indeed the new mechanism is revealed - the linear absorption is enhanced by the nonlinear spectral broadening. Thus, the nonlinearly enhanced linear absorption (NELA) is formed. The rotational transitions are estimated to consume as much energy as the free electron generation mechanism [5], which is less than NELA for 3.9-µm filament. In conclusion, in the 3.9-µm filament the excitations of molecular absorption lines are estimated to provide the major optical losses in the atmosphere as compared with plasma and high-frequency conversion. [1] A. V. Mitrofanov et al., Sci. Rep. 5, 8368 (2015). [2] P. Panagiotopoulos et al., Nat. Photonics 9, 543 (2015). [3] R. J. Mathar, Appl. Opt. 43, 928 (2004). [4] N. A. Panov et al., Phys. Rev. A 94, 041801 (2016). [5] S. Zahedpour et al., Phys. Rev. Lett. 112, 143601 (2014).
NASA Astrophysics Data System (ADS)
Tang, Jian-Hong; He, Yan-Qin; Shao, Jiang-Yang; Gong, Zhong-Liang; Zhong, Yu-Wu
2016-10-01
A star-shaped cyclometalated triruthenium complex 2(PF6)n (n = 3 and 4) with a triarylamine core was synthesized, which functions as a molecular switch with five well-separated redox states in both solution and film states. The single-crystal X-ray structure of 2(PF6)3 is presented. This complex displays four consecutive one-electron redox waves at +0.082, +0.31, +0.74, and +1.07 V vs Ag/AgCl. In each redox state, it shows significantly different NIR absorptions with λmax of 1590 nm for 24+, 1400 nm for 25+, 1060 nm for 26+, and 740 nm for 27+, respectively. Complex 24+ shows a single-line EPR signal at g = 2.060, while other redox states are all EPR inactive. The spin density distributions and NIR absorptions in different redox states were rationalized by DFT and TDDFT calculations. A vinyl-substituted triruthenium analogous 3(PF6)4 was prepared, which was successfully polymerized on ITO glass electrode surfaces by reductive electropolymerization. The obtained poly-3n+/ITO film was characterized by FTIR, AFM, and SEM analysis. It shows four well-defined redox couples and reversible multistate NIR electrochromism. In particular, a contrast ratio (ΔT%) up to 63% was achieved at the optic telecommunication wavelength (1550 nm).
[Study of cholesterol concentration based on serum UV-visible absorption spectrum].
Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui
2009-04-01
In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.
Comparison of excitation wavelengths for in vivo deep imaging of mouse brain
NASA Astrophysics Data System (ADS)
Wang, Mengran; Wu, Chunyan; Li, Bo; Xia, Fei; Sinefeld, David; Xu, Chris
2018-02-01
The attenuation of excitation power reaching the focus is the main issue that limits the depth penetration of highresolution imaging of biological tissue. The attenuation is caused by a combination of tissue scattering and absorption. Theoretical model of the effective attenuation length for in vivo mouse brain imaging has been built based on the data of the absorption of water and blood and the Mie scattering of a tissue-like phantom. Such a theoretical model has been corroborated at a number of excitation wavelengths, such as 800 nm, 1300 nm , and 1700 nm ; however, the attenuation caused by absorption is negligible when compared to tissue scattering at all these wavelength windows. Here we performed in vivo three-photon imaging of Texas Red-stained vasculature in the same mouse brain with different excitation wavelengths, 1700 nm, 1550 nm, 1500 nm and 1450 nm. In particular, our studies include the wavelength regime where strong water absorption is present (i.e., 1450 nm), and the attenuation by water absorption is predicted to be the dominant contribution in the excitation attenuation. Based on the experimental results, we found that the effective attenuation length at 1450 nm is significantly shorter than those at 1700 nm and 1300 nm. Our results confirm that the theoretical model based on tissue scattering and water absorption is accurate in predicting the effective attenuation lengths for in vivo imaging. The optimum excitation wavelength windows for in vivo mouse brain imaging are at 1300 nm and 1700 nm.
Lu, Luyao; Shi, Lingyan; Secor, Jeff; Alfano, Robert
2018-02-01
This study aimed to use self-absorption correction to determine the Raman enhancement of β-carotene. The Raman spectra of β-carotene solutions were measured using 488nm, 514nm, 532nm and 633nm laser beams, which exhibited significant resonance Raman (RR) enhancement when the laser energy approaches the electronic transition energy from S 0 to S 2 state. The Raman intensity and the actual resonance Raman gain without self-absorption from S 2 state by β-carotene were also obtained to evaluate the effect of self-absorption on RR scattering. Moreover, we observed the Raman intensity strength followed the absorption spectra. Our study found that, although 488nm and 514nm pumps seemed better for stronger RR enhancement, 532nm would be the optimum Raman pump laser with moderate RR enhancement due to reduced fluorescence and self-absorption. The 532nm excitation will be helpful for applying resonance Raman spectroscopy to investigate biological molecules in tissues. Copyright © 2017 Elsevier B.V. All rights reserved.
Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.
2012-01-01
Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.
NASA Astrophysics Data System (ADS)
Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.
2017-11-01
Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.
Zhang, Yun-lin; Qin, Bo-qiang; Ma, Rong-hua; Zhu, Guang-wei; Zhang, Lu; Chen, Wei-min
2005-03-01
Chromophoric dissolved organic matter (CDOM) represents one of the primary light-absorbing species in natural waters and plays a critical in determining the aquatic light field. CDOM shows a featureless absorption spectrum that increases exponentially with decreasing wavelength, which limits the penetration of biologically damaging UV-B radiation (wavelength from 280 to 320 nm) in the water column, thus shielding aquatic organisms. CDOM absorption measurements and their relationship with dissolved organic carbon (DOC), and fluorescence are presented in typical macrophyte and algae lake zone of Lake Taihu based on a field investigation in April in 2004 and lab analysis. Absorption spectral of CDOM was measured from 240 to 800 nm using a Shimadzu UV-2401PC UV-Vis recording spectrophotometer. Fluorescence with an excitation wavelength of 355 nm, an emission wavelength of 450 nm is measured using a Shimadzu 5301 spectrofluorometer. Concentrations of DOC ranged from 6.3 to 17.2 mg/L with an average of 9.08 +/- 2.66 mg/L. CDOM absorption coefficients at 280 nm and 355 nm were in the range of 11.2 - 32.6 m(-1) (average 17.46m(-1) +/- 5.75 m(-1) and 2.4 - 8.3 m(-1) (average 4.17m(-1) +/- 1.47 m(-l)), respectively. The values of the DOC-specific absorption coefficient at 355 nm ranged from 0.31 to 0.64 L x (mg x m)-1. Fluorescence emission at 450 nm, excited at 355 nm, had a mean value of 1.32nm(-1) +/- 0.84 nm(-1). A significant lake zone difference is found in DOC concentration, CDOM absorption coefficient and fluorescence, but not in DOC-specific absorption coefficient and spectral slope coefficient. This regional distribution pattern is in agreement with the location of sources of yellow substance: highest concentrations close to river mouth under the influence of river inflow, lower values in East Lake Taihu. The values of algae lake zone are obvious larger than those of macrophyte lake zone. In Meiliang Bay, CDOM absorption, DOC concentration and fluorescence tend to decreasing from inside to mouth of the Bay. The results show a good correlation between CDOM absorption and DOC coefficients during 280 - 500 nm short wavelength intervals. The R-square coefficient between CDOM absorption and DOC concentration decreases with the increase of wavelength from 280 to 500 nm. The significant linear regression correlations between fluorescence, DOC concentration and absorption coefficients were found at 355 nm. The exponential slope coefficients ranged from 13.0 to 16.4 microm(-1) with a mean value 14.37microm(-1) +/- 0.73microm(-1), 17.3microm(-1) - 20.3microm(-1) with a mean value 19.17microm(-1) +/- 0.84microm(-1) and 12.0microm(-1) - 15.8microm(-1) with a mean value 13.38microm(-1) +/- 0.82microm(-1) over the 280 - 500 nm, 280 - 360 nm and 360 - 440 nm intervals.
Spectroscopic identification of rare earth elements in phosphate glass
NASA Astrophysics Data System (ADS)
Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.
2018-01-01
In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.
Wide-band 'black silicon' with atomic layer deposited NbN.
Isakov, Kirill; Perros, Alexander Pyymaki; Shah, Ali; Lipsanen, Harri
2018-08-17
Antireflection surfaces are often utilized in optical components to reduce undesired reflection and increase absorption. We report on black silicon (b-Si) with dramatically enhanced absorption over a broad wavelength range (250-2500 nm) achieved by applying a 10-15 nm conformal coating of NbN with atomic layer deposition (ALD). The improvement is especially pronounced in the near infrared (NIR) range of 1100-2500 nm where absorption is increased by >90%. A significant increase of absorption is also observed over the ultraviolet range of 200-400 nm. Preceding NbN deposition with a nanostructured ALD Al 2 O 3 (n-Al 2 O 3 ) coating to enhance the NbN texture was also examined. Such texturing further improves absorption in the NIR, especially at longer wavelengths, strong absorption up to 4-5 μm wavelengths has been attested. For comparison, double side polished silicon and sapphire coated with 10 nm thick NbN exhibited absorption of only ∼55% in the NIR range of 1100-2500 nm. The results suggest a positive correlation between the surface area of NbN coating and optical absorption. Based on the wide-band absorption, the presented NbN-coated b-Si may be an attractive candidate for use in e.g. spectroscopic systems, infrared microbolometers.
NASA Astrophysics Data System (ADS)
Klett, Karl K., Jr.
2010-04-01
An analysis was performed, using MODTRAN, to determine the best filters to use for detecting the muzzle flash of an AK-47 in daylight conditions in the desert. Filters with bandwidths of 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 nanometers (nm) were analyzed to understand how the optical bandwidth affects the signal-to-solar clutter ratio. These filters were evaluated near the potassium D1 and D2 doublet emission lines that occur at 769.89 and 766.49 nm respectively that are observed where projectile propellants are used. The maximum spectral radiance, from the AK-47 muzzle flash, is 1.88 x 10-2 W/cm2 str micron, and is approximately equal to the daytime atmospheric spectral radiance. The increased emission, due to the potassium doublet lines, and decreased atmospheric transmission, due to oxygen absorption, combine to create a condition where the signal-to-solar clutter ratio is greater than 1. The 3 nm filter, has a signal-to-solar clutter ratio of 2.09 when centered at 765.37 nm and provides the best combination of both cost and signal sensitivity.
Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm
NASA Astrophysics Data System (ADS)
Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew
2016-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.
A shock-tube determination of the SiO /A 1 Pi - X 1 Sigma +/ transition moment
NASA Technical Reports Server (NTRS)
Park, C.; Arnold, J. O.
1978-01-01
The sum of the squares of the electronic transition moments for the A 1 Pi - X 1 Sigma + band system of SiO has been determined from absorption measurements conducted in the reflected-shock region of a shock tube. The test gas was produced by shock-heating a mixture of N2O, SiCl4, and Ar, and the spectra were recorded photographically in the 260-290-nm wavelength range. The values of the sum as a function of internuclear distance between 2.8 and 3.3 Bohr were determined by comparing the measured absorption spectrum with that produced by a line-by-line synthetic-spectrum calculation which accounted for instrumental broadening. The value of the sum so deduced at an internuclear distance of 3.0 Bohr was 1.0 + or - 0.3 atomic units.
Analysis of high-efficiency widely-tunable N-resonances in Cs vapor
NASA Astrophysics Data System (ADS)
Krasteva, A.; Gateva, S.; Tzvetkov, S.; Ghosh, P. N.; Sargsyan, A.; Cartaleva, S.
2018-03-01
The narrow-band coherent N-type resonance, promising for the development of advanced atomic clocks, can be considered as a type of three-photon resonance, where a two-photon Raman excitation is combined with a resonant optical pumping field. In this communication, we present an experimental study and a theoretical analysis related to three-photon, bi-chromatic excitation of Cs atomic vapor contained in an 8-mm long cell with 20 Torr of neon. If a coupling laser is fixed at a frequency that is lower by several GHz than the position of the absorption profile of the Fg = 4 set of transitions, and a probe laser is tuned over the D2 line (λ = 852 nm), a narrow high-contrast enhanced absorption N-resonance will be observed in the probe light profile, superimposed on the absorption profile of the Fg = 4 set of transitions. We present theoretical modeling aimed to clarify the processes behind the efficiency of the N-resonance preparation for different frequency positions of the coupling laser within the D2 line of Cs.
Dawson, Jay W.; Pax, Paul H.; Allen, Graham S.; ...
2016-12-08
A 9.3dB improvement in optical gain and a 100x improvement in total optical power over prior published experimental results from the 4F 3/2 to 4I 13/2 transition in an Nd 3+ doped fused silica optical fiber is demonstrated. This is enabled via an optical fiber waveguide design that creates high spectral attenuation in the 1050-1120nm-wavelength range, a continuous spectral filter for the primary 4F 3/2 to 4I 11/2 optical transition. A maximum output power at 1427nm of 1.2W was attained for 43mW coupled seed laser power and 22.2W of coupled pump diode laser power at 880nm a net optical gainmore » of 14.5dB. Reducing the coupled seed laser power to 2.5mW enabled the system to attain 19.3dB of gain for 16.5W of coupled pump power. Four issues limited results; non-optimal seed laser wavelength, amplified spontaneous emission on the 4F 3/2 to 4I 9/2 optical transition, low absorption of pump light from the cladding and high spectral attenuation in the 1350-1450nm range. Lastly, future fibers that mitigate these issues should lead to significant improvements in the efficiency of the laser amplifier, though the shorter wavelength region of the transition from 1310nm to >1350nm is still expected to be limited by excited state absorption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Jay W.; Pax, Paul H.; Allen, Graham S.
A 9.3dB improvement in optical gain and a 100x improvement in total optical power over prior published experimental results from the 4F 3/2 to 4I 13/2 transition in an Nd 3+ doped fused silica optical fiber is demonstrated. This is enabled via an optical fiber waveguide design that creates high spectral attenuation in the 1050-1120nm-wavelength range, a continuous spectral filter for the primary 4F 3/2 to 4I 11/2 optical transition. A maximum output power at 1427nm of 1.2W was attained for 43mW coupled seed laser power and 22.2W of coupled pump diode laser power at 880nm a net optical gainmore » of 14.5dB. Reducing the coupled seed laser power to 2.5mW enabled the system to attain 19.3dB of gain for 16.5W of coupled pump power. Four issues limited results; non-optimal seed laser wavelength, amplified spontaneous emission on the 4F 3/2 to 4I 9/2 optical transition, low absorption of pump light from the cladding and high spectral attenuation in the 1350-1450nm range. Lastly, future fibers that mitigate these issues should lead to significant improvements in the efficiency of the laser amplifier, though the shorter wavelength region of the transition from 1310nm to >1350nm is still expected to be limited by excited state absorption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxin; Wen, Wenhui; Wang, Kai
2016-01-11
1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersionmore » enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.« less
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.
Spectroscopy Study on the Location and Distribution of Eu3+ Ions in TiO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Tsuboi, Taiju; Setiawati, Elly; Kawano, Katsuyasu
2008-09-01
Eu3+- and non-doped TiO2 nanoparticles were synthesized by the sol-gel method at sintering temperatures of 500 or 900 °C. The photoluminescence spectra of these nanoparticles have been investigated at various temperatures between 290 and 12 K. Two kinds of Eu3+ photoluminescence spectra were observed. One spectrum consists of sharp lines; the other consists of broad bands. The former was obtained by indirect excitation into Eu3+ with light of wavelengths shorter than 330 nm, while the latter was obtained by direct excitation into Eu3+ with light of wavelengths longer than 380 nm which correspond to the Eu3+ absorption bands. In the latter case, different spectra were obtained depending on the excitation wavelength even in the same absorption band. It is suggested that the sharp line spectrum is caused by Eu3+ ions substituted for Ti4+ but with some distortion around the Eu3+ ions in the matrix of TiO2 due to the large difference in ionic radius between the Ti4+ and Eu3+ ions, which are mainly present in the interior region of the nanoparticle. The broad band spectrum is caused by the disordered Eu3+ ions with Eu-O-Ti bonds which are predominantly present in the near surface region.
Geodetic Mobil Solar Spectrometer for JASON Altimeter Satellite Calibration
NASA Astrophysics Data System (ADS)
Somieski, A.; Buerki, B.; Geiger, A.; Kahle, H.-G.; Becker-Ross, H.; Florek, S.; Okruss, M.
Atmospheric water vapor is a crucial factor in achieving highest accuracies for space geodetic measurements. Water vapor causes a delay of the propagation time of the altimeter satellite signal, which propagates into errors for the determination of surface heights. Knowledge of the precipitable water vapor (PW) enables a tropospheric correction of the satellite signal. Therefore, different remote sensing techniques have been pursued to measure the PW continuously. The prototype Geodetic Mobil Solar Spectrometer (GEMOSS) was developed at the Geodesy and Geodynamics Laboratory (GGL, ETH Zurich) in cooperation with the Institute of Spectrochemistry and Applied Spectroscopy (ISAS) (Berlin, Germany). A new optical approach allows the simultaneous measurement of numerous single absorption lines of water vapor in the wide range between 728 nm and 915 nm. The large number of available absorption lines increases the accuracy of the absolute PW retrievals considerably. GEMOSS has been deployed during two campaigns in Greece in the framework of the EU-project GAVDOS, which deals with the calibration of the altimeter satellite JASON. During the overfly of JASON, the ground-based determination of PW enables the correction of the satellite measurements due to tropospheric water vapor. Comparisons with radiometer and radiosondes data allow to assess the accuracy and reliability of GEMOSS. The instrumental advancement of GEMOSS is presented together with the results of the campaigns carried out.
NASA Technical Reports Server (NTRS)
Sburlan, S. E.; Farr, W. H.
2011-01-01
Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.
NASA Technical Reports Server (NTRS)
Browell, E. V.; Carter, A. F.; Shipley, S. T.; Siviter, J. H., Jr.; Hall, W. M.; Allen, R. J.; Butler, C. F.; Mayo, M. N.
1983-01-01
The hardware, operational characteristics, data processing system, and applications of the NASA airborne differential absorption lidar (DIAL) system are described. DIAL functions by assessing the average gas concentration over a specified range interval by analyzing the difference in lidar backscatter signals for laser wavelengths tuned on and off of the molecular absorption line of a gas under investigation. The system comprises two frequency-doubled Nd:YAG lasers pumping two high conversion efficiency tunable dye lasers emitting pulses separated by 100 microsec or less. The return signals are digitized and stored on magnetic tape. The signal collector consists of photomultiplier tubes implanted in a cassegrain telescope. Flight tests of the system involved on-measurements at 285.95 nm and off-measurements at 299.40 nm, which yielded a differential cross section of 1.74 x 10 to the -16th sq cm. In situ measurements with another plane at a nominal altitude of 3.2 km for comparison purposes showed accuracy to within 10% in and above the boundary layer. The system is considered as a test apparatus for more developed versions to be flown on the Shuttle
Abeywickrama, Chathura S; Baumann, Hannah J; Alexander, Nicolas; Shriver, Leah P; Konopka, Michael; Pang, Yi
2018-05-09
A series of benzothiazolium-based hemicyanines (3a-3f) have been synthesized. Evaluation of their photophysical properties shows that they exhibit improved photophysical characteristics. In comparison with the available commercial MitoTrackers, the new probes revealed an enhanced Stokes shift (Δλ ∼ 80 nm) and minimized aggregation for increased sensitivity. The synthesized probes are found to exhibit excellent selectivity for mitochondrial staining in an oligodendrocyte cell line. Probes show almost no fluorescence in aqueous environments, while the fluorescence is increased by ∼10-fold in organic solvents, making it possible for mitochondrial imaging without the need for post-staining washing. Since the absorption peaks of probes are close to the laser wavelengths of 561 and 640 nm on a commercial confocal microscope, e.g.3a exhibits λabs ∼ 620 nm and λem ∼ 702 nm, they could be useful probes for mitochondrial tracking in live cells.
Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm
NASA Technical Reports Server (NTRS)
Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.
1998-01-01
We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.
A Fast Hyperspectral Vector Radiative Transfer Model in UV to IR spectral bands
NASA Astrophysics Data System (ADS)
Ding, J.; Yang, P.; Sun, B.; Kattawar, G. W.; Platnick, S. E.; Meyer, K.; Wang, C.
2016-12-01
We develop a fast hyperspectral vector radiative transfer model with a spectral range from UV to IR with 5 nm resolutions. This model can simulate top of the atmosphere (TOA) diffuse radiance and polarized reflectance by considering gas absorption, Rayleigh scattering, and aerosol and cloud scattering. The absorption component considers several major atmospheric absorbers such as water vapor, CO2, O3, and O2 including both line and continuum absorptions. A regression-based method is used to parameterize the layer effective optical thickness for each gas, which substantially increases the computation efficiency for absorption while maintaining high accuracy. This method is over 500 times faster than the existing line-by-line method. The scattering component uses the successive order of scattering (SOS) method. For Rayleigh scattering, convergence is fast due to the small optical thickness of atmospheric gases. For cloud and aerosol layers, a small-angle approximation method is used in SOS calculations. The scattering process is divided into two parts, a forward part and a diffuse part. The scattering in the small-angle range in the forward direction is approximated as forward scattering. A cloud or aerosol layer is divided into thin layers. As the ray propagates through each thin layer, a portion diverges as diffuse radiation, while the remainder continues propagating in forward direction. The computed diffuse radiance is the sum of all of the diffuse parts. The small-angle approximation makes the SOS calculation converge rapidly even in a thick cloud layer.
NASA Astrophysics Data System (ADS)
Zhong, M.; Jang, M.
2013-08-01
Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.
NASA Technical Reports Server (NTRS)
Rall, Jonathan A. R.
1994-01-01
Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail; Akman, Hatice
2015-03-01
A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm-1 for the spectral range between 6890 and 6170 cm-1 is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm-1 is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm-1, a minimum detectable absorption coefficient of approximately 1×10-8 cm-1 is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10-10 cm-1 Hz-1/2. Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.
Bayrakli, Ismail; Akman, Hatice
2015-03-01
A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm⁻¹ for the spectral range between 6890 and 6170 cm⁻¹ is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm⁻¹ is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm⁻¹, a minimum detectable absorption coefficient of approximately 1×10⁻⁸ cm⁻¹ is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10⁻¹⁰ cm⁻¹ Hz(-1/2). Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.
Sahay, Peeyush; Scherrer, Susan T; Wang, Chuji
2013-06-26
The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261-275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261-266 nm range from 3.65 × 10⁻²¹ cm².molecule⁻¹ at 261 nm to 1.42 × 10⁻²¹ cm².molecule⁻¹ at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270-275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10⁻²³ cm².molecule⁻¹ at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed.
Near-IR laser frequency standard stabilized using FM-spectroscopy
NASA Astrophysics Data System (ADS)
Ružička, Bohdan; Číp, Ondřej; Lazar, Josef
2006-02-01
At the present time fiber-optics and optical communication are in rapid progress. Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-JR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelength-meters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.
NASA Technical Reports Server (NTRS)
Hofzumahaus, Andreas; Holland, Frank
1994-01-01
Laser-induced fluorescence (LIF) spectroscopy is a highly sensitive method for the direct in situ measurement of hydroxyl concentrations in the atmosphere. Its sensitivity and selectivity relies on the intense discrete UV-absorption lines of OH which are strongest around 282nm and 308nm. We have developed a LIF-instrument based on the low-pressure experiment (FAGE). However, we use 308nm instead of 282nm as excitation wavelength for OH, a concept that is also pursued by other groups. One advantage of the longer excitation wavelength is the higher detection sensitivity due to the about 6 times larger effective OH-fluorescence cross-section. Moreover, the O3/H2O-interference (OH self-generation by the laser) is about a factor of 200 smaller at 308nm than at 282nm. This keeps the interference level well below the projected detection limit of 10(exp 5) OH/cm(exp 3). Atmospheric HO2-radicals are detected by chemical conversion of HO2 into OH with NO.
Spectroscopy for Industrial Applications: High-Temperature Processes
NASA Astrophysics Data System (ADS)
Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan
2014-06-01
The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a small-scale low-temperature gasifier. A comparison between in situ, gas extraction and conventional gas sampling measurements is presented. Overall the presentation shows an example of successful industrial and academic partnerships within the framework of national and international ongoing projects.
NASA Technical Reports Server (NTRS)
Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.
2011-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, and in-situ measurements were made using its CO2 sensor and radiosondes. We have conducted an analysis of the ranging and IPDA lidar measurements from these four flights. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We used a cross-correlation approach to process the laser echo records. This was used to estimate the range to the scattering surface, to define the edges of the laser pulses and to determine echo pulse energy at each wavelength. We used a minimum mean square approach to fit an instrument response function and to solve for the best-fit CO2 absorption line shape. We then calculated the differential optical depth (DOD) of the fitted CO2 line. We computed its statistics at the various altitude steps, and compare them to the DODs calculated from spectroscopy based on HITRAN 2008 and the column conditions calculated from the airborne in-situ readings. The results show the lidar and in-situ measurements have very similar DOD change with altitude and greater than 10 segments per flight where the scatter in the lidar measurements are less than or equal to 1ppm. We also present the results from subsequent CO2 column absorption measurements, which were made with stronger detected signals during three flights on the NASA DC-8 over the southwestern US in during July 2010.
NASA Astrophysics Data System (ADS)
Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata
2014-11-01
In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).
Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku
2017-08-01
CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long-wavelength photons (500 nm < λ < 780 nm). Moreover, the light-driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gold reflective metallic gratings with high absorption efficiency
NASA Astrophysics Data System (ADS)
Zhang, Zhaojian; Liang, Linmei; Yang, Junbo
2017-10-01
Electromagnetic (EM) wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed and then transformed into ohmic heat or other forms of energy. Especially, EM absorbers based on metallic structures have distinct advantages in comparison with the traditional counterparts. Thus, they have different potential applications at different frequency ranges such as absorbing devices in solar energy harvesting systems. The reflective metallic grating is a kind of metallic EM absorbers and has the fascinating property of efficiently absorbing the incident light due to the excitation of surface plasmon polaritons (SPPs), consequently drawing more and more attention. In this paper, the absorption effect of a reflective metallic grating made of gold is studied by changing grating parameters such as the period, polarization direction of the incident light and so on. We use finite difference time-domain (FDTD) method to design the grating, and simulate the process and detect the absorption spectrum. In our design, the grating has rectangular shaped grooves and has the absorption efficiency 99% for the vertically incident transverse magnetic (TM) light at the wavelength of 818nm with the period of 800 nm, the width of 365 nm and the height of 34 nm. And then we find that the absorption spectrum is blue-shifted about 87 nm with decreasing period from 800 nm to700 nm and red-shifted about 14 nm with increasing the width of the block from 305 nm to 405 nm. The absorption becomes gradually weaker from 98% to almost zero with the polarization angle from 0° to 90°. Finally, we make a theoretical explanation to these phenomena in details. It is believed that the results may provide useful guidance for the design of EM wave absorbers with high absorption efficiency.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.
1992-01-01
Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.
Messman, J.D.; Rains, T.C.
1981-01-01
A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.
Chernyshova, I V; Ponnurangam, S; Somasundaran, P
2010-11-14
Application of in situ UV-Vis absorption spectroscopy and ex situ X-ray photoelectron spectroscopy (XPS) makes it possible to resolve the controversies about the electronic properties of hematite (α-Fe(2)O(3)) nanoparticles (NPs) and, on this basis, to rationalize the unusual dependence of aquatic (bio)chemistry of these NPs on NP size. 2-Line ferrihydrite (FH) is also included in the study as the end polymorph of the size-driven phase transformation of hematite NPs in aqueous media. It is shown that the absorption edge of all NPs studied is due to the direct O 2p-Fe 3d charge transfer (CT) process, while a manifold of weak bands superimposed onto two main p-d CT bands is attributed to the d-d ligand field transitions. The band gap decreases from 2.95 to 2.18 eV with increasing NP size from 7 nm to 120 nm. This effect is attributed to restoration of hematite lattice structure, which ultimately results in an increase in the O 2p-Fe 3d hybridization, stabilization of the valence band, and delocalization of valence electrons, as confirmed by XPS. Finally, we show that the optical effects such as the Mie resonance significantly distort absorption spectra of hematite NPs larger than ∼120 nm. Possible impacts of these findings on (photo)catalytic and biochemical properties of ferric (hydr)oxide NPs are discussed.
Mueller, Patrick; Zieger, Markus M; Richter, Benjamin; Quick, Alexander S; Fischer, Joachim; Mueller, Jonathan B; Zhou, Lu; Nienhaus, Gerd Ulrich; Bastmeyer, Martin; Barner-Kowollik, Christopher; Wegener, Martin
2017-06-27
Recent developments in stimulated-emission depletion (STED) microscopy have led to a step change in the achievable resolution and allowed breaking the diffraction limit by large factors. The core principle is based on a reversible molecular switch, allowing for light-triggered activation and deactivation in combination with a laser focus that incorporates a point or line of zero intensity. In the past years, the concept has been transferred from microscopy to maskless laser lithography, namely direct laser writing (DLW), in order to overcome the diffraction limit for optical lithography. Herein, we propose and experimentally introduce a system that realizes such a molecular switch for lithography. Specifically, the population of intermediate-state photoenol isomers of α-methyl benzaldehydes generated by two-photon absorption at 700 nm fundamental wavelength can be reversibly depleted by simultaneous irradiation at 440 nm, suppressing the subsequent Diels-Alder cycloaddition reaction which constitutes the chemical core of the writing process. We demonstrate the potential of the proposed mechanism for STED-inspired DLW by covalently functionalizing the surface of glass substrates via the photoenol-driven STED-inspired process exploiting reversible photoenol activation with a polymerization initiator. Subsequently, macromolecules are grown from the functionalized areas and the spatially coded glass slides are characterized by atomic-force microscopy. Our approach allows lines with a full-width-at-half-maximum of down to 60 nm and line gratings with a lateral resolution of 100 nm to be written, both surpassing the diffraction limit.
NASA Astrophysics Data System (ADS)
Kireev, S. V.; Shnyrev, S. L.; Sobolevsky, I. V.
2016-06-01
The letter reports on the development of a laser-induced fluorescence method for on-line selective measurement of 127I2, 129I2, 131I2, 129I127I, 127I131I, 129I131I isotopologue concentrations in gaseous media. The method is based on the excitation of molecular iodine isotopologues’ fluorescence by tunable diode laser (632-637 nm) radiation at three or four wavelengths corresponding to the 127I2, 131I2, 129I127I, 129I131I absorption line centers. Boundary relations for concentrations of simultaneously measured iodine isotopologues is about 10-5-10-6.
Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji
2013-01-01
The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261–275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261–266 nm range from 3.65 × 10−21 cm2·molecule−1 at 261 nm to 1.42 × 10−21 cm2·molecule−1 at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270–275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10−23 cm2·molecule−1 at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed. PMID:23803787
Flash photolysis and pulse radiolysis studies on collagen Type I in acetic acid solution.
Sionkowska, Alina
2006-07-03
An investigation of the photochemical properties of collagen Type I in acetic acid solution was carried out using nanosecond laser irradiation. The transient spectra of collagen solution excited at 266 nm show two bands. One of them with maximum at 295 nm and the second one with maximum at 400 nm. The peak at 400 nm is assigned to tyrosyl radicals. The first peak of the transient absorption spectra at 295 nm is probably due to photoionisation producing collagen radical cation. The transient for collagen solution in acetic acid at 640 nm was not observed. It is evidence that there is no hydrated electron in the irradiated collagen solution. The reactions of hydrated electrons and (*)OH radicals with collagen have been studied by pulse radiolysis. In the absorption spectra of products resulting from the reaction of collagen with e(aq)(-) no characteristic maximum absorption in UV and visible light region has been observed. In the absorption spectra of products resulting from the reaction of the hydroxyl radicals with collagen two bands have been observed. The first one at 320 nm and the second one at 405 nm. Reaction of (*)OH radicals with tyrosine residues in collagen chains gives rise to Tyr phenoxyl radicals (absorption at 400 nm).
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.
Determination of carrier diffusion length in p- and n-type GaN
NASA Astrophysics Data System (ADS)
Hafiz, Shopan; Metzner, Sebastian; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Karbaum, Christopher; Bertram, Frank; Christen, Jürgen; Gil, Bernard; Özgür, Ümit
2014-03-01
Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p- GaN or 1300 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photogeneration near the surface region by above bandgap excitation. Taking into consideration the absorption in the active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be about 92 ± 7 nm and 68 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively. Cross-sectional cathodoluminescence line-scan measurement was performed on a separate sample and the diffusion length in n-type GaN was measured to be 280 nm.
Absorption coefficients for water vapor at 193 nm from 300 to 1073 K
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.
1993-01-01
Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.
Optical properties of cytostatic drugs used in cancer treatment
NASA Astrophysics Data System (ADS)
Pascu, Mihail-Lucian; Mogos, Ioan; Enescu, Mironel; Staicu, Angela; Truica, Sorina; Voicu, Letitia; Gazdaru, Doina M.; Pascu, Mihaela O.; Radu, Alina
2001-10-01
A spectroscopical characterization of methotrexate, cytostatic drug used frequently in cancer therapy, was performed. The absorption, emission and excitation spectra were measured for methotrexate solutions in natural saline and sodium hydroxide at concentration in the range 10-5 M -10-6 M and pH 8.4. The absorption bands are noticed in the spectral range 250 nm - 450 nm. The fluorescence excitation was made at 340 nm and 370 nm; the fluorescence emission was detected in the spectral range 400 nm - 500 nm with a maximum at 450 nm. The behavior of absorption and fluorescence spectra of methotrexate solution exposed to uv-visible light was investigated. The irradiation was made using an Xe lamp (emission between 325 nm and 420 nm and power density of 11 mW/cm2). The exposure time was between 15 min. and 3 h. Major modifications on absorption bands for irradiation times longer than 1 hour were observed. Furthermore, the methotrexate solutions become strongly fluorescent after irradiation. The observed changes are not linear with the exposure time indicating complex photochemical processes which implies, at least, one intermediate product.
Production of Ar and Xe metastables in rare gas mixtures in a dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Mikheyev, Pavel A.; Han, Jiande; Clark, Amanda; Sanderson, Carl; Heaven, Michael C.
2017-12-01
Optically pumped all-rare-gas lasers (OPRGL) utilize metastable atoms of the heavier rare gases as lasing species. The required number density of metastables for efficient laser operation is 1012-1013 cm-3 in He buffer gas at pressures in the 400-1000 Torr range. Such metastable densities are easily produced in a nanosecond pulsed discharge, even at pressures larger than atmospheric, but problems appear when one is trying to achieve continuous production. The reason for low production efficiency in many types of continuous discharge at atmospheric pressure is the low value of the E/N parameter (<5-6 Td). In the present work, we have examined the possibility of using a dielectric barrier discharge (DBD) to provide near continuous, high densities of Ar and Xe metastables. Experiments were performed using a 20 kHz DBD in binary Ar and Xe mixtures with He, and in ternary Ar:Xe:He mixtures at pressures up to 1 atmosphere. Concentrations were measured by means of tunable diode laser absorption spectroscopy. Time-averaged [Ar(1s5)] and [Xe(1s5)] number densities on the order of 1012 cm-3 were readily achieved. The temporal behavior of [Xe(1s5)] throughout the DBD cycle was observed. The results demonstrate the feasibility of using DBDs for OPRGL development. Spectral scans over the absorption lines were also used to examine the pressure broadening coefficients for the 912.3 nm Ar line in He and the Xe 904.5 nm line in Ne and He.
Ultraviolet absorption spectrum of HOCl
NASA Technical Reports Server (NTRS)
Burkholder, James B.
1993-01-01
The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.
