[Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].
Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming
2012-12-01
A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm.
Kim, Yong-Ho; Park, Dongho; Hwang, Jungho; Kim, Yong-Jun
2009-09-21
Conventional virtual impactors experience a large pressure drop when they classify particles according to size, in particular ultrafine particles smaller than 100 nm in diameter. Therefore, most virtual impactors have been used to classify particles larger than 100 nm. Their cut-off diameters are also fixed by the geometry of their flow channels. In the proposed virtual impactor, particles smaller than 100 nm are accelerated by applying DC potentials to an integrated electrode pair. By the electrical acceleration, the large pressure drop could be significantly decreased and new cut-off diameters smaller than 100 nm could be successfully added. The geometric cut-off diameter (GCD) of the proposed virtual impactor was designed to be 1.0 microm. Performances including the GCD and wall loss were examined by classifying dioctyl sebacate of 100 to 600 nm in size and carbon particles of 0.6 to 10 microm in size. The GCD was measured to be 0.95 microm, and the wall loss was highest at 1.1 microm. To add new cut-off diameters, monodisperse NaCl particles ranging from 15 to 70 nm were classified using the proposed virtual impactor with applying a DC potential of 0.25 to 3.0 kV. In this range of the potential, the new cut-off diameters ranging from 15 to 35 nm was added.
NASA Astrophysics Data System (ADS)
Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki
2015-11-01
Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04465k
Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin.
Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A Satyanarayana; Atla, Shashi B; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng
2011-01-01
In this study the "green chemistry" use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16-200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8-14 nm in diameter and 80-100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50-200 nm in diameter), oval (~300 nm in diameter) and nanorod (200-400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong-Ho; Maeng, Jwa-Young; Park, Dongho
2007-07-23
This letter reports a module for airborne particle classification, which consists of a micromachined three-stage virtual impactor for classifying airborne particles according to their size and a flow rate distributor for supplying the required flow rate to the virtual impactor. Dioctyl sebacate particles, 100-600 nm in diameter, and carbon particles, 0.6-10 {mu}m in diameter, were used for particle classification. The collection efficiency and cutoff diameter were examined. The measured cutoff diameters of the first, second, and third stages were 135 nm, 1.9 {mu}m, and 4.8 {mu}m, respectively.
Potential health effects of fume particles on the crew of spacecrafts
NASA Technical Reports Server (NTRS)
Ferin, Juraj; Oberdorster, Gunter
1992-01-01
The effect of the size of polymer (e.g., Teflon) particles in fumes inhaled by spacecraft personnel on the condition of the lung tissue and on the recovery of the exposed subjects was investigated in rats receiving a single intrapulmonary instillation, or repeated inhalation exposures to either TiO2 particles with primary particle diameter 20 nm, or TiO2 particles with primary particle diameter 250 nm. It was found that rats exposed to 20-nm-diam particles showed a dramatically higher toxicity and slower recovery compared to the group exposed to the 250-nm-diam particles, due to a larger extent of penetration of the interstitium of the lung by the finer particles.
Synthesis of Brushite Particles in Reverse Microemulsions of the Biosurfactant Surfactin
Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A. Satyanarayana; Atla, Shashi B.; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng
2011-01-01
In this study the “green chemistry” use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16–200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8–14 nm in diameter and 80–100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50–200 nm in diameter), oval (~300 nm in diameter) and nanorod (200–400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles. PMID:21747709
NASA Astrophysics Data System (ADS)
Wilson, J. C.; Saad, M. S.; Axisa, D.
2017-12-01
Aerosol size distributions were measured in the 4 nm to 1000 nm diameter range from the NASA WB-57 aircraft based in Costa Rica from 2004 through 2007. The measurements were made with the Nuclei Mode Aerosol Size Spectrometer (NMASS) and the Focused Cavity Aerosol Spectrometer (FCAS). The NMASS consists of 5 condensation particle counters (CPCs) each operated with a different supersaturation of the working fluid (FC-43). Therefore each CPC has a different lower size cut off. The size cutoffs are near 4nm 8nm, 16 nm, 32nm and 50nm in diameter. The FCAS is an optical particle counter that detects and sizes particles in the 100 to 1000 nm diameter range. By considering counting statistics, it is possible to identify those time intervals during which the counts in the 4 nm channel exceeded the counts in the 8 nm channel. Thus it is possible to clearly identify when there are particles in the 4 to 8 nm diameter range present in the size distribution. These particles have a short lifetime due to coagulation and their presence is taken to be evidence of recent new particle formation (NPF). The measurements made in January-February are contrasted with measurements made in June and August and differences are seen in the frequency with which NPF occurred. We examine the roles of air mass origin as determined by back trajectories, pre-existing aerosol surface area, atmospheric motions and trace gas concentrations in contributing to this difference.
Exposure assessment of nano-sized and respirable particles at different workplaces
NASA Astrophysics Data System (ADS)
Tsai, Chuen-Jinn; Huang, Cheng-Yu; Chen, Sheng-Chieh; Ho, Chi-En; Huang, Cheng-Hsiung; Chen, Chun-Wan; Chang, Cheng-Ping; Tsai, Su-Jung; Ellenbecker, Michael J.
2011-09-01
In this study, nanoparticle (NP, diameter < 100 nm) and respirable particles measurements were conducted at three different nanopowder workplaces, including the mixing area of a nano-SiO2-epoxy molding compound plant (primary diameter: 15 nm), bagging areas of a nano-carbon black (nano-CB) (primary diameter: 32 nm) and a nano-CaCO3 (primary diameter: 94 nm) manufacturing plant. Chemical analysis of respirable particle mass (RPM) and NPs was performed to quantify the content of manufactured nanoparticles in the collected samples. Nanopowder products obtained from the plants were used in the laboratory dustiness testing using a rotating drum tester to obtain particle mass and number distributions. The obtained laboratory data were then used to elucidate the field data. Both field and laboratory data showed that NP number and mass concentrations of manufactured materials were close to the background level. Number concentration was elevated only for particles with the electrical mobility diameter >100 nm during bagging or feeding processes, unless there were combustion-related incidental sources existed. Large fraction of nanomaterials was found in the RPM due to agglomeration of nanomaterials or attachment of nanomaterials to the larger particles. From this study, it is concluded that RPM concentration measurements are necessary for the exposure assessment of nanoparticles in workplaces.
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne
We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range
Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...
2017-06-08
We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less
Brevnov, Dmitri A; Bungay, Corey
2005-08-04
Electrodeposition of gold mesoparticles on anodized and chemically etched aluminum/copper films deposited on silicon wafers proceeds by instantaneous nucleation and with no diffusion limitations. Both of these phenomena favor the formation of relatively monodispersed gold particles. Under the reported electrodeposition conditions, the relative standard deviation of the particle diameter is 25%. The particle coverage is 7 x 10(8) particles cm(-2). The mean particle diameter varies as a function of electrodeposition time in the range of 40-80 nm. Optical constants of gold mesoparticles are resolved by spectroscopic ellipsometry. A two-layer optical model is constructed to determine both extinction coefficients and refractive indexes of gold mesoparticles as a function of the mean particle diameter. The absorption peak, associated with surface plasmons, is modeled with two Lorentz oscillators. Absorption peak maximums shift from 610 to 675 nm as the mean particle diameter increases from 42 to 74 nm. Electrodeposition of gold particles on technologically relevant substrates, such as aluminum/copper films, is expected to increase the utility of gold particles and facilitate their incorporation in nanostructured materials and a variety of electronic and optical devices.
Wang, Jian; Pikridas, Michael; Pinterich, Tamara; ...
2017-06-08
A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Pikridas, Michael; Pinterich, Tamara
A Fast Integrated Mobility Spectrometer (FIMS) with a wide dynamic size range has been developed for rapid aerosol size distribution measurements. The design and model evaluation of the FIMS are presented in the preceding paper (Paper I), and this paper focuses on the experimental characterization of the FIMS. Monodisperse aerosol with diameter ranging from 8 to 600 nm was generated using Differential Mobility Analyzer (DMA), and was measured by the FIMS in parallel with a Condensation Particle Counter (CPC). The mean particle diameter measured by the FIMS is in good agreement with the DMA centroid diameter. Comparison of the particlemore » concentrations measured by the FIMS and CPC indicates the FIMS detection efficiency is essentially 100% for particles with diameters of 8 nm or larger. For particles smaller than 20 nm or larger than 200 nm, FIMS transfer function and resolution can be well represented by the calculated ones based on simulated particle trajectories in the FIMS. For particles between 20 and 200 nm, the FIMS transfer function is boarder than the calculated, likely due to non-ideality of the electric field, including edge effects near the end of the electrode, which are not represented by the 2-D electric field used to simulate particle trajectories.« less
NASA Astrophysics Data System (ADS)
Bun-Athuek, Natthaphon; Yoshimoto, Yutaka; Sakai, Koya; Khajornrungruang, Panart; Suzuki, Keisuke
2017-07-01
The surface and diameter size variations of colloidal silica particles during the chemical mechanical polishing (CMP) of sapphire substrates were investigated using different particle diameters of 20 and 55 nm. Dynamic light scattering (DLS) results show that the silica particles became larger after CMP under both conditions. The increase in particle size in the slurry was proportional to the material removal amount (MRA) as a function of the removed volume of sapphire substrates by CMP and affected the material removal rate (MRR). Transmission electron microscopy (TEM) images revealed an increase in the size of the fine particles and a change in their surface shape in the slurry. The colloidal silica was coated with the material removed from the substrate during CMP. In this case, the increase in the size of 55 nm diameter particles is larger than that of 20 nm diameter particles. X-ray fluorescence spectrometry (XRF) results indicate that the aluminum element from polished sapphire substrates adhered to the surfaces of silica particles. Therefore, MRR decreases with increasing of polishing time owing to the degradation of particles in the slurry.
ZnO and TiO2 particles: a study on nanosafety and photoprotection
NASA Astrophysics Data System (ADS)
Popov, Alexey; Zhao, Xin; Zvyagin, Andrei; Lademann, Jürgen; Roberts, Michael; Sanchez, Washington; Priezzhev, Alexander; Myllylä, Risto
2010-04-01
Nanoparticles of titanium dioxide (TiO2) and zinc oxide (ZnO) are used in sunscreens as protective compounds against UV radiation. We investigate these particles from the viewpoint of nanosafety (penetration into skin in vivo, production of free radicals when UV-irradiated) as well as UV protection. We show that: a) even after multiple applications, the particles remain within stratum corneum (uppermost skin layer); b) the optimal sizes are 62 nm and 45 nm, respectively for TiO2 and ZnO particles for 310-nm light and, correspondingly, 122 and 140 nm - for 400-nm radiation; c) in general, small particles (25 nm in diameter) are more photoactive than the larger ones (400 nm in diameter); however, on the background if porcine skin in vitro this difference is not seen and is substantially surpassed by skin contribution into production of free radicals.
Aerosol Inlet Characterization Experiment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullard, Robert L.; Kuang, Chongai; Uin, Janek
2017-05-01
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.
Number size distribution of fine and ultrafine fume particles from various welding processes.
Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas
2013-04-01
Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.
Spin Polarization and Quantum Spins in Au Nanoparticles
Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Li, Wen-Hsien
2013-01-01
The present study focuses on investigating the magnetic properties and the critical particle size for developing sizable spontaneous magnetic moment of bare Au nanoparticles. Seven sets of bare Au nanoparticle assemblies, with diameters from 3.5 to 17.5 nm, were fabricated with the gas condensation method. Line profiles of the X-ray diffraction peaks were used to determine the mean particle diameters and size distributions of the nanoparticle assemblies. The magnetization curves M(Ha) reveal Langevin field profiles. Magnetic hysteresis was clearly revealed in the low field regime even at 300 K. Contributions to the magnetization from different size particles in the nanoparticle assemblies were considered when analyzing the M(Ha) curves. The results show that the maximum particle moment will appear in 2.4 nm Au particles. A similar result of the maximum saturation magnetization appearing in 2.3 nm Au particles is also concluded through analysis of the dependency of the saturation magnetization MP on particle size. The MP(d) curve departs significantly from the 1/d dependence, but can be described by a log-normal function. Magnetization can be barely detected for Au particles larger than 27 nm. Magnetic field induced Zeeman magnetization from the quantum confined Kubo gap opening appears in Au nanoparticles smaller than 9.5 nm in diameter. PMID:23989607
NASA Astrophysics Data System (ADS)
Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan
2012-03-01
A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.
Development of magnetic separation system of magnetoliposomes
NASA Astrophysics Data System (ADS)
Nakao, R.; Matuo, Y.; Mishima, F.; Taguchi, T.; Maenosono, S.; Nishijima, S.
2009-10-01
The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe 3O 4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe 3O 4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.
Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal
NASA Astrophysics Data System (ADS)
Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.
2018-02-01
PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.
Zampighi, Guido A.; Zampighi, Lorenzo; Lanzavecchia, Salvatore
2011-01-01
Lens transparency depends on the accumulation of massive quantities (600–800 mg/ml) of twelve primary crystallines and two truncated crystallines in highly elongated “fiber” cells. Despite numerous studies, major unanswered questions are how this heterogeneous group of proteins becomes organized to bestow the lens with its unique optical properties and how it changes during cataract formation. Using novel methods based on conical tomography and labeling with antibody/gold conjugates, we have profiled the 3D-distribution of the αA-crystalline in rat lenses at ∼2 nm resolutions and three-dimensions. Analysis of tomograms calculated from lenses labeled with anti-αA-crystalline and gold particles (∼3 nm and ∼7 nm diameter) revealed geometric patterns shaped as lines, isosceles triangles and polyhedrons. A Gaussian distribution centered at ∼7.5 nm fitted the distances between the ∼3 nm diameter gold conjugates. A Gaussian distribution centered at ∼14 nm fitted the Euclidian distances between the smaller and the larger gold particles and another Gaussian at 21–24 nm the distances between the larger particles. Independent of their diameters, tethers of 14–17 nm in length connected files of gold particles to thin filaments or clusters to ∼15 nm diameter “beads.” We used the information gathered from tomograms of labeled lenses to determine the distribution of the αA-crystalline in unlabeled lenses. We found that αA-crystalline monomers spaced ∼7 nm or αA-crystalline dimers spaced ∼15 nm center-to-center apart decorated thin filaments of the lens cytoskeleton. It thus seems likely that lost or gain of long-range order determines the 3D-structure of the fiber cell and possible also cataract formation. PMID:21909355
Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method
NASA Astrophysics Data System (ADS)
Manzke, Achim; Vogel, Nicolas; Weiss, Clemens K.; Ziener, Ulrich; Plettl, Alfred; Landfester, Katharina; Ziemann, Paul
2011-06-01
Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars.Based on emulsion polymerization in the presence of a Pt complex, polystyrene (PS) particles were prepared exhibiting a well defined average diameter with narrow size-distribution. Furthermore, the colloids contain a controlled concentration of the Pt precursor complex. Optimized coating of Si substrates with such colloids leads to extended areas of hexagonally ordered close-packed PS particles. Subsequent application of plasma etching and annealing steps allows complete removal of the PS carriers and in parallel nucleation and growth of Pt nanoparticles (NPs) which are located at the original center of the PS colloids. In this way, hexagonally arranged spherical Pt NPs are obtained with controlled size and interparticle distances demonstrating variability and precision with so far unknown parameter scalability. This control is demonstrated by the fabrication of Pt NP arrays at a fixed particle distance of 185 nm while systematically varying the diameters between 8 and 15 nm. Further progress could be achieved by seeded emulsion polymerization. Here, Pt loaded PS colloids of 130 nm were used as seeds for a subsequent additional emulsion polymerization, systematically enlarging the diameter of the PS particles. Applying the plasma and annealing steps as above, in this way hexagonally ordered arrays of 9 nm Pt NPs could be obtained at distances up to 260 nm. To demonstrate their stability, such Pt particles were used as etching masks during reactive ion etching thereby transferring their hexagonal pattern into the Si substrate resulting in corresponding arrays of nanopillars. Electronic supplementary information (ESI) available: Detailed description of the experimental part (S1-S4) platinum concentration inside the polymer particles synthesized by a seeded polymerization from the same seed particles measured by ICP-OES (Fig. S1 and S5); SEM image of Pt complex containing PS particles after oxygen plasma treatment (Fig. S2 and S6); effect of hydrofluoric acid treatment on silicon oxide elevation under Pt NPs (Fig. S3 and S6); SEM images demonstrating the variability of Pt NP distance while keeping the diameter constant (Fig. S4 and S8); results of experimental determination of Pt content by ICP-OES (Tables S1 and S9); diameter of the particles at different fabrication states (Tables S2 and S10). See DOI: 10.1039/c1nr10169b
NASA Astrophysics Data System (ADS)
Inomata, Satoshi; Sato, Kei; Sakamoto, Yosuke; Hirokawa, Jun
2017-12-01
Secondary organic aerosol formation during the ozonolysis of isoprene and ethene in the presence of ammonium nitrate seed particles (surface area concentrations = (0.8-3) × 107 nm2 cm-3) was investigated using a 1 nm scanning mobility particle sizer. Based on the size distribution of formed particles, particles with a diameter smaller than the minimum diameter of the seed particles (less than ∼6 nm) formed under dry conditions, but the formation of such particles was substantially suppressed during isoprene ozonolysis and was not observed during ethane ozonolysis under humid conditions. We propose that oligomeric hydroperoxides generated by stabilized Criegee intermediates (sCIs), including C1-sCI (CH2OO), contribute to new particle formation while competing to be taken up onto preexisting particles. The OH reaction products of isoprene and ethene seem to not contribute to new particle formation; however, they are taken up onto preexisting particles and contribute to particle growth.
