Sample records for nm diameter nanotubes

  1. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  2. Interruption of Hydrogen Bonding Networks of Water in Carbon Nanotubes Due to Strong Hydration Shell Formation.

    PubMed

    Oya, Yoshifumi; Hata, Kenji; Ohba, Tomonori

    2017-10-24

    We present the structures of NaCl aqueous solution in carbon nanotubes with diameters of 1, 2, and 3 nm based on an analysis performed using X-ray diffraction and canonical ensemble Monte Carlo simulations. Anomalously longer nearest-neighbor distances were observed in the electrolyte for the 1-nm-diameter carbon nanotubes; in contrast, in the 2 and 3 nm carbon nanotubes, the nearest-neighbor distances were shorter than those in the bulk electrolyte. We also observed similar properties for water in carbon nanotubes, which was expected because the main component of the electrolyte was water. However, the nearest-neighbor distances of the electrolyte were longer than those of water in all of the carbon nanotubes; the difference was especially pronounced in the 2-nm-diameter carbon nanotubes. Thus, small numbers of ions affected the entire structure of the electrolyte in the nanopores of the carbon nanotubes. The formation of strong hydration shells between ions and water molecules considerably interrupted the hydrogen bonding between water molecules in the nanopores of the carbon nanotubes. The hydration shell had a diameter of approximately 1 nm, and hydration shells were thus adopted for the nanopores of the 2-nm-diameter carbon nanotubes, providing an explanation for the large difference in the nearest-neighbor distances between the electrolyte and water in these nanopores.

  3. The effects of nanostructures on the mechanical and tribological properties of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Yoon, Yeoungchin; Park, Jeongwon

    2018-04-01

    TiO2 nanotubes were prepared by anodization on Ti substrates with a diameter variation of 30-100 nm, and the structure of the nanotubes were studied using x-ray diffraction and Raman spectroscopy, which confirmed the structure changes from the anatase phase to the rutile phase of TiO2 at a diameter below 50 nm. The tribological behaviors of TiO2 nanotubes were investigated with different diameters. The effectiveness of the rutile phase and the diameter size enhanced the frictional performance of TiO2 nanotubes.

  4. The effects of nanostructures on the mechanical and tribological properties of TiO2 nanotubes.

    PubMed

    Yoon, Yeoungchin; Park, Jeongwon

    2018-04-20

    TiO 2 nanotubes were prepared by anodization on Ti substrates with a diameter variation of 30-100 nm, and the structure of the nanotubes were studied using x-ray diffraction and Raman spectroscopy, which confirmed the structure changes from the anatase phase to the rutile phase of TiO 2 at a diameter below 50 nm. The tribological behaviors of TiO 2 nanotubes were investigated with different diameters. The effectiveness of the rutile phase and the diameter size enhanced the frictional performance of TiO 2 nanotubes.

  5. Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices

    NASA Astrophysics Data System (ADS)

    Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-06-01

    Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.

  6. Control of the Diameter and Chiral Angle Distributions during Production of Single-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.). However, as produced SWCNT samples are polydispersed, with many (n,m) types present and typical approximate 1:2 metal/semiconductor ratio. It has been recognized that production of SWCNTs with narrow 'tube type populations' is beneficial for their use in applications, as well as for the subsequent sorting efforts. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The nanotube type populations were studied with respect to the production temperature with two catalyst compositions: Co/Ni and Rh/Pd. The nanotube type populations were measured via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that in the case of Co/Ni catalyst, decreased production temperature leads to smaller average diameter, exceptionally narrow diameter distribution, and strong preference toward (8,7) nanotubes. The other nanotubes present are distributed evenly in the 7-30 deg chiral angle range. In the case of Rh/Pd catalyst, a decrease in the temperature leads to a small decrease in the average diameter, with the chiral angle distribution skewed towards 30 o and a preference toward (7,6), (8,6) and (8,7) nanotubes. However, the diameter distribution remains rather broad. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  7. Influence of Thermal Modification and Morphology of TiO₂ Nanotubes on Their Electrochemical Properties for Biosensors Applications.

    PubMed

    Arkusz, Katarzyna; Paradowska, Ewa; Nycz, Marta; Krasicka-Cydzik, Elżzbieta

    2018-05-01

    The morphology of self-assembled TiO2 nanotubes layer plays a key role in electrical conductivity and biocompatibility properties in terms of cell proliferation, adhesion and mineralization. Many research studies have been reported in using a TiO2 nanotubes for different medical applications, there is a lack of unified correlation between TNT morphology and its electrochemical properties. The aim of this study was to examine the effects of diameter and annealing conditions on TiO2 nanotubes with identical height and their behaviour as biosensor platform. TiO2 nanotubes layer, 1000 nm thick with nanotubes of diameters in range: 25 ÷ 100 nm, was prepared by anodizing of the titanium foil in ethylene glycol solution. To change the crystal structure and improve the electrical conductivity of the semiconductive TiO2 nanotubes layer the thermal treatment by annealing in argon, nitrogen or air was used. Basing on the electrochemical tests, the XPS and scanning microscopy examinations, as well as the contact angle measurements and the amperometric detection of potassium ferricyanide, it was concluded that the 1000 nm thick TiO2 nanotubes layer with nanotubes of 50 nm diameter, annealed in argon, showed the best physicochemical properties, which helps investigate the adsorption immobilization mechanism. The possibility of using TNT as a biosensor platform was confirmed in hydrogen detection.

  8. Controlled growth of well-aligned carbon nanotubes with large diameters

    NASA Astrophysics Data System (ADS)

    Wang, Xianbao; Liu, Yunqi; Zhu, Daoben

    2001-06-01

    Well-aligned carbon nanotubes (CNTs) with large diameters (25-200 nm) were synthesized by pyrolysis of iron(II) phthalocyanine. The outer diameter up to 218.5 nm and the length of the well-aligned CNTs can be systematically controlled by varying the growth time. A tube-in-tube nano-structure with large and small diameters of 176 and 16.7 nm, respectively, was found. The grain sizes of the iron catalyst play an important role in controlling the CNT diameters. These results are of great importance to design new aligned CNT-based electron field emitters in the potential application of panel displays.

  9. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  10. Self-assembled nanotubes from single fluorescent amino acid

    NASA Astrophysics Data System (ADS)

    Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2017-04-01

    Self-assembly of biomolecules has gained increasing attention as it generates various supramolecular structural assemblies having potential applications principally in biomedical sciences. Here, we show that amino acid like tryptophan or tyrosine readily aggregates as nanotubes via a simple self-assembly process. These were characterized by FTIR, scanning electron microscopy, and by fluorescence microscopy. Nanotubes prepared from tryptophan are having 200 nm inner diameter and those from tyrosine are having the same around 50 nm diameter.

  11. Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition

    PubMed Central

    Chen, Guohai; Seki, Yasuaki; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Hata, Kenji; Futaba, Don N.

    2014-01-01

    We present a method to both precisely and continuously control the average diameter of single-walled carbon nanotubes in a forest ranging from 1.3 to 3.0 nm with ~1 Å resolution. The diameter control of the forest was achieved through tuning of the catalyst state (size, density, and composition) using arc plasma deposition of nanoparticles. This 1.7 nm control range and 1 Å precision exceed the highest reports to date. PMID:24448201

  12. Fatigue resistance, electrochemical corrosion and biological response of Ti-15Mo with surface modified by amorphous TiO2 nanotubes layer.

    PubMed

    Campanelli, Leonardo C; Oliveira, Nilson T C; da Silva, Paulo Sergio C P; Bolfarini, Claudemiro; Palmieri, Annalisa; Cura, Francesca; Carinci, Francesco; Motheo, Artur J

    2018-03-04

    The objective of this work was a systemic evaluation of the anodizing treatment in a β-type Ti-15Mo alloy to grow a TiO 2 nanostructured layer for osseointegration improvement. The technical viability of the surface modification was assessed based on the resistance to mechanical fatigue, electrochemical corrosion, and biological response. By using an organic solution of NH 4 F in ethylene glycol, a well-organized array of 90 nm diameter nanotubes was obtained with a potential of 40 V for 6 h, while undefined nanotubes of 25 nm diameter were formed with a potential of 20 V for 1 h. Nevertheless, the production of the 90 nm diameter nanotubes was followed by micrometer pits that significantly reduced the fatigue performance. The undefined nanotubes of 25 nm diameter, besides the greater cell viability and improved osteoblastic cell differentiation in comparison to the as-polished surface, were not deleterious to the fatigue and corrosion properties. This result strengthens the necessity of an overall evaluation of the anodizing treatment, particularly the fatigue resistance, before suggesting it for the design of implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  13. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, inducedmore » by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  14. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  15. Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.

    PubMed

    Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie

    2006-08-01

    A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.

  16. Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2012-07-13

    The structure, stability, and catalytic activity of a number of single- and double-wall platinum (n,m) nanotubes ranging in diameter from 0.3 to 2.0 nm were studied using plane-wave based density functional theory in the gas phase and water environment. The change in the catalytic activity toward the oxygen reduction reaction (ORR) with the size and chirality of the nanotube was studied by calculating equilibrium adsorption potentials for ORR intermediates and by constructing free energy diagrams in the ORR dissociative mechanism network. In addition, the stability of the platinum nanotubes is investigated in terms of electrochemical dissolution potentials and by determiningmore » the most stable state of the material as a function of pH and potential, as represented in Pourbaix diagrams. Our results show that the catalytic activity and the stability toward electrochemical dissolution depend greatly on the diameter and chirality of the nanotube. On the basis of the estimated overpotentials for ORR, we conclude that smaller, approximately 0.5 nm in diameter single-wall platinum nanotubes consistently show a huge, up to 400 mV larger overpotential than platinum, indicating very poor catalytic activity toward ORR. This is the result of substantial structural changes induced by the adsorption of any chemical species on these tubes. Single-wall n = m platinum nanotubes with a diameter larger than 1 nm have smaller ORR overpotentials than bulk platinum for up to 180 mV and thus show improved catalytic activity relative to bulk. We also predict that these nanotubes can endure the highest cell potentials but dissolution potentials are still for 110 mV lower than for the bulk, indicating a possible corrosion problem.« less

  17. Superparamagnetic properties of carbon nanotubes filled with NiFe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojak Repa, K.; Israel, D.; Phan, M. H., E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu

    2015-05-07

    Multi walled carbon nanotubes (MWCNTs) were successfully synthesized using custom-made 80 nm pore-size alumina templates, and were uniformly filled with nickel ferrite (NFO) nanoparticles of 7.4 ± 1.7 nm diameter using a novel magnetically assisted capillary action method. X-ray diffraction confirmed the inverse spinel phase for the synthesized NFO. Transmission electron microscopy confirms spherical NFO nanoparticles with an average diameter of 7.4 nm inside MWCNTs. Magnetometry indicates that both NFO and NFO-filled MWCNTs present a blocking temperature around 52 K, with similar superparamagnetic-like behavior, and weak dipolar interactions, giving rise to a super-spin-glass-like behavior at low temperatures. These properties along with the uniformity of sub-100 nm structuresmore » and the possibility of tunable magnetic response in variable diameter carbon nanotubes make them ideal for advanced biomedical and microwave applications.« less

  18. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  19. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    PubMed

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  20. Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells

    PubMed Central

    Tian, Ang; Qin, Xiaofei; Wu, Anhua; Zhang, Hangzhou; Xu, Quan; Xing, Deguang; Yang, He; Qiu, Bo; Xue, Xiangxin; Zhang, Dongyong; Dong, Chenbo

    2015-01-01

    Cells respond to their surroundings through an interactive adhesion process that has direct effects on cell proliferation and migration. This research was designed to investigate the effects of TiO2 nanotubes with different topographies and structures on the biological behavior of cultured cells. The results demonstrated that the nanotube diameter, rather than the crystalline structure of the coatings, was a major factor for the biological behavior of the cultured cells. The optimal diameter of the nanotubes was 20 nm for cell adhesion, migration, and proliferation in both glioma and osteosarcoma cells. The expression levels of vitronectin and phosphor-focal adhesion kinase were affected by the nanotube diameter; therefore, it is proposed that the responses of vitronectin and phosphor-focal adhesion kinase to the nanotube could modulate cell fate. In addition, the geometry and size of the nanotube coating could regulate the degree of expression of acetylated α-tubulin, thus indirectly modulating cell migration behavior. Moreover, the expression levels of apoptosis-associated proteins were influenced by the topography. In conclusion, a nanotube diameter of 20 nm was the critical threshold that upregulated the expression level of Bcl-2 and obviously decreased the expression levels of Bax and caspase-3. This information will be useful for future biomedical and clinical applications. PMID:25848261

  1. Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate

    NASA Technical Reports Server (NTRS)

    Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy

    2005-01-01

    Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.

  2. Vacancy Mediated Mechanism of Nitrogen Substitution in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Sadanadan, Bindu; Rao, Apparao M.

    2003-01-01

    Nitrogen substitution reaction in a graphene sheet and carbon nanotubes of different diameter are investigated using the generalized tight-binding molecular dynamics method. The formation of a vacancy in curved graphene sheet or a carbon nanotube is found to cause a curvature dependent local reconstruction of the surface. Our simulations and analysis show that vacancy mediated N substitution (rather than N chemisorption) is favored on the surface of nanotubes with diameter larger than 8 nm. This predicted value of the critical minimum diameter for N incorporation is confirmed by experimental results presented.

  3. Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.

    2011-01-01

    Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.

  4. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.

    PubMed

    Vo, Minh D; Papavassiliou, Dimitrios V

    2016-04-15

    Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased.

  5. Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Towfighi, Jafar; Rashidi, Alimorad; Mohammadi, Toraj; Omidkhah, Mohammad Reza; Sadeghian, Ahmad

    2013-04-01

    Separation of H2S from binary mixtures of H2S/CH4 using vertically aligned carbon nanotube membranes fabricated in anodic aluminum oxide (AAO) template was studied experimentally. Carbon nanotubes (CNTs) were grown in five AAO templates with different pore diameters using chemical vapor deposition, and CNT/AAO membranes with tubular carbon nanotube structure and open caps were selected for separation of H2S. For this, two tubular CNT/AAO membranes were fabricated with the CNT inner diameters of 23 and 8 nm. It was found that permeability and selectivity of the membrane with inner diameter of 23 nm for CNT were independent of upstream feed pressure and H2S feed concentration unlike that of CNT having an inner diameter of 8 nm. Selectivity of these membranes for separation of H2S was obtained in the ranges of 1.36-1.58 and 2.11-2.86, for CNTs with internal diameters of 23 and 8 nm, respectively. In order to enhance the separation of H2S from H2S/CH4 mixtures, dodecylamine was used to functionalize the CNT/AAO membrane with higher selectivity. The results showed that for amido-functionalized membrane, both upstream feed pressure and H2S partial pressure in the feed significantly increased H2S permeability, and selectivity for H2S being in the range of 3.0-5.57 respectively.

  6. Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles

    NASA Astrophysics Data System (ADS)

    Kondo, Daiyu; Sato, Shintaro; Awano, Yuji

    2006-05-01

    Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution have been synthesized by hot-filament chemical vapor deposition using acetylene at 590 °C. Iron nanoparticles with diameters of 1.6, 2.0, 2.5, 5.0 and 10 nm (standard deviation: ≈10%) obtained with a differential mobility analyzer were used as a catalyst without any supporting materials on a substrate. SWNTs were obtained from 2.0 nm or smaller particles. The ratio of G band to D band in Raman spectra was as high as 35 without purification, indicating that high-quality SWNTs were synthesized. The SWNT diameters correlated with the particle diameters, demonstrating diameter-controlled SWNT growth.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarma, Abhisakh; Sanyal, Milan K., E-mail: milank.sanyal@saha.ac.in

    In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter moremore » than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 10{sup 7}. This value remain almost constant over a frequency range from 1Hz to 10{sup 6} Hz even at 80 K temperature.« less

  8. Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.

    PubMed

    Jin, Yi; Yendluri, Raghuvara; Chen, Bin; Wang, Jingbo; Lvov, Yuri

    2016-03-15

    Natural halloysite clay nanotubes with 15 nm inner and 75 nm outer diameters have been used as vehicles for sustained release of drugs in composite hollow microparticles "glued" with CaCO3. We used a layer-by layer assembly accomplished alginate binding with Ca(2+) followed by CO2 bubbling to prepare the composite microspheres of CaCO3 and polyelectrolytes (PE) modified halloysite nanotubes (HNTs-PE2/CaCO3) with the diameter of about 5-10 μm. These microparticles have empty spherical structure and abundant pore distributions with maxima at 2.5, 3.9, 6.0 and 13.3 nm, and higher surface area of 82.3 m(2) g(-1) as characterized by SEM and BET test. We loaded drugs in these micro-nano carriers of tight piles of halloysite nanotube with end clogged with CaCO3. The sustained release of Nifedipine drug from HNTs-PE2/CaCO3 composite microspheres was slower than for pristine halloysite nanotubes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Formation of TiO2 nanotube arrays in KOH added fluoride-ethylene glycol (EG) electrolyte and its photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Nyein, Nyein; Lockman, Zainovia; Matsuda, Astunori; Kawamura, Go; Tan, Wai Kian; Oo, Than Zaw

    2016-07-01

    In this study, highly ordered TiO2 nanotube arrays were prepared by anodic oxidation of titanium foil in fluoride -EG electrolyte containing a small amount of potassium hydroxide, KOH at 60 V for 30 min. This electrolyte resulted in the formation of long nanotubes with an average length of 10 µm and diameter of 170 nm. For comparison, TiO2 nanotubes anodized in H2O added EG electrolyte which produces short nanotubes with an average tube length of 5 µm and diameter of 170 nm. It appears that the addition of KOH into the fluoride EG electrolyte accelerated the formation of the TiO2 nanotubes as it is believed that the chemical dissolution at the tips of the nanotubes is suppressed. Highly ordered TiO2 nanotubes anodized in KOH added EG electrolyte exhibited the photocurrent density of 2 mA/cm2, which is significantly higher than H2O added sample (1.5 mA/cm2).

  10. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection.

    PubMed

    Xue, Jiajia; Niu, Yuzhao; Gong, Min; Shi, Rui; Chen, Dafu; Zhang, Liqun; Lvov, Yuri

    2015-02-24

    Guided tissue regeneration/guided bone regeneration membranes with sustained drug delivery were developed by electrospinning drug-loaded halloysite clay nanotubes doped into poly(caprolactone)/gelatin microfibers. Use of 20 wt % nanotube content in fiber membranes allowed for 25 wt % metronidazole drug loading in the membrane. Nanotubes with a diameter of 50 nm and a length of 600 nm were aligned within the 400 nm diameter electrospun fibers, resulting in membranes with doubling of tensile strength along the collector rotating direction. The halloysite-doped membranes acted as barriers against cell ingrows and have good biocompatibility. The metronidazole-loaded halloysite nanotubes incorporated in the microfibers allowed for extended release of the drugs over 20 days, compared to 4 days when directly admixed into the microfibers. The sustained release of metronidazole from the membranes prevented the colonization of anaerobic Fusobacteria, while eukaryotic cells could still adhere to and proliferate on the drug-loaded composite membranes. This indicates the potential of halloysite clay nanotubes as drug containers that can be incorporated into electrospun membranes for clinical applications.

  11. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    PubMed Central

    2008-01-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10−5(Ω·cm)−1.

  12. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Liu, Peng

    2008-08-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10-5 (Ω·cm)-1.

  13. Control of the Diameter and Chiral Angle Distributions during Production of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel

    2009-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with many (n,m) types present and typical approx.1:2 metal/semiconductor ratio. Nanotube nucleation models predict that armchair nuclei are energetically preferential due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters, leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by change in the oven temperature (expansion into colder gas), or decreased via "warm-up" with a laser pulse at the moment of nucleation. The effect of oven temperature and "warm-up" on nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that reduced temperatures leads to smaller average diameters, progressively narrower diameter distributions, and some preference toward armchair structures. "Warm-up" shifts nanotube population towards arm-chair structures as well, but the effect is small. Possible improvement of the "warm-up" approach to produce armchair SWCNTs will be discussed. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) population. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  14. Electrical characterization of TiO2 nanotubes synthesized through electrochemical anodizing method

    NASA Astrophysics Data System (ADS)

    Manescu Paltanea, Veronica; Paltanea, Gheorghe; Popovici, Dorina; Jiga, Gabriel

    2016-05-01

    In the present paper, the electrochemical anodizing method was used for the obtaining of TiO2 nanotube layers, developed on titanium surface. Self-organized titanium nanotubes were obtained when an aqueous solution of 49.5 wt % H2O - 49.5 wt % glycerol - 1 wt % HF was used as electrolyte, the anodizing time being equal to 8 hours and the applied voltage to 25 V. Scanning electron microscopy shows that the one-dimensional nanostructure has a tubular configuration with an inner diameter of approximately 60 nm and an outer diameter of approximately 100 nm. The electrical properties of these materials were analyzed through dielectric spectroscopy method.

  15. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template.

    PubMed

    Menchaca-Nal, S; Londoño-Calderón, C L; Cerrutti, P; Foresti, M L; Pampillo, L; Bilovol, V; Candal, R; Martínez-García, R

    2016-02-10

    A facile method for the preparation of cobalt ferrite nanotubes by use of bacterial cellulose nanoribbons as a template is described. The proposed method relays on a simple coprecipitation operation, which is a technique extensively used for the synthesis of nanoparticles (either isolated or as aggregates) but not for the synthesis of nanotubes. The precursors employed in the synthesis are chlorides, and the procedure is carried out at low temperature (90 °C). By the method proposed a homogeneous distribution of cobalt ferrite nanotubes with an average diameter of 217 nm in the bacterial nanocellulose (BC) aerogel (3%) was obtained. The obtained nanotubes are formed by 26-102 nm cobalt ferrite clusters of cobalt ferrite nanoparticles with diameters in the 9-13 nm interval. The nanoparticles that form the nanotubes showed to have a certain crystalline disorder, which could be attributed in a greater extent to the small crystallite size, and, in a lesser extent, to microstrains existing in the crystalline lattice. The BC-templated-CoFe2O4 nanotubes exhibited magnetic behavior at room temperature. The magnetic properties showed to be influenced by a fraction of nanoparticles in superparamagnetic state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization.

    PubMed

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2008-10-01

    We synthesized TiO2 nanotube array by anodizing in a solution of malonic acid (HOOCCH2COOH) and NH4F, and analyzed the morphology of the nanotube using scanning electron microscopy (SEM). The morphology of TiO2 nanotube was largely affected by anodizing time, anodizing voltage, and malonic acid concentration. With increasing the anodizing voltage from 5 V to 20 V, the diameter of TiO2 nanotube was increased from about 20 nm to 110 nm and its length from about 10 nm to 700 nm. In addition, the length of TiO2 nanotube was increased with increasing anodizing time up to 6 h at 20 V. We obtained the longest and the most highly ordered nanotube structure when anodizing Ti in a solution of 0.5 wt% NH4F and 1 M malonic acid at 20 V for 6 h.

  17. Growing Aligned Carbon Nanotubes for Interconnections in ICs

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ye, Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2005-01-01

    A process for growing multiwalled carbon nanotubes anchored at specified locations and aligned along specified directions has been invented. Typically, one would grow a number of the nanotubes oriented perpendicularly to a silicon integrated-circuit (IC) substrate, starting from (and anchored on) patterned catalytic spots on the substrate. Such arrays of perpendicular carbon nanotubes could be used as electrical interconnections between levels of multilevel ICs. The process (see Figure 1) begins with the formation of a layer, a few hundred nanometers thick, of a compatible electrically insulating material (e.g., SiO(x) or Si(y)N(z) on the silicon substrate. A patterned film of a suitable electrical conductor (Al, Mo, Cr, Ti, Ta, Pt, Ir, or doped Si), having a thickness between 1 nm and 2 m, is deposited on the insulating layer to form the IC conductor pattern. Next, a catalytic material (usually, Ni, Fe, or Co) is deposited to a thickness between 1 and 30 nm on the spots from which it is desired to grow carbon nanotubes. The carbon nanotubes are grown by plasma-enhanced chemical vapor deposition (PECVD). Unlike the matted and tangled carbon nanotubes grown by thermal CVD, the carbon nanotubes grown by PECVD are perpendicular and freestanding because an electric field perpendicular to the substrate is used in PECVD. Next, the free space between the carbon nanotubes is filled with SiO2 by means of CVD from tetraethylorthosilicate (TEOS), thereby forming an array of carbon nanotubes embedded in SiO2. Chemical mechanical polishing (CMP) is then performed to remove excess SiO2 and form a flat-top surface in which the outer ends of the carbon nanotubes are exposed. Optionally, depending on the application, metal lines to connect selected ends of carbon nanotubes may be deposited on the top surface. The top part of Figure 2 is a scanning electron micrograph (SEM) of carbon nanotubes grown, as described above, on catalytic spots of about 100 nm diameter patterned by electron-beam lithography. These and other nanotubes were found to have lengths ranging from 2 to 10 m and diameters ranging from 30 to 200 nm, the exact values of length depending on growth times and conditions and the exact values of diameter depending on the diameters and thicknesses of the catalyst spots. The bottom part of Figure 2 is an SEM of an embedded array of carbon nanotubes after CMP.

  18. Thermal degradation of TiO2 nanotubes on titanium

    NASA Astrophysics Data System (ADS)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  19. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts.

    PubMed

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-21

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.

  20. Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and Carbon nanohorns

    PubMed Central

    Maharaj, Dave; Bhushan, Bharat

    2015-01-01

    Nano-objects have been investigated for drug delivery, oil detection, contaminant removal, and tribology applications. In some applications, they are subjected to friction and deformation during contact with each other and their surfaces on which they slide. Experimental studies directly comparing local and global deformation are lacking. This research performs nanoindentation (local deformation) and compression tests (global deformation) with a nanoindenter (sharp tip and flat punch, respectively) on molybdenum disulfide (MoS2) multi-walled nanotubes (MWNTs), ~500 nm in diameter. Hardness of the MoS2 nanotube was similar to bulk and does not follow the “smaller is stronger” phenomenon as previously reported for other nano-objects. Tungsten disulfide (WS2) MWNTs, ~300 nm in diameter and carbon nanohorns (CNHs) 80–100 nm in diameter were of interest and also selected for compression studies. These studies aid in understanding the mechanisms involved during global deformation when nano-objects are introduced to reduce friction and wear. For compression, highest loads were required for WS2 nanotubes, then MoS2 nanotubes and CNHs to achieve the same displacement. This was due to the greater number of defects with the MoS2 nanotubes and the flexibility of the CNHs. Repeat compression tests of nano-objects were performed showing a hardening effect for all three nano-objects. PMID:25702922

  1. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  2. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailoredmore » diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.« less

  3. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    PubMed

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  4. Optical absorption and thermal transport of individual suspended carbon nanotube bundles.

    PubMed

    Hsu, I-Kai; Pettes, Michael T; Bushmaker, Adam; Aykol, Mehmet; Shi, Li; Cronin, Stephen B

    2009-02-01

    A focused laser beam is used to heat individual single-walled carbon nanotube bundles bridging two suspended microthermometers. By measurement of the temperature rise of the two thermometers, the optical absorption of 7.4-10.3 nm diameter bundles is found to be between 0.03 and 0.44% of the incident photons in the 0.4 microm diameter laser spot. The thermal conductance of the bundle is obtained with the additional measurement of the temperature rise of the nanotubes in the laser spot from shifts in the Raman G band frequency. According to the nanotube bundle diameter determined by transmission electron microscopy, the thermal conductivity is obtained.

  5. Size-tunable synthesis of SiO(2) nanotubes via a simple in situ templatelike process.

    PubMed

    Shen, Guozhen; Bando, Yoshio; Golberg, Dmitri

    2006-11-23

    SiO(2) nanotubes with tunable diameters and lengths have been successfully synthesized via a simple in situ templatelike process by thermal evaporation of SiO, ZnS, and GaN in a vertical induction furnace. The structure and morphologies were systematically investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry. Studies found that both the diameters and lengths of the SiO(2) nanotubes can be effectively tuned by simply changing the reaction temperatures. The range of changes was from 30 nm (diameter) and several hundred micrometers (length) at 1450 degrees C to 100 nm (diameter) and 2-10 micrometers (length) at 1300 degrees C. Varying some other experimental parameters results in the formation of additional SiO(2)-based nanostructures, such as core-shell ZnS-SiO(2) nanocables, ZnS nanoparticle filled SiO(2) nanotubes, and fluffy SiO(2) spheres. Based on the observations, an in situ templatelike process was proposed to explain the possible growth mechanism.

  6. Filling carbon nanotubes with particles.

    PubMed

    Kim, Byong M; Qian, Shizhi; Bau, Haim H

    2005-05-01

    The filling of carbon nanotubes (CNTs) with fluorescent particles was studied experimentally and theoretically. The fluorescent signals emitted by the particles were visible through the walls of the nanotubes, and the particles inside the tubes were observable with an electron microscope. Taking advantage of the template-grown carbon nanotubes' transparency to fluorescent light, we measured the filling rate of the tubes with particles at room conditions. Liquids such as ethylene glycol, water, and ethylene glycol/water mixtures, laden with 50 nm diameter fluorescent particles, were brought into contact with 500 nm diameter CNTs. The liquid and the particles' transport were observed, respectively, with optical and fluorescence microscopy. The CNTs were filled controllably with particles by the complementary action of capillary forces and the evaporation of the liquid. The experimental results were compared and favorably agreed with theoretical predictions. This is the first report on fluorescence studies of particle transport in carbon nanotubes.

  7. Ultrabreathable and protective membranes with sub-5 nm carbon nanotube pores

    DOE PAGES

    Bui, Ngoc; Meshot, Eric R.; Kim, Sangil; ...

    2016-05-09

    Here, small-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.

  8. Effect of KOH added to ethylene glycol electrolyte on the self-organization of anodic ZrO{sub 2} nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozana, Monna; Soaid, Nurul Izza; Lockman, Zainovia, E-mail: zainovia@usm.my

    ZrO{sub 2} nanotube arrays were formed by anodizing zirconium sheet in ethylene glycol (EG) and EG added to it KOH (EG/KOH) electrolytes. The effect of KOH addition into EG electrolyte to the morphology of nanotubes and their crystallinity was investigated. It was observed that the tubes with diameter of ∼80 nm were formed in EG electrolyte with <0.1 vol % water, but the wall smoothness is rather poor. When KOH was added into EG, the wall smoothness of the nanotubes improve, but the diameter of tubes is smaller (∼40 nm). Despite smoother wall and small tube diameter, the degradation ofmore » methyl orange (MO) on the tubes made in EG/KOH is less compared to the tubes made in EG only. This could be due to the less tetragonal ZrO{sub 2} presence in the tubes made in EG/KOH.« less

  9. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    NASA Astrophysics Data System (ADS)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. Electronic supplementary information (ESI) available: Comparison between the Co monometallic catalyst system and the Co/Mo bimetallic catalyst system, the effect of CVD temperature on the G/D ratio, the effect of ethanol partial pressure on the morphology, diameter and quality of SWNT films, and Raman spectra of the Si/SiO2 substrate. See DOI: 10.1039/c5nr06007a

  10. Growth of semiconducting GaN hollow spheres and nanotubes with very thin shells via a controllable liquid gallium-gas interface chemical reaction.

    PubMed

    Yin, Long-Wei; Bando, Yoshio; Li, Mu-Sen; Golberg, Dmitri

    2005-11-01

    An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects.

  11. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence.

    PubMed

    Kulkarni, Mukta; Mazare, Anca; Park, Jung; Gongadze, Ekaterina; Killian, Manuela Sonja; Kralj, Slavko; von der Mark, Klaus; Iglič, Aleš; Schmuki, Patrik

    2016-11-01

    In the present work we investigate the key factors involved in the interaction of small-sized charged proteins with TiO 2 nanostructures, i.e. albumin (negatively charged), histone (positively charged). We examine anodic nanotubes with specific morphology (simultaneous control over diameter and length, e.g. diameter - 15, 50 or 100nm, length - 250nm up to 10μm) and nanopores. The nanostructures surface area has a direct influence on the amount of bound protein, nonetheless the protein physical properties as electric charge and size (in relation to nanotopography and biomaterial's electric charge) are crucial too. The highest quantity of adsorbed protein is registered for histone, for 100nm diameter nanotubes (10μm length) while higher values are registered for 15nm diameter nanotubes when normalizing protein adsorption to nanostructures' surface unit area (evaluated from dye desorption measurements) - consistent with theoretical considerations. The proteins presence on the nanostructures is evaluated by XPS and ToF-SIMS; additionally, we qualitatively assess their presence along the nanostructures length by ToF-SIMS depth profiles, with decreasing concentration towards the bottom. Surface nanostructuring of titanium biomedical devices with TiO 2 nanotubes was shown to significantly influence the adhesion, proliferation and differentiation of mesenchymal stem cells (and other cells too). A high level of control over the nanoscale topography and over the surface area of such 1D nanostructures enables a direct influence on protein adhesion. Herein, we investigate and show how the nanostructure morphology (nanotube diameter and length) influences the interactions with small-sized charged proteins, using as model proteins bovine serum albumin (negatively charged) and histone (positively charged). We show that the protein charge strongly influences their adhesion to the TiO 2 nanostructures. Protein adhesion is quantified by ELISA measurements and determination of the nanostructures' total surface area. We use a quantitative surface charge model to describe charge interactions and obtain an increased magnitude of the surface charge density at the top edges of the nanotubes. In addition, we track the proteins presence on and inside the nanostructures. We believe that these aspects are crucial for applications where the incorporation of active molecules such as proteins, drugs, growth factors, etc., into nanotubes is desired. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. The synthesis of silica nanotubes through chlorosilanization of single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Wu; Shen, Hsin-Hui

    2010-09-01

    We demonstrate that single wall carbon nanotubes (SWCNTs) can be coated by a layer of silica through the reaction between chlorosilane and acid-treated SWCNTs. The presence of carboxylic acid groups in the SWCNTs provides the active sites where chlorosilane can be anchored to form the silica coating. Silica nanotubes with diameters ranging from 5 to 23 nm were synthesized after the calcination of silica coated SWCNTs at 900 °C in air. It was found that the presence of SWCNT templates and carboxylic acid groups on the SWCNTs' surface is essential to the formation of silica nanotubes. Furthermore, the dependence of the inner diameters of the silica nanotubes on the diameters of bundled or isolated SWCNTs was observed. This novel technique can be applied to the synthesis of other oxide nanotubes if a precursor such as TiCl4 or ZrCl4 is used.

  13. Sacrificial template method of fabricating a nanotube

    DOEpatents

    Yang, Peidong [Berkeley, CA; He, Rongrui [Berkeley, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yi-Ying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  14. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    NASA Astrophysics Data System (ADS)

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.

    2015-07-01

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ˜105 cm-3 prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  15. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity.

    PubMed

    Hajjaji, A; Elabidi, M; Trabelsi, K; Assadi, A A; Bessais, B; Rtimi, S

    2018-06-05

    This study investigates the effect of the diameter of TiO 2 nanotubes and silver decorated nanotubes on optical properties and photocatalytic inactivation of Escherichia coli under visible light. The TiO 2 nanotubes (TiO 2 -NTs) were prepared using the electrochemical method varying the anodization potential starting from 20 V until 70 V. The Ag nanoparticles were carried out using the photoreduction process under the same experimental conditions. The diameter size was determined using the scanning electronic microscopy (SEM). TiO 2 -NTs diameter reached ∼100 nm at 70 V. Transmission electronic microscopy (TEM) imaging confirmed the TiO 2 -NTs surface decoration by silver nanoparticles. The Ag-NPs average size was found to be equal to 8 nm. The X-Ray diffraction (XRD) analysis confirm that all TiO 2 -NTs crystallize in the anatase phases regardless the used anodization potential. The decrease of the photoluminescence (PL) intensity of Ag NPs decorated TiO 2 -NTs indicates the decrease of the specific area when the nanotubes diameter increases. The UV-vis absorbance show that the absorption edges was bleu shifted with the increasing of nanotubes diameter, which can be explained by the increase of the crystallites average size. The bacterial adhesion and inactivation tests were carried in the dark and under light. Bacteria were seen to adhere on TiO 2 -NTs in the dark; however, under light the bacteria were killed before they establish a strong contact with the TiO 2 -NTs and Ag/TiO 2 -NTs surfaces. Bacterial inactivation kinetics were faster when the anodizing potential of the NTs-preparation increases. A total bacterial inactivation was obtained on ∼100 nm nanotubes diameter within 90 min. This result was attributed to the enhancement of the TNTs crystallinity leading to reduced surface defects. Redox catalysis was seen to occur under light on the TiO 2 -NTs and Ag/TiO 2 -NTs. the photo-induced antibacterial activity on the AgO/Ag 2 O decorated TiO 2 -NTs was attributed to the interfacial charge transfer mechanism (IFCT). Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Utilization of bio-degradable fermented tapioca to synthesized low toxicity of carbon nanotubes for drug delivery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurulhuda, I., E-mail: nurulnye@gmail.com; Poh, R.; Mazatulikhma, M. Z.

    Carbon nanotubes (CNT) have potential biomedical applications, and investigations are shifting towards the production of such nanotubes using renewable natural sources. CNTs were synthesized at various temperatures of 700, 750, 800, 850 and 900 °C, respectively, using a local fermented food known as “tapai ubi” or fermented tapioca as a precursor. The liquid part of this fermented food was heated separately at 80°C and channeled directly into the furnace system that employs the thermal chemical vapor deposition (CVD) method. Ferrocene, which was the catalyst was placed in furnace 1 in the thermal CVD process. The resulting CNTs produced from themore » process were studied using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The FESEM images showed the growth morphology of the CNTs at the different temperatures employed. It was observed that the higher the synthesis temperature up to a point, the diameter of CNTs produced, after which the diameter increased. CNTs with helical structures were observed at 700 °C with a diameter range of 111 - 143 nm. A more straightened structure was observed at 750 °C with a diameter range of 59 - 121 nm. From 800 °C onwards, the diameters of the CNTs were less than 60 nm. Raman analysis revealed the present of D, G and G’ peak were observed at 1227-1358, 1565-1582, and 2678-2695 cm{sup −1}, respectively. The highest degree of crystallity of the carbon nanotubes synthesized were obtained at 800 °C. The radial breathing mode (RBM) were in range between 212-220 and 279-292 cm{sup −1}. Carbon nanotubes also being functionalized with Polyethylene bis(amine) Mw2000 (PEG 2000-NH2) and showed highly cells viability compared to non-functionalized CNT. The nanotubes synthesized will be applied as drug delivery in future study.« less

  17. The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo

    PubMed Central

    Ding, Xianglong; Zhou, Lei; Wang, Jingxu; Zhao, Qingxia; Lin, Xi; Gao, Yan; Li, Shaobing; Wu, Jingyi; Rong, Mingdeng; Guo, Zehong; Lai, Chunhua; Lu, Haibin; Jia, Fang

    2015-01-01

    In the present work, a hierarchical hybrid micro/nanostructured titanium surface was obtained by sandblasting with large grit and acid etching (SLA), and nanotubes of different diameters (30 nm, 50 nm, and 80 nm) were superimposed by anodization. The effect of each SLA-treated surface decorated with nanotubes (SLA + 30 nm, SLA + 50 nm, and SLA + 80 nm) on osteogenesis was studied in vitro and in vivo. The human MG63 osteosarcoma cell line was used for cytocompatibility evaluation, which showed that cell adhesion and proliferation were dramatically enhanced on SLA + 30 nm. In comparison with cells grown on the other tested surfaces, those grown on SLA + 80 nm showed an enhanced expression of osteogenesis-related genes. Cell spread was also enhanced on SLA + 80 nm. A canine model was used for in vivo evaluation of bone bonding. Histological examination demonstrated that new bone was formed more rapidly on SLA-treated surfaces with nanotubes (especially SLA + 80 nm) than on those without nanotubes. All of these results indicate that SLA + 80 nm is favorable for promoting the activity of osteoblasts and early bone bonding. PMID:26635472

  18. Pentatwinned Cu Nanowires with Ultrathin Diameters below 20 nm and Their Use as Templates for the Synthesis of Au-Based Nanotubes

    DOE PAGES

    Luo, Ming; Zhou, Ming; Rosa da Silva, Robson; ...

    2017-01-24

    Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less

  19. Pentatwinned Cu Nanowires with Ultrathin Diameters below 20 nm and Their Use as Templates for the Synthesis of Au-Based Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Ming; Zhou, Ming; Rosa da Silva, Robson

    Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang

    Graphical abstract: CuO nanotube array electrodes prepared by electrodeposition method exhibit an excellent lithium ion storage ability as anode of Li-ion battery. - Highlights: • CuO nanotube arrays are synthesized by an electrodeposition method. • CuO nanotube shows a high-rate performance. • CuO nanotube shows an excellent cycling performance. - Abstract: We report a facile strategy to prepared CuO nanotube arrays directly grown on Cu plate through the electrodeposition method. The as-prepared CuO nanotubes show a quasi-cylinder nanostructure with internal diameters of ca. ∼100 nm, external diameters of ca. ∼120 nm, and average length of ∼3 μm. As an anodemore » for lithium ion batteries, the electrochemical properties of the CuO nanotube arrays are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. Due to the unique nanotube nanostructure, the as-prepared CuO electrodes exhibit good rate performance (550 mAh g{sup −1} at 0.1 C and 464 mAh g{sup −1} at 1 C) and cycling performance (581 mAh g{sup −1} at 0.1 C and 538 mAh g{sup −1} at 0.5 C)« less

  1. Mechanics of Nanotubes and Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Wei, Cheng-Yu; Cho, Kyeong-Jae; Menon, Madhu; Osman, Mohamed; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    CNT is a tubular form of carbon with diameter as small as 1 nm. Length: few nm to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties: Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

  2. Cytocompatibility and uptake of halloysite clay nanotubes.

    PubMed

    Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano

    2010-03-08

    Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.

  3. Carbon Nanotubes for Space Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the enhanced absorption (from nanotubes whose bandgap is tailored to illumination) and electromagnetic coupling in a network of nanotubes.

  4. Filling double-walled carbon nanotubes with WO3 and W nanowires via confined chemical reactions.

    PubMed

    Zhao, Keke; Wang, Zhiyong; Shi, Zujin; Gu, Zhennan; Jinj, Zhaoxia

    2011-03-01

    Carbon nanotubes filled with metals and semiconductors have been regarded as one of the most promising materials for nanodevices. Here, we demonstrate a simple and effective method to produce tungsten trioxide (WO3) and tungsten (W) nanowires with diameters of below 4 nm inside double-walled carbon nanotubes (DWCNTs). First, the precursors, i.e., phosphotungstic acid (HPW, H3PW12O40) molecules, are successfully introduced into DWCNTs. Subsequent decomposition and reduction lead to the formation of WO3 and W nanowires inside DWCNTs. The products were carefully characterized by high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. FTIR spectra provide a direct proof that the HPW molecules enter the DWCNTs as an ionic state, i.e., PW12O40(3-) and H+, instead of the molecular state. HRTEM analysis shows that the diameter of the WO3 nanowires inside DWCNTs is 1.1-2.4 nm with the average length of 16-18 nm, and that for W nanowires is 1.2-3.4 nm with the average length of 15-17 nm. Meanwhile, DWCNTs are doped by the encapsulated WO3 and W nanowires. Tangential band shift in Raman spectra revealed the charge transfer between the nanowires and carbon nanotubes.

  5. Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes

    PubMed Central

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity. PMID:24124484

  6. Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality

    NASA Astrophysics Data System (ADS)

    de Blauwe, K.; Mowbray, D. J.; Miyata, Y.; Ayala, P.; Shiozawa, H.; Rubio, A.; Hoffmann, P.; Kataura, H.; Pichler, T.

    2010-09-01

    Narrow diameter tubes and especially (6,5) tubes with a diameter of 0.75 nm are currently one of the most studied carbon nanotubes because their unique optical and especially luminescence response makes them exceptionally suited for biomedical applications. Here we report on a detailed analysis of the electronic structure of nanotubes with (6,5) and (6,4) chiralities using a combined experimental and theoretical approach. From high-energy spectroscopy involving x-ray absorption and photoemission spectroscopy the detailed valence- and conduction-band response of these narrow diameter tubes is studied. The observed electronic structure is in sound agreement with state of the art ab initio calculations using density-functional theory.

  7. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes

    PubMed Central

    Fröhlich, Eleonore; Meindl, Claudia; Höfler, Anita; Leitinger, Gerd; Roblegg, Eva

    2012-01-01

    The use of carbon nanotubes (CNTs) could improve medical diagnosis and treatment provided they show no adverse effects in the organism. In this study, short CNTs with different diameters with and without carboxyl surface functionalisation were assessed. After physicochemical characterisation, cytotoxicity in phagocytic and non-phagocytic cells was determined. The role of oxidative stress was evaluated according to the intracellular glutathione levels and protection by N-acetyl cysteine (NAC). In addition to this, the mode of cell death was also investigated. CNTs <8 nm acted more cytotoxic than CNTs ≥20 nm and carboxylated CNTs more than pristine CNTs. Protection by NAC was maximal for large diameter pristine CNTs and minimal for small diameter carboxylated CNTs. Thin (<8 nm) CNTs acted mainly by disruption of membrane integrity and CNTs with larger diameter induced mainly apoptotic changes. It is concluded that cytotoxicity of small carboxylated CNTs occurs by necrosis and cannot be prevented by antioxidants. PMID:22963691

  8. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirahara, Kaori; Bandow, Shunji; Kociak, Mathieu

    2006-05-15

    Structural correlation between two adjacent graphitic layers in double-wall carbon nanotubes (DWNTs) was systematically examined by using electron diffraction. Chiral angles and tube diameters were carefully measured, and the chiral indices of individual DWNTs were accurately determined. As a result, it was found that the interlayer distances of DWNTs were widely distributed in the range between 0.34 and 0.38 nm. Chiralities of the inner and outer tubes tended to be distributed at higher chiral angles, approaching 30 deg., for the tubes with diameter D<{approx}3 nm. On the other hand, for the tubes with D>{approx}3 nm, the chiral angles were widelymore » distributed, covering the chiral map entirely. Therefore, we consider that tubes with small diameters have a tendency to form armchair type. Correlation of chiralities between the inner and outer tubes was found to be random.« less

  9. Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2012-06-01

    Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.

  10. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes.

    PubMed

    Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael

    2014-01-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g.

  11. Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction.

    PubMed

    Fagan, Jeffrey A; Hároz, Erik H; Ihly, Rachelle; Gui, Hui; Blackburn, Jeffrey L; Simpson, Jeffrey R; Lam, Stephanie; Hight Walker, Angela R; Doorn, Stephen K; Zheng, Ming

    2015-05-26

    In this contribution we demonstrate the effective separation of single-wall carbon nanotube (SWCNT) species with diameters larger than 1 nm through multistage aqueous two-phase extraction (ATPE), including isolation at the near-monochiral species level up to at least the diameter range of SWCNTs synthesized by electric arc synthesis (1.3-1.6 nm). We also demonstrate that refined species are readily obtained from both the metallic and semiconducting subpopulations of SWCNTs and that this methodology is effective for multiple SWCNT raw materials. Using these data, we report an empirical function for the necessary surfactant concentrations in the ATPE method for separating different SWCNTs into either the lower or upper phase as a function of SWCNT diameter. This empirical correlation enables predictive separation design and identifies a subset of SWCNTs that behave unusually as compared to other species. These results not only dramatically increase the range of SWCNT diameters to which species selective separation can be achieved but also demonstrate that aqueous two-phase separations can be designed across experimentally accessible ranges of surfactant concentrations to controllably separate SWCNT populations of very small (∼0.62 nm) to very large diameters (>1.7 nm). Together, the results reported here indicate that total separation of all SWCNT species is likely feasible by the ATPE method, especially given future development of multistage automated extraction techniques.

  12. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  13. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.

    PubMed

    Bauer, Sebastian; Park, Jung; von der Mark, Klaus; Schmuki, Patrik

    2008-09-01

    Self-organized layers of vertically orientated TiO(2) nanotubes providing defined diameters ranging from 15 up to 100nm were grown on titanium by anodic oxidation. These TiO(2) nanotube layers show super-hydrophilic behavior. After coating TiO(2) nanotube layers with a self-assembled monolayer (octadecylphosphonic acid) they showed a diameter-dependent wetting behavior ranging from hydrophobic (108+/-2 degrees ) up to super-hydrophobic (167+/-2 degrees ). Cell adhesion, spreading and growth of mesenchymal stem cells on the unmodified and modified nanotube layers were investigated and compared. We show that cell adhesion and proliferation are strongly affected in the super-hydrophobic range. Adsorption of extracellular matrix proteins as fibronectin, type I collagen and laminin, as well as bovine serum albumin, on the coated and uncoated surfaces showed a strong influence on wetting behavior and dependence on tube diameter.

  14. Unzipping of multi-wall carbon nanotubes with different diameter distributions: Effect on few-layer graphene oxide obtention

    NASA Astrophysics Data System (ADS)

    Torres, D.; Pinilla, J. L.; Suelves, I.

    2017-12-01

    Few-layer graphene oxide (FLGO) was obtained by chemical unzipping of multi-wall carbon nanotubes (MWCNT) of different diameter distributions. MWCNT were synthesized by catalytic decomposition of methane using Fe-Mo/MgO catalysts. The variation in the Fe/Mo ratio (1, 2 and 5) was very influential in MWCNT diameter distribution and type of MWCNT obtained, including textural, chemical, structural and morphological characteristics. MWCNT diameter distribution and surface defects content had a profound impact on the characteristics of the resulting FLGO. Thus, MWCNT obtained with the catalyst with a Fe/Mo: 5 and presenting a narrow diameter distribution centered at 8.6 ± 3.3 nm led to FLGO maintaining non-oxidized graphite stacking (according to XRD analysis), lower specific surface area and higher thermostability as compared to FLGO obtained from MWCNT showing wider diameter distributions. The presence of more oxygen-containing functionalities and structural defects in large diameter nanotubes promotes the intercalation of species towards the inner layers of the nanotube, resulting in an enhanced MWCNT oxidation and opening into FLGO, what improves both micro- and mesoporosity.