NASA Technical Reports Server (NTRS)
Joiner, Joanna (Editor); Yoshida, Yasuko; Vasilkov, A. P.; Middleton, E. M. (Editor); Campbell, P. K. E.; Yoshida, Y.; Huze, A.; Corp, L. A.
2012-01-01
Global mapping of terrestrial vegetation fluorescence from space has recently been accomplished with high spectral resolution (nu/nu greater than 35 000) measurements from the Japanese Greenhouse gases Observing SAellite (GOSAT). These data are of interest because they can potentially provide global information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling. Quantifying the impact of fluorescence on the O2-A band is important as this band is used for photon pathlength characterization in cloud- and aerosol-contaminated pixels for trace-gas retrievals including CO2. Here, we examine whether fluorescence information can be derived from space using potentially lower-cost hyperspectral instrumentation, i.e., more than an order of magnitude less spectral resolution (nu/nu approximately 1600) than GOSAT, with a relatively simple algorithm. We discuss laboratory measurements of fluorescence near one of the few wide and deep solar Fraunhofer lines in the long-wave tail of the fluorescence emission region, the calcium (Ca) II line at 866 nm that is observable with a spectral resolution of approximately 0.5 nm. The filling-in of the Ca II line due to additive signals from various atmospheric and terrestrial effects, including fluorescence, is simulated. We then examine filling-in of this line using the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) satellite instrument. In order to interpret the satellite measurements, we developed a general approach to correct for various instrumental artifacts that produce false filling-in of solar lines in satellite measurements. The approach is applied to SCIAMACHY at the 866 nm Ca II line and to GOSAT at 758 and 770 nm on the shoulders of the O2-A feature where there are several strong solar Fraunhofer lines that are filled in primarily by vegetation fluorescence. Finally, we compare temporal and spatial variations of SCIAMACHY additive signals with those of GOSAT and the Enhanced Vegetation Index (EVI) from the MODerate-resolution Imaging Spectroradiometer (MODIS). Although the derived additive signals from SCIAMACHY are extremely weak at 866 nm, their spatial and temporal variations are consistent with chlorophyll a fluorescence or another vegetation-related source. We also show that fillingin occurs at 866 nm over some barren areas, possibly originating from luminescent minerals in rock and soil.
FIBER AND INTEGRATED OPTICS: Defects of a phosphosilicate glass exposed to the 193-nm radiation
NASA Astrophysics Data System (ADS)
Larionov, Yu V.; Sokolov, V. O.; Plotnichenko, V. G.
2007-06-01
Induced absorption is measured in a hydrogen-unloaded phosphosilicate glass (PSG) in spectral ranges from 140 to 850 nm and from 1000 to 1700 nm before and after its exposure to the 193-nm radiation. It is shown that the induced-absorption bands in the range between 140 and 300 nm do not coincide with the bands observed earlier after exposing a PSG to X-rays. It is assumed that the photorefractive effect in the PSG is related to variations induced in the glass network rather than to defects responsible for the induced-absorption bands.
NASA Astrophysics Data System (ADS)
Tabataba-Vakili, Farsane; Roland, Iannis; Tran, Thi-Mo; Checoury, Xavier; El Kurdi, Moustafa; Sauvage, Sébastien; Brimont, Christelle; Guillet, Thierry; Rennesson, Stéphanie; Duboz, Jean-Yves; Semond, Fabrice; Gayral, Bruno; Boucaud, Philippe
2017-09-01
III-nitride-on-silicon L3 photonic crystal cavities with resonances down to 315 nm and quality factors (Q) up to 1085 at 337 nm have been demonstrated. The reduction of the quality factor with decreasing wavelength is investigated. Besides the quantum well absorption below 340 nm, a noteworthy contribution is attributed to the residual absorption present in thin AlN layers grown on silicon, as measured by spectroscopic ellipsometry. This residual absorption ultimately limits the Q factor to around 2000 at 300 nm when no active layer is present.
Absorption properties of alternative chromophores for use in laser tissue soldering applications.
Byrd, Brian D; Heintzelman, Douglas L; McNally-Heintzelman, Karen M
2003-01-01
The feasibility of using alternative chromophores in laser tissue soldering applications was explored. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40 (RFC), blue #1 (BFC), and green consisting of yellow #5 and blue #1 (GFC). Three experimental studies were conducted: (i) The absorption profiles of the five chromophores, when diluted in deionized water and when bound to protein, were recorded; (ii) the effect of accumulated thermal dosages on the absorption profile of the chromophores was evaluated; and (iii) the stability of the absorption profiles of the chromophore-doped solutions when exposed to ambient light for extended time periods was measured. The peak absorption wavelengths of ICG, MB, RFC, and BFC, were found to be 805 nm, 665 nm, 503 nm, and 630 nm respectively in protein solder. The GFC had two absorption peaks at 426 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of ICG and MB was dependent on the choice of solvent (deionized water or protein). In contrast, the peak absorption wavelengths of the three chromophores were not dependent on the choice of solvent. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperature up to 100 degrees C. A significant decrease in the absorption peak occurred in the ICG and MB samples when exposed to ambient light for a period of 7 days. Negligible change in absorption with accumulated thermal dose up to 100 degrees C or light dose (over a period of 84 days) was observed for any of the three food colorings investigated.
Zhang, Jian-Hua; Kong, Kai-Qing; He, Zheng-Ling; Liu, Zi-Li
2007-07-01
A multi-peaks Gaussian fitting on the line shape of visible spectra was used to determine the critical micelle concentration (CMC) of alkyl polyglucoside (APG) nonionic surfactant aqueous system such as octyl beta D mono-glucoside (C8 G1) and decyl beta D mono-glucoside (C10 G1). Visible electronic absorption spectra of a series of different concentration C8G1 or C10G1 with crystal violet (CV) used as a probe were measured respectively and characterized by the overlap of the principal peak with lambda(max) at 598-609 nm and a shoulder at 538-569 nm assigned to monomer and dimer CV respectively. A multi-peaks Gaussian fitting was used to interpret the spectra and give relative integrating absorbance (A2/A1) of two peaks, red-shift (deltalambda) and half-width. A sudden change occurred at CMC in the curves of the relative integrating absorbance (A2/A1), red-shift (deltalambda) and half-width (w1, w2) versus the C8G1 or C10G1 surfactant concentrations. Significantly the dependence of the CMC upon the half-width was ob-served for the first time and successfully used to determine CMC of nonionic surfactant such as APG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartnik, A.; Wachulak, P.; Fiedorowicz, H.
2013-11-15
In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUVmore » radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.« less
NASA Technical Reports Server (NTRS)
Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.
2013-01-01
We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.
Excited-state absorption and fluorescence dynamics of Er3+:KY3F10
NASA Astrophysics Data System (ADS)
Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.
2018-05-01
We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.
Brown carbon and internal mixing in biomass burning particles
Lack, Daniel A.; Langridge, Justin M.; Bahreini, Roya; Cappa, Christopher D.; Middlebrook, Ann M.; Schwarz, Joshua P.
2012-01-01
Biomass burning (BB) contributes large amounts of black carbon (BC) and particulate organic matter (POM) to the atmosphere and contributes significantly to the earth’s radiation balance. BB particles can be a complicated optical system, with scattering and absorption contributions from BC, internal mixtures of BC and POM, and wavelength-dependent absorption of POM. Large amounts of POM can also be externally mixed. We report on the unique ability of multi-wavelength photo-acoustic measurements of dry and thermal-denuded absorption to deconstruct this complicated wavelength-dependent system of absorption and mixing. Optical measurements of BB particles from the Four Mile Canyon fire near Boulder, Colorado, showed that internal mixtures of BC and POM enhanced absorption by up to 70%. The data supports the assumption that the POM was very weakly absorbing at 532 nm. Enhanced absorption at 404 nm was in excess of 200% above BC absorption and varied as POM mass changed, indicative of absorbing POM. Absorption by internal mixing of BC and POM contributed 19( ± 8)% to total 404-nm absorption, while BC alone contributed 54( ± 16)%. Approximately 83% of POM mass was externally mixed, the absorption of which contributed 27( ± 15)% to total particle absorption (at 404 nm). The imaginary refractive index and mass absorption efficiency (MAE) of POM at 404 nm changed throughout the sampling period and were found to be 0.007 ± 0.005 and 0.82 ± 0.43 m2 g-1, respectively. Our analysis shows that the MAE of POM can be biased high by up to 50% if absorption from internal mixing of POM and BC is not included. PMID:22927381
Brown carbon and internal mixing in biomass burning particles.
Lack, Daniel A; Langridge, Justin M; Bahreini, Roya; Cappa, Christopher D; Middlebrook, Ann M; Schwarz, Joshua P
2012-09-11
Biomass burning (BB) contributes large amounts of black carbon (BC) and particulate organic matter (POM) to the atmosphere and contributes significantly to the earth's radiation balance. BB particles can be a complicated optical system, with scattering and absorption contributions from BC, internal mixtures of BC and POM, and wavelength-dependent absorption of POM. Large amounts of POM can also be externally mixed. We report on the unique ability of multi-wavelength photo-acoustic measurements of dry and thermal-denuded absorption to deconstruct this complicated wavelength-dependent system of absorption and mixing. Optical measurements of BB particles from the Four Mile Canyon fire near Boulder, Colorado, showed that internal mixtures of BC and POM enhanced absorption by up to 70%. The data supports the assumption that the POM was very weakly absorbing at 532 nm. Enhanced absorption at 404 nm was in excess of 200% above BC absorption and varied as POM mass changed, indicative of absorbing POM. Absorption by internal mixing of BC and POM contributed 19( ± 8)% to total 404-nm absorption, while BC alone contributed 54( ± 16)%. Approximately 83% of POM mass was externally mixed, the absorption of which contributed 27( ± 15)% to total particle absorption (at 404 nm). The imaginary refractive index and mass absorption efficiency (MAE) of POM at 404 nm changed throughout the sampling period and were found to be 0.007 ± 0.005 and 0.82 ± 0.43 m(2) g(-1), respectively. Our analysis shows that the MAE of POM can be biased high by up to 50% if absorption from internal mixing of POM and BC is not included.
Broad Balmer-Line Absorption in SDSS J172341.10+555340.5
NASA Astrophysics Data System (ADS)
Aoki, Kentaro
2010-10-01
We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.
Brown carbon absorption in the red and near-infrared spectral region
NASA Astrophysics Data System (ADS)
Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András
2017-06-01
Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.
NASA Technical Reports Server (NTRS)
Carlon, Nabilah Rontu; Papanastasiou, Dimitrios K.; Fleming, Eric L.; Jackman, Charles H.; Newman, Paul A.; Burkholder, James B.
2010-01-01
Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at 27 temperatures in the range 210-350 K. In addition, UV absorption spectra of CCl4 are reported between 200-235 nm as a function of temperature (225-350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5-7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in 37 atmospheric model calculations is presented.
Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; Lentz, Rachel C F
2009-08-01
The authors have developed an integrated remote Raman and laser-induced breakdown spectroscopy (LIBS) system for measuring both the Raman and LIBS spectra of minerals with a single 532 nm laser line of 35 mJ/pulse and 20 Hz. The instrument has been used for analyzing both Raman and LIBS spectra of carbonates, sulfates, hydrous and anhydrous silicates, and iron oxide minerals in air. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10x beam expander to a 529-microm diameter spot on a mineral surface located at 9 m, it is possible to measure simultaneously both the remote Raman and LIBS spectra of calcite, gypsum and olivine by adjusting the laser power electronically. The spectra of calcite, gypsum, and olivine contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of magnetite and hematite at 9 m because of strong absorption of 532 nm laser radiation and low intensities of Raman lines from these minerals. The remote LIBS spectra of both magnetite and hematite contain common iron emission lines but show difference in the minor amount of Li present in these two minerals. Remote Raman and LIBS spectra of a number of carbonates, sulfates, feldspars and phyllosilicates at a distance of 9 m were measured with a 532-nm laser operating at 35 mJ/pulse and by changing photon flux density at the sample by varying the spot diameter from 10 mm for Raman to 530 microm for LIBS measurements. The complementary nature of these spectra is highlighted and discussed. The combined Raman and LIBS system can also be re-configured to perform micro-Raman and micro-LIBS analyses, which have applications in trace/residue analysis and analysis of very small samples in the nano-gram range.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Parkinson, W. H.; Freeman, D. E.
1992-01-01
An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.
SHARDS: Survey for High-z Absorption Red & Dead Sources
NASA Astrophysics Data System (ADS)
Pérez-González, P. G.; Cava, A.
2013-05-01
SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).
Planning the 8-meter Chinese Giant Solar Telescope
NASA Astrophysics Data System (ADS)
Beckers, Jacques M.; Liu, Z.; Deng, Y.; Ji, H.
2013-07-01
The Chinese Giant Solar Telescope (CGST) will be a diffraction limited solar telescope optimized for the near-infrared (NIR) spectral region (0.8 - 2.5 microns). Its diffraction limit will be reached by the incorporation of Multi-Conjugate Adaptive Optics (MCAO) enhanced by image restoration techniques to achieve uniform (u.v) plane coverage over the angular spatial frequency region allowed by its 8-meter aperture. Thus it will complement the imaging capabilities of 4-meter telescopes being planned elsewhere which are optimized for the visible (VIS) spectral region (300 - 1000 nm) In the NIR spectral regions the CGST will have access to unique spectral features which will improve the diagnostics of the solar atmosphere. These include the CaII lines near 860 nm , the HeI lines near 1083 nm, the 1074 nm FeXIII coronal lines, the large Zeeman-split FeI line at 1548 nm, and (v) the H- continuum absorption minimum at 1.6 micron. Especially in sunspot umbrae the simultaneous observation of continua and lines across the NIR spectral range will cover a substantial depth range in the solar atmosphere. Of course the mid- and far- infrared regions are also available for unequalled high-angular resolution solar observations, for example, in the Hydrogen Bracket lines, CO molecular bands, and the MgI emission line at 12.3 microns. The CGST is a so-called ring telescope in which the light is captured by a 1 meter wide segmented ring or by a ring of 7 smaller off-axis aperture telescopes. The open central area of the telescope is large. The advantages of such a ring configuration is that (a) it covers all the spatial frequencies out to those corresponding to its outer diameter, (b) its circular symmetry makes it polarization neutral, (c) its large central hole helps thermal control, and (d) it provides ample space for the MCAO system and instrumentation in the Gregorian focus. Even though optimized for the NIR, we expect to use the CGST also at visible wavelengths in the so-called “Partial Adaptive Optics” (PAO) mode (Applied Optics 31,424,1992) to obtain angular resolution twice that of a 4-meter telescope if their observations indicate that higher resolution is desirable. The CGST is a Chinese solar community project.
NASA Technical Reports Server (NTRS)
Ingold, T.; Schmid, B.; Maetzler, C.; Demoulin, P.; Kaempfer, N.
2000-01-01
A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996-1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18-29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4. and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the ITS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the sun photometers (SPM) with the ITS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used.
NASA Astrophysics Data System (ADS)
Stockwell, C.; Jayarathne, T. S.; Goetz, D.; Simpson, I. J.; Selimovic, V.; Bhave, P.; Blake, D. R.; Cochrane, M. A.; Ryan, K. C.; Putra, E. I.; Saharjo, B.; Stone, E. A.; DeCarlo, P. F.; Yokelson, R. J.
2017-12-01
Field measurements were conducted in Nepal and in the Indonesian province of Central Kalimantan to improve characterization of trace gases and aerosols emitted by undersampled combustion sources. The sources targeted included cooking with a variety of stoves, garbage burning, crop residue burning, and authentic peat fires. Trace gas and aerosol emissions were studied using a land-based Fourier transform infrared spectrometer, whole air sampling, photoacoustic extinctiometers (405 and 870nm), and filter samples that were analyzed off-line. These measurements were used to calculate fuel-based emission factors (EFs) for up to 90 gases, PM2.5, and PM2.5 constituents. The aerosol optical data measured included EFs for the scattering and absorption coefficients, the single scattering albedo (at 870 and 405 nm), as well as the absorption Ångström exponent. The emissions varied significantly by source, although light absorption by both brown and black carbon (BrC and BC, respectively) was important for all non-peat sources. For authentic peat combustion, the emissions of BC were negligible and absorption was dominated by organic aerosol. The field results from peat burning were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat and compare well to the limited data available from other field studies. The EFs can be used with estimates of fuel consumption to improve regional emissions inventories and assessments of the climate and health impacts of these undersampled sources.
Temperature-dependent absorption cross sections for hydrogen peroxide vapor
NASA Technical Reports Server (NTRS)
Nicovich, J. M.; Wine, P. H.
1988-01-01
Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.
Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A
2017-06-01
Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.
NASA Astrophysics Data System (ADS)
Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y.
2013-12-01
Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan climate observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 nm and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately two to four days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 nm and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and pyrolized OC compounds. Under sulfate dominant conditions, the sulfate coating on BC particles contributed to the absorption of the longer visible light. Consequently, single scattering albedo (SSA) was higher for the 880 nm group than for the 370 nm group, emphasizing that the relative abundances of absorbing and scattering constituents are also important in estimating the climate effect of aerosols.
A UV-Vis photoacoustic spectrophotometer.
Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D
2014-06-17
A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.
EUV lithography using water-developable resist material derived from biomass
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ichikawa, Takumi; Sekiguchi, Atsushi; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2013-03-01
A water-developable resist material which had specific desired properties such as high sensitivity of 5.0 μC/cm2, thermal stability of 160 °C, suitable calculated linear absorption coefficients of 13.5 nm, and acceptable CF4 etch selectivity was proposed using EB lithography for EUV lithography. A water developable resist material derived from biomass is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of trimethylphenylammonium hydroxide. 100 nm line and 400 nm space patterning images with exposure dose of 5.0 μC/cm2 were provided by specific process conditions of EB lithography. The developed trehalose derivatives with hydroxyl groups and EB sensitive groups in the water-developable resist material derived from biomass were applicable to future development of high-sensitive and resolution negative type of water-developable resist material as a novel chemical design.
Visible absorption properties of radiation exposed XR type-T radiochromic film.
Butson, Martin J; Cheung, Tsang; Yu, Peter K N
2004-10-07
The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.
2013-02-11
PPG) is measuring this size using light. A particular and ubiquitous application of PPG is in pulse oximetry, whereby the oxygenation saturation of...arterial blood is measured. Pulse oximetry requires absorption measurements of oxygenated (HbO2) and deoxygenated hemoglobin (Hb) at 940 nm (near-IR...relative quantity of Hb to HbO2 (i.e., SpO2) may be determined noninvasively. The advent of such a noninvasive arterial oxygen saturation measurement was a
Development of Advanced Laser Diode Sources
NASA Technical Reports Server (NTRS)
Coleman, J. J.; Papen, G. C.
1998-01-01
The design and operation of InGaAs-GaAs-AlGaAs asymmetric cladding ridge waveguide distributed Bragg reflector lasers is presented. Targeted for the remote sensing of water vapor with absorption lines in the lambda approximately 930 nm region, these devices operate CW with threshold currents as low as 11 MA and slope efficiencies as high as 0.37 W/A. Tbey also operate with over 30-dB side-mode suppression, and the typical CW characteristic temperature, T(sub o), is 95 K.
High temperature infrared absorption cross sections of methane near 3.4 μm in Ar and CO2 mixtures
NASA Astrophysics Data System (ADS)
Koroglu, Batikan; Neupane, Sneha; Pryor, Owen; Peale, Robert E.; Vasu, Subith S.
2018-02-01
The absorption cross-sections of CH4 at two wavelengths in the mid-IR region: λpeak = 3403.4 nm and λvalley = 3403.7 nm were measured. Data were taken using three different compositions of non-reactive gas mixtures comprising CH4/Ar/CO2 between 700 < T < 2000 K and 0.1 < P < 1.5 atm in a shock tube utilizing a continuous-wave distributed-feedback quantum cascade laser. Also, broadband room temperature methane cross section measurements were performed using a Fourier transform infrared spectrometer and the cascade laser to gain a better insight into the changes of the line shapes in various bath gasses (Ar, CO2, and N2). An application of the high-temperature cross-section data was demonstrated to determine the concentration of methane during oxy-methane combustion in a mixture of CO2, O2, and Ar. Current measurements will be valuable addition to the spectroscopy database for methane- an important fuel used for power generation and heating around the world.
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.
2012-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The measurements showed 1 ppm random errors for 8-10 km altitudes and 30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2lidar on the NASA DC-8 and added an 02lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. We demonstrated measurements over the California Central Valley, to stratus cloud tops over the Pacific Ocean, over mountain regions with snow, and over several areas with broken clouds. Details of the lidar measurements and their analysis will be described in the presentation.
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.
2012-01-01
We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The measurements showed -1 ppm random errors for 8-10 km altitudes and -30 sec averaging times. For the 2010 ASCENDS campaigns we flew the CO2 lidar on the NASA DC-8 and added an O2 lidar channel. During July 2010 we made measurements of CO2 and O2 column absorption during longer flights over Railroad Valley NV, the Pacific Ocean and over Lamont OK. CO2 measurements were made with 30 steps/scan, 300 scans/sec and improved line resolution and receiver sensitivity. Analysis of the 2010 CO2 measurements shows the expected -linear change of DOD with altitude. For measurements at altitudes> 6 km the random errors were 0.3 ppm for 80 sec averaging times. For the summer 2011 ASCENDS campaigns we made further improvements to the lidar's CO2 line scan and receiver sensitivity. The seven flights in the 2011 Ascends campaign were flown over a wide variety of surface and cloud conditions in the US, which produced a wide variety of lidar signal conditions. Details of the lidar measurements and their analysis will be described in the presentation.
Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing
NASA Astrophysics Data System (ADS)
Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi
2017-03-01
We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.
Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K
NASA Astrophysics Data System (ADS)
Axson, J. L.; Washenfelder, R. A.; Kahan, T. F.; Young, C. J.; Vaida, V.; Brown, S. S.
2011-11-01
We report the ozone absolute absorption cross section between 350-470 nm, the minimum between the Huggins and Chappuis bands, where the ozone cross section is less than 10-22 cm2. Ozone spectra were acquired using an incoherent broadband cavity enhanced absorption spectrometer, with three channels centered at 365, 405, and 455 nm. The accuracy of the measured cross section is 4-30%, with the greatest uncertainty near the minimum absorption at 375-390 nm. Previous measurements vary by more than an order of magnitude in this spectral region. The measurements reported here provide much greater spectral coverage than the most recent measurements. The effect of O3 concentration and water vapor partial pressure were investigated, however there were no observable changes in the absorption spectrum most likely due to the low optical density of the complex.
NASA Astrophysics Data System (ADS)
Dyu, V. G.; Kisteneva, M. G.; Shandarov, S. M.; Khudyakova, E. S.; Smirnov, S. V.; Kargin, Yu. F.
Changes in the spectral dependences of the optical absorption induced in the bismuth titanium oxide crystal doped by aluminum as a result of sequential exposition to cw laser radiation first with the wavelength λi = 532 nm and then with the longer wavelength λn = 633, 655, 663, 780, 871, or 1064 nm are investigated. Our experiments show that after the short-wavelength exposition to radiation with λi = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of the initial crystal state. The subsequent exposition to longer-wavelength radiation leads to enhanced transmittance of the crystal in the examined spectral range. A maximum decrease of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λn = 663 nm.
NASA Astrophysics Data System (ADS)
Makoui, Anali
We have investigated the use of deep UV laser induced fluorescence for the sensitive detection and spectroscopic lifetime studies of terbium doped dipicolinic acid (DPA-Tb) and used this to study the optical characteristics of DPA which is a chemical surrounding most bacterial spores. Background absorption spectra, fluorescence spectra, and Excitation Emission Matrix (EEM) spectra were made of the DPA-Tb complex, using both fixed 266 nm wavelength and tunable (220 nm--280 nm) UV laser excitations. Of importance, the fluorescence lifetimes of the four main fluorescence peaks (488 nm, 543 nm, 581 nm, and 618 nm) of the DPA-Tb complex have been measured for the first time to our knowledge. The lifetimes of all the fluorescing lines have been measured as a function of DPA-Tb concentration, solvent pH, and solvent composition, including that for the weakest fluorescing line of DPA-Tb at 618 nm. In addition, a new spectroscopic lifetime measurement technique, which we call "Transient Fluorescence Spectroscopy", was developed. In this technique, a weak, quasi-CW, amplitude modulated UV laser (8.5 kHz) was used to measure the lifetimes of the fluorescence lines, and yields insight into energy transfer and excitation lifetimes within the system. This technique is especially useful when a high power laser is not either available or not suitable. In the latter case, this would be when a high power pulsed deep-UV laser could produce bleaching or destruction of the biological specimen. In addition, this technique simulated the excitation and fluorescence emission of the DPA-Tb using a 4-level energy model, and solved the dynamic transient rate equations to predict the temporal behavior of the DPA-Tb emitted fluorescence. Excellent agreement between the experiments and the simulation were found. This technique has the potential to provide a more accurate value for the fluorescence lifetime values. In addition, with the use of asymmetric excitation waveforms, the dynamic transient rate equation analysis may allow for detailed studies of selected transfer mechanisms in a wide range of other spectroscopic applications including rare-earth solid-state lasing materials and biological samples.
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
NASA Astrophysics Data System (ADS)
DeCarlo, P. F.; Goetz, J. D.; Giordano, M.; Stockwell, C.; Maharjan, R.; Adhikari, S.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Jayarathne, T. S.; Stone, E. A.; Yokelson, R. J.
2017-12-01
Characterization of aerosol emissions from prevalent but under sampled combustion sources in South Asia was performed as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) in April 2015. Targeted emission sources included cooking stoves with a variety of solid fuels, brick kilns, garbage burning, crop-residue burning, diesel irrigation pumps, and motorcycles. Real-time measurements of submicron non-refractory particulate mass concentration and composition were obtained using an Aerodyne mini Aerosol Mass Spectrometer (mAMS). Speciated PM1 mass emission factors were calculated for all particulate species (e.g. organics, sulfates, nitrates, chlorides, ammonium) and for each source type using the carbon mass balance approach. Size resolved emission factors were also acquired using a novel high duty cycle particle time-of-flight technique (ePTOF). Black carbon and brown carbon absorption emission factors and absorption Angström exponents were measured using filter loading and scattering corrected attenuation at 370 nm and 880 nm with a dual spot aethalometer (Magee Scientific AE-33). The results indicate that open garbage burning is a strong emitter of organic aerosol, black carbon, and internally mixed particle phase hydrogen chloride (HCl). Emissions of HCl were attributed to the presence chlorinated plastics. The primarily coal fired brick kilns were found to be large emitters of sulfate but large differences in the organic and light absorbing component of emissions were observed between the two kiln types investigated (technologically advanced vs. traditional). These results, among others, bring on-line and field-tested aerosol emission measurements to an area of atmoshperic research dominated by off-line or laboratory based measurements.
Light absorption properties of brown carbon over the southeastern Tibetan Plateau.
Zhu, Chong-Shu; Cao, Jun-Ji; Huang, Ru-Jin; Shen, Zhen-Xing; Wang, Qi-Yuan; Zhang, Ning-Ning
2018-06-01
We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365nm (b abs365 ) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365nm compared to WS-BrC. The absorption at 550nm appears lower compared to that of 365nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Ångström exponent (AAE, 365-550nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365nm (MAC 365 ) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.
Direct and Quantitative Photothermal Absorption Spectroscopy of Individual Particulates
2013-01-01
1(a). By taking the ratio of the spectral absorption efficiency of the microwire to the corresponding volumetri - cally equivalent thin film, an...of D¼ 983 nm. For further comparison, the theoretical spectral absorption efficiency for a volumetri - cally equivalent (t¼ 983p/4 nm) thin film, Qabs
Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles.
Sun, Hui; Wu, Hsuan-Chung; Chen, Sheng-Chi; Ma Lee, Che-Wei; Wang, Xin
2017-12-01
Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through radio frequency (RF) sputtering at room temperature. The influence of the film's composition and the annealing temperature on the film's optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer crystallizes into NiSi 2 phase, whereas Al atoms diffuse through the whole film during the annealing process. Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while that of AlSi/Si films obviously degrades.
NASA Astrophysics Data System (ADS)
Stark, G.; Smith, P. L.; Yoshino, K.; Rufus, J.; Huber, K. P.
2001-11-01
The analyses of VUV occultation measurements of the N2-rich atmospheres of Titan and Triton are hampered by the lack of fundamental spectroscopic data for N2. In particular, there is a need for reliable photoabsorption f-values and line widths for the ~ 100 electronic bands of N2 in the 80 to 100 nm wavelength region. As part of our continuing program of laboratory measurements and analyses of the N2 VUV absorption spectrum, we present the results of new measurements of individual line strengths and widths in selected bands. These results indicate that within a number of individual bands there are significant departures from the predicted line strength distributions based on isolated band models. New line width measurements in the 95 to 100 nm region are also presented and compared to other values found in the literature. We have continued to compile on-line molecular spectroscopic atlas based on our N2 laboratory data: http://cfa-www.harvard.edu/amdata/ampdata/N2ARCHIVE/n2home.html. The archive includes published and unpublished 14N2, 14N15N, and 15N2 line lists and spectroscopic identifications, excited state energy levels, band and line f-values, a summary of published band f-value and line width measurements, and a cross-referenced summary of the relevant N2 literature. The listings are searchable by wavelength interval or band identification and are suitable for down-loading in a convenient format. We gratefully acknowledge funding support from NASA grant NAG5-9059 and the Smithsonian Institution Atherton-Seidel grant program.
NASA Astrophysics Data System (ADS)
Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y. J.
2014-08-01
Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan Climate Observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately 2 to 4 days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and pyrolized OC compounds. Under sulfate dominant conditions, the sulfate coating on BC particles likely contributed to the absorption of the longer visible light. Consequently, single scattering albedo (SSA) was higher for the 880 nm group than for the 370 nm group, emphasizing that the relative abundances of absorbing and scattering constituents are also important in estimating the climate effect of aerosols.
Lin, Chenxi; Povinelli, Michelle L
2009-10-26
In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.
The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Orphal, J.; Fellows, C. E.; Flaud, P.-M.
2003-02-01
The visible absorption spectrum of the nitrate radical NO3 has been measured using high-resolution Fourier transform spectroscopy. The spectrum was recorded at 294 K using a resolution of 0.6 cm-1 (corresponding to 0.026 nm at 662 nm) and covers the 12600-21500 cm-1 region (465-794 nm). Compared to absorption spectra of NO3 recorded previously, the new data show improvements concerning absolute wavelength calibration (uncertainty 0.02 cm-1), and spectral resolution. A new interpretation and model of the temperature dependence of the strong (0-0) band around 662 nm are proposed. The results are important for long-path tropospheric absorption measurements of NO3 and optical remote sensing of the Earth's atmosphere from space.
Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K
NASA Astrophysics Data System (ADS)
Schulz, C.; Koch, J. D.; Davidson, D. F.; Jeffries, J. B.; Hanson, R. K.
2002-03-01
Spectrally resolved UV absorption cross-sections between 190 and 320 nm were measured in shock-heated CO 2 between 880 and 3050 K and H 2O between 1230 and 2860 K. Absorption spectra were acquired with 10 μs time resolution using a unique kinetic spectrograph, thereby enabling comparisons with time-dependent chemical kinetic modeling of post-shock thermal decomposition and chemical reactions. Although room temperature CO 2 is transparent (σ<10 -22 cm2) at wavelengths longer than 200 nm, hot CO 2 has significant absorption (σ>10 -20 cm2) extending to wavelengths longer than 300 nm. The temperature dependence of CO 2 absorption strongly suggests sharply increased transition probabilities from excited vibrational levels.
Temperature dependence of the ClONO2 UV absorption spectrum
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.
1994-01-01
The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).
Protection of Nomex from Ultraviolet Degradation
1977-03-01
absorbs UV radiation beginning at approximately 390 nano- meters (nm) and extending into the near UV with a peak at approximately 360 nm. This absorption is...the region near 290 nm [ 5 ]. Sunlight is much richer in radiation at 360 nm than at 290 nm and this fact undoubt- edly accounts for the much greater...function as UV screening agents. The absorption spectrum of Nomex in the near UV and visible region which is responsible for Nomex photodegra- dation is
Mei, Liang; Guan, Peng; Kong, Zheng
2017-10-02
Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO 2 DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO 2 absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO 2 concentrations on a near-horizontal path are obtained by the NO 2 DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO 2 . The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO 2 remote sensing applications.
VUV pressure-broadening in sulfur dioxide
NASA Astrophysics Data System (ADS)
Lyons, J. R.; Herde, H.; Stark, G.; Blackie, D. S.; Pickering, J. C.; de Oliveira, N.
2018-05-01
In the pre-oxygenated ancient Earth atmosphere, the lack of O3 absorption allowed ultraviolet photodissociation of numerous molecules in the troposphere and lower stratosphere. For molecules with narrow line-type absorption spectra, optically thick columns would have produced isotope fractionation due to self-shielding of the most abundant isotopologues. In the lower atmosphere pressure broadening would modify, and in some cases, eliminate these isotope signatures. Shielding is particularly important for quantifying or constraining photolysis-derived isotope effects, such as those believed to explain the sulfur mass-independent fractionation in Archean sedimentary rocks. Here, we report pressure broadening coefficients for natural abundance SO2 in theC˜1B2 ←X˜1A1 band system at 215 nm. For gas bath pressures up to 750 mbar, we find broadening coefficients of 0.30 ± 0.03 cm-1 atm-1 and 0.40 ± 0.04 cm-1 atm-1 for N2 and CO2, respectively. These broadening coefficients are ∼30% larger than SO2 broadening coefficients previously measured in the B˜ -X˜ bands at 308 nm. Because of the highly congested nature of the C˜ -X˜ bands, pressure broadening in the early Earth troposphere will cause line profile overlap that will diminish the self-shielding-derived mass-independent isotope fractionation for optically thick SO2 columns. Thus, non-explosive volcanic eruptions may not have left a signature of SO2 self-shielding in the ancient sedimentary rock record.
NASA Astrophysics Data System (ADS)
Shandarov, S. M.; Dyu, V. G.; Kisteneva, M. G.; Khudyakova, E. S.; Smirnov, S. V.; Akrestina, A. S.; Kargin, Yu F.
2017-02-01
Modifications of the spectral dependences of the optical absorption induced in the Bi12TiO20:Al crystal as a result of sequential exposition to cw laser radiation first with the wavelength λ g = 532 nm and then with the longer wavelength λ l,n = 588, 633, 655, 658, 663, 700, 780, 871, or 1064 nm are investigated. We revealed that after the short-wavelength exposition to radiation with λg = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of a prehistory. The subsequent exposition to longer-wavelength radiation leads to bleaching of the crystal in the examined spectral range. A maximum diminishing of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λ l,5 = 663 nm. To describe the experimentally observed reversible changes in the optical absorption spectrum in the Bi12TiO20:Al we use the impurity absorption model that takes into account the photoinduced transitions between two metastable states of a deep defect center leading to the change of its position in the crystal lattice under conditions of strong lattice relaxation.
NASA Astrophysics Data System (ADS)
Nitz, D. E.; Curry, J. J.; Buuck, M.; DeMann, A.; Mitchell, N.; Shull, W.
2018-02-01
We report radiative transition probabilities for 5029 emission lines of neutral cerium within the wavelength range 417-1110 nm. Transition probabilities for only 4% of these lines have been previously measured. These results are obtained from a Boltzmann analysis of two high resolution Fourier transform emission spectra used in previous studies of cerium, obtained from the digital archives of the National Solar Observatory at Kitt Peak. The set of transition probabilities used for the Boltzmann analysis are those published by Lawler et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 085701). Comparisons of branching ratios and transition probabilities for lines common to the two spectra provide important self-consistency checks and test for the presence of self-absorption effects. Estimated 1σ uncertainties for our transition probability results range from 10% to 18%.