Thermodynamics Of Common Atmospheric Particles On The Nanoscale
NASA Astrophysics Data System (ADS)
Onasch, T.; Han, J.; Oatis, S.; Brechtel, F.; Imre, D. G.
2002-12-01
A significant fraction of atmospheric particles are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence. Recent field studies have observed large nucleation events of hygroscopic particles and note discrepancies between predicted and observed particle growth rates after nucleation. These growth rates are governed, in part, by the thermodynamic properties of particles only a few nanometers in diameter. However, little thermodynamic information is currently available for nanometer?sized particles. The Kelvin relation indicates that the surface tension of a particle less than 100nm in diameter can dramatically affect the thermodynamics, and surface states may begin to influence the bulk physical properties in these small particles with high surface to volume ratios. In this context, we are investigating the thermodynamic properties, including pre-deliquescence water adsorption, deliquescence, efflorescence, and supersaturated particle compositions of nanoparticles with mobility diameters in the range of 5 to 50 nm. We have developed a temperature and humidity-controlled laboratory-based Nano Differential Mobility Analyzer (NDMA) system to characterize the hygroscopic properties of the common atmospheric salt particles as a function of size. Two different aerosol generation systems have been used to cover the full size range. The first system (less than 20nm diameter) relies on an Atomizer (TSI 3076) to produce particles which are size?selected using an initial DMA. For particle sizes smaller than 20 nm, the Electrospray Aerosol Generator (EAG, TSI 3480) has been employed as a particle source. The EAG characteristically provides narrow size distributions, comparable to the monodisperse size distribution from a DMA, but with higher number concentrations. Once generated, the monodisperse aerosol flow is then conditioned with respect to humidity at a constant temperature and subsequently analyzed using a TSI Ultrafine CPC (Model 3010) modified for Pulse-Height Analysis. The dry particle sizes are also continually monitored by an external SMPS system (TSI 3936) to rectify errors in the calculated growth factor resulting from any drift in the dry particle size. The size changes of the humidified particles are directly correlated with the relative humidity and temperature. Our results of ammonium sulfate particles from 5 - 50 nm in diameter are consistent with those predicted from the Kelvin relation. The particle size affects both deliquescence and efflorescence of the homogeneous salt particles: the deliquescence relative humidity increases and the efflorescence decreases as particles become smaller. In addition, although the smaller the particle size the more significant water adsorption, the sharp deliquescence phase transition was obvious regardless of the particle sizes. The implications with respect to these observations will be further discussed at the presentation.
NASA Astrophysics Data System (ADS)
Popov, Alexey; Lademann, Jürgen; Priezzhev, Alexander; Myllylä, Risto
2009-07-01
Titanium dioxide (TiO2) nanoparticles are extensively used nowadays in sunscreens as protective compounds for human skin from UV radiation. In this paper, such particles are investigated from the viewpoint of penetration into living skin, UV protective properties (compared with silicon (Si) particles) and as sources of free radicals if UV-irradiated. We show that: a) even after multiple applications, the particles are located within the uppermost 3-μm-thick part of the skin; b) the optimal sizes are found to be 62 nm and 55 nm, respectively for TiO2 and Si particles for 310-nm light and, correspondingly, 122 and 70 nm - for 400-nm radiation; c) if applied onto glass, small particles of 25 nm in diameter produce an increased amount of free radicals compared to the larger ones of 400 nm in diameter and placebo itself; however, if applied onto porcine skin in vitro, there is no statistically distinct difference in the amount of radicals generated by the two kinds of particles on skin and by the skin itself. This proves that although particles as part of sunscreens produce free radicals, the effect is negligible in comparison to the production of radicals by skin in vitro.
NASA Astrophysics Data System (ADS)
Kondo, Daiyu; Sato, Shintaro; Awano, Yuji
2006-05-01
Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution have been synthesized by hot-filament chemical vapor deposition using acetylene at 590 °C. Iron nanoparticles with diameters of 1.6, 2.0, 2.5, 5.0 and 10 nm (standard deviation: ≈10%) obtained with a differential mobility analyzer were used as a catalyst without any supporting materials on a substrate. SWNTs were obtained from 2.0 nm or smaller particles. The ratio of G band to D band in Raman spectra was as high as 35 without purification, indicating that high-quality SWNTs were synthesized. The SWNT diameters correlated with the particle diameters, demonstrating diameter-controlled SWNT growth.
SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS
Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...
Ultrafine Condensation Particle Counter Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, C.
2016-02-01
The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.
Effect of Morphology and Composition on the Hygroscopicity of Soot Aerosols
NASA Astrophysics Data System (ADS)
Williams, L.; Slowik, J.; Davidovits, P.; Jayne, J.; Kolb, C.; Worsnop, D.; Rudich, Y.
2003-12-01
Freshly generated soot aerosols are initially hydrophobic and unlikely to act as cloud condensation nuclei (CCN). However, during combustion many low vapor pressure gas products are formed that may then condense on existing soot aerosols. Additionally, soot particles may acquire coatings as they age, such as acids, salts, and oxygenated organics. An understanding of this aging process and its effect on soot hygroscopicity is necessary to address the potential of soot to act as a CCN. The transformation of soot from hydrophobic to hydrophilic is the focus of this work. An aim here is to determine the minimum coating required for hygroscopic growth. Soot particles produced by combustion of mixtures of fuel and air are size selected by a Differential Mobility Analyzer (DMA) and entrained in a laminar flow passing through a flow tube. The size selected soot particles are mixed with a controlled amount of the gas phase precursors to produce the coatings to be studied. Initial studies are focused on coatings of H2SO4, NH4NO3, and selected organics. The number of particles per unit volume of air is counted by a Condensation Particle Counter (CPC) and the particles are isokinetically sampled into an Aerosol Mass Spectrometer (AMS). Two distinct types of soot aerosols have been observed depending on the type of fuel and air mixture. With soot produced by the combustion of propane and air, the AMS shows a polydisperse particle size distribution with aerodynamic diameters ranging from 100 nm to 400 nm. The aerodynamic diameter is linearly related to the DMA-determined mobility diameter with the product density x shape factor = 1.2. The organic molecules in this soot are mostly PAH compounds. However, when kerosene is added to the propane flame, the soot particle morphology and composition is strikingly altered. While the DMA shows an essentially unchanged mobility diameter distribution, in the range 100 nm to 400, aerodynamic particle diameter is constant at about 100 nm, independent of the mobility diameter. This type of constancy of the aerodynamic diameter has been observed for soot particles in diesel engine exhaust and has been interpreted in terms of a size-dependent effective density. The soot chemical composition is also altered. In this soot the organics are mainly linear hydrocarbons. The differences between these two types of soot with respect to hygroscopicity and effective area are being investigated.
Measurement of Size-dependent Dynamic Shape Factors of Quartz Particles in Two Flow Regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Jennifer M.; Bell, David M.; Imre, D.
2016-08-02
Understanding and modeling the behavior of quartz dust particles, commonly found in the atmosphere, requires knowledge of many relevant particles properties, including particle shape. This study uses a single particle mass spectrometer, a differential mobility analyzer, and an aerosol particle mass analyzer to measure quartz aerosol particles mobility, aerodynamic, and volume equivalent diameters, mass, composition, effective density, and dynamic shape factor as a function of particle size, in both the free molecular and transition flow regimes. The results clearly demonstrate that dynamic shape factors can vary significantly as a function of particle size. For the quartz samples studied here, themore » dynamic shape factors increase with size, indicating that larger particles are significantly more aspherical than smaller particles. In addition, dynamic shape factors measured in the free-molecular (χv) and transition (χt) flow regimes can be significantly different, and these differences vary with the size of the quartz particles. For quartz, χv of small (d < 200 nm) particles is 1.25, while χv of larger particles (d ~ 440 nm) is 1.6, with a continuously increasing trend with particle size. In contrast χt, of small particles starts at 1.1 increasing slowly to 1.34 for 550 nm diameter particles. The multidimensional particle characterization approach used here goes beyond determination of average properties for each size, to provide additional information about how the particle dynamic shape factor may vary even for particles with the same mass and volume equivalent diameter.« less
Size reduction of submicron magnesium particles prepared by pulsed wire discharge
NASA Astrophysics Data System (ADS)
Duy Hieu, Nguyen; Tokoi, Yoshinori; Tanaka, Kenta; Sasaki, Toru; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi
2018-02-01
In this study, the submicron magnesium particle size was reduced by adjusting ambient gas pressure and input energy. The mean diameter of the prepared particles was determined from transmission electron microscopy images. The geometric mean particle diameter decreased with increasing relative energy, which was defined as the charging energy divided by the evaporation energy of a wire. By this method, Mg particles with a geometric mean diameter of 41.9 nm were prepared. To our knowledge, they are the smallest passivated Mg particles prepared by any method.
Optical and Nanoparticle Analysis of Normal and Cancer Cells by Light Transmission Spectroscopy
NASA Astrophysics Data System (ADS)
Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Szajko, John; Sander, Christopher; Rebuyon, Roland; Easton, Judah; Tanner, Carol; Ruggiero, Steven
2015-03-01
We have investigated the optical properties of human oral and ovarian cancer and normal cells. Specifically, we have measured the absolute optical extinction for intra-cellular material (lysates) in aqueous suspension. Measurements were conducted over a wavelength range of 250 to 1000 nm with 1 nm resolution using Light Transmission Spectroscopy (LTS). This provides both the absolute extinction of materials under study and, with Mie inversion, the absolute number of particles of a given diameter as a function of diameter in the range of 1 to 3000 nm. Our preliminary studies show significant differences in both the extinction and particle size distributions associated with cancer versus normal cells, which appear to be correlated with differences in the particle size distribution in the range of approximately 50 to 250 nm. Especially significant is a clearly higher density of particles at about 100 nm and smaller for normal cells. Department of Physics, Harper Cancer Research Institute, and the Office of Research at the University of Notre Dame.
Influence of particle size distribution on nanopowder cold compaction processes
NASA Astrophysics Data System (ADS)
Boltachev, G.; Volkov, N.; Lukyashin, K.; Markov, V.; Chingina, E.
2017-06-01
Nanopowder uniform and uniaxial cold compaction processes are simulated by 2D granular dynamics method. The interaction of particles in addition to wide-known contact laws involves the dispersion forces of attraction and possibility of interparticle solid bridges formation, which have a large importance for nanopowders. Different model systems are investigated: monosized systems with particle diameter of 10, 20 and 30 nm; bidisperse systems with different content of small (diameter is 10 nm) and large (30 nm) particles; polydisperse systems corresponding to the log-normal size distribution law with different width. Non-monotone dependence of compact density on powder content is revealed in bidisperse systems. The deviations of compact density in polydisperse systems from the density of corresponding monosized system are found to be minor, less than 1 per cent.
NASA Astrophysics Data System (ADS)
Ichihara, Sahoko; Li, Weihua; Omura, Seiichi; Fujitani, Yuji; Liu, Ying; Wang, Qiangyi; Hiraku, Yusuke; Hisanaga, Naomi; Wakai, Kenji; Ding, Xuncheng; Kobayashi, Takahiro; Ichihara, Gaku
2016-03-01
Titanium dioxide (TiO2) particles are used for surface coating and in a variety of products such as inks, fibers, food, and cosmetics. The present study investigated possible respiratory and cardiovascular effects of TiO2 particles in workers exposed to this particle at high concentration in a factory in China. The diameter of particles collected on filters was measured by scanning electron microscopy. Real-time size-dependent particle number concentration was monitored in the nostrils of four workers using condensation particle counter and optical particle counter. Electrocardiogram was recorded using Holter monitors for the same four workers to record heart rate variability. Sixteen workers underwent assessment of the respiratory and cardiovascular systems. Mass-based individual exposure levels were also measured with personal cascade impactors. The primary particle diameter ranged from 46 to 562 nm. Analysis of covariance of the pooled data of the four workers showed that number of particles with a diameter <300 nm was associated positively with total number of N-N and negatively with total number of increase or decrease in successive RR intervals greater than 50 ms (RR50+/-) or percentage of RR 50+/- that were parameters of parasympathetic function. The total mass concentration was 9.58-30.8 mg/m3 during work, but significantly less before work (0.36 mg/m3). The clear abnormality in respiratory function was not observed in sixteen workers who had worked for 10 months to 13 years in the factory. The study showed that exposure to particles with a diameter <300 nm might affect HRV in workers handling TiO2 particles. The results highlight the need to investigate the possible impact of exposure to nano-scaled particles on the autonomic nervous system.
Dumée, Ludovic F.; She, Fenghua; Duke, Mikel; Gray, Stephen; Hodgson, Peter; Kong, Lingxue
2014-01-01
Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested. PMID:28344241
NASA Astrophysics Data System (ADS)
La Fontaine, A.; Coleman, V. A.; Jämting, A. K.; Lawn, M.; Herrmann, J.; Miles, J. R.
2010-06-01
Three different methods for extracting zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles from commercially available sunscreen were investigated to determine the most appropriate route for producing a sample suitable for measuring the primary particle size. Direct dilution of the formulation, centrifugal methods and chemical washing were trialed in combination with ultrasonic processing and surfactant addition to generate samples that are suitable for particle size analysis. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to monitor the extraction and re-dispersion process. Washing with hexane, methanol and water to remove the formulation, in combination with pulsed high-powered ultrasonication and the addition of a charge-stabilizing surfactant was found to be the most efficient way of producing de-agglomerated samples. DLS measurements gave average hydrodynamic particle diameters of 87 nm for ZnO and 76 nm for TiO2, compared to equivalent spherical particle diameters of 21 +/- 12 nm for ZnO (81 particles) and 19 +/- 14 nm for TiO2 (81 particles) obtained from TEM analysis.
Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin
2017-03-01
This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wu, Zhijun; Ma, Nan; Wu, Yusheng; Zeng, Limin; Zhao, Chunsheng; Wiedensohler, Alfred
2018-02-01
The take-up of water of aerosol particles plays an important role in heavy haze formation over North China Plain, since it is related with particle mass concentration, visibility degradation, and particle chemistry. In the present study, we investigated the size-resolved hygroscopic growth factor (HGF) of sub-micrometer aerosol particles (smaller than 350 nm) on a basis of 9-month Hygroscopicity-Tandem Differential Mobility Analyzer measurement in the urban background atmosphere of Beijing. The mean hygroscopicity parameter (κ) values derived from averaging over the entire sampling period for particles of 50 nm, 75 nm, 100 nm, 150 nm, 250 nm, and 350 nm in diameters were 0.14 ± 0.07, 0.17 ± 0.05, 0.18 ± 0.06, 0.20 ± 0.07, 0.21 ± 0.09, and 0.23 ± 0.12, respectively, indicating the dominance of organics in the sub-micrometer urban aerosols. In the spring, summer, and autumn, the number fraction of hydrophilic particles increased with increasing particle size, resulting in an increasing trend of overall particle hygroscopicity with enhanced particle size. Differently, the overall mean κ values peaked in the range of 75-150 nm and decreased for particles larger than 150 nm in diameter during wintertime. Such size-dependency of κ in winter was related to the strong primary particle emissions from coal combustion during domestic heating period. The number fraction of hydrophobic particles such as freshly emitted soot decreased with increasing PM2.5 mass concentration, indicating aged and internal mixed particles were dominant in the severe particulate matter pollution. Parameterization schemes of the HGF as a function of relative humidity (RH) and particle size between 50 and 350 nm were determined for different seasons and pollution levels. The HGFs calculated from the parameterizations agree well with the measured HGFs at 20-90% RH. The parameterizations can be applied to determine the hygroscopic growth of aerosol particles at ambient conditions for the area of Beijing (ultrafine and fine particles) and the North China plain (fine particles).
NASA Astrophysics Data System (ADS)
Coquelin, L.; Le Brusquet, L.; Fischer, N.; Gensdarmes, F.; Motzkus, C.; Mace, T.; Fleury, G.
2018-05-01
A scanning mobility particle sizer (SMPS) is a high resolution nanoparticle sizing system that is widely used as the standard method to measure airborne particle size distributions (PSD) in the size range 1 nm–1 μm. This paper addresses the problem to assess the uncertainty associated with PSD when a differential mobility analyzer (DMA) operates under scanning mode. The sources of uncertainty are described and then modeled either through experiments or knowledge extracted from the literature. Special care is brought to model the physics and to account for competing theories. Indeed, it appears that the modeling errors resulting from approximations of the physics can largely affect the final estimate of this indirect measurement, especially for quantities that are not measured during day-to-day experiments. The Monte Carlo method is used to compute the uncertainty associated with PSD. The method is tested against real data sets that are monosize polystyrene latex spheres (PSL) with nominal diameters of 100 nm, 200 nm and 450 nm. The median diameters and associated standard uncertainty of the aerosol particles are estimated as 101.22 nm ± 0.18 nm, 204.39 nm ± 1.71 nm and 443.87 nm ± 1.52 nm with the new approach. Other statistical parameters, such as the mean diameter, the mode and the geometric mean and associated standard uncertainty, are also computed. These results are then compared with the results obtained by SMPS embedded software.
Bulk synthesis of nanoporous palladium and platinum powders
Robinson, David B [Fremont, CA; Fares, Stephen J [Pleasanton, CA; Tran, Kim L [Livermore, CA; Langham, Mary E [Pleasanton, CA
2012-04-17
Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.
Bulk synthesis of nanoporous palladium and platinum powders
Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E
2014-04-15
Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.
NASA Astrophysics Data System (ADS)
Kandler, K.; Lieke, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Jaenicke, R.; Müller-Ebert, D.; Weinbruch, S.
2009-04-01
The Saharan Mineral Dust Experiment (SAMUM) is focussed to the understanding of the radiative effects of mineral dust. During the SAMUM 2006 field campaign at Tinfou, southern Morocco, chemical and mineralogical properties of fresh desert aerosols were measured. The winter campaign of Saharan Mineral Dust Experiment II was based in Praia, Island of Santiago, Cape Verde. This second field campaign was dedicated to the investigation of transported Saharan Mineral Dust. Aerosol particles between 100 nm and 500 μm (Morocco) respectively 50 μm (Cape Verde) in diameter were collected by nozzle and body impactors and in a sedimentation trap. The particles were investigated by electron microscopic single particle analysis and attached energy-dispersive X-ray analysis. Chemical properties as well as size and shape for each particle were recorded. Three size regimes are identified in the aerosol at Tinfou: Smaller than 500 nm in diameter, the aerosol consists of sulfates and mineral dust. Larger than 500 nm up to 50 μm, mineral dust dominates, consisting mainly of silicates, and - to a lesser extent - carbonates and quartz. Larger than 50 μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). At Praia, the boundary layer aerosol consists of a superposition of mineral dust, marine aerosol and ammonium sulfate, soot, and other sulfates as well as mixtures thereof. During low-dust periods, the aerosol is dominated by sea salt. During dust events, mineral dust takes over the majority of the particle mass up to 90 %. Particles smaller 500 nm in diameter always show a significant abundance of ammonium sulfate. The particle aspect ratio was measured for all analyzed particles. Its size dependence reflects that of the chemical composition. At Tinfou, larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3. Evaluation of the Cape Verde data will show whether a significant difference exists between fresh and aged Saharan dust in aspect ratio.
Small Particle Driven Chain Disentanglements in Polymer Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senses, Erkan; Ansar, Siyam M.; Kitchens, Christopher L.
2017-04-01
Using neutron spin-echo spectroscopy, X-ray photon correlation spectroscopy and bulk rheology, we studied the effect of particle size on the single chain dynamics, particle mobility, and bulk viscosity in athermal polyethylene oxide-gold nanoparticle composites. The results reveal an ≈ 25 % increase in the reptation tube diameter with addition of nanoparticles smaller than the entanglement mesh size (≈ 5 nm), at a volume fraction of 20 %. The tube diameter remains unchanged in the composite with larger (20 nm) nanoparticles at the same loading. In both cases, the Rouse dynamics is insensitive to particle size. These results provide a directmore » experimental observation of particle size driven disentanglements that can cause non-Einstein-like viscosity trends often observed in polymer nanocomposites.« less
Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating
NASA Astrophysics Data System (ADS)
Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.
2011-04-01
Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.
Efflorescence relative humidity for ammonium sulfate particles.
Gao, Yonggang; Chen, Shing Bor; Yu, Liya E
2006-06-22
The classical homogeneous nucleation theory was employed to calculate the efflorescence relative humidity (ERH) of airborne ammonium sulfate particles with a wide size range (8 nm to 17 microm) at room temperature. The theoretical predictions are in good agreement with the experimentally measured values. When the ammonium sulfate particle is decreased in size, the ERH first decreases, reaches a minimum around 30% for particle diameter equal to about 30 nm, and then increases. It is for the first time that the Kelvin effect is theoretically verified to substantially affect the ERH of ammonium sulfate particles smaller than 30 nm, while the aerosol size is the dominant factor affecting the efflorescent behavior of ammonium sulfate particles larger than 50 nm.
NASA Astrophysics Data System (ADS)
Fei, Xuening; Zhu, Huifang; Zhou, Jianguo; Yu, Lu
2014-03-01
A dual functional nanoparticle was designed and synthesized by encapsulating magnetic core inside silica particles and subsequently a thiazole orange (TO) dye derivative was modified on the surface of the nanoparticles. The obtained particles were characterized by Fourier transform infrared spectroscope, Uv-Vis spectrophotometer, fluorescence spectrophotometer, transmission electron microscope, dynamic light scattering, etc. The size of preliminary magnetic particles is ca. 7 nm, but after coating a silica layer and dye, the size of particles is increased to ca. 60 nm. The hydrodynamic diameter, water dispersibility, and zeta potential were also determined. The hydrodynamic diameter of particles with silica and dye is 65.2 and 70.5 nm, respectively, with positive zeta potential (25.1, 38.5 mV). Furthermore magnetic properties of the particles were measured and the experimental results suggested that it could meet the requirement of application as magnetic resonance imaging agent. Finally to verify the availability of the particles as fluorescent labeling, protein labeling experiment was performed using bovine serum albumin (BSA) protein and the results showed that the dual functional particle has higher affinity with BSA than TO molecule itself.
Liu, Yuan; Yuan, Baohong; Vignola, Joseph
2012-01-01
To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes.
Liu, Yuan; Yuan, Baohong; Vignola, Joseph
2013-01-01
To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes. PMID:24179476
Filling carbon nanotubes with particles.
Kim, Byong M; Qian, Shizhi; Bau, Haim H
2005-05-01
The filling of carbon nanotubes (CNTs) with fluorescent particles was studied experimentally and theoretically. The fluorescent signals emitted by the particles were visible through the walls of the nanotubes, and the particles inside the tubes were observable with an electron microscope. Taking advantage of the template-grown carbon nanotubes' transparency to fluorescent light, we measured the filling rate of the tubes with particles at room conditions. Liquids such as ethylene glycol, water, and ethylene glycol/water mixtures, laden with 50 nm diameter fluorescent particles, were brought into contact with 500 nm diameter CNTs. The liquid and the particles' transport were observed, respectively, with optical and fluorescence microscopy. The CNTs were filled controllably with particles by the complementary action of capillary forces and the evaporation of the liquid. The experimental results were compared and favorably agreed with theoretical predictions. This is the first report on fluorescence studies of particle transport in carbon nanotubes.
Diameter modulation of vertically aligned single-walled carbon nanotubes.
Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo
2012-08-28
We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.
Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli
2015-01-01
Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5°C or 25°C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40°C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion. PMID:26090563
Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.
Bele, Marjan; Siiman, Olavi; Matijević, Egon
2002-10-15
Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.
McAuley, T R; Fisher, R; Zhou, X; Jaques, P A; Ferro, A R
2010-08-01
During winter 2006, indoor and outdoor ultrafine particle (UFP) size distribution measurements for particles with diameters from 5.6 to 165 nm were taken at five homes in a neighborhood directly adjacent to the Peace Bridge Complex (PBC), a major international border crossing connecting Buffalo, New York to Fort Erie, Ontario. Monitoring with 1-s time resolution was conducted for several hours at each home. Participants were instructed to keep all external windows and doors closed and to refrain from cooking, smoking, or other activity that may result in elevating the indoor UFP number concentration. Although the construction and age for the homes were similar, indoor-to-outdoor comparisons indicate that particle infiltration rates varied substantially. Overall, particle concentrations indoors were lower and less variable than particle concentrations outdoors, with average indoor-outdoor ratios ranging from 0.1 to 0.5 (mean 0.34) for particles between 5.6 and 165 nm in diameter. With no indoor sources, the average indoor-outdoor ratios were lowest (0.2) for 20-nm particles, higher (0.3) for particles <10 nm, and highest (0.5) for particles 70-165 nm. This study provides insight into the penetration of UFP into homes and the resulting change in particle size distributions as particles move indoors near a major diesel traffic source. Although people spend most of their time in their homes, exposure estimates for epidemiological studies are generally determined using ambient concentrations. The findings of this study will contribute to improved size-resolved UFP exposure estimates for near roadway exposure assessments and epidemiological studies.
Composition distributions in FePt(Au) nanoparticles
NASA Astrophysics Data System (ADS)
Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.
2010-08-01
Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.
NASA Astrophysics Data System (ADS)
Koizumi, Hiroshi; Watabe, Junya; Sugiyama, Shin; Hirabayashi, Hideaki; Homma, Tetsuya
2018-06-01
The effect of the sintering temperature of Ce3+-doped Lu3Al5O12 (Ce-LuAG) phosphors on the emission and properties of the crystal structure was studied. A cathodoluminescence peak at 317 nm, which was assigned to lattice defects, was exhibited in addition to emission peaks at 508 and 540 nm for the Ce-LuAG phosphors. The intensities of the 317 nm emission peak for the phosphors with mean particle diameters of 5.0 and 10.0 µm formed at a low sintering temperature of 1430 °C were higher than those for the phosphors with mean particle diameters of 18.0 and 20.5 µm formed at a high sintering temperature of 1550 °C. In contrast, the electroluminescence spectra for fabricated white-light-emitting diodes (LEDs) using the phosphors revealed that the intensity of the peak at 540 nm was strong for the mean particle diameters of 18.0 and 20.5 µm. The intensity of the 540 nm peak, which is attributed to the 4f→5d transition of the Ce3+ activator, showed a dependence on the sintering temperature. The relationship between the optical properties and the lattice defects is discussed.
Virus-like particles in cystic mammary adenoma of a snow leopard.
Chandra, S; Laughlin, D C
1975-11-01
Virus-like particles were observed in the giant cells of a mammary adenoma of a snow leopard kept in captivity. Particles that measured 115 to 125 nm in diameter budded from the lamella of endoplasmic reticulum and were studded on their inner surfaces with dense granules (approximately 12 nm) that gave them their unique ultrastructural morphology. Such particles were not observed extracellularly. Type B or type C particles were not seen in the tumor tissue.
Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.
2016-01-01
We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, <103; Medium, 103–104; and High, >104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 21% of those measured by reference instruments for polydisperse aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +130% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present. PMID:23473056
Effect of BaTiO3 nano-particles on breakdown performance of propylene carbonate.
Hou, Yanpan; Zhang, Zicheng; Zhang, Jiande; Liu, Zhuofeng; Song, Zuyin
2015-05-01
As an alternative to water, propylene carbonate (PC) has a good application prospect in the compact pulsed power sources for its breakdown strength higher than that of water, resistivity bigger than 10(9) Ω m, and low freezing temperature (-49 °C). In this paper, the investigation into dielectric breakdown of PC and PC-based nano-fluids (NFs) subjected to high amplitude electric field is presented with microsecond pulses applied to a 1 mm gap full of PC or NFs between spherical electrodes. One kind of NF is composed of PC mixed with 0.5-1.4 vol. % BaTiO3 (BT) nano-particles of mean diameter ≈100 nm and another is mixed with 0.3-0.8 vol. % BT nano-particles of mean diameter ≈30 nm. The experimental results demonstrate the rise of permittivity and improvement of the breakdown strength of NFs compared with PC. Moreover, it is found that there exists an optimum fraction for these NFs corresponding to tremendous surface area in nano-composites with finite mesoscopic thickness. In concrete, the dielectric breakdown voltage of NFs is 33% higher than that of PC as the volume concentration of nano-particles with a 100 nm diameter is 0.9% and the breakdown voltage of NFs is 40% higher as the volume concentration of nano-particles with a 30 nm diameter is 0.6%. These phenomena are considered as the dielectric breakdown voltage of PC-based NFs is increased because the interfaces between nano-fillers and PC matrices provide myriad trap sites for charge carriers, which play a dominant role in the breakdown performance of NFs.
NASA Astrophysics Data System (ADS)
Tripathi, S. N.; Thamban, N.