  15. A bioscaffolding strategy for hierarchical zeolites with a nanotube-trimodal network.

    PubMed

    Li, Guannan; Huang, Haibo; Yu, Bowen; Wang, Yun; Tao, Jiawei; Wei, Yingxu; Li, Shougui; Liu, Zhongmin; Xu, Yan; Xu, Ruren

    2016-02-01

    Hierarchical zeolite monoliths with multimodal porosity are of paramount importance as they open up new horizons for advanced applications. So far, hierarchical zeolites based on nanotube scaffolds have never been reported. Inspired by the organization of biominerals, we have developed a novel precursor scaffolding-solid phase crystallization strategy for hierarchical zeolites with a unique nanotube scaffolding architecture and nanotube-trimodal network, where biomolecular self-assembly (BSA) provides a scaffolding blueprint. By vapor-treating Sil-1 seeded precursor scaffolds, zeolite MFI nanotube scaffolds are self-generated, during which evolution phenomena such as segmented voids and solid bridges are observed, in agreement with the Kirkendall effect in a solid-phase crystallization system. The nanotube walls are made of intergrown single crystals rendering good mechanical stability. The inner diameter of the nanotube is tunable between 30 and 90 nm by varying the thickness of the precursor layers. Macropores enclosed by cross-linked nanotubes can be modulated by the choice of BSA. Narrow mesopores are formed by intergrown nanocrystals. Hierarchical ZSM-5 monoliths with nanotube (90 nm), micropore (0.55 nm), mesopore (2 nm) and macropore (700 nm) exhibit superior catalytic performance in the methanol-to-hydrocarbon (MTH) conversion compared to conventional ZSM-5. BSA remains intact after crystallization, allowing a higher level of organization and functionalization of the zeolite nanotube scaffolds. The current work may afford a versatile strategy for hierarchical zeolite monoliths with nanotube scaffolding architectures and a nanotube-multimodal network leading to self-supporting and active zeolite catalysts, and for applications beyond.

  16. Formation of metal clusters in halloysite clay nanotubes

    NASA Astrophysics Data System (ADS)

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-12-01

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

  17. Formation of metal clusters in halloysite clay nanotubes.

    PubMed

    Vinokurov, Vladimir A; Stavitskaya, Anna V; Chudakov, Yaroslav A; Ivanov, Evgenii V; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A; Lvov, Yuri M

    2017-01-01

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c .50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

  18. Assessment of chemically separated carbon nanotubes for nanoelectronics.

    PubMed

    Zhang, Li; Zaric, Sasa; Tu, Xiaomin; Wang, Xinran; Zhao, Wei; Dai, Hongjie

    2008-02-27

    It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.

  19. A Forest of Sub-1.5-nm-wide Single-Walled Carbon Nanotubes over an Engineered Alumina Support

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Li, Meng; Patscheider, Jörg; Youn, Seul Ki; Park, Hyung Gyu

    2017-04-01

    A precise control of the dimension of carbon nanotubes (CNTs) in their vertical array could enable many promising applications in various fields. Here, we demonstrate the growth of vertically aligned, single-walled CNTs (VA-SWCNTs) with diameters in the sub-1.5-nm range (0.98 ± 0.24 nm), by engineering a catalyst support layer of alumina via thermal annealing followed by ion beam treatment. We find out that the ion beam bombardment on the alumina allows the growth of ultra-narrow nanotubes, whereas the thermal annealing promotes the vertical alignment at the expense of enlarged diameters; in an optimal combination, these two effects can cooperate to produce the ultra-narrow VA-SWCNTs. According to micro- and spectroscopic characterizations, ion beam bombardment amorphizes the alumina surface to increase the porosity, defects, and oxygen-laden functional groups on it to inhibit Ostwald ripening of catalytic Fe nanoparticles effectively, while thermal annealing can densify bulk alumina to prevent subsurface diffusion of the catalyst particles. Our findings contribute to the current efforts of precise diameter control of VA-SWCNTs, essential for applications such as membranes and energy storage devices.

  20. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  1. Theoretical prediction of mutual influence between phospholipid and nanotube during their interaction

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Slepchenkov, M. M.

    2016-03-01

    Using hybrid quantum mechanics/molecular mechanics (QM/MM) model we carried out investigation of interaction between phospholipid and carbon nanotube during indentation of high density lipoprotein (HDL). The object of investigation is armchair carbon nanotube with various diameters range from 0.5 to 1 nm. In a coarse of molecular dynamics study it is found that phospholipid partially penetrate into the cavity of nanotube with the chirality (7,7) and diameter of 0.9 nm. However, the entire molecule does not fit into nanospace of tube (7,7), so part of the head and the second phospholipid tail remain outside the carbon nanostructures. Using semi-empirical PM6 method it is established that during the indentation process the charged structured molecule fragments forming the high-density lipoprotein create local electric field near carbon nanotube (CNT) and continuously change electronic structure of CNT. However, the tube is not destroyed because the fields do not exceed the critical values of strength. The redistribution of the electron density on atom is observed in each time point.

  2. Diameter-Sensitive Breakdown of Single-Walled Carbon Nanotubes upon KOH Activation.

    PubMed

    Ye, Jianglin; Wu, Shuilin; Ni, Kun; Tan, Ziqi; Xu, Jin; Tao, Zhuchen; Zhu, Yanwu

    2017-07-19

    While potassium hydroxide (KOH) activation has been used to create pores in carbon nanotubes (CNTs) for improved energy-storage performance, the KOH activation mechanism of CNTs has been rarely investigated. In this work, the reaction between single-walled CNTs (SWCNTs) and KOH is studied in situ by thermogravimetric analysis coupled to infrared (IR) spectroscopy and gas chromatography/mass spectrometry (MS). The IR and MS results clearly demonstrate the sequential evolution of CO, hydrocarbons, CO 2 , and H 2 O in the activation process. By using the radial breathing mode of Raman spectroscopy, a diameter-sensitive selectivity is observed in the reaction between SWCNTs and KOH, leading to a preferential distribution of SWCNTs with diameters larger than 1 nm after activation at 900 °C and a preferential removal of SWCNTs with diameters below 1 nm upon activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Formation of metal clusters in halloysite clay nanotubes

    DOE PAGES

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; ...

    2017-02-16

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less

  4. Formation of metal clusters in halloysite clay nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less

  5. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán

    2016-10-01

    Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.

  6. Formation of metal clusters in halloysite clay nanotubes

    PubMed Central

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-01-01

    Abstract We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3–5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10–12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions. PMID:28458738

  7. Electrical transport properties of small diameter single-walled carbon nanotubes aligned on ST-cut quartz substrates

    PubMed Central

    2014-01-01

    A method is introduced to isolate and measure the electrical transport properties of individual single-walled carbon nanotubes (SWNTs) aligned on an ST-cut quartz, from room temperature down to 2 K. The diameter and chirality of the measured SWNTs are accurately defined from Raman spectroscopy and atomic force microscopy (AFM). A significant up-shift in the G-band of the resonance Raman spectra of the SWNTs is observed, which increases with increasing SWNTs diameter, and indicates a strong interaction with the quartz substrate. A semiconducting SWNT, with diameter 0.84 nm, shows Tomonaga-Luttinger liquid and Coulomb blockade behaviors at low temperatures. Another semiconducting SWNT, with a thinner diameter of 0.68 nm, exhibits a transition from the semiconducting state to an insulating state at low temperatures. These results elucidate some of the electrical properties of SWNTs in this unique configuration and help pave the way towards prospective device applications. PMID:25170326

  8. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  9. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact

    PubMed Central

    Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe

    2011-01-01

    Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895

  10. Bulk nucleation and growth of inorganic nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Sharma, Shashank

    The nanometer scale materials such as nanowires and nanotubes will be of particular interest as building blocks for designing novel sensors, catalysts, electronic, optical, and optoelectronic devices. However, in order to realize these applications, bulk amounts of nanowires and nanotubes need to be synthesized with precise control over the nanostructure characteristics. In addition, the structure-property relationships for one-dimensional structures are expected to be different than their bulk when their diameters are less than a characteristic Bohr exciton radius. This fundamental curiosity also necessitates bulk synthesis of nanostructures. The current bulk nanowire synthesis methods utilize either nanometer scale porous molds or nanometer scale transition metal clusters to template one-dimensional growth. All these techniques have inherent limitations in terms of control over the nanowire diameter distribution, composition, the growth direction, and the ability to generate abrupt interfaces within individual nanowires. In this dissertation, a new concept for bulk nucleation and growth of one-dimensional nanostructures is proposed and demonstrated for a variety of inorganic material systems. In this technique, multiple nanowires nucleate and grow from pools of low-melting metal melts when exposed to an activated gas phase containing the necessary precursors. This concept, hereby termed Low Melting Metals and Activated Gas phase (LMAG) mediated method, is specifically demonstrated for the synthesis of, (a) silicon nanowires grown using molten gallium and silane precursors; (b) silicon compound nanowires using solution of molten gallium and appropriate gas phase precursors, and (c) metal-oxide nanostructures grown using direct reaction of the respective metal melts and oxygen precursors. Nanowires resulted from the same molten gallium pool at high densities (>1011/cm2) and with narrow diameter distribution. The silicon nanowires synthesized using the LMAG technique were single crystalline, defect free, and contained a non uniform, extremely thin oxide sheath (<1.5 nm). The nanowire diameter could be varied from 3 to 100 nm, with lengths up to hundreds of microns. Unique tubular and paintbrush-like morphologies were obtained in gallium oxide (Ga2O3) nanostructures. Small gallium droplets (<100 nm size) allowed Ga2O3 nanowire growth parallel to the substrate, followed by 2-dimensional nanoweb formation. These experiments using small gallium droplets resulted in the growth of crystalline Ga2O3 nanotubes with outer diameters as small as 5 nm and inner diameters as small as 2.5 nm.

  11. Direct Synthesis of Carbon Nanotubes at Low Temperature by the Reaction of CCl4 and Ferrocene

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Tang, Yan; He, Mingsheng; Ouyang, Degang; Ding, Cuijiao; Han, Bin; Zhu, Shanhe; Li, Minghui

    Islands-like amorphous carbon nanotubes (a-CNTs) and multi-wall carbon nanotubes (MWCNTs) have been synthesized by the reaction of CCl4 and ferrocene without or with Co/N alloy as growth catalyst at 160 and 350 ºC, respectively. The as-obtained products are characterized by FESEM, TEM, HRTEM, Raman spectroscopy, and nitrogen adsorption-desorption analysis. The results show that a-CNTs have an outer diameter around 450 nm and a length of up to 5 μm, whereas MWCNTs are 20 nm in diameter and 1.5 μm in length. The specific surface area of a-CNTs and MWCNTs are determined to be 1092 and 364 m2×g-1, respectively. Dichlorocarbene and cyclopentadienyl groups are proved to be the reaction intermediates by GC-MS measurements. A possible growth mechanism of the a-CNTs and MWCNTs has been proposed.

  12. Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavayen, V.; O'Dwyer, C.; Cardenas, G.

    2007-04-12

    Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of {approx}0.9nm and a stability of {approx}85 days. V{sub 2}O{sub 5} nanotubes (VOx-NTs) with lengths of {approx}2{mu}m and internal hollow diameters of 20-100nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of {approx}4x10{sup -3}mol dm{sup -3}. The interchangemore » reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane.« less

  13. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes.

    PubMed

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-07

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  14. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-01

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  15. Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A.

    PubMed

    Goulart, Lorena Athie; de Moraes, Fernando Cruz; Mascaro, Lucia Helena

    2016-01-01

    Different methods of functionalisation and the influence of the multi-walled carbon nanotube sizes were investigated on the bisphenol A electrochemical determination. Samples with diameters of 20 to 170 nmwere functionalized in HNO3 5.0 mol L(-1) and a concentrated sulphonitric solution. The morphological characterisations before and after acid treatment were carried out by scanning electron microscopy and cyclic voltammetry. The size and acid treatment affected the oxidation of bisphenol A. The multi-walled carbon nanotubes with a 20-40 nm diameter improved the method sensitivity and achieved a detection limit for determination of bisphenol A at 84.0 nmol L(-1).

  16. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Needham, S. A.; Wang, G. X.; Liu, H. K.

    Nickel oxide (NiO) nanotubes have been produced for the first time via a template processing method. The synthesis involved a two step chemical reaction in which nickel hydroxide (Ni(OH) 2) nanotubes were firstly formed within the walls of an anodic aluminium oxide (AAO) template. The template was then dissolved away using concentrated NaOH, and the freed nanotubes were converted to NiO by heat treatment in air at 350 °C. Individual nanotubes measured 60 μm in length with a 200 nm outer diameter and a wall thickness of 20-30 nm. The NiO nanotube powder was used in Li-ion cells for assessment of the lithium storage ability. Preliminary testing indicates that the cells demonstrate controlled and sustainable lithium diffusion after the formation of an SEI. Reversible capacities in the 300 mAh g -1 range were typical.

  17. Ultrathin Wall (1 nm) and Superlong Pt Nanotubes with Enhanced Oxygen Reduction Reaction Performance.

    PubMed

    Tao, Lu; Yu, Dan; Zhou, Junshuang; Lu, Xiong; Yang, Yunxia; Gao, Faming

    2018-05-01

    The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub-nanometer wall thickness and micrometer-scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube-length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m 2 g pt -1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt-utilization and large ECSA, which is regarded as a type of cost-effective catalysts for ORR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Adherence of oral streptococci to nanostructured titanium surfaces.

    PubMed

    Narendrakumar, Krunal; Kulkarni, Mukta; Addison, Owen; Mazare, Anca; Junkar, Ita; Schmuki, Patrik; Sammons, Rachel; Iglič, Aleš

    2015-12-01

    Peri-implantitis and peri-mucositis pose a severe threat to the success of dental implants. Current research focuses on the development of surfaces that inhibit biofilm formation while not inferring with tissue integration. This study compared the adherence of two oral bacterial species, Streptococcus sanguinis and Streptococcus mutans to nanostructured titanium surfaces. The samples included TiO2 nanotubes formed by anodization of titanium foil of 100, 50 and 15nm diameter (NT15, NT50, NT100), a nanoporous (15nm pore diameter) surface and compact TiO2 control. Adherent surviving bacteria were enumerated after 1h in an artificial saliva medium containing bovine mucin. Lowest numbers of adherent bacteria of both species were recovered from the original titanium foil and nanoporous surface and highest numbers from the Ti100 nanotubes. Numbers of attached S. sanguinis increased in the order (NT15

  19. Self-Assembly of Porphyrin J-Aggregates

    NASA Astrophysics Data System (ADS)

    Snitka, Valentinas; Rackaitis, Mindaugas; Navickaite, Gintare

    2006-03-01

    The porphyrin nanotubes were built by ionic self-assembly of two oppositely charged porphyrins in aqueous solution. The porphyrins in the acid aqueous solution self-assemble into J-aggregates, wheels or other structures. The electrostatic forces between these porphyrin blocks contribute to the formation of porphyrin aggregates in the form of nanotubes, enhance the structural stability of these nanostructures. The nanotubes were composed mixing aqueous solutions of the two porphyrins - anionic Meso-tetra(4- sulfonatophrnyl)porhine dihydrochloride (TPPS4) and cationic Meso-tetra(4-pyridyl)porphine (T4MPyP). The porphyrin nanotubes obtained are hollow structures with the length of 300 nm and diameter 50 nm. Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and to control the deposition of Au from AuHCl4 and Au nanoparticles colloid solutions onto porphyrin nanotubes. Porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures.

  20. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    PubMed

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  1. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph Berkmans, A.; Jagannatham, M.; Priyanka, S.

    Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode containsmore » ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.« less

  3. Analysis of Effluent Gases During the CCVD Growth of Multi Wall Carbon Nanotubes from Acetylene

    NASA Technical Reports Server (NTRS)

    Schmitt, T. C.; Biris, A. S.; Miller, D. W.; Biris, A. R.; Lupu, D.; Trigwell, S.; Rahman, Z. U.

    2005-01-01

    Catalytic chemical vapor deposition was used to grow multi-walled carbon nanotubes on a Fe:Co:CaCO3 catalyst from acetylene. The influent and effluent gases were analyzed by gas chromatography and mass spectrometry at different time intervals during the nanotubes growth process in order to better understand and optimize the overall reaction. A large number of byproducts were identified and it was found that the number and the level for some of the carbon byproducts significantly increased over time. The CaCO3 catalytic support thermally decomposed into CaO and CO2 resulting in a mixture of two catalysts for growing the nanotubes, which were found to have outer diameters belonging to two main groups 8 to 35 nm and 40 to 60 nm, respectively.

  4. Passively Q-switched of EDFL employing multi-walled carbon nanotubes with diameter less than 8 nm as saturable absorber

    NASA Astrophysics Data System (ADS)

    Nur Fatin Zuikafly, Siti; Ahmad, Fauzan; Haniff Ibrahim, Mohd; Wadi Harun, Sulaiman

    2017-11-01

    The paper demonstrates passively Q-switched erbium-doped fiber laser implementing multiwalled carbon nanotubes (MWCNTs) based saturable absorber. The paper is the first to report the use of the MWCNTs with diameter less than 8 nm as typically, the diameter used is 10 to 20 nm. The MWCNTs is incorporated with water soluble host polymer, polyvinyl alcohol (PVA) to produce a MWCNTs polymer composite thin film which is then sandwiched between two fiber connectors. The fabricated SA is employed in the laser experimental setup in ring cavity. The Q-switching regime started at threshold pump power of 103 mW and increasable to 215 mW. The stable pulse train from 41.6 kHz to 76.92 kHz with maximum average output power and pulse energy of 0.17 mW and 3.39 nJ are produced. The shortest pulse width of 1.9 μs is obtained in the proposed experimental work, making it the lowest pulse width ever reported using MWCNTs-based saturable absorber.

  5. Preparation of α-Fe2O3 nanotubes via electrospinning and research on their catalytic properties

    NASA Astrophysics Data System (ADS)

    Shao, Hao; Zhang, Xuebin; Chen, Fanyan; Liu, Shasha; Ji, Yi; Zhu, Yajun; Feng, Yi

    2012-09-01

    In this paper, smooth α-Fe2O3 nanotubes have been successfully synthesized by electrospinning of ferric nitrate-polyvinyl alcohol solution followed by calcination in air. The morphologies and structures of the samples were characterized by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. The catalytic properties were studied by differential thermal analysis and thermogravimetric analysis. The results indicated that the as-prepared α-Fe2O3 nanotubes showed a continuous morphology and an extremely high degree of crystallization. The average inner and outer diameters of the obtained α-Fe2O3 nanotubes were about 60 nm and 100 nm, respectively. The obtained α-Fe2O3 nanotubes were able to lower the temperature of the high-temperature thermal decomposition of ammonium perchlorate, while they had little effect on the crystallographic phase transformation and the low-temperature thermal decomposition.

  6. Separation of methane-nitrogen mixtures using synthesis vertically aligned carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Daryan, Jafar Towfighi; Rashidi, Alimorad; Omidkhah, Mohammad Reza

    2012-03-01

    In this paper, capabilities of carbon nanotube (CNT) membranes fabricated in cylindrical pores of anodic aluminum oxide (AAO) substrate to separate the binary mixtures of CH4/N2 are studied experimentally. For this purpose, the permeability and selectivity of three CNT/AAO membranes with different growth time as 6 h, 12 h and 18 h are investigated. CNTs are grown vertically through holes of AAO with average pore diameter of 45 nm by chemical vapor deposition (CVD) of acetylene gas. CNT/AAO membranes with the same CNTs' outer diameters and different inner diameters are synthesized. The AAO are characterized by SEM analysis. In addition, SEM, TEM, BET N2 adsorption analysis and Raman spectroscopy are employed to characterize aligned CNTs. Study on permeability and selectivity of membranes for three binary mixtures of CH4/N2 showed that when the CNT inner diameters are 34 nm and 24 nm, viscous flow is the governing mechanism and insignificant selectivities of 1.2-1.24 are achieved. However, the membrane with CNT inner diameter and wall thickness of 8 nm and 16 nm respectively is considerably selective for CH4 over N2. It was also found that CH4 mole fraction in the feed and upstream feed pressure have major effect on permeability and selectivity. The membrane with 18 h synthesis time showed the selectivity is in the range of 1.8-3.85. The enhancement factor for N2 single gas diffusivity was also found to be about three times larger than that predicted by Knudsen diffusion model.

  7. General Syntheses of Nanotubes Induced by Block Copolymer Self-Assembly.

    PubMed

    Zhao, Jianming; Huang, Wei; Si, Pengchao; Ulstrup, Jens; Diao, Fangyuan; Zhang, Jingdong

    2018-06-01

    Amphiphilic block copolymer templating strategies are extensively used for syntheses of mesoporous materials. However, monodisperse tubular nanostructures are limited. Here, a general method is developed to synthesize monodisperse nanotubes with narrow diameter distribution induced by self-assembly of block copolymer. 3-Aminophenol (AP) and formaldehyde (F) polymerize and self-assemble with cylindrical PS-b-PEO micelles into worm-like PS-b-PEO@APF composites with uniform diameter (49 ± 3 nm). After template extraction, worm-like APF polymer nanotubes are formed. The structure and morphology of the polymer nanotubes can be tuned by regulating the synthesis conditions. Furthermore, PS-b-PEO@APF composites are uniformly converted to isomorphic carbon nanotubes with large surface area of 662 m 2 g -1 , abundant hierarchical porous frameworks and nitrogen doping. The synthesis can be extended to silica nanotubes. These findings open an avenue to the design of porous materials with controlled structural framework, composition, and properties for a wide range of applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon nanotubes shynthesis in fluidized bed reactor equipped with a cyclone

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Sudibandriyo, M.; Wulan, P. P. D. K.

    2018-03-01

    This work aimed to observe the performance of a fluidized bed reactor which was equipped with a cyclone in the synthesis of carbon nanotubes (CNT) by chemical vapor deposition. Liquefied petroleum gas with a constant volumetric flow rate of 1940 cm3/minutes was fed to the reactor as a carbon source, while a combination of metal components of Fe-Co-Mo supported on MgO was used as catalyst. The CNT synthesis was carried out at a reaction temperature which was maintained at around 800 – 850 °C for 1 hour. The CNT yield was decreased sharply when the catalyst feed was increased. The carbon efficiency is directly proportional to the mass of catalyst fed. It was found from the experiment that the mass of as-grown CNT increased in proportion to the increase of the catalyst mass fed. A sharp increase of the mass percentage of carbon nanotubes entrainment happened when the catalyst feed was raised from 3 to 7 grams. Agglomerates of carbon nanotubes have been formed. The agglomerates composed of mutually entangled carbon nanotubes which have an outer diameter range 8 – 14 nm and an inner diameter range 4 – 10 nm, which confirmed that the multi-walled carbon nanotubes were formed in this synthesis. It was found that the mesopores dominate the pore structure of the CNT product and contribute more than 90 % of the total pore volume.

  9. Silicon Based Colloidal Quantum Dot and Nanotube Lasers

    DTIC Science & Technology

    2013-03-01

    carrier density is theoretically and experimentally derived to be inversely proportional to the diameter; (b) demonstration of InGaN/ GaN light emitting...diodes and GaN single nanowire photonic crystal laser on silicon characterized by a lasing transition at λ=371.3 nm with a linewidth of 0.55 nm. The...derived to be inversely proportional to the diameter; (b) demonstration of InGaN/ GaN light emitting diodes and GaN single nanowire photonic crystal

  10. Effect of deposition pressure on the morphology and structural properties of carbon nanotubes synthesized by hot-filament chemical vapor deposition.

    PubMed

    Arendse, C J; Malgas, G F; Scriba, M R; Cummings, F R; Knoesen, D

    2007-10-01

    Hot-filament chemical vapor deposition has developed into an attractive method for the synthesis of various carbon nanostructures, including carbon nanotubes. This is primarily due to its versatility, low cost, repeatability, up-scalability, and ease of production. The resulting nano-material synthesized by this technique is dependent on the deposition conditions which can be easily controlled. In this paper we report on the effect of the deposition pressure on the structural properties and morphology of carbon nanotubes synthesized by hot-filament chemical vapor deposition, using Raman spectroscopy and high-resolution scanning electron microscopy, respectively. A 10 nm-thick Ni layer, deposited on a SiO2/Si substrate, was used as catalyst for carbon nanotube growth. Multi-walled carbon nanotubes with diameters ranging from 20-100 nm were synthesized at 500 degrees C with high structural perfection at deposition pressures between 150 and 200 Torr. Raman spectroscopy measurements confirm that the carbon nanotube deposit is homogeneous across the entire substrate area.

  11. Fabrication of Titania Nanotubes for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  12. Automatic dispersion, long-term stability of multi-walled carbon nanotubes in high concentration electrolytes

    NASA Astrophysics Data System (ADS)

    Ma, Lan; He, Yi; Luo, Pingya; Zhang, Liyun; Yu, Yalu

    2018-02-01

    Nanoparticles have been known as the useful materials in working fluids for petroleum industry. But the stabilization of nano-scaled materials in water-based working fluids at high salinities is still a big challenge. In this study, we successfully prepared the anionic polymer/multi-walled carbon nanotubes (MWNTs) composites by covalently wrapping of MWNTs with poly (sodium 4-styrenesulfonate) (PSS) to improve the stability of MWNTs in high concentration electrolytes. The PSS/MWNTs composites can automatically disperse in salinity up to 15 wt% NaCl and API brines (8 wt% NaCl + 2 wt% CaCl2). Hydrodynamic diameters of composites were measured as a function of ionic strength and API brines by dynamic light scattering (DLS). By varying the concentration of brines, hydrodynamic diameter of PSS/MWNTs composites in brines fluctuated between 545 ± 110 nm for 14 days and 673 ± 171 nm for 30 days. Above results showed that PSS/MWNTs could be well stable in high salts solutions for a long period of time. After wrapped with PSS, the diameters of nanotubes changed from 30 40 to 430 nm, the thickness of wrapped polymer is about 400 nm by analysis of morphologies. The zeta potentials of PSS/MWNTs composites in various salinity of brines kept at approximately - 41 - 52 mV. Therefore, the well dispersion of PSS/MWNTs in high salinity is due to large negative charges of poly (sodium 4-styrenesulfonate), which provide enough electrostatic repulsion and steric repulsion to hinder compression of electric double layer caused by high concentration electrolytes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustonen, K.; Laiho, P.; Kaskela, A.

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directlymore » determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.« less

  14. Comparison of noncovalent interactions of zigzag and armchair carbon nanotubes with heterocyclic and aromatic compounds: Imidazole and benzene, imidazophenazines, and tetracene

    NASA Astrophysics Data System (ADS)

    Zarudnev, Eugene S.; Stepanian, Stepan G.; Adamowicz, Ludwik; Leontiev, Victor S.; Karachevtsev, Victor A.

    2017-02-01

    We study non-covalent functionalization of SWCNT by linear heterocyclic compounds such as imidazophenazine (F1) and its derivatives (F2-F4). MP2 and DFT/M05-2X quantum-chemical methods are used to determine the structures and the interaction energies of complexes formed by F1-F4 with the zigzag(10,10) and armchair(6,6) nanotubes. The calculations show that for small diameter nanotubes the binding energies with zigzag nanotubes are stronger than with armchair nanotubes. But above the diameter of 1.4 nm the interaction energies for the armchair nanotubes become larger than for the zigzag nanotubes. Experimental measurements demonstrates that the ratio of the integral intensity of the resonance Raman bands assigned to the RBM modes of semiconducting nanotubes to the integral intensity of the metallic nanotubes increases for supernatant of SWCNT:F4 (1,2,3-triazole-[4,5-d]-phenazine) hybrids solved in 1-Methyl-2-pyrrolidone as compared to this ratio in sediment samples. It demonstrates that the linear heterocyclic compounds can be used for separating SWCNTs with different electron-conduction types.

  15. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes.

    PubMed

    Kim, Jin Sik; Lee, Kyu; Lee, Young Hee; Cho, Hyun Sun; Kim, Ki Heon; Choi, Kyung Hee; Lee, Sang Hee; Song, Kyung Seuk; Kang, Chang Soo; Yu, Il Je

    2011-07-01

    Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 μm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 μg/plate), in vitro chromosome aberration test (without S9: ~6.25 μg/ml, with S9: ~50 μg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.

  16. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhikun; Cao, Zeyuan; Deng, Biwei; Wang, Yuefeng; Shao, Jiayi; Kumar, Prashant; Liu, C. Richard; Wei, Bingqing; Cheng, Gary J.

    2014-05-01

    Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications.Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06444a

  17. Morphological control of three-dimensional carbon nanotube anode for high-capacity lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Kang, Chiwon; Lee, Hoo-Jeong

    2018-05-01

    In this paper, we report the results of modulating the processing conditions (mainly, temperature) of a two-step method consisting of sputtering deposition of a Ni catalytic layer and chemical vapor deposition (CVD) of carbon nanotubes (CNTs) on a three-dimensional (3D)-structured Cu mesh to control the morphology of CNTs for advanced Li-ion battery (LIB) applications. We disclosed that CNT growth at a low temperature (700 °C) produced small-diameter CNTs (CNT_S) with an average diameter of ∼20 nm, while that at a high temperature (750 °C) produced large-diameter CNTs (CNT_L) with an average diameter of 200–300 nm. The high-resolution transmission electron microscopy (HR-TEM) and Raman analyses manifested poorly crystalline CNTs for both samples. CNTS showed a specific capacity of 476 mAh g‑1, which is ∼176% superior to that of CNTL (271 mAh g‑1) and ∼128% higher than the theoretical capacity of the state-of-the-art graphites and recently reported nanostructured carbon-based anode materials.

  18. Long conducting polymer nanonecklaces with a `beads-on-a-string' morphology: DNA nanotube-template synthesis and electrical properties

    NASA Astrophysics Data System (ADS)

    Chen, Guofang; Mao, Chengde

    2016-05-01

    Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k

  19. Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes.

    PubMed

    Tromp, R M; Afzali, A; Freitag, M; Mitzi, D B; Chen, Zh

    2008-02-01

    The problem of separating single-wall carbon nanotubes (CNTs) by diameter and/or chirality is one of the greatest impediments toward the widespread application of these promising materials in nanoelectronics. In this paper, we describe a novel physical-chemical method for diameter-selective CNT separation that is both simple and effective and that allows up-scaling to large volumes at modest cost. Separation is based on size-selective noncovalent matching of an appropriate anchor molecule to the wall of the CNT, enabling suspension of the CNTs in solvents in which they would otherwise not be soluble. We demonstrate size-selective separation in the 1-2 nm diameter range using easily synthesized oligo-acene adducts as a diameter-selective molecular anchor. CNT field effect transistors fabricated from diameter-selected CNTs show markedly improved electrical properties as compared to nonselected CNTs.

  20. Understanding the mechanism of nanotube synthesis for controlled production of specific (n,m) structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resasco, Daniel E.

    2010-02-11

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  1. Resonant Raman scattering of double wall carbon nanotubes prepared by chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ci, Lijie; Zhou, Zhenping; Yan, Xiaoqin; Liu, Dongfang; Yuan, Huajun; Song, Li; Gao, Yan; Wang, Jianxiong; Liu, Lifeng; Zhou, Weiya; Wang, Gang; Xie, Sishen; Tan, Pingheng

    2003-11-01

    Resonant Raman spectra of double wall carbon nanotubes (DWCNTs), with diameters from 0.4 to 3.0 nm, were investigated with several laser excitations. The peak position and line shape of Raman bands were shown to be strongly dependent on the laser energies. With different excitations, the diameter and chirality of the DWCNTs can be discussed in detail. We show that tubes (the inner or outer layers of DWCNTs) with all kinds of chiralities could be synthesized, and a DWCNT can have any combination of chiralities of the inner and outer tubes.

  2. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Liyan; Yan, Shancheng, E-mail: yansc@njupt.edu.cn; School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046

    2014-03-15

    A convenient solvothermal approach was applied for the first time to synthesize In{sub 2}Te{sub 3} nanotubes. The morphology of the resultant nanotubes was studied by scanning electron microscopy and transmission electron microscopy. Nanotubes with a relatively uniform diameter of around 500 nm, tube wall thickness of 50–100 nm, and average length of tens of microns were obtained. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to study the crystal structures, composition, and optical properties of the products. To understand the growth mechanism of the In{sub 2}Te{sub 3} nanotubes, we studied the influences of temperature, reaction time, and polyvinylpyrrolidonemore » (PVP) and ethylene diamine (EDA) dosages on the final products. Based on the experimental results, a possible growth mechanism of In{sub 2}Te{sub 3} nanotubes was proposed. In this mechanism, TeO{sub 3}{sup −2} is first reduced to allow nucleation. Circumferential edges of these nucleated molecules attract further deposition, and nanotubes finally grow rapidly along the c-axis and relatively slowly along the circumferential direction. The surface area of the products was determined by BET and found to be 137.85 m{sup 2} g{sup −1}. This large surface area indicates that the nanotubes may be suitable for gas sensing and hydrogen storage applications. The nanotubes also showed broad light detection ranging from 300 nm to 1100 nm, which covers the UV–visible–NIR regions. Such excellent optical properties indicate that In{sub 2}Te{sub 3} nanotubes may enable significant advancements in new photodetection and photosensing applications. -- Graphical abstract: A convenient solvothermal approach was applied to synthesize In{sub 2}Te{sub 3} nanotubes, which has not been reported in the literature for our knowledge. Surface area of this material is 137.85 m{sup 2} g{sup −1} from the BET testing, and such a high value makes it probably suitable for gas sensing and hydrogen storage, compared with the nanowires. The nanotube device also has a broad light detection range from 300 nm to 1100 nm, covering the UV–visible–NIR region. This good performance of In{sub 2}Te{sub 3} nanotubes may enable significant advancements of new photodetection and photosensing applications. Highlights: • The In{sub 2}Te{sub 3} nanotube device also has a broad light detection range from 300 nm to 1100 nm. • The nanotube is 137.85 m{sup 2} g{sup −1}, which makes it suitable for gas sensing and hydrogen storage. • A possible growth mechanism of the indium telluride nanotubes was proposed. • In addition, no In{sub 2}Te{sub 3} nanotubes have been reported until now.« less

  3. Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth

    NASA Astrophysics Data System (ADS)

    Adewumi, Gloria A.; Inambao, Freddie; Eloka-Eboka, Andrew; Revaprasadu, Neerish

    2018-07-01

    Carbon nanotubes (CNT) and carbon nanospheres were successfully synthesized from coconut fibre-activated carbon. The biomass was first carbonized then physically activated, followed by treatment using ethanol vapor at 700°C to 1100°C at 100°C intervals. The effect of synthesis temperature on the formation of the nanomaterials was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrometry, x-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR) and thermogravimetric analysis. SEM analysis revealed that nanospheres were formed at higher temperatures of 1000°C and 1100°C, while lower temperatures of 800°C and 900°C favored the growth of CNT. At 700°C, however, no tubes or spheres were formed. TEM and FTIR were used to observe spectral features, such as the peak positions, intensity and bandwidth, which are linked to some structural properties of the samples investigated. All these observations provided facts on the nanosphere and nanotube dimensions, vibrational modes and the degree of purity of the obtained samples. The TEM results show spheres of diameter in the range 50 nm to 250 nm while the tubes had diameters between 50 nm to 100 nm. XRD analysis reveals the materials synthesized are amorphous in nature with a hexagonal graphite structure.

  4. Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth

    NASA Astrophysics Data System (ADS)

    Adewumi, Gloria A.; Inambao, Freddie; Eloka-Eboka, Andrew; Revaprasadu, Neerish

    2018-04-01

    Carbon nanotubes (CNT) and carbon nanospheres were successfully synthesized from coconut fibre-activated carbon. The biomass was first carbonized then physically activated, followed by treatment using ethanol vapor at 700°C to 1100°C at 100°C intervals. The effect of synthesis temperature on the formation of the nanomaterials was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrometry, x-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR) and thermogravimetric analysis. SEM analysis revealed that nanospheres were formed at higher temperatures of 1000°C and 1100°C, while lower temperatures of 800°C and 900°C favored the growth of CNT. At 700°C, however, no tubes or spheres were formed. TEM and FTIR were used to observe spectral features, such as the peak positions, intensity and bandwidth, which are linked to some structural properties of the samples investigated. All these observations provided facts on the nanosphere and nanotube dimensions, vibrational modes and the degree of purity of the obtained samples. The TEM results show spheres of diameter in the range 50 nm to 250 nm while the tubes had diameters between 50 nm to 100 nm. XRD analysis reveals the materials synthesized are amorphous in nature with a hexagonal graphite structure.

  5. Multi-Scale Simulations of Carbon Nanotubes: Mechanics and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    Carbon Nanotube (CNT) is a tubular form of carbon with diameter as small as 1 nm. Length: few mn to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties; Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

  6. Application of carbon nanotubes to topographical resolution enhancement of tapered fiber scanning near field optical microscopy probes

    NASA Astrophysics Data System (ADS)

    Huntington, S. T.; Jarvis, S. P.

    2003-05-01

    Scanning near field optical microscopy (SNOM) probes are typically tapered optical fibers with metallic coatings. The tip diameters are generally in excess of 300 nm and thus provide poor topographical resolution. Here we report on the attachment multiwalled carbon nanotubes to the probes in order to substantially enhance the topographical resolution, without adversely affecting the optical resolution.

  7. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    NASA Astrophysics Data System (ADS)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, L.; MacManus-Driscoll, J. L.

    2010-02-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na2SO4 plus 5 wt% NH4F with pH 7. At this pH, after 30 min of anodization, 3 µm length nanotubular titania arrays with top diameters of ~50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH4F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 °C for 1 h in air. Annealing at temperatures above 500 °C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti4+ leading to excessive growth and the nanotubular structure diminishes.

  8. Kramers-Kronig method for determination of optical properties of PZT nanotubes fabricated by sol-gel method and porous anodic alumina with high aspect ratio

    NASA Astrophysics Data System (ADS)

    Pakizeh, Esmaeil; Moradi, Mahmood

    2018-03-01

    Ferroelectric Pb(ZrTi)O3 (PZT) nanotubes were prepared by sol-gel method and porous anodic alumina (PAA) membrane using spin-coating technique. This method is based on filling-pyrolysis-filling process and the use of one-stage alumina membranes. One of the advantages of this method is its rapidity, which takes only 1 h time before the calcination step. The effect of repeated pores filling was investigated to get the required size of nanotubes. The field emission scanning electron microscope (FE-SEM) images were shown that the PZT nanotubes have inner diameters in the range of 65-90 nm and length of about 50-60 μm. This means that the samples have a significant aspect ratio (700-800). Also the FE-SEM image confirmed that the highly ordered, hexagonally distributed PAA membranes with the pore diameter about 140-150 nm were formed. The X-ray diffraction (XRD) results showed that the PZT nanotubes have a tetragonal structure. The metal oxide bands like ZrO6 and TiO6 of the final PZT nanotubes were detected by Fourier transform infrared (FT-IR) analysis and confirmed the formation of perovskite structure. By using FT-IR spectroscopy and Kramers-Kronig transformation method, the optical constants like real 𝜀1(ω) and imaginary 𝜀2(ω) parts of dielectric function, extinction coefficient k(ω) and refractive index n(ω) were determined. It was shown that the optical constants of PZT nanotubes are different from PZT nanoparticles.

  9. Large-scale synthesis of lead telluride (PbTe) nanotube-based nanocomposites with tunable morphology, crystallinity and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Park, Kee-Ryung; Cho, Hong-Baek; Song, Yoseb; Kim, Seil; Kwon, Young-Tae; Ryu, Seung Han; Lim, Jae-Hong; Lee, Woo-Jin; Choa, Yong-Ho

    2018-04-01

    A few millimeter-long lead telluride (PbTe) hollow nanofibers with thermoelectric properties was synthesized for the first time with high through manner via three-step sequential process of electrospinning, electrodeposition and cationic exchange reaction. As-synthesized electrospun Ag nanofibers with ultra-long aspect ratio of 10,000 were Te electrodeposited to obtain silver telluride nanotubes and underwent cationic exchange reaction in Pb(NO3)2 solution to obtain polycrystalline PbTe nanotubes with average diameter of 100 nm with 20 nm of wall thickness. Variation of the Ag-to-Pb ratio in the AgxTey-PbTe nanocomposites during the cationic exchange reaction enabled to control the thermoelectric properties of resulting 1D hollow nanofibers. The diameter of Ag nanofiber is the key factor to determine the final dimension of the PbTe nanotubes in the topotactic transformation and the content of Ag ion leads to the enhancement of thermoelectric properties in the AgxTey-PbTe nanocomposites. The synthesized 1D nanocomposite mats showed the highest value of Seebeck coefficient of 433 μV/K (at 300 K) when the remained Ag content was 30%, while the power factor reached highest to 0.567 μW/mK2 for the pure PbTe nanotubes. The enhancement of thermoelectric properties and the composite crystallinity are elucidated with relation to Ag contents in the resulting 1D nanocomposites.

  10. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  11. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  12. [Biochemical effects of chronic peroral administration of carbon nanotubes and activated charcoal in drinking water in rats].

    PubMed

    Khripach, L V; Rakhmanin, Iu A; Mikhajlova, R I; Knyazeva, T D; Koganova, Z I; Zhelezniak, E V; Savostikova, O N; Alekseeva, A V; Kameneckaya, D V; Ryzhova, I N; Kruglova, E V; Revazova, T L

    2014-01-01

    Chronic 6-month experiment was carried out in rats, which received drinking water with multi-walled carbon nanotubes (MWCNTs), diameter of 15-40 nm, length ≥ 2 mkm) or activated charcoal (AC, diameter of 10-100 mkm), blood samples of the animals were used for assessment of biochemical markers. Both coal compounds induced the appearance of signs of oxidative stress 2 weeks after the beginning of the experiment and alteration of serum markers of liver and renal damage, as well as changes of cortisol and protein serum concentrations later Thus, despite of known high (asbest-like) inhalation toxicity of carbon nanotubes in comparison with other carbon allotrops (fullerenes and black carbon), we have found similar effects of MWCNTs and carbon microparticles in orally treated rats.

  13. Aspects relating to stability of modified passive stratum on TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Ionita, Daniela; Mazare, Anca; Portan, Diana; Demetrescu, Ioana

    2011-04-01

    Two kinds of nanotube structures differing from the point of view of their dimensions were obtained using anodizing in two different fluoride electrolytes and these structures were investigated regarding stability. The nanotubes have diameters of around 100 and 65 nm, respectively, and the testing solutions were simulated body fluids (SBF) and NaCl 0.9%. As stability experiments, cyclic voltammetry was performed and ions release was measured. The quantity of released cations in time as a kinetic aspect of passive stratum behavior was followed with an inductively coupled plasma mass spectrometer (ICP-MS) and apatite forming in SBF was found with infrared spectra. This study led to a comparison between the modification and the behavior of passive stratum on nanotubes as a function of their diameters.

  14. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  15. Carbon Nanotubes in the Human Respiratory Tract-Clearance Modeling.

    PubMed

    Sturm, Robert

    2017-03-01

    Clearance of single-wall carbon nanotubes (SWCNT, diameter: 5 nm) and multi-wall carbon nanotubes (MWCNT, diameter: 50 nm) in the respiratory tract was predicted for various age groups (infants, children, adolescents, and adults). The model was founded on the assumption that lung clearance takes place in three distinct phases: (i) fast mucociliary clearance, (ii) slow bronchial clearance, and (iii) alveolar clearance. To each of these phases a specific fraction of deposited particles was attributed, the amount of which depended on particles' geometry and particles' deposition sites in the respiratory system. Clearance velocities were expressed by respective clearance half-times ranging from several hours in the case of fast clearance to tens of days in the case of slow clearance. Results of the simulations clearly demonstrate that for the specific deposition scenario (sitting, nasal breathing) considered here fast clearance fraction exhibits a slight decrease with increasing age, but total clearance times (i.e. time spans, within which 100% of the deposited particulate mass are removed) are rather constant among the age groups. Nanotubes deposited in the respiratory bronchioles and alveoli are usually subject to a long-term storage in these structures and, thus, may trigger malignant transformations in adjacent cells and tissues. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Halloysite clay nanotubes for controlled release of protective agents.

    PubMed

    Lvov, Yuri M; Shchukin, Dmitry G; Möhwald, Helmuth; Price, Ronald R

    2008-05-01

    Halloysite aluminosilicate nanotubes with a 15 nm lumen, 50 nm external diameter, and length of 800 +/- 300 nm have been developed as an entrapment system for loading, storage, and controlled release of anticorrosion agents and biocides. Fundamental research to enable the control of release rates from hours to months is being undertaken. By variation of internal fluidic properties, the formation of nanoshells over the nanotubes and by creation of smart caps at the tube ends it is possible to develop further means of controlling the rate of release. Anticorrosive halloysite coatings are in development and a self-healing approach has been developed for repair mechanisms through response activation to external impacts. In this Perspective, applications of halloysite as nanometer-scale containers are discussed, including the use of halloysite tubes as drug releasing agents, as biomimetic reaction vessels, and as additives in biocide and protective coatings. Halloysite nanotubes are available in thousands of tons, and remain sophisticated and novel natural nanomaterials which can be used for the loading of agents for metal and plastic anticorrosion and biocide protection.

  17. Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil

    NASA Astrophysics Data System (ADS)

    Afre, Rakesh A.; Soga, T.; Jimbo, T.; Kumar, Mukul; Ando, Y.; Sharon, M.

    2005-10-01

    Vertically aligned carbon nanotubes (VACNTs) were grown by spray pyrolysis of turpentine oil and ferrocene mixture at 700 °C. Using this simple method, we report the successful growth of vertically aligned nanotubes of 300 μm length and diameter in the range of 50-100 nm on Si(1 0 0) substrate. The ferrocene act as an in situ Fe catalyst precursor and forming the nanosize iron particles for formation of VACNTs on Si and quartz substrates. Morphological differences between aligned carbon nanotubes grown on different substrates are studied and discussed by SEM, TEM and Raman spectroscopy characterizations.

  18. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  19. High-voltage electric-field-induced growth of aligned ``cow-nipple-like'' submicro-nano carbon isomeric structure via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liao, Chengwei; Zhang, Yupeng; Pan, Chunxu

    2012-12-01

    In this study, a novel vertically aligned carbon material, named "cow-nipple-like" submicro-nano carbon isomeric structure, was synthesized by the thermal decomposition of C2H2 in a chemical-vapor deposition system with a high-voltage external electric field. The microstructures were characterized by using scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy, respectively. The results revealed that (1) the total height of the carbon isomeric structure was in a rang of 90-250 nm; (2) the carbon isomeric structure consisted of a submicro- or nano-sized hemisphere carbon ball with 30-120 nm in diameter at the bottom and a vertically grown carbon nanotube with 10-40 nm in diameter upon the carbon ball; (3) there was a sudden change in diameter at the junction of the carbon ball and carbon nanotube. In addition, the carbon isomeric structure showed an excellent controllability, that is, the density, height, and diameter could be controlled effectively by adjusting the precursor ferrocene concentration in the catalytic solution and C2H2 ventilation time. A possible growth model was proposed to describe the formation mechanism, and a theoretic calculation was carried out to discuss the effect of high-voltage electric field upon the growth of the carbon isomeric structure.

  20. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    PubMed

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  1. Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.

    PubMed

    Imani, Roghayeh; Kabaso, Doron; Erdani Kreft, Mateja; Gongadze, Ekaterina; Penic, Samo; Elersic, Kristina; Kos, Andrej; Veranic, Peter; Zorec, Robert; Iglic, Ales

    2012-12-01

    To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular TiO(2) (titanium dioxide) nanostructures. Using anodization method, TiO(2) surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Large diameter TiO(2) nanotubes exhibited a significantly smaller contact area of adhesion (P<0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO(2) nanotubular surface, thus explaining the small contact area. The reduction in the cell contact area in the case of large diameter TiO(2) nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.

  2. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays

    NASA Astrophysics Data System (ADS)

    Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.

    2013-03-01

    Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.

  3. On the Boundary Condition for Water at a Hydrophobic, Dense Surface

    NASA Technical Reports Server (NTRS)

    Walther, J. H.; Jaffe, R. L.; Werder, T.; Halicioglu, T.; Koumoutsakos, P.

    2002-01-01

    We study the no-slip boundary conditions for water at a hydrophobic (graphite) surface using non-equilibrium molecular-dynamics simulations. For the planar Couette flow, we find a slip length of 64 nm at 1 bar and 300 K, decreasing with increasing system pressure to a value of 31 nm at 1000 bar. Changing the properties of the interface to from hydrophobic to strongly hydrophilic reduces the slip to 14 nm. Finally, we study the flow of water past an array of carbon nanotubes mounted in an inline configuration with a spacing of 16.4 x 16.4 nm. For tube diameters of 1.25 and 2.50 nm we find drag coefficients in good agreement with the macroscopic, Navier-Stokes values. For carbon nanotubes, the no-slip condition is valid to within the definition of the position of the interface.