The absorption budget of fresh biomass burning aerosol from realistic laboratory fires
NASA Astrophysics Data System (ADS)
Wagner, N. L.; Adler, G. A.; Franchin, A.; Lamb, K.; Manfred, K.; Middlebrook, A. M.; Selimovic, V.; Schwarz, J. P.; Washenfelder, R. A.; Womack, C.; Yokelson, R. J.
2017-12-01
Wildfires are expected to increase globally due to climate change. The smoke from these wildfires has a highly uncertain radiative effect, largely due to the lack of detailed understanding of its optical properties. As part of the NOAA FIREX project, we have measured the optical properties of smoke primarily from laboratory burning of North American fuels at the Missoula Fire Sciences Laboratory. Here, we present a budget of the aerosol absorption from a portion of the laboratory fires. The total aerosol absorption was measured with photoacoustic spectrometers (PAS) at four wavelengths (405 nm, 532 nm, 660 nm, 870 nm) spanning the visible spectral region. The aerosol absorption is attributed to black carbon which absorbs broadly across the visible and ultraviolet (UV) spectral region and brown carbon (BrC) which absorbs in the blue and UV spectral regions. Then aerosol absorption measurements are compared with measurements of refractory black carbon (rBC) concentration by laser induced incandescence (SP2) and measurements of BrC concentration from a particle-into-liquid sampler coupled to a liquid absorption cell (BrC-PILS). Periodically, a thermodenuder was inserted upstream of all of the instruments to constrain the relationship between aerosol volatility and absorption. We synthesize these measurements to constrain the various contributors to total absorption including effects of lensing on rBC absorption, and of BrC that is not volatilized in the thermodenuder.
Comparison of Spectral Linewidths for Quantum Degenerate Bosons and Fermions
NASA Astrophysics Data System (ADS)
Notermans, R. P. M. J. W.; Rengelink, R. J.; Vassen, W.
2016-11-01
We observe a dramatic difference in optical line shapes of a 4He Bose-Einstein condensate and a 3He degenerate Fermi gas by measuring the 1557-nm 2 3S -2 1S magnetic dipole transition (8 Hz natural linewidth) in an optical dipole trap. The 15 kHz FWHM condensate line shape is only broadened by mean field interactions, whereas the degenerate Fermi gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli exclusion on the spatial and momentum distributions. The asymmetric optical line shapes are observed in excellent agreement with line shape models for the quantum degenerate gases. For 4He a triplet-singlet s -wave scattering length a =+50 (10 )stat(43 )systa0 is extracted. The high spectral resolution reveals a doublet in the absorption spectrum of the BEC, and this effect is understood by the presence of a weak optical lattice in which a degeneracy of the lattice recoil and the spectroscopy photon recoil leads to Bragg-like scattering.
Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar
NASA Astrophysics Data System (ADS)
Razenkov, Ilya I.; Eloranta, Edwin W.
2016-06-01
The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).
Aethalometer multiple scattering correction Cref for mineral dust aerosols
NASA Astrophysics Data System (ADS)
Di Biagio, Claudia; Formenti, Paola; Cazaunau, Mathieu; Pangui, Edouard; Marchand, Nicolas; Doussin, Jean-François
2017-08-01
In this study we provide a first estimate of the Aethalometer multiple scattering correction Cref for mineral dust aerosols. Cref is an empirical constant used to correct the aerosol absorption coefficient measurements for the multiple scattering artefact of the Aethalometer; i.e. the filter fibres on which aerosols are deposited scatter light and this is miscounted as absorption. The Cref at 450 and 660 nm was obtained from the direct comparison of Aethalometer data (Magee Sci. AE31) with (i) the absorption coefficient calculated as the difference between the extinction and scattering coefficients measured by a Cavity Attenuated Phase Shift Extinction analyser (CAPS PMex) and a nephelometer respectively at 450 nm and (ii) the absorption coefficient from a MAAP (Multi-Angle Absorption Photometer) at 660 nm. Measurements were performed on seven dust aerosol samples generated in the laboratory by the mechanical shaking of natural parent soils issued from different source regions worldwide. The single scattering albedo (SSA) at 450 and 660 nm and the size distribution of the aerosols were also measured. Cref for mineral dust varies between 1.81 and 2.56 for a SSA of 0.85-0.96 at 450 nm and between 1.75 and 2.28 for a SSA of 0.98-0.99 at 660 nm. The calculated mean for dust is 2.09 (±0.22) at 450 nm and 1.92 (±0.17) at 660 nm. With this new Cref the dust absorption coefficient by the Aethalometer is about 2 % (450 nm) and 11 % (660 nm) higher than that obtained by using Cref = 2.14 at both 450 and 660 nm, as usually assumed in the literature. This difference induces a change of up to 3 % in the dust SSA at 660 nm. The Cref seems to be independent of the fine and coarse particle size fractions, and so the obtained Cref can be applied to dust both close to sources and following transport. Additional experiments performed with pure kaolinite minerals and polluted ambient aerosols indicate Cref of 2.49 (±0.02) and 2.32 (±0.01) at 450 and 660 nm (SSA = 0.96-0.97) for kaolinite, and Cref of 2.32 (±0.36) at 450 nm and 2.32 (±0.35) at 660 nm for pollution aerosols (SSA = 0.62-0.87 at 450 nm and 0.42-0.76 at 660 nm).
High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Patrick P.; Thompson, Alan K.; Vest, Robert E.
2014-11-21
In the course of investigations of thermal neutron detection based on mixtures of {sup 10}BF{sub 3} with other gases, knowledge was required of the photoabsorption cross sections of {sup 10}BF{sub 3} for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10{sup −20} cm{sup 2} at 135 nm to less than 10{sup −21} cm{sup 2} in the regionmore » from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135–145 nm, 150–165 nm, and 190–205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.« less
Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser
NASA Astrophysics Data System (ADS)
Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.
2018-02-01
A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.
The gas-phase absorption spectrum of a neutral GFP model chromophore.
Lammich, L; Petersen, M Axman; Nielsen, M Brøndsted; Andersen, L H
2007-01-01
We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.
NASA Astrophysics Data System (ADS)
Pavlov, Alexey K.; Silyakova, Anna; Granskog, Mats A.; Bellerby, Richard G. J.; Engel, Anja; Schulz, Kai G.; Brussaard, Corina P. D.
2014-06-01
A large-scale multidisciplinary mesocosm experiment in an Arctic fjord (Kongsfjorden, Svalbard; 78°56.2'N) was used to study Arctic marine food webs and biogeochemical elements cycling at natural and elevated future carbon dioxide (CO2) levels. At the start of the experiment, marine-derived chromophoric dissolved organic matter (CDOM) dominated the CDOM pool. Thus, this experiment constituted a convenient case to study production of autochthonous CDOM, which is typically masked by high levels of CDOM of terrestrial origin in the Arctic Ocean proper. CDOM accumulated during the experiment in line with an increase in bacterial abundance; however, no response was observed to increased pCO2 levels. Changes in CDOM absorption spectral slopes indicate that bacteria were most likely responsible for the observed CDOM dynamics. Distinct absorption peaks (at 330 and 360 nm) were likely associated with mycosporine-like amino acids (MAAs). Due to the experimental setup, MAAs were produced in absence of ultraviolet exposure providing evidence for MAAs to be considered as multipurpose metabolites rather than simple photoprotective compounds. We showed that a small increase in CDOM during the experiment made it a major contributor to total absorption in a range of photosynthetically active radiation (PAR, 400-700 nm) and, therefore, is important for spectral light availability and may be important for photosynthesis and phytoplankton groups composition in a rapidly changing Arctic marine ecosystem.
Swavey, Shawn; Morford, Krista; Tsao, Max; Comfort, Kristen; Kilroy, Mary Kate
2017-10-01
A heteroleptic monometallic ruthenium(II) and a heteroleptic trimetallic ruthenium(II) complex have been synthesized and characterized. Both complexes have an overall 3+ charge, with the charge density greater for the monometallic complex. The electronic spectra of the monometallic ruthenium(II) complex exhibits intense π-π* transitions associated with the bipyridyl groups along with overlapping metal to ligand charge transfer (MLCT) and ligand centered π-π* transitions ranging from 520nm to approximately 600nm. The trimetallic ruthenium(II) complex, on the other hand, displays more well defined transitions with the expected π-π* transition of the bipyridyl groups at 294nm and Ru(dπ) to bpy(π*) MLCT transitions at 355nm and 502nm. In addition to these absorption bands an intense transition, 578nm, resulting from overlapping dipyrrin (π-π*) and Ru(dπ) to dipyrrin(π*) transitions is observed. Electrochemical and spectroelectrochemical experiments were used to help in assigning these transitions. Irradiation of the complexes in the presence of plasmid DNA within the photodynamic therapy window (600nm to 850nm) reveal, using electrophoresis, that both complexes are capable of causing photo-damage to the DNA backbone. The trimetallic ruthenium(II) complex; however, also shows the ability to generate photoinduced DNA damage in the absence of oxygen, suggesting a photo-oxidative process. Studies of the complexes toward lung cancer cells (A549 cell line) in the absence of light indicate little cytotoxicity up to 50μM. Upon irradiation of the cells with a low power 420nm light source the trimetallic complex showed considerably greater photo-cytotoxicity compared to the monometallic analog. A dose-dependent response curve gives an IC50 of 92μM for complex B. Copyright © 2017 Elsevier Inc. All rights reserved.
Mamangkey, Noldy Gustaf F; Agatonovic, Snezana; Southgate, Paul C
2010-09-20
Two groups of commercial quality ("acceptable") pearls produced using two donors, and a group of "acceptable" pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV-Vis spectrophotometry. Nevertheless, this technique could have a role to play in developing less subjective methods of assessing pearl quality and in further studies of the relationships between pearl quality and that of the donor and recipient oysters.
Complex refractive index of Martian dust - Wavelength dependence and composition
NASA Technical Reports Server (NTRS)
Pang, K.; Ajello, J. M.
1977-01-01
The size distribution and complex refractive index of Martian dust-cloud particles observed in 1971 with the Mariner 9 UV spectrometer are determined by matching the observed single-scattering albedo and phase function with Mie-scattering calculations for size distributions of spheres. Values of phase function times single-scattering albedo are presented for 12 wavelength intervals in the range from 190 to 350 nm, and best-fit values are obtained for the absorption index. It is found that the absorption index of the dust particles increases with decreasing wavelength from 350 to about 210 nm and then drops off shortward of 210 nm, with a structural shoulder occurring in the absorption spectrum between 240 and 250 nm. A search for a candidate material that can explain the strong UV absorption yields TiO2, whose anatase polymorph has an absorption spectrum matching that of the Martian dust. The TiO2 content of the dust particles is estimated to be a few percent or less.
Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K
NASA Astrophysics Data System (ADS)
Axson, J. L.; Washenfelder, R. A.; Kahan, T. F.; Young, C. J.; Vaida, V.; Brown, S. S.
2011-08-01
We report the ozone absolute absorption cross section between 350-470 nm, the minimum between the Huggins and Chappuis bands, where the ozone cross section is less than 10-22 cm2. Ozone spectra were acquired using an incoherent broadband cavity enhanced absorption spectrometer, with three channels centered at 365, 405, and 455 nm. The accuracy of the measured cross section is 2 %. Previous measurements vary by more than an order of magnitude in this spectral region. The measurements reported here provide much greater spectral coverage than the most recent measurements. We report a minimum absorption cross section of 3.4×10-24 cm2 at 381.8 nm, which is 22 % lower than the previously reported value. The effect of O3 concentration and water vapor partial pressure were investigated, however there were no observable changes in the absorption spectrum most likely due to the low optical density of the complex.
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Abd El-Rahman, Mohamed K.
2015-03-01
Normalized spectra have a great power in resolving spectral overlap of challenging Orphenadrine (ORP) and Paracetamol (PAR) binary mixture, four smart techniques utilizing the normalized spectra were used in this work, namely, amplitude modulation (AM), simultaneous area ratio subtraction (SARS), simultaneous derivative spectrophotometry (S1DD) and ratio H-point standard addition method (RHPSAM). In AM, peak amplitude at 221.6 nm of the division spectra was measured for both ORP and PAR determination, while in SARS, concentration of ORP was determined using the area under the curve from 215 nm to 222 nm of the regenerated ORP zero order absorption spectra, in S1DD, concentration of ORP was determined using the peak amplitude at 224 nm of the first derivative ratio spectra. PAR concentration was determined directly at 288 nm in the division spectra obtained during the manipulation steps in the previous three methods. The last RHPSAM is a dual wavelength method in which two calibrations were plotted at 216 nm and 226 nm. RH point is the intersection of the two calibration lines, where ORP and PAR concentrations were directly determined from coordinates of RH point. The proposed methods were applied successfully for the determination of ORP and PAR in their dosage form.
Zhang, Qun Lin; Wu, Liang; Lv, Chen; Zhang, Xiao Yue
2012-06-15
A novel on-line gold nanoparticle-catalyzed luminol-H(2)O(2) chemiluminescence (CL) detector for high-performance liquid chromatography (HPLC) was established, in which gold nanoparticles were produced by the on-line reaction of H(2)O(2), NaHCO(3)-Na(2)CO(3) (buffer solution of luminol), and HAuCl(4). Eight phenolic compounds (gallic acid, protocatechuic acid, protocatechuic aldehyde, 2,5-dihydroxybenzoic acid, caffeic acid, 2,3-dihydroxybenzoic acid, (+)-catechin, and (-)-epicatechin) were chosen as the model compounds. Every separated phenolic compound in the column eluent strongly enhanced the CL signal of on-line gold nanoparticle-catalyzed luminol system. The CL and UV-visible absorption spectra and transmission electron microscopy studies were carried out, and the CL enhancement mechanism was ascribed to that the presence of phenolic compound promoted the on-line formation of 38-nm-diameter gold nanoparticles, which better catalyzed the luminol-H(2)O(2) CL reaction. The effects of methanol and phosphoric acid in the proposed HPLC configuration were performed by two gradient elution programs, and the baseline profile revealed that on-line gold nanoparticle-catalyzed luminol-H(2)O(2) CL detector had better compatibility than 38 nm gold colloids-luminol-H(2)O(2) CL detector. The proposed CL detector exhibits excellent analytical performance with the low detection limit (S/N=3) of 0.53-0.97 ng/mL (10.6-19.4 pg) phenolic compounds, and offers a new strategy for developing on-line nanoparticle-catalyzed CL detector for HPLC with sensitive analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
Celik, Saliha Esin; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat
2010-07-26
A novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) method was developed for the selective determination of polyphenols (flavonoids, simple phenolic and hydroxycinnamic acids) in complex plant matrices. The method combines chromatographic separation, constituent analysis, and post-column identification of antioxidants in plant extracts. The separation of polyphenols was performed on a C18 column using gradient elution with two different mobile phase solutions, i.e., MeOH and 0.2% o-phosphoric acid. The HPLC-separated antioxidant polyphenols in the extracts react with copper(II)-neocuproine (Cu(II)-Nc) reagent in a post-column reaction coil to form a derivative. The reagent is reduced by antioxidants to the copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The negative peaks of antioxidant constituents were monitored by measuring the increase in absorbance due to Cu(I)-Nc. The detection limits of polyphenols at 450 nm (in the range of 0.17-3.46 microM) after post-column derivatization were comparable to those at 280 nm UV detection without derivatization. The developed method was successfully applied to the identification of antioxidant compounds in crude extracts of Camellia sinensis, Origanum marjorana and Mentha. The method is rapid, inexpensive, versatile, non-laborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of antioxidant constituents of complex plant samples. Copyright 2010 Elsevier B.V. All rights reserved.
Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide
Cui, Yudong; Lu, Feifei; Liu, Xueming
2017-01-01
Monolayer of transition metal dichalcogenides (TMDs), with lamellar structure as that of graphene, has attracted significant attentions in optoelectronics and photonics. Here, we focus on the optical absorption response of a new member TMDs, rhenium disulphide (ReS2) whose monolayer and bulk forms have the nearly identical band structures. The nonlinear saturable and polarization-induced absorption of ReS2 are investigated at near-infrared communication band beyond its bandgap. It is found that the ReS2-covered D-shaped fiber (RDF) displays the remarkable polarization-induced absorption, which indicates the different responses for transverse electric (TE) and transverse magnetic (TM) polarizations relative to ReS2 plane. Nonlinear saturable absorption of RDF exhibits the similar saturable fluence of several tens of μJ/cm2 and modulation depth of about 1% for ultrafast pulses with two orthogonal polarizations. RDF is utilized as a saturable absorber to achieve self-started mode-locking operation in an Er-doped fiber laser. The results broaden the operation wavelength of ReS2 from visible light to around 1550 nm, and numerous applications may benefit from the anisotropic and nonlinear absorption characteristics of ReS2, such as in-line optical polarizers, high-power pulsed lasers, and optical communication system. PMID:28053313
Temperature dependence of the ClONO{sub 2} UV absorption spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkholder, J.B.; Talukdar, R.K.; Ravishankara, A.R.
1994-04-01
The temperature dependence of the ClONO{sub 2} absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO{sub 2} absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, < 2% at 215 nm and 220 K, but significant atmore » the wavelengths important in the stratosphere, {approximately} 30% at 325 nm and 220 K. The authors ClONO{sub 2} absorption cross section data are in good general agreement with the previous measurements of Molina and Molina.« less
NASA Astrophysics Data System (ADS)
Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.
1998-11-01
A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.
UVES Investigates the Environment of a Very Remote Galaxy
NASA Astrophysics Data System (ADS)
2002-03-01
Surplus of Intergalactic Material May Be Young Supercluster Summary Observations with ESO's Very Large Telescope (VLT) have enabled an international group of astronomers [1] to study in unprecedented detail the surroundings of a very remote galaxy, almost 12 billion light-years distant [2]. The corresponding light travel time means that it is seen at a moment only about 3 billion years after the Big Bang. This galaxy is designated MS 1512-cB58 and is the brightest known at such a large distance and such an early time. This is due to a lucky circumstance: a massive cluster of galaxies ( MS 1512+36 ) is located about halfway along the line-of-sight, at a distance of about 7 billion light-years, and acts as a gravitational "magnifying glass". Thanks to this lensing effect, the image of MS1512-cB58 appears 50 times brighter . Nevertheless, the apparent brightness is still as faint as magnitude 20.6 (i.e., nearly 1 million times fainter than what can be perceived with the unaided eye). Moreover, MS 1512-cB58 is located 36° north of the celestial equator and never rises more than 29° above the horizon at Paranal. It was therefore a great challenge to secure the present observational data with the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope . The extremely detailed UVES-spectrum of MS 1512-cB58 displays numerous signatures (absorption lines) of intergalactic gas clouds along the line-of-sight . Some of the clouds are quite close to the galaxy and the astronomers have therefore been able to investigate the distribution of matter in its immediate surroundings. They found an excess of material near MS 1512-cB58, possible evidence of a young supercluster of galaxies , already at this very early epoch. The new observations thus provide an invaluable contribution to current studies of the birth and evolution of structures in the early Universe. This is the first time this kind of observation has ever been done of a galaxy at such a large distance . All previous studies were based on much more luminous quasars (QSOs - extremely active galaxy nuclei). However, any investigation of the intergalactic matter around a quasar is complicated by the strong radiation and consequently, high ionization of the gas by the QSO itself, rendering an unbiased assessment of the gas distribution impossible. PR Photo 08a/02 : HST photo of MS 1512-cB58 . PR Photo 08b/02 : UVES spectrum of MS 1512-cB58. PR Photo 08c/02 : UVES spectrum of MS 1512-cB58 ( detail ). Clustering in the Early Universe ESO PR Photo 08a/02 ESO PR Photo 08a/02 [Preview - JPEG: 400 x 614 pix - 304k] [Normal - JPEG: 1200 x 1843 pix - 1.8M] Caption : PR Photo 08a/02 shows the gravitationally amplified, elongated image of the very distant, 20.6-mag galaxy MS 1512-cB58 (indicated with an arrow), as seen in the field of the distant cluster of galaxies MS 1512+36 . The photo is based on exposures with the NASA/ESA Hubble Space Telescope (HST). Technical information about the photo is available below. With new and powerful astronomical telescopes, the exploration of the young Universe is progressing rapidly . By means of highly efficient instruments, scientists are now probing the objects seen at these early times in ever greater detail, painstakingly gaining precious new knowledge about these crucial evolutionary stages. They form an integral part of the long chain of events that has ultimately led to our own existence - no wonder that we would like to know more about those remote times! One of the key questions now asked by cosmologists is how the matter in the early Universe assembled into larger structures . With plenty of gaseous material available, it appears that contraction set in rather soon after the Big Bang, perhaps only a few hundred million years after this initial explosion. Stars and proto-galaxies formed, a web-like structure emerged (cf. ESO PR 11/01 ) and at some moment, these larger building blocks began to gather into "clusters" and "clusters of clusters" (superclusters) . This process took time and it is not yet known when the first major clusters of galaxies formed. However, recent results from the ESO Very Large Telescope at Paranal are casting new light on those early events and may actually provide evidence of an extensive cluster of clouds, perhaps a real supercluster , as early as only 3 billion years after the Big Bang. The lighthouse and the forest In order to investigate the large-scale structure of the Universe, astronomers have since some time employed the powerful technique of spectral analysis of the light from remote "lighthouses" (or "beacons") . One of the strongest spectral lines seen in astronomical objects is the Lyman-alpha line of atomic hydrogen . It is normally seen as a bright spectral peak (an "emission line") in the "lighthouse" object. The rest wavelength is 121.6 nm in the far-ultraviolet part of the spectrum. That spectral region is not accessible to ground-based telescopes - UV-light does not pass through the Earth's atmosphere. However, in very distant objects, the Lyman-alpha line is redshifted towards longer wavelengths and becomes observable from the ground [2]. On its way to us, the light beam from a bright and distant object traverses a long path , mostly through (nearly) empty space. However, once in a while, it passes through a cloud of matter, for instance in the outskirts of a remote galaxy. Each time, specific signatures from the atoms and molecules in that cloud are imprinted on the passing light in the form of spectral absorption lines at particular wavelengths. Such clouds contain hydrogen and thus produce a specific Lyman-alpha signature in the spectrum of the "lighthouse" object [3] Because of the different distances of the individual clouds, their Lyman-alpha spectral lines have different "redshifts" and are therefore observed at different wavelengths. In practice, the Lyman-alpha absorption lines from the intervening clouds are located on the blueward side (i.e., at shorter wavelengths because of their smaller redshifts) of the main emission peak, giving rise to the concept of a "Lyman-alpha forest" of spectral absorption lines. In some cases, over one thousand absorption lines have been seen, showing the presence of as many individual hydrogen-rich gas clouds along the line-of-sight towards the background "lighthouse", cf. ESO PR 15/99 and ESO PR 08/00. MS 1512-cB58 : a bright and remote galaxy MS 1512-cB58 is a remote, very bright galaxy, located at a distance of approximately 12 billion light-years in the northern constellation of Boötes. Its light has travelled 12 billion years to reach us and we therefore observe it as it was when the Universe was about 3 billion years old. Because of the extremely large distance, this galaxy would normally only be seen as a very faint object in the sky, so faint indeed that it could not be observed in any detail by existing telescopes. However, we are lucky, thanks to the fortuitious effect of gravitational lensing . About halfway on its way to us, the light from MS 1512-cB58 happens to pass through the strong gravitational field of a cluster of galaxies known as MS 1512+36 and this produces an amazingly efficient focussing effect: the light from MS 1512-cB58 that finally reaches us has been amplified no less than some 50 times! This beneficial effect makes all the difference. At the observed magnitude of 20.6 - though still nearly 1 million times fainter than what can be perceived with the unaided eye - MS 1512-cB58 is the best suited remote object of its type for the above mentioned kind of investigation. Thus, a detailed study of its spectrum, in particular the spectral region on the shortward side of the Lyman-alpha line (seen in absorption in this comparatively "normal" galaxy), provides very useful information about the many clouds of hydrogen that are located along the line-of-sight towards this object. The UVES spectrum ESO PR Photo 08b/02 ESO PR Photo 08b/02 [Preview - JPEG: 512 x 400 pix - 184k] [Normal - JPEG: 1023 x 800 pix - 448k] ESO PR Photo 08c/02 ESO PR Photo 08c/02 [Preview - JPEG: 750 x 400 pix - 136k] [Normal - JPEG: 1500 x 800 pix - 288k] Caption : PR Photo 08b/02 shows a section of the UVES spectrum of the very distant, 20.6-mag galaxy MS 1512-cB58 , obtained with the UVES high-dispersion spectrograph at the VLT KUEYEN telescope. The Lyman-alpha absorption line from the galaxy itself is seen as the broad depression at about 4530 Å (453 nm; lower panel). The absorption lines at shorter wavelengths are the signatures of individual intergalactic clouds along the line-of-sight; they are indicated by red vertical lines. Blue arrows point at absorption lines associated with heavy elements present in the gas inside the MS 1512-cB58 galaxy. PR Photo 08c/02 is an enlargement of a small wavelength region that shows the full resolution and extreme wealth of information contained in the spectrum of this faint object. Also here, Lyman-alpha absorption lines arising in intervening intergalactic clouds are indicated by red vertical lines. Technical information about the photos is available below. Using one of the most efficient astronomical spectrographs available, the Ultraviolet-Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT) at the Paranal Observatory , an international group of astronomers [1] succeeded in obtaining a very detailed (high-dispersion) spectrum of MS 1512-cB58 . Despite the fact that this object is located some 36° north of the celestial equator and can therefore only be observed for about 90 min each night from Paranal (at geographical latitude 25° south), the superposition of several exposures obtained between March and August 2000 has produced the most detailed and informative spectrum ever obtained of a distant galaxy, cf. PR Photos 08b-c/02 . At the same time, it provides a very comprehensive map of the Universe to such a large distance along a line-of-sight , as this can be read from the numerous Lyman-alpha absorption lines from intervening clouds, seen in this spectrum. The surroundings of MS 1512-cB58 The astronomers were particularly interested in the distribution of clouds in the region of space near MS 1512-cB58 . Thanks to the excellent quality of the UVES data, it was possible to identify and measure a substantial number of Lyman-alpha lines blueward of the broad Lyman-alpha absorption line from the galaxy itself, present in the lower panel of PR Photo 08b/01 . They correspond to intergalactic hydrogen clouds comparatively near the "lighthouse" object MS 1512-cB58 . Most interestingly, it turned out that there are exceptionally many such clouds rather near this remote galaxy (the corresponding absorption lines are seen in the middle panel of PR Photo 08b/01 of which a small part has been enlarged for clarity in PR Photo 08c/01 . Comparing with the mean density along the line-of-sight, a surplus of about 200% was evident. An effect of this dimension has never been seen before near such a remote object, i.e., at such an early epoch, only 3 billion years after the Big Bang. A young supercluster? What does this tell us? The astronomers have two explanations: either we are seeing a very large cluster of clouds (proto-galaxies) at some distance from MS 1512-cB58 , or the clouds are in some way directly connected to the environment of that galaxy. A rich distribution of gas clouds is indeed expected around star-forming galaxies like MS 1512-cB58 at this early epoch. For various reasons, however, including the actual distribution of the observed clouds, the astronomers do not favour the second hypothesis. It appears more likely that these clouds are separate objects not related to MS 1512-cB58 . In that case, this would imply the presence of large-scale structure at this early time , only 3 billion years after the Big Bang. MS 1512-cB58 might then be the largest (heaviest) single object in the neigbourhood, a likely progenitor of the local massive galaxies observed at the present time. More information The results described in this Press Release are presented in a research paper "The Lyman-alpha forest of a Lyman-Break Galaxy: VLT Spectra of MS 1512-cB58 at z = 2.724" by Sandra Savaglio, Nino Panagia and Paolo Padovani, appearing in the research journal "Astrophysical Journal" this month. Notes [1]: The team consists of Sandra Savaglio (Johns Hopkins University, Baltimore, MD, USA, and Rome Observatory, Italy), Nino Panagia and Paolo Padovani (both European Space Agency and Space Telescope Science Institute, Baltimore) [2]: The measured redshift of MS 1512-cB58 is z = 2.724. In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant cloud or galaxy gives a direct estimate of the apparent recession velocity as caused by the universal expansion. Since the expansion rate increases with distance, the velocity is itself a function (the Hubble relation) of the distance to the object. The distances indicated in the text are based on an age of the Universe of 15 billion years. At the indicated redshift, the Lyman-alpha line of atomic hydrogen (rest wavelength 121.6 nm) is observed at 452.8 nm, i.e. in the blue spectral region. The Lyman-alpha absorption lines from intergalactic clouds along the line-of-sight (and at lower redshifts) are observed at shorter wavelengths. The lower limit of the UVES spectrum of MS 1512-cB58 (415 nm) corresponds to a Lyman-alpha redshift of 2.41, i.e. a distance of about 7.5 billion light-years. [3]: The importance of the Lyman-alpha line in absorption is that it is exquisitely sensitive to the presence of neutral hydrogen which only constitutes a small fraction of the total amount of hydrogen in the intergalactic medium (about 1/10,000). Still, the observed Ly-alpha forest is extremely rich. What we see is most likely the "tip of the iceberg" only and hydrogen in the intergalactic medium at high redshift is probably the dominant component of baryonic matter in the early Universe. Contact Sandra Savaglio Johns Hopkins University Baltimore, MD, USA Tel.: +1 410 516 8583 email: savaglio@pha.jhu.edu Technical information about the photos PR Photo 08a/02 is a reproduction of a composite image of the field around the distant cluster of galaxies MS 1512+36 (redshift 0.37), obtained with the WFPC2 camera at the NASA/ESA Hubble Space Telescope. It is based on exposures in two filters (F555 + F675). The observations are described in a research paper by Seitz et al. (Monthly Notices of the RAS, August 1998, Vol. 298, p. 945 ff). The lensed image of the galaxy MS 1512-cB58 is seen at an angular distance of about 5 arcsec from the centre of the cluster. The north direction is at about 1 o'clock and east is at 10 o'clock. The field measures approx. 45 x 60 arcsec 2. PR Photo 08b/02 shows the composite spectrum of MS 1512-cB58 in the spectral region of interest (415.0 - 459.5 nm), as obtained with the red and blue arms of UVES. Long and short red vertical lines ("ticks") indicate larger and smaller intergalactic hydrogen clouds, respectively. The overlying, continuous red line is the "best-fit" model to the observed spectrum. Due to the low altitude of the object, the exposures never lasted more than 90 min around the northern meridian. The full spectral coverage is 415 - 500 nm (blue arm) and 524 - 621 nm (red arm). The velocity resolution varies from 29 km/s at the blue end to 19 km/sec at the red limit. The S/N-ratio increases from about 3 (415 nm) to 10 (610 nm). PR Photo 08c/02 reproduces a smaller part of the observed spectral region observed at full resolution (434.8 - 443.0 nm), with two dozen detected clouds indicated.
Laser assisted anticancer activity of benzimidazole based metal organic nanoparticles.
Praveen, P A; Ramesh Babu, R; Balaji, P; Murugadas, A; Akbarsha, M A
2018-03-01
Recent studies showed that the photothermal therapy can be effectively used for the targeted cancerous cells destruction. Hence, in the present study, benzimidazole based metal organic complex nanoparticles, dichloro cobalt(II) bis-benzimidazole (Co-BMZ) and dichloro copper(II) bis-benzimidazole (Cu-BMZ), were synthesized by reprecipitation method and their anti-cancer activity by means of photothermal effect has been studied. Transmission electron microscopy analysis shows that the particle size of Cu-BMZ is ∼100 nm and Co-BMZ is in the range between 100 and 400 nm. Zeta potential analysis ensures the stability of the synthesized nanoparticles. It is found that the nonlinear absorption of the nanoparticles increases with increase in laser power intensity. Phototoxicity of human lung cancer (A549) and the normal mouse embryonic fibroblast (NIH-3T3) cells was studied using a 650 nm laser. Even though both the cell lines were affected by laser irradiation, A549 cells show higher cell destruction and lower IC 50 values than the normal cells. Docking studies were used to analyse the interaction site and the results showed that the Cu-BMZ molecules have higher dock score than the Co-BMZ molecules. The obtained results indicate that Cu-BMZ samples have lesser particle size, higher nonlinear absorption and higher interaction energy than the Co-BMZ samples. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E. M.; Campbell, P. K. E.; Yoshida, Y.; Kuze, A.; Corp, L. A.
2011-01-01
Global mapping of terrestrial vegetation fluorescence from space has recently been accomplished with high spectral resolution measurements from the Japanese Greenhouse gases Observing SATellite (GOSAT). These data are of interest because they can potentially provide global information on the functional status of vegetation including light use efficiency and global primary productivity that can be used for global carbon cycle modeling. Quantifying the impact of fluorescence on the O2-A band is important as this band is used for cloud- and aerosol-characterization for other trace-gas retrievals including CO2. Here, we demonstrate that fluorescence information can be derived from space using potentially lower-cost hyperspectral instrumentation, i.e., more than an order of magnitude less spectral resolution than GOSAT, with a relatively simple algorithm. As a demonstration, we use the filling-in of one of the few wide and deep solar Fraunhofer lines in the red and far-red chlorophylla fluorescence bands, the calcium II line near 866 nm, to retrieve fluorescence with the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) satellite instrument. Although the signal from vegetation fluorescence is extremely weak at 866 nm, our results suggest that useful information may be obtained after adjustments are made to the observed spectra to correct for instrumental artifacts. We compare fluorescence from SCIAMACHY with that retrieved at 758 and 770 nm from similarly-corrected GOSAT data as well with the Enhanced Vegetation Index (EVI) from the MODerate-resolution Imaging Spectroradiometer (MODIS). We also show that filling-in occurs at 866 nm over barren areas, possibly originating from luminescent minerals in rock and soil.
NASA Astrophysics Data System (ADS)
Pokhrel, Rudra Prasad
This dissertation examines the optical properties of fresh and aged biomass burning aerosols, parameterization of these properties, and development of new instrumentation and calibration techniques to measure aerosol optical properties. Data sets were collected from the fourth Fire Lab at Missoula Experiment (FLAME-4) that took place from October 15 to November 16, 2012. Biomass collected from the various parts of the world were burned under controlled laboratory conditions and fresh emissions from different stages of burning were measured and analyzed. Optical properties of aged aerosol under different conditions was also explored. A photoacoustic absorption spectrometer (PAS) was built and integrated with a newly designed thermal denuder to improve upon observations made during Flame-4. A novel calibration technique for the PAS was developed. Single scattering albedo (SSA) and absorption Angstrom exponent (AAE) from 12 different fuels with 41 individual burns were estimated and parameterized with modified combustion efficiency (MCE) and the ratio of elemental carbon (EC) to organic carbon (OC) mass. The EC / OC ratio has better capability to parameterize SSA and AAE than MCE. The simple linear regression model proposed in this study accurately predicts SSA during the first few hours of plume aging with the ambient data from a biomass burning event. In addition, absorption due to brown carbon (BrC) can significantly lower the SSA at 405 nm resulting in a wavelength dependence of SSA. Furthermore, smoldering dominated burns have larger AAE values while flaming dominated burns have smaller AAE values indicating a large fraction of BrC is emitted during the smoldering stage of the burn. Enhancement in BC absorption (EAbs) due to coating by absorbing and non-absorbing substances is estimated at 405 nm and 660 nm. Relatively smaller values of EAbs at 660 nm compared to 405 nm suggests lensing is a less important contributor to biomass burning aerosol absorption at lower wavelengths. Multiple burns of the same fuel produced significantly different EAbs values at 405 nm, but show good correlation with the EC/OC ratio indicating less dependency on fuel type and more dependency on burn conditions. In addition, absorption due to BrC can contribute up to 92 % of the total biomass burning aerosol absorption at 405 nm and up to 58 % of the total absorption at 532 nm. Indicating BrC absorption in biomass burning emissions is equally or more important than the absorption due to BC at short wavelengths. Furthermore, fractional absorption due to BrC shows reasonably good correlation with EC/OC ratio and AAE. Primary organic aerosol is found to be more volatile than secondary organic aerosol and it is found that the thermal denuder deployed in this study removes less organic aerosol if secondary organic aerosol is present. SSA at 532 nm remains constant during different conditions of aging while SSA at 405 nm increases under certain conditions suggesting the degradation of BrC. Decreases in AAE under the same experiment further support the proposed BrC degradation. The novel thermal denuder designed completely removes non-refractory material and can be used under higher flow rates (maximum of 5 LPM) than the most commercially available thermal denuders. The new calibration techniques proposed for the photoacousitc absorption spectrometer will reduce uncertainty during calibration compared to the conventional calibration methods.