2017-12-01
Indo-Gangetic Plain (IGP) is one of the most populated and polluted regions in northern India. Even though IGP is a well-known "absorbing aerosol hotspot", information of BC mixing state in IGP is mostly unknown. Our calculation on size resolved mixing state in IGP shown that the mixing state of BC changes with the core diameter of BC. The majority of BC particle were thickly coated ( 80%) at lower diameter (75-125 nm) and the externally mixed BC fraction was gradually increased at higher core diameter of BC (125-250 nm). The mean fraction of "thickly coated BC" particles (fTCBC) was found to be 61.6% for a BC core diameter of 70 to 450 nm, indicating that a large fraction of BC particles was internally mixed in IGP. The fTCBC increased after sunrise with a peak at about noontime, indicating that the formation of secondary organic aerosol under active photochemistry can enhance organic coating on a core of black carbon. A positive correlation between the fTCBC and the mass absorption cross-section at 781nm (MAC781) was also observed (r=0.58). Our results identify that the observed fTCBC in IGP could amplify the MAC781 approximately by a factor of 1.8, which may catalyze the positive radiative forcing.
Synthesis and characterization of pHLIP® coated gold nanoparticles.
Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K
2017-07-01
Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dylla-Spears, R.; Wong, L.; Shen, N.
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
Adsorption of silica colloids onto like-charged silica surfaces of different roughness
Dylla-Spears, R.; Wong, L.; Shen, N.; ...
2017-01-17
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
NASA Astrophysics Data System (ADS)
Bahadur, Ranjit; Russell, Lynn M.
2008-09-01
Deliquescence properties of sodium chloride are size dependent for particles smaller than 100 nm. Molecular dynamics (MD) simulations are used to determine deliquescence relative humidity (DRH) for particles in this size range by modeling idealized particles in contact with humid air. Constant humidity conditions are simulated by inclusion of a liquid reservoir of NaCl solution in contact with the vapor phase, which acts as a source of water molecules as uptake by the nanoparticle proceeds. DRH is bounded between the minimum humidity at which sustained water accumulation is observed at the particle surface and the maximum humidity at which water accumulation is not observed. Complete formation of a liquid layer is not observed due to computational limitations. The DRH determined increases with decreasing particle diameter, rising to between 91% and 93% for a 2.2 nm particle and between 81% and 85% for an 11 nm particle, higher than the 75% expected for particles larger than 100 nm. The simulated size dependence of DRH agrees well with predictions from bulk thermodynamic models and appears to converge with measurements for sizes larger than 10 nm. Complete deliquescence of nanoparticles in the 2-11 nm size range requires between 1 and 100 μs, exceeding the available computational resources for this study. Water uptake coefficients are near 0.1 with a negligible contribution from diffusion effects. Planar uptake coefficients decrease from 0.41 to 0.09 with increasing fractional water coverage from 0.002 to 1, showing a linear dependence on the logarithm of the coverage fraction with a slope of -0.08+/-0.01 (representing the effect of solvation). Particle uptake coefficients increase from 0.13 at 11 nm to 0.65 at 2.2 nm, showing a linear dependence on the logarithm of the edge fraction (which is a function of diameter) with a slope of 0.74+/-0.04 (representing larger edge effects in smaller particles).
The fluorescence properties of aerosol larger than 0.8 μm in an urban and a PBA-dominated location
NASA Astrophysics Data System (ADS)
Gabey, A. M.; Stanley, W. R.; Gallagher, M. W.; Kaye, P. H.
2011-01-01
Dual-wavelength Ultraviolet light-induced fluorescence (UV-LIF) measurements were performed on ambient environmental aerosol in Manchester, UK (urban city centre, winter) and Borneo, Malaysia (remote, tropical), which are taken to represent environments with negligible and significant primary biological aerosol (PBA) influences, respectively. Single-particle fluorescence intensity and optical equivalent diameter were measured with a Wide Issue Bioaerosol Sensor, version 3 (WIBS3) in the diameter range 0.8 μm≤DP≤20 μm for 2-3 weeks and filters were analysed using energy dispersive X-ray (EDX) spectroscopy, which revealed mostly non-PBA dominated particle sizes larger than 1 μm in Manchester. The WIBS3 features three fluorescence channels: Fluorescence excited at 280 nm is recorded at 310-400 nm and 400-600 nm and fluorescence excited at 370 nm is detected at 400-600 nm. In Manchester the primary size mode of fluorescent and non-fluorescent material was at 1.2 μm. In Borneo non-fluorescent material peaked at 1.2 μm and fluorescent at 3-4 μm. The fluorescence intensity at 400-600 nm generally increased with DP at both sites, as did the 310-400 nm intensity in Borneo. In Manchester the 310-400 m fluorescence decreased at DP>4 μm, suggesting this channel offers additional discrimination between fluorescent particle types. Finally, the ratio of fluorescence intensity in two pairs of channels was investigated as a function of particle diameter and this varied significantly between the two environments, demonstrating that the fluorescent aerosol in each can in principle be distinguished using a combination of fluorescence and elastic scattering measurements.
Rogers, Kim R; Navratilova, Jana; Stefaniak, Aleksandr; Bowers, Lauren; Knepp, Alycia K; Al-Abed, Souhail R; Potter, Phillip; Gitipour, Alireza; Radwan, Islam; Nelson, Clay; Bradham, Karen D
2018-04-01
Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characterization parameters included: total silver, fractionated silver (particulate and dissolved), primary particle size distribution, hydrodynamic diameter, particle number, and plasmon resonance absorbance. A high degree of variability between claimed and measured values for total silver was observed. Only 7 of the products showed total silver concentrations within 20% of their nominally reported values. In addition, significant variations in the relative percentages of particulate vs. soluble silver were also measured in many of these products reporting to be colloidal. Primary silver particle size distributions by transmission electron microscopy (TEM) showed two populations of particles - smaller particles (<5nm) and larger particles between 20 and 40nm. Hydrodynamic diameter measurements using nanoparticle tracking analysis (NTA) correlated well with TEM analysis for the larger particles. Z-average (Z-Avg) values measured using dynamic light scattering (DLS); however, were typically larger than both NTA or TEM particle diameters. Plasmon resonance absorbance signatures (peak absorbance at around 400nm indicative of metallic silver nanoparticles) were only noted in 4 of the 9 yellow-brown colored suspensions. Although the total silver concentrations were variable among products, ranging from 0.54mg/L to 960mg/L, silver containing nanoparticles were identified in all of the product suspensions by TEM. Published by Elsevier B.V.
Investigation of transient dynamics of capillary assisted particle assembly yield
NASA Astrophysics Data System (ADS)
Virganavičius, D.; Juodėnas, M.; Tamulevičius, T.; Schift, H.; Tamulevičius, S.
2017-06-01
In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm2 square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.
Characterization of nZVI mobility in a field scale test.
Kocur, Chris M; Chowdhury, Ahmed I; Sakulchaicharoen, Nataphan; Boparai, Hardiljeet K; Weber, Kela P; Sharma, Prabhakar; Krol, Magdalena M; Austrins, Leanne; Peace, Christopher; Sleep, Brent E; O'Carroll, Denis M
2014-01-01
Nanoscale zerovalent iron (nZVI) particles were injected into a contaminated sandy subsurface area in Sarnia, Ontario. The nZVI was synthesized on site, creating a slurry of 1 g/L nanoparticles using the chemical precipitation method with sodium borohydride (NaBH4) as the reductant in the presence of 0.8% wt. sodium carboxymethylcellulose (CMC) polymer to form a stable suspension. Individual nZVI particles formed during synthesis had a transmission electron microscopy (TEM) quantified particle size of 86.0 nm and dynamic light scattering (DLS) quantified hydrodynamic diameter for the CMC and nZVI of 624.8 nm. The nZVI was delivered to the subsurface via gravity injection. Peak normalized total Fe breakthrough of 71% was observed 1m from the injection well and remained above 50% for the 24 h injection period. Samples collected from a monitoring well 1 m from the injection contained nanoparticles with TEM-measured particle diameter of 80.2 nm and hydrodynamic diameter of 562.9 nm. No morphological changes were discernible between the injected nanoparticles and nanoparticles recovered from the monitoring well. Energy dispersive X-ray spectroscopy (EDS) was used to confirm the elemental composition of the iron nanoparticles sampled from the downstream monitoring well, verifying the successful transport of nZVI particles. This study suggests that CMC stabilized nZVI can be transported at least 1 m to the contaminated source zone at significant Fe(0) concentrations for reaction with target contaminants.
Porous metal oxide particles and their methods of synthesis
Chen, Fanglin; Liu, Qiang
2013-03-12
Methods are generally disclosed for synthesis of porous particles from a solution formed from a leaving agent, a surfactant, and a soluble metal salt in a solvent. The surfactant congregates to form a nanoparticle core such that the metal salt forms about the nanoparticle core to form a plurality of nanoparticles. The solution is heated such that the leaving agent forms gas bubbles in the solution, and the plurality of nanoparticles congregate about the gas bubbles to form a porous particle. The porous particles are also generally disclosed and can include a particle shell formed about a core to define an average diameter from about 0.5 .mu.m to about 50 .mu.m. The particle shell can be formed from a plurality of nanoparticles having an average diameter of from about 1 nm to about 50 nm and defined by a metal salt formed about a surfactant core.
Sihler, Susanne; Lindén, Mika; Ziener, Ulrich
2017-10-03
Pickering emulsions with a remarkable transmittance of up to 86% across the visible spectrum have been prepared without adjusting the refractive index (RI) of the stabilizing particles to those of the aqueous and oil phases. Commercially available hydrophilic silica particles with a diameter of 20 nm, which are hydrophobized partially in situ, were used to stabilize water droplets with diameters below 400 nm in IsoparM. In this system, the stabilizing particles and the emulsion droplets act as one single scattering object, which renders RI-matching of the particles unnecessary. By either evaporation of some water from the droplets or addition of an appropriate organic liquid to the oil phase, it is possible to match the RI of the droplets (aqueous phase + particles) with that of the continuous phase, which minimizes scattering and results in highly transparent emulsions.
Probing plasmon resonances of individual aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi
2018-01-01
The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.
Coinfection of a bearded dragon, Pogona vitticeps, with adenovirus- and dependovirus-like viruses.
Jacobson, E R; Kopit, W; Kennedy, F A; Funk, R S
1996-05-01
Four neonate bearded dragons, Pogona vitticeps, from two collections became ill and died. Multiple tissues were collected and processed for light microscopy. In hematoxylin and eosin-stained sections of liver of one lizard, numerous basophilic intranuclear inclusions were observed. In three lizards, intranuclear inclusions were primarily seen within enterocytes in the small intestine. A portion of paraffin-embedded liver of one lizard and small intestine of a second lizard were removed, deparaffinized, and examined by electron microscopy. For the most part, inclusions in the liver consisted of nonenveloped viral particles 60-66 nm in diameter. Smaller nonenveloped virions 15-17 nm in diameter were occasionally seen in association with these particles. In the intestine, inclusions consisted only of 60-70 nm particles. Based on morphology and location, the larger particles were consistent with an adenovirus. Based on size and presence within nuclei of host cells coinfected with the adenovirus-like virus, the smaller viral agent was consistent with members of the genus Dependovirus.
The effects of particle size and surface coating on the cytotoxicity of nickel ferrite.
Yin, H; Too, H P; Chow, G M
2005-10-01
The safety and toxicity of nanoparticles are of growing concern despite their significant scientific interests and promising potentials in many applications. The properties of nanoparticles depend not only on the size but also the structure, microstructure and surface coating. These in turn are controlled by the synthesis and processing conditions. The dependence of cytotoxicity on particle size and on the presence of oleic acid as surfactant on nickel ferrite particles were investigated in vitro using the Neuro-2A cell line as a model. For nickel ferrite particles without oleic acid prepared by ball milling, cytotoxicity was independent of particle size within the given mass concentrations and surface areas accessible to the cells. For nickel ferrite particles coated with oleic acid prepared by the polyol method, the cytotoxicity significantly increased when one or two layers of oleic acid were deposited. Large particles (150+/-50 nm diameter) showed a higher cytotoxicity than smaller particles (10+/-3 nm diameter).
Guo, Yi; Zetterlund, Per B
2011-10-18
A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Changes of lastids in virus-infected cells of the attraction-zone from Sarracenia purpurea L].
Barckhaus, R H; Weinert, H
1975-01-01
Viruslike particles 300-350 nm long and 70 nm in diameter were found in ultrathin sections of attraction-zone from Sarracenia purpurea. Epidermal- and mesophyll cells contained the bacilliform particles. The membrane-bound particles-most virions occured within ER-like membranes-consisted of an outer coat 70-90 A thick, an inner membrane and an axial core. The plastids of infected cells in which virus particles were localized show morphologicals changes of the organells.
A method for detecting the presence of organic fraction in nucleation mode sized particles
NASA Astrophysics Data System (ADS)
Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, A.
2005-12-01
New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.
A method for detecting the presence of organic fraction in nucleation mode sized particles
NASA Astrophysics Data System (ADS)
Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, A.
2005-06-01
New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.
Presence of Two Virus-Like Particles in Penicillium citrinum
Volterra, L.; Cassone, A.; Tonolo, A.; Bruzzone, M. L.
1975-01-01
Two icosahedral virus-like particles (28 and 19 nm in diameter, respectively) have been detected in sporogenic and asporogenic segregants of a strain of Penicillium citrinum. The distribution of the two particles differed among the two segregants. Images PMID:50049
Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System
NASA Technical Reports Server (NTRS)
Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.
2011-01-01
Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.
Privalova, Larisa I.; Katsnelson, Boris A.; Loginova, Nadezhda V.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Beikin, Yakov B.; Sutunkova, Marina P.; Minigalieva, Ilzira A.; Shishkina, Ekaterina V.; Pichugova, Svetlana V.; Tulakina, Ludmila G.; Beljayeva, Svetlana V.
2014-01-01
We used stable water suspensions of copper oxide particles with mean diameter 20 nm and of particles containing copper oxide and element copper with mean diameter 340 nm to assess the pulmonary phagocytosis response of rats to a single intratracheal instillation of these suspensions using optical, transmission electron, and semi-contact atomic force microscopy and biochemical indices measured in the bronchoalveolar lavage fluid. Although both nano and submicron ultrafine particles were adversely bioactive, the former were found to be more toxic for lungs as compared with the latter while evoking more pronounced defense recruitment of alveolar macrophages and especially of neutrophil leukocytes and more active phagocytosis. Based on our results and literature data, we consider both copper solubilization and direct contact with cellular organelles (mainly, mitochondria) of persistent particles internalized by phagocytes as probable mechanisms of their cytotoxicity. PMID:25421246
NASA Astrophysics Data System (ADS)
Botelho, S. J.; Bazylak, A.
2015-04-01
In this study, the microporous layer (MPL) of the polymer electrolyte membrane (PEM) fuel cell was analysed at the nano-scale. Atomic force microscopy (AFM) was utilized to image the top layer of MPL particles, and a curve fitting algorithm was used to determine the particle size and filling radius distributions for SGL-10BB and SGL-10BC. The particles in SGL-10BC (approximately 60 nm in diameter) have been found to be larger than those in SGL-10BB (approximately 40 nm in diameter), highlighting structural variability between the two materials. The impact of the MPL particle interactions on the effective thermal conductivity of the bulk MPL was analysed using a discretization of the Fourier equation with the Gauss-Seidel iterative method. It was found that the particle spacing and filling radius dominates the effective thermal conductivity, a result which provides valuable insight for future MPL design.
Dynamics of diamond nanoparticles in solution and cells.