  4. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    NASA Astrophysics Data System (ADS)

    Yoriya, Sorachon

    This dissertation focuses on fabrication and improvement of morphological features of TiO2 nanotube arrays in the selected organic electrolytes including dimethyl sulfoxide (DMSO; see Chapter 4) and diethylene glycol (DEG; see Chapter 5). Using a polar dimethyl sulfoxide containing hydrofluoric acid, the vertically oriented TiO2 nanotube arrays with well controlled morphologies, i.e. tube lengths ranging from few microns up to 101 microm, pore diameters from 100 nm to 150 nm, and wall thicknesses from 15 nm to 50 nm were achieved. Various anodization variables including fluoride ion concentration, voltage, anodization time, water content, and reuse of the anodized electrolyte could be manipulated under proper conditions to control the nanotube array morphology. Anodization current behaviors associated with evolution of nanotube length were analyzed in order to clarify and better understand the formation mechanism of nanotubes grown in the organic electrolytes. Typically observed for DMSO electrolyte, the behavior that anodization current density gradually decreases with time is a reflection of a constant growth rate of nanotube arrays. Large fluctuation of anodization current was significantly observed probably due to the large change in electrolyte properties during anodization, when anodizing in high conductivity electrolytes such as using high HF concentration and reusing the anodized electrolyte as a second time. It is believed that the electrolyte properties such as conductivity and polarity play important role in affecting ion solvation and interactions in the solution consequently determining the formation of oxide film. Fabrication of the TiO2 nanotube array films was extended to study in the more viscous diethylene glycol (DEG) electrolyte. The arrayed nanotubes achieved from DEG electrolytes containing either HF or NH4 F are fully separated, freely self-standing structure with open pores and a wide variation of tube-to-tube spacing ranging from < 100 nm to ~2 microm. In comparison to DMSO electrolyte, the electrochemical anodization rates are relatively slower in DEG electrolyte; as a result, the nanotube length is typically less than 10 microm. Pore size of nanotubes grown in DEG has been extended from 150 nm up to approximately 400 nm. The approach to pore widening could be achieved by using a specific condition of low HF concentration and prolonged anodization time. The study of evolution of nanotubes grown in DEG electrolytes showed that a fibrous layer was formed in the early growth stages and then was chemically and gradually removed after a long duration, leaving behind the nanotubes with large pore size. In DEG electrolyte, the closer spacing between Ti and Pt electrodes resulted in the larger nanotube morphological parameters due to the enhanced electrode kinetics facilitating the electrode reactions. Furthermore, this dissertation showed possibilities to crystallize the titania nanotube array films at room temperature via anodization in either DMSO or DEG electrolytes. The partially crystallized films could be achieved specifically in the optimum slow growth process conditions. Due to partial crystallization of the as-anodized samples, the high temperature annealing study revealed that the temperatures of phase transformation are 260 ºC and 430°C for respectively amorphous to anatase and anatase to rutile, which are accounted as the lowest phase transformation temperatures reported to date (2010). Finally, the photoelectrochemical properties of the DMSO fabricated nanotubes were investigated. The maximum photocurrent density of ~ 11 mA cm--2 was achieved by using the 46-microm long nanotube array sample with completely open pores, and photoconversion efficiencies of 5.425 % (+/- 0.087) (under UV light) and 0.197 % (+/- 0.001) (under solar spectrum AM 1.5) have been demonstrated. Biomedical applications of the DEG fabricated nanotube arrays films such as blood clotting, hemocompatibility, and drug delivery were investigated. The titania nanotube arrays showed a significant platelet adhesion and activation, a higher viability, and a greater capability in blood clotting compared to a smooth Ti surface. In drug delivery application, the drug elution kinetics, behavior and diffusion of drug molecules were most profoundly affected by the nanotube architectures such as the pore packing density and the gap or separation between the tubes, the nanotube length, and especially the nanotube pore diameter. (Abstract shortened by UMI.)

  5. Non-chapped, vertically well aligned titanium dioxide nanotubes fabricated by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2014-06-01

    This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.

  6. Gas sensing with gold-decorated vertically aligned carbon nanotubes

    PubMed Central

    Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Colomer, Jean-François

    2014-01-01

    Summary Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length. PMID:24991529

  7. Gas sensing with gold-decorated vertically aligned carbon nanotubes.

    PubMed

    Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Bittencourt, Carla; Colomer, Jean-François

    2014-01-01

    Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.

  8. Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

    NASA Astrophysics Data System (ADS)

    Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.

    2018-03-01

    Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.

  9. Study of TiO{sub 2} nanotubes as an implant application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazan, Roshasnorlyza, E-mail: roshasnorlyza@nm.gov.my; Sreekantan, Srimala; Mydin, Rabiatul Basria S. M. N.

    Vertically aligned TiO{sub 2} nanotubes have become the primary candidates for implant materials that can provide direct control of cell behaviors. In this work, 65 nm inner diameters of TiO{sub 2} nanotubes were successfully prepared by anodization method. The interaction of bone marrow stromal cells (BMSC) in term of cell adhesion and cell morphology on bare titanium and TiO{sub 2} nanotubes is reported. Field emission scanning electron microscopy (FESEM) analysis proved interaction of BMSC on TiO{sub 2} nanotubes structure was better than flat titanium (Ti) surface. Also, significant cell adhesion on TiO{sub 2} nanotubes surface during in vitro study revealed thatmore » BMSC prone to attach on TiO{sub 2} nanotubes. From the result, it can be conclude that TiO{sub 2} nanotubes are biocompatible to biological environment and become a new generation for advanced implant materials.« less

  10. Approaching Piezoelectric Response of Pb-Piezoelectrics in Hydrothermally Synthesized Bi0.5(Na1- xK x)0.5TiO3 Nanotubes.

    PubMed

    Ghasemian, Mohammad Bagher; Rawal, Aditya; Liu, Yun; Wang, Danyang

    2018-06-20

    A large piezoelectric coefficient of 76 pm/V along the diameter direction, approaching that of lead-based piezoelectrics, is observed in hydrothermally synthesized Pb-free Bi 0.5 (Na 0.8 K 0.2 ) 0.5 TiO 3 nanotubes. The 30-50 nm diameter nanotubes are formed through a scrolling and wrapping mechanism without the need of a surfactant or template. A molar ratio of KOH/NaOH = 0.5 for the mineralizers yields the Na/K ratio of ∼0.8:0.2, corresponding to an orthorhombic-tetragonal (O-T) phase boundary composition. X-ray diffraction patterns along with transmission electron microscopy analysis ascertain the coexistence of orthorhombic and tetragonal phases with (110) and (001) orientations along the nanotube length direction, respectively. 23 Na NMR spectroscopy confirms the higher degree of disorder in Bi 0.5 (Na 1- x K x ) 0.5 TiO 3 nanotubes with O-T phase coexistence. These findings present a significant advance toward the application of Pb-free piezoelectric materials.

  11. A Generic Self-Assembly Process in Microcompartments and Synthetic Protein Nanotubes.

    PubMed

    Uddin, Ismail; Frank, Stefanie; Warren, Martin J; Pickersgill, Richard W

    2018-05-01

    Bacterial microcompartments enclose a biochemical pathway and reactive intermediate within a protein envelope formed by the shell proteins. Herein, the orientation of the propanediol-utilization (Pdu) microcompartment shell protein PduA in bacterial microcompartments and in synthetic nanotubes, and the orientation of PduB in synthetic nanotubes are revealed. When produced individually, PduA hexamers and PduB trimers, tessellate to form flat sheets in the crystal, or they can self-assemble to form synthetic protein nanotubes in solution. Modelling the orientation of PduA in the 20 nm nanotube so as to preserve the shape complementarity and key interactions seen in the crystal structure suggests that the concave surface of the PduA hexamer faces out. This orientation is confirmed experimentally in synthetic nanotubes and in the bacterial microcompartment produced in vivo. The PduB nanotubes described here have a larger diameter, 63 nm, with the concave surface of the trimer again facing out. The conserved concave surface out characteristic of these nano-structures reveals a generic assembly process that causes the interface between adjacent subunits to bend in a common direction that optimizes shape complementarity and minimizes steric clashes. This understanding underpins engineering strategies for the biotechnological application of protein nanotubes. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images showmore » that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.« less

  13. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    PubMed

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  14. Electric field-assisted deposition of nanowires on carbon nanotubes for nanoelectronics and sensor applications.

    PubMed

    Sivakumar, Kousik; Panchapakesan, Balaji

    2005-02-01

    Manipulation and control of matter at the nanoscale and atomic scale levels are crucial for the success of nanoscale sensors and actuators. The ability to control and synthesize multilayer structures using carbon nanotubes that will enable the building of electronic devices within a nanotube is still in its infancy. In this paper, we present results on selective electric field-assisted deposition of metals on carbon nanotubes realizing metallic nanowire structures. Silver and platinum nanowires have been fabricated using this approach for their applications in chemical sensing as catalytic materials to sniff toxic agents and in the area of biomedical nanotechnology for construction of artificial muscles. Electric field-assisted deposition allows the deposition of metals with a high degree of selectivity on carbon nanotubes by manipulating the charges on the surface of the nanotubes and forming electrostatic double-layer supercapacitors. Deposition of metals primarily occurred due to electrochemical reduction, electrophoresis, and electro-osmosis inside the walls of the nanotube. SEM and TEM investigations revealed silver and platinum nanowires between 10 nm and 100 nm in diameter. The present technique is versatile and enables the fabrication of a host of different types of metallic and semiconducting nanowires using carbon nanotube templates for nanoelectronics and a myriad of sensor applications.

  15. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation

    PubMed Central

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan

    2016-01-01

    Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters. PMID:27535103

  16. Solvothermal in situ synthesis of Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Jingheng; Wen, Xianghua, E-mail: xhwen@tsinghua.edu.cn; Wang, Qinian

    Graphical abstract: After purification, the multi-wall carbon nanotubes (MWCNTs) act as seeds for Fe{sub 3}O{sub 4} nanoparticles heterogeneous nucleation. The Fe{sub 3}O{sub 4} nanoparticles with diameter range of 4.2–10.0 nm synthesized in situ on the MWCNTs under solvothermal condition. The formed nano Fe{sub 3}O{sub 4}-MWCNTs decolorized the Acid Orange II effectively via Fenton-like reaction. Highlights: ► The amount of water tunes size and size distribution of the Fe{sub 3}O{sub 4} nanoparticles (FNs). ► FNs are homogeneously coated on the multi-walled carbon nanotubes (MWCNTs). ► FNs have diameters in the range of 4.2–10.0 nm, average grain size of 7.4 nm. ►more » Fe{sub 3}O{sub 4}-MWCNTs are used as a Fenton-like catalyst to decompose Acid Orange II. ► Fe{sub 3}O{sub 4}-MWCNTs displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}. -- Abstract: Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes (Fe{sub 3}O{sub 4}-MWCNTs) hybrid materials were synthesized by a solvothermal process using acid treated MWCNTs and iron acetylacetonate in a mixed solution of ethylene glycol and ultrapure water. The materials were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The results showed that a small amount of water in the synthesis system played a role in controlling crystal phase formation, size of Fe{sub 3}O{sub 4}, and the homogeneous distribution of the Fe{sub 3}O{sub 4} nanoparticles deposited on the MWCNTs. The Fe{sub 3}O{sub 4} nanoparticles had diameters in the range of 4.2–10.0 nm. They displayed good superparamagnetism at room temperature and their magnetization was influenced by the reaction conditions. They were used as a Fenton-like catalyst to decompose Acid Orange II and displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}.« less

  17. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  18. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants

    PubMed Central

    Dasgupta-Schubert, Nabanita; Borjas-García, Salomón; Tiwari, DK; Paraguay-Delgado, Francisco; Jiménez-Sandoval, Sergio; Alonso-Nuñez, Gabriel; Gómez-Romero, Mariela; Lindig-Cisneros, Roberto; Reyes De la Cruz, Homero

    2017-01-01

    Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya, two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature. PMID:28828256

  19. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants.

    PubMed

    Lara-Romero, Javier; Campos-García, Jesús; Dasgupta-Schubert, Nabanita; Borjas-García, Salomón; Tiwari, D K; Paraguay-Delgado, Francisco; Jiménez-Sandoval, Sergio; Alonso-Nuñez, Gabriel; Gómez-Romero, Mariela; Lindig-Cisneros, Roberto; Reyes De la Cruz, Homero; Villegas, Javier A

    2017-01-01

    Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya , two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature.

  20. Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes.

    PubMed

    Stavitskaya, Anna V; Novikov, Andrei A; Kotelev, Mikhail S; Kopitsyn, Dmitry S; Rozhina, Elvira V; Ishmukhametov, Ilnur R; Fakhrullin, Rawil F; Ivanov, Evgenii V; Lvov, Yuri M; Vinokurov, Vladimir A

    2018-05-31

    Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and Cd x Zn₁ - x S nanoparticles with sizes of 6⁻8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube's surface). The halloysite⁻QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite⁻QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for Cd x Zn₁ - x S QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite⁻QD systems allows for their promising usage as markers for biomedical applications.

  1. Liquid gallium columns sheathed with carbon: Bulk synthesis and manipulation.

    PubMed

    Zhan, Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri; Nakanishi, Haruyuki

    2005-06-16

    It is impossible to fabricate isolated gallium nanomaterials due to the low melting point of Ga (29.8 degrees C) and its high reactivity. We report the bulk synthesis of uniform liquid Ga columns encapsulated into carbon nanotubes through high-temperature chemical reaction between Ga and CH4. The diameter of filled Ga liquid columns is approximately 25 nm, and their length is up to several micrometers. The thickness of the carbon sheaths is approximately 6 nm. Simultaneous condensation of a Ga vapor and carbon clusters results in the generation of Ga-filled carbon nanotubes. A convergent 300 kV electron beam generated in a field emission high-resolution electron microscope is demonstrated to be a powerful tool for delicate manipulation of the liquid Ga nanocolumns: they can be gently joined, cut, and sealed within carbon nanotubes. The self-organization of a carbon sheath during the electron-beam irradiation is discussed. The electron-beam irradiation may also become a decent tool for Ga-filled carbon nanotube thermometer calibration.

  2. Fabrication and structural characterization of highly ordered titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Shi, Hongtao; Ordonez, Rosita

    Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.

  3. Iron oxide nanotubes synthesized via template-based electrodeposition

    NASA Astrophysics Data System (ADS)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06924a

  4. Transparent Nanotubular TiO₂ Photoanodes Grown Directly on FTO Substrates.

    PubMed

    Paušová, Šárka; Kment, Štěpán; Zlámal, Martin; Baudys, Michal; Hubička, Zdeněk; Krýsa, Josef

    2017-05-10

    This work describes the preparation of transparent TiO₂ nanotube (TNT) arrays on fluorine-doped tin oxide (FTO) substrates. An optimized electrolyte composition (0.2 mol dm -3 NH₄F and 4 mol dm -3 H₂O in ethylene glycol) was used for the anodization of Ti films with different thicknesses (from 100 to 1300 nm) sputtered on the FTO glass substrates. For Ti thicknesses 600 nm and higher, anodization resulted in the formation of TNT arrays with an outer nanotube diameter around 180 nm and a wall thickness around 45 nm, while for anodized Ti thicknesses of 100 nm, the produced nanotubes were not well defined. The transmittance in the visible region (λ = 500 nm) varied from 90% for the thinnest TNT array to 65% for the thickest TNT array. For the fabrication of transparent TNT arrays by anodization, the optimal Ti thickness on FTO was around 1000 nm. Such fabricated TNT arrays with a length of 2500 nm exhibit stable photocurrent densities in aqueous electrolytes (~300 µA cm -2 at potential 0.5 V vs. Ag/AgCl). The stability of the photocurrent response and a sufficient transparency (≥65%) enables the use of transparent TNT arrays in photoelectrochemical applications when the illumination from the support/semiconductor interface is a necessary condition and the transmitted light can be used for another purpose (photocathode or photochemical reaction in the electrolyte).

  5. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornasiero, F; Park, H G; Holt, J K

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity ismore » required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.« less

  6. Isolation of Pristine Electronics Grade Semiconducting Carbon Nanotubes by Switching the Rigidity of the Wrapping Polymer Backbone on Demand.

    PubMed

    Joo, Yongho; Brady, Gerald J; Shea, Matthew J; Oviedo, M Belén; Kanimozhi, Catherine; Schmitt, Samantha K; Wong, Bryan M; Arnold, Michael S; Gopalan, Padma

    2015-10-27

    Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.

  7. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  8. Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viayan, B.; Dimitrijevic, N. M.; Rajh, T.

    Titania nanotubes having diameters 8 to 12 nm and lengths of 50-300 nm were prepared using a hydrothermal method. Further, the titania nanotubes were calcined over the temperature range 200-800 C in order to enhance their photocatalytic properties by altering their morphology. The calcined titania nanotubes were characterized by using X-ray diffraction and surface area analysis and their morphological features were studied by scanning and transmission electron microscopy. Nanotubes calcined at 400 C showed the maximum extent of photocatalyitc reduction of carbon dioxide to methane, whereas samples calcined at 600 C produced maximum photocatalytic oxidation of acetaldehyde. Electron paramagnetic resonancemore » (EPR) spectroscopy was used to interrogate the effects of nanotube structure on the charge separation and trapping as a function of calcination temperature. EPR results indicated that undercoordinated titania sites are associated with maximum CO{sub 2} reduction occurring in nanotubes calcined at 400 C. Despite the collapse of the nantube structure to form nanorods and the concomitant loss of surface area, the enhanced charge separation associated with increased crystallinity promoted high rates of oxidation of acetaldehyde in titania materials calcined at 600 C. These results illustrate that calcination temperature allows us to tune the morphological and surface features of the titania nanostructures for particular photocatalytic reactions.« less

  9. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    PubMed Central

    2011-01-01

    The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%. PMID:21711730

  10. GaS multi-walled nanotubes from the lamellar precursor

    NASA Astrophysics Data System (ADS)

    Hu, P. A.; Liu, Y. Q.; Fu, L.; Cao, L. C.; Zhu, D. B.

    2005-04-01

    Inorganic fullerene-like (IF) nanotubes constructed from layered metal chalcogenides are of particular significance because of their excellent physical properties and potential application in wide fields. But very few previous studies were focused on the IF nanotubes of layered III-VI semiconductor. Therefore we investigate the preparation, structure and photoluminescence (PL) properties of GaS nanotube (an important III-VI semiconductor IF nanotube). A simple method is introduced to prepare GaS multi-walled nanotubes for the first time by annealing the natural lamellar precursor in Ar. The reaction temperature is crucial for the formation of nanotube. A suitable temperature range is 500-850 °C. Bulk quantities of GaS nanotubes with diameters of 30-150 nm and lengths up to ten micrometers were produced. Some of these nanotubes show corrugated and interlinked structure and form many segments, demonstrating a bamboo-like structure. As compared to bulk materials, the obvious distinction of the products in PL spectra at liquid nitrogen temperature of 77 K was due to the structure variety.

  11. Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment.

    PubMed

    Aliyu, Ahmed; Kariim, Ishaq; Abdulkareem, Saka Ambali

    2017-11-01

    The dependency of adsorption behaviour on the aspect ratio of multi-walled carbon nanotubes (MWCNTs) has been explored. In this study, effect of growth temperature on yield and aspect ratio of MWCNTs by catalytic chemical vapour deposition (CCVD) method is reported. The result revealed that yield and aspect ratio of synthesised MWCNTs strongly depend on the growth temperature during CCVD operation. The resulting MWCNTs were characterized by High Resolution Transmission Electron Microscope (HRTEM), Dynamic Light Scattering (DLS) and X-ray diffraction (XRD) techniques to determine it diameter, hydrodynamic diameter and crystallinity respectively. Aspect ratio and length of the grown MWCNTs were determined from the HRTEM images with the hydrodynamic diameter using the modified Navier-Stokes and Stokes-Einstein equations. The effect of the prepared MWCNTs dosage were investigated on the Turbidity, Iron (Fe) and Lead (Pb) removal efficiency of coal washery effluent. The MWCNTs with higher length (58.17 μm) and diameter (71 nm) tend to show high turbidity and Fe removal, while MWCNTs with lower length (38.87 μm) and diameter (45 nm) tend to show high removal of Pb. Hence, the growth temperature during CCVD operation shows a great effluence on the aspect ratio of MWCNTs which determines it area of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of Cu nanotubes and nanothreads by electrical arc evaporation.

    PubMed

    Yadav, Ram Manohar; Singh, A K; Srivastava, O N

    2003-06-01

    We report the formation and characterization of copper nanostructures, nanotubules and nanothreads, which were obtained by electrical arc evaporation of Cu electrodes under varied conditions of He ambience. Electrical arc evaporation was done with approximately 10 V and (approximately 50-100 A) DC current. The current was used in a pulse mode. The evaporated material was condensed on a formvar-coated Cu grid mounted on a liquid N2-cooled specimen holder. Transmission electron microscopy was employed to characterize the condensed materials. These investigations revealed that the condensed materials consisted of the mentioned nanostructures. Nanotubes and nanothreads are formed for a He pressure in the chamber corresponding to approximately 140 and approximately 500 torr, respectively. Extensive electron microscopic investigations showed that the diameter of the nanotubes varied from approximately 5 nm to approximately 50 nm and their length from 2 microns to 3 microns.

  13. Effects of C3+ ion irradiation on structural, electrical and magnetic properties of Ni nanotubes

    NASA Astrophysics Data System (ADS)

    Shlimas, D. I.; Kozlovskiy, A. L.; Zdorovets, M. V.; Kadyrzhanov, K. K.; Uglov, V. V.; Kenzhina, I. E.; Shumskaya, E. E.; Kaniukov, E. Y.

    2018-03-01

    Ion irradiation is an attractive method for obtaining nanostructures that can be used under extreme conditions. Also, it is possible to control the technological process that allows obtaining nanomaterials with new properties at ion irradiation. In this paper, we study the effect of irradiation with 28 MeV C3+ ions and fluences up to 5 × 1011 cm-2 on the structure and properties of template-synthesized nickel nanotubes with a length of 12 μm, with diameters of 400 nm, and a wall thickness of 100 nm. It is demonstrated that the main factor influencing the degradation of nanostructures under irradiation in PET template is the processes of mixing the material of nanostructures with the surrounding polymer. The influence of irradiation with various fluences on the crystal structure, electrical and magnetic properties of nickel nanotubes is studied.

  14. The fabrication and electrochemical properties of electrospun nanofibers of a multiwalled carbon nanotube grafted by chitosan

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Wu, Zigang; Li, Yu; Feng, Yiyu; Yuan, Xiaoyan

    2008-03-01

    Multiwalled carbon nanotubes (MWCNTs) were grafted by chitosan (CS); the product could disperse well in poly(vinyl alcohol) (PVA) aqueous solution with 2% (v/v) acetic acid solution. Because this product has potential in several biological fields, it was electrospun so as to enlarge the surface area. Raman spectra indicated that the electrospinning process did not severely alter the electron hybridization of carbon atoms within the nanotube framework. Moreover and interestingly, these nanofibers showed a novel sheath-core structure; the outer and inner diameters of these sheath-core nanofibers were about 200 nm and 100 nm, respectively. These nanofibers' electrochemical properties were characterized by detection of hydrogen peroxide and voltammetric responses of potassium ferricyanide. The electrospun fibers' web displayed faster electron transfer kinetics and better electrochemical properties than its cast film, which justified further applications in biological areas.

  15. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles

    PubMed Central

    2013-01-01

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed. PMID:24004518

  16. Improved carbon nanotube growth inside an anodic aluminum oxide template using microwave radiation

    NASA Astrophysics Data System (ADS)

    Dadras, Sedigheh; Faraji, Maryam

    2018-05-01

    In this study, we achieved superfast growth of carbon nanotubes (CNTs) in an anodic aluminum oxide (AAO) template by applying microwave (MW) radiation. This is a simple and direct approach for growing CNTs using a MW oven. The CNTs were synthesized using MW radiation at a frequency of 2.45 GHz and power was applied at various levels of 900, 600, and 450 W. We used graphite and ferrocene in equal portions as precursors. The optimum conditions for the growth of CNTs inside a MW oven were a time period of 5 s and power of 450 W. In order to grow uniform CNTs, an AAO template was applied with the CNTs synthesized under optimum conditions. The morphology of the synthesized CNTs was investigated by scanning electron microscopy analysis. The average diameters of the CNTs obtained without the template were 22-27 nm, whereas the diameters of the CNTs prepared inside the AAO template were about 4-6 nm.

  17. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles.

    PubMed

    Labunov, Vladimir; Prudnikava, Alena; Bushuk, Serguei; Filatov, Serguei; Shulitski, Boris; Tay, Beng Kang; Shaman, Yury; Basaev, Alexander

    2013-09-03

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed.

  18. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid).

    PubMed

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications.

  19. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid)

    PubMed Central

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications. PMID:26090449

  20. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    DOE PAGES

    Márquez, Francisco; López, Vicente; Morant, Carmen; ...

    2010-01-01

    Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 ° C . The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less

  1. Superhydrophobic to hydrophilic transition of multi-walled carbon nanotubes induced by Na+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Das, Pritam; Dhal, Satyanarayan; Ghosh, Susanta; Chatterjee, Sriparna; Rout, Chandra S.; Ramgir, Niranjan; Chatterjee, Shyamal

    2017-12-01

    Multi-walled carbon nanotubes (MWCNT) having diameter in the range of 5-30 nm were coated on silicon wafer using spray coating technique. The coated film was irradiated with 5 keV Na+ at a fluence of 1 × 1016 ions·cm-2. A large-scale welding is observed in the post-irradiated nanotube assembly under scanning electron microscope. We have studied dynamic wetting properties of the nanotubes. While the pristine MWCNT shows superhydrophobic nature, the irradiated MWCNT turns into hydrophilic. Our simulation based on iradina and experimental evidences show defect formation in MWCNT due to ion irradiation. We have invoked mechanism based on defect mediated adsorption of water, which plays major role for transition from superhydrophobic to hydrophilic.

  2. Plasma CVD of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.

  3. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide.

    PubMed

    Abdullayev, Elshad; Joshi, Anupam; Wei, Wenbo; Zhao, Yafei; Lvov, Yuri

    2012-08-28

    Halloysite clay tubes have 50 nm diameter and chemically different inner and outer walls (inner surface of aluminum oxide and outer surface of silica). Due to this different chemistry, the selective etching of alumina from inside the tube was realized, while preserving their external diameter (lumen diameter changed from 15 to 25 nm). This increases 2-3 times the tube lumen capacity for loading and further sustained release of active chemical agents such as metals, corrosion inhibitors, and drugs. In particular, halloysite loading efficiency for the benzotriazole increased 4 times by selective etching of 60% alumina within the tubes' lumens. Specific surface area of the tubes increased over 6 times, from 40 to 250 m(2)/g, upon acid treatment.

  4. Entropy and the driving force for the filling of carbon nanotubes with water.

    PubMed

    Pascal, Tod A; Goddard, William A; Jung, Yousung

    2011-07-19

    The spontaneous filling of hydrophobic carbon nanotubes (CNTs) by water observed both experimentally and from simulations is counterintuitive because confinement is generally expected to decrease both entropy and bonding, and remains largely unexplained. Here we report the entropy, enthalpy, and free energy extracted from molecular dynamics simulations of water confined in CNTs from 0.8 to 2.7-nm diameters. We find for all sizes that water inside the CNTs is more stable than in the bulk, but the nature of the favorable confinement of water changes dramatically with CNT diameter. Thus we find (i) an entropy (both rotational and translational) stabilized, vapor-like phase of water for small CNTs (0.8-1.0 nm), (ii) an enthalpy stabilized, ice-like phase for medium-sized CNTs (1.1-1.2 nm), and (iii) a bulk-like liquid phase for tubes larger than 1.4 nm, stabilized by the increased translational entropy as the waters sample a larger configurational space. Simulations with structureless coarse-grained water models further reveal that the observed free energies and sequence of transitions arise from the tetrahedral structure of liquid water. These results offer a broad theoretical basis for understanding water transport through CNTs and other nanostructures important in nanofluidics, nanofiltrations, and desalination.

  5. Entropy and the driving force for the filling of carbon nanotubes with water

    PubMed Central

    Pascal, Tod A.; Goddard, William A.; Jung, Yousung

    2011-01-01

    The spontaneous filling of hydrophobic carbon nanotubes (CNTs) by water observed both experimentally and from simulations is counterintuitive because confinement is generally expected to decrease both entropy and bonding, and remains largely unexplained. Here we report the entropy, enthalpy, and free energy extracted from molecular dynamics simulations of water confined in CNTs from 0.8 to 2.7-nm diameters. We find for all sizes that water inside the CNTs is more stable than in the bulk, but the nature of the favorable confinement of water changes dramatically with CNT diameter. Thus we find (i) an entropy (both rotational and translational) stabilized, vapor-like phase of water for small CNTs (0.8–1.0 nm), (ii) an enthalpy stabilized, ice-like phase for medium-sized CNTs (1.1–1.2 nm), and (iii) a bulk-like liquid phase for tubes larger than 1.4 nm, stabilized by the increased translational entropy as the waters sample a larger configurational space. Simulations with structureless coarse-grained water models further reveal that the observed free energies and sequence of transitions arise from the tetrahedral structure of liquid water. These results offer a broad theoretical basis for understanding water transport through CNTs and other nanostructures important in nanofluidics, nanofiltrations, and desalination. PMID:21709268

  6. Vertically Aligned Carbon Nanotubes at Different Temperatures by Spray Pyrolysis Techniques

    NASA Astrophysics Data System (ADS)

    Afre, Rakesh A.; Soga, T.; Jimbo, T.; Kumar, Mukul; Ando, Y.; Sharon, M.

    Vertically aligned arrays of multi-walled carbon nanotubes (VACNTs) were grown by spray pyrolysis of turpentine oil and ferrocene mixture at temperatures higher than 700°C. Using this simple method, we report the successful growth of vertically aligned nanotubes of ~300μm length and diameter in the range of ?20-80nm on Si(100) substrate. The ferrocene acts as an in situ Fe catalyst precursor, forming the nano-sized metallic iron particles for formation of VACNTs on the Si substrate. The morphological characteristics of VACNTs are confirmed by SEM, TEM and Raman spectroscopy and growth mechanism is discussed in short.

  7. Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique

    NASA Astrophysics Data System (ADS)

    Chernysheva, M. V.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.

    2007-03-01

    The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1-1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.

  8. Deposition of platinum nanoparticles on carbon nanotubes by supercritical fluid method.

    PubMed

    Yen, Clive H; Cui, Xiaoli; Pan, Horng-Bin; Wang, Shaofen; Lin, Yuehe; Wai, Chien M

    2005-11-01

    Carbon nanotube-supported platinum nanoparticles with a 5-15 nm diameter size range can be synthesized by hydrogen reduction of platinum(ll) acetylacetonate in methanol modified supercritical carbon dioxide. X-ray photoelectron spectroscopy and X-ray diffraction spectra indicate that the carbon nanotubes contain zero-valent platinum metal and high-resolution transmission electron microscopy images show that the visible lattice fringes of platinum nanoparticles are crystallites. Carbon nanotubes synthesized with 25% by weight of platinum nanoparticles exhibit a higher activity for hydrogenation of benzene compared with a commercial carbon black platinum catalyst. The carbon nanotube-supported platinum nanocatalyst can be reused at least six times for the hydrogenation reaction without losing activity. The carbon nanotube-supported platinum nanoparticles are also highly active for electrochemical oxidation of methanol and for reduction of oxygen suggesting their potential use as a new electrocatalyst for proton exchange membrane fuel cell applications.

  9. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology

    NASA Astrophysics Data System (ADS)

    Mazov, Ilya; Kuznetsov, Vladimir L.; Simonova, Irina A.; Stadnichenko, Andrey I.; Ishchenko, Arkady V.; Romanenko, Anatoly I.; Tkachev, Evgeniy N.; Anikeeva, Olga B.

    2012-06-01

    Multiwall carbon nanotubes (MWNT) with three medium diameters (20-22, 9-13, and 6-8 nm) and different morphology were chemically oxidized using concentrated nitric acid, mixture of nitric and sulfuric acids ("mélange" solution) and mixture of sulfuric acid and hydrogen peroxide ("piranha" solution). Influence of MWNT type and structure as well as type of oxidizer on the surface composition and structure of nanotubes after oxidation was investigated. Acid-base titration, X-ray photoelectron spectroscopy and thermal gravimetric analysis were used for quantitative and qualitative investigation of surface group composition of initial and oxidized nanotubes. Amount of oxygen-containing groups on the surface of oxidized MWNT depends on the type of initial MWNT. It was found that ratio of different oxygen containing groups is less dependent on the type of oxidizer. Electrophysical properties of initial and oxidized nanotubes were investigated in temperature range 4-293 K and main types of electrical conductivity were determined. It was shown that oxidation results in decrease in electrical conductivity of all samples with simultaneous change in the conductivity mechanism. Dispersive behavior of initial and oxidized nanotubes in different commonly used solvents was investigated. It was shown that oxidation leads to the improvement of sedimentation stability of MWNT in polar solvents.

  10. Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes: synthesis and optical properties.

    PubMed

    Xi, Guangcheng; Yu, Shijun; Zhang, Rui; Zhang, Meng; Ma, Dekun; Qian, Yitai

    2005-07-14

    A novel nanostructure, cubic silicon carbide (3C-SiC) nanoparticles encapsulated in branched wavelike carbon nanotubes have been prepared by a reaction of 1,2-dimenthoxyethane (CH3OCH2CH2OCH3), SiCl4, and Mg in an autoclave at 600 degrees C. According to X-ray powder diffraction, the products are composed of 3C-SiC and carbon. TEM and HRTEM images show that the as-synthesized products are composed of 3C-SiC nanoparticles encapsulated in branched carbon nanotubes with wavelike walls. The diameter of the 3C-SiC cores is approximately 20-40 nm and the thickness of the carbon shells is about 3-5 nm. In Raman scattering spectroscopy, both the TO (Gamma) phonon line and the LO (Gamma) phonon line have red shifts about 6 cm(-1) relative to that for the bulk 3C-SiC. The photoluminescence (PL) spectrum shows that there are two emission peaks: blue light emission (431 nm) and violet light emission (414 nm). A sequential deposition growth process (with cores as the templates for the shells) for the nanostructure was proposed.

  11. Novel Iron-oxide Catalyzed CNT Formation on Semiconductor Silicon Nanowire

    PubMed Central

    Adam, Tijjani; U, Hashim

    2014-01-01

    An aqueous ferric nitrate nonahydrate (Fe(NO3)3.9H2O) and magnesium oxide (MgO) were mixed and deposited on silicon nanowires (SiNWs), the carbon nanotubes (CNTs) formed by the concentration of Fe3O4/MgO catalysts with the mole ratio set at 0.15:9.85 and 600°C had diameter between 15.23 to 90nm with high-density distribution of CNT while those with the mole ratio set at 0.45:9.55 and 730°C had diameter of 100 to 230nm. The UV/Vis/NIR and FT-IR spectroscopes clearly confirmed the presence of the silicon-CNTs hybrid structure. UV/Vis/NIR, FT-IR spectra and FESEM images confirmed the silicon-CNT structure exists with diameters ranging between 15-230nm. Thus, the study demonstrated cost effective method of silicon-CNT composite nanowire formation via Iron-oxide Catalyze synthesis. PMID:25237290

  12. Fabrication and transport property of artificial structure of CNTs using SPM nano-manipulation

    NASA Astrophysics Data System (ADS)

    Maejima, K.; Kida, M.; Yaguchi, Y.; Sudo, K.; Kawamura, T.; Morimoto, T.; Aoki, N.; Ochiai, Y.

    2007-04-01

    We have established a novel manipulation technique using a glass-micro capillary under a high-resolution CCD microscope so far. Two isolated multi-wall carbon nanotubes (MWNTs) are settled to form a well-aligned cross structure. Recently, we have tried to develop a fine manipulation system using a scanning probe microscope with a silicon cantilever. Therefore, thinner high-quality MWNTs (˜10 nm in diameter) can be utilized in this system. At the junction, we have observed weak localization and Fano-like-effect, zero bias anomaly whose traces were visible even at room temperature with thick MWNTs (˜100 nm in diameter). On the other hand, with thinner high-quality MWNTs (˜10 nm in diameter), we have observed also anomalous I-V characteristic and Altshuler-Aronov-Spivak-like magneto-oscillations at low temperature in the nano-space transport.

  13. Multiwalled carbon nanotube monoliths prepared by spark plasma sintering (SPS) and their mechanical properties.

    PubMed

    Uo, Motohiro; Hasegawa, Tomoka; Akasaka, Tsukasa; Tanaka, Isao; Munekane, Fuminori; Omori, Mamoru; Kimura, Hisamichi; Nakatomi, Reiko; Soga, Kohei; Kogo, Yasuo; Watari, Fumio

    2009-01-01

    Three types of multiwalled carbon nanotube (MWCNT) monoliths without any binders were obtained by spark plasma sintering (SPS) treatment at 2000 degrees C under 80 MPa sintering pressure. Three MWCNTs with different diameters: thin (slashed circle20-30 nm, CNT Co., Ltd., Korea), thick (slashed circle100 nm, Nano Carbon Technologies Co., Ltd., Japan) and spherical thin (slashed circle20-30 nm, granulated diameter = 1-3 microm, Shimizu Corporation, Japan) were employed for SPS. SEM observation confirmed that these materials maintained the nanosized tube microstructure of raw CNT powder after SPS treatment. The densest monolith was prepared with the spherical MWCNTs. The mechanical properties of this material were estimated by the dynamic hardness test. The elastic modulus of the monolith did not depend on the difference of MWCNTs, but the hardness of spherical MWCNTs was higher than that of thick MWCNTs. The high density and hardness of the spherical MWCNTs were caused by the high packing density during the SPS process because of its spherical granulation. Thus, the spherical MWCNTs were most useful for the MWCNT monolith preparation with the SPS process and its application as a bone substitute material and a bone tissue engineering scaffold material was suggested.

  14. Metallic single-walled carbon nanotube for ionized radiation detection

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    In this paper, we have explored the feasibility of a metallic single-walled carbon nanotube (SWCNT) as a radiation detector. The effect of SWCNTs' exposure to different ion irradiations is considered with the displacement damage dose (DDD) methodology. The analytical model of the irradiated resistance of metallic SWCNT has been developed and verified by the experimental data for increasing DDD from 1012 MeV/g to 1017 MeV/g. It has been found that the resistance variation of SWCNT by increasing DDD can be significant depending on the length and diameter of SWCNT, such that the DDD as low as 1012 (MeV/g) can be detected using the SWCNT with 1cm length and 5nm diameter. Increasing the length and diameter of SWCNT can result in both the higher radiation sensitivity of resistance and the extension of detection range to lower DDD.

  15. Phonon-limited carrier mobility and resistivity from carbon nanotubes to graphene

    NASA Astrophysics Data System (ADS)

    Li, Jing; Miranda, Henrique Pereira Coutada; Niquet, Yann-Michel; Genovese, Luigi; Duchemin, Ivan; Wirtz, Ludger; Delerue, Christophe

    2015-08-01

    Under which conditions do the electrical transport properties of one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene become equivalent? We have performed atomistic calculations of the phonon-limited electrical mobility in graphene and in a wide range of CNTs of different types to address this issue. The theoretical study is based on a tight-binding method and a force-constant model from which all possible electron-phonon couplings are computed. The electrical resistivity of graphene is found in very good agreement with experiments performed at high carrier density. A common methodology is applied to study the transition from one to two dimensions by considering CNTs with diameter up to 16 nm. It is found that the mobility in CNTs of increasing diameter converges to the same value, i.e., the mobility in graphene. This convergence is much faster at high temperature and high carrier density. For small-diameter CNTs, the mobility depends strongly on chirality, diameter, and the existence of a band gap.

  16. Universal interaction-driven gap in metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senger, Mitchell J.; McCulley, Daniel R.; Lotfizadeh, Neda; Deshpande, Vikram V.; Minot, Ethan D.

    2018-02-01

    Suspended metallic carbon nanotubes (m-CNTs) exhibit a remarkably large transport gap that can exceed 100 meV. Both experiment and theory suggest that strong electron-electron interactions play a crucial role in generating this electronic structure. To further understand this strongly interacting system, we have performed electronic measurements of suspended m-CNTs with known diameter and chiral angle. Spectrally resolved photocurrent microscopy was used to determine m-CNT structure. The room-temperature electrical characteristics of 18 individually contacted m-CNTs were compared to their respective diameter and chiral angle. At the charge neutrality point, we observe a peak in m-CNT resistance that scales exponentially with inverse diameter. Using a thermally activated transport model, we estimate that the transport gap is (450 meV nm)/D , where D is CNT diameter. We find no correlation between the gap and the CNT chiral angle. Our results add important constraints to theories attempting to describe the electronic structure of m-CNTs.

  17. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube

    PubMed Central

    Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S.; Yasuoka, Kenji; Zeng, Xiao Cheng

    2017-01-01

    Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called “no-man’s land” under deeply supercooled condition, where only crystalline ices have been observed. Here, we show MD simulation evidence that, inside an isolated carbon nanotube (CNT) with a diameter of 1.25 nm, both low- and high-density liquid water states can be detected near ambient temperature and above ambient pressure. In the temperature–pressure phase diagram, the low- and high-density liquid water phases are separated by the hexagonal ice nanotube (hINT) phase, and the melting line terminates at the isochore end point near 292 K because of the retracting melting line from 292 to 278 K. Beyond the isochore end point (292 K), low- and high-density liquid becomes indistinguishable. When the pressure is increased from 10 to 600 MPa along the 280-K isotherm, we observe that water inside the 1.25-nm-diameter CNT can undergo low-density liquid to hINT to high-density liquid reentrant first-order transitions. PMID:28373562

  18. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  19. Application of halloysite clay nanotubes as a pharmaceutical excipient.

    PubMed

    Yendluri, Raghuvara; Otto, Daniel P; De Villiers, Melgardt M; Vinokurov, Vladimir; Lvov, Yuri M

    2017-04-15

    Halloysite nanotubes, a biocompatible nanomaterial of 50-60nm diameter and ca. 15nm lumen, can be used for loading, storage and sustained release of drugs either in its pristine form or with additional polymer complexation for extended release time. This study reports the development composite tablets based on 50wt.% of the drug loaded halloysite mixed with 45wt.% of microcrystalline cellulose. Powder flow and compressibility properties of halloysite (angle of repose, Carr's index, Hausner ratio, Brittle Fracture Index, tensile strength) indicate that halloysite is an excellent tablet excipient. Halloysite tubes can also be filled with nifedipine with ca. 6wt.% loading efficiency and sustained release from the nanotubes. Tablets prepared with drug loaded halloysite allowed for almost zero order nifedipine release for up to 20h. Nifedipine trapped in the nanotubes also protect the drug against light and significantly increased the photostability of the drug. All of these demonstrate that halloysite has the potential to be an excellent pharmaceutical excipient that is also an inexpensive, natural and abundantly available material. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Y{sub 2}O{sub 3}:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Weishi; Shen, Jianfeng; Wan, Lei

    2012-11-15

    Graphical abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► The as-preparedmore » Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y{sub 2}O{sub 3}. SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.« less

  1. Negative effect of nanoconfinement on water transport across nanotube membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Kuiwen; Wu, Huiying; Han, Baosan

    2017-10-01

    Nanoconfinement environments are commonly considered advantageous for ultrafast water flow across nanotube membranes. This study illustrates that nanoconfinement has a negative effect on water transport across nanotube membranes based on molecular dynamics simulations. Although water viscosity and the friction coefficient evidently decrease because of nanoconfinement, water molecular flux and flow velocity across carbon nanotubes decrease sharply with the pore size of nanotubes. The enhancement of water flow across nanotubes induced by the decreased friction coefficient and water viscosity is markedly less prominent than the negative effect induced by the increased flow barrier as the nanotube size decreases. The decrease in water flow velocity with the pore size of nanotubes indicates that nanoconfinement is not essential for the ultrafast flow phenomenon. In addition, the relationship between flow velocity and water viscosity at different temperatures is investigated at different temperatures. The results indicate that flow velocity is inversely proportional to viscosity for nanotubes with a pore diameter above 1 nm, thereby indicating that viscosity is still an effective parameter for describing the effect of temperature on the fluid transport at the nanoscale.

  2. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    PubMed

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  3. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    PubMed

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of < or =1-2 nm. These results expand our understanding of the interactions between ssDNA and SWCNTs and provide an efficient approach for positioning Pt and other metal particles, with uniform sizes and without aggregations, along the nanotube surfaces for applications in direct ethanol/methanol fuel cells and nanoscale electronics.

  4. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    PubMed

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Branchy alumina nanotubes

    NASA Astrophysics Data System (ADS)

    Zou, Jianping; Pu, Lin; Bao, Ximao; Feng, Duan

    2002-02-01

    Branchy alumina nanotubes (bANTs) have been shown to exist in aluminum oxide. Electron-beam evaporated 400 nm Al film on Si substrate is stepwise anodized in dilute sulfuric acid under the constant dc voltage 40 V at 10.0 °C. This electrochemical-anodizing route resulted in the formation of individual bANTs. Transmission electron microscopy showed that the length of the bANTs was around 450 nm, and the inner diameter was around 10-20 nm. We deduced that the bANTs, the completely detached multibranchy cells of anodic porous alumina (APA) film, should be evolved from the stagnant cells of the APA mother film. The bANTs may be used as templates in fabrication of individual branchy nanoscale cables, jacks, and heterojunctions. The proposed formation mechanisms of the bANTs and the stagnant cells should give some insights into the long-standing problem of APA film, i.e., the self-ordering mechanism of the cells arrangement in porous anodization of aluminum.

  6. Facile Fabrication of Ordered Anodized Aluminum Oxide Membranes with Controlled Pore Size by Improved Hard Anodization.

    PubMed

    Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong

    2018-05-01

    We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.

  7. Piezoelectric effect in non-uniform strained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ilina, M. V.; Blinov, Yu F.; Ilin, O. I.; Rudyk, N. N.; Ageev, O. A.

    2017-10-01

    The piezoelectric effect in non-uniform strained carbon nanotubes (CNTs) has been studied. It is shown that the magnitude of strained CNTs surface potential depends on a strain value. It is established that the resistance of CNT also depends on the strain and internal electric field, which leads to the hysteresis in the current-voltage characteristics. Analysis of experimental studies of the non-uniform strained CNT with a diameter of 92 nm and a height of 2.1 μm allowed us to estimate the piezoelectric coefficient 0.107 ± 0.032 C/m2.

  8. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  9. Localized plasmon resonance in boron-doped multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shuba, M. V.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Chigir, G. G.; Pyatlitski, A. N.; Sedelnikova, O. V.; Okotrub, A. V.; Lambin, Ph.

    2018-05-01

    Substitutionally boron-doped multiwalled carbon nanotubes (B-CNTs) with lengths mainly less than 0.5 μ m and diameters 10-30 nm have been obtained by arc-discharge evaporation of the graphite anode containing boron material. The broad peak has been observed in the midinfrared conductivity spectra of the thin film comprising B-CNTs. The peak was suggested to be associated with a phenomenon known as localized plasmon resonance. Theoretical analysis has been done to confirm the possibility of this phenomenon to occur in the B-CNTs.

  10. Oriented nanofibers embedded in a polymer matrix

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  11. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Zhiming; Chemistry and Chemical Engineering College, Ocean University of China, Qingdao 266003; Wei Zhixiang

    2005-03-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with {alpha}-naphthalene sulfonic acid ({alpha}-NSA), {beta}-naphthalene sulfonic acid ({beta}-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO{sub 3}H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act inmore » a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including {pi}-{pi} interactions, hydrogen and ionic bonds.« less

  12. Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji-Hoon; Kim, Min-Gyu; Yoo, Bongyoung

    2007-12-18

    Microorganisms facilitate the formation of a wide range of minerals that have unique physical and chemical properties as well as morphologies that are not produced by abiotic processes. Here, we report the production of an extensive extracellular network of filamentous, arsenic-sulfide (As-S) nanotubes (20–100 nm in diameter by 30 µm in length) by the dissimilatory metal-reducing bacterium Shewanella sp. HN-41. The As-S nanotubes, formed via the reduction of As(V) and S2O, were initially amorphous As2S3 but evolved with increasing incubation time toward polycrystalline phases of the chalcogenide minerals realgar (AsS) and duranusite (As4S). Upon maturation, the As-S nanotubes behaved asmore » metals and semiconductors in terms of their electrical and photoconductive properties, respectively. The As-S nanotubes produced by Shewanella may provide useful materials for novel nano- and opto-electronic devices.« less

  13. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations.

    PubMed

    Varghese, Oomman K; Mor, Gopal K; Grimes, Craig A; Paulose, Maggie; Mukherjee, Niloy

    2004-09-01

    A tremendous variation in electrical resistance, from the semiconductor to metallic range, has been observed in titania nanotube arrays at room temperature, approximately 25 degrees C, in the presence of < or = 1000 ppm hydrogen gas. The nanotube arrays are fabricated by anodizing titanium foil in an aqueous electrolyte solution containing hydrofluoric acid and acetic acid. Subsequently, the arrays are coated with a 10 nm layer of palladium by evaporation. Electrical contacts are made by sputtering a 2 mm diameter platinum disk atop the Pd-coated nanotube array. These sensors exhibit a resistance variation of the order of 10(4) in the presence of 100 ppm hydrogen at 25 degrees C. The sensors demonstrate complete reversibility, repeatability, high selectivity, negligible drift and wide dynamic range. The nanoscale geometry of the nanotubes, in particular the points of tube-to-tube contact, is believed to be responsible for the outstanding hydrogen gas sensitivities.

  14. Effect of restricted geometry on the superconducting properties of low-melting metals (Review Article)

    NASA Astrophysics Data System (ADS)

    Kumzerov, Yu. A.; Naberezhnov, A. A.

    2016-11-01

    This is a review of results from studies of the effect of artificially restricted geometry (the size effect) on the superconducting properties of nanoparticles of low-melting metals (Hg, Pb, Sn, In). Restricted geometrical conditions are created by embedding molten metals under high pressure into nanoporous matrices of two types: channel structures based on chrysotile asbestos and porous alkali-borosilicate glasses. Chrysotile asbestos is a system of parallel nanotubes with channel diameters ranging from 2 to 20 nm and an aspect ratio (channel length to diameter) of up to 107. The glasses are a random dendritic three-dimensional system of interconnected channels with a technologically controllable mean diameter of 2-30 nm. Temperature dependences of the resistance and heat capacity in the region of the superconducting transition and the dependences of the critical temperature on the mean pore diameter are obtained. The critical magnetic fields are also determined.

  15. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    PubMed Central

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  16. Nanoscale soldering of axially positioned single-walled carbon nanotubes: a molecular dynamics simulation study.