Gallavardin, Thibault; Maurin, Mathieu; Marotte, Sophie; Simon, Timea; Gabudean, Ana-Maria; Bretonnière, Yann; Lindgren, Mikael; Lerouge, Frédéric; Baldeck, Patrick L; Stéphan, Olivier; Leverrier, Yann; Marvel, Jacqueline; Parola, Stéphane; Maury, Olivier; Andraud, Chantal
2011-07-01
The synthesis and photophysical properties of two lipophilic quadrupolar chromophores featuring anthracenyl (1) or dibromobenzene (2) were described. These two chromophores combined significant two-photon absorption cross-sections with high fluorescence quantum yield for 1 and improved singlet oxygen generation efficiency for 2, in organic solvents. The use of Pluronic nanoparticles allowed a simple and straightforward introduction of these lipophilic chromophores into biological cell media. Their internal distribution in various cell lines was studied using fluorescence microscopy and flow-cytometry following a successful staining that was achieved upon 2 h of incubation. Finally, multiphoton excitation microscopy and photodynamic therapy capability of the chromophores were demonstrated by cell exposure to a 820 nm fs laser and cell death upon one photon resonant irradiation at 436 ± 10 nm, respectively.
NASA Astrophysics Data System (ADS)
Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.
2008-12-01
Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.
NASA Astrophysics Data System (ADS)
Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes
2018-04-01
A high-power Raman lidar system has been developed at the high-altitude research station Schneefernerhaus (Garmisch-Partenkirchen, Germany) at 2675 m, at the side of an existing differential-absorption lidar. It is based on a 180-W single-line XeCl laser and on two Newtonian telescopes (up to 1.5-m-diameter). In this way a vertical range up to more than 20 km and an accuracy level of the order of 10 % can be achieved for a measurement time of 1 h. Temperature measurements have been demonstrated to altitudes up to 54 km with just 1 % of the full 308-nm backscatter signal. Significantly higher altitudes are expected when using a chopper that cuts off the first 10 km or for 353 nm.
How temperature determines formation of maghemite nanoparticles
NASA Astrophysics Data System (ADS)
Girod, Matthias; Vogel, Stefanie; Szczerba, Wojciech; Thünemann, Andreas F.
2015-04-01
We report on the formation of polymer-stabilized superparamagnetic single-core and multi-core maghemite nanoparticles. The particle formation was carried out by coprecipitation of Fe(II) and Fe(III) sulfate in a continuous aqueous process using a micromixer system. Aggregates containing 50 primary particles with sizes of 2 nm were formed at a reaction temperature of 30 °C. These particles aggregated further with time and were not stable. In contrast, stable single-core particles with a diameter of 7 nm were formed at 80 °C as revealed by small-angle X-ray scattering (SAXS) coupled in-line with the micromixer for particle characterization. X-ray diffraction and TEM confirmed the SAXS results. X-ray absorption near-edge structure spectroscopy (XANES) identified the iron oxide phase as maghemite.
Laser Sounder for Measuring Atmospheric CO2 Concentrations: Progress Toward Ascends
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Sun, X.; Stephen, M. A.; Wilson, E.; Burris, J. F.; Mao, J.
2008-01-01
The next generation of space-based, active remote sensing instruments for measurement of tropospheric CO2 promises a capability to quantify global carbon sources and sinks at regional scales. Active (laser) methods will extend CO2 measurement coverage in time, space, and perhaps precision such that the underlying mechanisms for carbon exchange at the surface can be understood with .sufficient detail to confidently project the future of carbon-climate interaction and the influence of remediative policy actions. The recent Decadal Survey for Earth Science by the US National Research Council has recommended such a mission called the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) for launch in 2013-2016. We have been developing a laser technique for measurement of tropospheric CO2 for a number of years. Our immediate goal is to develop and demonstrate the method and instrument technology that will permit measurements of the CO2 column abundance over a horizontal path and from aircraft at the few-ppmv level. Our longer-term goal is to demonstrate the required capabilities of the technique, develop a space mission approach, and design the instrument for an ASCENDS-type mission. Our approach is to use a dual channel laser absorption spectrometer (i.e., differential absorption in altimeter mode), which continuously measures from a near-polar circular orbit. We use several co-aligned tunable fiber laser transmitters allowing simultaneous measurement of the absorption from a CO2 line in the 1570 nm band, O2 extinction in the oxygen A-band (near 765 nm), and aerosol backscatter in the same measurement path. We measure the energy of the laser echoes at nadir reflected from land and water surfaces, day and night. The lasers have spectral widths much narrower than the gas absorption lines and are turned on and off the selected CO2 and O2 lines at kHz rates. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on and off-line singnals via the DIAL technique. We used pulsed laser signals, photon counting detectors, and time gating to isolate the laser returns from the surface, and to reject photons scattered from thin clouds and aerosols. High signal-to-noise ratios are required and the CO2 estimates can be sensitive to small drifts or other errors in the instrument, so the absorption estimates need to be quite stable for hours. We have constructed a breadboard version of the CO2 sensor that uses a low power fiber laser and a 20 cm diameter telescope. We have used it to make measurements of CO2 absorption in the laboratory and over 200-m to 2-km long open horizontal paths. These have been done in several sessions extending over multiple days, which allows us to assess the measurement stability and to compare absorption variations to readings from an external in situ CO2 sensor. We have also calculated characteristics of the technique for space including its expected measurement performance for different modulation types, and have performed an initial space mission accommodation study. We sill describe these results in the presentation.
Solar polarimetry in the K I D2 line : A novel possibility for a stratospheric balloon
NASA Astrophysics Data System (ADS)
Quintero Noda, C.; Villanueva, G. L.; Katsukawa, Y.; Solanki, S. K.; Orozco Suárez, D.; Ruiz Cobo, B.; Shimizu, T.; Oba, T.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.
2018-03-01
Of the two solar lines, K I D1 and D2, almost all attention so far has been devoted to the D1 line, as D2 is severely affected by an O2 atmospheric band. This, however, makes the latter appealing for balloon and space observations from above (most of) the Earth's atmosphere. We estimate the residual effect of the O2 band on the K I D2 line at altitudes typical for stratospheric balloons. Our aim is to study the feasibility of observing the 770 nm window. Specifically, this paper serves as a preparation for the third flight of the Sunrise balloon-borne observatory. The results indicate that the absorption by O2 is still present, albeit much weaker, at the expected balloon altitude. We applied the obtained O2 transmittance to K I D2 synthetic polarimetric spectra and found that in the absence of line-of-sight motions, the residual O2 has a negligible effect on the K I D2 line. On the other hand, for Doppler-shifted K I D2 data, the residual O2 might alter the shape of the Stokes profiles. However, the residual O2 absorption is sufficiently weak at stratospheric levels that it can be divided out if appropriate measurements are made, something that is impossible at ground level. Therefore, for the first time with Sunrise III, we will be able to perform polarimetric observations of the K I D2 line and, consequently, we will have improved access to the thermodynamics and magnetic properties of the upper photosphere from observations of the K I lines.
2-micron Double Pulsed IPDA Lidar for Atmospheric CO2 Measurement
NASA Astrophysics Data System (ADS)
Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke; Scola, Tory
2015-04-01
We have developed a high energy pulsed 2-micron IPDA lidar instrument to measure the atmospheric CO2 column density. The IPDA lidar is operated on the long wavelength wing of R(30) CO2 line at 2050.967 nm (4875.749 cm-1) in the side-line operation mode. The R(30) line is an excellent absorption line for the measurements of CO2 in 2µm wavelength region with regard to the strength of the absorption lines, low susceptibility to atmospheric temperature variability, and freedom from problematic interference with other absorption lines. The Ho:Tm:YLF laser transmitter is designed to be operated in a unique double pulse format that can produce two-pulse pair in 10 Hz operation. Typically, the output energies of the laser transmitter are 100mJ and 45mJ for the first pulse and the second pulse, respectively. We injection seed the first pulse with on-line frequency and the second pulse with off-line frequency. The IPDA lidar instrument size, weight and power consumption were restricted to small research aircraft payload requirements. The airborne IPDA lidar instrument measures the total integrated column content of CO2 from the instrument to the ground but with weighting that can be tuned by controlling the transmitted wavelengths. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. The 2-μm CO2 IPDA lidar airborne demonstration was conducted during March 20, 2014 through April 10, 2014. IPDA lidar airborne flights included various operating and environmental conditions. Environmental conditions included different flight altitude up to 8.3 km, different ground target conditions such as vegetation, soil, ocean, snow and sand and different cloud conditions. Besides, some flights targeted power plant incinerators for investigating the IPDA sensitivity to CO2 plums. The lidar instrument is robust during all of the flights. This paper describes the development of the new 2-micron pulsed IPDA lidar instrument, and presents the initial data for the airborne measurements of atmospheric CO2 concentration.
NASA Astrophysics Data System (ADS)
Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka
2016-03-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the downwind areas of large emission sources of BC.
NASA Astrophysics Data System (ADS)
Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.
2015-09-01
The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the leeward areas of large emission sources of BC.
The D1Πu state of HD and the mass scaling relation of its predissociation widths
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Ubachs, W.
2012-07-01
Absorption spectra of HD have been recorded in the wavelength range of 75-90 nm at 100 K using the vacuum ultraviolet Fourier transform spectrometer at the Synchrotron SOLEIL. The present wavelength resolution represents an order of magnitude improvement over that of previous studies. We present a detailed study of the D1Πu-X1Σ+g system observed up to v‧ = 18. The Q-branch transition probing levels of Π- symmetry are observed as narrow resonances limited by the Doppler width at 100 K. Line positions for these transitions are determined to an estimated absolute accuracy of 0.06 cm-1. Predissociation line widths of Π+ levels are extracted from the absorption spectra. A comparison with the recent results on a study of the D1Πu state in H2 and D2 reveals that the predissociation widths scale as μ-2J(J + 1), with μ being the reduced mass of the molecule and J the rotational angular momentum quantum number, as expected from an interaction with the B‧1Σ+u continuum causing the predissociation.
Gaddam, Rohit Ranganathan; Mukherjee, Sudip; Punugupati, Neelambaram; Vasudevan, D; Patra, Chitta Ranjan; Narayan, Ramanuj; Vsn Kothapalli, Raju
2017-04-01
Synthesis of carbon dots (Cdots) via chemical route involves disintegration of carbon materials into nano-domains, wherein, after extraction of Cdots, the remaining carbon material is discarded. The present work focuses on studying even the leftover carbon residue namely, carbon nanobeads (CNBs) as an equally important material for applications on par with that of carbon dot. It employs oxidative treatment of carbonised gum olibanum resin (GOR) to produce the carbons namely Cdots and CNBs (as the residue). The Cdots (~5-10nm) exhibit blue-green fluorescence with an optical absorption at ~300nm unlike the CNBs (40-50nm) which fail to exhibit fluorescence. The fluorescence behaviour exhibited by Cdots were utilized for heavy metal ion sensing of Pb 2+ , Hg 2+ and Cd 2+ ions in aqueous media. Interestingly, both Cdots and CNBs are biocompatible to normal cell lines but cytotoxic to cancer cell lines, observed during several in vitro experiments (cell viability assay, cell cycle assay, apoptosis assay, ROS determination assay, caspase-9 activity assay). Additionally, Cdots exhibit bright green fluorescence in B16F10 cells. The Cdots and CNB's demonstrate multifunctional activities (sensor, cellular imaging and cancer therapy) in biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Two-Component Fitting of Coronal-Hole and Quiet-Sun He I 1083 Spectra
NASA Technical Reports Server (NTRS)
Jones, Harrison P.; Malanushenko, Elena V.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We present reduction techniques and first results for detailed fitting of solar spectra obtained with the NASA/National Solar Observatory Spectromagnetograph (NASA/NSO SPM over a 2 nm bandpass centered on the He 1 1083 nm line. The observation for this analysis was a spectra-spectroheliogram obtained at the NSO/Kitt Peak Vacuum Telescope (KPVT) on 00 Apr 17 at 21:46 UT spanning an area of 512 x 900 arc-seconds; the field of view included a coronal hole near disk center as well as surrounding quiet sun. Since the He I line is very weak and blended with nearby solar and telluric lines, accurate determination of the continuum intensity as a function of wavelength is crucial. We have modified the technique of Malanushenko {\\it et al.) (1992; {\\it AA) (\\bf 259), 567) to tie regions of continuua and the wings of spectral lines which show little variation over the image to standard reference spectra such as the NSO Fourier Transform Spectrometer atlas (Wallace {\\it et al). 1993; NSO Tech Report \\#93-001). We performed detailed least-squares fits of spectra from selected areas, accounting for all the known telluric and solar absorbers in the spectral bandpass. The best physically consistent fits to the Helium lines were obtained with Gaussian profiles from two components (one ''cool'', characteristic of the upper chromosphere; one ''hot'', representing the cool transition region at 2-3 x 10$^{4)$ K). In the coronal hole, the transition-region component, shifted by 6-7 km/s to the blue, is mildly dominant, consistent with mass outflow as suggested by Dupree {\\it et all. (1996; {\\it Ap. J.}-{\\bf 467), 121). In quiet-sun spectra there is less evidence of outward flow, and the chromospheric component is more important. All our fitted spectra show a very weak unidentified absorption feature at 1082.880 nm in the red wing of the nearby Si I line.
The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases
NASA Astrophysics Data System (ADS)
Lampel, J.; Frieß, U.; Platt, U.
2015-09-01
In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it reduces the measurement error significantly and can cause apparent differential optical depth of up to 3 ×10-4. Its influence on the spectral retrieval of IO, glyoxal, water vapour and NO2 in the blue wavelength range is evaluated for M91. For measurements with a large Ring signal a significant and systematic bias of NO2 dSCDs (differential slant column densities) up to (-3.8 ± 0.4) × 1014 molec cm-2 is observed if this effect is not considered. The effect is typically negligible for DOAS fits with an RMS (root mean square) larger than 4 × 10-4.
Absorption and Fluorescence Properties of Chromophoric Dissolved Organic Matter Produced by Algae.
Peng, Tong; Lu, Xiao-lan; Su, Rong-guo; Zhang, Dong-mei
2015-09-01
Four kinds of diatom (Chaetoceros curvisetus, Phaeodactylum tricornutum, Nitzschia closterium f. minutissima and Navicula halophile) and two kinds of dinoflagellates (Prorocentrum donghaiense and Gymnodinium) were cultured under laboratory conditions. Variations of optical properties of chromophoric dissolved organic matter (CDOM) were studied with absorption and fluorescence excitation-emission matrix spectroscopy(EEM) during growth of marine microalgae in incubation experiment. Absorption spectrum revealed absorption coefficient a(355) (CDOM absorption coefficients at 355 nm) of 6 kinds of marine microalgae above increased by 64.8%, 242.3%, 535.1%, 903.2%, 836% and 196.4%, respectively. Simultaneously, the absorption spectral slope (Sg), determined between 270 and 350 nm, representing the size of molecular weight of CDOM and humic-like composition, decreased by 8.7%, 34.6%, 39.4%, 53.1%, 46.7%, and 35.7%, respectively. Applying parallel factor analysis (PARAFAC) together with EEM got four components of CDOM: C1(Ex/Em=350(260) nm/450 nm), C2 (Ex/Em=260(430) nm/525 nm), C3 (Ex/Em=325 nm/400 nm) and C4(Ex/Em=275 nm/325 nm), which were relative to three humic-like and one protein-like fluorescent components of Nitzschia closterium f. minutissima and Navicula halophile. In incubation experiment, fluorescence intensity of these four components during growth of Nitzschia closterium f. minutissima increased by, respectively, 8.68, 24.9, 7.19 and 39.8 times, and those of Navicula halophile increased by 2.64, 0.07, 4.39 and 12.4 times, respectively. Significant relationships were found between the fluorescence intensity of four components of CDOM, a(355) and Sg. All results demonstrated that both content and molecular weight of CDOM produced by diatom and dinoflagellate studied in incubation experiment increased, but these two parameters changed more obviously of the diatom than those of dinoflagellate; the proportion of humic-like components in the composition of CDOM also increased clearly with the growth of marine microalgae, but protein-like fluorescent component had only a slow growth. Furthermore, the absorption spectrum of CDOM produced by different species of algae changed obviously and the relative composition fluorescence intensity of CDOM produced by different microalgae were found to vary among different composition from EEM, which suggested CDOM produced by different microalgae make quite different contributions to CDOM in natural seawater.
[Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].
You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue
2015-04-01
Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific basis for rapid estimation of oil content in oil sands in future.
Homma, Noriko; Harada, Yumi; Uchikawa, Tamaki; Kamei, Yasuhiro; Fukamachi, Shoji
2017-02-06
Color perception is important for fish to survive and reproduce in nature. Visual pigments in the retinal photoreceptor cells are responsible for receiving light stimuli, but the function of the pigments in vivo has not been directly investigated in many animals due to the lack of color-blind lines and appropriate color-perception tests. In this study, we established a system for producing color-blind fish and testing their spectral sensitivity. First, we disrupted long-wavelength-sensitive (LWS) opsins of medaka (Oryzias latipes) using the CRISPR/Cas9 system to make red-color-blind lines. Single guide RNAs were designed using the consensus sequences between the paralogous LWSa and LWSb genes to simultaneously introduce double-frameshift mutations. Next, we developed a non-invasive and no-prior-learning test for spectral sensitivity by applying an optomotor response (OMR) test under an Okazaki Large Spectrograph (OLS), termed the O-O test. We constructed an electrical-rotary cylinder with black/white stripes, into which a glass aquarium containing one or more fish was placed under various monochromatic light conditions. The medaka were irradiated by the OLS every 10 nm, from wavelengths of 700 nm to 900 nm, and OMR was evaluated under each condition. We confirmed that the lws - medaka were indeed insensitive to red light (protanopia). While the control fish responded to wavelengths of up to 830 nm (λ = 830 nm), the lws - mutants responded up to λ = 740 nm; however, this difference was not observed after adaptation to dark: both the control and lws - fish could respond up to λ = 820 ~ 830 nm. These results suggest that the lws - mutants lost photopic red-cone vision, but retained scotopic rod vision. Considering that the peak absorption spectra (λ max ) of medaka LWSs are about 560 nm, but the light-adapted control medaka could respond behaviorally to light at λ = 830 nm, red-cone vision could cover an unexpectedly wide range of wavelengths, and behavioral tests could be an effective way to measure spectral sensitivity. Using the CRISPR/Cas9 and O-O systems, the establishment of various other color-blind lines and assessment of their spectra sensitivity could be expected to proceed in the future.
NASA Astrophysics Data System (ADS)
Xie, An; Yuan, Ximing; Hai, Shujie; Wang, Juanjuan; Wang, Fengxiang; Li, Liu
2009-05-01
Through the use of Bi as a co-activator and Si as a substituting element for the host lattice, red emitting Ca_{0.5}MoO_4\\,:\\,Eu^{3+}_{0.25-x} , Bi^{3+}_{x} , Na^{+}_{0.25} (x = 0, 0.005, 0.01, 0.05, 0.10, 0.15 and 0.20) and Ca_{0.5}Mo_{1-y}Si_yO_4\\,:\\,Eu^{3+}_{0.25} , Na^{+}_{0.25} (y = 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05) phosphors were synthesized by the conventional solid state reaction method, respectively. The photo-luminescent results show all samples can be excited efficiently by UV (396 nm) and blue (467 nm) light and emit red light at 615 nm with line spectra, which are coupled well with the characteristic emission from UVLED and blue LED, respectively. In the Eu3+-Bi3+ co-doped system, both Eu3+ f-f transition and Bi3+ CT transition absorptions are observed in the excitation spectra, the intensities of the main emission line (5D0 → 7F2 transition of Eu3+ at 615 nm) are strengthened because of the energy transition from Bi3+ to Eu3+. The introduction of Si4+ ions did not change the position of the peaks but enhanced the emission intensity of Eu3+ under 396 nm excitations. The results showed that the optimal doping concentration of Bi3+ ions and Si4+ ions was 1 mol%, respectively.
EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan
2015-12-01
We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsicmore » Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.« less
Spectroscopic identification of SNe 2004ds and SN 2004dt
NASA Astrophysics Data System (ADS)
Gal-Yam, Avishay
2004-08-01
A. Gal-Yam, D. Fox and S. Kulkarni, California Institute of Technology, report on red spectra (range 550-780 nm) obtained by Kulkarni and Fox on Aug. 13.5 UT at the 10-m Keck I telescope (+ LRIS). The spectrum of of SN 2004ds (IAUC #8386), shows a broad, well-developed P-Cyg H_alpha line and suggests that this is a type II supernova. The spectrum of SN 2004dt (IAUC #8386), shows the distinctive Si II 6100 absorption trough around 6100 Angstrom, indicating this is a young SN Ia.
NASA Astrophysics Data System (ADS)
Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby
2017-08-01
This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.
NASA Astrophysics Data System (ADS)
Cacciani, Marco; di Sarra, Alcide; Fiocco, Giorgio; Amoruso, Antonella
1989-06-01
Absolute measurements of the ozone absorption coefficient in the Huggins bands at different temperatures have been carried out. Ozone is produced by an electrical discharge and stored cryogenically; differential absorption measurements are subsequently obtained in a slowly evolving mixture of ozone and molecular oxygen. High resolution (to 0.012 nm) measurements cover a spectral range (339-355 nm) where the ozone absorption shows a strong dependence on temperature. Results at 293 and 220 K are reported; they are particularly interesting in view of the utilization of this spectral region as a low-absorption reference channel for the observation of atmospheric ozone profiles by active probing techniques. Coherent radiation at two wavelengths, around 355 and 353 nm, respectively, can be obtained as third harmonic of the fundamental output of an Nd:YAG laser and by H2 Raman shifting of an XeCl excimer laser output.
Implication of Spectral Characteristic of Chlorite Based on Spectrums SWIR in Nuri Deposit of Tibet
NASA Astrophysics Data System (ADS)
Huang, Z.
2017-12-01
This contribution reports the spectral characterization of chlorite in Nuri deposit of Tibet. Nuri Cu polymetallic deposit locates in south rim of Eastern of Gangdise in Tibet. It is presented for large metallogenic scale and special mineralized combination. The study area is underlain extensively by lower Cretaceous rocks of Bima Formation, upper Cretaceous to Paleogene Danshiting Formation and the Quaternary Aeolian Sand. Intrusive bodies, which mainly are quartz diorite, granodiorite, monzonitic granitite, moyite, granite porphyry and so on, feature growth gigantic composite granitic batholith. Distribution of Chlorite is very significant for range and degree of influence of hydrothermal alteration in magmatic hydrothermal deposit. From measuring the spectral of rock and mineral using SVC portable spectrograph, it derived consequence of exists some main altered mineral chlorite. The spectra of chlorite show the absorption features at 1390, 2000, 2250, 2340nm which reflect either O-H stretching vibrations and/or Fe-OH and Mg-OH bending vibrations. Chlorite with Mg-rich shows a strong band at 2324 with a shoulder at 2245nm. The iron-rich chlorite has two absorption features which occur at 2356 and 2256nm. From 110 samples containing chlorite which measured in situ using SVC portable spectrometer, the secondary characteristic absorption wavelengths of chlorite were extracted using TSG software and the diagnosis absorption characteristic of chlorite near 2250nm wavelength is from 2232 to 2266nm. According to the absorption characteristics wavelength position near 2250nm, the samples containing chlorite divided into four categories, i.e. Mg-chlorite whose wavelength less than 2245nm, MgFe-chlorite whose wavelength between 2245 and 2250nm, FeMg-chlorite whose wavelength between 2250 and 2258nm, and Fe-chlorite whose wavelength greater than 2258nm. And then chemical composition of chlorite is analyzed by electron probe with JXA-8230 device which shows that the Fe and AlVI content of chlorite increase or Mg ion content decrease should cause the absorption wavelength of chlorite to shift to long wavelength. The result is very important meaning for mineral prospecting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Laboni; Kumar, Rahul; Maity, Dilip K.
A pulse radiolysis study on pyrrolidinium cation based ionic liquids is presented here in this paper. Time-resolved absorption spectra for 1-methyl-1-propylpyrrolidinium dicyanamide (DCA) at 500 ns after the electron pulse show broad absorption bands at wavelengths below 440 nm and at 640 nm. In pyrrolidinium bis(trifluoromethylsulfonyl)imide (NTf 2) and tris(perfluoroethyl)trifluorophosphate (FAP) ILs, the transient absorption below 440 nm is much weaker. The absorption at 500 ns, which increases with wavelength from 500 nm to beyond 800 nm, was assigned to the tail of the solvated electron NIR absorption spectrum, since it disappears in the presence of N 2O. In themore » DCA IL, the presence of a reducing species was confirmed by the formation of pyrene radical anion. The difference in the transient species in the case of the DCA IL compared to other two ILs should be due to the anion, with cations being similar. In pseudohalide ILs such as DCA, radicals are formed by direct hole trapping by the anion (X – + h + → X•), followed by addition to the parent anion. Prediction of the UV/vis absorption spectra of the dimer radical anion by computational calculation supports the experimental results. The oxidizing efficiency of (DCA) 2•– and its reduction potential (E(DCA)2•–/(2DCA–)) have been determined.« less
Das, Laboni; Kumar, Rahul; Maity, Dilip K.; ...
2018-03-06
A pulse radiolysis study on pyrrolidinium cation based ionic liquids is presented here in this paper. Time-resolved absorption spectra for 1-methyl-1-propylpyrrolidinium dicyanamide (DCA) at 500 ns after the electron pulse show broad absorption bands at wavelengths below 440 nm and at 640 nm. In pyrrolidinium bis(trifluoromethylsulfonyl)imide (NTf 2) and tris(perfluoroethyl)trifluorophosphate (FAP) ILs, the transient absorption below 440 nm is much weaker. The absorption at 500 ns, which increases with wavelength from 500 nm to beyond 800 nm, was assigned to the tail of the solvated electron NIR absorption spectrum, since it disappears in the presence of N 2O. In themore » DCA IL, the presence of a reducing species was confirmed by the formation of pyrene radical anion. The difference in the transient species in the case of the DCA IL compared to other two ILs should be due to the anion, with cations being similar. In pseudohalide ILs such as DCA, radicals are formed by direct hole trapping by the anion (X – + h + → X•), followed by addition to the parent anion. Prediction of the UV/vis absorption spectra of the dimer radical anion by computational calculation supports the experimental results. The oxidizing efficiency of (DCA) 2•– and its reduction potential (E(DCA)2•–/(2DCA–)) have been determined.« less
Ghobadi, Amir; Hajian, Hodjat; Dereshgi, Sina Abedini; Bozok, Berkay; Butun, Bayram; Ozbay, Ekmel
2017-11-08
In this paper, we demonstrate a facile, lithography free, and large scale compatible fabrication route to synthesize an ultra-broadband wide angle perfect absorber based on metal-insulator-metal-insulator (MIMI) stack design. We first conduct a simulation and theoretical modeling approach to study the impact of different geometries in overall stack absorption. Then, a Pt-Al 2 O 3 multilayer is fabricated using a single atomic layer deposition (ALD) step that offers high repeatability and simplicity in the fabrication step. In the best case, we get an absorption bandwidth (BW) of 600 nm covering a range of 400 nm-1000 nm. A substantial improvement in the absorption BW is attained by incorporating a plasmonic design into the middle Pt layer. Our characterization results demonstrate that the best configuration can have absorption over 0.9 covering a wavelength span of 400 nm-1490 nm with a BW that is 1.8 times broader compared to that of planar design. On the other side, the proposed structure retains its absorption high at angles as wide as 70°. The results presented here can serve as a beacon for future performance enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.
NASA Astrophysics Data System (ADS)
Kowalewska, Zofia
2011-07-01
For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence spectrometry).
NASA Astrophysics Data System (ADS)
Zhong, Rongfeng; Xu, Shengxian; Wang, Jinglan; Zhao, Feng; Xia, Hongying; Wang, Yibo
2016-05-01
Two phenanthroline derivatives, 1H-imidazo[4,5-f][1,10]phenanthroline (imPhen) and 2-(9H-fluoren-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (Flu-imPhen), have been synthesized and characterized and the corresponding absorption and emission spectroscopic properties have been studied in CH2Cl2 solution. The imPhen exhibits the main two absorption bands at 282 nm and 229 nm and these bands are assigned as the typical π → π*(Phen) state. In addition, the weak absorption bands at 313 nm associated with a shoulder near 302 nm were assigned to the π → π*(Phen) state with partial charge transfer (CT) character. A similar absorption spectra are observed in the case of the Flu-imPhen in the region of 200-300 nm, while the region of 300-400 nm of the spectra are dominated by the characteristic π → π* transition of the fluorene moiety. imPhen shows the typical ligand-centered 1π → π* emission, while Flu-imPhen emits from the mixed 1π → π*/CT states. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) were employed to rationalize the photophysical properties of these ligands studied. The theoretical data confirm the assignment of the experimental absorption spectra and the nature of the emitting states.
Transmittance of MCF-7 breast tumor cell line through visible and near infrared spectrum
NASA Astrophysics Data System (ADS)
Tabakoǧlu, H. Ã.-zgür
2016-03-01
In this study, light transmittance of MCF-7 tumor cells from 450 nm to 1100 nm has been measured in their growing medium and evaluated. Transmittance differences have been tried to be put forward in cancer cell line on visible (VIS) and near infrared (NIR) spectrum as well as in between different numbers of cells in medium. An absorption-reflection spectrophotometer was used in the experiments. System has a tungsten light source, optical chopper, a monochromator, sample chamber, silicon detectors, lock-in amplifier and computer. System was controlled by software in order to adjust scan range, scan steps and grating configuration. Cells were grown in medium, and measurements were taken from cells while they were in 5 ml medium. According to our findings, there are significant differences between VIS and NIR regions for the same number of cells. There were found no statistical difference among different numbers of cells. Increasing number of cells has not affected the transmittance. Transmittance of medium is not significantly different from different concentration of cells.
NASA Technical Reports Server (NTRS)
Singh, Kuldip; O'Brien, James J.
1994-01-01
Pressure-broadening coefficients and pressure-induced lineshifts of several rotational-vibrational lines have been measured in the 727 nm absorption band of methane at temperatures of 77 and 296 K, using nitrogen, hydrogen, and helium as the foreign-gas collision partners. A technique involving intracavity laser spectroscopy is used to record the methane spectra. Average values of the broadening coefficients (/cm/atm) at 77 K are: 0.199, 0.139, 0.055, and 0.29 for collision partners N2, H2, He, and CH4, respectively. Typical average values of the pressure-induced lineshifts (/cm/atm) at 77 K and for the range of foreign gas pressures between 10 and 200 torr are -0.052 for N2, -0.063 for H2, and +0.031 for He. All the values obtained at 296 K are considerably different from the corresponding values at 77 K. This represents the first report of pressure-broadening and shifting coefficients for the methane transitions in a region where the delta nu(sub C-H) = 5 band occurs.
Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Cense, Barry; Nassif, Nader A.; Chen, Teresa C.; Pierce, Mark C.; Yun, Seok-Hyun; Hyle Park, B.; Bouma, Brett E.; Tearney, Guillermo J.; de Boer, Johannes F.
2004-05-01
We present the first ultrahigh-resolution optical coherence tomography (OCT) structural intensity images and movies of the human retina in vivo at 29.3 frames per second with 500 A-lines per frame. Data was acquired at a continuous rate of 29,300 spectra per second with a 98% duty cycle. Two consecutive spectra were coherently summed to improve sensitivity, resulting in an effective rate of 14,600 A-lines per second at an effective integration time of 68 μs. The turn-key source was a combination of two super luminescent diodes with a combined spectral width of more than 150 nm providing 4.5 mW of power. The spectrometer of the spectraldomain OCT (SD-OCT) setup was centered around 885 nm with a bandwidth of 145 nm. The effective bandwidth in the eye was limited to approximately 100 nm due to increased absorption of wavelengths above 920 nm in the vitreous. Comparing the performance of our ultrahighresolution SD-OCT system with a conventional high-resolution time domain OCT system, the A-line rate of the spectral-domain OCT system was 59 times higher at a 5.4 dB lower sensitivity. With use of a software based dispersion compensation scheme, coherence length broadening due to dispersion mismatch between sample and reference arms was minimized. The coherence length measured from a mirror in air was equal to 4.0 μm (n= 1). The coherence length determined from the specular reflection of the foveal umbo in vivo in a healthy human eye was equal to 3.5 μm (n = 1.38). With this new system, two layers at the location of the retinal pigmented epithelium seem to be present, as well as small features in the inner and outer plexiform layers, which are believed to be small blood vessels.
Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications
NASA Astrophysics Data System (ADS)
Bayramian, Andrew James
2000-11-01
A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator was developed which operates three-level at 985 nm with a 21% slope efficiency. Frequency conversion of the 985 nm light to the 2nd harmonic at 492.5 nm was achieved with a 31% conversion efficiency. A diode pumped, doubled Yb:S-FAP laser at 492.5 nm would make possible a compact, efficient, high-power blue laser source.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-12-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.
[Spectral absorption properties of the water constituents in the estuary of Zhujiang River].
Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei
2014-12-01
Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of Zhujiang River, and the contribution of the phytoplankton absorption to the total absorption was far lower than that of the non-algal particles. While the contribution of the CDOM was the lowest. The contribution of the CDOM absorption to the total absorption was relatively larger when the content of humic acid was higher.
Comparison of tunable lasers based on diode pumped Tm-doped crystals
NASA Astrophysics Data System (ADS)
Šulc, Jan; Jelínková, Helena; Koranda, Petr; Černý, Pavel; Jabczyński, Jan K.; Żendzian, Waldemar; Kwiatkowski, Jacek; Urata, Yoshiharu; Higuchi, Mikio
2008-12-01
We report on continuously tunable operation of a diode pumped lasers based on Tm-doped materials, emitting in the 1.8 - 2.μ1 m spectral band. In our study we compare results obtained with three various single crystals doped by Tm3+ ions: Yttrium Aluminum perovskite YAP (YAlO3), Gadolinium orthovanadate GdVO4, and Yttrium Lithium Fluoride YLF (YLiF4). Following samples were available: the 3mm long a-cut crystal rod of Tm:YAP with 4% at. Tm/Y (diameter 3 mm); the 8mm long b-cut crystal rod of Tm:YLF with 3.5% at. Tm/Y (diameter 3 mm); the 2.7mm long a-cut crystal block of Tm:GdVO4 with 2% at. Tm/Gd (crystal face 5×3 mm). For active medium pumping, the laser diode radiation was used. Because the tested samples differs significantly in absorption spectra, two fibre-coupled (core diameter 400 µm) temperature-tuned laser diodes were used: first operating at wavelength 793nm was used for Tm:YAP and Tm:YLF; the second operating at wavelength 802nm was used for Tm:GdVO4. In both cases, the continuous power up to 20W was available for pumping. The diode radiation was focused into the active crystal by two achromatic doublet lenses with the focal length f = 75 mm. The measured radius of pumping beam focus inside the crystal was 260 µm. The longitudinally diode pumped crystals were tested in linear, 80mm long, hemispherical laser cavity. The curved (radius 150mm) output coupler reflectivity was ~ 97 % in range from 1.8 up to 2.1 μm. The pumping flat mirror had maximal reflectivity in this range and it had high transmission around 0.8 μm. A 1.5mm thick birefringent plate made from quartz (Lyot filter) inserted under a Brewster's angle was used as a tuning element. This plate was placed inside the resonator between the crystal and the output coupler. Using Tm:YAP crystal, the maximal output power of 2.8W in this set-up was obtained. The laser could be tuned from 1865nm up to 2036nm with a maximum at 1985 nm. Laser based on Tm:YLF crystal was tunable from 1835nm up to 2010nm with a maximum at 1928 nm (3.0W was reached). Using the Tm:GdVO4 tunable operation with greater that 1W output at 1920nm and 130nm tuning range (1842-1972 nm) was demonstrated. The overall reached tuning range of over 200nm covers many important atmospheric absorption lines and contains also the local absorption peak of liquid water, making them attractive for applications such as high resolution spectroscopy, atmospheric remote sensing, laser radar, and laser microsurgery.