Neugart, Felix; Zappe, Andrea; Jelezko, Fedor; Tietz, C; Boudou, Jean Paul; Krueger, Anke; Wrachtrup, Jörg
2007-12-01
The fluorescence and motional dynamics of single diamond nanocrystals in buffer solution and in living cells is investigated. Stable hydrosols of nanodiamonds in buffer solutions are investigated by fluorescence correlation spectroscopy. Measurement of the effective hydrodynamic radius yields particles of 48 nm diameter, which is in excellent agreement with atomic force microscopy measurements made on the same particles. Fluorescence correlation spectroscopy measurements indicate that nanocrystals easily form aggregates when the buffer pH is changed. This tendency is reduced when the surface of the diamonds is covered with surfactants. Upon incubation, cells spontaneously take up nanocrystals that uniformly distribute in cells. Most of the particles get immobilized within a few minutes. The binding of streptavidin to biotinylated aggregates of 4 nm diameter nanodiamonds is demonstrated.
Estephan, Zaki G; Hariri, Hanaa H; Schlenoff, Joseph B
2013-02-26
Stable aqueous dispersions of superparamagnetic iron oxide nanoparticles were synthesized in one step in the presence of a zwitterionic siloxane as the stabilizing/capping/solubilizing ligand. The hydrodynamic diameter of the particles was tuned by controlling the concentration of zwitterion siloxane, which ultimately yielded monodisperse nanoparticles small enough for renal filtration (<6 nm diameter). The zwitterated nanoparticles were readily dispersed and stable in aqueous media in the pH range 6-9 but exhibited lower magnetization values than nonzwitterated materials due to amorphous content and spin canting, typical for particles of such size. Turbidimetry and light scattering studies revealed no interaction between the particles and proteins, suggesting the materials will circulate well in vivo.
Tuoriniemi, Jani; Moreira, Beatriz; Safina, Gulnara
2016-10-04
The capabilities of surface plasmon resonance (SPR) for characterization of colloidal particles were evaluated for 100, 300, and 460 nm nominal diameter polystyrene (PS) latexes. First the accuracy of measuring the effective refractive index (n eff ) of turbid colloids using SPR was quantified. It was concluded that for submicrometer sized PS particles the accuracy is limited by the reproducibility between replicate injections of samples. An SPR method was developed for obtaining the particle mean diameter (d part ) and the particle number concentration (c p ) by fitting the measured n eff of polystyrene (PS) colloids diluted in series with theoretical values calculated using the coherent scattering theory (CST). The d part and c p determined using SPR agreed with reference values obtained from size distributions measured by scanning electron microscopy (SEM), and the mass concentrations stated by the manufacturer. The 100 nm particles adsorbed on the sensing surface, which hampered the analysis. Once the adsorption problem has been overcome, the developed SPR method has potential to become a versatile tool for characterization of colloidal particles. In particular, SPR could form the basis of rapid and accurate methods for measuring the c p of submicrometer particles in dispersion.
NASA Astrophysics Data System (ADS)
Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.
2015-12-01
Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.
Ma, Yujie; Rajendran, Prayanka; Blum, Christian; Cesa, Yanina; Gartmann, Nando; Brühwiler, Dominik; Subramaniam, Vinod
2011-04-01
The infiltration of enhanced green fluorescent protein (EGFP) into nanochannels of different diameters in mesoporous silica particles was studied in detail by fluorescence microspectroscopy at room temperature. Silica particles from the MCM-41, ASNCs and SBA-15 families possessing nanometer-sized (3-8 nm in diameter) channels, comparable to the dimensions of the infiltrated guest protein EGFP (barrel structure with dimensions of 2.4 nm × 4.2 nm), were used as hosts. We found that it is necessary to first functionalize the surfaces of the silica particles with an amino-silane for effective encapsulation of EGFP. We demonstrated successful infiltration of the protein into the nanochannels based on fluorescence microspectroscopy and loading capacity calculations, even for nanochannel diameters approaching the protein dimensions. We studied the spatial distributions of the EGFPs within the silica particles by confocal laser scanning microscopy (CLSM) and multimode microscopy. Upon infiltration, the fluorescence lifetime drops as expected for an emitter embedded in a high refractive index medium. Further, the spectral properties of EGFP are preserved, confirming the structural integrity of the infiltrated protein. This inorganic-protein host-guest system is an example of a nanobiophotonic hybrid system that may lead to composite materials with novel optical properties. Copyright © 2010 Elsevier Inc. All rights reserved.
Morphological evidence for phages in Xylella fastidiosa
Chen, Jianchi; Civerolo, Edwin L
2008-01-01
Presumptive phage particles associated with Xylella fastidiosa strain Temecula-1 grown in PW broth were observed by transmission electron microscopy (TEM) in ultrathin sections of bacterial cell-containing low speed centrifugation pellets and in partially purified preparations from CsCl equilibrium centrifugation density gradients. Ultrathin-sectioned cell pellets contained icosahedral particles of about 45 nm in diameter. Samples collected from CsCl density gradients revealed mostly non-tailed icosahedral but also tailed particles. The icosahedral particles could be divided into two types: a large type (about 45 nm) and a small type (about 30 nm). Filamentous phage-like particles (17 × 120 to 6,300 nm) were also observed. The presence of different types of phage-like particles resembling to those in several bacteriophage families provides new physical evidence, in addition to X. fastidiosa genomic information, that X. fastidiosa possesses active phages. This is the first report of phage particles released in X. fastidiosa cultures. PMID:18538030
Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes.
Moon, Jeong-Mi; Akin, Demir; Xuan, Yi; Ye, Peide D; Guo, Peixuan; Bashir, Rashid
2009-02-01
Bacteriophage phi29 virus nanoparticles and its associated DNA packaging nanomotor can provide for novel possibilities towards the development of hybrid bio-nano structures. Towards the goal of interfacing the phi29 viruses and nanomotors with artificial micro and nanostructures, we fabricated nanoporous Anodic Aluminum Oxide (AAO) membranes with pore size of 70 nm and shrunk the pores to sub 40 nm diameter using atomic layer deposition (ALD) of Aluminum Oxide. We were able to capture and align particles in the anodized nanopores using two methods. Firstly, a functionalization and polishing process to chemically attach the particles in the inner surface of the pores was developed. Secondly, centrifugation of the particles was utilized to align them in the pores of the nanoporous membranes. In addition, when a mixture of empty capsids and packaged particles was centrifuged at specific speeds, it was found that the empty capsids deform and pass through 40 nm diameter pores whereas the particles packaged with DNA were mainly retained at the top surface of the nanoporous membranes. Fluorescence microscopy was used to verify the selective filtration of empty capsids through the nanoporous membranes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Yu. G.; Ulbrich, P.; Institute of Molecular Genetics, Czech Academy of Sciences, 166 10 Prague
2007-04-10
Particles of {delta}ProCANC, a fusion of capsid (Canada) and nucleocapsid (NC) protein of Mason-Pfizer monkey virus (M-PMV), which lacks the amino terminal proline, were reassembled in vitro and visualized by atomic force microscopy (AFM). The particles, of 83-84 nm diameter, exhibited ordered domains based on trigonal arrays of prominent rings with center to center distances of 8.7 nm. Imperfect closure of the lattice on the spherical surface was affected by formation of discontinuities. The lattice is consistent only with plane group p3 where one molecule is shared between contiguous rings. There are no pentameric clusters nor evidence that the particlesmore » are icosahedral. Tubular structures were also reassembled, in vitro, from two HIV fusion proteins, {delta}ProCANC and CANC. The tubes were uniform in diameter, 40 nm, but varied in length to a maximum of 600 nm. They exhibited left handed helical symmetry based on a p6 hexagonal net. The organization of HIV fusion proteins in the tubes is significantly different than for the protein units in the particles of M-PMV {delta}ProCANC.« less
Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors
NASA Astrophysics Data System (ADS)
Talebizadeh, P.; Rahimzadeh, H.; Ahmadi, G.; Brown, R.; Inthavong, K.
2016-12-01
Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.
NASA Astrophysics Data System (ADS)
Lee, M. H.; Das, J.; Sordelet, D. J.; Eckert, J.; Hurd, A. J.
2012-09-01
We investigated the effect of tungsten particle sizes on the thermal stability and reactivity of uniformly dispersed W particles in molten Hf-based alloy melt at elevated temperature (1673 K). The solubility of particles less than 100 nm in radius is significantly enhanced. In case of fine W particles with 20 nm diameter, their solubility increases remarkably around 700% compared to that of coarse micrometer-scale particles. The mechanisms and kinetics of this dynamic growth of particle are discussed as well as techniques developed to obtain frozen microstructure of particle-reinforced composites by rapid solidification.
Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A
2015-01-01
This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398
Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles
NASA Astrophysics Data System (ADS)
Xu, Qian-Feng; Wang, Jian-Nong
2010-06-01
Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.
NASA Astrophysics Data System (ADS)
Shantz, N. C.; Pierce, J. R.; Chang, R. Y.-W.; Vlasenko, A.; Riipinen, I.; Sjostedt, S.; Slowik, J. G.; Wiebe, A.; Liggio, J.; Abbatt, J. P. D.; Leaitch, W. R.
2012-02-01
Evolution of the cloud condensation nucleus (CCN) activity of 36 ± 4 nm diameter anthropogenic aerosol particles at a water supersaturation of 1.0 ± 0.1% is examined for particle nucleation and growth. During the early stages of one event, relatively few of the anthropogenic particles at 36 nm were CCN active and their growth rates by water condensation were delayed relative to ammonium sulphate particles. As the event progressed, the particle size distribution evolved to larger sizes and the relative numbers of particles at 36 nm that were CCN active increased until all the 36 nm particles were activating at the end of the event. Based on the chemistry of larger particles and the results from an aerosol chemical microphysics box model, the increase in CCN activity of the particles was most likely the result of the condensation of sulphate in this case. Despite the increased CCN activity, a delay was observed in the initial growth of these particles into cloud droplets, which persisted even when the aerosol was most CCN active later in the afternoon. Simulations show that the delay in water uptake is explained by a reduction of the mass accommodation coefficient assuming that the composition of the 36 nm particles is the same as the measured composition of the 60-100 nm particles.
Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2014-08-22
In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high-resolution separation of biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Contini, D.; Donateo, A.; Belosi, F.; Grasso, F. M.; Santachiara, G.; Prodi, F.
2010-08-01
This work reports an analysis of the concentration, size distribution, and deposition velocity of atmospheric particles over snow and iced surfaces on the Nansen Ice Sheet (Antarctica). Measurements were performed using the eddy-correlation method at a remote site during the XXII Italian expedition of the National Research Program in Antarctica (PNRA) in 2006. The measurement system was based on a condensation particle counter (CPC) able to measure particles down to 9 nm in diameter with a 50% efficiency and a Differential Mobility Particle Sizer for evaluating particle size distributions from 11 to 521 nm diameter in 39 channels. A method based on postprocessing with digital filters was developed to take into account the effect of the slow time response of the CPC. The average number concentration was 1338 cm-3 (median, 978 cm-3; interquartile range, 435-1854 cm-3). Higher concentrations were observed at low wind velocities. Results gave an average deposition velocity of 0.47 mm/s (median, 0.19 mm/s; interquartile range, -0.21 -0.88 mm/s). Deposition increased with the friction velocity and was on average 0.86 mm/s during katabatic wind characterized by velocities higher than 4 m/s. Observed size distributions generally presented two distinct modes, the first at approximately 15-20 nm and the second (representing on average 70% of the total particles) at 60-70 nm. Under strong-wind conditions, the second mode dominated the average size distribution.
Synthesis and Characterization of Molybdenum Based Colloidal Particles.
Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein
1998-11-15
The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.
Pan, Long; Nishimura, Yuki; Takaesu, Hideki; Matsui, Yoshihiko; Matsushita, Taku; Shirasaki, Nobutaka
2017-11-01
The capacity of activated carbon particles with median diameters (D50s) of >∼1 μm for adsorption of hydrophobic micropollutants such as 2-methylisolborneol (MIB) increases with decreasing particle size because the pollutants are adsorbed mostly on the exterior (shell) of the particles owing to the limited diffusion penetration depth. However, particles with D50s of <1 μm have not been thoroughly investigated. Here, we prepared particles with D50s of ∼30 μm-∼140 nm and evaluated their adsorption capacities for MIB and several other environmentally relevant adsorbates. The adsorption capacities for low-molecular-weight adsorbates, including MIB, deceased with decreasing particle size for D50s of less than a few micrometers, whereas adsorption capacities increased with decreasing particle size for larger particles. The oxygen content of the particles increased substantially with decreasing particle size for D50s of less than a few micrometers, and oxygen content was negatively correlated with adsorption capacity. The decrease in adsorption capacity with decreasing particle size for the smaller particles was due to particle oxidation during the micromilling procedure used to decrease D50 to ∼140 nm. When oxidation was partially inhibited, the MIB adsorption capacity decrease was attenuated. For high-molecular-weight adsorbates, adsorption capacity increased with decreasing particle size over the entire range of tested particle sizes, even though particle oxygen content increased with decreasing particle size. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reese, Chad E; Asher, Sanford A
2002-04-01
We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.
NASA Astrophysics Data System (ADS)
Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard
2017-05-01
Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.
NASA Astrophysics Data System (ADS)
Sheng, Xiuzhen; Zhan, Wenbin; Xu, Songjuan; Cheng, Shunfeng
2007-10-01
Lymphocystis nodules occurring in the cultured sting fish Sebastes schlegeli were observed under light and electron microscope. Lymphocystis disease virus (LCDV) in the tissues of diseased fish was detected with indirect immunofluorescence test (IFAT). Results showed that lymphocystis cells had overly irregular nuclei, basophilic intracytoplasmic inclusion bodies with virions budding from the surface, and hyaline capsules outside the cell membrane. Numerous virus particles about 200 nm in diameter scattered in the cytoplasm, electron-dense particles 70 80 nm in diameter filled in perinuclear cisterna, and membrane-enveloped particles with electron-dense core of 70 80 nm appeared around cellular nucleus. IFAT using monoclonal antibody against LCDV from Paralichthys olivaceus revealed that specific green fluorescence was present in the cytoplasm of lymphocystis cells, epithelium of stomach, gill lamellae, and muscular fibers under epidermis of S. schlegeli, just as that in the cytoplasm of lymphocystis cells of P. olivaceus, suggesting the presence of LCDV in these tissues.
Particle Fluxes Over a Ponderosa Pine Plantation
NASA Astrophysics Data System (ADS)
Baker, B.; Goldstein, A.
2006-12-01
Atmospheric aerosols can affect visibility, climate, and health. Particle fluxes were measured continuously over a 15 year-old ponderosa pine plantation in the foothills of the Sierra Nevada from mid July to the end of September in the year 2005. Air at this field site is affected by both biogenic emissions from the dense forests of the surrounding area and by urban pollution transported from the Sacramento valley. It is believed that fluxes of very reactive hydrocarbons from plants to the atmosphere have an impact on the production and growth of atmospheric particles at this site. Two condensation particle counters (CPCs) were located near the top of a 12 m measurement tower, several meters above the top of the tree canopy. Particle count data was collected at 10 Hz and particle fluxes were determined using the eddy covariance method. A set of diffusion screens was added to the inlet of one of the CPCs such that the lower particle size limit for detection was increased to a diameter of approximately 40 nm. The other CPC counted particles with minimum diameters of 3 nm. Particle concentrations showed a distinct diurnal pattern with minimum daily average concentrations of 2000 particles cm-3 occurring at dawn, and average daily maximum concentrations of 5700 particles cm-3 occurring at dusk. The evening increase of particle number corresponded to the arrival of polluted air from the Sacramento region. During the day, deposition of particles to the forest canopy (daytime average of 5.8x106 particles m-2 s-1 was generally observed. Concentrations and fluxes of particles under 40 nm could be examined by subtracting the data of one CPC from the other. On average, the fraction of particles under 40 nm increased from less than 20% at dawn to more than 50% at dusk; indicating that air coming from the Sacramento region was enriched in smaller, newly formed aerosol. Daily average deposition fluxes of particles under 40 nm were 1.0x107 particles m-2 s-1. Much of this flux was due to large deposition fluxes during the final three weeks of the experiment. Deposition of particles above 40 nm averaged 1.0x106 particles m-2 s-1. Deposition velocities for the particles under 40 nm were typically between 1 and 10 mm s-1. Particle deposition was correlated most strongly with temperature, and also showed some correlation with relative humidity, particle number concentration, and ozone.