    PubMed

    Cui, Jianlei; Yang, Lijun; Zhou, Liang; Wang, Yang

    2014-02-12

    The miniaturization of electronics devices into the nanometer scale is indispensable for next-generation semi-conductor technology. Carbon nanotubes (CNTs) are considered to be the promising candidates for future interconnection wires. To study the carbon nanotubes interconnection during nanosoldering, the melting process of nanosolder and nanosoldering process between single-walled carbon nanotubes are simulated with molecular dynamics method. As the simulation results, the melting point of 2 nm silver solder is about 605 K because of high surface energy, which is below the melting temperature of Ag bulk material. In the nanosoldering process simulations, Ag atoms may be dragged into the nanotubes to form different connection configuration, which has no apparent relationship with chirality of SWNTs. The length of core filling nanowires structure has the relationship with the diameter, and it does not become longer with the increasing diameter of SWNT. Subsequently, the dominant mechanism of was analyzed. In addition, as the heating temperature and time, respectively, increases, more Ag atoms can enter the SWNTs with longer length of Ag nanowires. And because of the strong metal bonds, less Ag atoms can remain with the tight atomic structures in the gap between SWNT and SWNT. The preferred interconnection configurations can be achieved between SWNT and SWNT in this paper.

  17. Effect of Size-Dependent Thermal Instability on Synthesis of Zn2 SiO4-SiOx Core–Shell Nanotube Arrays and Their Cathodoluminescence Properties

    PubMed Central

    2010-01-01

    Vertically aligned Zn2SiO4-SiOx(x < 2) core–shell nanotube arrays consisting of Zn2SiO4-nanoparticle chains encapsulated into SiOx nanotubes and SiOx-coated Zn2SiO4 coaxial nanotubes were synthesized via one-step thermal annealing process using ZnO nanowire (ZNW) arrays as templates. The appearance of different nanotube morphologies was due to size-dependent thermal instability and specific melting of ZNWs. With an increase in ZNW diameter, the formation mechanism changed from decomposition of “etching” to Rayleigh instability and then to Kirkendall effect, consequently resulting in polycrystalline Zn2SiO4-SiOx coaxial nanotubes, single-crystalline Zn2SiO4-nanoparticle-chain-embedded SiOx nanotubes, and single-crystalline Zn2SiO4-SiOx coaxial nanotubes. The difference in spatially resolved optical properties related to a particular morphology was efficiently documented by means of cathodoluminescence (CL) spectroscopy using a middle-ultraviolet emission at 310 nm from the Zn2SiO4 phase. PMID:20672064

  18. Picoampere Resistive Switching Characteristics Realized with Vertically Contacted Carbon Nanotube Atomic Force Microscope Probe

    NASA Astrophysics Data System (ADS)

    Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki

    2013-11-01

    The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.

  19. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes.

    PubMed

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-08

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  20. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  1. Study of the Emission Characteristics of Single-Walled CNT and Carbon Nano-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Al-Akhras, M.-Ali H.; Daradkeh, Samer

    2018-02-01

    Field emission microscopy measurements from Single-Walled Carbon Nanotubes (SWCNTs) and Carbon Nano-Fibers Pyrograf III PR-1 (CNF) were performed. Details of the materials employed in the experiments are as follows: (a) Carbon Nano-Fibers Pyrograf III PR-1 (CNF), having an average fiber diameter that is ranging between (100-200) nm with a length of (30-100) μm. (b) Single walled Carbon Nanotubes were produced by high-pressure CO over Fe particle (HiPCO: High-Pressure Carbon Monoxide process), having an average diameter ranging between (1-4) nm with a length of (1-3) μm. The experiments were performed under vacuum pressure value of (10-7 mbar). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For both the SWCNT and the CNF a single spot pattern for the electron spatial; distributions were observed.

  2. Growth of High Quality Carbon Nanotubes on Free Standing Diamond Substrates

    DTIC Science & Technology

    2010-01-01

    CNTs forming a mat of ~5 µm thickness and consisting of ~20 nm diameter tubes were observed to grow in a thermal CVD system using C2H2 as precursor...with CNT microfin architectures have been recently proposed by Kordas et al. [5]. CNT films as thermal interface materials were also discussed by Zhu...using a 1 inch diameter quartz tube in a horizontal furnace. Initially, the tube furnace was evacuated by using a rough pump and then purged with Ar

  3. Effects of sintering temperature on the pyrochlore phase in PZT nanotubes and their transformation to the perovskite phase by coating with PbO multilayers.

    PubMed

    Han, Jin Kyu; Choi, Yong Chan; Jeon, Do Hyen; Lee, Min Ku; Bu, Sang Don

    2014-11-01

    We report the phase evolution of Pb(Zr0.52Ti0.48)O3 nanotubes (PZT-NTs), from the pyrochlore to perovskite phase, with an outer diameter of about 420 nm and a wall thickness of about 10 nm. The PZT-NTs were fabricated in pores of porous anodic alumina membrane (PAM) using a spin coating of PZT sol-gel solution and subsequent annealing at 500-700 degrees C in oxygen gas. The pyrochlore phase was found to be formed at 500 degrees C, and also found not to be transformed into the perovskite phase, even though annealing was performed at higher temperatures to 700 degrees C. Elementary distribution analysis of PZT-NTs embedded in PAM reveal that Pb diffusion from nanotubes into pore walls of PAM is one of the main reasons. By employing firstly an additional PbO coating on the pyrochlore nanotubes and then subsequent annealing at 700 degrees C, we have successfully achieved an almost pure perovskite phase in nanotubes. These results suggest that PbO acts as a Pb-compensation agent in the Pb- deficient PZT-NTs. Moreover, our method can be used in the synthesis of all metal-oxide materials, including volatile elements.

  4. Carbon nanopipettes and microtubes for electrochemical sensing and microfluidics

    NASA Astrophysics Data System (ADS)

    Mani, Radhika C.; Bhimarasetti, Gopinath; Lowe, Randall; Sunkara, Mahendra K.

    2004-12-01

    We present the synthesis of two novel morphologies for carbon tubular structures: Nanopipettes and Micropipes. The synthesis procedures for both these structures are both unique and different from each other and the conventional methods used for carbon nanotubes. Carbon nanopipettes, open at both ends, are made up of a central nanotube (~10-20 nm) surrounded by helical sheets of graphite. Thus nanopipettes have an outer conical structure, with a base size of about a micron, that narrows down to about 10-20 nm at the tip. Due to their unique morphology, the outer walls of the nanopipettes continuously expose edge planes of graphite, giving a very stable and reversible electrochemical response for detecting neurological compounds such as dopamine. The synthesis of carbon nanopipettes is based on high temperature nucleation and growth of carbon nanotubes under conditions of hydrogen etching during growth. Carbon micropipes, on the other hand, are tubular structures whose internal diameters range from a few nanometers to a few microns with a constant wall thickness of 10-20 nm. In addition to tuning the internal diameters, the conical angles of these structures could also be changed during synthesis. Due to their larger inner diameters and thin walls, both the straight and conical micro-tubular structures are suitable for microfluidic devices such as throttle valves, micro-reactors, and distribution channels. The synthesis of carbon micro-tubular structures is based on the wetting behavior of gallium with carbon during growth. The contact angle between gallium and the carbon wall determines the conical angle of the structure. By varying the contact angle, one can alter the conical angles from 400 to -150, and synthesize straight tubes using different N2/O2 dosing compositions. An 'n-step' dosing sequence at various stages of growth resulted in 'n-staged' morphologies for carbon micro-tubular structures such as funnels, tube-on-cone, Y-junctions and dumbbells.

  5. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    NASA Astrophysics Data System (ADS)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  6. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  7. Formation and growth mechanisms of single-walled metal oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Yucelen, Gulfem Ipek

    In this thesis, main objectives are to discover the first molecular-level mechanistic framework governing the formation and growth of single-walled metal-oxide nanotubes, apply this framework to demonstrate the engineering of nanotubular materials of controlled dimensions, and to progress towards a quantitative multiscale understanding of nanotube formation. In Chapter 2, the identification and elucidation of the mechanistic role of molecular precursors and nanoscale (1-3 nm) intermediates with intrinsic curvature, in the formation of single-walled aluminosilicate nanotubes is reported. The structural and compositional evolution of molecular and nanoscale species over a length scale of 0.1-100 nm, are characterized by electrospray ionization (ESI) mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. DFT calculations revealed the intrinsic curvature of nanoscale intermediates with bonding environments similar to the structure of the final nanotube product. It is shown that curved nano-intermediates form in aqueous synthesis solutions immediately after initial hydrolysis of reactants at 25 °C, disappear from the solution upon heating to 95 °C due to condensation, and finally rearrange to form ordered single-walled aluminosilicate nanotubes. Integration of all results leads to the construction of the first molecular-level mechanism of single-walled metal oxide nanotube formation, incorporating the role of monomeric and polymeric aluminosilicate species as well as larger nanoparticles. Then, in Chapter 3, new molecular-level concepts for constructing nanoscopic metal oxide objects are demonstrated. The diameters of metal oxide nanotubes are shaped with Angstrom-level precision by controlling the shape of nanometer-scale precursors. The subtle relationships between precursor shape and structure and final nanotube curvature are measured (at the molecular level). Anionic ligands (both organic and inorganic) are used to exert fine control over precursor shapes, allowing assembly into nanotubes whose diameters relate directly to the curvatures of shaped precursors. Having obtained considerable insight into aluminosilicate nanotube formation, in Chapter 4 the complex aqueous chemistry of nanotube-forming aluminogermanate solutions are examined. The aluminogermanate system is particularly interesting since it forms ultra-short nanotubes of lengths as small as ˜20 nm. Insights into the underlying important mechanistic differences between aluminogermanate and aluminosilicate nanotube growth as well as structural differences in the final nanotube dimensions are provided. Furthermore, an experimental example of control over nanotube length is shown, using the understanding of the mechanistic differences, along with further suggestions for possible ways of controlling nanotube lengths. In Chapter 5, a generalized kinetic model is formulated to describe the reactions leading to formation and growth of single-walled metal oxide nanotubes. This model is capable of explaining and predicting the evolution of nanotube populations as a function of kinetic parameters. It also allows considerable insight into meso/microscale nanotube growth processes. For example, it shows that two different mechanisms operate during nanotube growth: (1) growth by precursor addition, and (2) by oriented attachment of nanotubes to each other. In Chapter 6, a study of the structure of the nanotube walls is presented. A detailed investigation of the defect structures in aluminosilicate single-walled nanotubes via multiple advanced solid-state NMR techniques is reported. A combination of 1H-29Si and 1H- 27Al FSLG-HETCOR, 1H CRAMPS, and 1H- 29Si CP/MAS NMR experiments were employed to evaluate the proton environments around Al and Si atoms during nanotube synthesis and in the final structure. The HETCOR experiments allowed to track the evolving Si and Al environments during the formation of the nanotubes from precursor species, and relate them to the Si and Al coordination environments found in the final nanotube structure. (Abstract shortened by UMI.).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Fernando J. A. L., E-mail: fj.cruz@fct.unl.pt; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706; Pablo, Juan J. de

    Although carbon nanotubes are potential candidates for DNA encapsulation and subsequent delivery of biological payloads to living cells, the thermodynamical spontaneity of DNA encapsulation under physiological conditions is still a matter of debate. Using enhanced sampling techniques, we show for the first time that, given a sufficiently large carbon nanotube, the confinement of a double-stranded DNA segment, 5′-D({sup *}CP{sup *}GP{sup *}CP{sup *}GP{sup *}AP{sup *}AP{sup *}TP{sup *}TP{sup *}CP{sup *}GP{sup *}CP{sup *}G)-3′, is thermodynamically favourable under physiological environments (134 mM, 310 K, 1 bar), leading to DNA-nanotube hybrids with lower free energy than the unconfined biomolecule. A diameter threshold of 3 nmmore » is established below which encapsulation is inhibited. The confined DNA segment maintains its translational mobility and exhibits the main geometrical features of the canonical B form. To accommodate itself within the nanopore, the DNA's end-to-end length increases from 3.85 nm up to approximately 4.1 nm, due to a ∼0.3 nm elastic expansion of the strand termini. The canonical Watson-Crick H-bond network is essentially conserved throughout encapsulation, showing that the contact between the DNA segment and the hydrophobic carbon walls results in minor rearrangements of the nucleotides H-bonding. The results obtained here are paramount to the usage of carbon nanotubes as encapsulation media for next generation drug delivery technologies.« less

  9. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  10. Nanotechnology in Space Exploration: Report of the National Nanotechnology Initiative Workshop Held in Palo Alto, California on 24-26 August 2004

    DTIC Science & Technology

    2006-01-01

    Nanosensors and Instrumentation Nanotechnology in Space Exploration 19 simple, rugged design. Multiwalled carbon nanotube ( MWCNT ) cathodes were grown...probe tips. Existing approaches use both SWCNTs and MWCNTs . A unique fabrication process development at NASA Ames (see ref. [4] in Chapter 6...produces very robust MWCNT tips with a high aspect ratio (> 1 µm in length and 10 nm to 20 nm in diameter). In addition, a novel and simple tip sharpening

  11. Appearance of radial breathing modes in Raman spectra of multi-walled carbon nanotubes upon laser illumination

    NASA Astrophysics Data System (ADS)

    Rai, Padmnabh; Mohapatra, Dipti R.; Hazra, K. S.; Misra, D. S.; Ghatak, Jay; Satyam, P. V.

    2008-03-01

    The Raman spectra of the multi-walled carbon nanotubes are studied with the laser power of 5-20 mW. We observe the Raman bands at ˜1352, 1581, 1607, and 2700 cm -1 with 5 mW laser power. As the laser power is increased to 10, 15 and 20 mW, the radial breathing modes (RBMs) of the single wall carbon nanotubes (SWNTs) appear in the range 200-610 cm -1. The diameter corresponding to the highest RBM is ˜0.37 nm, the lowest reported so far. The RBMs are attributed to the local synthesis of the SWNTs at the top surface of the samples at higher laser power.

  12. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    PubMed Central

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; Fakhrullin, Rawil F.

    2015-01-01

    Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). The enzyme-activated intracellular delivery of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment. PMID:25976444

  13. Process for derivatizing carbon nanotubes with diazonium species

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  14. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  15. Carbon nanotube filters.

    PubMed

    Srivastava, A; Srivastava, O N; Talapatra, S; Vajtai, R; Ajayan, P M

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus ( approximately 25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  16. High pressure synthesis of amorphous TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Jing; Liu, Bingbing

    2015-09-01

    Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ˜20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B0 = 158 GPa) of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  17. Electric current distribution of a multiwall carbon nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

    2016-07-15

    The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriersmore » can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.« less

  18. Impact of support calcination and competitive adsorbate in Fe/Mo-Al2O3 catalyst for synthesis of carbon nanotubes by V-flame

    NASA Astrophysics Data System (ADS)

    Sun, Ya-Ping; Sun, Bao-Min; Zhai, Gang; Guo, Yong-Hong; Jia, Xiao-Wei; Kang, Zhi-Zhong

    2018-05-01

    Carbon nanotubes (CNTs) were synthesized via carbon monoxide decomposition with aid of various Fe/Mo-Al2O3 catalysts by V-type flame method. The influences of support calcination and competitive adsorbates on the morphology and properties of CNTs were studied. SEM, HRTEM, TPO and Raman spectroscopy were applied to investigate the morphology and microstructure of CNT products. XRD, H2-TPR were employed to characterize catalysts. The obtained results indicate that calcinated support can increase production and promote the formation of CNTs with small diameter. Utilizing citric acid as a competitive adsorbate is successful in improving the quality of CNTs. Besides, the addition of citric acid and calcinated support in catalyst enhances the catalytic growth activity. The obtained CNTs have a diameter around 4–6 nm within a narrow diameter distribution range. Raman spectrum analysis also illustrates that highly graphitized CNTs are produced on the catalyst with calcinated support and citric acid. These results suggest that support calcination and competitive adsorbate have pronounced effect on the average diameter, diameter distribution, and graphitization of CNTs, which provides a simple and effective way to tune the properties of CNTs.

  19. Large-scale synthesis of high-purity well-aligned carbon nanotubes using pyrolysis of iron(II) phthalocyanine and acetylene

    NASA Astrophysics Data System (ADS)

    Liu, B. C.; Lee, T. J.; Lee, S. H.; Park, C. Y.; Lee, C. J.

    2003-08-01

    Well-aligned carbon nanotubes (CNTs) with high purity have been produced by pyrolysis of iron(II) phthalocyanine and acetylene at 800 °C. The synthesized CNTs have a length of 75 μm and diameters ranging from 20 to 60 nm. The CNTs have a bamboo-like structure and exhibit good crystallinity of graphite sheets. The growth rate of the CNTs was rapidly increased with adding C 2H 2. Our results demonstrate that the proposed growth method is suitable to large-scale synthesis of high-purity well-aligned CNTs on various substrates.

  20. Helium Adsorption on Carbon Nanotube Bundles with Different Diameters:. Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2013-05-01

    We have used molecular dynamics simulation to study helium adsorption capacity of carbon nanotube bundles with different diameters. Homogeneous carbon nanotube bundles of (8,8), (9,9), (10,10), (11,11), and (12,12) single walled carbon nanotubes have been considered. The results indicate that the exohedral adsorption coverage does not depend on the diameter of carbon nanotubes, while the endohedral adsorption coverage is increased by increasing the diameter.

  1. Preparation of Sm-doped ceria (SDC) nanowires and tubes by gas-liquid co-precipitation at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Lina; School of Chemistry and Chemical Engineering, Anhui University, 230039 Hefei; Meng Guangyao

    Sm-doped cerium dioxide (SDC) with fcc structure was formed using a gas-liquid chemical co-precipitation process at room temperature. Morphology and structure of the as-prepared samples were characterized using TG, XRD, TEM, HRTEM and SAED techniques. Under our specific experimental conditions, two kinds of 1D nano-structures SDC have been mainly obtained. SDC nanowires are 0.3-1.2 {mu}m in lengths and 5-20 nm in diameters. SDC nanotubes have outer diameters in 10-40 nm with lengths up to 2 {mu}m. The as-prepared SDC shows very strong UV absorption ability and the maximum absorption peak redshifts compared with that of SDC nanoparticles.

  2. Spherical and tubule nanocarriers for sustained drug release

    PubMed Central

    Shutava, T.; Fakhrullin, R.; Lvov, Y.

    2014-01-01

    We discuss new trends in Layer-by-Layer (LbL) encapsulation of spherical and tubular cores of 50–150 nm diameter and loaded with drugs. This core size decrease (from few micrometers to a hundred of nanometers) for LbL encapsulation required development of sonication assistant non-washing technique and shell PEGylation to reach high colloidal stability of drug nanocarriers at 2–3 mg/mL concentration in isotonic buffers and serum. For 120–170 nm spherical LbL nanocapsules of low soluble anticancer drugs, polyelectrolyte shell thickness controls drug dissolution. As for nanotube carriers, we concentrated on natural halloysite clay nanotubes as cores for LbL encapsulation that allows high drug loading and sustains its release over tens and hundreds hours. Further drug release prolongation was reached with formation of the tube-end stoppers. PMID:25450068

  3. Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Dingtao; Li, Yongliang; Zhang, Peixin; Cooper, Adam J.; Abdelkader, Amr M.; Ren, Xiangzhong; Deng, Libo

    2016-04-01

    One-dimensional nanotubes constructed from interconnected Li1.2Mn0.54Ni0.13Co0.13O2 secondary particles of diameters measuring ca. 40 nm, were synthesized by a one-pot electrospinning method. Novel electrodes were constructed from (a) nanoparticles only, and (b) hollow nanofibres, and employed as cathodes in Li-ion batteries. The nanotube cathode exhibited impressive specific charge capacity, good cycling stability, and excellent rate capability. A discharge capacity of 140 mAh g-1 with capacity retention of 89% at 3 C was achieved after 300 cycles. The significant improvement of electrochemical performance is attributed to the high surface area of the nanotubes, well-guided charge transfer kinetics with short ionic diffusion pathways, and large effective contact area with the electrolyte during the cycling process.

  4. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun

    2013-09-01

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO2 particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO2/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  5. Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates

    NASA Astrophysics Data System (ADS)

    Castillo, John J.; Rindzevicius, Tomas; Wu, Kaiyu; Schmidt, Michael S.; Janik, Katarzyna A.; Boisen, Anja; Svendsen, Winnie; Rozlosnik, Noemi; Castillo-León, Jaime

    2014-07-01

    Herein, we describe the synthesis and characterization of a covalent nanoscale assembly formed between diphenylalanine micro/nanotubes (PNT) and folic acid (FA). The conjugate was obtained via chemical functionalization through coupling of amine groups of PNTs and carboxylic groups of FA. The surface analysis of PNT-FA indicated the presence of FA aggregates on the surface of PNTs. The covalent interaction between FA and self-assembled PNTs was further investigated using fluorescence microscopy, Raman and surface-enhanced Raman scattering (SERS) spectroscopies. The SERS experiments were performed on a large area silver-capped (diameter of 62 nm) silicon nanopillars with an approximate height of 400 nm and a width of 200 nm. The results showed that the PNT-FA synthesis procedure preserves the molecular structure of FA. The PNT-FA conjugate presented in this study is a promising candidate for applications in the detection and diagnosis of cancer or tropical diseases such as leishmaniasis and as a carrier nanosystem delivering drugs to malignant tumors that overexpress folate receptors.

  6. Dynamics of membrane nanotubes coated with I-BAR

    NASA Astrophysics Data System (ADS)

    Barooji, Younes F.; Rørvig-Lund, Andreas; Semsey, Szabolcs; Reihani, S. Nader S.; Bendix, Poul M.

    2016-07-01

    Membrane deformation is a necessary step in a number of cellular processes such as filopodia and invadopodia formation and has been shown to involve membrane shaping proteins containing membrane binding domains from the IRSp53-MIM protein family. In reconstituted membranes the membrane shaping domains can efficiently deform negatively charged membranes into tubules without any other proteins present. Here, we show that the IM domain (also called I-BAR domain) from the protein ABBA, forms semi-flexible nanotubes protruding into Giant Unilamellar lipid Vesicles (GUVs). By simultaneous quantification of tube intensity and tubular shape we find both the diameter and stiffness of the nanotubes. I-BAR decorated tubes were quantified to have a diameter of ~50 nm and exhibit no stiffening relative to protein free tubes of the same diameter. At high protein density the tubes are immobile whereas at lower density the tubes diffuse freely on the surface of the GUV. Bleaching experiments of the fluorescently tagged I-BAR confirmed that the mobility of the tubes correlates with the mobility of the I-BAR on the GUV membrane. Finally, at low density of I-BAR the protein upconcentrates within tubes protruding into the GUVs. This implies that I-BAR exhibits strong preference for negatively curved membranes.

  7. Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening.

    PubMed

    Douglas, Anna; Carter, Rachel; Li, Mengya; Pint, Cary L

    2018-06-06

    Small-diameter carbon nanotubes (CNTs) often require increased sophistication and control in synthesis processes, but exhibit improved physical properties and greater economic value over their larger-diameter counterparts. Here, we study mechanisms controlling the electrochemical synthesis of CNTs from the capture and conversion of ambient CO 2 in molten salts and leverage this understanding to achieve the smallest-diameter CNTs ever reported in the literature from sustainable electrochemical synthesis routes, including some few-walled CNTs. Here, Fe catalyst layers are deposited at different thicknesses onto stainless steel to produce cathodes, and atomic layer deposition of Al 2 O 3 is performed on Ni to produce a corrosion-resistant anode. Our findings indicate a correlation between the CNT diameter and Fe metal layer thickness following electrochemical catalyst reduction at the cathode-molten salt interface. Further, catalyst coarsening during long duration synthesis experiments leads to a 2× increase in average diameters from 3 to 60 min durations, with CNTs produced after 3 min exhibiting a tight diameter distribution centered near ∼10 nm. Energy consumption analysis for the conversion of CO 2 into CNTs demonstrates energy input costs much lower than the value of CNTs-a concept that strictly requires and motivates small-diameter CNTs-and is more favorable compared to other costly CO 2 conversion techniques that produce lower-value materials and products.

  8. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

    PubMed Central

    2014-01-01

    Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867

  9. Fabrication of SrTiO3 nanotubes via an isomorphic conversion strategy

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Zou, Xiaoyan; Tong, Zhenwei; Nan, Yanhu; Ding, Fei; Jiang, Zhongyi

    2018-02-01

    One-dimensional nanotubes have attracted enormous attention due to their specific structure and excellent performance since the carbon nanotube was prepared. In this study, the open-ended SrTiO3 nanotubes (STNTs) have been fabricated for the first time via an isomorphic conversion strategy using the protonated titanate nanotubes (HTNTs) as the precursor and template under the hydrothermal treatment. The as-prepared STNTs consist of uniform and continuous multilayers, having inner and outer diameters about 8.0 and 13 nm. The STNT formation involves the exchange of Sr2+ ions with H+ ions in HTNTs and then in situ growth of cubic SrTiO3 crystals by the templating of HTNT frameworks. It is found that the diffusion process of Sr2+ ions plays a critical role in controlling the nanotube morphology of SrTiO3 crystals. In addition, the SrTiO3 nanotubes exhibit high photocatalytic activity for the Cr(VI) reduction, which can reduce nearly 100% Cr(VI) within 6 h under simulated sunlight irradiation. The current strategy may be broadly applicable for fabricating the nanotubes from raw materials without 2D layered nanostructure. [Figure not available: see fulltext.

  10. Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin

    NASA Astrophysics Data System (ADS)

    Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.

    2016-04-01

    3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.

  11. Self-assembled ordered carbon-nanotube arrays and membranes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growthmore » and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.« less

  12. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products.

    PubMed

    Wang, Yifei; Ma, Jing; Zhu, Jiaxin; Ye, Ning; Zhang, Xiaolei; Huang, Haiou

    2016-04-01

    In this study, multi-walled carbon nanotubes (MWCNT) with selected properties, including pristine MWCNT, hydroxylated MWCNT (H-MWCNT), thin-walled MWCNT with large inner diameter (L-MWCNT), aminated MWCNT, and high-purity MWCNT were investigated for dynamic removal of eight pharmaceuticals and personal care products (PPCP). The removal ratios of different PPCP by the pristine MWCNT followed a decreasing order of triclosan (0.93) > prometryn (0.71) > 4-acetylamino-antipyrine (0.67) > carbendazim (0.65) > caffeine (0.42) > ibuprofen (0.34) > acetaminophen (0.29) at 100 min of filtration. Similar or even higher PPCP removals were obtained for all PPCP as the influent concentration decreased, suggesting potential consistent PPCP removals at environmental PPCP concentrations. The removal ratio of acetaminophen was increased to 0.74 by using H-MWCNT. SRFA (Suwannee River fulvic acid) suppressed PPCP adsorption to MWCNT, to greater extents with increasing SRFA concentrations. The L-MWCNT, despite a large inner diameter of 52 ± 3 nm, did not provide better resistance to the competitive adsorption of SRFA than MWCNT with a small inner diameter of 10 ± 2 nm. Future research will be conducted to minimize the effect of SRFA and facilitate application of MWCNT to the treatment of PPCP-contaminated water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes

    NASA Astrophysics Data System (ADS)

    Bigeon, J.; Huby, N.; Amela-Cortes, M.; Molard, Y.; Garreau, A.; Cordier, S.; Bêche, B.; Duvail, J.-L.

    2016-06-01

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  14. Efficient active waveguiding properties of Mo6 nano-cluster-doped polymer nanotubes.

    PubMed

    Bigeon, J; Huby, N; Amela-Cortes, M; Molard, Y; Garreau, A; Cordier, S; Bêche, B; Duvail, J-L

    2016-06-24

    We investigate 1D nanostructures based on a Mo6@SU8 hybrid nanocomposite in which photoluminescent Mo6 clusters are embedded in the photosensitive SU8 resist. Tens of micrometers long Mo6@SU8-based tubular nanostructures were fabricated by the wetting template method, enabling the control of the inner and outer diameter to about 190 nm and 240 nm respectively, as supported by structural and optical characterizations. The image plane optical study of these nanotubes under optical pumping highlights the efficient waveguiding phenomenon of the red luminescence emitted by the clusters. Moreover, the wave vector distribution in the Fourier plane determined by leakage radiation microscopy gives additional features of the emission and waveguiding. First, the anisotropic red luminescence of the whole system can be attributed to the guided mode along the nanotube. Then, a low-loss propagation behavior is evidenced in the Mo6@SU8-based nanotubes. This result contrasts with the weaker waveguiding signature in the case of UV210-based nanotubes embedding PFO (poly(9,9-di-n-octylfluorenyl-2,7-diyl)). It is attributed to the strong reabsorption phenomenon, owing to overlapping between absorption and emission bands in the semi-conducting conjugated polymer PFO. These results make this Mo6@SU8 original class of nanocomposite a promising candidate as nanosources for submicronic photonic integration.

  15. Synthesis of Metal Nanoparticle-decorated Carbon Nanotubes under Ambient Conditions

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Watson, Kent A.; Ghose, Sayata; Smith, Joseph G.; Connell, John W.

    2008-01-01

    This viewgraph presentation reviews the production of Metal Nanoparticle-decorated carbon Nanotubes. Multi-walled carbon nanotubes (MWCNTs) were efficiently decorated with metal nanoparticles (e.g. Ag, Pt, etc.) using the corresponding metal acetate in a simple mixing process without the need of chemical reagents or further processing. The conversion of acetate compounds to the corresponding metal reached over 90%, forming nanoparticles with average diameters less than 10 nm under certain conditions. The process was readily scalable allowing for the convenient preparation of multi-gram quantities of metal nanoparticle-decorated MWCNTs in a matter of a few minutes. These materials are under evaluation for a variety of electrical and catalytic applications. The preparation and characterization of these materials will be presented. The microscopic views of the processed MWCNTs are shown

  16. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation

    DOE PAGES

    Dzamukova, Maria R.; Naumenko, Ekaterina A.; Lvov, Yuri M.; ...

    2015-05-15

    Fabrication of stimuli-triggered drug delivery vehicle is is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green. Drug-loaded nanotubes penetrate through the cellular membranes and their uptake efficiency depends on the cells growth rate. Intercellular glycosyl hydrolases-mediated decomposition of the dextrin tube-end stoppers triggers the release of the lumen-loaded brilliant green, which allowed for preferable elimination of human lung carcinoma cells (А549) as compared with hepatoma cells (Hep3b). In conclusion, the enzyme-activated intracellular deliverymore » of brilliant green using dextrin-coated halloysite nanotubes is a promising platform for anticancer treatment.« less

  17. New High Aspect-Ratio Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Panaitescu, Eugen; Richter, Christiaan; Menon, Latika

    2007-03-01

    Titanium oxide nanotubes show great promise in photocatalytic, gas sensing, biological, and other applications. Techniques for the fabrication of titania nanotubes include electrodeposition in polymer molds starting from alumina templates, anodization of titanium in fluoride containing solutions, and hydrothermal treatment of nano- and micropowders. We have developed a new synthesis route for the production of new ultra-high aspect-ratio (over 1000:1) titania nanotubes by anodization in chloride containing acid solutions. The fabrication process occurs rapidly, in a fraction of the time when compared with other methods such as anodization in the highly toxic fluoride-containing electrolytes. We have demonstrated nanotubes with diameters as small as 25 nm, and lengths of up to 50 μm, and we have produced them with varying carbon content through the addition of organic acids in the electrolyte. This opens up new possibilities for many advanced applications of such nanotubes. Various synthesis conditions (pH, chloride content, electrolyte nature), and their influence on morphology, composition, and crystalline structure will be presented. Preliminary results on photocatalytic and transmission properties will also be discussed.

  18. Wire-in-tube structure fabricated by single capillary electrospinning via nanoscale Kirkendall effect: the case of nickel-zinc ferrite.

    PubMed

    Fu, Jiecai; Zhang, Junli; Peng, Yong; Zhao, Changhui; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Mellors, Nigel J; Xie, Erqing

    2013-12-21

    Wire-in-tube structures have previously been prepared using an electrospinning method by means of tuning hydrolysis/alcoholysis of a precursor solution. Nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4) nanowire-in-nanotubes have been prepared as a demonstration. The detailed nanoscale characterization, formation process and magnetic properties of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes has been studied comprehensively. The average diameters of the outer tubes and inner wires of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes are around 120 nm and 42 nm, respectively. Each fully calcined individual nanowire-in-nanotube, either the outer-tube or the inner-wire, is composed of Ni0.5Zn0.5Fe2O4 monocrystallites stacked along the longitudinal direction with random orientation. The process of calcining electrospun polymer composite nanofibres can be viewed as a morphologically template nucleation and precursor diffusion process. This allows the nitrates precursor to diffuse toward the surface of the nanofibres while the oxides (decomposed from hydroxides and nitrates) products diffuse to the core region of the nanofibres; the amorphous nanofibres transforming thereby into crystalline nanowire-in-nanotubes. In addition, the magnetic properties of the Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes were also examined. It is believed that this nanowire-in-nanotube (sometimes called core-shell) structure, with its uniform size and well-controlled orientation of the long nanowire-in-nanotubes, is particularly attractive for use in the field of nano-fluidic devices and nano-energy harvesting devices.

  19. Self-Organized TiO₂-MnO₂ Nanotube Arrays for Efficient Photocatalytic Degradation of Toluene.

    PubMed

    Nevárez-Martínez, María C; Kobylański, Marek P; Mazierski, Paweł; Wółkiewicz, Jolanta; Trykowski, Grzegorz; Malankowska, Anna; Kozak, Magda; Espinoza-Montero, Patricio J; Zaleska-Medynska, Adriana

    2017-03-31

    Vertically oriented, self-organized TiO₂-MnO₂ nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt. %) and water content in the electrolyte (2-10 vol. %) on the morphology and photocatalytic properties was investigated for the first time. The photoactivity was assessed in the toluene removal reaction under visible light, using low-powered LEDs as an irradiation source (λ max = 465 nm). Morphology analysis showed that samples consisted of auto-aligned nanotubes over the surface of the alloy, their dimensions were: diameter = 76-118 nm, length = 1.0-3.4 μm and wall thickness = 8-11 nm. It was found that the increase in the applied potential led to increase the dimensions while the increase in the content of manganese in the alloy brought to shorter nanotubes. Notably, all samples were photoactive under the influence of visible light and the highest degradation achieved after 60 min of irradiation was 43%. The excitation mechanism of TiO₂-MnO₂ NTs under visible light was presented, pointing out the importance of MnO₂ species for the generation of e - and h⁺.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukrullah, S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Mohamed, N. M., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Shaharun, M. S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grownmore » CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.« less

  1. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.

    PubMed

    Hilmer, Andrew J; McNicholas, Thomas P; Lin, Shangchao; Zhang, Jingqing; Wang, Qing Hua; Mendenhall, Jonathan D; Song, Changsik; Heller, Daniel A; Barone, Paul W; Blankschtein, Daniel; Strano, Michael S

    2012-01-17

    Because covalent chemistry can diminish the optical and electronic properties of single-walled carbon nanotubes (SWCNTs), there is significant interest in developing methods of controllably functionalizing the nanotube sidewall. To date, most attempts at obtaining such control have focused on reaction stoichiometry or strength of oxidative treatment. Here, we examine the role of surfactants in the chemical modification of single-walled carbon nanotubes with aryl diazonium salts. The adsorbed surfactant layer is shown to affect the diazonium derivatization of carbon nanotubes in several ways, including electrostatic attraction or repulsion, steric exclusion, and direct chemical modification of the diazonium reactant. Electrostatic effects are most pronounced in the cases of anionic sodium dodecyl sulfate and cationic cetyltrimethylammonium bromide, where differences in surfactant charge can significantly affect the ability of the diazonium ion to access the SWCNT surface. For bile salt surfactants, with the exception of sodium cholate, we find that the surfactant wraps tightly enough such that exclusion effects are dominant. Here, sodium taurocholate exhibits almost no reactivity under the explored reaction conditions, while for sodium deoxycholate and sodium taurodeoxycholate, we show that the greatest extent of reaction is observed among a small population of nanotube species, with diameters between 0.88 and 0.92 nm. The anomalous reaction of nanotubes in this diameter range seems to imply that the surfactant is less effective at coating these species, resulting in a reduced surface coverage on the nanotube. Contrary to the other bile salts studied, sodium cholate enables high selectivity toward metallic species and small band gap semiconductors, which is attributed to surfactant-diazonium coupling to form highly reactive diazoesters. Further, it is found that the rigidity of anionic surfactants can significantly influence the ability of the surfactant layer to stabilize the diazonium ion near the nanotube surface. Such Coulombic and surfactant packing effects offer promise toward employing surfactants to controllably functionalize carbon nanotubes. © 2011 American Chemical Society

  2. Bioelectrocatalytic application of titania nanotube array for molecule detection.

    PubMed

    Xie, Yibing; Zhou, Limin; Huang, Haitao

    2007-06-15

    A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 x 10(-4)mM. A biosensor based on the glucose oxidase-titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (-0.4V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6s and a detection limit of 2.0 x 10(-3)mM. The corresponding detection sensitivity was 45.5 microA mM(-1)cm(-2). A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.

  3. Applying a potential difference to minimise damage to carbon fibres during carbon nanotube grafting by chemical vapour deposition.

    PubMed

    Anthony, David B; Qian, Hui; Clancy, Adam J; Greenhalgh, Emile S; Bismarck, Alexander; Shaffer, Milo S P

    2017-07-28

    The application of an in situ potential difference between carbon fibres and a graphite foil counter electrode (300 V, generating an electric field ca 0.3-0.7 V μm -1 ), during the chemical vapour deposition synthesis of carbon nanotube (CNT) grafted carbon fibres, significantly improves the uniformity of growth without reducing the tensile properties of the underlying carbon fibres. Grafted CNTs with diameters 55 nm ± 36 nm and lengths around 10 μm were well attached to the carbon fibre surface, and were grown without the requirement for protective barrier coatings. The grafted CNTs increased the surface area to 185 m 2 g -1 compared to the as-received sized carbon fibre 0.24 m 2 g -1 . The approach is not restricted to batch systems and has the potential to improve CNT grafted carbon fibre production for continuous processing.

  4. Applying a potential difference to minimise damage to carbon fibres during carbon nanotube grafting by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Anthony, David B.; Qian, Hui; Clancy, Adam J.; Greenhalgh, Emile S.; Bismarck, Alexander; Shaffer, Milo S. P.

    2017-07-01

    The application of an in situ potential difference between carbon fibres and a graphite foil counter electrode (300 V, generating an electric field ca 0.3-0.7 V μm-1), during the chemical vapour deposition synthesis of carbon nanotube (CNT) grafted carbon fibres, significantly improves the uniformity of growth without reducing the tensile properties of the underlying carbon fibres. Grafted CNTs with diameters 55 nm ± 36 nm and lengths around 10 μm were well attached to the carbon fibre surface, and were grown without the requirement for protective barrier coatings. The grafted CNTs increased the surface area to 185 m2 g-1 compared to the as-received sized carbon fibre 0.24 m2 g-1. The approach is not restricted to batch systems and has the potential to improve CNT grafted carbon fibre production for continuous processing.

  5. Bacterial adherence to anodized titanium alloy

    NASA Astrophysics Data System (ADS)

    Pérez-Jorge Peremarch, C.; Pérez Tanoira, R.; Arenas, M. A.; Matykina, E.; Conde, A.; De Damborenea, J. J.; Gómez Barrena, E.; Esteban, J.

    2010-11-01

    The aim of this study was to evaluate Staphylococcus sp adhesion to modified surfaces of anodized titanium alloy (Ti-6Al-4V). Surface modification involved generation of fluoride-containing titanium oxide nanotube films. Specimens of Ti-6Al-4V alloy 6-4 ELI-grade 23- meets the requirements of ASTM F136 2002A (AMS 2631B class A1) were anodized in a mixture of sulphuric/hydrofluoric acid at 20 V for 5 and 60 min to form a 100 nm-thick porous film of 20 nm pore diameter and 230 nm-thick nanotube films of 100 nm in diameter. The amount of fluorine in the oxide films was of 6% and of 4%, respectively. Collection strains and six clinical strains each of Staphylococcus aureus and Staphylococcus epidermidis were studied. The adherence study was performed using a previously published protocol by Kinnari et al. The experiments were performed in triplicates. As a result, lower adherence was detected for collection strains in modified materials than in unmodified controls. Differences between clinical strains were detected for both species (p<0.0001, Kruskal-Wallis test), although global data showed similar results to that of collection strains (p<0.0001, Kruskal-Wallis test). Adherence of bacteria to modified surfaces was decreased for both species. The results also reflect a difference in the adherence between S. aureus and S. epidermidis to the modified material. As a conclusion, not only we were able to confirm the decrease of adherence in the modified surface, but also the need to test multiple clinical strains to obtain more realistic microbiological results due to intraspecies differences.

  6. Roll-to-Roll production of carbon nanotubes based supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  7. Dynamic self-assembly of DNA minor groove-binding ligand DB921 into nanotubes triggered by an alkali halide† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7nr03875e

    PubMed Central

    Mizuta, R.; Devos, J. M.; Webster, J.; Ling, W. L.; Narayanan, T.; Round, A.; Munnur, D.; Mossou, E.; Farahat, A. A.; Boykin, D. W.; Wilson, W. D.; Neidle, S.; Schweins, R.; Rannou, P.; Haertlein, M.; Forsyth, V. T.

    2018-01-01

    We describe a novel self-assembling supramolecular nanotube system formed by a heterocyclic cationic molecule which was originally designed for its potential as an antiparasitic and DNA sequence recognition agent. Our structural characterisation work indicates that the nanotubes form via a hierarchical assembly mechanism that can be triggered and tuned by well-defined concentrations of simple alkali halide salts in water. The nanotubes assembled in NaCl have inner and outer diameters of ca. 22 nm and 26 nm respectively, with lengths that reach into several microns. Our results suggest the tubes consist of DB921 molecules stacked along the direction of the nanotube long axis. The tubes are stabilised by face-to-face π–π stacking and ionic interactions between the charged amidinium groups of the ligand and the negative halide ions. The assembly process of the nanotubes was followed using small-angle X-ray and neutron scattering, transmission electron microscopy and ultraviolet/visible spectroscopy. Our data demonstrate that assembly occurs through the formation of intermediate ribbon-like structures that in turn form helices that tighten and compact to form the final stable filament. This assembly process was tested using different alkali–metal salts, showing a strong preference for chloride or bromide anions and with little dependency on the type of cation. Our data further demonstrates the existence of a critical anion concentration above which the rate of self-assembly is greatly enhanced. PMID:29517086

  8. How fast does water flow in carbon nanotubes?

    PubMed

    Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J

    2013-03-07

    The purpose of this paper is threefold. First, we review the existing literature on flow rates of water in carbon nanotubes. Data for the slip length which characterizes the flow rate are scattered over 5 orders of magnitude for nanotubes of diameter 0.81-10 nm. Second, we precisely compute the slip length using equilibrium molecular dynamics (EMD) simulations, from which the interfacial friction between water and carbon nanotubes can be found, and also via external field driven non-equilibrium molecular dynamics simulations (NEMD). We discuss some of the issues in simulation studies which may be reasons for the large disagreements reported. By using the EMD method friction coefficient to determine the slip length, we overcome the limitations of NEMD simulations. In NEMD simulations, for each tube we apply a range of external fields to check the linear response of the fluid to the field and reliably extrapolate the results for the slip length to values of the field corresponding to experimentally accessible pressure gradients. Finally, we comment on several issues concerning water flow rates in carbon nanotubes which may lead to some future research directions in this area.

  9. One-Step Pyrolytic Synthesis of Multiwalled Carbon Nanotubes: The Role of Resupply of Carbon Species on the Quality Control.

    PubMed

    Rajavel, Krishnamoorthy; Saravanan, Padmanapan; Kumar, Ramasamy Thangavelu Rajendra

    2018-05-01

    An investigation on varying experimental parameters such as solution quantity (2.5, 5 and 7.5 mL) and reaction time (15, 30, 45 and 60 min) was carried out for the production of high-quality multiwalled carbon nanotubes (MWCNTs) in one step pyrolysis. Structural analysis revealed the uniform diameter distribution and the length of nanotubes in the range of 60-80 nm and 0.4-2 μm, respectively. Raman and X-ray diffraction analysis showed a remarkable reduction in defect density with increase in graphitization degree, upon increasing the solution volume and reaction time. MWCNTs prepared at higher solution quantity (7.5 mL) with higher reaction time (60 min) showed higher crystallinity (70% graphitization) and lower defect density (ID/IG: 0.56). The attainment in equilibrium of evaporation cum precipitation in formation of high quality nanotubes structure is evaluated. An effective resupplying of condensed precursors by re-evaporation leads for the achievement of low defect density nanotubes with higher product yield is achieved.

  10. Nanoprobe studies: Electrical transport in carbon nanotubes and crystal structure of aluminum nitride surfaces

    NASA Astrophysics Data System (ADS)

    Biswas, Sujit Kumar

    Nanoprobes are an extraordinary set of experimental tools that allow fabrication, manipulation, and measurement in nano-scale systems. The primary use of a nanoprobe for imaging tiny objects is supplemented by powerful electrical techniques, namely scanning surface potential microscopy and current sensing atomic force microscopy. They allow us to measure potential, and current in carbon nanotube circuits. Nanoprobes are superior to conventional two- or four-probe measurements because they can provide spatial information of local electronic properties. This makes them highly attractive in studying junctions and contacts with carbon nanotubes. We have studied single-walled carbon nanotube circuits, forming junctions to other nanotubes. The experimental results indicate that these junctions act like potential barriers of about 50 meV that can confine electrons with an effective mass of 0.003 me , within nanotube channels of length 0.5 mum lying in-between two such potential barriers. This leads to quantization of the channel, forming a resonant tunneling structure. We have also found that single-walled nanotubes have phase coherence lengths of the order of 1 mum. This leads to situations where the electron interference effects at scattering centers need to be considered. We have seen direct evidence of this, in the non-linear resistance increase within nanotubes with few defects. Ambipolar transistor behavior was measured in a p-type single-walled nanotube circuit that showed electron injection across the Schottky junction at high positive bias. We have also studied multi-walled carbon nanotube circuits using scanning potential microscopy, and found that a back gate potential can vary the resistance of the channel. Vertical nanotube arrays, suitable for interconnects, were also measured. These hollow multi-walled nanotube channels were about 45 nm in diameter, and 50 mum in length, fabricated in an anodized alumina template. We found that these structures could sustain current densities greater than 105 A/cm2. Conventional use of nanoprobes in imaging aluminum nitride surfaces displayed curious step bunching structures. We have used an innovative analysis technique with which the bulk lattice constant of the crystal was measured to an accuracy of about 4% of X-ray crystallography value of 0.497 nm. In addition, this technique showed that there were regions on the surface that had a larger lattice parameter of 0.64 nm, which we interpreted to be due to a variation in the chemical composition of the surface such as oxide formation. We believe that this technique may prove useful as a study of chemical-composition variations on a surface as well as relaxation of the surface layer.

  11. Carbon Nanotubes, Nanocrystal Forms, and Complex Nanoparticle Aggregates in common fuel-gas combustion sources and the ambient air

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Bang, J. J.; Esquivel, E. V.; Guerrero, P. A.; Lopez, D. A.

    2004-06-01

    Aggregated multiwall carbon nanotubes (with diameters ranging from ˜3 to 30nm) and related carbon nanocrystal forms ranging in size from 0.4 to 2 μm (average diameter) have been collected in the combustion streams for methane/air, natural gas/air, and propane gas/air flames using a thermal precipitator. Individual particle aggregates were collected on carbon/formvar-coated 3mm nickel grids and examined in a transmission electron microscope, utilizing bright-field imaging, selected-area electron diffraction analysis, and energy-dispersive X-ray spectrometry techniques. The natural gas and propane gas sources were domestic (kitchen) stoves, and similar particle aggregates collected in the outdoor air were correspondingly identified as carbon nanocrystal aggregates and sometimes more complex aggregates of silica nanocrystals intermixed with the carbon nanotubes and other carbon nanocrystals. Finally, and in light of the potential for methane-series gas burning as major sources of carbon nanocrystal aggregates in both the indoor and outdoor air, data for natural gas consumption and corresponding asthma deaths and incidence are examined with a degree of speculation regarding any significance in the correlations.

  12. Cost-effective single-step carbon nanotube synthesis using microwave oven

    NASA Astrophysics Data System (ADS)

    Algadri, Natheer A.; Ibrahim, K.; Hassan, Z.; Bououdina, M.

    2017-08-01

    This paper reports the characterization of carbon nanotubes (CNTs) synthesised using a conventional microwave oven method, offering several advantages including fast, simple, low cost, and solvent free growth process. The procedure involves flattening of graphite/ferrocene mixture catalyst inside the microwave oven under ambient conditions for a very short duration of 5 s, which inhibits the loss factor of graphite and ferrocene. The effect of graphite/ferrocene mixture ratio for the synthesis of CNTs is investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), Raman spectroscopy and UV-NIR-Vis measurements. The samples produced using the different ratios contain nanotubes with an average diameter in the range 44-79 nm. The highest yield of CNTs is attained with graphite/ferrocene mixture ratio of 70:30. The lowest I D/I G ratio intensity as identified by Raman spectroscopy for 70:30 ratio indicates the improved crystallinity of CNTs. Due to the capillary effect of CNTs, Fe nanoparticles are found to be encapsulated inside the tubes at different positions along the tube length. The obtained results showed that the smaller the diameter of graphite and ferrocene favors the synthesis of graphene oxide upon microwave radiation.

  13. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan

    Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less

  14. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes

    DOE PAGES

    He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan; ...

    2017-07-31

    Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less

  15. High-Yield Synthesis and Optical Properties of Carbon Nanotube Porins

    DOE PAGES

    Tunuguntla, Ramya H.; Chen, Xi; Belliveau, Allison; ...