Brown, Kathryn E; McGrane, Shawn D; Bolme, Cynthia A; Moore, David S
2014-04-10
Initiation of the shock driven chemical reactions and detonation of nitromethane (NM) can be sensitized by the addition of a weak base; however, the chemical mechanism by which sensitization occurs remains unclear. We investigated the shock driven chemical reaction in NM and in NM sensitized with diethylenetriamine (DETA), using a sustained 300 ps shock driven by a chirped Ti:sapphire laser. We measured the solutions' visible transient absorption spectra and measured interface particle and shock velocities of the nitromethane solutions using ultrafast dynamic ellipsometry. We found there to be a volume-increasing reaction that takes place around interface particle velocity up = 2.4 km/s and up = 2.2 km/s for neat NM and NM with 5% DETA, respectively. The rate at which transient absorption increases is similar in all mixtures, but with decreasing induction times for solutions with increasing DETA concentrations. This result supports the hypothesis that the chemical reaction mechanisms for shocked NM and NM with DETA are the same. Data from shocked NM are compared to literature experimental and theoretical data.
NASA Astrophysics Data System (ADS)
Avram, Daniel; Florea, Mihaela; Tiseanu, Ion; Tiseanu, Carmen
2015-09-01
Herein, we report on the emission color tunability of Er doped BiOCl measured under up—conversion as well as x-ray excitation modes. The dependence of red (670 nm) to green emission (543 nm) ratio on Er concentration (1 and 5%), excitation wavelength into different (656.4, 802 and 976 nm) or across single Er absorption levels (965 ÷ 990 nm) and delay after the laser pulse (0.001 ÷ 1 ms) is discussed in terms of ground state absorption/excited state absorption and energy transfer up-conversion mechanisms. A first example of extended Er x-ray emission measured in the range of 500 to 1700 nm shows comparable emission intensities corresponding to 543 nm and 1500 nm based transitions. The present results together with our earlier report on the upconversion emission of Er doped BiOCl excited at 1500 nm, suggest that Er doped BiOCl may be considered an attractive system for optical and x-ray imaging applications.
Prasad, Saumya; Mandal, Imon; Singh, Shubham; Paul, Ashim; Mandal, Bhubaneswar
2017-01-01
Electronic absorption spectra of proteins are primarily characterized over the ultraviolet region (185–320 nm) of the electromagnetic spectrum. While recent studies on peptide aggregates have revealed absorption beyond 350 nm, monomeric proteins lacking aromatic amino acids, disulphide bonds, and active site prosthetic groups are expected to remain optically silent beyond 250 nm. Here, in a joint theoretical and experimental investigation, we report the distinctive UV-Vis absorption spectrum between 250 nm [ε = 7338 M–1 cm–1] and 800 nm [ε = 501 M–1 cm–1] in a synthetic 67 residue protein (α3C), in monomeric form, devoid of aromatic amino acids. Systematic control studies with high concentration non-aromatic amino acid solutions revealed significant absorption beyond 250 nm for charged amino acids which constitute over 50% of the sequence composition in α3C. Classical atomistic molecular dynamics (MD) simulations of α3C reveal dynamic interactions between multiple charged sidechains of Lys and Glu residues present in α3C. Time-dependent density functional theory calculations on charged amino acid residues sampled from the MD trajectories of α3C reveal that the distinctive absorption features of α3C may arise from two different types of charge transfer (CT) transitions involving spatially proximal Lys/Glu amino acids. Specifically, we show that the charged amino (NH3+)/carboxylate (COO–) groups of Lys/Glu sidechains act as electronic charge acceptors/donors for photoinduced electron transfer either from/to the polypeptide backbone or to each other. Further, the sensitivity of the CT spectra to close/far/intermediate range of encounters between sidechains of Lys/Glu owing to the three dimensional protein fold can create the long tail in the α3C absorption profile between 300 and 800 nm. Finally, we experimentally demonstrate the sensitivity of α3C absorption spectrum to temperature and pH-induced changes in protein structure. Taken together, our investigation significantly expands the pool of spectroscopically active biomolecular chromophores and adds an optical 250–800 nm spectral window, which we term ProCharTS (Protein Charge Transfer Spectra), for label free probes of biomolecular structure and dynamics. PMID:28970921
Absorption and Scattering of Aerosol measured onboard R/V Gisang1 over the Yellow Sea
NASA Astrophysics Data System (ADS)
Inae, K.; Lee, M.; Shin, B.; Ryoo, S.; Jung, J.; Kim, S. W.
2017-12-01
Absorption and scattering coefficient were measured onboard RV Gisang 1 over the Yellow Sea (covering 124° 127°E, 31° 38°N) during May June, 2016. BC concentration was analyzed at seven wavelengths (370, 470, 520, 590, 660, 880, and 950nm) every 1 minute by Aethalometer. Scattering coefficient was measured at three wavelengths (450, 550, and 750nm) every 5 minutes with Nephelometer. The mean absorption coefficient was 1.2 Mm-1 at 880nm and the mean scattering coefficient was 116Mm-1 at 550nm. Single scattering albedo(SSA) reached the maximum value of 3.0 at 700nm. The calculated mean scattering angstrom exponent(SAE) was 1.6 and absorbing angstrom exponent(AAE) was 1.1. The AAE and SAE were higher in aged Chinese plume.
Remote Sensing of chlorophyll fluorescence and the impact of clouds on the retrival
NASA Astrophysics Data System (ADS)
Köhler, Philipp; Guanter, Luis; Frankenberg, Christian
2013-04-01
Remote sensing of sun-induced chlorophyll fluorescence (SIF) is a new, alternative option to gain information about terrestrial photosynthesis and CO2 assimilation on a global scale. The SIF is an electromagnetic signal emitted in the aprox. 650-800 nm spectral window by the photosynthesis apparatus, and can therefore be considered as a direct indicator of plant biochemical processes. The general approach to measure SIF from space is the evaluation of the in-filling of solar Fraunhofer lines or atmospheric absorption bands by SIF. To distinguish the SIF signal from the total incoming radiance at the sensor, which is about 100 times more intense, is a challenge and high resolution measurements are required. The high spectral resolution (approx. 0.02 nm) of the Fourier Transform Spectrometer (FTS) on-board the Greenhouse Gases Observing Satellite (GOSAT) enables such a measurement of SIF by means of the evaluation of the in-filling of solar Fraunhofer lines by SIF. The narrow wavelength band from 755 to 759 nm and around 770 nm can be used for this purpose because they are free from atmospheric absorption features, the solar radiation shows several Fraunhofer lines and the SIF values in this region are relatively high. A new SIF retrieval approach (GARLiC, for GOSAT Retrieval of cholorphyll fluorescence) will be presented in this contribution. This method is intended to simplify some of the assumptions of existing retrieval approaches without a loss in accuracy. The comparison of the GARLiC fluorescence retrievals with two state-of-the-art SIR retrieval methods such as those by Frankenberg et al. (2011) and Guanter et al. (2012) from GOSAT data shows corresponding and feasible results. In addition to the basics of SIF remote sensing, this contribution will assess the effect of clouds in the retrieval. To do this, the SIF retrieval has been coupled to a cloud optical thickness (COT) retrieval algorithm adapted to GOSAT-FTS O2A-band measurements, so that SIF and COT are estimated from the same soundings. Especial attention will be given to the impact of optically-thin cirrus clouds on SIF retrievals, which is of particular interest over tropical rainforest areas. The detection of cirrus clouds is difficult due to their optical properties. Therefore the measurement of GOSAT in the 2 µm region is applicable to add a cirrus filter. Due to the strongly absorbing H2O-band in this spectral region, the signal in clear sky conditions should not be significantly higher than the noise level of the instrument. With the appearance of cirrus clouds, the light path is shortened and less absorption of H2O yields to a significant signal. Based on this principle, different thresholds for a cirrus filter are applied to study the impact of cirrus clouds on the retrieved SIF.
Baskar, G; George, Garrick Bikku
2016-01-01
Drugs processed using nanobiotechnology may be more biocompatible, with sustainable and stabilised release or action. L-asparaginase produced from fungi has many advantages for treatment of lymphocytic leukemia with lesser side effect. In the present work, maghemite nanobiocomposites of fungal asparaginase were produced using glutaraldehyde-pretreated colloidal magnetic nanoparticles. Formation of nanobiocomposites was observed using laser light scattering and confirmed by UV-visible spectrophotometry with the absorption peak at 497 nm. The specific asparaginase activity was increased from 320 U/mg with crude asparaginase to 481.5 U/mg. FTIR analysis confirmed that primary amines are the functional groups involved in binding of asparaginase on magnetic nanoparticles. The average size of the produced nanobiocomposite was found in the range of 30 nm to 40 nm using histogram analysis. The magnetic nanobiocomposite of asparaginase synthesised using glutaraldehyde showed 90.75% cytotoxicity against human colon adenocarcinoma cell lines. Hence it can be used as an active anticancer drug with an augmented level of bioavailability.
NASA Astrophysics Data System (ADS)
Wei, Qiong; Chen, Donghua
2009-09-01
Rare-earth ions coactivated red phosphors Gd 0.2RE 1.8(WO 4) 3 (RE=Eu 3+ and Sm 3+) were synthesized by conventional solid-state reaction using boric acid as a flux agent. The samples were characterized by X-ray diffractometer (XRD), energy-dispersive X-ray spectrometer (EDS) and luminescence spectrometer (LS). The results showed that the Eu-Sm system exhibits higher emission intensity than those of the Eu single-doped system and Sm separate-doped system under ultraviolet (UV) radiation. Samarium(III) ions are effective in broadening and strengthened absorptions around 400 nm. Furthermore, it exhibits enhanced luminescence emission. when the mole ratio of boric acid is about 0.16, the luminescence capability is optimum. Two strongest lines at ultraviolet (394 nm) and blue (465 nm) in excitation spectra of these phosphors match well with the output wavelengths of UV and blue GaN-based light-emitting diodes (LEDs) chips.
NASA Astrophysics Data System (ADS)
Dai, Jiawei; Pan, Yubai; Xie, Tengfei; Kou, Huamin; Li, Jiang
2018-04-01
Highly transparent terbium aluminum garnet (Tb3Al5O12, TAG) magneto-optical ceramics were fabricated from co-precipitated nanopowders with tetraethoxysilane (TEOS) as sintering aid by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment. The ball milled TAG powder shows better dispersity than the as-synthesized powder, and its average particle size is about 80 nm. For the ceramic sample pre-sintered at 1720 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the in-line transmittance exceeds 76% in the region of 400-1580nm (except the absorption band), reaching a maximum value of 81.8% at the wavelength of 1390 nm. The microstructure of the TAG ceramic is homogeneous and its average grain size is approximately 19.7 μm. The Verdet constant of the sample is calculated to be -182.7 rad·T-1·m-1 at room temperature.
NASA Astrophysics Data System (ADS)
Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.
2017-04-01
A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.
Cavity-enhanced measurements of hydrogen peroxide absorption cross sections from 353 to 410 nm.
Kahan, Tara F; Washenfelder, Rebecca A; Vaida, Veronica; Brown, Steven S
2012-06-21
We report near-ultraviolet and visible absorption cross sections of hydrogen peroxide (H(2)O(2)) using incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS), a recently developed, high-sensitivity technique. The measurements reported here span the range of 353-410 nm and extend published electronic absorption cross sections by 60 nm to absorption cross sections below 1 × 10(-23) cm(2) molecule(-1). We have calculated photolysis rate constants for H(2)O(2) in the lower troposphere at a range of solar zenith angles by combining the new measurements with previously reported data at wavelengths shorter than 350 nm. We predict that photolysis at wavelengths longer than those included in the current JPL recommendation may account for up to 28% of the total hydroxyl radical (OH) production from H(2)O(2) photolysis under some conditions. Loss of H(2)O(2) via photolysis may be of the same order of magnitude as reaction with OH and dry deposition in the lower atmosphere; these processes have very different impacts on HO(x) loss and regeneration.
The modification of spectral characteristics of cytostatics by optical beams
NASA Astrophysics Data System (ADS)
Pascu, Mihail Lucian; Brezeanu, Mihail; Carstocea, Benone D.; Voicu, Letitia; Gazdaru, Doina M.; Smarandache, Adriana A.
2004-10-01
Besides the biochemical action of methotrexate (MTX) and 5-fluorouracil (FU) their effect in destroying cancer tumours could be enhanced by exposure to light at different doses. Absorption, excitation and emission spectra of 10-4M - 10-5M MTX solutions in natural saline and sodium hydroxide at pH = 8.4 were measured, while their exposure to coherent and uncoherent light in the visible and near ultraviolet (UV) spectral ranges was made (Hg lamps and Nitrogen pulsed laser radiation were used). Absorption spectra exhibit spectral bands in the range 200 nm - 450 nm. The 200 - 450 nm excitation spectra were measured with emission centered on 470 nm; MTX fluorescence excitation was measured at 390 nm and the emission was detected between 400 nm and 600 nm showing a maximum at 470 nm. Spectra modifications, nonlinearly depending on exposure time (varying from 1 min to 20 min), evidenced MTX photo-dissociation to the fluorescent compound 2,4 diamino-formylpteridine. In the 5-FU case the absorption spectra exhibit bands between 200 nm and 450 nm. The emission fluorescence spectra were measured between 400 nm and 600 nm, with λex = 350 nm for UV Hg lamp and with λex = 360 nm for laser irradiated samples; at irradiation with N2 laser emitted radiation the excitation spectra were measured in the range of 200 nm - 400 nm, with λem = 440 nm. New vascularity rapid destruction was observed for conjunctive impregnated with 5-FU solution whilst exposed to incoherent UV and visible light.
Enhanced optical limiting effect in fluorine-functionalized graphene oxide
NASA Astrophysics Data System (ADS)
Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang
2017-09-01
Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.
Atmospheric aerosol and gas sensing using Scheimpflug lidar
NASA Astrophysics Data System (ADS)
Mei, Liang; Brydegaard, Mikkel
2015-04-01
This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard, "Contineous-wave differential absorption lidar," Submitted to Laser and Photonics Reviews, 2014.
Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.
2010-01-01
We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.
Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission
NASA Technical Reports Server (NTRS)
Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.
2011-01-01
We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.
Fast wavelength calibration method for spectrometers based on waveguide comb optical filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhengang; Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Huang, Meizhen, E-mail: mzhuang@sjtu.edu.cn
2015-04-15
A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines,more » the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.« less
NASA Astrophysics Data System (ADS)
Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji
2012-02-01
A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.
Mamangkey, Noldy Gustaf F.; Agatonovic, Snezana; Southgate, Paul C.
2010-01-01
Two groups of commercial quality (“acceptable”) pearls produced using two donors, and a group of “acceptable” pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV-Vis spectrophotometry. Nevertheless, this technique could have a role to play in developing less subjective methods of assessing pearl quality and in further studies of the relationships between pearl quality and that of the donor and recipient oysters. PMID:20948903
Joly, Laure; Antoine, Rodolphe; Broyer, Michel; Lemoine, Jérôme; Dugourd, Philippe
2008-02-07
Electron detachment from peptide dianions is studied as a function of the laser wavelength. The first step for the detachment is a resonant electronic excitation of the dianions. Electronic excitation spectra are reported for three peptides, including gramicidin. A comparative study of the detachment yield for 13 peptides was performed at 260 nm and at 220 nm. At 260 nm, the detachment yield is mainly driven by the sum of the absorption coefficients of the aromatic amino acids that are contained in the peptide. At 220 nm, no direct relation is observed between the electron photodetachement yields and the sum of absorption efficiencies. At this wavelength, the sequence and the structure of the peptide may have an influence on the photodetachment process.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.
1993-01-01
Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.
Nonlinear absorption enhancement of AuNPs based polymer nanocomposites
NASA Astrophysics Data System (ADS)
Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.
2018-07-01
Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.
First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun
NASA Astrophysics Data System (ADS)
Brajša, R.; Sudar, D.; Benz, A. O.; Skokić, I.; Bárta, M.; Pontieu, B. De; Kim, S.; Kobelski, A.; Kuhar, M.; Shimojo, M.; Wedemeyer, S.; White, S.; Yagoubov, P.; Yan, Y.
2018-05-01
Context. Various solar features can be seen in emission or absorption on maps of the Sun in the millimetre and submillimetre wavelength range. The recently installed Atacama Large Millimetre/submillimetre Array (ALMA) is capable of observing the Sun in that wavelength range with an unprecedented spatial, temporal and spectral resolution. To interpret solar observations with ALMA, the first important step is to compare solar ALMA maps with simultaneous images of the Sun recorded in other spectral ranges. Aims: The first aim of the present work is to identify different structures in the solar atmosphere seen in the optical, infrared, and EUV parts of the spectrum (quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points) in a full-disc solar ALMA image. The second aim is to measure the intensities (brightness temperatures) of those structures and to compare them with the corresponding quiet Sun level. Methods: A full-disc solar image at 1.21 mm obtained on December 18, 2015, during a CSV-EOC campaign with ALMA is calibrated and compared with full-disc solar images from the same day in Hα line, in He I 1083 nm line core, and with various SDO images (AIA at 170 nm, 30.4 nm, 21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures of various structures are determined by averaging over corresponding regions of interest in the calibrated ALMA image. Results: Positions of the quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points are identified in the ALMA image. At the wavelength of 1.21 mm, active regions appear as bright areas (but sunspots are dark), while prominences on the disc and coronal holes are not discernible from the quiet Sun background, despite having slightly less intensity than surrounding quiet Sun regions. Magnetic inversion lines appear as large, elongated dark structures and coronal bright points correspond to ALMA bright points. Conclusions: These observational results are in general agreement with sparse earlier measurements at similar wavelengths. The identification of coronal bright points represents the most important new result. By comparing ALMA and other maps, it was found that the ALMA image was oriented properly and that the procedure of overlaying the ALMA image with other images is accurate at the 5 arcsec level. The potential of ALMA for physics of the solar chromosphere is emphasised.
Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers
Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping
2017-01-01
A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er3+/Tm3+ co-doped fibers mainly yield 1390–1470, 1850–1980, and 2625–2750 nm emissions when excited at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410–1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er3+/Tm3+ co-doped fiber amplifier working in the S + C communication band. PMID:28772846
Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers.
Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping
2017-05-03
A series of Er 3+ /Tm 3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er 3+ /Tm 3+ co-doped fibers mainly yield 1390-1470, 1850-1980, and 2625-2750 nm emissions when excited at 793 nm, and 1480-1580, 1800-1980, and 2625-2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410-1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er 3+ /Tm 3+ co-doped fiber amplifier working in the S + C communication band.
Two-photon absorption measurements of deep UV transmissible materials at 213 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patankar, S.; Yang, S. T.; Moody, J. D.
We report on two photon absorption measurements at 213nm of deep UV transmissible media including LiF, MgF 2, CaF 2, BaF 2, Sapphire (Al 2O 3) and high purity grades of fused-silica (SiO 2). A high stability 24ps Nd:YAG laser operating at the 5th harmonic (213nm) was used to generate a high intensity, long Rayleigh length Gaussian focus inside the samples. The measurements of the Fluoride crystals and Sapphire indicate two photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two photon absorption, however, there are differences in linearmore » losses associated with purity. A low two photon absorption cross section is measured for MgF 2 making it an ideal material for the propagation of high intensity deep UV lasers.« less
Two-photon absorption measurements of deep UV transmissible materials at 213 nm
Patankar, S.; Yang, S. T.; Moody, J. D.; ...
2017-09-19
We report on two photon absorption measurements at 213nm of deep UV transmissible media including LiF, MgF 2, CaF 2, BaF 2, Sapphire (Al 2O 3) and high purity grades of fused-silica (SiO 2). A high stability 24ps Nd:YAG laser operating at the 5th harmonic (213nm) was used to generate a high intensity, long Rayleigh length Gaussian focus inside the samples. The measurements of the Fluoride crystals and Sapphire indicate two photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two photon absorption, however, there are differences in linearmore » losses associated with purity. A low two photon absorption cross section is measured for MgF 2 making it an ideal material for the propagation of high intensity deep UV lasers.« less
Two-photon absorption measurements of deep UV transmissible materials at 213 nm.
Patankar, S; Yang, S T; Moody, J D; Swadling, G F; Erlandson, A C; Bayramian, A J; Barker, D; Datte, P; Acree, R L; Pepmeier, B; Madden, R E; Borden, M R; Ross, J S
2017-10-20
We report on two-photon absorption measurements at 213 nm of deep UV transmissible media, including LiF, MgF 2 , CaF 2 , BaF 2 , sapphire (Al 2 O 3 ), and high-purity grades of fused-silica (SiO 2 ). A high-stability 24 ps Nd:YAG laser operating at the 5th harmonic (213 nm) was used to generate a high-intensity, long-Rayleigh-length Gaussian focus inside the samples. The measurements of the fluoride crystals and sapphire indicate two-photon absorption coefficients between 0.004 and 0.82 cm/GW. We find that different grades of fused silica performed near identically for two-photon absorption; however, there are differences in linear losses associated with purity. A low two-photon absorption cross section is measured for MgF 2 , making it an ideal material for the propagation of high-intensity deep UV lasers.
Spectral Absorption Properties of Aerosol Particles from 350-2500nm
NASA Technical Reports Server (NTRS)
Martins, J. Vanderlei; Artaxo, Paulo; Kaufman, Yoram J.; Castanho, Andrea D.; Remer, Lorraine A.
2009-01-01
The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.
Investigating the Spectral Dependence of Biomass Burning Aerosol Optical Properties
NASA Astrophysics Data System (ADS)
Odwuor, A.; Corr, C.; Pusede, S.
2016-12-01
Aerosol optical properties, such as light absorption and scattering, are important for understanding how aerosols affect the global radiation budget and for comparison with data gathered from remote sensing. It has been established that the optical properties of aerosols are wavelength dependent, although some remote sensing measurements do not consider this. Airborne measurements of these optical properties were used to calculate the absorption Angstrom exponent, a parameter that characterizes the wavelength dependence of light absorption by aerosols, and single scattering albedo, which measures the relative magnitude of light scattering to total extinction (scattering and absorption combined). Aerosols produced by biomass burning in Saskatchewan, Canada in July 2008 and a forest fire in Southern California, U.S. in June 2016 were included in this analysis. These wildfires were sampled by the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and NASA Student Airborne Research Program (SARP) missions, respectively. Aerosol absorption was measured using a particle soot photometer (PSAP) at 470, 532 and 660 nm. Scattering was measured using a 3-wavelength (450, 550 and 700 nm) nephelometer. Absorption Angstrom exponents were calculated at 470 and 660 nm and single scattering albedos were calculated at 450 and 550 nm. Results of this study indicate that disregarding the wavelength dependence of organic aerosol can understate the positive radiative forcing (warming) associated with aerosol absorption.
Emission Analysis Of Pr{sup 3+}: PVP And Nd{sup 3+}: PVP Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaiah, K.; Buddhudu, S.
Here we report on the results concerning the absorption and emission spectra of RE{sup 3+} (Pr{sup 3+} or Nd{sup 3+}) doped PVP polymer films. The absorption spectrum of Pr{sup 3+}: PVP polymer film has shown three absorption bands at 444 nm ({sup 3}H{sub 4{yields}}{sup 3}P{sub 2}), 469nm ({sup 3}H{sub 4{yields}}{sup 3}P{sub 1}) and 481nm ({sup 3}H{sub 4{yields}}{sup 3}P{sub 0}). From the Pr{sup 3+}: PVP polymer film, an emission at 603 nm ({sup 1}D{sub 2{yields}}{sup 3}H{sub 4}) has been observed with an excitation at 443 nm ({sup 3}H{sub 4{yields}}{sup 3}P{sub 2}). The absorption spectrum of Nd{sup 3+}: PVP polymer film hasmore » exhibited eleven absorption bands at 324 nm, 383 nm, 432 nm, 462 nm, 511 nm, 526 nm, 580 nm, 686 nm, 746 nm, 799 nm, and 869 nm which are assigned to the electronic transitions of {sup 4}I{sub 9/2{yields}}{sup 4}D{sub 7/2}, {sup 4}I{sub 9/2{yields}}{sup 2}D{sub 3/2}, {sup 4}I{sub 9/2{yields}}{sup 4}P{sub 1/2}, {sup 4}I{sub 9/2{yields}}{sup 4}G{sub 11/2}, {sup 4}I{sub 9/2{yields}}{sup 4}G{sub 9/2}, {sup 4}I{sub 9/2{yields}}{sup 4}G{sub 7/2}, {sup 4}I{sub 9/2{yields}}{sup 4}G{sub 5/2}, {sup 4}I{sub 9/2{yields}}{sup 2}F{sub 9/2}, {sup 4}I{sub 9/2{yields}}{sup 2}F{sub 7/2}, {sup 4}I{sub 9/2{yields}}{sup 2}H{sub 9/2} and {sup 4}I{sub 9/2{yields}}{sup 4}F{sub 3/2} respectively. From the Nd{sup 3+}: PVP polymer film, an emission transition has been measured at 1055 nm ({sup 4}F{sub 3/2{yields}}{sup 4}I{sub 11/2}) with an excitation at 324 nm ({sup 4}I{sub 9/2{yields}}{sup 4}D{sub 7/2}). For the host polymer film, structural properties have been studied from the measurement of XRD, FTIR, Raman spectra. For this film thermal properties have also been investigated from the measured profiles of TGA-DTA.« less
Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals
NASA Astrophysics Data System (ADS)
Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.
2012-12-01
Recently, chlorophyll fluorescence (ChlF) retrievals in narrow spectral regions (< 1 nm, between 750-770 nm) of the near infrared (NIR) region of Earth's reflected radiation have been achieved from satellites, including the Japanese GOSAT and the European Space Agency's Sciamachy/Envisat. However, these retrievals sample the total full-spectrum ChlF and are made at non-optimal wavelengths since they are not located at the peak fluorescence emission features. We wish to estimate the total full-spectrum ChlF based on emissions obtained at selected wavelengths. For this, we drew upon leaf emission spectra measured on corn leaves obtained from a USDA experimental cornfield in MD (USA). These emission spectra were determined for the adaxial and abaxial (i.e., top and underside) surfaces of leaves measured throughout the 2008 and 2011 growing seasons (n>400) using a laboratory instrument (Fluorolog-3, Horiba Scientific, USA), recorded in either 1 nm or 5 nm increments with monochromatic excitation wavelengths of either 532 or 420 nm. The total ChlF signal was computed as the area under the continuous spectral emission curves, summing the emission intensities (counts per second) per waveband. The individual narrow (1 or 5 nm) waveband emission intensities were linearly related to full emission values, with variable success across the spectrum. Equations were developed to estimate total ChlF from these individual wavebands. Here, we report the results for the average adaxial/abaxial emissions. Very strong relationships were achieved for the relatively high fluorescence intensities at the red chlorophyll peak, centered at 685 nm (r2= 0.98, RMSE = 5.53 x 107 photons/s) and in the nearby O2-B atmospheric absorption feature centered at 688 nm (r2 = 0.94, RMSE = 4.04 x 107), as well as in the far-red peak centered at 740 nm (r2=0.94, RMSE = 5.98 x107). Very good retrieval success occurred for the O2-A atmospheric absorption feature on the declining NIR shoulder centered at 760 nm (r2 = 0.88, RMSE = 7.54 x 107). When perfect retrievals were assumed (0% noise), retrievals remained good in the low emission regions on either side of the peaks-- those associated with the H alpha line at 655 nm (r2 = 0.83, RMSE =8.87 x 107) and the far-NIR wavelengths recently utilized for satellite retrievals: a K line at 770 nm (r2 = 0.85, RMSE = 8.36 x 107) and the 750-770 nm interval (r2 = 0.88, RMSE = 6.92 x 107). However, the atmosphere and satellite observations are expected to add noise to retrievals. Adding 5% random error to these relationships did not seriously impair the retrieval successes in the red and far-red peaks (r2 ~ 0.85, RMSEs = 6.31 x 107). A greater impact occurred (reducing retrieval success by ~10%) when adding 5% noise for the far-NIR narrow band at 770 nm (r2 ~ 0.70, RMSE ~ 8.5 x 107). When a 10% random error was added, the retrieval successes fell to ~68 ± 7% for all retrieval wavebands, and RMSEs increased by a factor of 10. This laboratory approach will be critical to calibrate space borne retrievals, but additional information across plant species is needed. Furthermore, this experiment indicates that ChlF retrievals from space should include information from the red and far-red peak emission regions, since the true total fluorescence signal is the desired parameter for Earth carbon and energy budgets.
NASA Technical Reports Server (NTRS)
Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.
1995-01-01
We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.
NASA Astrophysics Data System (ADS)
Khundzhua, D. A.; Patsaeva, S. V.; Trubetskoj, O. A.; Trubetskaya, O. E.
2017-01-01
The spectral and optical properties of the fractionated components of dissolved organic matter (DOM) of three freshwater lakes in Karelia were studied using reversed-phase high-performance liquid chromatography (RP-HPLC) with online detection of fluorescence and absorption spectra. It is shown that the DOM fractions are qualitatively similar, but differ quantitatively in the ratio of components and consist of at least three types of fluorophores: (1) hydrophilic "humic-like" fluorophore(s) with the emission maximum in the region of 420 nm and an absorption band at 260-270 nm; (2) hydrophobic "humic-like" fluorophore(s) with the emission maximum at approximately 450 nm that has no characteristic absorption maxima in the region from 220 to 400 nm; and (3) a "protein-like" fluorophore with the emission maximum in the region of 340-350 nm, which is typical of proteins and peptides containing tryptophan.
FDTD modeling of solar energy absorption in silicon branched nanowires.
Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen
2013-05-06
Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.
NASA Astrophysics Data System (ADS)
Soukup, B.; Johnson, W.; Repasky, K. S.; Carlsten, J. L.
2013-12-01
A scanning differential absorption lidar (DIAL) instrument for carbon sequestration site monitoring is under development and testing at Montana State University. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the on-line absorption wavelength at 1571.4067 nm and the second operating at the off-line wavelength at 1571.2585 nm. Two in-line fiber optic switches are used to switch between on-line and off-line operation. After the fiber optic switches, an acousto-optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 J and a pulse repetition frequency of 15 kHz. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a fiber coupled photo-multiplier tube (PMT) module operating in the photon counting mode. The PMT has a 3% quantum efficiency, a dark count rate of 90 kHz, and a maximum count rate of 1 MHz. Recently, a fiber coupled avalanche photodiode (APD) operating in the geiger mode has been incorporated into the DIAL receiver. The APD has a quantum efficiency of 10%, a dark count rate of 10 kHz, and a maximum count rate of 1 MHz and provides a much larger dynamic range than the PMT. Both the PMT and APD provide TTL logic pulses that are monitored using a multichannel scaler card used to count the return photons as a function of time of flight and are thus interchangeable. The DIAL instrument was developed at the 1.571 m wavelength to take advantage of commercial-off-the-shelf components. The instrument is operated using a custom Labview program that switches to the DMLD operating at the on-line wavelength, locks this laser to a user defined wavelength setting, and collects return signals for a user defined time. The control program switches to the DMLD operating at the off-line wavelength where data is again collected for a user defined time. The control program repeats this process until stopped by the operator. The DIAL instrument has been operated at the Zero Emission Research Technology (ZERT) field site located on the Montana State University campus and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. Data collected by the DIAL instrument at both field sites demonstrate that the DIAL is capable of retrieving night time CO2 number density profiles out to a range of 2.5 km with a 150 m range resolution. The DIAL retrievals are validated using a co-located Li-COR 820 gas analyzer placed along the DIAL optical path allowing comparison at a single range as a function of time.
Uusikivi, Jari; Vähätalo, Anssi V.; Granskog, Mats A.; Sommaruga, Ruben
2010-01-01
In the Baltic Sea ice, the spectral absorption coefficients for particulate matter (PM) were about two times higher at ultraviolet wavelengths than at photosynthetically available radiation (PAR) wavelengths. PM absorption spectra included significant absorption by mycosporine-like amino acids (MAAs) between 320 and 345 nm. In the surface ice layer, the concentration of MAAs (1.37 μg L−1) was similar to that of chlorophyll a, resulting in a MAAs-to-chlorophyll a ratio as high as 0.65. Ultraviolet radiation (UVR) intensity and the ratio of UVR to PAR had a strong relationship with MAAs concentration (R2 = 0.97, n = 3) in the ice. In the surface ice layer, PM and especially MAAs dominated the absorption (absorption coefficient at 325 nm: 0.73 m−1). In the columnar ice layers, colored dissolved organic matter was the most significant absorber in the UVR (< 380 nm) (absorption coefficient at 325 nm: 1.5 m−1). Our measurements and modeling of UVR and PAR in Baltic Sea ice show that organic matter, both particulate and dissolved, influences the optical properties of sea ice and strongly modifies the UVR exposure of biological communities in and under snow-free sea ice. PMID:20585592
NASA Astrophysics Data System (ADS)
Luo, Wei; Ma, Peng; Xie, Tengfei; Dai, Jiawei; Pan, Yubai; Kou, Huamin; Li, Jiang
2017-07-01
Cobalt-doped magnesium aluminate spinel (Co:MgAl2O4) is one of the most important saturable absorbers for the passive Q-switching of solid-state lasers operating at eye-safe wavelength of 1.5 μm. In this work, highly transparent Co:MgAl2O4 ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment, using the mixture of the commercial spinel and the lab-made Co:MgAl2O4 powder as the raw materials. The densification mechanism of Co:MgAl2O4 transparent ceramics was discussed. The microstructure and optical properties of the samples were investigated. The ground state absorption cross section (σGSA) was calculated from the fitted curve of the absorption coefficient spectrum. The results show that Co:MgAl2O4 ceramics fabricated by vacuum sintering at 1500 °C for 5 h and then HIP post-treatment at 1650 °C for 3 h perform good transparency, whose in-line transmittance exceeds 80% at 2500 nm. Moreover, the ground state absorption cross section of 0.02 at.% Co:MgAl2O4 ceramics is calculated to be 3.35 × 10-19 cm2 at the wavelength of 1540 nm, which is promising for the application to the passive Q-switching of solid-state laser operating in the near infrared region (NIR).
Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yingwei; Huang, Guanghui; Chen, Jiazhang
2015-08-31
As a new type of two-dimensional crystal material, black phosphorus (BP) exhibits excellent electronics and optical performance. Herein, we focus on carrier relaxation dynamics and nonlinear optical properties of BP suspension. Atomic force microscopy, transmission electron microscopy, and optical transmission spectrum are employed to characterize the structure and linear optical properties of the BP. Additionally, pump-probe experiments at wavelength of 1550 nm were carried out to study the carrier dynamics in BP suspension, and ultrafast recovery time was observed (τ{sub s} = 24 ± 2 fs). Furthermore, we demonstrate the saturable absorption signals by open aperture Z-scan experiments at wavelengths of 1550 nm, 532 nm, and 680 nm. Themore » results indicate that BP has broadband saturable absorption properties and the nonlinear absorption coefficients were determined to be β{sub 2} = −0.20 ± 0.08 × 10{sup −3 }cm/GW (532 nm), β{sub 2} = −0.12 ± 0.05 × 10{sup −3 }cm/GW (680 nm), and β{sub 2} = −0.15 ± 0.09 × 10{sup −3 }cm/GW (1550 nm)« less
Performance of a newly designed continuous soot monitoring system (COSMOS).
Miyazaki, Yuzo; Kondo, Yutaka; Sahu, Lokesh K; Imaru, Junichi; Fukushima, Nobuhiko; Kano, Minoru
2008-10-01
We designed a continuous soot monitoring system (COSMOS) for fully automated, high-sensitivity, continuous measurement of light absorption by black carbon (BC) aerosols. The instrument monitors changes in transmittance across an automatically advancing quartz fiber filter tape using an LED at a 565 nm wavelength. To achieve measurements with high sensitivity and a lower detectable light absorption coefficient, COSMOS uses a double-convex lens and optical bundle pipes to maintain high light intensity and signal data are obtained at 1000 Hz. In addition, sampling flow rate and optical unit temperature are actively controlled. The inlet line for COSMOS is heated to 400 degrees C to effectively volatilize non-refractory aerosol components that are internally mixed with BC. In its current form, COSMOS provides BC light absorption measurements with a detection limit of 0.45 Mm(-1) (0.045 microg m(-3) for soot) for 10 min. The unit-to-unit variability is estimated to be within +/- 1%, demonstrating its high reproducibility. The absorption coefficients determined by COSMOS agreed with those by a particle soot absorption photometer (PSAP) to within 1% (r2 = 0.97). The precision (+/- 0.60 Mm(-1)) for 10 min integrated data was better than that of PSAP and an aethalometer under our operating conditions. These results showed that COSMOS achieved both an improved detection limit and higher precision for the filter-based light absorption measurements of BC compared to the existing methods.
Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liberman, V.; Sworin, M.; Kingsborough, R. P.
2013-02-07
Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficientsmore » for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.« less
Röttgers, Rüdiger; McKee, David; Utschig, Christian
2014-10-20
The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).
Sokolov, Denis A; Morozov, Yurii V; McDonald, Matthew P; Vietmeyer, Felix; Hodak, Jose H; Kuno, Masaru
2014-06-11
Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO's photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 10(4) cm(-1), α520 nm ≈ 2.1 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 1.1 ± 0.3 × 10(4) cm(-1) while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 10(4) cm(-1), α520 nm ≈ 16.9 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 14.5 ± 0.4 × 10(4) cm(-1). More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO's underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.
Borkar, Nrupa; Xia, Dengning; Holm, René; Gan, Yong; Müllertz, Anette; Yang, Mingshi; Mu, Huiling
2014-01-23
Lipid matrix particles (LMP) may be used as better carriers for poorly water-soluble drugs than liquid lipid carriers because of reduced drug mobilization in the formulations. However, the digestion process of solid lipid particles and their effect on the absorption of poorly water-soluble drugs are not fully understood. This study aimed at investigating the effect of particle size of LMP on drug release in vitro as well as absorption in vivo in order to get a better understanding on the effect of degradation of lipid particles on drug solubilisation and absorption. Fenofibrate, a model poorly water-soluble drug, was incorporated into LMP in this study using probe ultrasound sonication. The resultant LMP were characterised in terms of particle size, size distribution, zeta potential, entrapment efficiency, in vitro lipolysis and in vivo absorption in rat model. LMP of three different particle sizes i.e. approximately 100 nm, 400 nm, and 10 μm (microparticles) were produced with high entrapment efficiencies. The in vitro lipolysis study showed that the recovery of fenofibrate in the aqueous phase for 100 nm and 400 nm LMP was significantly higher (p<0.05) than that of microparticles after 30 min of lipolysis, suggesting that nano-sized LMP were digested to a larger extent due to greater specific surface area. The 100 nm LMP showed faster initial digestion followed by 400 nm LMP and microparticles. The area under the plasma concentration-time curve (AUC) following oral administration of 100 nm LMP was significantly higher (p<0.01) than that of microparticles and fenofibrate crystalline suspension (control). However, no significant difference was observed between the AUCs of 100 nm and 400 nm LMP. The same rank order on the in vivo absorption and the in vitro response was observed. The recovery (%) of fenofibrate partitioning into the aqueous phase during in vitro lipolysis and the AUC of plasma concentration-time curve of fenofibric acid was in the order of 100 nm LMP>microparticles>control. In summary, the present study demonstrated the particle size dependence of bioavailability of fenofibrate loaded LMP in rat model which correlates well with the in vitro drug release performed in the biorelevant medium. Copyright © 2013 Elsevier B.V. All rights reserved.
An organoboron compound with a wide absorption spectrum for solar cell applications.
Liu, Fangbin; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2017-11-09
Organoboron compounds offer new approaches to tune the electronic structures of π-conjugated molecules. In this work, an electron acceptor (M-BNBP4P-1) is developed by endcapping an organoboron core unit with two strong electron-withdrawing groups. M-BNBP4P-1 exhibits a unique wide absorption spectrum with two strong absorption bands in the long wavelength region (λ max = 771 nm) and the short wavelength region (λ max = 502 nm), which indicate superior sunlight harvesting capability. This is due to its special electronic structure, i.e. a delocalized LUMO and a localized HOMO. Prototype solution-processed organic solar cells based on M-BNBP4P-1 show a power conversion efficiency of 7.06% and a wide photoresponse from 350 nm to 880 nm.
Comparison of Spectral Linewidths for Quantum Degenerate Bosons and Fermions.
Notermans, R P M J W; Rengelink, R J; Vassen, W
2016-11-18
We observe a dramatic difference in optical line shapes of a ^{4}He Bose-Einstein condensate and a ^{3}He degenerate Fermi gas by measuring the 1557-nm 2 ^{3}S-2 ^{1}S magnetic dipole transition (8 Hz natural linewidth) in an optical dipole trap. The 15 kHz FWHM condensate line shape is only broadened by mean field interactions, whereas the degenerate Fermi gas line shape is broadened to 75 kHz FWHM due to the effect of Pauli exclusion on the spatial and momentum distributions. The asymmetric optical line shapes are observed in excellent agreement with line shape models for the quantum degenerate gases. For ^{4}He a triplet-singlet s-wave scattering length a=+50(10)_{stat}(43)_{syst}a_{0} is extracted. The high spectral resolution reveals a doublet in the absorption spectrum of the BEC, and this effect is understood by the presence of a weak optical lattice in which a degeneracy of the lattice recoil and the spectroscopy photon recoil leads to Bragg-like scattering.
Method and apparatus for monitoring the flow of mercury in a system
Grossman, Mark W.
1987-01-01
An apparatus and method for monitoring the flow of mercury in a system. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission.
Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3
NASA Technical Reports Server (NTRS)
Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.
1998-01-01
The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).
NASA Astrophysics Data System (ADS)
Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping
2015-02-01
Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination.
Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping
2015-02-25
Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination. Copyright © 2014 Elsevier B.V. All rights reserved.
Optical absorption of carbon-gold core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping
2018-01-01
In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.
NASA Astrophysics Data System (ADS)
Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.
2018-05-01
Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.
High Ultraviolet Absorption in Colloidal Gallium Nanoparticles Prepared from Thermal Evaporation
Bravo, Iria; Catalan-Gomez, Sergio; Vázquez, Luis; Lorenzo, Encarnación; Pau, Jose Luis
2017-01-01
New methods for the production of colloidal Ga nanoparticles (GaNPs) are introduced based on the evaporation of gallium on expendable aluminum zinc oxide (AZO) layer. The nanoparticles can be prepared in aqueous or organic solvents such as tetrahydrofuran in order to be used in different sensing applications. The particles had a quasi mono-modal distribution with diameters ranging from 10 nm to 80 nm, and their aggregation status depended on the solvent nature. Compared to common chemical synthesis, our method assures higher yield with the possibility of tailoring particles size by adjusting the deposition time. The GaNPs have been studied by spectrophotometry to obtain the absorption spectra. The colloidal solutions exhibit strong plasmonic absorption in the ultra violet (UV) region around 280 nm, whose width and intensity mainly depend on the nanoparticles dimensions and their aggregation state. With regard to the colloidal GaNPs flocculate behavior, the water solvent case has been investigated for different pH values, showing UV-visible absorption because of the formation of NPs clusters. Using discrete dipole approximation (DDA) method simulations, a close connection between the UV absorption and NPs with a diameter smaller than ~40 nm was observed. PMID:28684687
NASA Astrophysics Data System (ADS)
Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei
2018-04-01
This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.
Atomic layer deposition frequency-multiplied Fresnel zone plates for hard x-rays focusing
Moldovan, Nicolaie; Divan, Ralu; Zeng, Hongjun; ...
2017-12-01
The design and fabrication of Fresnel zone plates for hard x-ray focusing up to 25 keV photon energies with better than 50 nm imaging half-pitch resolution is reported as performed by forming an ultrananocrystalline diamond (UNCD) scaffold, subsequently coating it with atomic layer deposition (ALD) with an absorber/phase shifting material, followed by back side etching of Si to form a diamond membrane device. The scaffold is formed by chemical vapor-deposited UNCD, electron beam lithography, and deep-reactive ion etching of diamond to desired specifications. The benefits of using diamond are as follows: improved mechanical robustness to prevent collapse of high-aspect-ratio ringmore » structures, a known high-aspect-ratio etch method, excellent radiation hardness, extremely low x-ray absorption, and significantly improved thermal/dimensional stability as compared to alternative materials. Central to the technology is the high-resolution patterning of diamond membranes at wafer scale, which was pushed to 60 nm lines and spaces etched 2.2-mu m-deep, to an aspect ratio of 36:1. The absorber growth was achieved by ALD of Ir, Pt, or W, while wafer-level processing allowed to obtain up to 121 device chips per 4 in. wafer with yields better than 60%. X-ray tests with such zone plates allowed resolving 50 nm lines and spaces, at the limit of the available resolution test structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldovan, Nicolaie; Divan, Ralu; Zeng, Hongjun
The design and fabrication of Fresnel zone plates for hard x-ray focusing up to 25 keV photon energies with better than 50 nm imaging half-pitch resolution is reported as performed by forming an ultrananocrystalline diamond (UNCD) scaffold, subsequently coating it with atomic layer deposition (ALD) with an absorber/phase shifting material, followed by back side etching of Si to form a diamond membrane device. The scaffold is formed by chemical vapor-deposited UNCD, electron beam lithography, and deep-reactive ion etching of diamond to desired specifications. The benefits of using diamond are as follows: improved mechanical robustness to prevent collapse of high-aspect-ratio ringmore » structures, a known high-aspect-ratio etch method, excellent radiation hardness, extremely low x-ray absorption, and significantly improved thermal/dimensional stability as compared to alternative materials. Central to the technology is the high-resolution patterning of diamond membranes at wafer scale, which was pushed to 60 nm lines and spaces etched 2.2-mu m-deep, to an aspect ratio of 36:1. The absorber growth was achieved by ALD of Ir, Pt, or W, while wafer-level processing allowed to obtain up to 121 device chips per 4 in. wafer with yields better than 60%. X-ray tests with such zone plates allowed resolving 50 nm lines and spaces, at the limit of the available resolution test structures.« less
Studies on cytostatics used as photosensitizing material in photodynamic therapy
NASA Astrophysics Data System (ADS)
Pascu, Mihail-Lucian; Danaila, Leon; Carstocea, Benone D.; Staicu, Angela; Truica, Sorina; Gazdaru, Doina M.
2002-10-01
Introduction of the photosensitizer properties of cytostatics drus was made, pointing out that the fact that besides the biochemical action of the cytostatics their effects could be enhanced by the exposure to light at different doses. A spectroscopical characterisation of methotrexate and fluorouracil, cytostatic drugs used frequently in cancer therpy was performed. The absorption, emission and excitation spectra were measured for methotrexate solutions in natural saline and sodium hydroxide at concentration in the range 10-5 -10-6M and pH 8.4. The absorption, emission and excitation spectra were measured for fluorouracil solutions in natural saline at concentration in the range 10-4 -10-5M. The absorption spectrum exhibits spectral bands in the range 250nm -450nm for both drugs. The fluorescence excitatioan for methotrexate was made at 340nm and 370nm, the fluorescence emission was detected in the spectral range 400nm - 500nm with a maximum at 470nm. The fluorescence excitation was measured in teh range 200nm-500nm with the emission centred on 530nm, for Xe lamp irradiation, and 300nm for Hg lamp and laser irradiation. The fluorescence emission spectra was monitored in the spectral range 400nm - 600nm. The effects of irradiation on spectroscopic characteristics of methrotrexate and fluorouracil were investigated. The irraditaion was made using a UV classic lamp with Xe, for the first experimental part and for the second one it was used both a class Hg lamp and a nytorgen pulsed laser.
Optical properties of Ni2+ and radiation defects in MgF sub 2 and MnF sub 2
NASA Astrophysics Data System (ADS)
Feuerhelm, L. N.
1980-03-01
The radiation defects in pure MgF2 were made by observating the polarized absorption, luminescence, and excitation spectra in electron-irradiated MgF2. Additionally, studies of the absorption, emission, excitation, and temperature dependence of the lifetimes of transitions in nickel-doped MgF2 and MnF2 were accomplished, as well as the observation of radiation effects on these crystals. The absorption band at about 320 nm in irradiated MgF2 is identified to be due to the F2(D2b) center, and to have an emission at about 450 nm. Analysis of the temperature dependence of this band indicates a dominant phonon mode of 255 cm(-1) for the excited state. The F2(C1) center is identified with an absorption of about 360 nm and an emission of 410 nm. An absorption peak at 300 nm, for which no corresponding emission was found, is tentatively identified to be the F3-center, and to have a dominant phonon mode of 255 cm(-1). The temperature dependence of the lifetimes of transitions in nickel-doped MgF2 is analyzed by the quantum mechanical single configuration coordinate model of Struck and Fonger, and a complete configuration coordinate model is made for this crystal. Similar studies are made in MnF2:Ni.
Advances in Pulsed Lidar Measurements of CO2 Column Concentrations from Aircraft and for Space
NASA Astrophysics Data System (ADS)
Abshire, J. B.; Ramanathan, A. K.; Allan, G. R.; Hasselbrack, W. E.; Riris, H.; Numata, K.; Mao, J.; Sun, X.
2016-12-01
We have demonstrated an improved pulsed, multiple-wavelength integrated path differential absorption lidar for measuring the tropospheric CO2 concentrations. The lidar measures the range resolved shape of the 1572.33 nm CO2 absorption line to scattering surfaces, including the ground and the tops of clouds. Airborne measurements have used both 30 and 15 fixed wavelength samples distributed across the line. Analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the CO2 absorption line shape and the column average CO2 concentrations by using radiative transfer calculations, the aircraft altitude and range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations from in-situ sensors. In recent campaigns the lidar used a step-locked laser diode source, and a new HgCdTe APD detector in the receiver. During August and September 2014 the ASCENDS campaign flew over the California Central Valley, a coastal redwood forest, desert areas, and above growing crops in Iowa. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over variable topography and through thin clouds and aerosols. The retrievals clearly show the decrease in CO2 concentration over growing cropland. Airborne lidar measurements of horizontal gradients of CO2 concentrations across Nevada, Colorado and Nebraska showed good agreement with those from a model of CO2 flux and transport (PCTM). In several flights the agreement of the lidar with the column average concentration was < 1ppm, with standard deviation of 0.9 ppm. Two additional flights were made in February 2016 using a larger laser spot size and an optimized receiver. These improved the sensitivity x3, and the retrievals show 0.7 ppm precision over the desert in 1 second averaging time. A summary of these results will be presented, along with on-going developments for a space version.
Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Serlemitsos, Peter
2005-01-01
We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.
Brown, M J; Olver, R E; Ramsden, C A; Strang, L B; Walters, D V
1983-01-01
In the chronically catheterized fetal lamb, intravenous infusion of adrenaline at 0.5 microgram/min produced slowing of the secretion of lung liquid or its absorption, an effect which increased exponentially with advancing gestation. Between 120 and 130 days, the characteristic response was slowing of secretion, whereas after 130 days it was absorption. Stimulus-response curves, relating secretion or absorption rate to plasma adrenaline concentration, were obtained by infusing adrenaline into the fetus intravenously at rates between 0.1 and 1.0 microgram/min (0.55-5.5 nmol/min). These curves allowed estimation of the minimum concentration of adrenaline required to inhibit secretion [( Ai]) and this was found to decrease from 0.43 ng/ml. (2.35 nM) at 132-4 days' gestation to 0.029 ng/ml. (0.16 nM) at gestations above 140 days. During spontaneous labour there was a slowing of lung liquid secretion in the early stages followed by absorption during the last 50-150 min. The mean concentration of adrenaline in plasma increased from 0.087 ng/ml. (0.48 nM) in early labour to 6.86 ng/ml. (37.5 nM) in the last 50 min and to 7.17 ng/ml. (39.2 nM) in the early post-natal period. Mean noradrenaline levels at the same times were 1.71 ng/ml. (10.1 nM), 12.14 ng/ml. (71.8 nM) and 9.10 ng/ml. (53.9 nM). The relationship between the plasma adrenaline concentration and the rate of absorption during labour was similar to that found when adrenaline was infused at various rates into the non-labouring fetus of comparable gestational age. The upper airway of the fetus was shown to be capable of acting as a one-way valve allowing outflow but not inflow of liquid. Thus withdrawal of liquid at 5-20 ml./hr from the fetal trachea below the larynx caused closure of the upper airway and this result was obtained both when the recurrent laryngeal nerves were intact and when they were divided. PMID:6655575
NASA Astrophysics Data System (ADS)
Kyazym-Zade, A. G.; Salmanov, V. M.; Guseinov, A. G.; Mamedov, R. M.; Salmanova, A. A.; Akhmedova, F. Sh.
2018-02-01
The successive ionic layer adsorption and reaction (SILAR) method is used to prepare InSe thin films and InSe nanoparticles. Shapes and sizes of the obtained nanoparticles are investigated using a scanning electron microscope and an atomic force microscope. The main parameters of the examined structures, nanoparticle sizes (4-20 nm), and band gap ( E g = 1.60 eV) for nanoparticles with the least sizes are determined. Superfast (1.5·10-8 s) photocurrent relaxation and stimulated emission with line half-width of 8 Å have been observed upon exposure to laser radiation.
Rapid and Convenient Separation of Chitooligosaccharides by Ion-Exchange Chromatography
NASA Astrophysics Data System (ADS)
Wu, Yuxiao; Lu, Wei-Peng; Wang, Jianing; Gao, Yunhua; Guo, Yanchuan
2017-12-01
Pervious methods for separation of highly purified chitooligosaccharides was time-consuming and labor-intensive, which limited the large-scale production. This study developed a convenient ion-exchange chromatography using the ÄKTA™ avant 150 chromatographic system. Five fractions were automatically collected under detecting the absorption at 210 nm. The fractions were analyzed by high-performance liquid chromatography. It proved that they primarily comprised chitobiose, chitotriose, chitotetraose, chitopentaose, and chitohexaose, respectively, with chromatographic purities over 90%. The separation process was rapid, convenient and could be monitored on-line, which would be benefit for the mass production of chitooligosaccharides.
NASA Technical Reports Server (NTRS)
Dyroff, Christoph; Fried, Alan; Richter, Dirk; Walega, James G.; Zahniser, Mark S.; McManus, J. Barry
2005-01-01
The present paper discusses a new, more stable, astigmatic Herriott cell employing carbon fiber stabilizing rods. Laboratory tests using a near-IR absorption feature of CO at 1564.168-nm revealed a factor of two improvement in measurement stability compared with the present commercial design when the sampling pressure was changed by +/-2 Torr around 50 Torr. This new cell should significantly enhance our efforts to measure trace gases employing pathlengths of 100 to 200-meters on airborne platforms with minimum detectable line center absorbances of less than 10(exp -6).
The Spectrum of Single Bubble Sonoluminescence.
NASA Astrophysics Data System (ADS)
Hiller, Robert Anthony
1995-01-01
An acoustically levitated bubble in a liquid may be driven to produce short flashes of light synchronous with the sound field in a process called sonoluminescence. The spectrum of the emitted light is measured with a grating monochromator and calibrated for absolute spectral radiance. The spectrum has been measured for various gases dissolved in pure water and heavy water, and alcohols and other hydrocarbon liquids. At a bandpass of 10nm EWHM the spectra are broad -band, showing no sign of lines or absorptions, with a peak in the ultraviolet. The experimental apparatus, including a system for producing sonoluminescence in a sealed container, is described.
Fourier-transform spectroscopy of HD in the vacuum ultraviolet at λ = 87-112 nm
NASA Astrophysics Data System (ADS)
Ivanov, T. I.; Dickenson, G. D.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Ubachs, W.
2010-03-01
Absorption spectroscopy in the vacuum ultraviolet (VUV) domain was performed on the hydrogen-deuteride molecule with a novel Fourier-transform spectrometer based upon wavefront division interferometry. This unique instrument, which is a permanent endstation of the undulator-based beamline DESIRS on the synchrotron SOLEIL facility, opens the way to Fourier-transform spectroscopy in the VUV range. The HD spectral lines in the Lyman and Werner bands were recorded in the 87-112 nm range from a quasi-static gas sample in a windowless configuration and with a Doppler-limited resolution. Line positions of some 268 transitions in the ? Lyman bands and 141 transitions in the ? Werner bands were deduced with uncertainties of 0.04 cm-1 (1σ) which correspond to Δλ/λ ∼ 4 × 10-7. This extensive laboratory database is of relevance for comparison with astronomical observations of H2 and HD spectra from highly redshifted objects, with the goal of extracting a possible variation of the proton-to-electron mass ratio (μ = m p /m e ) on a cosmological time scale. For this reason also calculations of the so-called sensitivity coefficients K i were performed in order to allow for deducing constraints on Δμ/μ. The K i coefficients, associated with the line shift that each spectral line undergoes as a result of a varying value for μ, were derived from calculations as a function of μ solving the Schrödinger equation using ab initio potentials.
NASA Astrophysics Data System (ADS)
Heng, Ri-Liang; Pilon, Laurent
2016-05-01
This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz-Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies.
Substitution determination of Fmoc‐substituted resins at different wavelengths
Kley, Markus; Bächle, Dirk; Loidl, Günther; Meier, Thomas; Samson, Daniel
2017-01-01
In solid‐phase peptide synthesis, the nominal batch size is calculated using the starting resin substitution and the mass of the starting resin. The starting resin substitution constitutes the basis for the calculation of a whole set of important process parameters, such as the number of amino acid derivative equivalents. For Fmoc‐substituted resins, substitution determination is often performed by suspending the Fmoc‐protected starting resin in 20% (v/v) piperidine in DMF to generate the dibenzofulvene–piperidine adduct that is quantified by ultraviolet–visible spectroscopy. The spectrometric measurement is performed at the maximum absorption wavelength of the dibenzofulvene–piperidine adduct, that is, at 301.0 nm. The recorded absorption value, the resin weight and the volume are entered into an equation derived from Lambert–Beer's law, together with the substance‐specific molar absorption coefficient at 301.0 nm, in order to calculate the nominal substitution. To our knowledge, molar absorption coefficients between 7100 l mol−1 cm−1 and 8100 l mol−1 cm−1 have been reported for the dibenzofulvene–piperidine adduct at 301.0 nm. Depending on the applied value, the nominal batch size may differ up to 14%. In this publication, a determination of the molar absorption coefficients at 301.0 and 289.8 nm is reported. Furthermore, proof is given that by measuring the absorption at 289.8 nm the impact of wavelength accuracy is reduced. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. PMID:28635051
NASA Astrophysics Data System (ADS)
Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; Hicken, R. J.; Figueroa, A. I.; Baker, A. A.; van der Laan, G.; Duffy, L. B.; Shafer, P.; Klewe, C.; Arenholz, E.; Cavill, S. A.; Childress, J. R.; Katine, J. A.
2017-10-01
Spin pumping has been studied within Ta / Ag / Ni81Fe19 (0-5 nm) / Ag (6 nm) / Co2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni81Fe19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.
2014-06-20
We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly fullmore » coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.« less
Quantitative absorption data from thermally induced wavefront distortions on UV, Vis, and NIR optics
NASA Astrophysics Data System (ADS)
Mann, Klaus; Schäfer, Bernd; Leinhos, Uwe; Lübbecke, Maik
2017-11-01
A photothermal absorption measurement system was set up, deploying a Hartmann-Shack wavefront sensor with extreme sensitivity to accomplish spatially resolved monitoring of thermally induced wavefront distortions. Photothermal absorption measurements in the near-infrared and deep ultra-violet spectral range are performed for the characterization of optical materials, utilizing a Yb fiber laser (λ = 1070 nm) and an excimer laser (193nm, 248nm) to induce thermal load. Wavefront deformations as low as 50pm (rms) can be registered, allowing for a rapid assessment of material quality. Absolute calibration of the absorption data is achieved by comparison with a thermal calculation. The method accomplishes not only to measure absorptances of plane optical elements, but also wavefront deformations and focal shifts in lenses as well as in complex optical systems, such as e.g. F-Theta objectives used in industrial high power laser applications. Along with a description of the technique we present results from absorption measurements on coated and uncoated optics at various laser wavelengths ranging from deep UV to near IR.
NASA Astrophysics Data System (ADS)
Lavrik, N. L.; Mulloev, N. U.
2017-12-01
Additional absorption was detected in absorption spectra within the range 300-350 nm after addition of copper sulfate CuSO4(aq) to a solution of sodium salicylate NaНSal (рН = 7.8). The additional maximum absorption was observed at 320 nm. Assuming that the additional absorption depends on the formation of copper salicylate CuSal, the molar absorption coefficient εCuSal of this complex was determined to be (3.8 ± 0.02) · 103 М- 1 сm- 1. This value is almost equal to that of monoanion HSal-, εHSal - = (3.6 ± 0.04) · 103 М- 1 сm- 1, and is 2.5 times as much as εFe3 + HSal - = (1.55 ± 0.05) · 103 М- 1 сm- 1 for iron salicylate. The difference in εCuSal and εFe3 + HSal - is due to the difference in the initial electron states of Cu2 + and Fe3 + ions that have the d9 and d5 configurations, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane
We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broadmore » absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.« less
NASA Astrophysics Data System (ADS)
Rao, M. V. Sambasiva; Tirupataiah, Ch.; Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, D. Krishna
2018-04-01
Glass ceramics with composition 10Na2O- 30PbO-10Bi2O3-(50-x)SiO2: xV2O5 (0 ≤ x ≤ 5) were synthesized by melt quenching and heat treatment method. XRD and SEM studies have indicated that the samples contain well defined and randomly distributed grains of different crystalline phases. Optical absorption spectra of these samples exhibited two absorption bands at 629 and 835 nm which are the characteristics of V4+ ions. The EPR spectra of these samples have exhibited well resolved hyperfine structure consisting of sixteen-eight parallel and eight perpendicular lines with a raise in their intensity with an increase in the content of V2O5 up to 3 mol% indicates the increase of redox ratio V4+/V5+ in the glass ceramic matrix.
Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell
NASA Astrophysics Data System (ADS)
Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.
2013-03-01
We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.
Airborne and ground based lidar measurements of the atmospheric pressure profile
NASA Technical Reports Server (NTRS)
Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.
1989-01-01
The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.
NASA Technical Reports Server (NTRS)
Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.
1993-01-01
An explanation of induced transmission for spectral regions excluding the far ultraviolet (FUV) is given to better understand how induced transmission and absorption can be used to design effective polarizers in the FUV spectral region. We achieve high s-polarization reflectance and a high degree of polarization (P equals (Rs-Rp)/(Rs+Rp)) by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of Al as the substrate. For example, our polarizer designed for the Lyman-alpha line (lambda equals 121.6 nm) has 87.95 percent reflectance for the s-polarization case and 0.43 percent for the p-polarization case, with a degree of polarization of 99.03 percent. If a double reflection polarizer is made with this design, it will have a degree of polarization of 99.99 percent and s-polarization throughput of 77.35 percent.
EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses
NASA Astrophysics Data System (ADS)
De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.
2014-12-01
Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).
MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.
The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with
NASA Astrophysics Data System (ADS)
Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin
2015-03-01
Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.
Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin
2015-01-01
Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.
2000-12-01
A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorptionmore » of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively.« less
Portable Cavity Ringdown Spectrometer for Methane Isotope Ratio Measurements
NASA Astrophysics Data System (ADS)
Bostrom, G.; Rice, A.; Atkinson, D.
2008-12-01
Close to 45% (244 Tg/yr) of the methange (CH4) in the atmosphere is produced in anaerobic soil conditions (wetlands and rice paddies). Under aerobic soil conditions, bacteria oxidize CH4 to produce CO2 and H2O. Both production and oxidation rates depend on soil composition, nutrient loadings, water content, and plant conditions, but these dependencies are not well characterized. Measurements of CH4 isotope ratios can provide a better understanding of CH4 processes in natural and man- made ecosystems. Here we present progress on the development of a field deployable instrument capable of making precision 13CH4/12CH4 and CH3D/ CH4 isotope ratio measurements of CH4. Moving the instrument out of the lab and into the field will significantly improve the spatial and temporal resolution of data and enhance the study of plant-soil-atmosphere CH4 source and sink processes. Our instrument is a Near-IR (1280-1340 nm) tunable diode laser Cavity Ringdown Spectroscopy (CRDS) system. CRDS is a technique in which the laser injects energy into a high finesse cavity by tuning to one of the cavity resonant modes, resulting in a buildup of energy. At some threshold intra-cavity intensity the injection is stopped, and the intensity decays exponentially due to losses such as absorption by molecules. If the laser is tuned to an absorption line of a sample gas, the concentration of the molecule is proportional to the decay constant (according to the Beer-Lambert law)--scanning over a frequency range produces an absorption spectrum. Currently our system has a resolution of 150 MHz scanning over a 30 GHz (0.2 nm) region, allowing us to resolve peaks at pressures of 100 torr. Using combinations of CH4 standard (natural isotopic abundance) and a 99% pure 13CH4 standard, we identified several lines in the CH4 HITRAN Database that we attribute to 13CH4. We use these and 12CH4 lines within the same region to measure 13CH4 concentration, 12CH4 concentration, and the isotope ratio (13C/12C and D/H). We present our lab-based prototype system, including our latest isotope ratio performance and measurement precision. In addition, we present the way forward to achieve both our target precision and portability.
NASA Astrophysics Data System (ADS)
Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.
2014-10-01
The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.
The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides.
Haker, Andrea; Hendriks, Johnny; van Stokkum, Ivo H M; Heberle, Joachim; Hellingwerf, Klaas J; Crielaard, Wim; Gensch, Thomas
2003-03-07
The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively.
Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument
NASA Technical Reports Server (NTRS)
Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.
1997-01-01
The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.
High reflected cubic cavity as long path absorption cell for infrared gas sensing
NASA Astrophysics Data System (ADS)
Yu, Jia; Gao, Qiang; Zhang, Zhiguo
2014-10-01
One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.
NASA Astrophysics Data System (ADS)
Chernyshov, A. K.; Mikheyev, P. A.; Lunev, N. N.; Azyazov, V. N.
2018-04-01
Optically pumped all-rare-gas laser (OPRGL) with unique properties were recently proposed with a possibility to obtain the laser power on the order of hundreds of Watts from a cubic centimeter. To provide high laser efficiency, the pumping radiation has to match the absorption spectrum of the rare gas metastables. To meet this condition a reliable diagnostics of the key parameters of the active medium is required and knowledge of the broadening and shift coefficients for corresponding transitions of rare gases is necessary. In this paper, the diode-laser absorption spectroscopy was employed to determine the pressure shift coefficient for 811.5 nm Ar line. The value of obtained coefficient in pure argon reduced to 300 K is -(2.1 ± 0.1) × 10-10 s-1cm3. In the course of the study the pressure broadening coefficient was also evaluated and found to be (2.4 ± 0.5) × 10-10 s-1cm3.
Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng
2014-03-01
The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.
The line-locking hypothesis, absorption by intervening galaxies, and the z = 1.95 peak in redshifts
NASA Technical Reports Server (NTRS)
Burbidge, G.
1978-01-01
The controversy over whether the absorption spectrum in QSOs is intrinsic or extrinsic is approached with attention to the peak of redshifts at z = 1.95. Also considered are the line-locking and the intervening galaxy hypotheses. The line locking hypothesis is based on observations that certain ratios found in absorption line QSOs are preferred, and leads inevitably to the conclusion that the absorption line systems are intrinsic. The intervening galaxy hypothesis is based on absorption redshifts resulting from given absorption cross-sections of galactic clusters and the intergalactic medium, and would lead to the theoretical conclusion that most QSOs show strong absorption, a conclusion which is not supported by empirical data. The 1.95 peak, on the other hand, is most probably an intrinsic property of QSOs. The peak is enhanced by redshift, and it is noted that both an emission and an absorption redshift peak are seen at 1.95.
NASA Astrophysics Data System (ADS)
Otani, Minoru; Biro, Ryuji; Ouchi, Chidane; Hasegawa, Masanobu; Suzuki, Yasuyuki; Sone, Kazuho; Niisaka, Shunsuke; Saito, Tadahiko; Saito, Jun; Tanaka, Akira
2002-06-01
The total loss that can be suffered by an antireflection (AR) coating consists of reflectance loss, absorption loss, and scatter loss. To separate these losses we developed a calorimetric absorption measurement apparatus and an ellipsoidal Coblentz hemisphere based scatterometer for 157-nm optics. Reflectance, absorption, and scatter of AR coatings were measured with these apparatuses. The AR coating samples were supplied by Japanese vendors. Each AR coating as supplied was coated with the vendor's coating design by that vendor's coating process. Our measurement apparatuses, methods, and results for these AR coatings are presented here.
Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY
NASA Astrophysics Data System (ADS)
de Graaf, M.; Stammes, P.; Aben, E. A. A.
2007-01-01
Reflectance spectra from 280-1750 nm of typical desert dust aerosol (DDA) and biomass burning aerosol (BBA) scenes over oceans are presented, measured by the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). DDA and BBA are both UV-absorbing aerosols, but their effect on the top-of-atmosphere (TOA) reflectance is different due to differences in the way mineral aerosols and smoke reflect and absorb radiation. Mineral aerosols are typically large, inert particles, found in warm, dry continental air. Smoke particles, on the other hand, are usually small particles, although often clustered, chemically very active and highly variable in composition. Moreover, BBA are hygroscopic and over oceans BBA were invariably found in cloudy scenes. TOA reflectance spectra of typical DDA and BBA scenes were analyzed, using radiative transfer simulations, and compared. The DDA spectrum was successfully simulated using a layer with a bimodal size distribution of mineral aerosols in a clear sky. The spectrum of the BBA scene, however, was determined by the interaction between cloud droplets and smoke particles, as is shown by simulations with a model of separate aerosol and cloud layers and models with internally and externally mixed aerosol/cloud layers. The occurrence of clouds in smoke scenes when sufficient water vapor is present usually prevents the detection of optical properties of these aerosol plumes using space-borne sensors. However, the Absorbing Aerosol Index (AAI), a UV color index, is not sensitive to scattering aerosols and clouds and can be used to detect these otherwise obscured aerosol plumes over clouds. The amount of absorption of radiation can be expressed using the absorption optical thickness. The absorption optical thickness in the DDA case was 0.42 (340 nm) and 0.14 (550 nm) for an aerosol layer of optical thickness 1.74 (550 nm). In the BBA case the absorption optical thickness was 0.18 (340 nm) and 0.10 (550 nm) for an aerosol/cloud layer of optical thickness 20.0 (550 nm). However, this reduced the cloud albedo by about 0.2 (340 nm) and 0.15 (550 nm). This method can be an important tool to estimate the global impact of absorption of shortwave radiation by smoke and industrial aerosols inside clouds.