NASA Astrophysics Data System (ADS)
Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.
2016-02-01
Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.
ABSTRACT: A symposium on the mechanisms of action of inhaled airborne particulate matter (PM),pathogenic particles and fibers such as silica and asbestos, and nanomaterials, defined as synthetic particles or fibers less than 100 nm in diameter, was held on October 27 and 28,
...
Ultrafine particle concentration and new particle formation in a coastal arid environment
NASA Astrophysics Data System (ADS)
Alfoldy, Balint; Kotob, Mohamed; Obbard, Jeffrey P.
2017-04-01
Arid environments can be generally characterised by high coarse aerosol load due to the wind-driven erosion of the upper earth crust (i.e. Aeolian dust). On the other hand, anthropogenic activities and/or natural processes also generate significant numbers of particles in the ultrafine size range. Ultrafine particles (also referred as nano-particles) is considered as aerosol particles with the diameter less than 100 nm irrespectively their chemical composition. Due to their small size, these particles represent negligible mass portion in the total atmospheric particulate mass budget. On the other hand, these particles represent the majority of the total particle number budget and have the major contribution in the total aerosol surface distribution. Ultrafine particles are characterised by high mobility (diffusion) and low gravitational settling velocity. Consequently, these particles can be transported long distances and their atmospheric lifetime is relatively high (i.e. in the Accumulation Mode). Ultrafine particles play important role in the atmosphere as they take part in the atmospheric chemistry (high surface), impact the climate (sulphate vs. black carbon), and implies significant health effects due to their deep lung penetration and high mobility in the body. The Atmospheric Laboratory of Qatar University is conducting real-time monitoring of ultrafine particles and regularly taking aerosol samples for chemical analysis at the university campus. In this paper, recent results are presented regarding the size distribution and chemical composition of the ultrafine aerosol particles. Based on the concentration variation in time, sources of ultrafine particles can be clearly separated from the sources of fine or coarse particles. Several cases of new particle formation events have been observed and demonstrated in the paper, however, the precursors of the secondary aerosol particles are still unknown. Literature references suggest that among the sulphuric acid, iodine molecules can also play important role in new particle formation at coastal environments. Chemical analysis of size-segregated aerosol samples demonstrates that sulphate aerosol has a mean diameter at 300 nm that can be the Accumulation Mode of the previously nucleated sulphate particles. The mean diameter of black carbon particles was found at 180 nm. The new particle formation events were detected under 10 nm and particle concentration can reach up to 1.8x105 cm^-3 during severe events. The results demonstrate the significant natural and/or anthropogenic contribution of ultrafine particles to the total aerosol budget in an arid, coastal environment.
Ouf, F-X; Mocho, V-M; Pontreau, S; Wang, Z; Ferry, D; Yon, J
2015-01-01
For industrial concerns, and more especially for nuclear applications, the characterization of soot is essential for predicting the behaviour of containment barriers in fire conditions. This study deals with the characterization (emission factor, composition, size, morphology, microstructure) of particles produced during thermal degradation of materials found in nuclear facilities (electrical cables, polymers, oil and solvents). Small-scale experiments have been conducted for oxygen concentrations [O2] ranging from 15% to 21% in order to imitate the oxygen depletion encountered during a confined fire. Particles denote distinct shapes, from aggregates composed of monomers with diameters ranging from 31.2 nm to 52.8 nm, to compact nanoparticles with diameters ranging from 15 nm to 400 nm, and their composition strongly depends on fuel type. Despite the organic to total carbon ratio (OC/TC), their properties are poorly influenced by the decrease in [O2]. Finally, two empirical correlations are proposed for predicting the OC/TC ratio and the monomer diameter, respectively, as a function of the fuel's carbon to hydrogen ratio and the emission factor. Copyright © 2014 Elsevier B.V. All rights reserved.
Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K
2018-03-01
Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter <100 nm exhibit the highest deposition efficiency in human lungs. To permit apportionment of PM sources at the hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Loeschner, Katrin; Correia, Manuel; López Chaves, Carlos; Rokkjær, Inge; Sloth, Jens J
2018-01-01
This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined by conventional ICP-MS without or with the use of hydrofluoric acid for digestion, were 5.4 ± 1.9 µg/g and 10.1 ± 2.2 µg/g (N = 21), respectively. Aluminium-containing nanoparticles were detected by spICP-MS in all 21 samples. Depending on the assumed particle composition, Al 2 O 3 or Al 2 O 3 ∙2SiO 2 ∙2H 2 O, the median particle diameters were either below or above 100 nm, respectively. The minimum detectable particle diameter by spICP-MS was between 54 and 83 nm. The mass recovery of aluminium in the form of particles was between 5% and 18%. The presented work reports for the first time the detection of Al-containing particles in food by spICP-MS.
Ultrafine particles and nitrogen oxides generated by gas and electric cooking.
Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A
2001-08-01
To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.
Particle levitation and guidance in hollow-core photonic crystal fiber.
Benabid, Fetah; Knight, J; Russell, P
2002-10-21
We report the guidance of dry micron-sized dielectric particles in hollow core photonic crystal fiber. The particles were levitated in air and then coupled to the air-core of the fiber using an Argon ion laser beam operating at a wavelength of 514 nm. The diameter of the hollow core of the fiber is 20 m . A laser power of 80 mW was sufficient to levitate a 5 m diameter polystyrene sphere and guide it through a ~150 mm long hollow-core crystal photonic fiber. The speed of the guided particle was measured to be around 1 cm/s.
Pedersen, Jan Skov; Oliveira, Cristiano L.P.; Hübschmann, Henriette Baun; Arleth, Lise; Manniche, Søren; Kirkby, Nicolai; Nielsen, Hanne Mørck
2012-01-01
Immune stimulating complex (ISCOM) particles consisting of a mixture of Quil-A, cholesterol, and phospholipids were structurally characterized by small-angle x-ray scattering (SAXS). The ISCOM particles are perforated vesicles of very well-defined structures. We developed and implemented a novel (to our knowledge) modeling method based on Monte Carlo simulation integrations to describe the SAXS data. This approach is similar to the traditional modeling of SAXS data, in which a structure is assumed, the scattering intensity is calculated, and structural parameters are optimized by weighted least-squares methods when the model scattering intensity is fitted to the experimental data. SAXS data from plain ISCOM matrix particles in aqueous suspension, as well as those from complete ISCOMs (i.e., with an antigen (tetanus toxoid) incorporated) can be modeled as a polydisperse distribution of perforated bilayer vesicles with icosahedral, football, or tennis ball structures. The dominating structure is the tennis ball structure, with an outer diameter of 40 nm and with 20 holes 5–6 nm in diameter. The lipid bilayer membrane is 4.6 nm thick, with a low-electron-density, 2.0-nm-thick hydrocarbon core. Surprisingly, in the ISCOMs, the tetanus toxoid is located just below the membrane inside the particles. PMID:22677391
Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Fujii, Shin-Ichiro; Takatsu, Akiko; Inagaki, Kazumi; Fujimoto, Toshiyuki
2017-02-01
In order to facilitate reliable and efficient determination of both the particle number concentration (PNC) and the size of nanoparticles (NPs) by single-particle ICP-MS (spICP-MS) without the need to correct for the particle transport efficiency (TE, a possible source of bias in the results), a total-consumption sample introduction system consisting of a large-bore, high-performance concentric nebulizer and a small-volume on-axis cylinder chamber was utilized. Such a system potentially permits a particle TE of 100 %, meaning that there is no need to include a particle TE correction when calculating the PNC and the NP size. When the particle TE through the sample introduction system was evaluated by comparing the frequency of sharp transient signals from the NPs in a measured NP standard of precisely known PNC to the particle frequency for a measured NP suspension, the TE for platinum NPs with a nominal diameter of 70 nm was found to be very high (i.e., 93 %), and showed satisfactory repeatability (relative standard deviation of 1.0 % for four consecutive measurements). These results indicated that employing this total consumption system allows the particle TE correction to be ignored when calculating the PNC. When the particle size was determined using a solution-standard-based calibration approach without an NP standard, the particle diameters of platinum and silver NPs with nominal diameters of 30-100 nm were found to agree well with the particle diameters determined by transmission electron microscopy, regardless of whether a correction was performed for the particle TE. Thus, applying the proposed system enables NP size to be accurately evaluated using a solution-standard-based calibration approach without the need to correct for the particle TE.
NASA Astrophysics Data System (ADS)
Phuoc, Tran X.; Howard, Bret. H.; Martello, Donald V.; Soong, Yee; Chyu, Minking K.
2008-11-01
Laser ablation of magnesium in deionized water (DW), solutions of DW and sodium dodecyl sulfate (SDS) with different concentrations, acetone and 2-propanol has been conducted. The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alteration/decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH) 2 particles were mainly produced by laser ablation of Mg in either DW or DW-SDS solutions. Ablation in DW yielded particles of fiber-like shapes having a diameter of about 5-10 nm and length as long as 150 nm. Materials produced in DW-SDS solutions were composed of various size and shape particles. Some had rough surfaces with irregular shapes. Small particles were about 20-30 nm and larger particles were about 120 nm. Particles with rod-like, triangular, and plate-like shapes were also observed.
Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan
2016-09-01
Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.
Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents
NASA Astrophysics Data System (ADS)
Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina
2014-07-01
Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI. Electronic supplementary information (ESI) available: A detailed description of the synthesis of the ligands as well as the preparation and functionalization of the iron oxide nanoparticles including their physico-chemical characterization are presented. Further, details of the cell experiments and the SPR experiments are given. Two representative movies are provided showing leukocyte rolling on the ligand coated surface of the flow chamber. See DOI: 10.1039/c3nr04793h
Atomic force microscopy investigation of the giant mimivirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Yuri G.; Xiao Chuan; Sun Siyang
2010-08-15
Mimivirus was investigated by atomic force microscopy in its native state following serial degradation by lysozyme and bromelain. The 750-nm diameter virus is coated with a forest of glycosylated protein fibers of lengths about 140 nm with diameters 1.4 nm. Fibers are capped with distinctive ellipsoidal protein heads of estimated Mr = 25 kDa. The surface fibers are attached to the particle through a layer of protein covering the capsid, which is in turn composed of the major capsid protein (MCP). The latter is organized as an open network of hexagonal rings with central depressions separated by 14 nm. Themore » virion exhibits an elaborate apparatus at a unique vertex, visible as a star shaped depression on native particles, but on defibered virions as five arms of 50 nm width and 250 nm length rising above the capsid by 20 nm. The apparatus is integrated into the capsid and not applied atop the icosahedral lattice. Prior to DNA release, the arms of the star disengage from the virion and it opens by folding back five adjacent triangular faces. A membrane sac containing the DNA emerges from the capsid in preparation for fusion with a membrane of the host cell. Also observed from disrupted virions were masses of distinctive fibers of diameter about 1 nm, and having a 7-nm periodicity. These are probably contained within the capsid along with the DNA bearing sac. The fibers were occasionally observed associated with toroidal protein clusters interpreted as processive enzymes modifying the fibers.« less
Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines
NASA Astrophysics Data System (ADS)
Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji
Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan
Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less
Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan; ...
2017-09-18
Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less
Kim, Jung Hyeun; Mulholland, George W.; Kukuck, Scott R.; Pui, David Y. H.
2005-01-01
The slip correction factor has been investigated at reduced pressures and high Knudsen number using polystyrene latex (PSL) particles. Nano-differential mobility analyzers (NDMA) were used in determining the slip correction factor by measuring the electrical mobility of 100.7 nm, 269 nm, and 19.90 nm particles as a function of pressure. The aerosol was generated via electrospray to avoid multiplets for the 19.90 nm particles and to reduce the contaminant residue on the particle surface. System pressure was varied down to 8.27 kPa, enabling slip correction measurements for Knudsen numbers as large as 83. A condensation particle counter was modified for low pressure application. The slip correction factor obtained for the three particle sizes is fitted well by the equation: C = 1 + Kn (α + β exp(−γ/Kn)), with α = 1.165, β = 0.483, and γ = 0.997. The first quantitative uncertainty analysis for slip correction measurements was carried out. The expanded relative uncertainty (95 % confidence interval) in measuring slip correction factor was about 2 % for the 100.7 nm SRM particles, about 3 % for the 19.90 nm PSL particles, and about 2.5 % for the 269 nm SRM particles. The major sources of uncertainty are the diameter of particles, the geometric constant associated with NDMA, and the voltage. PMID:27308102
Dielectrophoretic immobilisation of nanoparticles as isolated singles in regular arrays
NASA Astrophysics Data System (ADS)
Knigge, Xenia; Wenger, Christian; Bier, Frank F.; Hölzel, Ralph
2018-02-01
We demonstrate the immobilisation of polystyrene nanoparticles on vertical nano-electrodes by means of dielectrophoresis. The electrodes have diameters of 500 nm or 50 nm, respectively, and are arranged in arrays of several thousand electrodes, allowing many thousands of experiments in parallel. At a frequency of 15 kHz, which is found favourable for polystyrene, several occupation patterns are observed, and both temporary and permanent immobilisation is achieved. In addition, a histogram method is applied, which allows to determine the number of particles occupying the electrodes. These results are validated with scanning electron microscopy images. Immobilising exactly one particle at each electrode tip is achieved for electrode tip diameters with half the particle size. Extension of this system down to the level of single molecules is envisaged, which will avoid ensemble averaging at still statistically large sample sizes.
Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H.; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M.; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S.; Kulmala, Markku; Worsnop, Douglas R.; Curtius, Joachim
2014-01-01
For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus. PMID:25288761
Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol
NASA Astrophysics Data System (ADS)
Li, Yanwei; Tasoglou, Antonios; Liangou, Aikaterini; Cain, Kerrigan P.; Jahn, Leif; Gu, Peishi; Kostenidou, Evangelia; Pandis, Spyros N.
2018-03-01
Cooking organic aerosol (COA) is potentially a significant fraction of organic particulate matter in urban areas. COA chemical aging experiments, using aerosol produced by grilling hamburgers, took place in a smog chamber in the presence of UV light or excess ozone. The water solubility distributions, cloud condensation nuclei (CCN) activity, and corresponding hygroscopicity of fresh and aged COA were measured. The average mobility equivalent activation diameter of the fresh particles at 0.4% supersaturation ranged from 87 to 126 nm and decreased for aged particles, ranging from 65 to 88 nm. Most of the fresh COA had water solubility less than 0.1 g L-1, even though the corresponding particles were quite CCN active. After aging, the COA fraction with water solubility greater than 0.1 g L-1 increased more than 2 times. Using the extended Köhler theory for multiple partially soluble components in order to predict the measured activation diameters, the COA solubility distribution alone could not explain the CCN activity. Surface tensions less than 30 dyn cm-1 were required to explain the measured activation diameters. In addition, COA particles appear to not be spherical, which can introduce uncertainties into the corresponding calculations.