    2017-01-18

    Carbon nanotube porins (CNTPs) are a convenient membrane-based model system for studying nanofluidic transport that replicates a number of key structural features of biological membrane channels. We present a generalized approach for CNTP synthesis using sonochemistry-assisted segmenting of carbon nanotubes. Prolonged tip sonication in the presence of lipid molecules debundles and fragments long carbon nanotube aggregates into stable and water-soluble individual CNTPs with lengths in the range 5–20 nm. We discuss the main parameters that determine the efficiency and the yield of this process, describe the optimized conditions for high-yield CNTP synthesis, and demonstrate that this methodology can be adaptedmore » for synthesis of CNTPs of different diameters. We also present the optical properties of CNTPs and show that a combination of Raman and UV–vis–NIR spectroscopy can be used to monitor the quality of the CNTP synthesis. Altogether, CNTPs represent a versatile nanopore building block for creating higher-order functional biomimetic materials.« less

  16. Antimicrobial activity of silica coated silicon nano-tubes (SCSNT) and silica coated silicon nano-particles (SCSNP) synthesized by gas phase condensation.

    PubMed

    Tank, Chiti; Raman, Sujatha; Karan, Sujoy; Gosavi, Suresh; Lalla, Niranjan P; Sathe, Vasant; Berndt, Richard; Gade, W N; Bhoraskar, S V; Mathe, Vikas L

    2013-06-01

    Silica-coated, silicon nanotubes (SCSNTs) and silica-coated, silicon nanoparticles (SCSNPs) have been synthesized by catalyst-free single-step gas phase condensation using the arc plasma process. Transmission electron microscopy and scanning tunneling microscopy showed that SCSNTs exhibited a wall thickness of less than 1 nm, with an average diameter of 14 nm and a length of several 100 nm. Both nano-structures had a high specific surface area. The present study has demonstrated cheaper, resistance-free and effective antibacterial activity in silica-coated silicon nano-structures, each for two Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) was estimated, using the optical densitometric technique, and by determining colony-forming units. The MIC was found to range in the order of micrograms, which is comparable to the reported MIC of metal oxides for these bacteria. SCSNTs were found to be more effective in limiting the growth of multidrug-resistant Staphylococcus aureus over SCSNPs at 10 μg/ml (IC 50 = 100 μg/ml).

  17. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube.

    PubMed

    Tomo, Yoko; Askounis, Alexandros; Ikuta, Tatsuya; Takata, Yasuyuki; Sefiane, Khellil; Takahashi, Koji

    2018-03-14

    Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10 -5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

  18. Small diameter carbon nanopipettes

    NASA Astrophysics Data System (ADS)

    Singhal, Riju; Bhattacharyya, Sayan; Orynbayeva, Zulfiya; Vitol, Elina; Friedman, Gary; Gogotsi, Yury

    2010-01-01

    Nanoscale multifunctional carbon probes facilitate cellular studies due to their small size, which makes it possible to interrogate organelles within living cells in a minimally invasive fashion. However, connecting nanotubes to macroscopic devices and constructing an integrated system for the purpose of fluid and electrical signal transfer is challenging, as is often the case with nanoscale components. We describe a non-catalytic chemical vapor deposition based method for batch fabrication of integrated multifunctional carbon nanopipettes (CNPs) with tip diameters much smaller (10-30 nm) than previously reported (200 nm and above) and approaching those observed for multiwalled carbon nanotubes. This eliminates the need for complicated attachment/assembly of nanotubes into nanofluidic devices. Variable tip geometries and structures were obtained by controlled deposition of carbon inside and outside quartz pipettes. We have shown that the capillary length and gas flow rate have a marked effect on the carbon deposition. This gives us a flexible protocol, useful for growing carbon layers of different thicknesses at selective locations on a glass pipette to yield a large variety of cellular probes in bulk quantities. The CNPs possess an open channel for fluid transfer with the carbon deposited inside at 875 °C behaving like an amorphous semiconductor. Vacuum annealing of the CNP tips at temperatures up to 2000 °C yields graphitic carbon structures with an increase in conductivity of two orders of magnitude. Penetration of the integrated carbon nanoprobes into cells was shown to produce minimal Ca2+ signals, fast recovery of basal Ca2+ levels and no adverse activation of the cellular metabolism during interrogation times as long as 0.5-1 h.

  19. Small diameter carbon nanopipettes.

    PubMed

    Singhal, Riju; Bhattacharyya, Sayan; Orynbayeva, Zulfiya; Vitol, Elina; Friedman, Gary; Gogotsi, Yury

    2010-01-08

    Nanoscale multifunctional carbon probes facilitate cellular studies due to their small size, which makes it possible to interrogate organelles within living cells in a minimally invasive fashion. However, connecting nanotubes to macroscopic devices and constructing an integrated system for the purpose of fluid and electrical signal transfer is challenging, as is often the case with nanoscale components. We describe a non-catalytic chemical vapor deposition based method for batch fabrication of integrated multifunctional carbon nanopipettes (CNPs) with tip diameters much smaller (10-30 nm) than previously reported (200 nm and above) and approaching those observed for multiwalled carbon nanotubes. This eliminates the need for complicated attachment/assembly of nanotubes into nanofluidic devices. Variable tip geometries and structures were obtained by controlled deposition of carbon inside and outside quartz pipettes. We have shown that the capillary length and gas flow rate have a marked effect on the carbon deposition. This gives us a flexible protocol, useful for growing carbon layers of different thicknesses at selective locations on a glass pipette to yield a large variety of cellular probes in bulk quantities. The CNPs possess an open channel for fluid transfer with the carbon deposited inside at 875 degrees C behaving like an amorphous semiconductor. Vacuum annealing of the CNP tips at temperatures up to 2000 degrees C yields graphitic carbon structures with an increase in conductivity of two orders of magnitude. Penetration of the integrated carbon nanoprobes into cells was shown to produce minimal Ca(2+) signals, fast recovery of basal Ca(2+) levels and no adverse activation of the cellular metabolism during interrogation times as long as 0.5-1 h.

  20. Effect of Alignment on Transport Properties of Carbon Nanotube/Metallic Junctions

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min; Smits, Jan; Williams, Phillip; Harvey, Robert

    2003-01-01

    Ballistic and spin coherent transport in single walled carbon nanotubes (SWCNT) are predicted to enable high sensitivity single-nanotube devices for strain and magnetic field sensing. Based upon these phenomena, electron beam lithography procedures have been developed to study the transport properties of purified HiPCO single walled carbon nanotubes for development into sensory materials for nondestructive evaluation. Purified nanotubes are dispersed in solvent suspension and then deposited on the device substrate before metallic contacts are defined and deposited through electron beam lithography. This procedure produces randomly dispersed ropes, typically 2 - 20 nm in diameter, of single walled carbon nanotubes. Transport and scanning probe microscopy studies have shown a good correlation between the junction resistance and tube density, alignment, and contact quality. In order to improve transport properties of the junctions a technique has been developed to align and concentrate nanotubes at specific locations on the substrate surface. Lithographic techniques are used to define local areas where high frequency electric fields are to be concentrated. Application of the fields while the substrate is exposed to nanotube-containing solution results in nanotube arrays aligned with the electric field lines. A second electron beam lithography layer is then used to deposit metallic contacts across the aligned tubes. Experimental measurements are presented showing the increased tube alignment and improvement in the transport properties of the junctions.

  1. In situ synthesis of semiconducting single-walled carbon nanotubes by modified arc discharging method

    NASA Astrophysics Data System (ADS)

    Zhao, Tingkai; Ji, Xianglin; Jin, Wenbo; Yang, Wenbo; Zhao, Xing; Dang, Alei; Li, Hao; Li, Tiehu

    2017-02-01

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) were in situ synthesized by a temperature-controlled arc discharging furnace with DC electric field using Co-Ni alloy powder as catalyst in helium gas. The microstructures of s-SWCNTs were characterized using high-resolution transmission electron microscopy, electron diffraction, and Raman spectrometry apparatus. The experimental results indicated that the best voltage value in DC electric field is 54 V, and the environmental temperature of the reaction chamber is 600 °C. The mean diameter of s-SWCNTs was estimated about 1.3 nm. The chiral vector ( n, m) of s-SWCNTs was calculated to be (10, 10) type according to the electron diffraction patterns.

  2. Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors.

    PubMed

    Zhang, Jinying; Zhao, Dan; Xiao, Dingbin; Ma, Chuansheng; Du, Hongchu; Li, Xin; Zhang, Lihui; Huang, Jialiang; Huang, Hongyang; Jia, Chun-Lin; Tománek, David; Niu, Chunming

    2017-02-06

    A phosphorus allotrope that has not been observed so far, ring-shaped phosphorus consisting of alternate P 8 and P 2 structural units, has been assembled inside multi-walled carbon nanotube nanoreactors with inner diameters of 5-8 nm by a chemical vapor transport and reaction of red phosphorus at 500 °C. The ring-shaped nanostructures with surrounding graphene walls are stable under ambient conditions. The nanostructures were characterized by high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman scattering, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phytotoxicity of carbon nanotubes in soybean as determined by interactions with micronutrients

    NASA Astrophysics Data System (ADS)

    Zaytseva, Olga; Wang, Zhengrui; Neumann, Günter

    2017-02-01

    Carbon nanomaterials released into the environment exert extremely variable effects on living organisms. In this study, we used soybean ( Glycine max) to investigate early responses to seed exposure to multi-walled carbon nanotubes (MWCNTs, outer diameter 20-70 nm, inner diameter 5-10 nm, length of >2 μm). Soybean seeds were imbibed with deionised water (control) or MWCNT suspension (1000 mg L-1) and were analysed for MWCNT contamination using light microscopy. The seedlings vitality status was evaluated by staining with triphenyltetrazolium chloride and measurement of oxidative stress indicators in the root tissue. Micronutrient (Zn, Mn, Cu) availability in different seedling organs was assessed and the effects of antioxidants, and micronutrient supplementation was investigated. Oxidative stress induction by MWCNTs was detectable in radicle tips, coincided with MWCNTs accumulation and was reverted by external application of proline as antioxidant and micronutrients (Zn, Cu, Mn) as cofactors for various enzymes involved in oxidative stress defence. Accordingly, SOD activity increased after Zn supplementation. During germination, the MWCNT treatments reduced Zn translocation from the cotyledons to the seedling and MWCNTs exhibited adsorption potential for Zn and Cu, which may be involved in internal micronutrients immobilisation. This study demonstrates for the first time that MWCNT phytotoxicity is linked with oxidative stress-related disturbances of micronutrient homeostasis.

  4. Visible-light induced photocatalysis of AgCl@Ag/titanate nanotubes/nitrogen-doped reduced graphite oxide composites

    NASA Astrophysics Data System (ADS)

    Pan, Hongfei; Zhao, Xiaona; Fu, Zhanming; Tu, Wenmao; Fang, Pengfei; Zhang, Haining

    2018-06-01

    High recombination rate of photogenerated electron-hole pairs and relatively narrow photoresponsive range of TiO2-based photocatalysts are the remaining challenges for their practical applications. To address such challenges, photocatalysts consisting of AgCl covered Ag nanoparticles (AgCl@Ag), titanate nanotubes (TiNT), and nitrogen-doped reduced graphite oxide (rGON) are fabricated through alkaline hydrothermal process, followed by deposition and in situ surface-oxidation of silver nanoparticles. In the synthesized photocatalysts, the titanate nanotubes have average length of about 100 nm with inner diameters of about 5 nm and the size of the formed silver nanoparticles is in the range of 50-100 nm. The synthesized photocatalyst degrades almost all the model organic pollutant Rhodamine B in 35 min and remains 90% of photocatalytic efficiency after 5 degradation cycles under visible light irradiation. Since the oxidant FeCl3 applied for oxidation of surface Ag to AgCl is difficult to be completely removed due to the high adsorption capacity of TiNT and rGON, the effect of reside Fe atoms on photocatalytic activity is evaluated and the results reveal that the residue Fe atom only affect the initial photodegradation performance. Nevertheless, the results demonstrate that the formed composite catalyst is a promising candidate for antibiosis and remediation in aquatic environmental contamination.

  5. Role of surfactants in carbon nanotubes density gradient separation.

    PubMed

    Carvalho, Elton J F; dos Santos, Maria Cristina

    2010-02-23

    Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tubes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 A, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 A. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.

  6. Synthesis and applications of titania nanotubes: Drug delivery and ionomer composites

    NASA Astrophysics Data System (ADS)

    Kulkarni, Harsha Prabhakar

    In this dissertation, the potential of a tubular form of titania (titanium dioxide) has been explored for two diverse applications, in the field of targeted drug delivery for medical applications and in the field of composite materials for structural applications. We introduce the tubular form of titania, a material well known for its catalytic properties. The tubes are synthesized by hydrothermal procedure and are nanometers in dimension, with an inside diameter of 5-6 nm, outside diameter of 10-12, and an aspect ratio of ˜100:1 (l:d), structures both chemically and thermally stable. Biocompatible titania nanotubes with large catalytic surface area are used as vehicles for carrying Doxorubicin, an anticancer chemotherapeutic drug, to explore its potential in targeted drug delivery. Optical properties of Doxorubicin are used to study adsorption and release of the drug molecule from the nanotube surface. Pilot experiments show strong adsorption of 4 wt% of doxorubicin on the nanotube surface characterized by the quenching of its absorption centered at 490 nm. Quinone and protonated amino groups on the drug molecule, involved in protonation and deprotonation with the surface hydroxyls and molecular water on the nanotube surface, are responsible for adsorption. Doxorubicin adsorbed on the nanotube surface show pH specific release, with 40% release at a physiological pH of 7.4 as compared to 4% and 10% at pH values of 3.4 and 5.7 respectively under sink conditions. In vitro cytotoxicity experiments, used to characterize the anticancer potential of the nanotube-drug conjugate, shows comparable toxicity for the conjugates as the free drug. Nanotubes with strong adsorption of doxorubicin, large surface area, pH controlled release, and effective toxicity, demonstrate its potential as a vehicle for targeted drug delivery. If nanotube-drug conjugates with reversible bonds between them, and a pH controlled release in an aqueous solution are promising for medical applications, nanotube-polymer conjugates with nanotubes as reinforcing structures in a polymer matrix with improved mechanical properties are equally promising for structural applications. Nanotubes are used as reinforcing structures in Surlyn, a polyethylene-co-methacrylic acid polymer containing ions. When cooled from the melt, Surlyn shows strong aging effects on mechanical properties over periods of several days to months. Structures in the matrix of the polymer which form with time are responsible for these aging effects on mechanical properties. Aging at short times after cooling from the melt reveal subtle contributions from these structures not fully formed and mechanical properties not fully recovered. Nanotubes are used as reinforcing structures to improve the mechanical properties at short aging times, a property desired for high temperature applications demanding a quick recovery of mechanical properties. A unique Atomic Force Microscope (AFM) based Local Thermal Analysis (LTA) probe is used to study the mechanical properties of Surlyn and Nanotube-Surlyn composite. Nanotube-Surlyn composites show superior mechanical properties at both short and long aging times after cooling from the melt, as the structures in the matrix continue to form at long aging times.

  7. Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces

    DOEpatents

    Hauge, Robert H [Houston, TX; Xu, Ya-Qiong [Houston, TX; Shan, Hongwei [Houston, TX; Nicholas, Nolan Walker [South Charleston, WV; Kim, Myung Jong [Houston, TX; Schmidt, Howard K [Cypress, TX; Kittrell, W Carter [Houston, TX

    2012-02-28

    A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.

  8. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  9. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Zheng, Yudong; Qiao, Kun; Su, Lei; Sanghera, Amendeep; Song, Wenhui; Yue, Lina; Sun, Yi

    2015-12-01

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  10. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect

    NASA Astrophysics Data System (ADS)

    Mondal, Anindita; Basu, Ruma; Das, Sukhen; Nandy, Papiya

    2011-10-01

    Nowadays an increasing application of nanotechnology in different fields has arisen an extensive debate about the effect of the engineered nanoparticles on environment . Phytotoxicity of nanoparticles has come into limelight in the last few years. However, very few studies have been done so far on the beneficial aspects of nanoparticles on plants. In this article, we report the beneficial effect of multi-walled carbon nanotubes (MWCNTs) having diameter of 30 nm on Brassica juncea (mustard) seeds. Measurements of germination rate, T 50 (time taken for 50% germination), shoot and root growth have shown encouraging results using low concentration of oxidized MWCNT (OMWCNT) treated seeds as compared to non-oxidized as well as high concentration OMWCNT treated seeds. For toxicity study we measured the germination index and relative root elongation, while conductivity test and infra-red spectra were also performed to study the overall effect of oxidized and non-oxidized nanotubes on mustard seeds and seedlings.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tunuguntla, Ramya H.; Chen, Xi; Belliveau, Allison

    Carbon nanotube porins (CNTPs) are a convenient membrane-based model system for studying nanofluidic transport that replicates a number of key structural features of biological membrane channels. We present a generalized approach for CNTP synthesis using sonochemistry-assisted segmenting of carbon nanotubes. Prolonged tip sonication in the presence of lipid molecules debundles and fragments long carbon nanotube aggregates into stable and water-soluble individual CNTPs with lengths in the range 5–20 nm. We discuss the main parameters that determine the efficiency and the yield of this process, describe the optimized conditions for high-yield CNTP synthesis, and demonstrate that this methodology can be adaptedmore » for synthesis of CNTPs of different diameters. We also present the optical properties of CNTPs and show that a combination of Raman and UV–vis–NIR spectroscopy can be used to monitor the quality of the CNTP synthesis. Altogether, CNTPs represent a versatile nanopore building block for creating higher-order functional biomimetic materials.« less

  12. Ice Nucleation Properties of Oxidized Carbon Nanomaterials

    PubMed Central

    2015-01-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  13. Betavoltaic effect in titanium dioxide nanotube arrays under build-in potential difference

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Ranbin; San, Haisheng; Liu, Guohua; Wang, Kaiying

    2015-05-01

    We report the fabrication of sandwich-type metal/TiO2 nanotube (TNT) array/metal structures as well as their betavoltaic effects under build-in voltage through contact potential difference. The sandwiched structure is integrated by immobilized TNT arrays on Ti foil with radioisotope 63Ni planar source on Ni substrate (Ni-63Ni/TNT array/Ti). Under irradiation of the 63Ni source with activity of 8 mCi, the structure (TNT diameter ∼ 130 nm, length ∼ 11 μm) presents optimum energy conversion efficiency of 7.30% with open-circuit voltage of 1.54 V and short-circuit current of 12.43 nA. The TNT arrays exhibit a highly potential for developing betavoltaic batteries due to its wide band gap and nanotube array configuration. The TNT-betavoltaic concept offers a facile solution for micro/nano electronics with high efficiency and long life-time instead of conventional planar junction-type batteries.

  14. The fabrication and property of hydrophilic and hydrophobic double functional bionic chitosan film.

    PubMed

    Wang, Xiaohong; Xi, Zhen; Liu, Zhongxin; Yang, Liang; Cao, Yang

    2011-11-01

    A new kind of hydrophobic bionic chitosan film was fabricated by simulating the surface structure of lotus leaf. The titanium oxide nanotube array was used as templates. Scanning electron microscopy (SEM) images show that one side of this films have nano-scale rough surface with spherical protrusions alike the surface of lotus leaf. The diameter of the protrusions is about 100 nm, which is equal to diameter of the titanium oxide nanotube. The water contact angle of chitosan films is up to 120 degrees and it is hydrophobic. The other side of the film is flat and the contact angle is 70 degrees. That indicated that the hydrophilism of natural materials is connected with the surface structures. The double functional chitosan films, one side is hydrophilic, the other is hydrophobic, can be made by an easy method. This method is non-toxic and clean. The double functional chitosan film will improve the application of chitosan films in medicine.

  15. Directed Growth of Carbon Nanotubes Across Gaps

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Meyyapan, Meyya

    2008-01-01

    An experiment has shown that when single-walled carbon nanotubes (SWNTs) are grown by chemical vapor deposition in the presence of an electric field of suitable strength, the nanotubes become aligned along the electric field. In an important class of contemplated applications, one would exploit this finding in fabricating nanotube transistors; one would grow SWNTs across gaps between electrodes that would serve, subsequently, as source and drain contacts during operation of the transistors. In preparation for the experiment, a multilayer catalyst comprising a 20-nmthick underlayer of iridium (platinum group), a 1-nm-thick middle layer of iron, and a 0.2-nm-thick outer layer of molybdenum was ion-beam sputtered onto a quartz substrate. A 25 micrometers-diameter iron wire was used as a shadow mask during the sputtering to create a 25 micrometers gap in the catalyst. Then electrical leads were connected to the catalyst areas separated by the gap so that these catalyst areas would also serve as electrodes. The substrate as thus prepared was placed in a growth chamber that consisted of a quartz tube of 1-in. (2.54-cm) diameter enclosed in a furnace. SWNTs of acceptably high quantity and quality were grown in 10 minutes with methane at atmospheric pressure flowing through the chamber at a rate of 1,000 standard cubic centimeters per minute at a temperature of 900 C. To prevent oxidation of the SWNTs, the chamber was purged with 99.999-percent pure argon before and after growth, and the chamber was cooled to less than 300 C before opening it to the atmosphere after growth. When no voltage was applied across the gap, the SWNTs grew in random directions extending out from the edges of the catalyst at the gap. When a potential of 10 V was applied between the catalyst/electrode areas to create an electric field across the gap, the SWNTs grew across the gap, as shown in the figure.

  16. Transition of carbon nanostructures in heptane diffusion flames

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Chieh; Hou, Shuhn-Shyurng; Lin, Ta-Hui

    2017-02-01

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20-30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1-2.5 mm below the flame front were in the range of 20-25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  17. A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana

    2015-11-15

    Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less

  18. Facile approach to fabricate BCN/Fe x (B/C/N) y nano-architectures with enhanced electromagnetic wave absorption.

    PubMed

    Zhang, Tao; Zhang, Jian; Luo, Heng; Deng, Lianwen; Zhou, Pengyu; Wen, Guangwu; Xia, Long; Zhong, Bo; Zhang, Haibin

    2018-06-08

    Carbon-based materials have excited extensive interest for their remarkable electrical properties and low density for application in electromagnetic (EM) wave absorbents. However, the processing of heteroatoms doping in carbon nanostructures is an insuperable challenge for attaining effective reflection loss and EM matching. Herein, a facile method for large-scale synthesis of boron and nitrogen doped carbon nanotubes decorated by ferrites particles is proposed. The BCN nanotubes (50-100 nm in diameter) imbedded with nanosized Fe x (B/C/N) y (10-20 nm) are successfully constructed by two steps of polymerization and carbonthermic reduction. The product exhibits an outstanding reflection loss (RL) performance, in that the minimum RL is -47.97 dB at 11.44 GHz with a broad bandwidth 11.2 GHz (from 3.76 to 14.9 GHz) below -10 dB indicating a competitive absorbent in stealth materials. Crystalline and theoretical studies of the absorption mechanism indicate a unique dielectric dispersion effect in the absorbing bandwidth.

  19. Facile approach to fabricate BCN/Fe x (B/C/N) y nano-architectures with enhanced electromagnetic wave absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Zhang, Jian; Luo, Heng; Deng, Lianwen; Zhou, Pengyu; Wen, Guangwu; Xia, Long; Zhong, Bo; Zhang, Haibin

    2018-06-01

    Carbon-based materials have excited extensive interest for their remarkable electrical properties and low density for application in electromagnetic (EM) wave absorbents. However, the processing of heteroatoms doping in carbon nanostructures is an insuperable challenge for attaining effective reflection loss and EM matching. Herein, a facile method for large-scale synthesis of boron and nitrogen doped carbon nanotubes decorated by ferrites particles is proposed. The BCN nanotubes (50–100 nm in diameter) imbedded with nanosized Fe x (B/C/N) y (10–20 nm) are successfully constructed by two steps of polymerization and carbonthermic reduction. The product exhibits an outstanding reflection loss (RL) performance, in that the minimum RL is ‑47.97 dB at 11.44 GHz with a broad bandwidth 11.2 GHz (from 3.76 to 14.9 GHz) below ‑10 dB indicating a competitive absorbent in stealth materials. Crystalline and theoretical studies of the absorption mechanism indicate a unique dielectric dispersion effect in the absorbing bandwidth.

  20. Halloysite Clay Nanotubes for Enzyme Immobilization.

    PubMed

    Tully, Joshua; Yendluri, Raghuvara; Lvov, Yuri

    2016-02-08

    Halloysite clay is an aluminosilicate nanotube formed by rolling flat sheets of kaolinite clay. They have a 15 nm lumen, 50-70 nm external diameter, length of 0.5-1 μm, and different inside/outside chemistry. Due to these nanoscale properties, they are used for loading, storage, and controlled release of active chemical agents, including anticorrosions, biocides, and drugs. We studied the immobilization in halloysite of laccase, glucose oxidase, and lipase. Overall, negatively charged proteins taken above their isoelectric points were mostly loaded into the positively charged tube's lumen. Typical tube loading with proteins was 6-7 wt % from which one-third was released in 5-10 h and the other two-thirds remained, providing enhanced biocatalysis in nanoconfined conditions. Immobilized lipase showed enhanced stability at acidic pH, and the optimum pH shifted to more alkaline pH. Immobilized laccase was more stable with respect to time, and immobilized glucose oxidase showed retention of enzymatic activity up to 70 °C, whereas the native sample was inactive.

  1. Synthesis of Multiwall Carbon Nanotubes by Inductive Heating CCVD

    NASA Technical Reports Server (NTRS)

    Biris, A. R.; Biris, A. S.; Lupu, D.; Trigwell, S.; Rahman, Z. U.; Aldea, N.; Marginean, P.

    2005-01-01

    The CCVD syntheses of MWCNTs from acetylene on Fe:Co:CaCO 3 and Fe:Co:CaO were performed using two different methods of heating: outer furnace and inductive heating. The comparative analysis of the MWCNTs obtained by the two methods show that the tubes grown in inductive heating have smaller diameters (5-25 nm), with fewer walls and aspect ratio of the order of hundreds. The ratio of outer to inner diameter (od/id) is ranging between 2 and 2.5. Inductively assisted CCVD is a very attractive method because of the major advantages that it presents, like low energetic consumption, thinner, well crystallized and more uniform tubes.

  2. Electrochemical study of highly durable cathode with Pt supported on ITO-CNT composite for proton exchange membrane fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sehkyu; Shao, Yuyan; Viswanathan, Vilayanur V.

    2016-10-01

    In this paper, we describe a highly stable cathode containing a Pt catalyst supported on an indium tin oxide (ITO) and carbon nanotube (CNT) composite. The dependence of cathode performance and durability on the ITO content and the diameter of the CNTs were investigated by electrochemical techniques. The cathode with 30 wt% ITO and CNTs with diameters 10–20 nm in the composite offered preferred locations for Pt stabilization and was very resistant to carbon corrosion (i.e., 82.7% ESA retention and 105.7% mass activity retention after an accelerated stress test for 400 h).

  3. Structural and surface property characterization of titanium dioxide nanotubes for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Shokuhfar, Tolou

    This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia -- cell's foot used for locomotion -- anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.

  4. Titanate nanotube thin films with enhanced thermal stability and high-transparency prepared from additive-free sols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koroesi, Laszlo, E-mail: korosi@enviroinvest.hu; Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertvaros utca 2, H-7632 Pecs; Papp, Szilvia

    2012-08-15

    Titanate nanotubes were synthesized from TiO{sub 2} in alkaline medium by a conventional hydrothermal method (150 Degree-Sign C, 4.7 bar). To obtain hydrogen titanates, the as-prepared sodium titanates were treated with either HCl or H{sub 3}PO{sub 4} aqueous solutions. A simple synthesis procedure was devised for stable titanate nanotube sols without using any additives. These highly stable ethanolic sols can readily be used to prepare transparent titanate nanotube thin films of high quality. The resulting samples were studied by X-ray diffraction, N{sub 2}-sorption measurements, Raman spectroscopy, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The comparative resultsmore » of using two kinds of acids shed light on the superior thermal stability of the H{sub 3}PO{sub 4}-treated titanate nanotubes (P-TNTs). X-ray photoelectron spectroscopy revealed that P-TNTs contains P in the near-surface region and the thermal stability was enhanced even at a low ({approx}0.5 at%) concentration of P. After calcination at 500 Degree-Sign C, the specific surface areas of the HCl- and H{sub 3}PO{sub 4}-treated samples were 153 and 244 m{sup 2} g{sup -1}, respectively. The effects of H{sub 3}PO{sub 4} treatment on the structure, morphology and porosity of titanate nanotubes are discussed. - Graphical Abstract: TEM picture (left) shows P-TNTs with diameters about 5-6 nm. Inset shows a stable titanate nanotube sol illuminated by a 532 nm laser beam. Due to the presence of the nanoparticles the way of the light is visible in the sol. Cross sectional SEM picture (right) as well as ellipsometry revealed the formation of optical quality P-TNT films with thicknesses below 50 nm. Highlights: Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} treatment led to TNTs with high surface area even after calcination at 500 Degree-Sign C. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4}-treated TNTs preserved their nanotube morphology up to 500 Degree-Sign C. Black-Right-Pointing-Pointer Stable TNT sols can be prepared by the peptization of TNT gels. Black-Right-Pointing-Pointer High-transparency TNT thin films of high quality were fabricated.« less

  5. Mass transport through vertically aligned large diameter MWCNT embedded in parylene

    PubMed Central

    Krishnakumar, P; Tiwari, P B; Staples, S; Luo, T; Darici, Y; He, J; Lindsay, SM

    2013-01-01

    We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotube (MWCNT, about 7nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4×104 V/m, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomer and gold nanoparticle under a modest pressure (<294 Pa). PMID:23064678

  6. Electrolytic Generation of Nano-Scale Carbon Phases with Framework Structures in Molten Salts on Metal Cathodes

    NASA Astrophysics Data System (ADS)

    Novoselova, Inessa A.; Oliinyk, Nikolai F.; Voronina, Anastasiya B.; Volkov, Sergei V.

    2008-08-01

    An electrochemical study of mechanisms of electrodeposition of carbon solid phases from halide melts (Na,K|Cl; Na,K,Cs|Cl), saturated with carbon dioxide under an excessive pressure of up to 1.5 MPa, has been carried out in the temperature range 550 - 850 °C by cyclic voltammetry. It has been found that the cathode process occurs in three steps at sweep rates of less than 0.1 Vs-1, and its electrochemical-chemical-electrochemical (ECE) mechanism is suggested. It has furthermore been found that cathodic deposits contain nano-sized carbon particles of different forms and structure: blocks of amorphous carbon, crystalline graphite, carbon nanotubes (CNT), and nanofibres. The outer diameter of the tubes is 5 - 250 nm, and the internal diameter is 2 - 140 nm. A correlation between the product structure and yield against electrolysis conditions and regimes has been established.

  7. Dual functional nisin-multi-walled carbon nanotubes coated filters for bacterial capture and inactivation.

    PubMed

    Dong, Xiuli; Yang, Liju

    2015-01-01

    Removal of pathogens from water is one way to prevent waterborne illness. In this paper, we developed dual functional carbon nanotube (CNT) modified filters for bacterial capture and inactivation, utilizing multi-walled CNTs (MWCNTs) to coat on commercially available filters and making use of the exceptional adsorption property of CNTs to adsorb a natural antimicrobial peptide-nisin on it. Two types of MWCNTs with different outer layer diameters were used (MWCNTs1: <8 nm in diameter; MWCNTs2: 10-20 nm in diameter). The thickness of MWCNT layers, surface morphology, and surface hydrophobicity of both types of MWCNT coated filters were characterized. The MWCNT coating on filters significantly increased the surface hydrophobicity. The absorption of nisin and the capture of bacterial pathogens were correlated with increased surface hydrophobicity. The MWCNTs1 and MWCNTs2 filters with 1.5 mg MWCNTs loading captured 2.44 and 3.88 log of cells, respectively, from aqueous solutions containing a total of ~10(6) CFU/mL cells. Nisin deposit at the amount of 0.5 mg on the surfaces of MWCNT filters significantly reduced the viability of captured B. anthracis cells by 95.71-97.19 %, and inhibited the metabolic activities of the captured cells by approximately 98.3 %. The results demonstrated that the MWCNT-nisin filters achieved dual functions in bacterial pathogen capture and inhibition in one single filtration step, which is potentially applicable in removing undesired microorganisms from water sources and inhibiting captured Gram positive bacteria activities.

  8. Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles

    PubMed Central

    Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri

    2011-01-01

    The thermal stability of multiwalled carbon nanotubes (CNTs) was studied in high vacuum using tungsten nanoparticles as miniaturized thermal probes. The particles were placed on CNTs inside a high-resolution transmission electron microscope equipped with a scanning tunneling microscope unit. The setup allowed manipulating individual nanoparticles and heating individual CNTs by applying current to them. CNTs were found to withstand high temperatures, up to the melting point of 60-nm-diameter W particles (∼3400 K). The dynamics of W particles on a hot CNT, including particle crystallization, quasimelting, melting, sublimation and intradiffusion, were observed in real time and recorded as a video. Graphite layers reel off CNTs when melted or premelted W particles revolve along the tube axis. PMID:27877413

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Guo, F.; Wang, X.

    One-dimensional (1D) nanotubes of Nd{sub 0.1}Bi{sub 0.9}FeO{sub 3} (NBFO) with an inner diameter of ∼50 nm were synthesized via sol-gel based electrospinning without template assistant. The phases, morphologies, crystalline structures, and magnetic properties of these 1D nanostructures were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and SQUID, respectively. It was found that the calcination condition plays a crucial role in determining the morphologies and the magnetic properties. Interestingly, these 1D NBFO nanotubes exhibit wasp-waisted magnetic hysteresis with a lower coercivity and larger saturation magnetization, which were prevalent in natural rocks and artificial composite materials. The originmore » of these wasp-waisted hysteresis loops was discussed.« less

  10. Sodium chloride-catalyzed oxidation of multiwalled carbon nanotubes for environmental benefit.

    PubMed

    Endo, Morinobu; Takeuchi, Kenji; Tajiri, Takeyuki; Park, Ki Chul; Wang, Feng; Kim, Yoong-Ahm; Hayashi, Takuya; Terrones, Mauricio; Dresselhaus, Mildred S

    2006-06-22

    A sodium chloride (NaCl) catalyst (0.1 w/w %) lowers the oxidation temperature of graphitized multiwalled carbon nanotubes: MWCNT-20 (diameter: 20-70 nm) and MWCNT-80 (diameter: 80-150 nm). The analysis of the reaction kinetics indicates that the oxidation of MWCNT-20 and MWCNT-80 mixed with no NaCl exhibits single reaction processes with activation energies of E(a) = 159 and 152 kJ mol(-1), respectively. The oxidation reaction in the presence of NaCl is shown to consist of two different reaction processes, that is, a first reaction and a second reaction process. The first reaction process is dominant at a low temperature of around 600 degrees C, while the second reaction process becomes more dominant than the first one in a higher temperature region. The activation energies of the first reaction processes (MWCNT-20: E(a1) = 35.7 kJ mol(-1); MWCNT-80: E(a1) = 43.5 kJ mol(-1)) are much smaller than those of the second reaction processes (MWCNT-20: E(a2) = 170 kJ mol(-1); MWCNT-80: E(a2) = 171 kJ mol(-1)). The comparison of the kinetic parameters and the results of the spectroscopic and microscopic analyses imply that the lowering of the oxidation temperature in the presence of NaCl results from the introduction of disorder into the graphitized MWCNTs (during the first reaction process), thus increasing the facility of the oxidation reaction of the disorder-induced nanotubes (in the second reaction process). It is found that the larger nanopits and cracks on the outer graphitic layers are caused by the catalytic effect of NaCl. Therefore, the NaCl-mixed samples showed more rapid and stronger oxidation compared with that of the nonmixed samples at the same residual quantity.

  11. Production and Characterization of Carbon Nanotubes and Nanotube-Based Composites

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Arepalli, Sivaram; Holmes, William; Gorelik, Olga; Files, Brad; Scott, Carl; Santos, Beatrice; Mayeaux, Brian; Victor, Joe

    1999-01-01

    The Nobel Prize winning discovery of the Buckuball (C60) in 1985 at Rice University by a group including Dr. Richard Smalley led to the whole new class of carbon allotropes including fullerenes and nanotubes. Especially interesting from many viewpoints are single-walled carbon nanotubes, which structurally are like a single graphitic sheet wrapped around a cylinder and capped at the ends. This cylinders have diameter as small as 0.5 - 2 nm (1/100,000th the diameter of a human hair) and are as long as 0.1 - 1 mm. Nanotubes are really individual molecules and believed to be defect-free, leading to high tensile strength despite their low density. Additionally, these fibers exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, strength 100 times higher than steel at one-sixth the weight, and high strain to failure. Thus it is believed that developments in the field of nanotechnology will lead to stronger and lighter composite materials for next generation spacecraft. Lack of a bulk method of production is the primary reason nanotubes are not used widely today. Toward this goal JSC nanotube team is exploring three distinct production techniques: laser ablation, arc discharge and chemical vapor deposition (CVD, in collaboration with Rice University). In laser ablation technique high-power laser impinges on the piece of carbon containing small amount of catalyst, and nanotubes self-assemble from the resulting carbon vapor. In arc generator similar vapor is created in arc discharge between carbon electrodes with catalyst. In CVD method nanotubes grow at much lower temperature on small catalyst particles from carbon-containing feedstock gas (methane or carbon monoxide). As of now, laser ablation produces cleanest material, but mass yield is rather small. Arc discharge produces grams of material, but purity is low. CVD technique is still in baby steps, but preliminary results look promising, as well as perspective of scaling the process up. We are also working on necessary purification of nanotubes. Applications of nanotubes are in such various fields as lightweight composites, molecular electronics, energy storage (electrodes in Li ion batteries), flat panel displays, conductive polymers, etc. JSC nanotube team is focused on development of lightweight materials. We work on the injection thermoset epoxies reinforced with nanotubes. Early results show good wetting of nanotube surface with epoxy, which is very important. More research will be possible as more nanotubes become available.

  12. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials.

    PubMed

    Misra, R D K; Depan, D; Shah, J

    2013-08-21

    The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging.

  13. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma

    PubMed Central

    Muñoz-Sandoval, Emilio; Magaña-Maldonado, Roxana; Hernández Pedro, Norma; Rangel López, Edgar; González Aguilar, Alberto; Sánchez García, Aurora; Sotelo, Julio; Pérez de la Cruz, Verónica; Pineda, Benjamín

    2017-01-01

    Despite multiple advances in the diagnosis of brain tumors, there is no effective treatment for glioblastoma. Multiwalled carbon nanotubes (MWCNTs), which were previously used as a diagnostic and drug delivery tool, have now been explored as a possible therapy against neoplasms. However, although the toxicity profile of nanotubes is dependent on the physicochemical characteristics of specific particles, there are no studies exploring how the effectivity of the carbon nanotubes (CNTs) is affected by different methods of production. In this study, we characterize the structure and biocompatibility of four different types of MWCNTs in rat astrocytes and in RG2 glioma cells as well as the induction of cell lysis and possible additive effect of the combination of MWCNTs with temozolomide. We used undoped MWCNTs (labeled simply as MWCNTs) and nitrogen-doped MWCNTs (labeled as N-MWCNTs). The average diameter of both pristine MWCNTs and pristine N-MWCNTs was ~22 and ~35 nm, respectively. In vitro and in vivo results suggested that these CNTs can be used as adjuvant therapy along with the standard treatment to increase the survival of rats implanted with malignant glioma. PMID:28860763

  14. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma.

    PubMed

    Romano-Feinholz, Samuel; Salazar-Ramiro, Alelí; Muñoz-Sandoval, Emilio; Magaña-Maldonado, Roxana; Hernández Pedro, Norma; Rangel López, Edgar; González Aguilar, Alberto; Sánchez García, Aurora; Sotelo, Julio; Pérez de la Cruz, Verónica; Pineda, Benjamín

    2017-01-01

    Despite multiple advances in the diagnosis of brain tumors, there is no effective treatment for glioblastoma. Multiwalled carbon nanotubes (MWCNTs), which were previously used as a diagnostic and drug delivery tool, have now been explored as a possible therapy against neoplasms. However, although the toxicity profile of nanotubes is dependent on the physicochemical characteristics of specific particles, there are no studies exploring how the effectivity of the carbon nanotubes (CNTs) is affected by different methods of production. In this study, we characterize the structure and biocompatibility of four different types of MWCNTs in rat astrocytes and in RG2 glioma cells as well as the induction of cell lysis and possible additive effect of the combination of MWCNTs with temozolomide. We used undoped MWCNTs (labeled simply as MWCNTs) and nitrogen-doped MWCNTs (labeled as N-MWCNTs). The average diameter of both pristine MWCNTs and pristine N-MWCNTs was ~22 and ~35 nm, respectively. In vitro and in vivo results suggested that these CNTs can be used as adjuvant therapy along with the standard treatment to increase the survival of rats implanted with malignant glioma.

  15. Stability and thermal behavior of molybdenum disulfide nanotubes: Nonequilibrium molecular dynamics simulation using REBO potential

    NASA Astrophysics Data System (ADS)

    Ahadi, Zohreh; Shadman Lakmehsari, Muhammad; Kumar Singh, Sandeep; Davoodi, Jamal

    2017-12-01

    This study is an attempt to perform equilibrium molecular dynamics and non-equilibrium molecular dynamics (NEMD) to evaluate the stability and thermal behavior of molybdenum disulfide nanotubes (MoS2NTs) by reactive empirical bond order potential. The stability of nanotubes, cohesive energy, isobaric heat capacity, and enthalpies of fusion in armchair and zigzag structures with different radii were calculated. The observed results illustrate that SWMoS2NTs, which have larger diameters, are more stable with more negative energy than the smaller ones. Moreover, it was found that the melting point is increased with an increase in the nanotube's radius. During the melting process, the structural transformation of nanotubes was investigated using a mean-square displacement and radial distribution function diagrams. Afterwards, using a NEMD simulation, the thermal conductivity of nanotubes with various diameters was calculated at a constant nanotube length. The obtained results show that the thermal conductivity coefficient increases with increasing nanotube diameters when the nanotube length is constant.

  16. Landau-Squire jet as a versatile probe to measure flow rate through individual nanochannel and nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Marbach, Sophie; Siria, Alessandro; Bocquet, Lyderic

    2015-11-01

    Over the last decade, nanometric sized channels have been intensively investigated since new model of fluid transport are expected due to the flow confinement at the nanometric scale. Nanoconfinement generates new phenomena, such as superfast flows in carbon nanotubes and slippage over smooth surfaces. However, a major challenge of nanofluidics lies in fabricating nanoscale fluidic devices and developing new velocimetry techniques able to measure flow rates down to femtoL/s. In this work we report the experimental study of the velocity fields generated by pressure driven flow from glass nanochannel with a diameter ranging from 1 μm to 100nm. The flow emerging from these channels can be described by the classical Landau-Squire solution of the Navier-Stokes equation for a point jet. We show that due to the peculiarity of this flow, it can be used as an efficient probe to characterize the permeability of nanochannels. Velocity field is measured experimentally seeding the fluid in the reservoir with 500 nm Polystyrene particles and measuring the velocity with a standard PIV algorithm. Predictions are tested for nanochannels of several dimensions and supported by ionic current measurement. This demonstrates that this technique is a powerful tool to characterize the flow through nanochannels. We finally apply this method to the measurement of the flow emerging from a single carbon nanotube inserted in the nanochannels and present first data of permeability measurement through a single nanotube.

  17. β-armchair antimony nanotube: Structure, stability and electronic properties

    NASA Astrophysics Data System (ADS)

    Singh, Shilpa; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-05-01

    In the present work, we have used density functional theory (DFT) to investigate the structure, stability and electronic properties of β-armchair antimony nanotube (ASbNT). We have calculated formation energy and found that β-armchair antimony nanotube (ASbNT) is energetically less stable than β-antimonene. The result shows that β-ASbNT of higher diameter are more stable than nanotubes of lower diameter while electronic band structure shows semiconducting nature of these nanotubes.

  18. Synthesis of molecular imprinted polymer modified TiO{sub 2} nanotube array electrode and their photoelectrocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Na; Chen Shuo; Wang Hongtao

    2008-10-15

    A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less

  19. High-Field Quasiballistic Transport in Short Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Javey, Ali; Guo, Jing; Paulsson, Magnus; Wang, Qian; Mann, David; Lundstrom, Mark; Dai, Hongjie

    2004-03-01

    Single walled carbon nanotubes with Pd Ohmic contacts and lengths ranging from several microns down to 10nm are investigated by electron transport experiments and theory. The mean-free path (MFP) for acoustic phonon scattering is estimated to be lap˜300 nm, and that for optical phonon scattering is lop˜15 nm. Transport through very short (˜10 nm) nanotubes is free of significant acoustic and optical phonon scattering and thus ballistic and quasiballistic at the low- and high-bias voltage limits, respectively. High currents of up to 70 μA can flow through a short nanotube. Possible mechanisms for the eventual electrical breakdown of short nanotubes at high fields are discussed. The results presented here have important implications to high performance nanotube transistors and interconnects.

  20. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity

    NASA Astrophysics Data System (ADS)

    Ahmadi Nadooshan, Afshin; Hemmat Esfe, Mohammad; Afrand, Masoud

    2017-08-01

    In the present paper, the dynamic viscosity of 10W40 lubricant containing hybrid nano-materials has been examined. Hybrid nano-materials were composed of 90% of silica (SiO2) with 20-30 nm mean particle size and 10% of multi-walled carbon nanotubes (MWCNTs) with inner diameter of 2-6 nm and outer diameter of 5-20 nm. Nano-lubricant samples were prepared by two-step method with solid volume fractions of 0.05%, 0.1%, 0.25%, 0.5%, 0.75% and 1%. Dynamic viscosity of the samples was measured at temperatures between 5 and 55 °C and at shear rates of 666.5 s-1 up to 11,997 s-1. Experimental results indicated that the nano-lubricant had non-Newtonian behavior at all temperatures, while 10w40 oil was non-Newtonian only at high temperatures. With the use of the curve fitting technique of experimental data, power law and consistency indexes were obtained; furthermore, these coefficients were assessed by shear stress and viscosity diagram.

  1. Phonon vibrational frequencies of all single-wall carbon nanotubes at the lambda point: reduced matrix calculations.

    PubMed

    Wang, Yufang; Wu, Yanzhao; Feng, Min; Wang, Hui; Jin, Qinghua; Ding, Datong; Cao, Xuewei

    2008-12-01

    With a simple method-the reduced matrix method, we simplified the calculation of the phonon vibrational frequencies according to SWNTs structure and their phonon symmetric property and got the dispersion properties of all SWNTs at Gamma point in Brillouin zone, whose diameters lie between 0.6 and 2.5 nm. The calculating time is shrunk about 2-4 orders. A series of the dependent relationships between the diameters of SWNTs and the frequencies of Raman and IR active modes are given. Several fine structures including "glazed tile" structures in omega approximately d figures are found, which might predict a certain macro-quantum phenomenon of the phonons in SWNTs.

  2. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites.

    PubMed

    Narayanan, T N; Mary, A P Reena; Shaijumon, M M; Ci, Lijie; Ajayan, P M; Anantharaman, M R

    2009-02-04

    Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT-SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at approximately 110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT-SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT-SPION composite can be envisaged as a good agent for various biomedical applications.

  3. Hydrothermal synthesis and processing of hydrogen titanate nanotubes for nicotine electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Mersal, Gaber A. M.; Mostafa, Nasser Y.; Omar, Abd-Elkader H.

    2017-08-01

    Hydrogen titanate nanotubes (HTNT) were prepared via acid washing of hydrothermally synthesized sodium titantate nanotube. HTNTs with diameters in the range 7-9 nm and length of several hundred nanometers were annealed at different temperatures and used to modify carbon paste electrode (CPE). Cyclic and square wave voltammetric techniques were used to investigate the behavior of nicotine at HTNT modified carbon paste electrode (HTNTCPE). The nicotine-oxidation reaction over HTNTCPE was irreversible and adsorption process is the rate determining step. HTNTs annealed at 500 °C showed the best response to nicotine. The nicotine concentration was determined at the ideal conditions by square wave voltammetry (SWV). The calibration was linear from 0.1 to 500.0 µmol l-1 with a correlation coefficient of 0.995. The detection limits were found to be 0.005 µmol l-1. The present HTNTCPE was used to the determination of nicotine in two cigarette brands and it showed outstanding performance with respect to detection limit and sensitivity.

  4. In-situ fabrication of halloysite nanotubes/silica nano hybrid and its application in unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Ding, Yong; Luo, Yuanfang; Jia, Demin

    2017-06-01

    Silica nanoparticles was in-situ grown on the surface of halloysite nanotubes (HNTs) by a facile one-step approach to prepare a unique nano-structured hybrid (HNTs-g-Silica). The structure, morphology and composition of HNTs-g-Silica were investigated. It was confirmed that silica nanoparticles with the diameter of 10-20 nm were chemically grafted through Sisbnd O bonds and uniformly dispersed onto the surface of HNTs, leading to the formation of nano-protrusions on the nanotube surface. Due to the significantly improved interface strength between HNTs-g-Silica and polymer matrix, HNTs-g-Silica effectively toughened unsaturated polyester resin (UPE) and endowed UPE with superior thermal stability compared to HNTs. Based on the unique hybrid architecture and the improved properties of UPE nanocomposites, it is envisioned that HNTs-g-Silica may be a promising filler for more high performance and functional polymers composites and the fabrication method may have implications in the synthesis of nano hybrid materials.

  5. Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wei, Y. Y.; Eres, Gyula; Merkulov, V. I.; Lowndes, D. H.