O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements
NASA Technical Reports Server (NTRS)
Herman, J. R.; Mentall, J. E.
1982-01-01
The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.
Study of absorption and re-emission processes in a ternary liquid scintillation system
NASA Astrophysics Data System (ADS)
Xiao, Hua-Lin; Li, Xiao-Bo; Zheng, Dong; Cao, Jun; Wen, Liang-Jian; Wang, Nai-Yan
2010-11-01
Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2,5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured.
Growth and optical properties of Co,Nd:LaMgAl11O19
NASA Astrophysics Data System (ADS)
Xu, Peng; Xia, Changtai; Di, Juqing; Xu, Xiaodong; Sai, Qinglin; Wang, Lulu
2012-12-01
Nd,Co:LaMgAl11O19 (abbreviated as Co,Nd:LMA) was grown using the Czochralski method. The structure, polarized absorption spectrum, fluorescence spectrum, and fluorescence decay time were analyzed. The as-grown crystal had very wide absorption bands at 794 nm, which can be pumped by GaAs laser diode without temperature stabilization. Two strong emission bands were present at 1056 nm and 1082 nm with full-width at half-maximum (FWHM) of 6 and 8 nm, respectively. The large FWHM is due to the inhomogeneity of the Nd ion sites. The lifetimes of the 4F3/2 manifold of Co,Nd:LMA at room temperature monitored at 905 nm, 1056 nm, and 1344 nm were 292, 288, and 350 μs, respectively, which was caused by the different contribution of the three different sites with D3h and C2v symmetry. The absorption band of Co is from 1.3 μm to 1.6 μm, and Co,Nd:LMA still has a strong emission around the 1.38 μm, indicating that the Co,Nd:LMA can be applied as a potential self-Q-switched material operating at 1.3 μm.
Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaoliang; Liu, Zhunqiao; An, Shuqing
By utilizing continuous measurements of water fluxes and solar-induced chlorophyll fluorescence (SIF) over the entire growing season, we exploit the potential of broadband SIF in predicting plant transpiration (T) in a temperate forest. After reconstructing the full SIF spectrum from the selected absorption lines and simulations from the SCOPE (Soil Canopy Observation Photochemistry and Energy fluxes) model, linear regression (LR) and Gaussian processes regression (GPR) models are used to analyze the relation between T and combinations of different SIF bands. We find that SIF emissions in the near-infrared spectrum (at 720 nm, 740 nm and 760 nm) are more sensitivemore » to T than SIF emissions in the red spectrum (at 685 nm and 687 nm). While conditions such as light and heat stress decouple the relationship between single-band SIF and T, the combination of different SIF bands allows the retrieval of reliable T estimates even in these conditions. Overall, we find that the use of SIF as a proxy for T yields estimates that are at least as accurate as those from traditional transpiration models such as the Penman-Monteith equation, which are input demanding and complex to apply to in situ and satellite data. Specifically, we find that (1) the SIF-T relationship deteriorates when Photosynthetically Active Radiation (PAR), vapor pressure deficit and air temperature exceed biological optimal thresholds; (2) a high leaf area index exerts a negative impact on the SIF-T correlation due to increasing scattering and (re)absorption of the SIF signal; (3) the SIF-T relationship does not change depending on the observation time during the day; and (4) temporal aggregation to days further enhanced the SIF-T correlations. Altogether, our results provide the first ground-based evidence that SIF emission has potential to be a close predictor of plant transpiration, especially when a combination of different SIF bands is considered.« less
NASA Astrophysics Data System (ADS)
Xu, Yuming; Yu, Jianjun; Li, Xinying
2017-03-01
We experimentally demonstrate 4 lanes up to 400 Gbps discrete multitone transmission using an electric absorption modulated laser (EML) at 1550-nm for dense wavelength division multiplexing (DWDM) intradata center connects. This is the first demonstration of 4×100 Gb/s transmission using EML at 1550-nm, and it is compatible with the DWDM system at C-band.
NASA Astrophysics Data System (ADS)
Nielsen, M. P.; Elezzabi, A. Y.
2014-03-01
Ultrafast all-optical modulation in Ag/HfO2/Si/HfO2/Ag metal-insulator-semiconductor-insulator-metal (MISIM) nanoring resonators through two-photon absorption photogenerated free-carriers is studied using self-consistent 3-D finite difference time domain (FDTD) simulations. The self-consistent FDTD simulations incorporate the two-photon absorption, free carrier absorption, and plasma dispersion effects in silicon. The nanorings are aperture coupled to Ag/HfO2/Si(100nm)/HfO2/Ag MISIM waveguides by 300nm wide and 50nm deep apertures. The effects of pump pulse energy, HfO2 spacer thickness, and device footprint on the modulation characteristics are studied. Nanoring radius is varied between 540nm and 1μm, the HfO2 spacer thickness is varied between 10nm and 20nm, and the pump pulse energy is explored up to 60pJ. Modulation amplitude, switching time, average generated carrier density, and wavelength resonant shift is studied for each of the device configurations. In a compact device footprint of only 1.4μm2, a 13.1dB modulation amplitude was obtained with a switching time of only 2ps using a modest pump pulse energy of 16.0pJ. The larger bandwidth associated with more compact nanorings and thinner spacer layers is shown to result in increased modulation amplitude.
NASA Astrophysics Data System (ADS)
Valverde-Aguilar, G.; Manríquez Zepeda, J. L.
2015-03-01
Amorphous and crystalline ZnO thin films were obtained by the sol-gel process. A precursor solution of ZnO was synthesized by using zinc acetate dehydrate as inorganic precursor at room temperature. The films were spin-coated on silicon and glass wafers and gelled in humid air. The films were calcined at 450 °C for 15 min to produce ZnO nanocrystals with a wurtzite structure. Crystalline ZnO film exhibits an absorption band located at 359 nm (3.4 eV). Photoconductivity technique was used to determine the charge transport mechanism on both kinds of films. Experimental data were fitted with straight lines at darkness and under illumination at 355 and 633 nm wavelengths. This indicates an ohmic behavior. The photovoltaic and photoconductivity parameters were determined from the current density versus the applied electrical field results.
NASA Astrophysics Data System (ADS)
Kireev, S. V.; Shnyrev, S. L.
2018-02-01
This paper develops the new selective real-time method of 129I2, 129I127I, 127I2 and NO2 detection in gases. Measuring concentrations of molecular iodine is based on fluorescence exciting by the radiation of a tunable diode laser, operating in the red spectral region (632-637 nm), at two or three wavelengths corresponding to the centers of the absorption lines of 129I2, 129I127I and 127I2. Detection of NO2 is performed by measuring the intensity of the tunable diode laser radiation, which passed through the measuring cell. Measured simultaneously, boundary ratios of iodine molecule concentrations measured simultaneously are about 10-6. The sensitivity of nitrogen dioxide detection is 1016 cm-3.
A tunable, solid, Fabry-Perot etalon for solar seismology
NASA Technical Reports Server (NTRS)
Rust, David M.; Burton, Clive H.; Leistner, Achim J.
1986-01-01
A solid etalon has been designed and fabricated from a 50-mm diameter wafer of optical-quality lithium niobate. The finished etalon has a free spectral range of 0.325 nm at 588 nm. The parallel faces are coated with silver, and the central 15-mm aperture of the etalon has a finesse of 18.6. The reflective faces double as electrodes, and application of voltage will shift the passband. This feature was used in a servo circuit to stabilize the passband against temperature and tilt-induced drifts to better than three parts in one billion. Operated in the stabilized mode for day-long sessions, this filter alternately samples the wings of a narrow atomic absorption line in the solar spectrum and produces a signal proportional to velocity on the solar disk. The Fourier transform of this signal yields information on acoustic waves in the solar interior.
Towards spontaneous parametric down-conversion at low temperatures
NASA Astrophysics Data System (ADS)
Akatiev, Dmitrii; Boldyrev, Kirill; Kuzmin, Nikolai; Latypov, Ilnur; Popova, Marina; Shkalikov, Andrey; Kalachev, Alexey
2017-10-01
The possibility of observing spontaneous parametric down-conversion in doped nonlinear crystals at low temperatures, which would be useful for combining heralded single-photon sources and quantum memories, is studied theoretically. The ordinary refractive index of a lithium niobate crystal doped with magnesium oxide LiNbO3:MgO is measured at liquid nitrogen and helium temperatures. On the basis of the experimental data, the coefficients of the Sellmeier equation are determined for the temperatures from 5 to 300 K. In addition, a poling period of the nonlinear crystal has been calculated for observing type-0 spontaneous parametric down-conversion (ooo-synchronism) at the liquid helium temperature under pumping at the wavelength of λp = 532 nm and emission of the signal field at the wavelength of λs = 794 nm, which corresponds to the resonant absorption line of Tm3+ doped ions.
NASA Astrophysics Data System (ADS)
Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.
2017-12-01
Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.
NASA Astrophysics Data System (ADS)
Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.
2009-08-01
A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications particularly from space (LEO, GEO orbits) and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.
NASA Technical Reports Server (NTRS)
Stenholm, Ingrid; DeYoung, Russell J.
2001-01-01
Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; Connolly, Emma; Murphy, Mary; Barron, Valerie; Leahy, Martin
2014-03-01
The progress in stem cell research over the past decade holds promise and potential to address many unmet clinical therapeutic needs. Tracking stem cell with modern imaging modalities are critically needed for optimizing stem cell therapy, which offers insight into various underlying biological processes such as cell migration, engraftment, homing, differentiation, and functions etc. In this study we report the feasibility of photothermal optical coherence tomography (PT-OCT) to image human mesenchymal stem cells (hMSCs) labeled with single-walled carbon nanotubes (SWNTs) for in vitro cell tracking in three dimensional scaffolds. PT-OCT is a functional extension of conventional OCT with extended capability of localized detection of absorbing targets from scattering background to provide depth-resolved molecular contrast imaging. A 91 kHz line rate, spectral domain PT-OCT system at 1310nm was developed to detect the photothermal signal generated by 800nm excitation laser. In general, MSCs do not have obvious optical absorption properties and cannot be directly visualized using PT-OCT imaging. However, the optical absorption properties of hMSCs can me modified by labeling with SWNTs. Using this approach, MSC were labeled with SWNT and the cell distribution imaged in a 3D polymer scaffold using PT-OCT.
VUV Spectroscopic Study of the D 1Π u State of Molecular Deuterium
NASA Astrophysics Data System (ADS)
Dickenson, G. D.; Ivanov, T. I.; Ubachs, W.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Glass-Maujean, M.; Schmoranzer, H.; Knie, A.; Kübler, S.; Ehresmann, A.
2011-11-01
The D 1Π u - ? absorption system of molecular deuterium has been re-investigated using the VUV Fourier-Transform (FT) spectrometer at the DESIRS beamline of the synchrotron SOLEIL and photon-induced fluorescence spectrometry (PIFS) using the 10 m normal incidence monochromator at the synchrotron BESSY II. Using the FT spectrometer absorption spectra in the range 72-82 nm were recorded in quasi static gas at 100 K and in a free flowing jet at a spectroscopic resolution of 0.50 and 0.20 cm-1 respectively. The narrow Q-branch transitions, probing states of Π- symmetry, were observed up to vibrational level v = 22. The states of Π+ symmetry, known to be broadened due to predissociation and giving rise to asymmetric Beutler-Fano resonances, were studied up to v = 18. The 10 m normal incidence beamline setup at BESSY II was used to simultaneously record absorption, dissociation, ionization and fluorescence decay channels from which information on the line intensities, predissociated widths, and Fano q-parameters were extracted. R-branch transitions were observed up to v = 23 for J = 1-3 as well as several transitions for J = 4 and 5 up to v = 22 and 18 respectively. The Q-branch transitions are found to weakly predissociate and were observed from v = 8 to the final vibrational level of the state v = 23. The spectroscopic study is supported by two theoretical frameworks. Results on the Π- symmetry states are compared to ab initio multi-channel-quantum defect theory (MQDT) calculations, demonstrating that these calculations are accurate to within 0.5 cm-1. Furthermore, the calculated line intensities of Q-lines agree well with measured values. For the states of Π+ symmetry a perturbative model based on a single bound state interacting with a predissociation continuum was explored, yielding good agreement for predissociation widths, Fano q-parameters and line intensities.
NASA Astrophysics Data System (ADS)
Jordan, C. E.; Stauffer, R. M.; Lamb, B.; Novak, M. G.; Mannino, A.; Hudgins, C.; Thornhill, K. L., II; Crosbie, E.; Winstead, E.; Anderson, B.; Martin, R.; Shook, M.; Ziemba, L. D.; Beyersdorf, A. J.; Corr, C.
2017-12-01
A new in situ spectral aerosol extinction instrument (custom built, SpEx) built to cover the 300-700 nm range at 1 nm spectral resolution and temporal resolution of 4 minutes was deployed on the top deck ( 10 m above the water surface) of the R/V Onnuri during the KORUS-OC research cruise around South Korea in spring 2016. This new instrument was one component of a suite of in situ aerosol optical measurements that included 3-visible-wavelength scattering (Airphoton IN101 Nephelometer, at 450, 532, & 632 nm) and absorption (Brechtel Tricolor Absorption Photometer Model 2901, at 467, 528, & 652 nm) with sub-minute temporal resolution; two sets of filters (Teflon and glass fiber, both collected over 3 hour daytime and 12 hour overnight intervals) to provide aerosol absorption spectra over the same wavelength range as SpEx. The glass fiber filters were placed in the center of an integrating sphere (Labsphere DRA-CA-30) attached to a dual beam spectrophotometer (Cary 100 Bio UV-Visible Spectrophotometer) to measure total aerosol absorption spectra via an established method used by the ocean color community to obtain absorption spectra from particles suspended in sea water. Adapting this methodology for atmospheric aerosol measurements provides a new avenue to obtain spectral total aerosol absorption, particularly useful for expanding in situ measurement capabilities into the UV range. The Teflon filters were cut in half with one half extracted in deionized water and the other half extracted in methanol. The solutions were filtered and injected into a liquid waveguide capillary cell (World Precision Instruments LWCC-3100, 100 cm pathlength) to measure the absorption spectra for each solution. In addition, the water extracts were measured via ion chromatography (Dionex ICS-3000 Ion Chromatography System) to obtain water-soluble inorganic ion concentrations, as well as via aerosol mass spectrometry (Aerodyne Research, Inc. HR-ToF High Resolution Aerosol Mass Spectrometer) to obtain organic aerosol concentrations. Results from the KORUS-OC data set will be discussed. In particular, the relationships between the optical information and chemical information will be examined.
Light Absorption of Biogenic Aerosol Particles in Amazonia
NASA Astrophysics Data System (ADS)
Holanda, B. A.; Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Holben, B. N.; Schafer, J.
2014-12-01
Aerosol absorption is a key issue in proper calculation of aerosol radiative forcing. Especially in the tropics with the dominance of natural biogenic aerosol and brown carbon, the so called anomalous absorption is of particular interest. A special experiment was designed to study the wavelength dependence of aerosol absorption for PM2.5 as well as for PM10 particles in the wet season in Central Amazonia. Aerosol analysis occurred from May to August 2014, in the ZF2 ecological reservation, situated at about 55 km North of Manaus in very pristine conditions Two 7 wavelengths AE33 Aethalometers were deployed measuring in parallel, but with a PM2.5 and PM10 inlets. Two MAAP (Multiangle Aerosol Absorption Photometer) were operated in parallel with the AE33 exactly at the same PM2.5 and PM10 inlets. Organic and elemental carbon was analyzed using collection with quartz filters and analysis using a Sunset OC/EC analyzer. Aerosol light scattering for 3 wavelengths was measured using Air Photon and TSI Nephelometers. Aerosol size distribution was measured with one TSI SMPS and a GRIMM OPC to have the size range from 10 nm to 10 micrometers. Particles were measured under dry conditions using diffusion dryers. Aerosol optical depth and absorption was also measured with an AERONET sunphotometer operated close to the site. As the experiment was run in the wet season, very low equivalent black carbon (EBC) were measured, with average concentrations around 50 ng/m³ during May, increasing to 130 ng/m³ in June and July. The measurements adjusted for similar wavelengths shows excellent agreement between the MAAP and AE33 for both inlets (PM2.5 and PM10). It was not possible statistically infer absorption from the coarse mode biogenic particles, since the absorption was completely dominated by fine mode particles. AERONET measurements shows very low values of AOD, at 0.17 at 500 nm and 0.13 at 870 nm, with very low absorption AOD values at 0.00086 at 676 nm and 0.0068 at 872 nm. Single scattering albedo values will be calculated.
UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478
NASA Astrophysics Data System (ADS)
Khattab, Muhammad; Wang, Feng; Clayton, Andrew H. A.
2016-07-01
The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360 nm consisted of two partially overlapping bands at approximately 340 nm and 330 nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327 nm to 336 nm, while the lower energy absorption band demonstrated a change in peak position from 340 nm to 346 nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409 nm to 495 nm with the corresponding Stokes shift in the range of 64 nm to 155 nm (4536 cm- 1 to 9210 cm- 1). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo.
Optical absorption in fused silica at elevated temperatures during 1.5-MeV electron irradiation
NASA Technical Reports Server (NTRS)
Smith, A. B.
1972-01-01
An experimental determination of the optical transmission of Corning 7940 UV and Suprasil 1 and 2 fused silica has been made during 1.5-MeV electron bombardment. The fused silica reached temperatures ranging from 150 to 1000 C. The Lewis Research Center dynamitron provided electron current densities which corresponded to a dose rate of 2.6 to 20 Mrad/sec. The irradiation induced absorption was measured at 215.0, 270.0, and 450.0 nm (2150, 2700, 4500 A). The length of each irradiation was sufficient so that an equilibrium between radiation induced coloration and high temperature annealing was reached. The experimental results indicate a significant optical absorption, with values of the induced absorption coefficient at 215.0 nm (2150 A) of 14.5 to 2.2/cm, at 270.0 nm (2700 A) of 9.7 to 3.0/cm and at 450.0 nm (4500 A) of 3.7 to 0.5/cm. This would make the use of fused silica as the separating wall material in the nuclear light bulb propulsion concept questionable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saik, V.O.; Lipsky, S.
The electronic absorption spectrum of benzene has been obtained by phototransmission measurements over a concentration range from 0.005 M in n-hexane to the neat liquid at 11.2 M and over a spectral range that extends down to 170 nm. Good agreement is obtained with previously reported measurements on the neat liquid. The oscillator strength of the strongly allowed A{sub 1g} {yields} E{sub 1u} transition is maintained at ca. 1.0 as the benzene concentration increases but is accompanied by extensive redistribution of the intensity such that the optical cross section at the position of the absorption maximum (which shifts from 184{submore » .2} nm in dilute solution to 189{sub .5} nm in the neat liquid) reduces by a factor of 2.7. An explanation for these changes in terms of Lorentz field corrections to the complex dielectric constant is developed, and its implication to the assignment of the neat liquid absorption as a collective excitation is considered. 43 refs., 5 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek; Nyk, Marcin
2015-11-01
Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.
Scientific issues and potential remote-sensing requirements for plant biochemical content
NASA Technical Reports Server (NTRS)
Peterson, David L.; Hubbard, G. S.
1992-01-01
Application of developments in imaging spectrometry to the study of terrestrial ecosystems, which began in 1983, demonstrate the potential to estimate lignin and nitrogen concentrations of plant canopies by remote-sensing techniques. Estimation of these parameters from the first principles of radiative transfer and the interactions of light with plant materials is not presently possible, principally because of lack of knowledge about internal leaf scattering and specific absorption involving biochemical compounds. From the perspective of remote-sensing instrumentation, sensors are needed to support derivative imaging spectroscopy. Biochemical absorption features tend to occur in functional groupings throughout the 1100- to 2500-nm region. Derivative spectroscopy improves the information associated with the weaker, narrower absorption features of biochemical absorption that are superimposed on the strong absolute variations due to foliar biomass, pigments, and leaf water content of plant canopies. Preliminary sensor specifications call for 8-nm bandwidths at 2-nm centers in four spectral regions (about 400 bands total) and a signal-to-noise performance of at least 1000:1 for 20 percent albedo targets in the 2000-nm region.
Influence of dose on particle size and optical properties of colloidal platinum nanoparticles.
Gharibshahi, Elham; Saion, Elias
2012-11-12
Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.
Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles
Gharibshahi, Elham; Saion, Elias
2012-01-01
Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size. PMID:23203091
UV laser long-path absorption spectroscopy
NASA Technical Reports Server (NTRS)
Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf
1994-01-01
Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive absorption measurements some specific problems of those detectors have to be solved experimentally (i.e. fixed pattern noise, dark signal noise, nonuniform efficiency of individual elements, spatial sensitivity variations). In order to improve the low spatial resolution we performed laboratory studies using a multiple reflection cell to convert the long path technique to a real in situ point measurement. Under the conditions of field experiments in Julich residual absorbance signals at present are about 1.5x10(exp -4) corresponding to an OH detection sensitivity of 2x10(exp 6) OH/cm(exp 3) using a light path of 5.8 km. Total integration times for one measurement point vary between a few minutes and an hour.
Warrier, Anita R; Gandhimathi, R
2018-04-27
In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm -1 , 1078.17 cm -1 , 1255.60 cm -1 , 1466.91 cm -1 . The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼10 4 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.
NASA Astrophysics Data System (ADS)
Warrier, Anita R.; Gandhimathi, R.
2018-07-01
In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm‑1, 1078.17 cm‑1, 1255.60 cm‑1, 1466.91 cm‑1. The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼104 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.
First Light from Triple-Etalon Fabry-Perot Interferometer for Atmospheric OI Airglow (6300 A)
NASA Astrophysics Data System (ADS)
Watchorn, S.; Noto, J.; Pedersen, T.; Betremieux, Y.; Migliozzi, M.; Kerr, R. B.
2006-05-01
Scientific Solutions, Inc. (SSI) has developed a triple-etalon Fabry-Perot interferometer (FPI) to observe neutral winds in the ionosphere by measuring neutral oxygen (O I) emission at 630.0 nm during the day. This instrument is to be deployed in the SSI airglow building at the Cerro Tololo observatory (30.17S 70.81W) in Chile, in support of the Comm/Nav Outage Forecast System (C/NOFS) project. Post-deployment observation will be made in conjunction with two other Clemson University Fabry-Perots in Peru, creating a longitudinal chain of interferometers for thermospheric observations. These instruments will make autonomous day and night observations of thermospheric dynamics. Instruments of this type can be constructed for a global chain of autonomous airglow observatories. The FPI presented in this talk consists of three independently pressure-controlled etalons, fed collimated light by a front optical train headed by an all-sky lens with a 160-degree field of view. It can be controlled remotely via a web-based service which allows any internet-connected computer to mimic the control computer at the instrument site. In fall 2005, the SSI system was first assembled at the Millstone Hill Observatory in Westford, Massachusetts, and made day and evening observations. It was then moved to the High-frequency Active Auroral Research Project (HAARP) site in Gakona, Alaska, to participate in joint optical/ionospheric heating campaigns. Additionally, natural airglow observations were made, both locally and remotely via the internet from Massachusetts. The Millstone and HAARP observations with two etalons yielded strong 630-nm atmospheric Fraunhofer absorption lines, with some suggestion of the Ring effect. By modeling the atmospheric absorption line as the constant times the corresponding solar absorption -- itself modeled as a Gaussian plus a polynomial -- the absorption feature is subtracted, leaving only the emission feature. Software ring-summing tools developed at the University of Wisconsin are employed to increase the signal-to-noise of the resulting data. Results to date will be presented and discussed, as well as prospects and plans for the instrument. This research is supported by the Air Force Research Laboratory through the Small Business Innovative Research program, and by the National Science Foundation's CEDAR program.
NASA Astrophysics Data System (ADS)
Schuitmaker, J. J.; Van Best, Jaap A.; van Delft, J. L.; Jannink, J. E.; Oosterhuis, J. A.; Vrensen, Gijs F.; Ms Wolff-Rouendaal, Didi; Dubbelman, T. M.
1996-01-01
Efficient photodynamic therapy (PDT) of malignant melanoma may be possible with photosensitizers having absorption maxima in the far-red region e.g., above 700 nm. Bacteriochlorin a (BCA), a non toxic derivative of bacteriochlorphyllin a, has a high molecular absorption coefficient (32.000 M-1.cm-1) at 760 nm. At this wavelength tissue penetration of light is almost optimal and melanin absorption is relatively low. In several series of experiments BCA was proven to be a very effective photosensitizer, in vitro and in vivo. It is preferentially retained in experimental hamster Greene melanoma, rhabdomyosarcoma, RIF- and mamma tumors. Its fluorescence can be detected in vivo, thus enabling early tumor detection and it is rapidly cleared from the tissues which promises no, or minor skin photosensitivity. The effects of BCA-PDT were studied in vitro and in vivo using the heavily pigmented Hamster Greene Melanoma (HGM) cell line as a model. In vitro it was found that the uptake of BCA was time, concentration and temperature dependant. Upon illumination (10 Mw/cm2, 756 nm) after incubation with 2.5 (mu) g/ml BCA for 1 h, almost complete cell kill was obtained within seconds. Hamster Greene Melanoma implanted in the anterior eye chamber of rabbits is an accepted in vivo model for ocular melanoma. The effects of BCA-PDT using this model were studied by light- and electron microscopy. Immediately after PDT intracellular spaces were enlarged and blood vessels were clotted with swollen erythrocytes. Electron microscopy showed fused inner and outer membranes and affected cristae mitchondriales of some mitochondria. With time, the severity of tissue and cell damage increased. One day after irradiation tumor growth had stopped; fluorescein angiography showed non perfusion of the tumor. Histopathology showed almost complete tumor necrosis with occasionally viable cells at the tumor periphery. It is concluded that the direct mitochondrial damage and the vascular damage both contribute to BCA-PDT induced tumor necrosis.
Interferometric analysis of laboratory photoionized plasmas utilizing supersonic gas jet targets.
NASA Astrophysics Data System (ADS)
Swanson, Kyle James; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel C.
2018-06-01
Photoionized plasmas are an important component of active galactic nuclei, x-ray binary systems and other astrophysical objects. Laboratory produced photoionized plasmas have mainly been studied at large scale facilities, due to the need for high intensity broadband x-ray flux. Using supersonic gas jets as targets has allowed university scale pulsed power generators to begin similar research. The two main advantages of this approach with supersonic gas jets include: possibility of a closer location to the x-ray source and no attenuation related to material used for containment and or tamping. Due to these factors, this experimental platform creates a laboratory environment that more closely resembles astrophysical environments. This system was developed at the Nevada Terawatt Facility using the 1 MA pulsed power generator Zebra. Neon, argon, and nitrogen supersonic gas jets are produced approximately 7-8mm from the z-pinch axis. The high intensity broadband x-ray flux produced by the collapse of the z-pinch wire array implosion irradiates the gas jet. Cylindrical wire arrays are made with 4 and 8 gold 10µm thick wire. The z-pinch radiates approximately 12-16kj of x-ray energy, with x-ray photons under 1Kev in energy. The photoionized plasma is measured via x-ray absorption spectroscopy and interferometry. A Mach-Zehnder interferometer is used to the measure neutral density of the jet prior to the zebra shot at a wavelength of 266 nm. A dual channel air-wedge shearing interferometer is used to measure electron density of the ionized gas jet during the shot, at wavelengths of 532nm and 266nm. Using a newly developed interferometric analysis tool, average ionization state maps of the plasma can be calculated. Interferometry for nitrogen and argon show an average ionization state in the range of 3-8. Preliminary x-ray absorption spectroscopy collected show neon absorption lines. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451.
Ogura, T; Yoshikawa, S; Kitagawa, T
1985-12-17
Occurrence of photoreduction of bovine cytochrome c oxidase was confirmed with the difference absorption spectra and oxygen consumption measurements for the enzyme irradiated with laser light at 406.7, 441.6, and 590 nm. The resonance Raman spectra were obtained under the same experimental conditions as those adopted for the measurements of oxygen consumption and difference absorption spectra. The photoreduction was more effective upon irradiation at shorter wavelengths and was irreversible under anaerobic conditions. However, upon aeration into the cell, the original oxidized form was restored. It was found that aerobic laser irradiation produces a photo steady state of the catalytic dioxygen reduction and that the Raman scattering from this photo steady state probes cytochrome a2+ and cytochrome a3(3)+ separately upon excitations at 441.6 and 406.7 nm, respectively. The enzyme was apparently protected from the photoreduction in the spinning cell with the spinning speed between 1 and 1500 rpm. These results were explained satisfactorily with the reported rate constant for the electron transfer from cytochrome a to cytochrome a3 (0.58 s-1) and a comparable photoreduction rate of cytochrome a. The anaerobic photoreduction did give Raman lines at 1666 and 214 cm-1, which are characteristic of the ferrous high-spin cytochrome a3(2)+, but they were absent under aerobic photoreduction. The formyl CH = O stretching mode of the a3 heme was observed at 1671 cm-1 for a2+a3(2)+CO but at 1664 cm-1 for a2+a3(2)+CN-, indicating that the CH = O stretching frequency reflects the pi back-donation to the axial ligand similar to the oxidation state marker line (v4).
McDonough, Thomas J; Zhang, Lushuai; Roy, Susmit Singha; Kearns, Nicholas M; Arnold, Michael S; Zanni, Martin T; Andrew, Trisha L
2017-02-08
We compare the ultrafast dynamics of singlet fission and charge generation in pentacene films grown on glass and graphene. Pentacene grown on graphene is interesting because it forms large crystals with the long axis of the molecules "lying-down" (parallel to the surface). At low excitation fluence, spectra for pentacene on graphene contain triplet absorptions at 507 and 545 nm and no bleaching at 630 nm, which we show is due to the orientation of the pentacene molecules. We perform the first transient absorption anisotropy measurements on pentacene, observing negative anisotropy of the 507 and 545 nm peaks, consistent with triplet absorption. A broad feature at 853 nm, observed on both glass and graphene, is isotropic, suggesting hole absorption. At high fluence, there are additional features, whose kinetics and anisotropies are not explained by heating, that we assign to charge generation; we propose a polaron pair absorption at 614 nm. The lifetimes are shorter at high fluence for both pentacene on glass and graphene, indicative of triplet-triplet annihilation that likely enhances charge generation. The anisotropy decays more slowly for pentacene on graphene than on glass, in keeping with the smaller domain size observed via atomic force microscopy. Coherent acoustic phonons are observed for pentacene on graphene, which is a consequence of more homogeneous domains. Measuring the ultrafast dynamics of pentacene as a function of molecular orientation, fluence, and polarization provides new insight to previous spectral assignments.
NASA Astrophysics Data System (ADS)
Kasi Viswanath, A.; Smith, Wayne L.; Patterson, H.
1982-04-01
Crystals of K 2Pt(CN) 6 doped with Pt(CN) 2-4 show an absorption band at 337 nm which is assigned as a mixed-valence (MV) transition from Pt (II) to Pt(IV). From a Hush model analysis, the absorption band is interpreted to be class II in the Day—Robin scheme. When the MV band is laser excited at 337 nm, emmision is observed from Pt(CN) 2-4 clusters.
Absorption band oscillator strengths of N2 transitions between 95.8 and 99.4 nm
NASA Technical Reports Server (NTRS)
Stark, G.; Smith, Peter L.; Huber, K. P.; Yoshino, K.; Stevens, M. H.; Ito, K.
1992-01-01
Molecular nitrogen plays a central role in the energetics of the earth's upper atmosphere and is the major constituent of the atmospheres of the planetary satellites Titan and Triton. This paper reports a new set of absorption oscillator strengths measured at higher resolution for seven bands in the 95.8-99.4 nm region. The results are compared with earlier, lower resolution absorption measurements, electron scattering measurements, and calculations based on a deperturbation analysis of the excited states.
NASA Astrophysics Data System (ADS)
Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh
2017-03-01
We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.
UV absorption spectrum of allene radical cations in solid argon
NASA Astrophysics Data System (ADS)
Chin, Chih-Hao; Lin, Meng-Yeh; Huang, Tzu-Ping; Wu, Yu-Jong
2018-05-01
Electron bombardment during deposition of an Ar matrix containing a small proportion of allene generated allene cations. Further irradiation of the matrix sample at 385 nm destroyed the allene cations and formed propyne cations in solid Ar. Both cations were identified according to previously reported IR absorption bands. Using a similar technique, we recorded the ultraviolet absorption spectrum of allene cations in solid Ar. The vibrationally resolved progression recorded in the range of 266-237 nm with intervals of about 800 cm-1 was assigned to the A2E ← X2E transition of allene cations, and the broad continuum absorption recorded in the region of 229-214 nm was assigned to their B2A1 ← X2E transition. These assignments were made based on the observed photolytic behavior of the progressions and the vertical excitation energies and oscillator strengths calculated using time-dependent density functional theory.
Study on plasmon absorption of hybrid Au-GO-GNP films for SPR sensing application
NASA Astrophysics Data System (ADS)
Mukhtar, Wan Maisarah; Ahmad, Farah Hayati; Samsuri, Nurul Diyanah; Murat, Noor Faezah
2018-06-01
This study proposed the development of hybrid Au-GO-GNP films for the enhancement of plasmon absorption in SPR sensing. Several thicknesses of Au at t=40nm, t=50nm and t=300nm were sputtered on the glass substrate. The hybridization of bilayer and trilayer films were formed by depositing GO-GNP layers and GNP-GO layers on top of various thicknesses of Au coated substrates. UV-Vis spectra analysis was conducted to characterize the plasmon absorption for each configuration. The plasmon absorption was successfully amplified by employing hybrid trilayer Au-GO-GNP with the thickness of Au film was fixed at t=50nm. It is noteworthy to highlight that the employment of bilayer and trilayer configurations are the key success to enhance the SPP excitation. Au-GNP and Au-GNP-GO results no significant outcome in comparison with Au-GO and Au-GO-GNP. A redshift of the absorbance wavelength evinces the presence of GO on Au-GO sample and GNP on Au-GO-GNP sample due to the surface reconstruction. It is important to emphasize that not all bilayer and trilayer configurations able to enhance the plasmon absorption where no significant output was obtained with the hybridization order of Au-GNP and Au-GNP-GO.
Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.
Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M
2016-09-27
Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.
Do Atoms Really "Emit" Absorption Lines?
ERIC Educational Resources Information Center
Brecher, Kenneth
1991-01-01
Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)
Balmer Absorption Lines in FeLoBALs
NASA Astrophysics Data System (ADS)
Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.
2007-10-01
We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.
Wavelength stabilized multi-kW diode laser systems
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens
2015-03-01
We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.
High-Resolution X-Ray Spectroscopy and Modeling of the Absorbing and Emitting Outflow in NGC 3783
NASA Astrophysics Data System (ADS)
Kaspi, Shai; Brandt, W. N.; Netzer, Hagai; George, Ian M.; Chartas, George; Behar, Ehud; Sambruna, Rita M.; Garmire, Gordon P.; Nousek, John A.