The margination propensity of spherical particles for vascular targeting in the microcirculation
Gentile, Francesco; Curcio, Antonio; Indolfi, Ciro; Ferrari, Mauro; Decuzzi, Paolo
2008-01-01
The propensity of circulating particles to drift laterally towards the vessel walls (margination) in the microcirculation has been experimentally studied using a parallel plate flow chamber. Fluorescent polystyrene particles, with a relative density to water of just 50 g/cm3comparable with that of liposomal or polymeric nanoparticles used in drug delivery and bio-imaging, have been used with a diameter spanning over three order of magnitudes from 50 nm up to 10 μm. The number n∼s of particles marginating per unit surface have been measured through confocal fluorescent microscopy for a horizontal chamber, and the corresponding total volume V∼s of particles has been calculated. Scaling laws have been derived as a function of the particle diameter d. In horizontal capillaries, margination is mainly due to the gravitational force for particles with d > 200 nm and V∼s increases with d4; whereas for smaller particles V∼s increases with d3. In vertical capillaries, since the particles are heavier than the fluid they would tend to marginate towards the walls in downward flows and towards the center in upward flows, with V∼s increasing with d9/2. However, the margination in vertical capillaries is predicted to be much smaller than in horizontal capillaries. These results suggest that, for particles circulating in an external field of volume forces (gravitation or magnetic), the strategy of using larger particles designed to marginate and adhere firmly to the vascular walls under flow could be more effective than that of using particles sufficiently small (d < 200 nm) to hopefully cross a discontinuous endothelium. PMID:18702833
Gigault, Julien; El Hadri, Hind; Reynaud, Stéphanie; Deniau, Elise; Grassl, Bruno
2017-11-01
In the last 10 years, asymmetrical flow field flow fractionation (AF4) has been one of the most promising approaches to characterize colloidal particles. Nevertheless, despite its potentialities, it is still considered a complex technique to set up, and the theory is difficult to apply for the characterization of complex samples containing submicron particles and nanoparticles. In the present work, we developed and propose a simple analytical strategy to rapidly determine the presence of several submicron populations in an unknown sample with one programmed AF4 method. To illustrate this method, we analyzed polystyrene particles and fullerene aggregates of size covering the whole colloidal size distribution. A global and fast AF4 method (method O) allowed us to screen the presence of particles with size ranging from 1 to 800 nm. By examination of the fractionating power F d , as proposed in the literature, convenient fractionation resolution was obtained for size ranging from 10 to 400 nm. The global F d values, as well as the steric inversion diameter, for the whole colloidal size distribution correspond to the predicted values obtained by model studies. On the basis of this method and without the channel components or mobile phase composition being changed, four isocratic subfraction methods were performed to achieve further high-resolution separation as a function of different size classes: 10-100 nm, 100-200 nm, 200-450 nm, and 450-800 nm in diameter. Finally, all the methods developed were applied in characterization of nanoplastics, which has received great attention in recent years. Graphical Absract Characterization of the nanoplastics by asymmetrical flow field flow fractionation within the colloidal size range.
Release of ultrafine particles from three simulated building processes
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Mulheron, Mike; Som, Claudia
2012-03-01
Building activities are recognised to produce coarse particulate matter but less is known about the release of airborne ultrafine particles (UFPs; those below 100 nm in diameter). For the first time, this study has investigated the release of particles in the 5-560 nm range from three simulated building activities: the crushing of concrete cubes, the demolition of old concrete slabs, and the recycling of concrete debris. A fast response differential mobility spectrometer (Cambustion DMS50) was used to measure particle number concentrations (PNC) and size distributions (PNDs) at a sampling frequency of 10 Hz in a confined laboratory room providing controlled environment and near-steady background PNCs. The sampling point was intentionally kept close to the test samples so that the release of new UFPs during these simulated processes can be quantified. Tri-modal particle size distributions were recorded for all cases, demonstrating different peak diameters in fresh nuclei (<10 nm), nucleation (10-30 nm) and accumulation (30-300 nm) modes for individual activities. The measured background size distributions showed modal peaks at about 13 and 49 nm with average background PNCs 1.47 × 104 cm-3. These background modal peaks shifted towards the larger sizes during the work periods (i.e. actual experiments) and the total PNCs increased between 2 and 17 times over the background PNCs for different activities. After adjusting for background concentrations, the net release of PNCs during cube crushing, slab demolition, and `dry' and `wet' recycling events were measured as 0.77, 19.1, 22.7 and 1.76 (×104) cm-3, respectively. The PNDs were converted into particle mass concentrations (PMCs). While majority of new PNC release was below 100 nm (i.e. UFPs), the bulk of new PMC emissions were constituted by the particles over 100 nm; 95, 79, 73 and 90% of total PNCs, and 71, 92, 93 and 91% of total PMCs, for cube crushing, slab demolition, dry recycling and wet recycling, respectively. The results of this study firmly elucidate the release of UFPs and raise a need for further detailed studies and designing health and safety related exposure guidelines for laboratory workplaces and operational building sites.
NASA Astrophysics Data System (ADS)
Smith, J. N.; Park, J. H.; Kuang, C.; Bustillos, J. O. V.; Souza, R. A. F. D.; Wiedemann, K. T.; Munger, J. W.; Wofsy, S. C.; Rizzo, L. V.; Artaxo, P.; Martin, S. T.; Seco, R.; Kim, S.; Guenther, A. B.; Batalha, S. S. A.; Alves, E. G.; Tota, J.
2014-12-01
The Amazon rainforest is a unique and important place for studying aerosol formation and its impacts on atmospheric chemistry and climate. In remote areas, the atmosphere is characterized by low particle number concentrations and high humidity; perturbations in the particle number concentrations and climate-relevant physical and chemical properties could therefore have a great impact on cloud formation and thus on regional climate and precipitation. While it was previously believed that new particle formation occurs rarely in the Amazon, observations in the Amazon of a sustained steady-state particle number concentration, along with an abundance of dry and wet surfaces upon which particles may deposit, imply that sources of new particles must exist in this region. We present observations from two studies, GOAmazon2014 and Tapajos Upwind Forest Flux Study (TUFFS), which seek to identify and quantify the sources of aerosol particles in the Amazon. Measurements of the chemical composition of 20 - 100 nm diameter aerosol particles at the T3 measurement site during the wet and dry season campaigns of GOAmazon2014 show the presence of inorganic ions such as potassium ion and sulfate, as well as organic ion such as oxalate, in ambient nanoparticles. These observations, combined with 1.5 - 300 nm diameter particle number size distributions and trace gas measurements of organic compounds and sulfuric acid, are used to determine the relative importance of sulfuric acid, organic compounds, and primary biological particle emissions to nanoparticle formation and growth. Observations of 3 - 100 nm diameter particle number size distributions at the KM67 tower site during TUFFS show frequent new particle formation events during the wet season in April, transitioning to a scenario of less frequent events in July at the onset of the dry season. These observations highlight the regional nature of new particle formation in the Amazon, and suggest that additional observations at a variety of locales are needed to fully understand the roles of new particle formation in this region.
Microbes make average 2 nanometer diameter crystalline UO2 particles.
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.
2001-12-01
It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm smaller than found in the bulk structure of UO2 (0.385 nm). This indicates contraction within the nanoparticles due to tensile surface stress. Microbially formed UO2 is highly reactive, thus will be oxidized quickly as redox conditions change. Our findings support a growing number of studies that indicate that biominerals formed as the result of enzyme-mediated redox reactions are nanoparticulate. Preliminary results suggest that these particles will be readily transported through sandy aquifers, especially when conditions prevent high degrees of flocculation. Thus, despite its low (but size-dependent) solubility, UO2 nanoparticle transport may exert a fundamental control on mobility of U in contaminated environments.
NASA Astrophysics Data System (ADS)
Kondo, T.; Mori, K.; Hachisu, M.; Yamazaki, T.; Okamoto, D.; Watanabe, M.; Gonda, K.; Tada, H.; Hamada, Y.; Takano, M.; Ohuchi, N.; Ichiyanagi, Y.
2015-05-01
Mn-Zn ferrite, Mn1-xZnxFe2O4 nanoparticles encapsulated in amorphous SiO2 were prepared using our original wet chemical method. X-ray diffraction patterns confirmed that the diameters of these particles were within 7-30 nm. Magnetization measurements for various sample compositions revealed that the saturation magnetization (Ms) of 7 nm particles was maximum for the x = 0.2 sample. AC magnetic susceptibility measurements were performed for Mn0.8Zn0.2Fe2O4 (x = 0.2) samples with 13-30 nm particles. The peak of the imaginary part of the magnetic susceptibility χ″ shifted to higher temperatures as the particle size increased. An AC field was found to cause the increase in temperature, with the 18 nm particles exhibiting the highest temperature increase, as expected. In addition, in vitro experiments were carried out to study the hyperthermia effects of Mn1-xZnxFe2O4 (x = 0.2, 18 nm) particles on human cancer cells.
Zhao, Yu; Wang, Fang; Zhao, Jianing
2015-10-20
Size-resolved deposition rates and Brownian coagulation of particles between 20 and 900 nm (mobility diameter) were estimated in a well-mixed environmental chamber from a gasoline vehicle exhaust with a total peak particle concentration of 10(5)-10(6) particles/cm(3) at 12.24-25.22 °C. A deposition theory with modified friction velocity and coagulation model was also employed to predict particle concentration decay. Initially during particle decay, approximately 85% or more of the particles had diameters of <100 nm. Particle deposition rates with standard deviations were highly dependent on particle size ranges, and varied from 0.012 ± 0.003 to 0.48 ± 0.02 h(-1). In the experiment, the friction velocity obtained was in the range 1.5-2.5 cm/s. The most explainable fractal dimension and Hamaker constant in coagulation model were 2.5-3 and 20 kT, respectively, and the contribution from coagulation dominated the total particle decay during the first 1 h of decay. It is considered that the modified friction velocity and best fitted fractal dimension and Hamaker constants could be further used to analyze gasoline vehicle exhaust particle dynamics and assess human exposure to vehicle particle pollutants in urban areas, tunnels, and underground parking lots.
Broadband visible light source based on AllnGaN light emitting diodes
Crawford, Mary H.; Nelson, Jeffrey S.
2003-12-16
A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.
Characteristics of particulate matter emissions from toy cars with electric motors.
Wang, Xiaofei; Williams, Brent J; Biswas, Pratim
2015-04-01
Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.
[Quantitative study of diesel/CNG buses exhaust particulate size distribution in a road tunnel].
Zhu, Chun; Zhang, Xu
2010-10-01
Vehicle emission is one of main sources of fine/ultra-fine particles in many cities. This study firstly presents daily mean particle size distributions of mixed diesel/CNG buses traffic flow by 4 days consecutive real world measurement in an Australia road tunnel. Emission factors (EFs) of particle size distribution of diesel buses and CNG buses are obtained by MLR methods, particle distributions of diesel buses and CNG buses are observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow are decomposed by two log-normal fitting curves for each 30 min interval mean scans, the degrees of fitting between combined fitting curves and corresponding in-situ scans for totally 90 fitting scans are from 0.972 to 0.998. Finally particle size distributions of diesel buses and CNG buses are quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters are 74.5-86.5 nm, geometric standard deviations are 1.88-2.05. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters are 19.9-22.9 nm, geometric standard deviations are 1.27-1.3.
Nanoparticle growth by particle-phase chemistry
NASA Astrophysics Data System (ADS)
Apsokardu, Michael J.; Johnston, Murray V.
2018-02-01
The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2-100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10-3 to 10-1 M-1 s-1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.
Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Pierce, J. R.; Adams, P. J.
2013-01-01
In models, nucleation mode (1 nm
Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung
2012-01-15
Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittame, Amina; Université Grenoble Alpes, 38042 Grenoble; Effantin, Grégory
2015-03-27
The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressedmore » in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii.« less
Modeling particle nucleation and growth over northern California during the 2010 CARES campaign
NASA Astrophysics Data System (ADS)
Lupascu, A.; Easter, R.; Zaveri, R.; Shrivastava, M.; Pekour, M.; Tomlinson, J.; Yang, Q.; Matsui, H.; Hodzic, A.; Zhang, Q.; Fast, J. D.
2015-07-01
Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4 while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapors parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates were predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10-40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. Differences among the three simulations for the 40-100 nm particle diameter range are mostly associated with the timing of the peak total tendencies that shift the morning increase and afternoon decrease in particle number concentration by up to two hours. We found that newly formed particles could explain up to 20-30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ∼ 36 %.
Cross, C E; Hemminger, J C; Penner, R M
2007-09-25
One-dimensional (1D) ensembles of 2-15 nm diameter gold nanoparticles were prepared using physical vapor deposition (PVD) on highly oriented pyrolytic graphite (HOPG) basal plane surfaces. These 1D Au nanoparticle ensembles (NPEs) were prepared by depositing gold (0.2-0.6 nm/s) at an equivalent thickness of 3-4 nm onto HOPG surfaces at 670-690 K. Under these conditions, vapor-deposited gold nucleated selectively at the linear step edge defects present on these HOPG surfaces with virtually no nucleation of gold particles on terraces. The number density of 2-15 nm diameter gold particles at step edges was 30-40 microm-1. These 1D NPEs were up to a millimeter in length and organized into parallel arrays on the HOPG surface, following the organization of step edges. Surprisingly, the deposition of more gold by PVD did not lead to the formation of continuous gold nanowires at step edges under the range of sample temperature or deposition flux we have investigated. Instead, these 1D Au NPEs were used as nucleation templates for the preparation by electrodeposition of gold nanowires. The electrodeposition of gold occurred selectively on PVD gold nanoparticles over the potential range from 700-640 mV vs SCE, and after optimization of the electrodeposition parameters continuous gold nanowires as small as 80-90 nm in diameter and several micrometers in length were obtained.
THE MASS ACCOMMODATION COEFFICIENT OF AMMONIUM NITRATE AEROSOL. (R823514)
The mass transfer rate of pure ammonium nitrate between the aerosol and gas phases was
quantified experimentally by the use of the tandem differential mobility analyzer/scanning mobility
particle sizer (TDMA/SMPS) technique. Ammonium nitrate particles 80-220 nm in diameter<...
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu
2017-01-01
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...
2017-06-27
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.
Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu
2017-06-27
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
Preparation and characterization of 'green' hybrid clay-dye nanopigments
NASA Astrophysics Data System (ADS)
Kaya, Mehmet; Onganer, Yavuz; Tabak, Ahmet
2015-03-01
We obtained a low cost and abundant nanopigment material composed of Rhodamine B (Rh-B) organic dye compound and Unye bentonite (UB) clay from Turkey. The characterization of the nanopigment was investigated using scanning electron microscopy (SEM), particle size distribution, powder X-ray diffraction (PXRD), Fourier transformed infra-red spectroscopy (FT-IR) and thermal analysis techniques. According to the result of texture analyses, we showed that the particle size distribution (d: 0.5-mean distribution) of Rh-B/UB nanopigment material was around 100 nm diameter. It was also demonstrated that the samples had a particle size around nm diameter in SEM images. As seen in the PXRD and thermal analysis, there is a difference in basal spacing by 1.46° (2θ) and a higher mass loss by 7.80% in the temperature range 200-500 °C compared to the raw bentonite.
Particle Morphology and Size Results from the Smoke Aerosol Measurement Experiment-2
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary A.; Greenberg, Paul S.; Fischer, David; Meyer, Marit; Mulholland, George; Yuan, Zeng-Guang; Bryg, Victoria; Cleary, Thomas; Yang, Jiann
2012-01-01
Results are presented from the Reflight of the Smoke Aerosol Measurement Experiment (SAME-2) which was conducted during Expedition 24 (July-September 2010). The reflight experiment built upon the results of the original flight during Expedition 15 by adding diagnostic measurements and expanding the test matrix. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The smoke was initially collected in an aging chamber to simulate the transport time from the smoke source to the detector. This effective transport time was varied by holding the smoke in the aging chamber for times ranging from 11 to 1800 s. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis. The TEM grids were analyzed to observe the particle morphology and size parameters. The diagnostics included a prototype two-moment smoke detector and three different measures of moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and, by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations can also be calculated. Overall the majority of the average smoke particle sizes were found to be in the 200 nm to 400 nm range with the quiescent cases producing some cases with substantially larger particles.