    2001-03-01

    The correlation between prepatterned catalyst film thickness and carbon nanotube (CNT) growth by selective area chemical vapor deposition (CVD) was studied using Fe and Ni as catalyst. To eliminate sample-to-sample variations and create a growth environment in which the film thickness is the sole variable, samples with continuously changing catalyst film thickness from 0 to 60 nm were fabricated by electron-gun evaporation. Using thermal CVD CNTs preferentially grow as a dense mat on the thin regions of the catalyst film. Moreover, beyond a certain critical film thickness no tubes were observed. The critical film thickness for CNT growth was found to increase with substrate temperature. There appears to be no strong correlation between the film thickness and the diameter of the tubes. In contrast, using plasma enhanced CVD with Ni as catalyst, vertically oriented CNTs grow in the entire range of catalyst film thickness. The diameter of these CNTs shows a strong correlation with the catalyst film thickness. The significance of these experimental trends is discussed within the framework of the diffusion model for CNT growth.

  6. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.

    PubMed

    Qiu, Chenguang; Zhang, Zhiyong; Zhong, Donglai; Si, Jia; Yang, Yingjun; Peng, Lian-Mao

    2015-01-27

    Field-effect transistors (FETs) based on moderate or large diameter carbon nanotubes (CNTs) usually suffer from ambipolar behavior, large off-state current and small current on/off ratio, which are highly undesirable for digital electronics. To overcome these problems, a feedback-gate (FBG) FET structure is designed and tested. This FBG FET differs from normal top-gate FET by an extra feedback-gate, which is connected directly to the drain electrode of the FET. It is demonstrated that a FBG FET based on a semiconducting CNT with a diameter of 1.5 nm may exhibit low off-state current of about 1 × 10(-13) A, high current on/off ratio of larger than 1 × 10(8), negligible drain-induced off-state leakage current, and good subthreshold swing of 75 mV/DEC even at large source-drain bias and room temperature. The FBG structure is promising for CNT FETs to meet the standard for low-static-power logic electronics applications, and could also be utilized for building FETs using other small band gap semiconductors to suppress leakage current.

  7. Filtering Water by Use of Ultrasonically Vibrated Nanotubes

    NASA Technical Reports Server (NTRS)

    Gavalas, Lillian Susan

    2009-01-01

    Devices that could be characterized as acoustically driven molecular sieves have been proposed for filtering water to remove all biological contaminants and all molecules larger than water molecules. Originally intended for purifying wastewater for reuse aboard spacecraft, these devices could also be attractive for use on Earth in numerous settings in which there are requirements to obtain potable, medical-grade, or otherwise pure water from contaminated water supplies. These devices could also serve as efficient means of removing some or all water from chemical products . for example, they might be useful as adjuncts or substitutes for stills in the removal of water from alcohols and alcoholic beverages. These devices may be constructed using various materials, such as ceramics, metallics, or polymers, depending on end-use requirements. A representative device of this type (see figure) would include a polymeric disk, about 1 mm in diameter and between 1 and 40 microns thick, within which would be embedded single-wall carbon nanotubes aligned along the thickness axis. The polymeric disk would be part of a unitary polymeric ring assembly. An acoustic transducer in the form of a piezoelectric-film-and-electrode subassembly - typically 9 microns thick and made of poly(vinylidene fluoride) coated with copper 150 nm thick -. would be affixed to the outside of the outer polymeric ring by means of an electrically nonconductive epoxy. The nanotubes would be chosen to have diameters between about 8 and about 13.5 A because water molecules could fit into the nanotubes, but larger molecules could not. Water to be purified would be placed in contact with one face (typically, the upper face) of the filter disk. The surface tension of water is low enough that water molecules should enter and travel along the nanotubes, and computational simulations of molecular dynamics and experimental measurements have shown that the water molecules inside the nanotubes in this size range can be expected to become aligned into helical columns that exhibit properties of both hexagonal ice crystals and liquid water

  8. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  9. Improving on aquaporins

    DOE PAGES

    Siwy, Zuzanna; Fornasiero, Francesco

    2017-08-25

    Biological nanopores can selectively and rapidly transport ions and molecules through membranes. For example, many biological ion channels conduct only one type of ion across the cell membrane, and they do so in response to external stimuli. Aquaporins transport water at astonishingly high rates and are efficient desalination units, in that they have excellent rejection of all ions, including protons. In conclusion, on page 792 of this issue, Tunuguntla et al. present an artificial nanopore system that sustains water fluxes exceeding those of aquaporins, exhibits ionic selectivities comparable to those of biological ion channels, and consists of carbon nanotubes (CNTs)more » that are 10 nm long and merely 0.8 nm in diameter embedded in a lipid bilayer.« less

  10. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A facile growth process of CeO2-Co3O4 composite nanotubes and its catalytic stability for CO oxidation

    NASA Astrophysics Data System (ADS)

    Oh, Hyerim; Kim, Il Hee; Lee, Nam-Suk; Dok Kim, Young; Kim, Myung Hwa

    2017-08-01

    Hybrid cerium dioxide (CeO2)-cobalt oxide (Co3O4) composite nanotubes were successfully prepared by a combination of electrospinning and thermal annealing using CeO2 and Co3O4 precursors for the first time. Electrospun CeO2-Co3O4 composite nanotubes represent relatively porous surface texture with small dimensions between 80 and 150 nm in the outer diameter. The microscopic investigations indicate that the nanoparticle like crystalline structures of CeO2 and Co3O4 are homogenously distributed and continuously connected to form the shape of nanotube in the length of a few micrometers during thermal annealing. It is expected that the different evaporation behaviors of solvents and matrix polymer between the core and the shell in as-spun nanofibers in the course of thermal annealing could be reasonably responsible for the formation of well-defined CeO2/Co3O4 hybrid nanotubes. Additionally, the general catalytic activities of electrospun CeO2/Co3O4 hybrid nanotubes toward the oxidation of carbon monoxide (CO) were carefully examined by a continuous flow system, resulting in favorable catalytic activity as well as catalytic stability for CO oxidation between 150 °C and 200 °C without the deactivation of the catalyst with time stems from accumulation of reaction intermediates such as carbonate species.

  12. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties

    NASA Astrophysics Data System (ADS)

    Mokhtari, H.; Ghasemi, Z.; Kharaziha, M.; Karimzadeh, F.; Alihosseini, F.

    2018-05-01

    Bacterial infection and insignificant osseointegration have been recognized as the main reasons of the failures of titanium based implants. The aim of this study was to apply titanium oxide nanotube (TNT) array on titanium using electrochemical anodization process as a more appropriate substrate for chitosan and chitosan-58S bioactive glass (BG) (58S-BG-Chitosan) nanocomposite coatings covered TNTs (TNT/Chiosan, TNT/58S-BG-Chitosan, respectively) through a conventional dip-coating process. Results showed that a TNT layer with average inner diameter of 82 ± 19 nm and wall's thickness of 23 ± 9 nm was developed on titanium surface using electrochemical anodization process. Roughness and contact angle measurement showed that TNT with Ra = 449 nm had highest roughness and hydrophilicity which then reduced to 86 nm and 143 nm for TNT/Chitosan and TNT/58S-BG-Chitosan, respectively. In vitro bioactivity evaluation in simulated buffer fluid (SBF) solution and antibacterial activity assay predicted that TNT/58S-BG-Chitosan was superior in bone like apatite formation and antibacterial activity against both gram-positive and gram-negative bacteria compared to Ti, TNT and TNT/Chitosan samples, respectively. Results revealed the noticeable MG63 cell attachment and proliferation on TNT/58S-BG-Chitosan coating compared to those of uncoated TNTs. These results confirmed the positive effect of using TNT substrate for natural polymer coating on improved bioactivity of implant.

  13. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  14. Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media

    NASA Astrophysics Data System (ADS)

    Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa; Hsu, Todd; Tsai, Huei-Ting; Chen, Chien-Chon; Liu, Shiu-Mei; Lin, Tai-Yuan; Chen, Chin-Hsing

    2011-02-01

    The use of titanium dioxide (TiO2) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH4F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously.

  15. Hydrostatic pressure effects on the structural and electronicproperties of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capaz,Rodrigo B.; Spataru, Catalin D.; Tangney, Paul

    2004-03-15

    We study the structural and electronic properties ofisolated single-wall carbon nanotubes (SWNTs) under hydrostatic pressureusing a combination of theoretical techniques: continuum elasticitymodels, classical molecular dynamics simulations, tight-bindingelectronic structure methods, and first-principles total energycalculations within the density-functional and pseudopotentialframeworks. For pressures below a certain critica pressure Pc, the SWNTs'structure remains cylindrical and the Kohn-Sham energy gaps ofsemiconducting SWNTs have either positive or negative pressurecoefficients depending on the value of (n,m) with a distinct "family" (ofthe same n-m) behavior. The diameter and chirality dependence of thepressure coefficients can be described by a simple analytical expression.At Pc, molecular-dynamics simulations predict that isolated SWNTsmore » undergoa pressure-induced symmetry-breaking transformation from a cylindricalshape to a collapsed geometry. This transition is described by a simpleelastic model as arising from the competition between the bond-bendingand PV terms in the enthalpy. The good agreement between calculated andexperimental values of Pc provides a strong support to the "collapse"interpretation of the experimental transitions in bundles.« less

  16. Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S- or N- heteroaromatic amines

    NASA Astrophysics Data System (ADS)

    Leinonen, Heli; Lajunen, Marja

    2012-09-01

    Reactivity of five-membered, variously substituted, heteroaromatic diazonium salts was studied toward pristine single-walled carbon nanotubes (SWCNTs), prepared by high-pressure CO conversion (HiPCO) method. Average size range of individual HiPCO SWCNTs was 0.8-1.2 nm (diameter) and 100-1,000 nm (length). Functionalizations were performed by a one-pot diazotization-dediazotization method with methyl-2-aminothiophene-3-carboxylate, 2-aminothiophene-3-carbonitrile, 2-aminoimidazole sulfate, or 3-aminopyrazole in acetic acid using sodium nitrite at room temperature or by heating. According to Raman and Fourier transform infrared spectroscopy, all used heterocyclic diazonium salts formed a covalent bond with SWCNTs and yielded new kinds of five-membered heterocycle-functionalized SWCNTs. Methyl-2-thiophenyl-3-carboxylate-functionalized SWCNTs formed a highly soluble, stable dispersion in tetrahydrofuran (THF), 3-pyrazoyl-functionalized SWCNTs in ethanol, and 2-imidazoyl- or 2-thiophenyl-3-carbonitrile-functionalized SWCNTs in ethanol and THF. The thermogravimetric analysis as well as energy-filtered transmission electron microscopy imaging of the products confirmed the successful functionalization of SWCNTs.

  17. Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared.

    PubMed

    Danné, Noémie; Kim, Mijin; Godin, Antoine G; Kwon, Hyejin; Gao, Zhenghong; Wu, Xiaojian; Hartmann, Nicolai F; Doorn, Stephen K; Lounis, Brahim; Wang, YuHuang; Cognet, Laurent

    2018-06-14

    The intrinsic near-infrared photoluminescence observed in long single-walled carbon nanotubes is known to be quenched in ultrashort nanotubes due to their tiny size as compared to the exciton diffusion length in these materials (>100 nm). Here, we show that intense photoluminescence can be created in ultrashort nanotubes (∼40 nm length) upon incorporation of exciton-trapping sp 3 defect sites. Using super-resolution photoluminescence imaging at <25 nm resolution, we directly show the preferential localization of excitons at the nanotube ends, which separate by less than 40 nm and behave as independent emitters. This unexpected observation opens the possibility to synthesize fluorescent ultrashort nanotubes-a goal that has been long thought impossible-for bioimaging applications, where bright near-infrared photoluminescence and small size are highly desirable, and for quantum information science, where high quality and well-controlled near-infrared single photon emitters are needed.

  18. Growth, Structure, and Photocatalytic Properties of Hierarchical V₂O₅-TiO₂ Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti-V Alloys.

    PubMed

    Nevárez-Martínez, María C; Mazierski, Paweł; Kobylański, Marek P; Szczepańska, Grażyna; Trykowski, Grzegorz; Malankowska, Anna; Kozak, Magda; Espinoza-Montero, Patricio J; Zaleska-Medynska, Adriana

    2017-04-05

    V₂O₅-TiO₂ mixed oxide nanotube (NT) layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM), UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (DRX), and micro-Raman spectroscopy. The effect of the applied voltage (30-50 V), vanadium content (5-15 wt %) in the alloy, and water content (2-10 vol %) in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt %) exhibited the best auto-alignment and self-organization (length = 1 μm, diameter = 86 nm and wall thickness = 11 nm). Additionally, a probable growth mechanism of V₂O₅-TiO₂ nanotubes (NTs) over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λ max = 465 nm) in the presence of the modified TiO₂ nanostructures. The highest degradation value was 35% after 60 min of irradiation. V₂O₅ species were ascribed as the main structures responsible for the generation of photoactive e - and h⁺ under Vis light and a possible excitation mechanism was proposed.

  19. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  20. Gallium-mediated growth of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Evans, Neal D.; Lowndes, Douglas H.

    2003-03-01

    Liquid gallium was used as a viable and effective solvent and template for high-yield growth of multiwall carbon nanotubes. The gallium-mediated nanotubes thus obtained differ morphologically from nanotubes obtained by using transition metals as catalysts. The nanotubes have a pin-like morphology, generally composed of an oval-shaped tip filled with liquid gallium and a tapered hollow body. The inner diameter of the tube is so large that the inner/outer diameter ratio is usually larger than 0.9. The tubes are naturally opened at both ends. These gallium-filled nanotubes may be used as a nanothermometer in the temperature range of 30 to 550 °C. This study opens an interesting route for carbon nanotube synthesis.

  1. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clichici, Simona, E-mail: simonaclichici@yahoo.com; Biris, Alexandru Radu; Tabaran, Flaviu

    2012-03-15

    Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTsmore » (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF-KB increase in liver after MWCNTs ip injection. ► All the alterations, except plasma GSH, return to normal within 6 days.« less

  2. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is coated on U.S. currency. After deposition, the growth is carried out in a hot-filament chemical vapor deposition apparatus. A tungsten hot filament placed in the flow of H2 at a temperature greater than 1,600 C creates atomic hydrogen, which serves to reduce the Fe catalyst into a metallic state. The catalyst can now precipitate SWNTs in the presence of growth gases. The gases used for the experiments reported are C2H2, H2O, and H2, at rates of 2, 2, and 400 standard cubic centimeters per minute (sccm), respectively. In order to retain the flakes, a cage is constructed by spot welding stainless steel or copper mesh to form an enclosed area, in which the flakes are placed prior to growth. This allows growth gases and atomic hydrogen to reach the flakes, but does not allow the flakes, which rapidly nucleate SWNTs, to escape from the cage.

  3. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K. (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor); Rauwald, Urs (Inventor); Kittrell, W. Carter (Inventor); Ziegler, Kirk J. (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  4. Review of Laser Ablation Process for Single Wall Carbon Nanotube Production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2003-01-01

    Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers seem to help the conversion of the carbon from target into vapor phase to improve formation of nanotubes. The use of CW far infrared lasers reduced the need for the oven, at the expense of controlled ablation. Some of these variations are tried with different combinations and concentrations of metal catalysts (Nickel with Cobalt, Iron, Palladium and Platinum) different buffer gases (e.g. Helium); with different oven temperatures (Room temperature to 1473K); under different flow conditions (1 to 1000 kPa) and even different porosities of the graphite targets. It is to be noted that the original Cobalt and Nickel combination worked best, possibly because of improved carbonization with stable crystalline phases. The mean diameter and yield seemed to increase with increasing oven temperatures. Thermal conductivity of the buffer gas and flow conditions dictate the quality as well as quantity of the SWCNTs. Faster flows, lower pressures and heavier gases seem to increase the yields. This review will attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.

  5. Metal oxide-carbon composites for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  6. Controllable synthesis of single-walled carbon nanotube framework membranes and capsules.

    PubMed

    Song, Changsik; Kwon, Taeyun; Han, Jae-Hee; Shandell, Mia; Strano, Michael S

    2009-12-01

    Controlling the morphology of membrane components at the nanometer scale is central to many next-generation technologies in water purification, gas separation, fuel cell, and nanofiltration applications. Toward this end, we report the covalent assembly of single-walled carbon nanotubes (SWNTs) into three-dimensional framework materials with intertube pores controllable by adjusting the size of organic linker molecules. The frameworks are fashioned into multilayer membranes possessing linker spacings from 1.7 to 3.0 nm, and the resulting framework films were characterized, including transport properties. Nanoindentation measurements by atomic force microscopy show that the spring constant of the SWNT framework film (22.6 +/- 1.2 N/m) increased by a factor of 2 from the control value (10.4 +/- 0.1 N/m). The flux ratio comparison in a membrane-permeation experiment showed that larger spacer sizes resulted in larger pore structures. This synthetic method was equally efficient on silica microspheres, which could then be etched to create all-SWNT framework, hollow capsules approximately 5 mum in diameter. These hollow capsules are permeable to organic and inorganic reagents, allowing one to form inorganic nanoparticles, for example, that become entrapped within the capsule. The ability to encapsulate functional nanomaterials inside perm-selective SWNT cages and membranes may find applications in new adsorbents, novel catalysts, and drug delivery vehicles.

  7. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    NASA Astrophysics Data System (ADS)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  8. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    PubMed

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  9. The effect of calcination temperature on the microstructure and photocatalytic activity of TiO2-based composite nanotubes prepared by an in situ template dissolution method

    NASA Astrophysics Data System (ADS)

    Fan, Jiajie; Zhao, Li; Yu, Jiaguo; Liu, Gang

    2012-09-01

    TiO2-based composite nanotubes, based on an in situ template dissolution method, were one-step fabricated in a mixed aqueous solution of ammonium hexafluorotitanate and boric acid using ZnO nanorods as templates, and then the samples were calcined at different temperatures. The photocatalytic activity of the samples was evaluated by photocatalytic decoloration of Methyl Orange (MO) aqueous solution at ambient temperature under UV light. The results showed that the prepared sample possessed nanoscale tubular morphology with a wall thickness of ca. 30-50 nm, inner diameters of ca. 50-150 nm and lengths of ca. 400-2000 nm. The calcined samples exhibited excellent stabilization of the anatase phase in a wide temperature range of 300-800 °C. The un-calcined and calcined samples possessed hierarchically macro-mesoporous structures. The sample calcined at 600 °C exhibited the highest photocatalytic activity, corresponding to the maximal formation rate of \\z.rad OH on the photocatalyst. This is attributed to the improvement of anatase TiO2 crystallization, the formation of multi-phase structures including anatase, cubic Zn2TiO4, hexagonal ZnTiO3 and cubic ZnTiO3, and the presence of hierarchically macro-mesoporous structures.

  10. Investigation of the interfacial properties of polyurethane/carbon nanotube hybrid composites: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof

    2018-03-01

    Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.

  11. Synthesis and Optical Properties of Silver Bicrystalline Nanowires

    NASA Astrophysics Data System (ADS)

    Sun, Yugang; Xia, Younan

    2002-11-01

    This paper describes a solution-phase route to the large-scale synthesis of silver nanowires with diameters in the range of 30-40 nm, and lengths up to ~50 μm. The initial step of this synthesis involved the formation of Pt nanoparticles by reducing PtCl2 with ethylene glycol (EG) refluxed at ~160 °C. These Pt nanoparticles could serve as seeds for the growth of silver (formed by reducing AgNO3 with EG) through heterogeneous nucleation process because their crystal structures and lattice constants matched closely. In the presence of poly(vinyl pyrrolidone) (PVP), the growth of silver could be led to a highly anisotropic mode with formation of uniform nanowires. UV-visible spectroscopy was used to track the growth process of silver nanowires because different silver nanostructures exhibited distinctive surface plasmon resonance peaks at different frequencies. SEM, TEM, XRD, and electron diffraction were used to characterize these silver nanowires, indicating the formation of a highly pure face-centered cubic phase, as well as uniform diameter and bicrystalline structure. The morphology of these silver nanostructures could be varied from particles and rods to long wires by tuning the reaction conditions, including reaction temperature, and the ratio of PVP to silver nitrate. These silver nanowires could be used as sacrificial templates to synthesize gold nanotubes via a template-engaged replacement reaction. The dispersion of gold nanotubes exhibited a strong extinction peak in the red regime, which was around 760 nm.

  12. Hydrogenotitanates nanotubes supported platinum anode for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Abida, Bochra; Chirchi, Lotfi; Baranton, Stève; Napporn, Teko Wilhelmin; Morais, Cláudia; Léger, Jean-Michel; Ghorbel, Abdelhamid

    2013-11-01

    Hydrogenotitanates nanotubes (HTNs) are prepared from TiO2 powder via hydrothermal processing in 11.25 M NaOH aq. The reaction temperature is 130 °C for 20 h. Afterward a heat treatment is done during 2 h at 500 °C in air, to obtain calcined HTNs (HTNs-cal). The structural change on the molecular TiO2 during the hydrothermal treatment is investigated in detail by various analytic techniques such as XRD and TEM, which reveal that the crystal structure of the HTNs materials is similar to that of H2Ti2O5·H2O nanotubes with 160 nm in length and 10 nm in diameter. Nitrogen adsorption-desorption isotherms indicate that synthesized solids are mesoporous materials with a multiwalled nanotubular structure and high specific surface area. Platinum nanoparticles are deposited on the HTNs by the impregnation method for a total noble metal loading of 10 wt%. The electrocatalytic activity of these electrocatalysts is evaluated by cyclic voltammetry in acid medium. Typical CO stripping voltammetry in acidic solutions is investigated. The results demonstrate that the HTNs can greatly enhance the catalytic activity of Pt for methanol oxidation. The CO stripping test shows that the Pt/HTNs can shift the CO oxidation potential to lower direction than Pt/C (XC72) and Pt/HTNs-cal catalysts.

  13. Investigating the potential of multiwalled carbon nanotubes based zinc nanocomposite as a recognition interface towards plant pathogen detection.

    PubMed

    Tahir, Muhammad Ali; Hameed, Sadaf; Munawar, Anam; Amin, Imran; Mansoor, Shahid; Khan, Waheed S; Bajwa, Sadia Zafar

    2017-11-01

    The emergence of nanotechnology has opened new horizons for constructing efficient recognition interfaces. This is the first report where the potential of a multiwalled carbon nanotube based zinc nanocomposite (MWCNTs-Zn NPs) investigated for the detection of an agricultural pathogen i.e. Chili leaf curl betasatellite (ChLCB). Atomic force microscope analyses revealed the presence of multiwalled carbon nanotubes (MWCNTs) having a diameter of 50-100nm with zinc nanoparticles (Zn-NPs) of 25-500nm. In this system, these bunches of Zn-NPs anchored along the whole lengths of MWCNTs were used for the immobilization of probe DNA strands. The electrochemical performance of DNA biosensor was assessed in the absence and presence of the complementary DNA during cyclic and differential pulse voltammetry scans. Target binding events occurring on the interface surface patterned with single-stranded DNA was quantitatively translated into electrochemical signals due to hybridization process. In the presence of complementary target DNA, as the result of duplex formation, there was a decrease in the peak current from 1.89×10 -04 to 5.84×10 -05 A. The specificity of this electrochemical DNA biosensor was found to be three times as compared to non-complementary DNA. This material structuring technique can be extended to design interfaces for the recognition of the other plant viruses and biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm.

    PubMed

    Diao, Shuo; Blackburn, Jeffrey L; Hong, Guosong; Antaris, Alexander L; Chang, Junlei; Wu, Justin Z; Zhang, Bo; Cheng, Kai; Kuo, Calvin J; Dai, Hongjie

    2015-12-01

    Compared to imaging in the visible and near-infrared regions below 900 nm, imaging in the second near-infrared window (NIR-II, 1000-1700 nm) is a promising method for deep-tissue high-resolution optical imaging in vivo mainly owing to the reduced scattering of photons traversing through biological tissues. Herein, semiconducting single-walled carbon nanotubes with large diameters were used for in vivo fluorescence imaging in the long-wavelength NIR region (1500-1700 nm, NIR-IIb). With this imaging agent, 3-4 μm wide capillary blood vessels at a depth of about 3 mm could be resolved. Meanwhile, the blood-flow speeds in multiple individual vessels could be mapped simultaneously. Furthermore, NIR-IIb tumor imaging of a live mouse was explored. NIR-IIb imaging can be generalized to a wide range of fluorophores emitting at up to 1700 nm for high-performance in vivo optical imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Compressive buckling of black phosphorene nanotubes: an atomistic study

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Trang; Le, Minh-Quy

    2018-04-01

    We investigate through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of armchair and zigzag black phosphorene nanotubes. We focus especially on the effects of the tube’s diameter with fixed length-diameter ratio, effects of the tube’s length for a pair of armchair and zigzag tubes of equal diameters, and effects of the tube’s diameter with fixed lengths. Their Young’s modulus, critical compressive stress and critical compressive strain are studied and discussed for these 3 case studies. Compressive buckling was clearly observed in the armchair nanotubes. Local bond breaking near the boundary occurred in the zigzag ones under compression.

  16. Water boiling inside carbon nanotubes: toward efficient drug release.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  17. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures.

    PubMed

    Kim, Minwoo; Ha, Yoon-Cheol; Nguyen, Truong Nhat; Choi, Hae Young; Kim, Doohun

    2013-12-20

    We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage-interpore distance relationship of 2.2 nm V(-1) compared to the reported 2.0 nm V(-1) for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ~47 mm in diameter and ~60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm.

  18. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures

    NASA Astrophysics Data System (ADS)

    Kim, Minwoo; Ha, Yoon-Cheol; Nhat Nguyen, Truong; Choi, Hae Young; Kim, Doohun

    2013-12-01

    We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage-interpore distance relationship of 2.2 nm V-1 compared to the reported 2.0 nm V-1 for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ˜47 mm in diameter and ˜60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm.

  19. Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron-molybdenum alloy thin layer catalysts

    NASA Astrophysics Data System (ADS)

    Yahyazadeh, Arash; Khoshandam, Behnam

    In this study, we documented the catalytic chemical vapor deposition synthesis of carbon nanotubes (CNTs) using ferrocene and molybdenum hexacarbonyl as catalyst nanoparticle precursors and methane as a nontoxic and economical carbon source for the first time. Field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, wavelength dispersive X-ray spectrometry and transmission electron microscopy of the thin layer catalyst as a simple and cost effective catalyst preparation after methane decomposition reaction, along with Fourier transform infrared spectroscopy and Raman spectroscopy confirmed the growth of CNTs, from bimetallic nanoparticles, which are converted into iron-molybdenum alloy nanoparticles at 700 °C for pretreatment by hydrogen after chemical vapor deposition of thin layers. An investigation of the weight percentages of the chemical elements present in the CNTs synthesized from iron-molybdenum catalyst using quartz sheet substrate at 750 °C, confirmed a significant carbon yield of 75.4% which represents high catalyst activity. Additionally, multi-walled carbon nanotubes (∼16-55 nm in diameter and 1.2 μm in length) were observed in the iron-molybdenum alloy sample after methane decomposition reaction at 750 °C for 35 min. To show the role of iron and molybdenum coated on silicon substrate as two thin layer catalysts, samples were considered for CNTs growth (diameter ∼47-69 nm) at 800 °C and 830 °C, respectively. Moreover, the effect of hydrogen pretreatment was evaluated in terms of active metal coating properly. The best graphitic structure due to Raman spectroscopy outcomes (ID/IG ratio) was obtained for iron coated on a quartz sheet, which was estimated at 0.8505. Thermogravimetric analysis proved the thermal stability of the synthesized CNTs using iron thin-layer catalyst up to 350 °C.

  20. Selection of Single-Walled Carbon Nanotube with Narrow Diameter Distribution by Using a PPE PPV Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Kelly A; Chen, Yusheng; Malkovskiy, Andrey

    2012-01-01

    Electronic and mechanic properties of single-walled carbon nanotubes (SWNTs) are uniquely dependent on the tube's chiralities and diameters. Isolation of different type SWNTs remains one of the fundamental and challenging issues in nanotube science. Herein, we demonstrate that SWNTs can be effectively enriched to a narrow diameter range by sequential treatment of the HiPco sample with nitric acid and a {pi}-conjugated copolymer poly(phenyleneethynylene) (PPE)-co-poly(phenylenevinylene) (PPV). On the basis of Raman, fluorescence, and microscopic evidence, the nitric acid is found to selectively remove the SWNTs of small diameter. The polymer not only effectively dispersed carbon nanotubes but also exhibited a goodmore » selectivity toward a few SWNTs. The reported approach thus offers a new methodology to isolate SWNTs, which has the potential to operate in a relatively large scale.« less

  1. Study of quantum confinement effects in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  2. Uniaxial magnetic anisotropy energy of Fe wires embedded in carbon nanotubes.

    PubMed

    Muñoz, Francisco; Mejía-López, Jose; Pérez-Acle, Tomas; Romero, Aldo H

    2010-05-25

    In this work, we analyze the magnetic anisotropy energy (MAE) of Fe cylinders embedded within zigzag carbon nanotubes, by means of ab initio calculations. To see the influence of the confinement, we fix the Fe cylinder diameter and we follow the changes of the MAE as a function of the diameter of the nanotube, which contains the Fe cylinder. We find that the easy axis changes from parallel to perpendicular, with respect to the cylinder axis. The orientation change depends quite strongly on the confinement, which indicates a nontrivial dependence of the magnetization direction as function of the nanotube diameter. We also find that the MAE is affected by where the Fe cylinder sits with respect to the carbon nanotube, and the coupling between these two structures could also dominate the magnetic response. We analyze the thermal stability of the magnetization orientation of the Fe cylinder close to room temperature.

  3. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform.

    PubMed

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2016-04-15

    The template assisted electrochemical deposition technique was used for the synthesis of gold nanotubes array (AuNTsA). The morphological structure of the synthesized AuNTsA was observed by scanning electron microscopy and found that the individual nanotubes are around 1.5 μm in length with a diameter of 200 nm. Nanotubes are vertically aligned to the Au thick film, which is formed during the synthesis process of nanotubes. The electrochemical performance of the AuNTsA was compared with the bare Au electrode and found that AuNTsA has better electron transfer surface than bare Au electrode which is due to the high surface area. Hence, the AuNTsA was used as an electrode for the fabrication of DNA hybridization biosensor for detection of Mycobacterium Tuberculosis DNA. The DNA hybridization biosensor constructed by AuNTsA electrode was characterized by cyclic voltammetry technique with Fe(CN)6(3-/4-) as an electrochemical redox indicator. The selectivity of the fabricated biosensor was illustrated by hybridization with complementary DNA and non-complementary DNA with probe DNA immobilized AuNTsA electrode using methylene blue as a hybridization indicator. The developed electrochemical DNA biosensor shows good linear range of complementary DNA concentration from 0.01 ng/μL to 100 ng/μL with high detection limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-12-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem-- Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  5. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil.

    PubMed

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-01-18

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem--Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  6. Improvement in glucose biosensing response of electrochemically grown polypyrrole nanotubes by incorporating crosslinked glucose oxidase.

    PubMed

    Palod, Pragya Agar; Singh, Vipul

    2015-10-01

    In this paper a novel enzymatic glucose biosensor has been reported in which platinum coated alumina membranes (Anodisc™s) have been employed as templates for the growth of polypyrrole (PPy) nanotube arrays using electrochemical polymerization. The PPy nanotube arrays were grown on Anodisc™s of pore diameter 100 nm using potentiostatic electropolymerization. In order to optimize the polymerization time, immobilization of glucose oxidase (GOx) was first performed using physical adsorption followed by measuring its biosensing response which was examined amperometrically for increasing concentrations of glucose. In order to further improve the sensing performance of the biosensor fabricated for optimum polymerization duration, enzyme immobilization was carried out using cross-linking with glutaraldehyde and bovine serum albumin (BSA). Approximately six fold enhancement in the sensitivity was observed in the fabricated electrodes. The biosensors also showed a wide range of linear operation (0.2-13 mM), limit of detection of 50 μM glucose concentration, excellent selectivity for glucose, notable reliability for real sample detection and substantially improved shelf life. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Accurate atomistic potentials and training sets for boron-nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac

    Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.

  8. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    PubMed Central

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  9. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  10. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation.

    PubMed

    Lai, Min; Jin, Ziyang; Su, Zhiguo

    2017-04-01

    To investigate the influence of surface-biofunctionalized substrates on osteoblast behavior, a layer of aligned TiO 2 nanotubes with a diameter of around 70nm was fabricated on titanium surface by anodization, and then osteogenic growth peptide (OGP) was conjugated onto TiO 2 nanotubes through the intermediate layer of polydopamine. The morphology, composition and wettability of different surfaces were characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements, respectively. The effects of OGP-modified TiO 2 nanotube substrates on the morphology, proliferation and differentiation of osteoblasts were examined in vitro. Immunofluorescence staining revealed that the OGP-functionalized TiO 2 nanotubes were favorable for cell spreading. However, there was no significant difference in cell proliferation observed among the different groups. Cells grown onto OGP-functionalized TiO 2 nanotubes showed significantly higher (p<0.05 or p<0.01) levels of alkaline phosphatase (ALP) and mineralization after 4, 7 and 14days of culture, respectively. Cells grown on OGP-functionalized TiO 2 nanotubes had significantly higher (p<0.05 or p<0.01) expression of osteogenic-related genes including runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN) and osteocalcin (OC) after 14days of culture. These data suggest that surface functionalization of TiO 2 nanotubes with OGP was beneficial for cell spreading and differentiation. This study provides a novel platform for the development and fabrication of titanium-based implants that enhance the propensity for osseointegration between the native tissue and implant interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants

    PubMed Central

    Sul, Young-Taeg

    2010-01-01

    TiO2 nanotubes are fabricated on TiO2 grit-blasted, screw-shaped rough titanium (ASTM grade 4) implants (3.75 × 7 mm) using potentiostatic anodization at 20 V in 1 M H3PO4 + 0.4 wt.% HF. The growth behavior and surface properties of the nanotubes are investigated as a function of the reaction time. The results show that vertically aligned nanotubes of ≈700 nm in length, with highly ordered structures of ≈40 nm spacing and ≈15 nm wall thickness may be grown independent of reaction time. The geometrical properties of nanotubes increase with reaction time (mean pore size, pore size distribution [PSD], and porosity ≈90 nm, ≈40–127 nm and 45%, respectively for 30 minutes; ≈107 nm, ≈63–140 nm and 56% for one hour; ≈108 nm, ≈58–150 nm and 60% for three hours). It is found that the fluorinated chemistry of the nanotubes of F-TiO2, TiOF2, and F-Ti-O with F ion incorporation of ≈5 at.%, and their amorphous structure is the same regardless of the reaction time, while the average roughness (Sa) gradually decreases and the developed surface area (Sdr) slightly increases with reaction time. The results of studies on animals show that, despite their low roughness values, after six weeks the fluorinated TiO2 nanotube implants in rabbit femurs demonstrate significantly increased osseointegration strengths (41 vs 29 Ncm; P = 0.008) and new bone formation (57.5% vs 65.5%; P = 0.008) (n = 8), and reveal more frequently direct bone/cell contact at the bone–implant interface by high-resolution scanning electron microscope observations as compared with the blasted, moderately rough implants that have hitherto been widely used for clinically favorable performance. The results of the animal studies constitute significant evidence that the presence of the nanotubes and the resulting fluorinated surface chemistry determine the nature of the bone responses to the implants. The present in vivo results point to potential applications of the TiO2 nanotubes in the field of bone implants and bone tissue engineering. PMID:20463928

  12. New nanotube synthesis strategy--application of sodium nanotubes formed inside anodic aluminium oxide as a reactive template.

    PubMed

    Wang, Lung-Shen; Lee, Chi-Young; Chiu, Hsin-Tien

    2003-08-07

    Formation of Na nanotubes inside the channels of anodic aluminium oxide (AAO) membranes has been achieved by decomposing NaH thermally on AAO. The as-produced material, Na@AAO, is applied as a reactive template to prepare other tubular materials. Reacting Na@AAO with gaseous C6Cl6 generates carbon nanotubes (ca. 250 nm, wall thickness of 20 nm, tube length of 60 microm) inside the AAO channels. Highly aligned bundles of nearly amorphous carbon nanotubes are isolated after AAO is removed.

  13. Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

    NASA Astrophysics Data System (ADS)

    Reis, Wieland G.; Tomović, Željko; Weitz, R. Thomas; Krupke, Ralph; Mikhael, Jules

    2017-03-01

    The potential of single-walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

  14. Multi-Wall Carbon Nanotubes as Lithium Nanopipettes and SPM Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Bharath, Satyaveda; Cullen, William; Reutt-Robey, Janice

    2014-03-01

    A multi-walled carbon nanotube (MWCNT) - terminated SPM cantilever, was utilized to perform nanolithography and surface diffusion measurements on a thin film of vapor-deposited lithium atop a silicon (111) substrate under ultra-high vacuum conditions. In these investigations the MWCNT tip was shown to act as both a lithium nanopipette and a probe for non-contact atomic force microscopy (NC-AFM) measurements. With the application of appropriate bias conditions, the MWCNT could site-selectively extract (expel) nano-scale amounts of lithium from (to) the sample surface. Depressions, mounds, and spikes were generated on the surface in this way and were azimuthally symmetric about the selected point of pipetting. Following lithium transfer to/from the substrate, the MWCNT pipette-induced features were sequentially imaged with NC-AFM using the MWCNT as the probe. Vacancy pits of ca. 300 nm diameter and 1.5 nm depth were observed to decay on a timescale of hours at room temperature, through diffusion-limited decay processes. A continuum model was utilized to simulate the island decay rates, and the lithium surface diffusion coefficient of D =7.5 (+/-1.3)*10-15 cm2/s was extracted. U.S. Department of Energy Award Number DESC0001160.

  15. Synthesis of coiled carbon nanotubes on Co/Al2O3 catalysts in a fluidised-bed

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Harris, Andrew T.

    2010-02-01

    Mixtures of regularly coiled and straight multi-walled carbon nanotubes (MWNTs) were synthesised on alumina supported Co catalysts prepared by pH controlled, wet impregnation. The synthesis reaction was performed under C2H2:H2:N2 at 750 °C in a fluidised-bed for 30 min. Scanning electron microscopy/energy dispersive X-ray spectroscopy shows good distribution of the active Co particles on the surface of the alumina support. Determined from 10 individual SEM images from the same product batch, the CNTs present are typically from 10 to 40 nm in diameter. Thermogravimetric analysis (TGA) and Raman spectroscopy indicate the total oxidative weight loss is independent of pH during catalyst preparation. This study is the first to report the use of a fluidised-bed for the synthesis of coiled MWNTs, using alumina supported Co catalysts.

  16. Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays

    PubMed Central

    Huh, Yun Suk; Erickson, David

    2009-01-01

    Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au structures and multilayer Au/Ag/Au structures and also demonstrate a facile technique for integrating the membranes with all polydimethylsiloxane (PDMS) microfluidic devices. Using the integrated device, we demonstrate a linear response in the main detection peak intensity to solution phase concentration and a limit of detection on the order of 5.2 μU/mL. This low limit of detection is obtained with device containing the multilayer SERS substrate which we show exhibits a stronger Raman enhancement while maintaining biocompatibility and ease or surface reactivity with the capture probe. PMID:19857952

  17. The rapid growth of vertically aligned carbon nanotubes using laser heating.

    PubMed

    Park, J B; Jeong, S H; Jeong, M S; Lim, S C; Lee, I H; Lee, Y H

    2009-05-06

    Growth of densely packed vertically aligned carbon nanotubes (VA-CNTs) using laser-induced chemical vapor deposition with visible laser (lambda = 532 nm) irradiation at room temperature is reported. Using a multiple-catalyst layer (Fe/Al/Cr) on quartz as the substrate and an acetylene-hydrogen mixture as the precursor gas, VA-CNT pillars with 60 microm height and 4 microm diameter were grown at a high rate of around 1 microm s(-1) with good reproducibility. It is demonstrated that the fabrication of uniform pillar arrays of VA-CNTs can be achieved with a single irradiation for each pillar using LCVD with no annealing or preprocessing of the substrate. Here, laser fast heating is considered the primary mechanism facilitating the growth of VA-CNT pillars. Field emission characteristics of an array of VA-CNT pillars were then examined to investigate their potential application in vacuum electronic devices.

  18. Electromagnetic wave absorbing properties of amorphous carbon nanotubes.

    PubMed

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-07-10

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.

  19. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Wang, Shouyan; Aryasomayajula, L.; Varadan, V. K.

    2007-02-01

    Fine platinum nanoparticles (1-5 nm in diameter) were deposited on functionalized multi-walled carbon nanotubes (MWNTs) through a decoration technique. A novel type of enzymatic Pt/MWNTs paste-based mediated glucose sensor was fabricated. Electrochemical measurements revealed a significantly improved sensitivity (around 52.7 µA mM-1 cm-2) for glucose sensing without using any picoampere booster or Faraday cage. In addition, the calibration curve exhibited a good linearity in the range of 1-28 mM of glucose concentration. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were performed to investigate the nanoscale structure and the chemical bonding information of the Pt/MWNTs paste-based sensing material, respectively. The improved sensitivity of this novel glucose sensor could be ascribed to its higher electroactive surface area, enhanced electron transfer, efficient enzyme immobilization, unique interaction in nanoscale and a synergistic effect on the current signal from possible multi-redox reactions.

  20. The effect of platinum precursor concentrations on chlorine sensing characteristics of platinum nanoparticles-loaded single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Choi, Sun-Woo; Byun, Young Tae

    2018-03-01

    The correlation between platinum (Pt) functionalization and chlorine (Cl2) sensing capability in single-walled carbon nanotubes (SWCNTs) was investigated. Utilizing a photoreduction technique via ultraviolet (UV) irradiation, the Pt nanoparticles (NPs) with various diameters of 7-80 nm, which were controlled by Pt precursor concentrations, were successfully functionalized on the sidewalls of SWCNTs. The discrete Pt NP-loaded SWCNTs exhibited significantly enhanced response value (-(ΔR/R0) × 100 = 33.8%) for 1 ppm Cl2 at room temperature (25 °C) compared with that (no response) of pure SWCNTs. On the other hand, in case of continuous Pt NP-loaded SWCNTs, Cl2 sensing capabilities were significantly degraded. The Cl2 sensing capabilities of fabricated sensors tended to correlate with geometric configurations of the catalytic Pt NPs on the sidewalls of SWCNTs, due to differences in the electron pathway.

  1. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-10-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated.

  2. Development of high performance electroless Ni-P-HNT composite coatings

    NASA Astrophysics Data System (ADS)

    Ranganatha, S.; Venkatesha, T. V.; Vathsala, K.

    2012-12-01

    Halloysite nanotubes (HNTs) of the dimension 50 nm × 1-3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.

  3. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    PubMed

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  4. Crystal orientation of PEO confined within the nanorod templated by AAO nanochannels.

    PubMed

    Liu, Chien-Liang; Chen, Hsin-Lung

    2018-06-18

    The orientation of poly(ethylene oxide) (PEO) crystallites developed in the nanochannels of anodic aluminum oxide (AAO) membrane has been investigated. PEO was filled homogeneously into the nanochannels in the melt state, and the crystallization confined within the PEO nanorod thus formed was allowed to take place subsequently at different temperatures. The effects of PEO molecular weight (MPEO), crystallization temperature (Tc) and AAO channel diameter (DAAO) on the crystal orientation attained in the nanorod were revealed by 2-D wide angle X-ray scattering (WAXS) patterns. In the nanochannels with DAAO = 23 nm, the crystallites formed from PEO with the lowest MPEO (= 3400 g mol-1) were found to adopt a predominantly perpendicular orientation with the crystalline stems aligning normal to the channel axis irrespective of Tc (ranging from -40 to 20 °C). Increasing MPEO or decreasing Tc tended to induce the development of the tilt orientation characterized by the tilt of the (120) plane by 45° from the channel axis. In the case of the highest MPEO (= 95 000 g mol-1) studied, both perpendicular and tilt orientations coexisted irrespective of Tc. Coexistent orientation was always observed in the channels with a larger diameter (DAAO = 89 nm) irrespective of MPEO and Tc. Compared with the previous results of the crystal orientation attained in nanotubes templated by the preferential wetting of the channel walls by PEO, the window of the perpendicular crystal orientation in the nanorod was much narrower due to its weaker confinement effect imposed on the crystal growth than that set by the nanotube.

  5. Biological response to purification and acid functionalization of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Figarol, Agathe; Pourchez, Jérémie; Boudard, Delphine; Forest, Valérie; Tulliani, Jean-Marc; Lecompte, Jean-Pierre; Cottier, Michèle; Bernache-Assollant, Didier; Grosseau, Philippe

    2014-07-01

    Acid functionalization has been considered as an easy way to enhance the dispersion and biodegradation of carbon nanotubes (CNT). However, inconsistencies between toxicity studies of acid functionalized CNT remain unexplained. This could be due to a joint effect of the main physicochemical modifications resulting from an acid functionalization: addition of surface acid groups and purification from catalytic metallic impurities. In this study, the impact on CNT biotoxicity of these two physiochemical features was assessed separately. The in vitro biological response of RAW 264.7 macrophages was evaluated after exposure to 15-240 µg mL-1 of two types of multi-walled CNT. For each type of CNT (small: 20 nm diameter, and big: 90 nm diameter), three different surface chemical properties were studied (total of six CNT samples): pristine, acid functionalized and desorbed. Desorbed CNT were purified by the acid functionalization but presented a very low amount of surface acid groups due to a thermal treatment under vacuum. A Janus effect of acid functionalization with two opposite impacts is highlighted. The CNT purification decreased the overall toxicity, while the surface acid groups intensified it when present at a specific threshold. These acid groups especially amplified the pro-inflammatory response. The threshold mechanism which seemed to regulate the impact of acid groups should be further studied to determine its value and potential link to the other physicochemical state of the CNT. The results suggest that, for a safer-design approach, the benefit-risk balance of an acid functionalization has to be considered, depending on the CNT primary state of purification. Further research should be conducted in this direction.

  6. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    PubMed

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  7. Entropy of single-file water in (6,6) carbon nanotubes.

    PubMed

    Waghe, Aparna; Rasaiah, Jayendran C; Hummer, Gerhard

    2012-07-28

    We used molecular dynamics simulations to investigate the thermodynamics of filling of a (6,6) open carbon nanotube (diameter D = 0.806 nm) solvated in TIP3P water over a temperature range from 280 K to 320 K at atmospheric pressure. In simulations of tubes with slightly weakened carbon-water attractive interactions, we observed multiple filling and emptying events. From the water occupancy statistics, we directly obtained the free energy of filling, and from its temperature dependence the entropy of filling. We found a negative entropy of about -1.3 k(B) per molecule for filling the nanotube with a hydrogen-bonded single-file chain of water molecules. The entropy of filling is nearly independent of the strength of the attractive carbon-water interactions over the range studied. In contrast, the energy of transfer depends strongly on the carbon-water attraction strength. These results are in good agreement with entropies of about -0.5 k(B) per water molecule obtained from grand-canonical Monte Carlo calculations of water in quasi-infinite tubes in vacuum under periodic boundary conditions. Overall, for realistic carbon-water interactions we expect that at ambient conditions filling of a (6,6) carbon nanotube open to a water reservoir is driven by a favorable decrease in energy, and opposed by a small loss of water entropy.

  8. Preparation of Pd-loaded La-doped TiO2 nanotubes and investigation of their photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Wang, Xiaodong; Yang, Jianjun

    2013-11-01

    Orthorhombic titanic acid nanotubes (TAN) have large BET surface area and small-diameter one-dimensional nanotubular morphology, so they can work as a good supporter and a precursor of TiO2. However, in our former research, we found that calcination of TAN to anatase TiO2 would destroy the nanotubular structure and decrease the BET surface area sharply. In this work, we utilized the pillar effect of the foreign nanoparticles (La2O3) to keep the nanotubular morphology of TiO2, and obtained the anatase TiO2 nanotubes with large BET surface area. For improving the photocatalytic activity, Pd nanoparticles were loaded as the electron traps on the surface of La-doped TiO2 by photo-deposition method. The photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance spectra, and N2 adsorption-desorption isotherms measurement. Their photocatalytic activities were evaluated by the removal of propylene under visible light irradiation ( λ ≥ 420 nm). The results showed that the photocatalytic activity of Pd-loaded La-doped TiO2 nanotubes improved effectively compared with that of La-doped TiO2 and pure TiO2.

  9. Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode

    NASA Astrophysics Data System (ADS)

    Yin, Wong Wai; Daud, Wan Ramli Wan; Mohamad, Abu Bakar; Kadhum, Abdul Amir Hassan; Majlan, Edy Herianto; Shyuan, Loh Kee

    2012-06-01

    Organic catalyst has recently been identified as the potential substitution for expensive platinum electrocatalyst for fuel cell application. Numerous studies have shown that the nitrogen-containing carbon nanotubes (N-CNT) can be synthesized through spray pyrolysis or floating chemical vapor deposition (CVD) technique using various type of organometallic as precursors. This paper presents the method of synthesis and the initial findings of the growth of N-CNT directly on carbon paper using a modified CVD technique. In this research, nickel (II) phthalocyanines (Ni-Pc) as precursor was dissolved in ethanol solvent, stirred and sonicated to become homogenized. The solution was poured into a bubbler and heated up to allow the mixture to vaporize. Subsequently, the solution vapor was flowed into the tubical reactor maintained at 900°C. Carbon paper sputtered with nickel nanoparticles was used as the substrate. The synthesized sample was examined through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and Fourier Transform Infra-Red (FTIR). Long, entangled and compartmentalized nanotubes with tube diameter ranging 23-27 nm were found covered the carbon paper surface with approximate of 5.5-6.0 μm in thickness. EDX analysis has successfully showed the presence of nitrogen in the carbon nanotube. FTIR analysis showed the presence of the C-N bond on CNT.

  10. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds.