2001-06-01
The high-resolution X-ray spectrum of NGC 3783 shows several dozen absorption lines and a few emission lines from the H-like and He-like ions of O, Ne, Mg, Si, and S, as well as from Fe XVII-Fe XXIII L-shell transitions. We have reanalyzed the Chandra HETGS spectrum using better flux and wavelength calibrations, along with more robust methods. Combining several lines from each element, we clearly demonstrate the existence of the absorption lines and determine that they are blueshifted relative to the systemic velocity by -610+/-130 km s-1. We find the Ne absorption lines in the High-Energy Grating spectrum to be resolved with FWHM=840+490-360 km s-1; no other lines are resolved. The emission lines are consistent with being at the systemic velocity. We have used regions in the spectrum where no lines are expected to determine the X-ray continuum, and we model the absorption and emission lines using photoionized-plasma calculations. The model consists of two absorption components, with different covering factors, which have an order-of-magnitude difference in their ionization parameters. The two components are spherically outflowing from the active galactic nucleus, and thus contribute to both the absorption and the emission via P Cygni profiles. The model also clearly requires O VII and O VIII absorption edges. The low-ionization component of our model can plausibly produce UV absorption lines with equivalent widths consistent with those observed from NGC 3783. However, we note that this result is highly sensitive to the unobservable UV to X-ray continuum, and the available UV and X-ray observations cannot firmly establish the relationship between the UV and X-ray absorbers. We find good agreement between the Chandra spectrum and simultaneous ASCA and RXTE observations. The 1 keV deficit previously found when modeling ASCA data probably arises from iron L-shell absorption lines not included in previous models. We also set an upper limit on the FWHM of the narrow Fe Kα emission line of 3250 km s-1. This is consistent with this line originating outside the broad-line region, possibly from a torus.
Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.; ...
2017-10-18
Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfermore » torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less
Substitution determination of Fmoc-substituted resins at different wavelengths.
Eissler, Stefan; Kley, Markus; Bächle, Dirk; Loidl, Günther; Meier, Thomas; Samson, Daniel
2017-10-01
In solid-phase peptide synthesis, the nominal batch size is calculated using the starting resin substitution and the mass of the starting resin. The starting resin substitution constitutes the basis for the calculation of a whole set of important process parameters, such as the number of amino acid derivative equivalents. For Fmoc-substituted resins, substitution determination is often performed by suspending the Fmoc-protected starting resin in 20% (v/v) piperidine in DMF to generate the dibenzofulvene-piperidine adduct that is quantified by ultraviolet-visible spectroscopy. The spectrometric measurement is performed at the maximum absorption wavelength of the dibenzofulvene-piperidine adduct, that is, at 301.0 nm. The recorded absorption value, the resin weight and the volume are entered into an equation derived from Lambert-Beer's law, together with the substance-specific molar absorption coefficient at 301.0 nm, in order to calculate the nominal substitution. To our knowledge, molar absorption coefficients between 7100 l mol -1 cm -1 and 8100 l mol -1 cm -1 have been reported for the dibenzofulvene-piperidine adduct at 301.0 nm. Depending on the applied value, the nominal batch size may differ up to 14%. In this publication, a determination of the molar absorption coefficients at 301.0 and 289.8 nm is reported. Furthermore, proof is given that by measuring the absorption at 289.8 nm the impact of wavelength accuracy is reduced. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durrant, C. J.; Shelford, L. R.; Valkass, R. A. J.
Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfermore » torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less
Reddening and He i{sup ∗} λ 10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng
We report the detection of heavy reddening and the He i* λ 10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ 10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E ( B − V ) ∼ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those ofmore » narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ 10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.« less
Solar absorption by elemental and brown carbon determined from spectral observations.
Bahadur, Ranjit; Praveen, Puppala S; Xu, Yangyang; Ramanathan, V
2012-10-23
Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC.
NASA Astrophysics Data System (ADS)
Lee, L.; Park, H.; Ko, K.-H.; Jeong, D.-Y.
2010-08-01
We demonstrated a Diode Oscillator Fiber Amplification (DOFA) system in order to study the 63 P 1 ↔53 D 1 (1539 nm) transition line of a neutral ytterbium atom that is accessed by the stepwise excitation of the ground state. The frequency of the DOFA system was doubled by a MgO:PPLN crystal for the resonant excitation of the 61 S 0 ↔63 P 1 transition. The frequency of the second harmonic beam was stabilized to the 61 S 0 ↔63 P 1 transition of each isotope with the stability of about 2 MHz. We performed absorption spectroscopy on the 63 P 1 ↔53 D 1 (1539 nm) transition after the velocity selective excitation by the frequency-doubled beam. The isotope shifts in the 63 P 1 ↔53 D 1 (1539 nm) transition were directly measured for the first time. The relative isotope shifts from 174Yb were measured as -105.8 MHz and 109.7 MHz for 176Yb and 172Yb, respectively.
Bulk damage and absorption in fused silica due to high-power laser applications
NASA Astrophysics Data System (ADS)
Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.
2015-11-01
Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and consists of three different absorption bands centered at 165 nm (peroxy radicals), 215 nm (E'-center), and 265 nm (non-bridging oxygen hole center (NBOH)), which change the transmission behavior of material.
NASA Astrophysics Data System (ADS)
Franek, James B.
Argon emission lines, particularly those in the near-infrared region (700-900nm), are used to determine plasma properties in low-temperature, partially ionized plasmas to determine effective electron temperature [Boffard et al., 2012], and argon excited state density [Boffard et al., 2009] using appropriately assumed electron energy distributions. While the effect of radiation trapping influences the interpretation of plasma properties from emission-line ratio analysis, eliminating the need to account for these effects by directly observing the 3px-to-1sy transitions [ Boffard et al., 2012] is preferable in most cases as this simplifies the analysis. In this dissertation, a 1-Torr argon, pulsed positive column in a hollow-cathode discharge is used to study the correlation between four quantities: 420.1-419.8nm emission-line ratio, metastable-atom density, reduced electric field, and electron energy distribution. The extended coronal model is used to acquire an expression for 420.1-419.8nm emission-line ratio, which is sensitive to direct electron-impact excitation of argon excited states as well as stepwise electron-impact excitation of argon excited states for the purpose of inferring plasma quantities from experimental measurements. Initial inspection of the 420.1-419.8nm emission-line ratio suggests the pulse may be empirically divided into three distinct stages labelled the Initiation Stage, Transient Stage, and Post-Transient stage. Using equilibrium electron energy distributions from simulation to deduce excitation rates [Adams et al., 2012] in the extended coronal model affords agreement between predicted and observed metastable density in the Post-Transient stage of the discharge [Franek et al., 2015]. Applying this model-assisted diagnostic technique to the characterization of plasma systems utilizing lower-resolution spectroscopic systems is not straightforward, however, as the 419.8nm and 420.1nm emission-line profiles are convolved and become insufficiently resolved for treating the convolution as two separate emission-lines. To remedy this, the argon 425.9nm emission-line is evaluated as a proxy for the 419.8 nm emission-line. Both emission-lines (419.8nm and 425.9nm) are attributed to direct excitation from the argon ground state. The intensity of the 425.9nm emission-line is compared to the intensity of the 419.8nm emission-line over a range of plasma conditions to infer the same plasma quantities from similar experimental measurements. Discrepancies between the observed intensities of the emission-lines (419.8nm, 425.9nm) are explained by electron-impact cross-sections of their parent states. It is shown that the intensity of the argon 425.9nm emission-line is similar to that of the 419.8nm emission-line. The difference between the observed emission lines (425.9nm, 419.8nm) is attributed to the electron energy distribution in the plasma.
NASA Astrophysics Data System (ADS)
Chafer, M.; Lekiefs, Q.; Gorse, A.; Beaudou, B.; Debord, B.; Gérôme, F.; Benabid, F.
2017-02-01
Raman-gas filled HC-PCF has proved to be an outstanding Raman-convertor, as illustrated by the generation of more than 5 octaves wide Raman comb using a hydrogen-filled Kagome HC-PCF pumped with high power picosecond-laser, or the generation of multiline Raman-source in the UV-Vis using a very compact system pumped with micro-chip laser. Whilst these demonstrations are promising, a principal challenge for the industrialization of such a Raman source is its lifetime as the H2 diffusion through silica is high enough to leak out from the fiber within only a few months. Here, we report on a HC-PCF based Raman multiline source with a very long life-span. The system consists of hydrogen filled ultra-low loss HC-PCF contained in highly sealed box, coined CombBox, and pumped with a 532 nm micro-chip laser. This combination is a turnkey multiline Raman-source with a "shoe box" size. The CombBox is a robust and compact component that can be integrated and pumped with any common pulsed laser. When pumped with a 32 mW average power and 1 ns frequency-doubled Nd:Yag microchip laser, this Raman-source generates 24 lines spanning from 355 to 745 nm, and a peak power density per line of 260 mW/nm for the strongest lines. Both the output power and the spectrum remained constant over its monitoring duration of more than six months. The spectrum of this multiline laser superimposes with no less than 17 absorption peaks of fluorescent dyes from the Alexa Fluor family used as biological markers.
Golec, Barbara; Das, Prasanta; Bahou, Mohammed; Lee, Yuan-Pern
2013-12-19
Protonated pyridine and its neutral counterparts (C5H6N) are important intermediates in organic and biological reactions and in the atmosphere. We have recorded the IR absorption spectra of the 1-pyridinium (C5H5NH(+)) cation, 1-pyridinyl (C5H5NH), and 4-pyridinyl (4-C5H6N) produced on electron bombardment during matrix deposition of a mixture of pyridine (C5H5N) and p-H2 at 3.2 K; all spectra were previously unreported. The IR features of C5H5NH(+) diminished in intensity after the matrix was maintained in darkness for 15 h, whereas those of C5H5NH and 4-C5H6N radicals increased. Irradiation of this matrix with light at 365 nm diminished lines of C5H5NH(+) and C5H5NH but enhanced lines of 4-C5H6N slightly, whereas irradiation at 405 nm diminished lines of 4-C5H6N significantly. Observed wavenumbers and relative intensities of these species agree satisfactorily with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3LYP/6-31++G(d,p) method. Assignments of C5H5NH and 4-C5H6N radicals were further supported by the observation of similar spectra when a Cl2/C5H5N/p-H2 matrix was irradiated first at 365 nm and then with IR light to generate H atoms to induce the H + C5H5N reaction.
NASA Astrophysics Data System (ADS)
Smith, D. C.
2012-12-01
Compter modeling of global climate change require an input (asssumption) of the forcing function for CO2 absorption. All codes use a long term forcing function of ~ 4 W/M2. (IPCC 2007 Summary for Policymakers. In:Climate Change 2007. The Physical Sciences Basis.Contributions of Working Group 1 to the Fourth Assessment Report of the IPCC, Cambridge U. Press N.Y.)..This is based on a band model of the CO2 rotational/vibrational absorption where a band of absorption averages over all the rotational levels of the vibration transition. (Ramananathan,V.,et al, J. of Geophysical Research,Vol 84 C8,p4949,Aug.1979).. The model takes into account the line width,the spacing between lines and identifies 10 CO2 bands.. This approach neglects the possibility that the peak absorption transitions in a band can "use up" all of the earths IR radiation at that wavelength and does not contribute to global warming no matter how much the CO2 is increased. The lines in the wings of a band increase their absorption as the CO2 is increased. However, the lines that are lost are the strong absorbers and those that are added are the weaker absorption lines. When a band begins to use up the IR then the net result of increasing the atmospheric CO2 is a decrease in the absorption change. This presentation calculates the absorption of each line individualy using the Behr's Law Approach. The dependence of the absorption and line width of each transition as a function of altitude is accounted for. The temperature dependence of the absorption with altitude is not and an evaluation of this error is given. For doubling CO2 from 320ppm to 640 ppm, the calculation gives a forcing function of 1.1 W/M2. The results show the importance of using individual lines to calculate the CO2 contribution to global warming, We can speculate on the imact and anticipate a computer code calculation of a factor of 4 less global warming than the published results.
Detection of absorption lines in the spectra of X-ray bursts from X1608-52
NASA Astrophysics Data System (ADS)
Nakamura, Norio; Inoue, Hajime; Tanaka, Yasuo
X-ray bursts from X 1608-52 were observed with the gas scintillation proportional counters on the Tenma satellite. Absorption features were detected in the spectra of three bursts among 17 bursts observed. These absorption features are consistent with a common absorption line at 4.1 keV. The energy and the properties of the absorption lines of the X 1608-52 bursts are very similar to those observed from the X 1636-53 bursts by Waki et al. (1984). Near equality of the absorption-line energies for X 1636-53 and X 1608-52 would imply that mass and radius of the neutron stars in these two systems are very similar to each other.
Production of Ti-C presolar carbide grain analogies and its infrared spectra
NASA Astrophysics Data System (ADS)
Kimura, Y.; Ikegami, A.; Tanigaki, T.; Ishikawa, M.; Sato, T.; Suzuki, H.; Kido, O.; Kaito, C.
The infrared emission of the circumstellar environment of carbon-rich stars and dense molecular cloud cores is believed to be dominated by the emissivity of carbon dust. The origins of absorption peaks will be identified on the basis of laboratory studies. Important factors in the determination of absorption features are size, shape and structure of the grain (Bohren and Huffman, 1983). Therefore, the production of presolar grain analogy is important for the identification of the observation spectra. Recently, we succeeded in the formation of Si-, Ti- and Zr-C grains of the order of 50 nm by advanced gas evaporation method. We have started to obtain characteristic data of carbide grains in laboratory experiments. The spectra from ultraviolet to infrared of samples embedded in KBr pellets are presented. In the present study, we will elucidate the correlation between the size of TiC grain or thickness of the carbon mantle layer and spectra of TiC core-carbon mantle grains. Because TiC is one of the candidates of 21 micron feature. The absorption peaks of TiC core (50 nm)-carbon mantle (2 nm) grains were found to be at 9.5 and 12.5 microns. When the thickness of the mantle layer increased to 15 nm, the peak at 12.5 microns disappeared and the peak at 9.5 microns was significantly weakened. These results are similar to the calculated result for SiC core-carbon mantle grains, i.e., increased thickness of the mantle layer weakens the spectrum intensity (Kozasa et al., 1996). The 20.1 micron absorption feature never appeared, even if the same size grains seen in meteorites were produced. Moreover, the infrared spectra were observed when the size of TiC grains was smaller than presolar grain. Carbon was deposited on the surface of Ti grains. Then, TiC nanocrystallites with the size of 2-3 nm were produced by the diffusion of Ti and/or carbon. The new absorption feature was appeared at 14 microns. The 12.5 micron absorption was hardly seen. If the samples are heated at 700circC for 1h, crystallites size of TiC was increased to about 5 nm. The absorption feature at 14 microns was weaken. It was concluded that the infrared absorption feature was depend on the crystallites size.
NASA Astrophysics Data System (ADS)
Johnson, W.; Repasky, K. S.; Nehrir, A. R.; Carlsten, J.
2011-12-01
A differential absorption lidar (DIAL) for monitoring carbon dioxide (CO2) is under development at Montana State University using commercially available parts. Two distributed feedback (DFB) lasers, one at the on-line wavelength and one at the off-line wavelength are used to injection seed a fiber amplifier. The DIAL operates in the 1.57 micron carbon dioxide absorption band at an on-line wavelength of 1.5714060 microns. The laser transmitter produces 40 μJ pulses with a pulse duration of 1 μs and a pulse repetition frequency of 20 kHz. The scattered light from the laser transmitter is collected using a 28 cm diameter Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and then filtered using a 0.8 nm FWHM narrowband interference filter. After the optical filter, the light is coupled into a multimode optical fiber with a 1000 μm core diameter. The output from the optical fiber is coupled into a photomultiplier tube (PMT) used to monitor the return signal. The analog output from the PMT is next incident on a discriminator producing TTL logic pulses for photon counting. The output from the PMT and discriminator is monitored using a multichannel scalar card allowing the counting of the TTL pulses as a function of range. Data from the DIAL instrument is collected in the following manner. The fiber amplifier is injection seeded first with the on-line DFB laser. The return signal as a function of range is integrated using the multichannel scalar for a user defined time, typically set at 6 s. The off-line DFB laser is then used to injection seed the fiber amplifier and the process is repeated. This process is repeated for a user defined period. The CO2 concentration as a function of range is calculated using the on-line and off-line return signals with the DIAL equation. A comparison of the CO2 concentration measured using the DIAL instrument at 1.5 km and a Li-Cor LI-820 in situ sensor located at 1.5 km from the DIAL over a 2.5 hour period indicate that the CO2 DIAL has an accuracy of ±20 parts per million (PPM).
Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong
2017-12-27
Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.
Spectral analysis of scattered light from flowers' petals
NASA Astrophysics Data System (ADS)
Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime
2009-07-01
A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.
Enhanced absorption of graphene strips with a multilayer subwavelength grating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jin-Hua; Huang, Yong-Qing, E-mail: yqhuang@bupt.edu.cn; Duan, Xiao-Feng
2014-12-01
The optical absorption of graphene strips covered on a multilayer subwavelength grating (MSG) surface is theoretically investigated. The absorption of graphene strips with MSG is enhanced in the wavelength range of 1500 nm to 1600 nm by critical coupling, which is associated with the combined effects of a guided resonance of MSG and its photonic band gap effect. The critical coupling of the graphene strips can be controlled by adjusting the incident angle without changing the structural parameters of MSG. The absorption of graphene strips can also be tuned by varying key parameters, such as grating period, strip width, and incident angle.
Real Time Diagnostics of Jet Engine Exhaust Plumes Using a Chirped QC Laser Spectrometer
NASA Astrophysics Data System (ADS)
Hay, K. G.; Duxbury, G.; Langford, N.
2010-06-01
Quantitative measurements of real-time variations of the chemical composition of a jet engine exhaust plume is demonstrated using a 4.86 μmn intra-pulse quantum cascade laser spectrometer. The measurements of the gas turbine exhaust were carried out in collaboration with John Black and Mark Johnson at Rolls Royce. The recording of five sets of averaged spectra a second has allowed us to follow the build up of the combustion products within the exhaust, and to demonstrate the large variation of the integrated absorption of these absorption lines with temperature. The absorption cross sections of the lines of both carbon monoxide and water increase with temperature, whereas those of the three main absorption lines of carbon dioxide decrease. At the steady state limit the absorption lines of carbon dioxide are barely visible, and the spectrum is dominated by absorption lines of carbon monoxide and water.
Superlattice Intermediate Band Solar Cell on Gallium Arsenide
2015-02-09
18 APPENDIX: Methodology for Calculaton of Minband Energies and Absorption Coefficient of a Superlattice...4 Figure 3. Absorption coefficient extracted from spectroscopic ellipsometry measurements of a... coefficient of a 30 period GaAs0.98N0.02 (3nm)/ Al0.20Ga0.80As (3nm) Superlattice following the methodology developed in
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.
1998-01-01
We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.
Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor
NASA Technical Reports Server (NTRS)
Kurtz, Joe; Huffman, Donald R.
1989-01-01
Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyawali, Madhu; Arnott, W.; Zaveri, Rahul
We present the evolution of multispectral optical properties as urban aerosols aged and interacted with biogenic emissions resulting in stronger short wavelength absorption and formation of moderately brown secondary organic aerosols. Ground-based aerosol measurements were made during June 2010 within the Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area. Data on black carbon and non-refractory aerosol mass and composition were collected at both sites. In addition, photoacoustic (PA) instruments with integrating nephelometers were used to measure spectral absorption and scattering coefficients for wavelengths ranging from 355 to 870more » nm. The daytime absorption Ångström exponent (AAE) indicated a modest wavelength-dependent enhancement of absorption at both sites throughout the study. From the 22nd to the 28th of June, secondary organic aerosol mass increased significantly at both sites due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the median BC mass-normalized absorption cross-section (MAC) values for 405 nm and 532 nm at T1 increased by ~23% and ~35%, respectively, compared to the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for the 870 nm wavelength were similar for both sites. These results suggest formation of moderately brown secondary organic aerosols in biogenically-influenced urban air.« less
Gyawali, Madhu; Arnott, W.; Zaveri, Rahul; ...
2017-11-13
We present the evolution of multispectral optical properties through urban aerosols that have aged and interacted with biogenic emissions, resulting in stronger short wavelength absorption and the formation of moderately brown secondary organic aerosols. Ground-based aerosol measurements were made in June 2010 within the Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area. Data on black carbon (BC) and non-refractory aerosol mass and composition were collected at both sites. In addition, photoacoustic (PA) instruments with integrating nephelometers were used to measure spectral absorption and scattering coefficients for wavelengths rangingmore » from 355 to 870 nm. The daytime absorption Ångström exponent (AAE) indicated a modest wavelength-dependent enhancement of absorption at both sites throughout the study. From 22 to 28 June 2010, secondary organic aerosol mass increased significantly at both sites, which was due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the median BC mass-normalized absorption cross-section (MAC) values for 405 nm and 532 nm at T1 increased by ~23% and ~35%, respectively, compared with the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for the 870 nm wavelength were similar for both sites. These results suggest the formation of moderately brown secondary organic aerosols in biogenically-influenced urban air.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyawali, Madhu; Arnott, W.; Zaveri, Rahul
We present the evolution of multispectral optical properties through urban aerosols that have aged and interacted with biogenic emissions, resulting in stronger short wavelength absorption and the formation of moderately brown secondary organic aerosols. Ground-based aerosol measurements were made in June 2010 within the Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area. Data on black carbon (BC) and non-refractory aerosol mass and composition were collected at both sites. In addition, photoacoustic (PA) instruments with integrating nephelometers were used to measure spectral absorption and scattering coefficients for wavelengths rangingmore » from 355 to 870 nm. The daytime absorption Ångström exponent (AAE) indicated a modest wavelength-dependent enhancement of absorption at both sites throughout the study. From 22 to 28 June 2010, secondary organic aerosol mass increased significantly at both sites, which was due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the median BC mass-normalized absorption cross-section (MAC) values for 405 nm and 532 nm at T1 increased by ~23% and ~35%, respectively, compared with the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for the 870 nm wavelength were similar for both sites. These results suggest the formation of moderately brown secondary organic aerosols in biogenically-influenced urban air.« less
NASA Astrophysics Data System (ADS)
Sargsyan, A.; Amiryan, A.; Cartaleva, S.; Sarkisyan, D.
2017-07-01
A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0-1 atm, the NC thickness is smoothly varied in the range L = 140-1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.
Method and apparatus for monitoring the flow of mercury in a system
Grossman, M.W.
1987-12-15
An apparatus and method for monitoring the flow of mercury in a system are disclosed. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission. 4 figs.
Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech
2018-01-30
In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.
Clinical skin imaging using color spatial frequency domain imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, Bin; Lesicko, John; Moy, Austin J.; Reichenberg, Jason; Tunnell, James W.
2016-02-01
Skin diseases are typically associated with underlying biochemical and structural changes compared with normal tissues, which alter the optical properties of the skin lesions, such as tissue absorption and scattering. Although widely used in dermatology clinics, conventional dermatoscopes don't have the ability to selectively image tissue absorption and scattering, which may limit its diagnostic power. Here we report a novel clinical skin imaging technique called color spatial frequency domain imaging (cSFDI) which enhances contrast by rendering color spatial frequency domain (SFD) image at high spatial frequency. Moreover, by tuning spatial frequency, we can obtain both absorption weighted and scattering weighted images. We developed a handheld imaging system specifically for clinical skin imaging. The flexible configuration of the system allows for better access to skin lesions in hard-to-reach regions. A total of 48 lesions from 31 patients were imaged under 470nm, 530nm and 655nm illumination at a spatial frequency of 0.6mm^(-1). The SFD reflectance images at 470nm, 530nm and 655nm were assigned to blue (B), green (G) and red (R) channels to render a color SFD image. Our results indicated that color SFD images at f=0.6mm-1 revealed properties that were not seen in standard color images. Structural features were enhanced and absorption features were reduced, which helped to identify the sources of the contrast. This imaging technique provides additional insights into skin lesions and may better assist clinical diagnosis.
Yan, Li-Hong; Chen, Xue-Jun; Su, Rong-Guo; Han, Xiu-Rong; Zhang, Chuan-Song; Shi, Xiao-Yong
2013-01-01
The distribution and estuarine behavior of fluorescent components of chromophoric dissolved organic matter in the seawater of outer Yangtze Estuary were determined by fluorescence excitation emission matrix spectra combined with parallel factor analysis. Six individual fluorescent components were identified by PARAFAC models, including three terrestrial humic-like components C1 [330 nm/390(430) nm], C2 (390 nm/480 nm), C3 (360 nm/440 nm), marine biological production component C5 (300 nm/400 nm) and protein-like components C4 (290 nm/350 nm) and C6 (275 nm/300 nm). The results indicated that C1, C2, and C3 showed a conservative mixing behavior in the whole estuarine region, especially in high-salinity region. And the fluorescence intensity proportion of C1 and C3 decreased with increase of salinity and fluorescence intensity proportion of C2 kept constant with increase of salinity in the whole estuarine region. While C4 showed conservative mixing behavior in low-salinity region and non-conservative mixing behavior in high-salinity region, and fluorescence intensity proportion of C4 increased with increase of salinity. However, C5 and C6 showed a non-conservative mixing behavior and fluorescence intensity proportion increased with increase of salinity in high-salinity region. Significantly spatial difference was recorded for CDOM absorption coefficient in the coastal region and in the open water areas with the highest value in coastal region and the lowest value in the open water areas. The scope of absorption coefficient and absorption slope was higher in coastal region than that in the open water areas. Significantly positive correlations were found between CDOM absorption coefficient and the fluorescence intensities of C1, C2, C3, and C4, but no significant correlation was found between C5 and C6, suggesting that the river inputs contributed to the coastal areas, while CDOM in the open water areas was affected by terrestrial inputs and phytoplankton degradation.
Temperature dependence of the NO3 absorption spectrum
NASA Technical Reports Server (NTRS)
Sander, Stanley P.
1986-01-01
The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.
Temperature dependence of the ozone obsorption spectrum over the wavelength range 410 to 760 nm
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Talukdar, Ranajit K.
1994-01-01
The ozone, O3, absorption cross sections between 410 and 760 nm, the Chappuis band, were measured at 220, 240, 260, and 280 K relative to that at room temperature using a diode array spectrometer. The measured cross sections varied very slightly, less than 1%, with decreasing temperature between 550 and 660 nm, near the peak of the Chappuis band. At wavelengths away from the peak, the absorption cross sections decreased with decreasing temperature; e.g., about 40% at 420 nm between 298 and 220 K. These results are compared with previous measurements and the impact on atmospheric measurements are discussed.
Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4
NASA Astrophysics Data System (ADS)
Pollnau, M.; Lüthy, W.; Weber, H. P.; Krämer, K.; Güdel, H. U.; McFarlane, R. A.
1996-04-01
The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4 I 1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2 H 9/2. A significant population of the4 I 11/2 level and ESA at 970 nm are not present under 800 nm pumping.
NASA Technical Reports Server (NTRS)
Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.;
1996-01-01
We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.
UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478.
Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A
2016-07-05
The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360nm consisted of two partially overlapping bands at approximately 340nm and 330nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327nm to 336nm, while the lower energy absorption band demonstrated a change in peak position from 340nm to 346nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409nm to 495nm with the corresponding Stokes shift in the range of 64nm to 155nm (4536cm(-1) to 9210cm(-1)). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Desideri, A; Cocco, D; Calabrese, L; Rotilio, G
1984-03-29
Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention that Co(II) can replace the copper of Cu,Zn-superoxide dismutase in a way that reproduces the properties of the native copper-binding site.
NASA Astrophysics Data System (ADS)
Shavers, E. J.; Ghulam, A.; Encarnacion, J. P.
2016-12-01
Spectroscopic reflectance in the visible to short-wave infrared region is an important tool for remote geologic mapping and is applied at scales from satellite to field measurements. Remote geologic mapping is challenging in regions subject to significant surficial weathering. Here we identify absorption features found in altered volcanic pipes and dikes in the Avon Volcanic District, Missouri, that are inherited from the original ultramafic and carbonatite lithology. Alteration ranges from small degree hydrothermal alteration to extensive laterization. The absorption features are three broad minima centered near 690, 890, and 1100 nm. Features in this region are recognized to be caused by ferric and ferrous Fe minerals including olivine, carbonates, chlorite, and goethite all of which are found among the Avon pipes and dikes that are in various stages of alteration. Iron-related intervalence charge transfer and crystal field perturbations of ions are the principal causes of the spectroscopic features in the visible to near-infrared region yet spectra are also distorted by factors like texture and the presence of opaque minerals known to reduce overall reflectance. In the Avon samples, Fe oxide content can reach >15 wt% leading to prominent absorption features even in the less altered ultramafics with reflectance curve maxima as low as 5%. The exaggerated minima allow the altered intrusive rocks to stand out among other weathered lithologies that will often have clay features in the region yet have lower iron concentration. The absorption feature centered near 690 nm is particularly noteworthy. Broad mineral-related absorption features centered at this wavelength are rare but have been linked to Ti3+ in octahedral coordination. The reduced form of Ti is not common in surface lithologies. Titanium-rich andradite has Ti3+ in the octahedral position, is resistant to weathering, is found among the Avon lithologies including ultramafic, carbonatite, and carbonated breccia, and is identified here as the cause of the 690 nm absorption feature. The Ti3+ absorption feature centered near 690 nm and strong Fe absorption features at 890 and 1100 nm may be useful indicators of rare intrusive lithologies in remote geologic mapping.
Zero-field dichroism in the solar chromosphere.
Sainz, R Manso; Bueno, J Trujillo
2003-09-12
We explain the linear polarization of the Ca ii infrared triplet observed close to the edge of the solar disk. In particular, we demonstrate that the physical origin of the enigmatic polarizations of the 866.2 and 854.2 nm lines lies in the existence of atomic polarization in their metastable (2)D(3)(/2, 5/2) lower levels, which produces differential absorption of polarization components (dichroism). To this end, we have solved the problem of the generation and transfer of polarized radiation by taking fully into account all the relevant optical pumping mechanisms in multilevel atomic models. We argue that "zero-field" dichroism may be of great diagnostic value in astrophysics.
Collisional Shift and Broadening of Iodine Spectral Lines in Air Near 543 nm
NASA Technical Reports Server (NTRS)
Fletcher, D. G.; McDaniel, J. C.
1995-01-01
The collisional processes that influence the absorption of monochromatic light by iodine in air have been investigated. Measurements were made in both a static cell and an underexpanded jet flow over the range of properties encountered in typical compressible-flow aerodynamic applications. Experimentally measured values of the collisional shift and broadening coefficients were 0.058 +/- 0.004 and 0.53 +/- 0.010 GHz K(exp 0.7)/torr, respectively. The measured shift value showed reasonable agreement with theoretical calculations based on Lindholm-Foley collisional theory for a simple dispersive potential. The measured collisional broadening showed less favorable agreement with the calculated value.
HFS and isotope shift in the atomic spectrum of205Pb
NASA Astrophysics Data System (ADS)
Barboza-Flores, M.; Redi, O.; Schönberger, P.; Stroke, H. H.; Naumann, R. A.
1987-06-01
The hfs of205Pb in the 283.3-nm resonance line and its isotope shift (IS) have been measured in absorption with the use of dispersive spectroscopy. A new method for calibration and analysis, when internal standards are not available is described. The results are: hfs interaction constants A=70.3(5)×10-3 cm-1, B=-0.6(1.1)×10-3 cm-1,205Pb-208Pb IS=-123.9(2.0)×10-3 cm-1. The derived nuclear magnetic dipole moment, μ=0.704(5) μ N is in good agreement with values calculated with a nuclear configuration mixing model.
Pixel Dynamics Analysis of Photospheric Spectral Data
2014-11-13
absorption lines centered at 6301.5 Å and 6302.5 Å. The two smaller absorption lines are telluric lines. The analysis is carried out for a range of...cadence and consist of 251 scan lines. These two new sets of SOLIS VSM data also revealed more inconsistent instrument movements between scans, forcing us...SOLIS VSM instrument. The wavelength range shows two photospheric absorption lines, Fe I 6301.5 Å and Fe I 6302.5 Å ), and two smaller telluric
NASA Astrophysics Data System (ADS)
Loan, Trinh Thi; Bang, Ngac An; Huong, Vu Hoang; Long, Nguyen Ngoc
2017-07-01
TiO2 powders doped with different amounts of Cr3+ions (from 0 to 10 mol%) have been prepared by hydrothermal technique. TiO2:Cr3+ powders were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, diffuse reflection, absorption, photoluminescence and photoluminescence excitation spectra. The results showed that the Cr3+ dopant concentrations did not affect on the lattice constants of TiO2 crystal, but affected on shift and broadening of the Raman modes for both anatase and rutile phases. The band gap of both the anatase and rutile TiO2 host lattice was strongly decreased with increasing Cr3+ dopant concentration. The photoluminescence spectra of TiO2:Cr3+ anatase phase exhibited a weak narrow peak (the so-called R-line) at 698 nm, meanwhile those of TiO2:Cr3+ rutile phase consisted of a very intense narrow zero-phonon R-line at 695 nm assigned to the 2E(2G) → 4A2(4F) transition of Cr3+ ions in strong octahedral field and its phonon-sidebands. In particular, in the PL spectrum of TiO2:Cr3+ rutile phase is also observed an abroad emission band centered at 813 nm assigned to the 4T2(4F) → 4A2(4F) transition of ions Cr3+ in weak octahedral field.
NASA Astrophysics Data System (ADS)
Eidelsberg, M.; Lemaire, J. L.; Federman, S. R.; Heays, A. N.; Stark, G.; Lyons, J. R.; Gavilan, L.; de Oliveira, N.
2017-06-01
We carried out experiments at the SOLEIL synchrotron facility to acquire data for modelling CO photochemistry in the vacuum ultraviolet. We report oscillator strengths and predissociation rates for four vibrational bands associated with transitions from the v = 0 level of the X1Σ+ ground state to the v = 0-3 vibrational levels of the core excited W1Π Rydberg state, and for three overlapping bands associated with the 4pπ, 5pπ, and 5pσ Rydberg states between 92.9 and 93.4 nm in 13C18O. These results complete those obtained in the same conditions for 12C16O, 13C16O, and 12C18O recently published by us, and extend the development of a comprehensive database of line positions, oscillator strengths, and linewidths of photodissociating transitions for CO isotopologues. Absorption spectra were recorded using the Vacuum UltraViolet Fourier Transform Spectrometer (VUV-FTS) installed on the Dichroïsme Et Spectroscopie par Interaction avec le Rayonnement Synchrotron (DESIRS) beamline at SOLEIL. The resolving power of the measurements, R = 300 000 to 400 000, allows the analysis of individual line strengths and widths within the bands. Gas column densities in the differentially pumped system were calibrated using the B-X (0-0) band at 115.1 nm in 13C18O.
NASA Astrophysics Data System (ADS)
Majeed, Shahnaz; Danish, Mohammed; Muhadi, Nur Farisyah Bahriah Binti
2018-06-01
The study focussed on the synthesis of magnesium oxide (MgO) nanoparticles from an aqueous extract of Penicillium species isolated from soil. A suitable amount of magnesium nitrate (MgNO3) was mixed with the aqueous extract of Penicillium. Then the colour of the solution changed due to the formation of MgO nanoparticles. These nascent formed MgO nanoparticles were further confirmed by using UV spectrophotometry which showed the maximum absorption at 215 nm indicating the formation of MgO nanoparticles. Fourier transform infrared spectroscopy (FTIR) was used to find the possible functional groups and proteins involving the stabilization of MgO nanoparticles. Transmission electron microscopy (TEM) study revealed the size, the shape as well as the dispersity of the prepared MgO nanoparticles and showed that they were well dispersed around 12–24 nm (scale 200 nm). The anticancer activity against A-549 cell line of these green synthesized MgO nanoparticles was evaluated. The result showed good anticancer effect after 24 h of incubation. Nevertheless these MgO nanoparticles showed less effect on normal Vero cells. Further apoptotic study clearly displayed the effect of MgO nanoparticles on cancer cells. The effect was observed through chromatin condensation by forming apoptotic bodies using propidium iodide, acridine orange and ethidium bromide (AO/EB) staining technique. The DNA was isolated to confirm the DNA damage; the observation clearly showed DNA damage when compared with DNA ladder.