    PubMed

    Lvov, Yuri; Wang, Wencai; Zhang, Liqun; Fakhrullin, Rawil

    2016-02-10

    Halloysite is an alumosilicate tubular clay with a diameter of 50 nm, an inner lumen of 15 nm and a length of 600-900 nm. It is a natural biocompatible nanomaterial available in thousands of tons at low price, which makes it a good candidate for nanoarchitectural composites. The inner lumen of halloysite may be adjusted by etching to 20-30% of the tube volume and loading with functional agents (antioxidants, anticorrosion agents, flame-retardant agents, drugs, or proteins) allowing for formulations with sustained release tuned by the tube end-stoppers for hours and days. Clogging the tube ends in polymeric composites allows further extension of the release time. Thus, antioxidant-loaded halloysite doped into rubber enhances anti-aging properties for at least 12 months. The addition of 3-5 wt% of halloysite increases the strength of polymeric materials, and the possibility of the tube's orientation promises a gradient of properties. Halloysite nanotubes are a promising mesoporous media for catalytic nanoparticles that may be seeded on the tube surface or synthesized exclusively in the lumens, providing enhanced catalytic properties, especially at high temperatures. In vitro and in vivo studies on biological cells and worms indicate the safety of halloysite, and tests for efficient adsorption of mycotoxins in animals' stomachs are also carried out. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Backward scattering effect of aligned carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wu, Pengfei; Ren, Zhifeng; Wang, Michael R.

    2009-02-01

    In terms of operational bandwidth and speed, photonic components are superior to electronic ones. However, it is difficult to control photons on nanoscale structures for data processing and interconnection. Nanophotonic device using surface plasmon (SP) offers an ideal solution to combine the superior technical advantages of both photonics and electronics on the same chip. The SP wavelength is much shorter than that of the exciting light, allowing the use of SP in various techniques that overcome diffraction limits. In this paper, we report an interesting plasmonic effect, enhanced backward scattering, by using a periodically-aligned carbon nanotube (CNT) array. The CNTs are grown on a transparent glass substrate with an average diameter of 50 nm and a length of about 1 μm. To enhance the conductivity, the CNTs are also coated with 10-nm Au layer by using E-beam CVD technique. By shining a laser beam to the CNT array, we found that the scattering intensity is maximally enhanced at the backward incident direction. The enhanced backward incident scattering is observed by using both periodic and nonperiodic CNT samples. The experimental results suggest that the backward scattering effect is due to the SP excitation and coupling. The proposed technique exploiting aligned carbon-nanotube arrays to manipulate surface plasmon will lead to useful optical features such as optical antennae effects, retro-reflection, switching, wavelength add/drop multiplexing, and may be particularly useful for optical sensing, smart target identification and optical wireless secure communication applications.

  12. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    NASA Astrophysics Data System (ADS)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  13. Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.

    PubMed

    Kang, Myungshim; Chakraborty, Kaushik; Loverde, Sharon M

    2018-06-25

    We report here on long-time all-atomistic molecular dynamics simulations of functional supramolecular nanotubes composed by the self-assembly of peptide-drug amphiphiles (DAs). These DAs have been shown to possess an inherently high drug loading of the hydrophobic anticancer drug camptothecin. We probe the self-assembly mechanism from random with ∼0.4 μs molecular dynamics simulations. Furthermore, we also computationally characterize the interfacial structure, directionality of π-π stacking, and water dynamics within several peptide-drug nanotubes with diameters consistent with the reported experimental nanotube diameter. Insight gained should inform the future design of these novel anticancer drug delivery systems.

  14. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  15. Diameter and Geometry Control of Vertically Aligned SWNTs through Catalyst Manipulation

    NASA Astrophysics Data System (ADS)

    Xiang, Rong; Einarsson, Erik; Okawa, Jun; Murakami, Yoichi; Maruyama, Shigeo

    2009-03-01

    We present our recent progress on manipulating our liquid-based catalyst loading process, which possesses greater potential than conventional deposition in terms of cost and scalability, to control the diameter and morphology of single-walled carbon nanotubes (SWNTs). We demonstrate that the diameter of aligned SWNTs synthesized by alcohol catalytic CVD can be tailored over a wide range by modifying the catalyst recipe. SWNT arrays with an average diameter as small as 1.2 nm were obtained by this method. Additionally, owing to the alignment of the array, the continuous change of the SWNT diameter during a single CVD process can be clearly observed and quantitatively characterized. We have also developed a versatile wet chemistry method to localize the growth of SWNTs to desired regions via surface modification. By functionalizing the silicon surface using a classic self-assembled monolayer, the catalyst can be selectively dip-coated onto hydrophilic areas of the substrate. This technique was successful in producing both random and aligned SWNTs with various patterns. The precise control of the diameter and morphology of SWNTs, achieved by simple and scalable liquid-based surface chemistry, could greatly facilitate the application of SWNTs as the building blocks of future nano-devices.

  16. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole.

    PubMed

    Abdullayev, Elshad; Price, Ronald; Shchukin, Dmitry; Lvov, Yuri

    2009-07-01

    Halloysite clay nanotubes were investigated as a tubular container for the corrosion inhibitor benzotriazole. Halloysite is a naturally occurring cylindrical clay mineral with an internal diameter in the nanometer range and a length up to several micrometers, yielding a high-aspect-ratio hollow tube structure. Halloysite may be used as an additive in paints to produce a functional composite coating material. A maximum benzotriazole loading of 5% by weight was achieved for clay tubes of 50 nm external diameters and lumen of 15 nm. Variable release rates of the corrosion inhibitor were possible in a range between 5 and 100 h, as was demonstrated by formation of stoppers at tube openings. The anticorrosive performance of the sol-gel coating and paint loaded with 2-5% of halloysite-entrapped benzotriazole was tested on copper and on 2024-aluminum alloy by direct exposure of the metal plates to corrosive media. Kinetics of the corrosion spot formation at the coating defects was analyzed by the scanning vibrating electrode technique, and an essential damping of corrosion development was demonstrated for halloysite-loaded samples.

  17. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.

    PubMed

    Li, Shujuan; Schmidt, Burkhard

    2015-03-21

    The present work deals with molecular dynamics simulations of water confined in single-walled carbon nanotubes (CNTs), with emphasis on the proton-ordering of water and its polarization. First, the water occupancy of open-ended armchair and zigzag CNTs immersed in water under ambient NPT conditions is calculated for various water models, and for varying Lennard-Jones parameters of the water-carbon interaction. As a function of the CNT diameter, the water density displays several oscillations before converging to the bulk value. Based on these results, the water structures encapsulated in 10 nm long armchair CNTs (n,n) with 5 ≤ n ≤ 10, are investigated under NVT conditions. Inside the smallest nanotubes (n = 5, 6) highly ferroelectric (FE), quasi-one-dimensional water chains are found while inside the other CNTs water molecules assemble into single-walled ice nanotubes (INTs). There are several, near-degenerate minimum energy INT structures: single helical structures were found for 7 ≤ n ≤ 10, in all cases in FE arrangement. In addition, a double helical INT structure was found for n = 8 with an even higher polarization. Prism-like structures were found only for 8 ≤ n ≤ 10 with various FE, ferrielectric (FI), and antiferroelectric (AF, n = 9, 10) proton ordering. The coexistence of the nearly iso-energetic FE, FI, and AF INT structures separated by high barriers renders the molecular dynamics highly metastable, typically with nanosecond timescales at room temperature. Hence, the replica exchange simulation method is used to obtain populations of different INT states at finite temperatures. Many of the FE INT structures confined in low-diameter CNTs are still prevalent at room temperature. Both helix-helix and helix-prism structural transitions are detected which can be either continuous (around 470 K for n = 8) or discontinuous (at 218 K for n = 9). Also melting-like transitions are found in which the INT structures are disrupted leading to a loss of FE or FI ordering of the water orientations. Also these transitions can be either smooth (for n = 7, 8) or abrupt, first-order transitions, at T = 362 K for n = 9 and at T = 285 K for n = 10.

  18. Composition Based Strategies for Controlling Radii in Lipid Nanotubes

    PubMed Central

    Kurczy, Michael E.; Mellander, Lisa J.; Najafinobar, Neda; Cans, Ann-Sofie

    2014-01-01

    Nature routinely carries out small-scale chemistry within lipid bound cells and organelles. Liposome–lipid nanotube networks are being developed by many researchers in attempt to imitate these membrane enclosed environments, with the goal to perform small-scale chemical studies. These systems are well characterized in terms of the diameter of the giant unilamellar vesicles they are constructed from and the length of the nanotubes connecting them. Here we evaluate two methods based on intrinsic curvature for adjusting the diameter of the nanotube, an aspect of the network that has not previously been controllable. This was done by altering the lipid composition of the network membrane with two different approaches. In the first, the composition of the membrane was altered via lipid incubation of exogenous lipids; either with the addition of the low intrinsic curvature lipid soy phosphatidylcholine (soy-PC) or the high intrinsic curvature lipid soy phosphatidylethanolamine (soy-PE). In the second approach, exogenous lipids were added to the total lipid composition during liposome formation. Here we show that for both lipid augmentation methods, we observed a decrease in nanotube diameter following soy-PE additions but no significant change in size following the addition of soy-PC. Our results demonstrate that the effect of soy-PE on nanotube diameter is independent of the method of addition and suggests that high curvature soy-PE molecules facilitate tube membrane curvature. PMID:24392077

  19. Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity

    NASA Astrophysics Data System (ADS)

    Ma, Renzhi; Bando, Yoshio; Sato, Tadao; Golberg, Dmitri; Zhu, Hongwei; Xu, Cailu; Wu, Dehai

    2002-12-01

    High-purity boron nitride (BN) nanofibers with diameters ranging from 30 to 100 nm were synthesized. Electron energy loss spectroscopy revealed that they have stoichiometric BN composition. The hydrogen uptake capacity measurements showed that the fibers could adsorb 2.9 wt % hydrogen under ˜10 MPa at room temperature. This hydrogen uptake capacity was compared with those of BN multiwalled or bamboo-like nanotubes under the same experimental conditions. It was suggested that the unique morphology of nanofibers, namely open-ended BN edge layers on the exterior surface, might facilitate hydrogen adsorption.

  20. Structural characteristics of liquid nitromethane at the nanoscale confinement in carbon nanotubes.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Ge, Zhongxue; Kang, Ying

    2014-10-01

    The stability of energetic materials confined in the carbon nanotubes can be improved at ambient pressure and room temperature, leading to potential energy storage and controlled energy release. However, the microscopic structure of confined energetic materials and the role played by the confinement size are still fragmentary. In this study, molecular dynamics simulations have been performed to explore the structural characteristics of liquid nitromethane (NM), one of the simplest energetic materials, confined in a series of armchair single-walled carbon nanotubes (SWNTs) changing from (5,5) to (16,16) at ambient conditions. The simulation results show that the size-dependent ordered structures of NM with preferred orientations are formed inside the tubular cavities driven by the van der Waals attractions between NM and SWNT together with the dipole-dipole interactions of NM, giving rise to a higher local mass density than that of bulk NM. The NM dipoles prefer to align parallel along the SWNT axis in an end-to-end fashion inside all the nanotubes except the (7,7) SWNT where a unique staggered orientation of NM dipoles perpendicular to the SWNT axis is observed. As the SWNT radius increases, the structural arrangements and dipole orientations of NM become disordered as a result of the weakening of van der Waals interactions between NM and SWNT.

  1. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  2. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  3. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation.

    PubMed

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Kim, Young Dok

    2018-04-27

    NiO/NiCo 2 O 4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N 2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m 2 g -1 ) than expected for a flat-surface structure (<15 m 2 g -1 ). Herein, we present a study of the catalytic activity of our novel NiO/NiCo 2 O 4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo 2 O 4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo 2 O 4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo 2 O 4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  4. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  5. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.

    PubMed

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-08

    Highly ordered TiO(2) nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 microm min(-1)), which is nearly 16 times faster than traditional fabrication of TiO(2) at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO(2) nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO(2) nanotubular arrays for practical applications.

  6. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    PubMed Central

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Usui, Yuki; Maruyama, Kayo; Takanashi, Seiji; Aoki, Kaoru; Kobayashi, Shinsuke; Nomura, Hiroki; Tanaka, Manabu; Okamoto, Masanori; Kato, Hiroyuki

    2014-01-01

    This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) – and three CSCNTs of different lengths (CS-L, 20–80 μm; CS-S, 0.5–20 μm; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 μg/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 μg/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs. PMID:24790438

  7. Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study.

    PubMed

    Mehrjouei, Esmat; Akbarzadeh, Hamed; Shamkhali, Amir Nasser; Abbaspour, Mohsen; Salemi, Sirous; Abdi, Pooya

    2017-07-03

    In this work, liberation of cisplatin molecules from interior of a nanotube due to entrance of an Ag-nanowire inside it was simulated by classical molecular dynamics method. The aim of this simulation was investigation on the effects of diameter, chirality, and composition of the nanotube, as well as the influence of temperature on this process. For this purpose, single walled carbon, boron nitride, and silicon carbide nanotube were considered. In order for a more concise comparison of the results, a new parameter namely efficiency of drug release, was introduced. The results demonstrated that the efficiency of drug release is sensitive to its adsorption on outer surface of the nanotube. Moreover, this efficiency is also sensitive to the nanotube composition and its diameter. For the effect of nanotube composition, the results indicated that silicon carbide nanotube has the least efficiency for drug release, due to its strong drug-nanotube. Also, the most important acting forces on drug delivery are van der Waals interactions. Finally, the kinetic of drug release is fast and is not related to the structural parameters of the nanotube and temperature, significantly.

  8. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films

    DOE PAGES

    MacLeod, Bradley A.; Stanton, Noah J.; Gould, Isaac E.; ...

    2017-09-08

    Lightweight, robust, and flexible single-walled carbon nanotube (SWCNT) materials can be processed inexpensively using solution-based techniques, similar to other organic semiconductors. In contrast to many semiconducting polymers, semiconducting SWCNTs (s-SWCNTs) represent unique one-dimensional organic semiconductors with chemical and physical properties that facilitate equivalent transport of electrons and holes. These factors have driven increasing attention to employing s-SWCNTs for electronic and energy harvesting applications, including thermoelectric (TE) generators. Here we demonstrate a combination of ink chemistry, solid-state polymer removal, and charge-transfer doping strategies that enable unprecedented n-type and p-type TE power factors, in the range of 700 μW m –1 Kmore » –2 at 298 K for the same solution-processed highly enriched thin films containing 100% s-SWCNTs. We also demonstrate that the thermal conductivity appears to decrease with decreasing s-SWCNT diameter, leading to a peak material zT ≈ 0.12 for s-SWCNTs with diameters in the range of 1.0 nm. Here, our results indicate that the TE performance of s-SWCNT-only material systems is approaching that of traditional inorganic semiconductors, paving the way for these materials to be used as the primary components for efficient, all-organic TE generators.« less

  9. Carbon nanofibers obtained from electrospinning process

    NASA Astrophysics Data System (ADS)

    Bovi de Oliveira, Juliana; Müller Guerrini, Lília; Sizuka Oishi, Silvia; Rogerio de Oliveira Hein, Luis; dos Santos Conejo, Luíza; Cerqueira Rezende, Mirabel; Cocchieri Botelho, Edson

    2018-02-01

    In recent years, reinforcements consisting of carbon nanostructures, such as carbon nanotubes, fullerenes, graphenes, and carbon nanofibers have received significant attention due mainly to their chemical inertness and good mechanical, electrical and thermal properties. Since carbon nanofibers comprise a continuous reinforcing with high specific surface area, associated with the fact that they can be obtained at a low cost and in a large amount, they have shown to be advantageous compared to traditional carbon nanotubes. The main objective of this work is the processing of carbon nanofibers, using polyacrylonitrile (PAN) as a precursor, obtained by the electrospinning process via polymer solution, with subsequent use for airspace applications as reinforcement in polymer composites. In this work, firstly PAN nanofibers were produced by electrospinning with diameters in the range of (375 ± 85) nm, using a dimethylformamide solution. Using a furnace, the PAN nanofiber was converted into carbon nanofiber. Morphologies and structures of PAN and carbon nanofibers were investigated by scanning electron microscopy, Raman Spectroscopy, thermogravimetric analyses and differential scanning calorimeter. The resulting residual weight after carbonization was approximately 38% in weight, with a diameters reduction of 50%, and the same showed a carbon yield of 25%. From the analysis of the crystalline structure of the carbonized material, it was found that the material presented a disordered structure.

  10. Parametric study of waste chicken fat catalytic chemical vapour deposition for controlled synthesis of vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Suriani, A. B.; Dalila, A. R.; Mohamed, A.; Rosmi, M. S.; Mamat, M. H.; Malek, M. F.; Ahmad, M. K.; Hashim, N.; Isa, I. M.; Soga, T.; Tanemura, M.

    2016-12-01

    High-quality vertically aligned carbon nanotubes (VACNTs) were synthesised using ferrocene-chicken oil mixture utilising a thermal chemical vapour deposition (TCVD) method. Reaction parameters including vaporisation temperature, catalyst concentration and synthesis time were examined for the first time to investigate their influence on the growth of VACNTs. Analysis via field emission scanning electron microscopy and micro-Raman spectroscopy revealed that the growth rate, diameter and crystallinity of VACNTs depend on the varied synthesis parameters. Vaporisation temperature of 570°C, catalyst concentration of 5.33 wt% and synthesis time of 60 min were considered as optimum parameters for the production of VACNTs from waste chicken fat. These parameters are able to produce VACNTs with small diameters in the range of 15-30 nm and good quality (ID/IG 0.39 and purity 76%) which were comparable to those synthesised using conventional carbon precursor. The low turn on and threshold fields of VACNTs synthesised using optimum parameters indicated that the VACNTs synthesised using waste chicken fat are good candidate for field electron emitter. The result of this study therefore can be used to optimise the growth and production of VACNTs from waste chicken fat in a large scale for field emission application.

  11. Excellent Field Emission Properties of Short Conical Carbon Nanotubes Prepared by Microwave Plasma Enhanced CVD Process

    PubMed Central

    2008-01-01

    Randomly oriented short and low density conical carbon nanotubes (CNTs) were prepared on Si substrates by tubular microwave plasma enhanced chemical vapor deposition process at relatively low temperature (350–550 °C) by judiciously controlling the microwave power and growth time in C2H2 + NH3gas composition and Fe catalyst. Both length as well as density of the CNTs increased with increasing microwave power. CNTs consisted of regular conical compartments stacked in such a way that their outer diameter remained constant. Majority of the nanotubes had a sharp conical tip (5–20 nm) while its other side was either open or had a cone/pear-shaped catalyst particle. The CNTs were highly crystalline and had many open edges on the outer surface, particularly near the joints of the two compartments. These films showed excellent field emission characteristics. The best emission was observed for a medium density film with the lowest turn-on and threshold fields of 1.0 and 2.10 V/μm, respectively. It is suggested that not only CNT tip but open edges on the body also act as active emission sites in the randomly oriented geometry of such periodic structures.

  12. The application of halloysite tubule nanoclay in drug delivery.

    PubMed

    Lvov, Yuri M; DeVilliers, Melgardt M; Fakhrullin, Rawil F

    2016-07-01

    Natural and biocompatible clay nanotubes are among the best inorganic materials for drug nanoformulations. These halloysite tubes with SiO2 on the outermost surface have diameter of ca. 50 nm, length around 1 micrometer and may be loaded with drugs at 10-30 wt. %. Narrow tube openings allow for controllable sustained drug release for hours, days or even weeks. Physical-chemical properties of these nanotubes are described followed by examples of drug-loading capabilities, release characteristics, and control of duration of release through the end tube capping with polymers. Development of halloysite-polymer composites such as tissue scaffolds and bone cement/dentist resin formulations with enhanced mechanical properties and extension of the drug release to 2-3 weeks are described. Examples of the compression properties of halloysite in tablets and capsules are also shown. We expect that clay nanotubes will be used primarily for non-injectable drug formulations, such as topical and oral dosage forms, cosmetics, as well as for composite materials with enhanced therapeutic effects. These include tissue scaffolds, bone cement and dentist resins with sustained release of antimicrobial and cell growth-promoting medicines (including proteins and DNA) as well as other formulations such as compounds for antiseptic treatment of hospitals.

  13. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  14. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.

    PubMed

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L

    2017-04-20

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O 2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2 , and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2 -free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2 O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

  15. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE PAGES

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.; ...

    2017-04-11

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  16. The formation of the smallest fullerene-like carbon cages on metal surfaces

    NASA Astrophysics Data System (ADS)

    Ben Romdhane, F.; Rodríguez-Manzo, J. A.; Andrieux-Ledier, A.; Fossard, F.; Hallal, A.; Magaud, L.; Coraux, J.; Loiseau, A.; Banhart, F.

    2016-01-01

    The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure.The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08212a

  17. Adsorption and separation of binary and ternary mixtures of SO2, CO2 and N2 by ordered carbon nanotube arrays: grand-canonical Monte Carlo simulations.

    PubMed

    Rahimi, Mahshid; Singh, Jayant K; Müller-Plathe, Florian

    2016-02-07

    The adsorption and separation behavior of SO2-CO2, SO2-N2 and CO2-N2 binary mixtures in bundles of aligned double-walled carbon nanotubes is investigated using the grand-canonical Monte Carlo (GCMC) method and ideal adsorbed solution theory. Simulations were performed at 303 K with nanotubes of 3 nm inner diameter and various intertube distances. The results showed that the packing with an intertube distance d = 0 has the highest selectivity for SO2-N2 and CO2-N2 binary mixtures. For the SO2-CO2 case, the optimum intertube distance for having the maximum selectivity depends on the applied pressure, so that at p < 0.8 bar d = 0 shows the highest selectivity and at 0.8 bar < p < 2.5 bar, the highest selectivity belongs to d = 0.5 nm. Ideal adsorbed solution theory cannot predict the adsorption of the binary systems containing SO2, especially when d = 0. As the intertube distance is increased, the ideal adsorbed solution theory based predictions become closer to those of GCMC simulations. Only in the case of CO2-N2, ideal adsorbed solution theory is everywhere in good agreement with simulations. In a ternary mixture of all three gases, the behavior of SO2 and CO2 remains similar to that in a SO2-CO2 binary mixture because of the weak interaction between N2 molecules and CNTs.

  18. Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder.

    PubMed

    Hwang, E J; Lee, S K; Jeong, M G; Lee, Y B; Lim, D S

    2012-07-01

    Carbon nanotubes (CNTs) have unique atomic structure and properties, such as a high aspect ratio and high mechanical, electrical and thermal properties. On the other hand, the agglomeration and entanglement of CNTs restrict their applications. Sea urchin-like multiwalled carbon nanotubes, which have a small aspect ratio, can minimize the problem of dispersion. The high hardness, thermal conductivity and chemical inertness of the nano-diamond powder make it suitable for a wide range of applications in the mechanical and electronic fields. CNTs were synthesized on nano-diamond powder by thermal CVD to fabricate a filler with suitable mechanical properties and chemical stability. This paper reports the growth of CNTs with a sea urchin-like structure on the surface of the nano-diamond powder. Nano-diamond powders were dispersed in an attritional milling system using zirconia beads in ethanol. After the milling process, 3-aminopropyltrimethoxysilane (APS) was added as a linker. Silanization was performed between the nano-diamond particles and the metal catalyst. Iron chloride was used as a catalyst for the fabrication of the CNTs. After drying, catalyst-attached nano-diamond powders could be achieved. The growth of the carbon nanotubes was carried out by CVD. The CNT morphology was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mean diameter and length of the CNTs were 201 nm and 3.25 microm, respectively.

  19. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture.

    PubMed

    Kongkanand, Anusorn; Tvrdy, Kevin; Takechi, Kensuke; Kuno, Masaru; Kamat, Prashant V

    2008-03-26

    Different-sized CdSe quantum dots have been assembled on TiO2 films composed of particle and nanotube morphologies using a bifunctional linker molecule. Upon band-gap excitation, CdSe quantum dots inject electrons into TiO2 nanoparticles and nanotubes, thus enabling the generation of photocurrent in a photoelectrochemical solar cell. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via size control of CdSe quantum dots and (ii) improvement in the photoconversion efficiency by facilitating the charge transport through TiO2 nanotube architecture. The maximum IPCE (photon-to-charge carrier generation efficiency) obtained with 3 nm diameter CdSe nanoparticles was 35% for particulate TiO2 and 45% for tubular TiO2 morphology. The maximum IPCE observed at the excitonic band increases with decreasing particle size, whereas the shift in the conduction band to more negative potentials increases the driving force and favors fast electron injection. The maximum power-conversion efficiency

  20. A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors.

    PubMed

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2011-09-02

    IrO(x) nanofoils (IrO(x)NF) of high surface area are sputtered on multi-wall carbon nanotubes (CNT) in the preparation of a structured electrode on a stainless steel (SUS) substrate for supercapacitor applications. This IrO(x)/CNT/SUS electrode is featured with intriguing IrO(x) curved foils of 2-3 nm in thickness and 400-500 nm in height, grown on top of the vertically aligned CNT film with a tube diameter of ∼ 40 nm. These nanofoils are moderately oxidized during reactive sputtering and appeared translucent under the electron microscope. Detailed structural analysis shows that they are comprised of contiguous grains of iridium metal, iridium dioxide, and glassy iridium oxide. Considerable Raman line broadening is also evidenced for the attributed nanosized iridium oxides. Two capacitive properties of the electrode are significantly enhanced with addition of the curved IrO(x) foils. First, IrO(x)NF reduces the electrode Ohmic resistance, which was measured at 3.5 Ω cm(2) for the CNT/SUS and 2.5 Ω cm(2) for IrO(x)NF/CNT/SUS using impedance spectroscopy. Second, IrO(x)NF raises the electrode capacitance from 17.7 F g(-1) (CNT/SUS) to 317 F g(-1) (IrO(x)/CNT/SUS), measured with cyclic voltammetry. This notable increase is further confirmed by the galvanostatic charge/discharge experiment, measuring 370 F g(-1) after 2000 uninterrupted cycles between - 1.0 and 0.0 V (versus Ag/AgCl).

  1. A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2011-09-01

    IrOx nanofoils (IrOxNF) of high surface area are sputtered on multi-wall carbon nanotubes (CNT) in the preparation of a structured electrode on a stainless steel (SUS) substrate for supercapacitor applications. This IrOx/CNT/SUS electrode is featured with intriguing IrOx curved foils of 2-3 nm in thickness and 400-500 nm in height, grown on top of the vertically aligned CNT film with a tube diameter of ~ 40 nm. These nanofoils are moderately oxidized during reactive sputtering and appeared translucent under the electron microscope. Detailed structural analysis shows that they are comprised of contiguous grains of iridium metal, iridium dioxide, and glassy iridium oxide. Considerable Raman line broadening is also evidenced for the attributed nanosized iridium oxides. Two capacitive properties of the electrode are significantly enhanced with addition of the curved IrOx foils. First, IrOxNF reduces the electrode Ohmic resistance, which was measured at 3.5 Ω cm2 for the CNT/SUS and 2.5 Ω cm2 for IrOxNF/CNT/SUS using impedance spectroscopy. Second, IrOxNF raises the electrode capacitance from 17.7 F g - 1 (CNT/SUS) to 317 F g - 1 (IrOx/CNT/SUS), measured with cyclic voltammetry. This notable increase is further confirmed by the galvanostatic charge/discharge experiment, measuring 370 F g - 1 after 2000 uninterrupted cycles between - 1.0 and 0.0 V (versus Ag/AgCl).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marana, Naiara L.; Albuquerque, Anderson R.; La Porta, Felipe A.

    Periodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ~4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy ismore » negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors. - Graphical abstract: DFT/B3LYP were performed to simulate the structural and electronic properties as well as the strain and formation energies of SWZnONTs and SWCNTs with different chiralities as functions of their diameters. - Highlights: • The energies of SWZnONTs converge for chirality with diameters up 20 Å. • SWCNTs electronic properties depend on the chirality. • The properties of SWZnONTs are very similar to those of monolayer surface.« less

  3. Field Enhancement Properties of Nanotubes in a Field Emission Set-Up

    NASA Technical Reports Server (NTRS)

    Adessi, Ch.; Devel, M.

    2001-01-01

    This slide presentation reviews the mechanisms of emission of nanotubes. The field enhancement properties of carbon nanotubes, involved in the emission of electrons, is investigated theoretically for various single-wall (SWNT) and multi-wall nanotubes (MWNT). The presentation points out big differences between (n,0) and (n,n) nanotubes, and propose phenomenological laws for the variations of the enhancement factor with length and diameter

  4. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.

    PubMed

    Moon, Young Kyun; Lee, Jaebeom; Lee, Jae Keun; Kim, Tae Kyu; Kim, Soo H

    2009-02-03

    A one-step method combining spray pyrolysis and thermal chemical vapor deposition (CVD) processes was developed to grow hybrid carbon nanotube (CNT)-bimetallic composite particles. Nickel, aluminum, and acetylene were used as the catalytic site, noncatalytic matrix, and hydrocarbon source, respectively. The bimetallic particles (i.e., Al-Ni) were spray pyrolized and subsequently passed through thermal CVD. During the thermal CVD, the catalytic decomposition of acetylene occurred on the free-floating bimetallic particles so that sea urchin-like CNTs were radially grown. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed the CNTs to have a uniform diameter of approximately 10 +/- 2 nm. The length of the CNTs was controlled by varying the residence time of the bimetallic nanoparticles with a length of 200-1000 nm. After nitric acid treatment, the CNTs were released by melting the bimetallic particles. The resulting CNTs were then dispersed in an aqueous solution to examine the effect of the length of CNTs on their dispersion stability, which is a critical issue for the stability and repeatability of the heat transfer performance in nanofluids. Ultraviolet-visible (UV-vis) spectrometer analysis showed that shorter CNTs were less stable than the longer CNTs due to the higher mobility-induced agglomeration of the shorter CNTs.

  5. Effect of coating mild steel with CNTs on its mechanical properties and corrosion behaviour in acidic medium

    NASA Astrophysics Data System (ADS)

    Abdulmalik Abdulrahaman, Mahmud; Kamaldeeen Abubakre, Oladiran; Ambali Abdulkareem, Saka; Oladejo Tijani, Jimoh; Aliyu, Ahmed; Afolabi, Ayo Samuel

    2017-03-01

    The study investigated the mechanical properties and corrosion behaviour of mild steel coated with carbon nanotubes at different coating conditions. Multi-walled carbon nanotubes (MWCNTs) were synthesized via the conventional chemical vapour deposition reaction using bimetallic Fe-Ni catalyst supported on kaolin, with acetylene gas as a carbon source. The HRSEM/HRTEM analysis of the purified carbon materials revealed significant reduction in the diameters of the purified MWCNT bundles from 50 nm to 2 nm and was attributed to the ultrasonication assisted dispersion with surfactant (gum arabic) employed in purification process. The network of the dispersed MWCNTs was coated onto the surfaces of mild steel samples, and as the coating temperature and holding time increased, the coating thickness reduced. The mechanical properties (tensile strength, yield strength, hardness value) of the coated steel samples increased with increase in coating temperature and holding time. Comparing the different coating conditions, coated mild steels at the temperature of 950 °C for 90 min holding time exhibited high hardness, yield strength and tensile strength values compared to others. The corrosion current and corrosion rate of the coated mild steel samples decreased with increase in holding time and coating temperature. The lowest corrosion rate was observed on sample coated at 950 °C for 90 min.

  6. Oxygen-Evolving Porous Glass Plates Containing the Photosynthetic Photosystem II Pigment-Protein Complex.

    PubMed

    Noji, Tomoyasu; Kawakami, Keisuke; Shen, Jian-Ren; Dewa, Takehisa; Nango, Mamoru; Kamiya, Nobuo; Itoh, Shigeru; Jin, Tetsuro

    2016-08-09

    The development of artificial photosynthesis has focused on the efficient coupling of reaction at photoanode and cathode, wherein the production of hydrogen (or energy carriers) is coupled to the electrons derived from water-splitting reactions. The natural photosystem II (PSII) complex splits water efficiently using light energy. The PSII complex is a large pigment-protein complex (20 nm in diameter) containing a manganese cluster. A new photoanodic device was constructed incorporating stable PSII purified from a cyanobacterium Thermosynechococcus vulcanus through immobilization within 20 or 50 nm nanopores contained in porous glass plates (PGPs). PSII in the nanopores retained its native structure and high photoinduced water splitting activity. The photocatalytic rate (turnover frequency) of PSII in PGP was enhanced 11-fold compared to that in solution, yielding a rate of 50-300 mol e(-)/(mol PSII·s) with 2,6-dichloroindophenol (DCIP) as an electron acceptor. The PGP system realized high local concentrations of PSII and DCIP to enhance the collisional reactions in nanotubes with low disturbance of light penetration. The system allows direct visualization/determination of the reaction inside the nanotubes, which contributes to optimize the local reaction condition. The PSII/PGP device will substantively contribute to the construction of artificial photosynthesis using water as the ultimate electron source.

  7. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; McCluskey, Richard; Hunter, Robert L.

    2004-01-01

    Nanomaterials are part of an industrial revolution to develop lightweight but strong materials for a variety of purposes. Single-wall carbon nanotubes are an important member of this class of materials. They structurally resemble rolled-up graphite sheets, usually with one end capped; individually they are about 1 nm in diameter and several microns long, but they often pack tightly together to form rods or ropes of microscopic sizes. Carbon nanotubes possess unique electrical, mechanical, and thermal properties and have many potential applications in the electronics, computer, and aerospace industries. Unprocessed nanotubes are very light and could become airborne and potentially reach the lungs. Because the toxicity of nanotubes in the lung is not known, their pulmonary toxicity was investigated. The three products studied were made by different methods and contained different types and amounts of residual catalytic metals. Mice were intratracheally instilled with 0, 0.1, or 0.5 mg of carbon nanotubes, a carbon black negative control, or a quartz positive control and euthanized 7 d or 90 d after the single treatment for histopathological study of the lungs. All nanotube products induced dose-dependent epithelioid granulomas and, in some cases, interstitial inflammation in the animals of the 7-d groups. These lesions persisted and were more pronounced in the 90-d groups; the lungs of some animals also revealed peribronchial inflammation and necrosis that had extended into the alveolar septa. The lungs of mice treated with carbon black were normal, whereas those treated with high-dose quartz revealed mild to moderate inflammation. These results show that, for the test conditions described here and on an equal-weight basis, if carbon nanotubes reach the lungs, they are much more toxic than carbon black and can be more toxic than quartz, which is considered a serious occupational health hazard in chronic inhalation exposures.

  8. Biodistribution and toxicity assessment of europium-doped Gd2O3 nanotubes in mice after intraperitoneal injection

    NASA Astrophysics Data System (ADS)

    Liu, Huifang; Zhang, Cuimiao; Tan, Yanli; Wang, Jianguo; Wang, Ke; Zhao, Yanyan; Jia, Guang; Hou, Yingjian; Wang, Shuxian; Zhang, Jinchao

    2014-03-01

    In order to evaluate the biodistribution and toxicity of europium-doped Gd2O3 nanotubes, we synthesized Gd2O3:Eu3+ nanotubes via a simple wet-chemical route at ambient pressure. The as-obtained Gd2O3:Eu3+ sample is composed of uniform and well-dispersed nanotubes. The diameters and lengths of the nanotubes are about 50 and 300 nm, respectively. All mice of the experimental groups were administered by intraperitoneal injection everyday over a period of 60 days at doses ranging from 1.25 to 125 mg/kg. Haematological and biochemical parameters and histopathology were examined, and the biodistribution of Gd element in different organs was analyzed. The results indicate that the spleen shows significant higher coefficient than the control, and other organs have no obvious difference from the control in the middle-dose and high-dose groups. There was no significant difference in the blood-elements between the control group and the experimental groups, and no significant change of all parameters can be observed in both low-dose and middle-dose groups. However, in the high-dose group, the ALT, AST, the ratio of AST/ALT, UA, LDH, and HBDH levels was increased significantly in comparison with the control group. The pathology results show that the ischemia of myocardial cell, hemorrhage of lung tissue, hepatocyte necrosis, congestion of renal interstitium, mesangial cell proliferation, and congestion of spleen sinus were induced by high-dose Gd2O3:Eu3+ nanotubes. Biodistribution experiment exhibits that Gd mainly accumulates in spleen, lung, and liver. Therefore, it can be concluded that high-dose Gd2O3:Eu3+ nanotubes were toxic, but low-dose and middle-dose groups did not show significant toxicity. The results provide novel toxicology data of Gd2O3:Eu3+ nanotubes and may be helpful for more rational applications of Gd-based compounds in the future.

  9. Surface functionalization of TiO2 nanotubes with minocycline and its in vitro biological effects on Schwann cells.

    PubMed

    A, Lan; Xu, Wenzhou; Zhao, Jinghui; Li, Chunyan; Qi, Manlin; Li, Xue; Wang, Lin; Zhou, Yanmin

    2018-06-20

    Minocycline has been widely used in central nervous system disease. However, the effect of minocycline on the repairing of nerve fibers around dental implants had not been previously investigated. The aim of the present study was to evaluate the possibility of using minocycline for the repairing of nerve fibers around dental implants by investigating the effect of minocycline on the proliferation of Schwann cells and secretion of neurotrophic factors nerve growth factor and glial cell line-derived neurotrophic factor in vitro. TiO 2 nanotubes were fabricated on the surface of pure titanium via anodization at the voltage of 20, 30, 40 and 50 V. The nanotubes structure were characterized by scanning electron microscopy and examined with an optical contact angle. Then drug loading capability and release behavior were detected in vitro. The TiO 2 nanotubes loaded with different concentration of minocycline were used to produce conditioned media with which to treat the Schwann cells. A cell counting kit-8 assay and cell viability were both selected to study the proliferative effect of the specimens on Schwann cell. Reverse transcription-quantitative PCR and western blot analyses were used to detect the related gene/protein expression of Schwann cells. The results showed that the diameter of TiO 2 nanotubes at different voltage varied from 100 to 200 nm. The results of optical contact angle and releasing profile showed the nanotubes fabricated at the voltage of 30 V met the needs of the carrier of minocycline. In addition, the TiO 2 nanotubes loaded with the concentration of 20 μg/mL minocycline increased Schwann cells proliferation and secretion of neurotrophic factors in vitro. The results suggested that the surface functionalization of TiO 2 nanotubes with minocycline was a promising candidate biomaterial for the peripheral nerve regeneration around dental implants and has potential to be applied in improving the osseoperception of dental implant.

  10. One-Step Formation of WO3-Loaded TiO2 Nanotubes Composite Film for High Photocatalytic Performance

    PubMed Central

    Lee, Wai Hong; Lai, Chin Wei; Abd Hamid, Sharifah Bee

    2015-01-01

    High aspect ratio of WO3-loaded TiO2 nanotube arrays have been successfully synthesized using the electrochemical anodization method in an ethylene glycol electrolyte containing 0.5 wt% ammonium fluoride in a range of applied voltage of 10–40 V for 30 min. The novelty of this research works in the one-step formation of WO3-loaded TiO2 nanotube arrays composite film by using tungsten as the cathode material instead of the conventionally used platinum electrode. As compared with platinum, tungsten metal has lower stability, forming dissolved ions (W6+) in the electrolyte. The W6+ ions then move towards the titanium foil and form a coherent deposit on titanium foil. By controlling the oxidation rate and chemical dissolution rate of TiO2 during the electrochemical anodization, the nanotubular structure of TiO2 film could be achieved. In the present study, nanotube arrays were characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the results obtained, nanotube arrays with average pore diameter of up to 74 nm and length of 1.6 µm were produced. EDAX confirmed the presence of tungsten element within the nanotube arrays which varied in content from 1.06 at% to 3.29 at%. The photocatalytic activity of the nanotube arrays was then investigated using methyl orange degradation under TUV 96W UV-B Germicidal light irradiation. The nanotube with the highest aspect ratio, geometric surface area factor and at% of tungsten exhibited the highest photocatalytic activity due to more photo-induced electron-hole pairs generated by the larger surface area and because WO3 improves charge separation, reduces charge carrier recombination and increases charge carrier lifetime via accumulation of electrons and holes in the two different metal oxide semiconductor components.

  11. Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Mathur, Ashish; Tweedie, Mark; Roy, Susanta Sinha; Maguire, P D; McLaughlin, James A

    2009-07-01

    Microwave plasma enhanced chemical vapour deposition (MPECVD) was used for the production of carbon nanotubes. Vertically aligned multi-walled carbon nanotubes (MWCNTs) were grown on silicon substrates coated with cobalt thin films of thickness ranging from 0.5 nm to 3 nm. Prior to the nanotube growth the catalyst were treated with N2 plasma for 5-10 minutes that break the films into small nanoparticles which favour the growth of nanotubes. The CNTs were grown at a substrate temperature of 700 degrees C for 5, 10 and 15 minutes. The height of the CNT films ranging from 10 microm-30 microm indicating that the initial growth rate of the CNTs are very high at a rate of approximately 100 nm/sec. Electrical resistivity of the above samples was evaluated from I-V measurements. The activation energy (E(a)) was also calculated from the temperature dependent studies and it was found that the E(a) lies in the range of 15-35 meV. Raman spectroscopy was used to identify the quality of the nanotubes.

  12. Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-01-01

    A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyopratomo, P., E-mail: puguh-sptm@yahoo.com; Wulan, Praswasti P. D. K., E-mail: wulanmakmur@gmail.com; Sudibandriyo, M., E-mail: msudib@che.ui.ac.id

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 – 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the depositedmore » metal components might partially replace Mg(OH){sub 2} or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m{sup 2}/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.« less

  14. A new route of synthesizing perovskite nanotubes by templating approach

    NASA Astrophysics Data System (ADS)

    Habiballah, Anisah Shafiqah; Osman, Nafisah; Jani, Abdul Mutalib Md

    2017-09-01

    A perovskite oxide for example Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) has attracted growing attention due to its high catalytic activity and mixed ionic/electronic conductivity. Recent research of BSCF is more comprehensively based on a remarkable trajectory of innovation, in particular with regards to the synthesis of perovskite structures in one-dimensional (1-D) nanometric scales as they promote not only to increase an active electrode area for the oxygen reduction reaction, but also allow the tailoring of electrode's architecture. Nevertheless, achieving the desired 1-D structure by a conventional method such as hydrothermal, solvothermal, or sonochemical are far from satisfactory. Herein, the aim of this work is to synthesize the BSCF perovskite nanotubes via soft templating approach, particularly using anodic aluminium oxide (AAO) as a template, focusing on the morphology, composition and structural properties were demonstrated. After the AAO template was anodized at 80 V, the fabricated template was clamped between apair of spectroscopic cells containing BSCF sol and deionized water (with a hole of both sides) for 24 hours. After that, the sample was removed from the cells followed by heat treatment process. The FESEM images showed that BSCF nanotubes were successfully achieved, with the diameter of the nanotubes' approximately 80 nm. The EDX result also confirmed the nominal stoichiometry of Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Meanwhile, the XRD pattern confirmed a single crystalline phase of BSCF nanotubes was successfully obtained and congruent to a cubic perovskite structure of BSCF. Possible formation mechanism,as well as the schematic illustration of BSCF nanotubes inside the template was also discussed in this paper.

  15. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    PubMed Central

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-01-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327

  16. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    NASA Astrophysics Data System (ADS)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-03-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  17. Comparison of bio-mineralization behavior of Ti-6Al-4V-1Nb and Zr-1Nb nano-tubes formed by anodization

    NASA Astrophysics Data System (ADS)

    Choi, Yong; Hong, Sun I.

    2014-12-01

    Nano-tubes of titanium and zirconium alloys like Ti-6Al-4V-1Nb and Zr-1Nb were prepared by anodization followed by coating with hydroxylapatite (HA) and their bio-mineralization behaviors were compared to develop a bio-compatible material for implants in orthopedics, dentistry and cardiology. Ti-6Al-4V-1Nb weight gain in a simulated body solution increased gradually. The bigger tube diameter was, the heavier HA was deposited. Surface roughness of both alloys increased highly with the increasing diameter of nano-tube. Their surface roughness decreased by HA deposition due to the removal of the empty space of the nano-tubes. Zr-1Nb alloy had faster growth of nano-tubes layers more than Ti-6Al-4V-1Nb alloy.

  18. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin

    NASA Astrophysics Data System (ADS)

    Wang, Junkai; Deng, Xiangong; Zhang, Haijun; Zhang, Yuanzhuo; Duan, Hongjuan; Lu, Lilin; Song, Jianbo; Tian, Liang; Song, Shupeng; Zhang, Shaowei

    2017-02-01

    Carbon nanotubes (CNTs) with 40-100 nm in diameter and tens of micrometers in length were prepared via catalytic pyrolysis of phenol resin in Ar at 673-1273 K using ferric nitrate as a catalyst precursor. Structure and morphology of pyrolyzed resin were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Ferric nitrate was transformed to Fe3O4 at 673 K, and to metallic Fe and FexC carbide at 873-1273 K. The optimal weight ratio of Fe catalyst to phenol resin for growing CNTs was 1.00 wt%, and the optimal temperature was 1073 K. In addition, use of a high pressure increased the yield of CNTs. Density functional theory (DFT) calculations suggest that Fe catalysts facilitate the CNTs growth by increasing the bond length and weakening the bond strength in C2H4 via donating electrons to the C atoms in it.

  19. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes

    PubMed Central

    Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing

    2014-01-01

    Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783

  20. Dissolution and Characterization of Boron Nitride Nanotubes in Superacid.

    PubMed

    Kleinerman, Olga; Adnan, Mohammed; Marincel, Daniel M; Ma, Anson W K; Bengio, E Amram; Park, Cheol; Chu, Sang-Hyon; Pasquali, Matteo; Talmon, Yeshayahu

    2017-12-19

    Boron nitride nanotubes (BNNTs) are of interest for their unique combination of high tensile strength, high electrical resistivity, high neutron cross section, and low reactivity. The fastest route to employing these properties in composites and macroscopic articles is through solution processing. However, dispersing BNNTs without functionalization or use of a surfactant is challenging. We show here by cryogenic transmission electron microscopy that BNNTs spontaneously dissolve in chlorosulfonic acid as disentangled individual molecules. Electron energy loss spectroscopy of BNNTs dried from the solution confirms preservation of the sp 2 hybridization for boron and nitrogen, eliminating the possibility of BNNT functionalization or damage. The length and diameter of the BNNTs was statistically calculated to be ∼4.5 μm and ∼4 nm, respectively. Interestingly, bent or otherwise damaged BNNTs are filled by chlorosulfonic acid. Additionally, nanometer-sized synthesis byproducts, including boron nitride clusters, isolated single and multilayer hexagonal boron nitride, and boron particles, were identified. Dissolution in superacid provides a route for solution processing BNNTs without altering their chemical structure.

  1. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    PubMed Central

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-01-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated. PMID:24126604

  2. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].

    PubMed

    Wu, Xiao-Bin; Wang, Jia; Wang, Rui; Xu, Ji-Ying; Tian, Qian; Yu, Jian-Yuan

    2009-10-01

    Raman spectroscopy is a powerful technique in the characterization of carbon nanotubes (CNTs). However, this spectral method is subject to two obstacles. One is spatial resolution, namely the diffraction limits of light, and the other is its inherent small Raman cross section and weak signal. To resolve these problems, a new approach has been developed, denoted tip-enhanced Raman spectroscopy (TERS). TERS has been demonstrated to be a powerful spectroscopic and microscopic technique to characterize nanomaterial or nanostructures. Excited by a focused laser beam, an enhanced electric field is generated in the vicinity of a metallic tip because of the surface plasmon polariton (SPP) and lightening rod effect. Consequently, Raman signal from the sample area illuminated by the enhanced field nearby the tip is enhanced. At the same time, the topography is obtained in the nanometer scale. The exact corresponding relationship between the localized Raman and the topography makes the Raman identification at the nanometer scale to be feasible. In the present paper, based on an inverted microscope and a metallic AFM tip, a tip-enhanced Raman system was set up. The radius of the Au-coated metallic tip is about 30 nm. The 532 nm laser passes through a high numerical objective (NA0.95) from the bottom to illuminate the tip to excite the enhanced electric field. Corresponding with the AFM image, the tip-enhanced near-field Raman of a 100 nm diameter single-walled carbon nanotube (SWNT) bundles was obtained. The SWNTs were prepared by arc method. Furthermore, the near-field Raman of about 3 SWNTs of the bundles was received with the spatial resolution beyond the diffraction limit. Compared with the far-field Raman, the enhancement factor of the tip-enhanced Raman is more than 230. With the super-diffraction spatial resolution and the tip-enhanced Raman ability, tip-enhanced Raman spectroscopy will play an important role in the nano-material and nano-structure characterization.

  3. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.

    PubMed

    Pugliese, P; Conde, M M; Rovere, M; Gallo, P

    2017-11-16

    A very recent experimental paper importantly and unexpectedly showed that water in carbon nanotubes is already in the solid ordered phase at the temperature where bulk water boils. The water models used so far in literature for molecular dynamics simulations in carbon nanotubes show freezing temperatures lower than the experiments. We present here results from molecular dynamics simulations of water inside single walled carbon nanotubes using an extremely realistic model for both liquid and icy water, the TIP4P/ICE. The water behavior inside nanotubes of different diameters has been studied upon cooling along the isobars at ambient pressure starting from temperatures where water is in a liquid state. We studied the liquid/solid transition, and we observed freezing temperatures higher than in bulk water and that depend on the diameter of the nanotube. The maximum freezing temperature found is 390 K, which is in remarkable agreement with the recent experimental measurements. We have also analyzed the ice structure called "ice nanotube" that water forms inside the single walled carbon nanotubes when it freezes. The ice forms observed are in agreement with previous results obtained with different water models. A novel finding, a partial proton ordering, is evidenced in our ice nanotubes at finite temperature.

  4. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  5. A parametric study of single-wall carbon nanotube growth by laser ablation

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.

    2004-01-01

    Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.

  6. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

    PubMed Central

    Sobel, Nicolas; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Trautmann, Christina

    2015-01-01

    Summary Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7–1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced. PMID:25821688

  7. Inelastic X-ray Scattering Studies of Plasmons in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Upton, M. H.; Klie, R. F.; Hill, J. P.; Gog, T.; Casa, D.; Ku, W.; Zhu, Y.; Sfeir, M. Y.; Misewich, J.; Eres, G.; Lowndes, D.

    2007-03-01

    We investigate the physical parameters controlling the low energy screening in carbon nanotubes via electron energy loss spectroscopy and inelastic x-ray scattering. Two plasmon-like features are observed, one near 9 eV (the so- called π plasmon) and one near 20 eV (the so-called π+σ plasmon). At large nanotube diameters, the π+σ plasmon energies depend exclusively on the number of walls and not on the radius or chiral vector. This shift indicates a change of strength of screening and the effective interaction at inter-atomic distance, and thus suggests an alternative mechanism of tuning the properties of the nanotube in addition to the well-known control provided by chirality and tube diameter.

  8. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried

    2017-09-01

    As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.

  9. Vibrational Spectroscopic Studies on the Formation of Ion-exchangeable Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Hodos, Mária; Haspel, Henrik; Horváth, Endre; Kukovecz, Ákos; Kónya, Zoltán; Kiricsi, Imre

    2005-09-01

    Ion-exchangeable titanium-oxide nanotubes have commanded considerable interest from the materials science community in the past five years. Synthesized under hydrothermal conditions from TiO2, typical nanotubes are 150-200 nm long and 8-20 nm wide. High resolution TEM images revealed that unlike multiwall carbon nanotubes which are made of coaxial single-wall nanotubes, the titania tubes possess a spiral cross-section. An interesting feature of the titania tubes is their considerable ion-exchange capacity which could be utilized e.g. for enhancing their photocatalytic activity by doping the titania tubes with CdS nanoparticles. In this contribution we present a comprehensive TEM, FT-Raman and FT-farIR characterization study of the formation process.

  10. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes.

    PubMed

    Han, Shu-Jen; Tang, Jianshi; Kumar, Bharat; Falk, Abram; Farmer, Damon; Tulevski, George; Jenkins, Keith; Afzali, Ali; Oida, Satoshi; Ott, John; Hannon, James; Haensch, Wilfried

    2017-09-01

    As conventional monolithic silicon technology struggles to meet the requirements for the 7-nm technology node, there has been tremendous progress in demonstrating the scalability of carbon nanotube field-effect transistors down to the size that satisfies the 3-nm node and beyond. However, to date, circuits built with carbon nanotubes have overlooked key aspects of a practical logic technology and have stalled at simple functionality demonstrations. Here, we report high-performance complementary carbon nanotube ring oscillators using fully manufacturable processes, with a stage switching frequency of 2.82 GHz. The circuit was built on solution-processed, self-assembled carbon nanotube arrays with over 99.9% semiconducting purity, and the complementary feature was achieved by employing two different work function electrodes.

  11. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    PubMed Central

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  12. Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization

    PubMed Central

    2017-01-01

    The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles’ rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (∼60–160 nm), tubular length (∼6–70 nm), and outer diameter (∼6–10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core–shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications. PMID:28852697

  13. Formation and evolution of anodic TiO2 nanotube embryos

    NASA Astrophysics Data System (ADS)

    Jin, Rong; Liao, Maoying; Lin, Tong; Zhang, Shaoyu; Shen, Xiaoping; Song, Ye; Zhu, Xufei

    2017-06-01

    Anodic TiO2 nanotubes (ATNTs) have been widely investigated for decades due to their interesting nanostructures and various applications. However, the formation mechanism of ATNTs still remains unclear. To date, most of researches focus on the tubular structure but neglect the formation process of initial nanotube embryos. Herein, polyethylene glycol (PEG) is added into the traditional electrolyte to moderate the transformation process from compact layer to porous layer. Based on ‘oxygen bubble mould’ and ‘plastic flow model’ theory, the formation and evolution process of nanotube embryo is clarified firstly. Results validate the effect of ‘oxygen bubble mould’ on the formation of nanotube embryo, which has a great effect on regulating the morphology of ATNT arrays. Besides, nanotubes prepared in electrolytes with PEG show shorter tube length with larger diameter than that prepared in traditional electrolytes. The addition of PEG can also effectively avoid the breakdown phenomenon. Highlights Transformation from compact layer into porous layer is observed in PEG electrolyte. The effect of oxygen bubble mould is first demonstrated and observed. The formation process of TiO2 nanotube embryo is described systematically. TiO2 nanotubes prepared in PEG electrolyte show short length and large diameter.

  14. Structural Analysis of a Carbon Nitride Film Prepared by Ion-Beam-Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiyuki; Matsumuro, Akihito; Muramatsu, Mutsuo; Kohzaki, Masao; Takahashi, Yutaka; Yamaguchi, Katsumi

    1999-04-01

    The microstructure of a carbon nitride (CNx) film formed by ion-beam-assisted deposition (IBAD) was investigated by transmission electron microscopy (TEM). This film was formed on the Si (100) substrate by IBAD with an N/C transport ratio of 1. Three different spacings (0.34 nm, 0.21 nm, 0.12 nm) were observed by transmission electron diffraction (TED) and the periodic structure corresponding to the spacing of 0.34 nm was aligned perpendicular to the substrate. The bending of this plane resembled a carbon nanotube; therefore, it seemed reasonable to suppose that the CNx film obtained consisted of numerous carbon-nanotube-like structural elements grown vertically, relative to the substrate, and it also seemed appropriate that these structural elements should be termed nanotube-like carbon nitride.

  15. A Computational Experiment on Single-Walled Carbon Nanotubes

    ERIC Educational Resources Information Center

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  16. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  17. Method of making carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei; Liu, Jun

    2006-03-14

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  18. Low Temperature Synthesized H2Ti3O7 Nanotubes with a High CO2 Adsorption Property by Amine Modification.

    PubMed

    Ota, Misaki; Hirota, Yuichiro; Uchida, Yoshiaki; Sakamoto, Yasuhiro; Nishiyama, Norikazu

    2018-06-12

    Carbon dioxide (CO 2 ) capture and storage (CCS) technologies have been attracting attention in terms of tackling with global warming. To date, various CO 2 capture technologies including solvents, membranes, cryogenics, and solid adsorbents have been proposed. Currently, a liquid adsorption method for CO 2 using amine solution (monoethanolamine) has been practically used. However, this liquid phase CO 2 adsorption process requires heat regeneration, and it can cause many problems such as corrosion of equipment and degradation of the solution. Meanwhile, solid adsorption methods using porous materials are more advantageous over the liquid method at these points. In this context, we here evaluated if hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes and the surface modification effectively capture CO 2 . For this aim, we first developed a facile synthesis method of H 2 Ti 3 O 7 nanotubes different from any conventional methods. Briefly, they were converted from the precursors-amorphous TiO 2 nanoparticles at room temperature (25 °C). We then determined the outer and the inner diameters of the H 2 Ti 3 O 7 nanotubes as 3.0 and 0.7 nm, respectively. It revealed that both values were much smaller than the reported ones; thus the specific surface area showed the highest value (735 m 2 /g). Next, the outer surface of H 2 Ti 3 O 7 nanotubes was modified using ethylenediamine to examine if CO 2 adsorption capacity increases. The ethylendiamine-modified H 2 Ti 3 O 7 nanotubes showed a higher CO 2 adsorption capacity (50 cm 3 /g at 0 °C, 100 kPa). We finally concluded that the higher CO 2 adsorption capacity could be explained, not only by the high specific surface area of the nanotubes but also by tripartite hydrogen bonding interactions among amines, CO 2 , and OH groups on the surface of H 2 Ti 3 O 7 .

  19. Assessing manganese nanostructures based carbon nanotubes composite for the highly sensitive determination of vitamin C in pharmaceutical formulation.

    PubMed

    Hameed, Sadaf; Munawar, Anam; Khan, Waheed S; Mujahid, Adnan; Ihsan, Ayesha; Rehman, Asma; Ahmed, Ishaq; Bajwa, Sadia Z

    2017-03-15

    This work is the first report describing the development of a novel three dimensional manganese nanostructures based carbon nanotubes (CNTs-Mn NPs) composite, for the determination of ascorbic acid (vitamin C) in pharmaceutical formulation. Carbon nanotubes (CNTs) were used as a conductive skeleton to anchor highly electrolytic manganese nanoparticles (Mn NPs), which were prepared by a hydrothermal method. Scanning electron microscopy and atomic force microscopy revealed the presence of Mn Nps of 20-25nm, anchored along the whole length of CNTs, in the form of patches having a diameter of 50-500nm. Fourier transform infrared spectroscopy confirmed the surface modification of CNTs by amine groups, whereas dynamic light scattering established the presence of positive charge on the prepared nanocomposite. The binding events were studied by monitoring cyclic voltammetry signals and the developed nanosensor exhibited highly sensitive response, demonstrating improved electrochemical activity towards ascorbic acid. Linear dependence of the peak current on the square root of scan rates (R 2 =0.9785), demonstrated that the oxidation of ascorbic acid by the designed nanostructures is a diffusion control mechanism. Furthermore, linear range was found to be 0.06-4.0×10 -3 M, and nanosensor displayed an excellent detection limit of 0.1µM (S/N=3). This developed nanosensor was successfully applied for the determination of vitamin C in pharmaceutical formulation. Besides, the results of the present study indicate that such a sensing platform may offer a different pathway to utilize manganese nanoparticles based CNTs composite for the determination of other bio-molecules as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Influence of multi-walled carbon nanotubes on the cognitive abilities of Wistar rats

    PubMed Central

    Sayapina, Nina V.; Sergievich, Alexander A.; Kuznetsov, Vladimir L.; Chaika, Vladimir V.; Lisitskaya, Irina G.; Khoroshikh, Pavel P.; Batalova, Tatyana A.; Tsarouhas, Kostas; Spandidos, Demetrios; Tsatsakis, Aristidis M.; Fenga, Concettina; Golokhvast, Kirill S.

    2016-01-01

    Studies of the neurobehavioral effects of carbon nanomaterials, particularly those of multi-walled carbon nanotubes (MWCNTs), have concentrated on cognitive effects, but data are scarce. The aim of this study was to assess the influence of MWCNTs on a number of higher nervous system functions of Wistar rats. For a period of 10 days, two experimental groups were fed with MWCNTs of different diameters (MWCNT-1 group, 8–10 nm; MWCNT-2 group, 18–20 nm) once a day at a dosage of 500 mg/kg. In the open-field test, reductions of integral indications of researching activity were observed for the two MWCNT-treated groups, with a parallel significant (P<0.01) increase in stress levels for these groups compared with the untreated control group. In the elevated plus-maze test, integral indices of researching activity in the MWCNT-1 and MWCNT-2 groups reduced by day 10 by 51 and 62%, respectively, while rat stress levels remained relatively unchanged. In the universal problem solving box test, reductions in motivation and energy indices of researching activity were observed in the two experimental groups. Searching activity in the MWCNT-1 group by day 3 was reduced by 50% (P<0.01) and in the MWCNT-2 group the relevant reduction reached 11.2%. By day 10, the reduction compared with controls, was 64% (P<0.01) and 58% (P<0.01) for the MWCNT-1 and MWCNT-2 groups, respectively. In conclusion, a series of specific tests demonstrated that MWCNT-treated rats experienced a significant reduction of some of their cognitive abilities, a disturbing and worrying finding, taking into consideration the continuing and accelerating use of carbon nanotubes in medicine and science. PMID:27588053

  1. Characterization of selectively etched halloysite nanotubes by acid treatment

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, Daniel; Ferri, Jose M.; Ripoll, Laura; Hidalgo, Montserrat; Lopez-Martinez, Juan; Balart, Rafael

    2017-11-01

    Halloysite nanotubes (HNTs) are a type of naturally occurring inorganic nanotubes that are characterized by a different composition between their external and internal walls. The internal walls are mainly composed of alumina whilst external walls are composed of silica. This particular structure offers a dual surface chemistry that allows different selective surface treatments which can be focused on increasing the lumen, increasing porosity, etc. In this work, HNTs were chemically treated with different acids (sulphuric, acetic and acrylic acid), for 72 h at a constant temperature of 50 °C. As per the obtained results, the treatment with sulphuric acid is highly aggressive and the particular shape of HNTs is almost lost, with a remarkable increase in porosity. The BET surface area increases from 52.9 (untreated HNTs) up to 132.4 m2 g-1 with sulphuric acid treatment, thus showing an interesting potential in the field of catalysis. On the other hand, the treatment with acetic acid led to milder effects with a noticeable increase in the lumen diameter that changed from 13.8 nm (untreated HNTs) up to 18.4 nm which the subsequent increase in the loading capacity by 77.8%. The aluminium content was measured by X-ray fluorescence (XRF) and laser induced breakdown spectroscopy (LIBS). The final results using two systems, suggest a good correlation between the acid strength and the aluminium reduction. Consequently, is possible to conclude that new applications for HNTs can be derived from selective etching with acids. Sulphuric acid widens the potential of HNTs in the field of catalysis while weak acids such as acetic and acrylic acids give a controlled and homogeneous lumen increase with the corresponding increase in the loading capacity.

  2. Polyethyleneimine-carbon nanotube polymeric nanocomposite adsorbents for the removal of Cr6+ from water

    NASA Astrophysics Data System (ADS)

    Sambaza, Shepherd S.; Masheane, Monaheng L.; Malinga, Soraya P.; Nxumalo, Edward N.; Mhlanga, Sabelo D.

    2017-08-01

    This work reports on the synthesis of multi-walled carbon nanotubes (MWCNTs) and their use in branched polyethyleneimine-multiwalled carbon nanotube (PEI-MWCNT) polymeric nanocomposite adsorbents for the removal of Cr6+ from contaminated water. The nanostructured materials were characterized using TEM, Raman, FTIR, BET surface area and zeta potential measurements. TEM confirmed the average diameter of the MWCNTs to be 25 nm. The point of zero-charge of PEI was at pH 8 and that of PEI-MWCNTs was at pH 7.7. FTIR analysis confirmed the formation of a new bond (-Cdbnd O at 1716 cm-1) between the functional groups on the MWCNTs and PEI. Batch adsorption and kinetic studies showed that the PEI-MWCNT nanocomposite materials were more efficient in the removal of Cr6+ solution from water samples. The optimum conditions for adsorption were pH ≤ 4, contact time of 60 min. When the PEI-MWCNT dosage was increased the adsorption capacity increased. The kinetic adsorption data obtained for Cr6+ solution followed pseudo-second order model. The adsorption of Cr6+ solution reached equilibrium within 60 min of contact time with a removal of 99%. The adsorbents were effective even after 5 cycles of use.

  3. Assessment of the Aerosol Generation and Toxicity of Carbon Nanotubes

    PubMed Central

    O’Shaughnessy, Patrick T.; Adamcakova-Dodd, Andrea; Altmaier, Ralph; Thorne, Peter S.

    2014-01-01

    Current interest in the pulmonary toxicity of carbon nanotubes (CNTs) has resulted in a need for an aerosol generation system that is capable of consistently producing a CNT aerosol at a desired concentration level. This two-part study was designed to: (1) assess the properties of a commercially-available aerosol generator when producing an aerosol from a purchased powder supply of double-walled carbon nanotubes (DWCNTs); and (2) assess the pulmonary sub-acute toxicity of DWCNTs in a murine model during a 5-day (4 h/day) whole-body exposure. The aerosol generator, consisting of a novel dustfeed mechanism and venturi ejector was determined to be capable of producing a DWCNT consistently over a 4 h exposure period at an average level of 10.8 mg/m3. The count median diameter was 121 nm with a geometric standard deviation of 2.04. The estimated deposited dose was 32 µg/mouse. The total number of cells in bronchoalveolar lavage (BAL) fluid was significantly (p < 0.01) increased in exposed mice compared to controls. Similarly, macrophages in BAL fluid were significantly elevated in exposed mice, but not neutrophils. All animals exposed to CNT and euthanized immediately after exposure had changes in the lung tissues showing acute inflammation and injury; however these pathological changes resolved two weeks after the exposure. PMID:28344231

  4. Assessment of the Aerosol Generation and Toxicity of Carbon Nanotubes.

    PubMed

    O'Shaughnessy, Patrick T; Adamcakova-Dodd, Andrea; Altmaier, Ralph; Thorne, Peter S

    2014-06-12

    Current interest in the pulmonary toxicity of carbon nanotubes (CNTs) has resulted in a need for an aerosol generation system that is capable of consistently producing a CNT aerosol at a desired concentration level. This two-part study was designed to: (1) assess the properties of a commercially-available aerosol generator when producing an aerosol from a purchased powder supply of double-walled carbon nanotubes (DWCNTs); and (2) assess the pulmonary sub-acute toxicity of DWCNTs in a murine model during a 5-day (4 h/day) whole-body exposure. The aerosol generator, consisting of a novel dustfeed mechanism and venturi ejector was determined to be capable of producing a DWCNT consistently over a 4 h exposure period at an average level of 10.8 mg/m³. The count median diameter was 121 nm with a geometric standard deviation of 2.04. The estimated deposited dose was 32 µg/mouse. The total number of cells in bronchoalveolar lavage (BAL) fluid was significantly ( p < 0.01) increased in exposed mice compared to controls. Similarly, macrophages in BAL fluid were significantly elevated in exposed mice, but not neutrophils. All animals exposed to CNT and euthanized immediately after exposure had changes in the lung tissues showing acute inflammation and injury; however these pathological changes resolved two weeks after the exposure.

  5. Enhancing Photocatalytic Activity on (MnO@TNTAs):Mn2+ with a Hierarchical Sandwich-Like Nanostructure via a Two-Step Procedure

    NASA Astrophysics Data System (ADS)

    Kong, Junhan; Zhang, Wei; Zhang, Yubo; Xia, Minghao; Wu, Xiuling; Wang, Yongqian

    2018-02-01

    Several semiconductor nanomaterial devices are increasingly being applied in a variety of fields, especially in the treating of environmental pollutants. We have fabricated (MnO@TNTAs):Mn2+ with sandwich-like nanostructures composed of TiO2 nanotube arrays (TNTAs), Mn-doped TNTAs and MnO. The experimental procedure was a two-step synthesis: first, using anodic oxidation methods and then hydrothermal methods. We carried out many characterizations of the "sandwiches" in the nanoscale. From the field emission scanning electron microscopy images we found nanofibers lying on the highly-ordered nanotube arrays. The diameter of the nanotubes was about 50 nm but the size of the nanofibers varied. Energy dispersive spectroscopy demonstrated that the nanofibers contained a manganese element and x-ray diffraction patterns showed the peak of the manganosite phase. From ultraviolet-visible light spectra, it was found that the nanostructures had strong absorption activities under both ultraviolet and visible light radiation, while pure TNTAs had absorption only under ultraviolet light. The photodegradation experiments proved that the sandwich-like nanostructures had an excellent photocatalytic activity (92.5% after 240 min), which was a great improvement compared with pure TNTAs. In this way, the structures as a device at the nanoscale have a huge potential in controlling environmental pollution.

  6. Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal.

    PubMed

    Kayvani Fard, Ahmad; Mckay, Gordon; Manawi, Yehia; Malaibari, Zuhair; Hussien, Muataz A

    2016-12-01

    Oil removal from water is a highly important area due to the large production rate of emulsified oil in water, which is considered one of the major pollutants, having a negative effect on human health, environment and wildlife. In this study, we have reported the application of high quality carbon nanotube bundles produced by an injected vertical chemical vapor deposition (IV-CVD) reactor for oil removal. High quality, bundles, super hydrophobic, and high aspect ratio carbon nanotubes were produced. The average diameters of the produced CNTs ranged from 20 to 50 nm while their lengths ranged from 300 to 500 μm. Two types of CNTs namely, P-CNTs and C-CNTs, (Produced CNTs from the IV-CVD reactor and commercial CNTs) were used for oil removal from water. For the first time, thermogravimetric analysis (TGA) was conducted to measure maximum oil uptake using CNT and it was found that P-CNT can take oil up to 17 times their weight. The effect of adsorbent dosage, contact time, and agitation speed were examined on the oil spill clean-up efficiency using batch sorption experiments. Higher efficiency with almost 97% removal was achieved using P-CNTs compared to 87% removal using C-CNTs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Toward the Limits of Uniformity of Mixed Metallicity SWCNT TFT Arrays with Spark-Synthesized and Surface-Density-Controlled Nanotube Networks.

    PubMed

    Kaskela, Antti; Mustonen, Kimmo; Laiho, Patrik; Ohno, Yutaka; Kauppinen, Esko I

    2015-12-30

    We report the fabrication of thin film transistors (TFTs) from networks of nonbundled single-walled carbon nanotubes with controlled surface densities. Individual nanotubes were synthesized by using a spark generator-based floating catalyst CVD process. High uniformity and the control of SWCNT surface density were realized by mixing of the SWCNT aerosol in a turbulent flow mixer and monitoring the online number concentration with a condensation particle counter at the reactor outlet in real time. The networks consist of predominantly nonbundled SWCNTs with diameters of 1.0-1.3 nm, mean length of 3.97 μm, and metallic to semiconducting tube ratio of 1:2. The ON/OFF ratio and charge carrier mobility of SWCNT TFTs were simultaneously optimized through fabrication of devices with SWCNT surface densities ranging from 0.36 to 1.8 μm(-2) and channel lengths and widths from 5 to 100 μm and from 100 to 500 μm, respectively. The density optimized TFTs exhibited excellent performance figures with charge carrier mobilities up to 100 cm(2) V(-1) s(-1) and ON/OFF current ratios exceeding 1 × 10(6), combined with high uniformity and more than 99% of devices working as theoretically expected.

  8. Dispersions of Aramid Nanofibers: A New Nanoscale Building Block

    PubMed Central

    Yang, Ming; Cao, Keqin; Sui, Lang; Qi, Ying; Zhu, Jian; Waas, Anthony; Arruda, Ellen M.; Kieffer, John; Thouless, M. D.; Kotov, Nicholas A.

    2011-01-01

    Stable dispersions of nanofibers are virtually unknown for synthetic polymers. They can complement analogous dispersions of inorganic components, such as nanoparticles, nanowires, nanosheets, etc as a fundamental component of a toolset for design of nanostructures and metamaterials via numerous solvent-based processing methods. As such, strong flexible polymeric nanofibers are very desirable for the effective utilization within composites of nanoscale inorganic components such as nanowires, carbon nanotubes, graphene, and others. Here stable dispersions of uniform high-aspect-ratio aramid nanofibers (ANFs) with diameters between 3 and 30 nm and up to 10 μm in length were successfully obtained. Unlike the traditional approaches based on polymerization of monomers, they are made by controlled dissolution of standard macroscale form of the aramid polymer, i.e. well known Kevlar threads, and revealed distinct morphological features similar to carbon nanotubes. ANFs are successfully processed into films using layer-by-layer (LBL) assembly as one of the potential methods of preparation of composites from ANFs. The resultant films are transparent and highly temperature resilient. They also display enhanced mechanical characteristics making ANF films highly desirable as protective coatings, ultrastrong membranes, as well as building blocks of other high performance materials in place of or in combination with carbon nanotubes. PMID:21800822

  9. TiO2 Nanotube-Carbon (TNT-C) as Support for Pt-based Catalyst for High Methanol Oxidation Reaction in Direct Methanol Fuel Cell.

    PubMed

    Abdullah, M; Kamarudin, S K; Shyuan, L K

    2016-12-01

    In this study, TiO 2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm 2 (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.

  10. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu, Yaqin

    2009-07-01

    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3O 4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C dbnd O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3O 4 hybrids was discussed.

  11. Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers

    NASA Astrophysics Data System (ADS)

    Motola, Martin; Satrapinskyy, Leonid; Čaplovicová, Mária; Roch, Tomáš; Gregor, Maroš; Grančič, Branislav; Greguš, Ján; Čaplovič, Ľubomír; Plesch, Gustav

    2018-03-01

    TiO2 nanotube (TiNT) arrays were grown on silicon substrate via electrochemical anodization of titanium films sputtered by magnetron. To improve the photocatalytic activity of arrays annealed in air (o-TiNT), doping of o-TiNT with vanadium was performed (o-V/TiNT). These non-doped and doped TiNT arrays were also hydrogenated in H2/Ar atmosphere to r-TiNT and r-V/TiNT samples, respectively. Investigation of composition and morphology by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and X-ray photoelectron spectroscopy (XPS) showed the presence of well-ordered arrays of anatase nanotubes with average diameter and length of 100 nm and 1.3 μm, respectively. In both oxidized and reduced V-doped samples, vanadium is partly dissolved in the structure of anatase and partly deposited in form of oxide on the nanotube surface. Vanadium-doped and reduced samples exhibited higher rates in the photodegradation of organic dyes (compared to non-modified o-TiNT sample) and this is caused by limitation of electron-hole recombination rates and by shift of the energy gap into visible region. The photocatalytic activity was measured under UV, sunlight and visible irradiation, and the corresponding efficiency increased in the order (o-TiNT) < (r-TiNT) < (o-V/TiNT) < (r-V/TiNT). Under visible light, only r-TiNT and r-V/TiNT showed significant photocatalytic activity.

  12. Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition

    PubMed Central

    Chen, Yabin; Shen, Ziyong; Xu, Ziwei; Hu, Yue; Xu, Haitao; Wang, Sheng; Guo, Xiaolei; Zhang, Yanfeng; Peng, Lianmao; Ding, Feng; Liu, Zhongfan; Zhang, Jin

    2013-01-01

    Aligned single-walled carbon nanotube arrays provide a great potential for the carbon-based nanodevices and circuit integration. Aligning single-walled carbon nanotubes with selected helicities and identifying their helical structures remain a daunting issue. The widely used gas-directed and surface-directed growth modes generally suffer the drawbacks of mixed and unknown helicities of the aligned single-walled carbon nanotubes. Here we develop a rational approach to anchor the single-walled carbon nanotubes on graphite surfaces, on which the orientation of each single-walled carbon nanotube sensitively depends on its helical angle and handedness. This approach can be exploited to conveniently measure both the helical angle and handedness of the single-walled carbon nanotube simultaneously at a low cost. In addition, by combining with the resonant Raman spectroscopy, the (n,m) index of anchored single-walled carbon nanotube can be further determined from the (d,θ) plot, and the assigned (n,m) values by this approach are validated by both the electronic transition energy Eii measurement and nanodevice application. PMID:23892334

  13. TiO2-NT electrodes modified with Ag and diamond like carbon (DLC) for hydrogen production by alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Baran, Evrim; Baz, Zeynep; Esen, Ramazan; Yazici Devrim, Birgül

    2017-10-01

    In present work, the two-step anodization technique was applied for synthesis of TiO2 nanotube (NT). Silver and diamond like carbon (DLC) were coated on the surface of as prepared TiO2-NT using chemical reduction method and MW ECR plasma system. The morphology, composition and structure of the electrodes were examined by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results showed that Ag nanoparticles, having size in the range of 48-115 nm, are evenly distributed on the top, inside and outside surface of TiO2-NT and when DLC was coated on the surface of TiO2-NT and TiO2-NT-Ag, the top of nanotubes were partially open and the pore diameter of hexagonal structure decreased from 165 nm to of 38-80 nm. On the other hand, the microhardness test and contact angle measurements revealed that additions of Ag and diamond like carbon have a positive effect on the mechanical properties of TiO2-NT film. The electrocatalytic properties of the electrodes towards the hydrogen evolution reaction (HER) were investigated by the electrochemical measurements recorded in 1 M KOH solution. In addition, long-term durability of electrodes towards HER and the energy consumption of alkaline electrolysis were investigated. The energy requirement showed that while the deposition of silver provides approximately 14.95% savings of the energy consumption, the DLC coating causes increase in energy consumption.

  14. Release-ability of nano fillers from different nanomaterials (toward the acceptability of nanoproduct)

    NASA Astrophysics Data System (ADS)

    Golanski, L.; Guiot, A.; Pras, M.; Malarde, M.; Tardif, F.

    2012-07-01

    It is of great interest to set up a reproducible and sensitive method able to qualify nanomaterials before their market introduction in terms of their constitutive nanoparticle release-ability in usage. Abrasion was performed on polycarbonate, epoxy, and PA11 polymers containing carbone nanotubes (CNT) up to 4 %wt. Using Taber linear standard tool and standard abrasion conditions no release from polymer coatings containing CNT was measured. In this study, new practical tools inducing non-standardized stresses able to compete with van der Waals forces were developed and tested on model polymers, showing controlled CNT dispersion. These stresses are still realistic, corresponding to scratching, instantaneous mechanical shocks, and abrasion of the surface. They offer an efficient way to quantify if release is possible from nanomaterials under different mechanical stresses and therefore give an idea about the mechanisms that favors it. Release under mechanical shocks and hard abrasion was obtained using these tools but only when nanomaterials present a bad dispersion of CNT within the epoxy matrix. Under the same conditions no release was obtained from the same material presenting a good dispersion. The CNT used in this study showed an external diameter Dext = 12 nm, an internal diameter Din = 5 nm, and a mean length of 1 μm. Release from paints under hard abrasion using a standard rotative Taber tool was obtained from a intentionaly non-optimized paint containing SiO2 nanoparticles up to 35 %wt. The primary diameter of the SiO2 was estimated to be around 12 nm. A metallic rake was efficient to remove nanoparticles from a non-woven fabric nanomaterial.

  15. Packing C60 in Boron Nitride Nanotubes

    NASA Astrophysics Data System (ADS)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  16. Blowing Carbon Nanotubes to Carbon Nanobulbs

    NASA Astrophysics Data System (ADS)

    Su, D. S.; Zhu, Z. P.; Lu, Y.; Schlögl, R.; Weinberg, G.; Liu, Z. Y.

    2004-09-01

    We report the blowing of multi-walled carbon nanotubes into carbon nanobulbs. This is realized in a unique tube growth environment generated by explosive decomposition of picric acid mixed with nickel formate. The carbon spherical bulbs are characterized by large dimensions (up to 900 nm), thin walls (around 10 nm), and fully hollow cores. The walls are in graphitic structure of sp2 hybridized carbons. Bulb-tube assemblies are found as intermediate derivatives of blowing. A joint action of the filled high-pressure gases and the structural defects in the carbon nanotubes is responsible to the formation of the carbon nanobulbs. Our finding may indicate the possibility to engineer the carbon nanotubes to the designed nanostructures.

  17. The solvation study of carbon, silicon and their mixed nanotubes in water solution.

    PubMed

    Hashemi Haeri, Haleh; Ketabi, Sepideh; Hashemianzadeh, Seyed Majid

    2012-07-01

    Nanotubes are believed to open the road toward different modern fields, either technological or biological. However, the applications of nanotubes have been badly impeded for the poor solubility in water which is especially essential for studies in the presence of living cells. Therefore, water soluble samples are in demand. Herein, the outcomes of Monte Carlo simulations of different sets of multiwall nanotubes immersed in water are reported. A number of multi wall nanotube samples, comprised of pure carbon, pure silicon and several mixtures of carbon and silicon are the subjects of study. The simulations are carried out in an (N,V,T) ensemble. The purpose of this report is to look at the effects of nanotube size (diameter) and nanotube type (pure carbon, pure silicon or a mixture of carbon and silicon) variation on solubility of multiwall nanotubes in terms of number of water molecules in shell volume. It is found that the solubility of the multi wall carbon nanotube samples is size independent, whereas multi wall silicon nanotube samples solubility varies with diameter of the inner tube. The higher solubility of samples containing silicon can be attributed to the larger atomic size of silicon atom which provides more direct contact with the water molecules. The other affecting factor is the bigger inter space (the space between inner and outer tube) in the case of silicon samples. Carbon type multi wall nanotubes appeared as better candidates for transporting water molecules through a multi wall nanotube structure, while in the case of water adsorption problems it is better to use multi wall silicon nanotubes or a mixture of multi wall carbon/ silicon nanotubes.

  18. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

  19. Fast Synthesis of Multilayer Carbon Nanotubes from Camphor Oil as an Energy Storage Material

    PubMed Central

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  20. Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications

    PubMed Central

    Hang, Ruiqiang; Liu, Yanlian; Zhao, Lingzhou; Gao, Ang; Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Tang, Bin; Chu, Paul K.

    2014-01-01

    Nickel-titanium-oxide (Ni-Ti-O) nanotube arrays (NTAs) prepared on nearly equiatomic NiTi alloy shall have broad application potential such as for energy storage and biomedicine, but their precise structure control is a great challenge because of the high content of alloying element of Ni, a non-valve metal that cannot form a compact electronic insulating passive layer when anodized. In the present work, we systemically investigated the influence of various anodization parameters on the formation and structure of Ni-Ti-O NTAs and their potential applications. Our results show that well controlled NTAs can be fabricated during relatively wide ranges of the anodization voltage (5–90 V), electrolyte temperature (10–50°C) and electrolyte NH4F content (0.025–0.8 wt%) but within a narrow window of the electrolyte H2O content (0.0–1.0 vol%). Through modulating these parameters, the Ni-Ti-O NTAs with different diameter (15–70 nm) and length (45–1320 nm) can be produced in a controlled manner. Regarding potential applications, the Ni-Ti-O NTAs may be used as electrodes for electrochemical energy storage and non-enzymic glucose detection, and may constitute nanoscaled biofunctional coating to improve the biological performance of NiTi based biomedical implants. PMID:25520180

  1. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.

    PubMed

    Vaddiraju, Sreeram; Cebeci, Hülya; Gleason, Karen K; Wardle, Brian L

    2009-11-01

    A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.

  2. Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect.

    PubMed

    Li, Shuoyu; Liu, Yuyi; Guo, Peisheng; Wang, Chengxin

    2017-09-13

    Transition metal oxide nanoparticles capsuled in amorphous carbon nanotubes (ACNTs) are attractive anode materials of lithium-ion batteries (LIBs). Here, we first designed a fast and universal method with a hydromechanics conception which is called Marangoni flow to fabricate transition bimetal oxides (TBOs) in the ACNT composite with a better electrochemistry performance. Marangoni flows can produce a liquid column with several centimeters of height in a tube with one side immersed in the liquid. The key point to induce a Marangoni flow is to make a gradient of the surface tension between the surface and the inside of the solution. With our research, we control the gradient of the surface tension by controlling the viscosity of a solution. To show how our method could be generally used, we synthesize two anode materials such as (a) CoFe 2 O 4 @ACNTs, and (b) NiFe 2 O 4 @ACNTs. All of these have a similar morphology which is ∼20 μm length with a diameter of 80-100 nm for the ACNTs, and the particles (inside the ACNTs) are smaller than 5 nm. In particular, there are amorphous carbons between the nanoparticles. All of the composite materials showed an outstanding electrochemistry performance which includes a high capacity and cycling stability so that after 600 cycles the capacity changed by less than 3%.

  3. Effect of temperature on magnetic and impedance properties of Fe3BO6 of nanotubular structure with a bonded B2O3 surface layer

    NASA Astrophysics Data System (ADS)

    Kumari, Kalpana; Ram, S.; Kotnala, R. K.

    2018-03-01

    In this investigation, we explore a facile synthesis of Fe3BO6 in the form of small crystallites in the specific shape of nanotubes crystallized from a supercooled liquid Fe2O3-B2O3 precursor. This study includes high resolution transmission electron microscopy (HRTEM) images, magnetic, optical, and impedance properties of the sample. HRTEM images reveal small tubes of Fe3BO6 of 20 nm diameter. A well resolved hysteresis loop appears at 5 K in which the magnetization does not saturate even up to as high field as 50 kOe. It means that the Fe3BO6 nanotubes behave as highly antiferromagnetic in nature in which the surface spins do not align along the field so easily. The temperature dependent impedance describes an ionic Fe3BO6 conductor with a reasonably small activation energy Ea ˜ 0.33 eV. Impedance formalism in terms of a Cole-Cole plot shows a deviation from an ideal Debye-like behavior. We have also reported that electronic absorption spectra are over a spectral range 200-800 nm of wavelengths in order to find out how a bonded surface layer present on the Fe3BO6 crystallites tunes the 3d → 3d electronic transitions in Fe3+ ions.

  4. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells

    PubMed Central

    Filova, Elena; Fojt, Jaroslav; Kryslova, Marketa; Moravec, Hynek; Joska, Ludek; Bacakova, Lucie

    2015-01-01

    Ti-6Al-4V-based nanotubes were prepared on a Ti-6Al-4V surface by anodic oxidation on 10 V, 20 V, and 30 V samples. The 10 V, 20 V, and 30 V samples and a control smooth Ti-6Al-4V sample were evaluated in terms of their chemical composition, diameter distribution, and cellular response. The surfaces of the 10 V, 20 V, and 30 V samples consisted of nanotubes of a relatively wide range of diameters that increased with the voltage. Saos-2 cells had a similar initial adhesion on all nanotube samples to the control Ti-6Al-4V sample, but it was lower than on glass. On day 3, the highest concentrations of both vinculin and talin measured by enzyme-linked immunosorbent assay and intensity of immunofluorescence staining were on 30 V nanotubes. On the other hand, the highest concentrations of ALP, type I collagen, and osteopontin were found on 10 V and 20 V samples. The final cellular densities on 10 V, 20 V, and 30 V samples were higher than on glass. Therefore, the controlled anodization of Ti-6Al-4V seems to be a useful tool for preparing nanostructured materials with desirable biological properties. PMID:26648719

  5. Wetting behavior of nonpolar nanotubes in simple dipolar liquids for varying nanotube diameter and solute-solvent interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Malay Kumar; Chandra, Amalendu, E-mail: amalen@iitk.ac.in

    2015-01-21

    Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindricalmore » nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.« less

  6. Method for making a microporous membrane

    NASA Technical Reports Server (NTRS)

    Gavalas, Lillian Susan (Inventor)

    2013-01-01

    A method for making a microporous membrane comprises the steps of: providing a plurality of carbon nanotubes having a hollow interior diameter of 20 Angstroms or less; sonicating the plurality of carbon nanotubes utilizing a solution comprising deionized, distilled water and a surfactant that coats at least one of the plurality of carbon nanotubes; collecting the coated carbon nanotubes; forming a matrix that supports the plurality of carbon nanotubes; embedding the coated carbon nanotubes into the matrix; rinsing the coated nanotubes to remove at least a portion of the surfactant; curing the nanotube-matrix assembly; and cutting the nanotube-matrix assembly to a particular thickness so as to open the ends of the embedded nanotubes. The hollow interiors of the plurality of embedded carbon nanotubes comprise the pores of the microporous membrane.

  7. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    DOE R&D Accomplishments Database

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  8. The synthesis and characterization of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  9. Thermal reaction of sonochemically prepared amorphous Fe/C

    NASA Astrophysics Data System (ADS)

    Miyatani, R.; Kobayashi, Y.; Yamada, Y.

    2017-11-01

    An amorphous iron/carbon mixture was prepared by sonolysis of ferrocene in diphenylmethane. Heating of the amorphous mixture at 900 or 1200 °C produced nanoparticles, which were then analyzed using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. The nanoparticles obtained after heating were spherical with diameters of about 50 nm. The sample obtained after heating at 900 °C consisted of α-Fe and Fe 3C, whereas the sample obtained after heating at 1200 °C consisted of α-Fe and γ-Fe. The reaction of the mixture during the heating process was accompanied by the formation of carbon nanotubes catalyzed by the iron or iron carbide nanoparticles.

  10. Resonance Raman Spectroscopy of Chirality Enriched Semiconducting Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hight Walker, A. R.; Piao, Y.; Simpson, J. R.; Lindsay, M.; Streit, J. K.; Ao, G.; Zheng, M.; Fagan, J. A.

    Relative intensities of resonant Raman RBM and G modes of 11 chirality-enriched SWCNT species were established under second-order excitation. Results demonstrate an under-recognized complexity in evaluation of Raman spectra for assignment of (n,m) population distributions. Strong chiral angle and mod dependencies affect the intensity ratio of RBM/G modes and can result in misleading interpretations. We report 5 new (n,m) values for chirality-dependent G+ and G- Raman peak positions and intensity ratios, extending the available data to cover smaller diameters down to (5,4). The Raman spectral library sufficiently decouples G peaks from multiple species and enables fundamental characterization in mixed chirality samples. Our results on dispersive properties of the D modes will also be discussed. Probing defects is crucial to evaluate SWCNT quality and to understand the photophysics behind defect-induced optoelectronic features. Using high-quality, chirality-enriched semiconducting SWCNTs and tunable lasers, our results show a non-dispersive D band throughout the resonant window within the same (n,m). Our results were validated by multiple (n,m) samples and intentional covalent surface functionalization generating D peaks with increased intensity, which remain non-dispersive.

  11. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes

    PubMed Central

    2011-01-01

    In this article, the electroluminescence (EL) spectra of zinc oxide (ZnO) nanotubes/p-GaN light emitting diodes (LEDs) annealed in different ambients (argon, air, oxygen, and nitrogen) have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG) technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi) appearing in the range from 620 nm (1.99 eV) to 690 nm (1.79 eV), and to oxygen vacancies (Vo) appearing in the range from 690 nm (1.79 eV) to 750 nm (1.65 eV). The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96. PMID:21711671

  12. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes.

    PubMed

    Alvi, N H; Ul Hasan, Kamran; Nur, Omer; Willander, Magnus

    2011-02-10

    In this article, the electroluminescence (EL) spectra of zinc oxide (ZnO) nanotubes/p-GaN light emitting diodes (LEDs) annealed in different ambients (argon, air, oxygen, and nitrogen) have been investigated. The ZnO nanotubes by aqueous chemical growth (ACG) technique on p-GaN substrates were obtained. The as-grown ZnO nanotubes were annealed in different ambients at 600°C for 30 min. The EL investigations showed that air, oxygen, and nitrogen annealing ambients have strongly affected the deep level emission bands in ZnO. It was concluded from the EL investigation that more than one deep level defect is involved in the red emission appearing between 620 and 750 nm and that the red emission in ZnO can be attributed to oxygen interstitials (Oi) appearing in the range from 620 nm (1.99 eV) to 690 nm (1.79 eV), and to oxygen vacancies (Vo) appearing in the range from 690 nm (1.79 eV) to 750 nm (1.65 eV). The annealing ambients, especially the nitrogen ambient, were also found to greatly influence the color-rendering properties and increase the CRI of the as - grown LEDs from 87 to 96.

  13. Deployment of titanium thermal barrier for low-temperature carbon nanotube growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G.Y.; Poa, C.H.P.; Henley, S.J.

    2005-12-19

    Chemical vapor-synthesized carbon nanotubes are typically grown at temperatures around 600 deg. C. We report on the deployment of a titanium layer to help elevate the constraints on the substrate temperature during plasma-assisted growth. The growth is possible through the lowering of the hydrocarbon content used in the deposition, with the only source of heat provided by the plasma. The nanotubes synthesized have a small diameter distribution, which deviates from the usual trend that the diameter is determined by the thickness of the catalyst film. Simple thermodynamic simulations also show that the quantity of heat, that can be distributed, ismore » determined by the thickness of the titanium layer. Despite the lower synthesis temperature, it is shown that this technique allows for high growth rates as well as better quality nanotubes.« less

  14. Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry

    NASA Astrophysics Data System (ADS)

    Stevens, Kimberly A.; Esplin, Christian D.; Davis, Taylor M.; Butterfield, D. Jacob; Ng, Philip S.; Bowden, Anton E.; Jensen, Brian D.; Iverson, Brian D.

    2018-05-01

    The use of carbon nanotubes to create superhydrophobic coatings has been considered due to their ability to offer a relatively uniform nanostructure. However, carbon nanotubes (CNTs) may be considered delicate with a typical diameter of tens of nanometers for a multi-walled CNT; as-grown carbon nanotubes often require the addition of a thin-film hydrophobic coating to render them superhydrophobic. Furthermore, fine control over the diameter of the as-grown CNTs or the overall nanostructure is difficult. This work demonstrates the utility of using carbon infiltration to layer amorphous carbon on multi-walled nanotubes to improve structural integrity and achieve superhydrophobic behavior with tunable geometry. These carbon-infiltrated carbon nanotube (CICNT) surfaces exhibit an increased number of contact points between neighboring tubes, resulting in a composite structure with improved mechanical stability. Additionally, the native surface can be rendered superhydrophobic with a vacuum pyrolysis treatment, with contact angles as high as 160° and contact angle hysteresis on the order of 1°. The CICNT diameter, static contact angle, sliding angle, and contact angle hysteresis were examined for varying levels of carbon-infiltration to determine the effect of infiltration on superhydrophobicity. The same superhydrophobic behavior and tunable geometry were also observed with CICNTs grown directly on stainless steel without an additional catalyst layer. The ability to tune the geometry while maintaining superhydrophobic behavior offers significant potential in condensation heat transfer, anti-icing, microfluidics, anti-microbial surfaces, and other bio-applications where control over the nanostructure is beneficial.

  15. Optical Plasma Control During ARC Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Hinkov, I.; Farhat, S.; DeLaChapelle, M. Lamy; Fan, S. S.; Han, H. X.; Li, G. H.; Scott, C. D.

    2001-01-01

    To improve nanotube production, we developed a novel optical control technique, based on the shape of the visible plasma zone created between the anode and the cathode in the direct current (DC) arc process. For a given inert gas, we adjust the anode to cathode distance (ACD) in order to obtain strong visible vortices around the cathode. This enhance anode vaporization, which improve nanotubes formation. In light of our experimental results, we focus our discussion on the relationship between plasma parameters and nanotube growth. Plasma temperature control during arc process is achieved using argon, helium, and their mixtures as a buffer gases. The variation of the gas mixture from pure argon to pure helium changes plasma temperature. As a consequence, the microscopic characteristics of nanotubes as diameter distribution is changed moving from smaller values for argon to higher diameters for helium. We also observe a dependence of the macroscopic characteristics of the final products as Brunauer-Emmett-Teller (BET) surface area.

  16. A Density Functional Theory Study of New Boron Nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-Hua; Xie, Zun

    2017-11-01

    Using first-principles calculations, a series of new boron nanotubes (BNTs), which show various electronic properties, were theoretically predicted. Stable nanotubes with various chiral vectors and diameters can be formed by rolling up the boron sheet with relative stability [H. Tang and S. I. Beigi, Phys. Rev. B 82, 115412 (2010).]. By increasing the diameter for BNT, the stability is enhanced. The calculated density of states and band structures demonstrate that all the predicted BNTs are metallic, regardless of their diameter and chirality. The multicentre chemical bonds of the relatively stable boron sheet and BNTs are analysed using the deformation electron density. Within our study, the BNTs all have metallic conductive characteristics, in addition to having a low effective quality and high carrier concentration, which are very good nanoconductive material properties and could be combined to form high-power electrodes for lithium-ion batteries such as those used in many modern electronics.

  17. Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells

    PubMed Central

    Grace, Tom; Yu, LePing; Gibson, Christopher; Tune, Daniel; Alturaif, Huda; Al Othman, Zeid; Shapter, Joseph

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in this study yielded cells with higher open circuit voltages. It was also determined that post fabrication treatments applied to the nanotube films have a lesser effect on multi-walled nanotubes than on the other two types. PMID:28344309

  18. Supported Lipid Bilayer/Carbon Nanotube Hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose; Craighead, Harold; McEuen, Paul

    2007-03-01

    We form supported lipid bilayers on single-walled carbon nanotubes and use this hybrid structure to probe the properties of lipid membranes and their functional constituents. We first demonstrate membrane continuity and lipid diffusion over the nanotube. A membrane-bound tetanus toxin protein, on the other hand, sees the nanotube as a diffusion barrier whose strength depends on the diameter of the nanotube. Finally, we present results on the electrical detection of specific binding of streptavidin to biotinylated lipids with nanotube field effect transistors. Possible techniques to extract dynamic information about the protein binding events will also be discussed.

  19. Optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Gugang

    This thesis addresses the optical properties of novel carbon filamentary nanomaterials: single-walled carbon nanotubes (SWNTs), double-walled carbon nanotubes (DWNTs), and SWNTs with interior C60 molecules ("peapods"). Optical reflectance spectra of bundled SWNTs are discussed in terms of their electronic energy band structure. An Effective Medium Model for a composite material was found to provide a reasonable description of the spectra. Furthermore, we have learned from optical absorption studies of DWNTs and C60-peapods that the host tube and the encapsulant interact weakly; small shifts in interband absorption structure were observed. Resonant Raman scattering studies on SWNTs synthesized via the HiPCO process show that the "zone-folding" approximation for phonons and electrons works reasonably well, even for small diameter (d < 1 nm) tubes. The energy of optical transitions between van Hove singularities in the electronic density of states computed from the "zone-folding" model (with gamma0 = 2.9 eV) agree well with the resonant conditions for Raman scattering. Small diameter tubes were found to exhibit additional sharp Raman bands in the frequency range 500-1200 cm-1 with an, as yet, undetermined origin. The Raman spectrum of a DWNT was found to be well described by a superposition of the Raman spectra expected for inner and outer tubes, i.e., no charge transfer occurs and the weak van der Waals (vdW) interaction between tubes does not have significant impact on the phonons. A ˜7 cm-1 downshift of the small diameter, inner-tube tangential mode frequency was observed, however, but attributed to a tube wall curvature effect, rather than the vdW interaction. Finally, we studied the chemical doping of DWNTs, where the dopant (Br anions) is chemically bound to the outside of the outer tube. The doped DWNT system is a model for a cylindrical molecular capacitor. We found experimentally that 90% of the positive charge resides on the outer tube, so that most of electric field on the inner tube is screened, i.e., we have observed a molecular Faraday cage effect. A self-consistent theoretical model in the tight-binding approximation with a classical electrostatic energy term is in good agreement with our experimental results.

  20. Single Wall Nanotube Type-Specific Functionalization and Separation

    NASA Technical Reports Server (NTRS)

    Boul, Peter; Nikolaev, Pavel; Sosa, Edward; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Metallic single-wall carbon nanotubes were selectively solubilized in THF and separated from semiconducting nanotubes. Once separated, the functionalized metallic tubes were de-functionalized to restore their metallic band structure. Absorption and Raman spectroscopy of the enriched samples support conclusions of the enrichment of nanotube samples by metallic type. A scalable method for enriching nanotube conductive type has been developed. Raman and UV-Vis data indicate SWCNT reaction with dodecylbenzenediazonium results in metallic enrichment. It is expected that further refinement of this techniques will lead to more dramatic separations of types and diameters.

Top