The role of pore geometry in single nanoparticle detection
Davenport, Matthew; Healy, Ken; Pevarnik, Matthew; ...
2012-08-22
In this study, we observe single nanoparticle translocation events via resistive pulse sensing using silicon nitride pores described by a range of lengths and diameters. Pores are prepared by focused ion beam milling in 50 nm-, 100 nm-, and 500 nm-thick silicon nitride membranes with diameters fabricated to accommodate spherical silica nanoparticles with sizes chosen to mimic that of virus particles. In this manner, we are able to characterize the role of pore geometry in three key components of the detection scheme, namely, event magnitude, event duration, and event frequency. We find that the electric field created by the appliedmore » voltage and the pore’s geometry is a critical factor. We develop approximations to describe this field, which are verified with computer simulations, and interactions between particles and this field. In so doing, we formulate what we believe to be the first approximation for the magnitude of ionic current blockage that explicitly addresses the invariance of access resistance of solid-state pores during particle translocation. These approximations also provide a suitable foundation for estimating the zeta potential of the particles and/or pore surface when studied in conjunction with event durations. We also verify that translocation achieved by electro-osmostic transport is an effective means of slowing translocation velocities of highly charged particles without compromising particle capture rate as compared to more traditional approaches based on electrophoretic transport.« less
Detection near 1-nm with a laminar-flow, water-based condensation particle counter
Hering, Susanne V.; Lewis, Gregory S.; Spielman, Steven R.; ...
2016-11-18
Presented is a laminar-flow, water-based condensation particle counter capable of particle detection near 1 nm. This instrument employs a three-stage, laminar-flow growth tube with a “moderator” stage that reduces the temperature and water content of the output flow without reducing the peak supersaturation, and makes feasible operation at the large temperature differences necessary for achieving high supersaturations. The instrument has an aerosol flow of 0.3 L/min, and does not use a filtered sheath flow. It is referred to as a “versatile” water condensation particle counter, or vWCPC, as operating temperatures can be adjusted in accordance with the cut-point desired. Whenmore » operated with wall temperatures of ~2°C, >90°C, and ~22°C for the three stages, respectively, the vWCPC detects particles generated from a heated nichrome wire with a 50% efficiency cut-point near 1.6 nm mobility diameter. At these operating temperatures, it also detects 10–20% of large molecular ions formed from passing filtered ambient air through a bipolar ion source. Decreasing the temperature difference between the first two stages, with the first and second stages operated at 10 and 90°C, respectively, essentially eliminates the response to charger ions, and raises the 50% efficiency cut-point for the nichrome wire particles to 1.9 nm mobility diameter. Here, the time response, as measured by rapid removal of an inlet filter, yields a characteristic time constant of 195 ms.« less
NASA Astrophysics Data System (ADS)
Liao, J.; Middlebrook, A. M.; Welti, A.; Sueper, D.; Murphy, D. M.
2014-12-01
Single particles in the eastern US were characterized by a light scattering module coupled to a time-of-flight aerosol mass spectrometer (LS-ToF-AMS) onboard the NOAA P-3 aircraft during the Southeastern Nexus (SENEX) campaign. Single particle data were collected for 30 seconds every 5 minutes. Aerosols larger than 200-300 nm in vacuum aerodynamic diameter can be optically detected by the 405 nm crystal laser and trigger the saving of single particle mass spectra. The measured single particles are internally-mixed as expected. The single particles were classified as prompt, delayed, and null based on the chemical ion signal arrival time difference between prediction from the light scattering signal and measurement by mass spectrometer and the presence or absence of a mass spectrum. On average the number fraction of particles detected as prompt, delayed, and null (no spectrum) is about 30%, 10%, and 60%. The number fraction of these three particle types varied with aerosol size, chemical composition and the investigation region and will be discussed in detail. For example, the number fraction of prompt particles was significantly higher for the flight to the Pennsylvania natural gas shale region on July 6, 2013, which is probably related to the chemical composition (more acidic) and phase of the ambient particles. These particle types and detection efficiency are related to the bouncing effect on the vaporizer and may provide insight into the non-unit AMS collection efficiency. Moreover, most of the particles larger than 800 nm in vacuum aerodynamic diameter sized with the traditional AMS PToF mode are delayed particles and their mass spectral signals appear to be affected by this process.
Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin
2016-08-10
Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm-661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm-30 nm), Aitken mode (30 nm-100 nm), and accumulation mode (100 nm-661 nm) reached 4923 cm(-3), 12193 cm(-3) and 4801 cm(-3), respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of "repeated, short-lived" nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries.
NASA Astrophysics Data System (ADS)
Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.
2018-03-01
We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary impact flux could have similar values on Itokawa and the Moon.
NASA Astrophysics Data System (ADS)
Handa, Takayuki; Hirai, Toshiro; Izumi, Natsumi; Eto, Shun-ichi; Tsunoda, Shin-ichi; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo
2017-03-01
Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.
Evaluation of a coupled dispersion and aerosol process model against measurements near a major road
NASA Astrophysics Data System (ADS)
Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Ketzel, M.; Kukkonen, J.
2007-02-01
A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible at this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic vapour of 1012 molecules cm-3 was shown to be in a disagreement with the measured particle size evolution, while the modelling runs with the concentration of condensable organic vapour of 109-1010 molecules cm-3 resulted in particle sizes that were closest to the measured values.
Characteristics of Submicron Aerosols in 2013 summer of Beijing
NASA Astrophysics Data System (ADS)
Guo, Song; Hu, Min; Shang, Dongjie; Zheng, Jing; Du, Zhuofei; Wu, Yusheng; Lu, Sihua; Zeng, Limin; Zhang, Renyi
2016-04-01
To characterize the air pollution of North China Plain of China, CAREBEIJING-2013 field campaign (Campaigns of Air quality REsearch in BEIJING and surrounding region) was conducted in summer of 2013. Submicron aerosols were measured at an urban site PKU (Peking University, 39° 59'21"N, 116° 18'25"E) from July 28th to September 31st 2013. A suite of integrated instruments was used to measure the size distribution, effective density and hygroscopicity of ambient particles. The chemical composition of submicron particles were measured by using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (Billerica, MA, USA). The average PM2.5 concentration was 73.0±70.7 μg m-3 during the measurement. The particulate pollution showed distinct 4-7 days cycles controlled by the meteorological conditions. Each cycle started with low PM2.5 mass concentrations (<20 μg m-3), since the air mass was from relatively clean mountainous area. The particle number concentrations were high, but and the sizes were small (<30 nm) at this stage, which can be explained by the new particle formation. In the succeeding days, both the particle mass and size continuously increased. The PM2.5concentration increased rapidly by >60 μg day-1, and the particle mean diameter grew to >100 nm. It is interesting to note that the mean diameters showed similar trend to PM2.5 mass concentrations, indicating the particle pollution attributed to the growth of the newly formed small particles. During the measurement, the average particle densities are between 1.3-1.5 g cm-3, indicating organics and sulfate were dominant in the particles. The densities of smaller particles, i.e. 46 nm, 81nm, showed single peak at 1.3-1.5 g cm-3, indicating the particles are internal mixed sulfate and organics. While the 150nm and 240 nm particle densities exhibited bimodal distribution with an additional small peak at ˜1.1 g cm-3, which is considered as external mixed organic particles or aged soot particles. The particle hygroscopic growth factor for all the measured sizes at RH of 90% showed bimodal distribution, attributing to external mixed organics (or aged soot) and internal mixed organics and sulfate. Both the density and HGF were higher than Tijuana, but similar to Houston. PMF (Positive Matrix Factorization) model was deployed to quantify the contributions of different mixing state particles. Internal mixed organics and sulfate were dominant in the ambient particles in Beijing.
Robert, Michael A; Kleeman, Michael J; Jakober, Christopher A
2007-12-01
Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load condition.
ELEMENTAL COMPOSITION OF FRESHLY NUCLEATED PARTICLES
The main objective of this work is to develop a method for real-time sampling and analysis of individual airborne nanoparticles in the 5 - 20 nm diameter range. The size range covered by this method is much smaller than existing single particle methods for chemical analysis. S...
Avian influenza a virus budding morphology: spherical or filamentous?
USDA-ARS?s Scientific Manuscript database
Most strains of influenza A virus (IAV) can produce long (µm length) filamentous virus particles as well as ~100 nm diameter spherical virions. The function of the filamentous particles is unclear but is hypothesized to facilitate transmission within or from the respiratory tract. In mammalian IAVs,...
Ultrafine particles and nitrogen oxides generated by gas and electric cooking
Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A
2001-01-01
OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable. Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045
NASA Astrophysics Data System (ADS)
Legett, C., IV; Glotch, T. D.; Lucey, P. G.
2015-12-01
Space weathering is a diverse set of processes that occur on the surfaces of airless bodies due to exposure to the space environment. One of the effects of space weathering is the generation of nanophase iron particles in glassy rims on mineral grains due to sputtering of iron-bearing minerals. These particles have a size-dependent effect on visible and near infrared (VNIR) reflectance spectra with smaller diameter particles (< 50 nm) causing both reddening and darkening of the spectra with respect to unweathered material (Britt-Pieters particle behavior), while larger particles (> 300 nm) darken without reddening. Between these two sizes, a gradual shift between these two behaviors occurs. In this work, we present results from the Multiple Sphere T-Matrix (MSTM) scattering model in combination with Hapke theory to explore the particle size and iron content parameter spaces with respect to VNIR (700-1700 nm) spectral slope. Previous work has shown that the MSTM-Hapke hybrid model offers improvements over Mie-Hapke models. Virtual particles are constructed out of an arbitrary number of spheres, and each sphere is assigned a refractive index and extinction coefficient for each wavelength of interest. The model then directly solves Maxwell's Equations at every wave-particle interface to predict the scattering, extinction and absorption efficiencies. These are then put into a simplified Hapke bidirectional reflectance model that yields a predicted reflectance. Preliminary results show an area of maximum slopes for iron particle diameters < 80 nm and iron concentrations of ~1-10wt% in an amorphous silica matrix. Further model runs are planned to better refine the extent of this region. Companion laboratory work using mixtures of powdered aerogel and nanophase iron particles provides a point of comparison to modeling efforts. The effects on reflectance and emissivity values due to particle size in a nearly ideal scatterer (aerogel) are also observed with comparisons to model data.
NASA Astrophysics Data System (ADS)
Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.
2015-10-01
Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.
New Large Diameter RF Complex Plasma Device
NASA Astrophysics Data System (ADS)
Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus
2016-10-01
The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.
Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L
2018-04-01
Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.
Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice
NASA Astrophysics Data System (ADS)
Yoshida, Tokuyuki; Yoshioka, Yasuo; Fujimura, Maho; Yamashita, Kohei; Higashisaka, Kazuma; Morishita, Yuki; Kayamuro, Hiroyuki; Nabeshi, Hiromi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshikawa, Tomoaki; Tsutsumi, Yasuo
2011-12-01
With the increase in use of nanomaterials, there is growing concern regarding their potential health risks. However, few studies have assessed the role of the different physical characteristics of nanomaterials in allergic responses. Here, we examined whether intranasally administered silica particles of various sizes have the capacity to promote allergic immune responses in mice. We used nanosilica particles with diameters of 30 or 70 nm (nSP30 or nSP70, respectively), and conventional micro-sized silica particles with diameters of 300 or 1000 nm (nSP300 or mSP1000, respectively). Mice were intranasally exposed to ovalbumin (OVA) plus each silica particle, and the levels of OVA-specific antibodies (Abs) in the plasma were determined. Intranasal exposure to OVA plus smaller nanosilica particles tended to induce a higher level of OVA-specific immunoglobulin (Ig) E, IgG and IgG1 Abs than did exposure to OVA plus larger silica particles. Splenocytes from mice exposed to OVA plus nSP30 secreted higher levels of Th2-type cytokines than mice exposed to OVA alone. Taken together, these results indicate that nanosilica particles can induce allergen-specific Th2-type allergic immune responses in vivo. This study provides the foundations for the establishment of safe and effective forms of nanosilica particles.
Simulation and analysis of light scattering by multilamellar bodies present in the human eye
Méndez-Aguilar, Emilia M.; Kelly-Pérez, Ismael; Berriel-Valdos, L. R.; Delgado-Atencio, José A.
2017-01-01
A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation. PMID:28663924
Simulation and analysis of light scattering by multilamellar bodies present in the human eye.
Méndez-Aguilar, Emilia M; Kelly-Pérez, Ismael; Berriel-Valdos, L R; Delgado-Atencio, José A
2017-06-01
A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation.
United role of radon decay products and nano-aerosols in radon dosimetry
NASA Astrophysics Data System (ADS)
Smerajec, M.; Vaupotič, J.
2012-04-01
The major part of human exposure to natural radiation originates from inhalation of radon (Rn) and radon short-lived decay products (RnDP: 218Po, 214Pb, 214Bi and 214Po). RnDP are formed as a result of α-transformation of radon. In the beginning they are positive ions which neutralize and form clusters with air molecules, and later partly attach to background aerosol particles in indoor air. Eventually, they appear as radioactive nano-aerosols with a bimodal size distribution in ranges of 1-10 nm (unattached RnDP) and of 200-800 nm (attached RnDP). When inhaled, they are deposited in the respiratory tract. Deposition is more efficient for smaller particles. Therefore, the fraction (fun) of the unattached RnDP, which appears to be influenced by the number concentration and size distribution of general (background) aerosols in the ambient air, has a crucial role in radon dosimetry. Radon, radon decay products and general aerosols have been monitored simultaneously in the kitchen of a typical rural house under real living conditions, also comprising four human activities generating particular matter: cooking and baking, as two typical activities in kitchen, and cigarette smoking and candle burning. In periods without any human activity, the total number concentration of general aerosol ranged from 1000 to 3000 cm-3,with the geometric mean of particle diameter in the range of 60-68 nm and with 0.1-1 % of particles smaller than 10 nm. Preparation of coffee changed the concentration to 193,000 cm-3, the geometric mean of diameter to 20 nm and fraction of particles smaller than 10 nm to 11 %. The respective changes were for baking cake: 503,000 cm-3, 17 nm and 19 %, for smoking:423,000 cm-3, 83 nm and 0.4 %, and forcandle burning: 945,000 cm-3, 8 nm and 85 %. While, as expected, a reduction of fun was observed during cooking, baking and smoking, when larger particles were emitted, fun did not increase during candle burning with mostly particles smaller than 10 nm produced. Because the processes of RnDP creation by radioactive transformation, their neutralization, clustering and association with aerosol particles need time, the response of fun on the changes in general aerosol is delayed in time and therefore fun response on the fast changes, such as those caused by short human activities, may be obscured and even not observed.
Experimental investigation of aerosol composition and growth rates
NASA Astrophysics Data System (ADS)
Wimmer, Daniela; Winkler, Paul; Kulmala, Markku; Petäjä, Tuukka
2017-04-01
Atmospheric aerosol particles have relevant influence on human lives. Human health is affected, as by breathing in the aerosol particles, they deposit in the lungs causing various health problems. Also they interfere indirectly and directly with sunlight, which affects the climate on Earth. Primary aerosol particles originate for example from anthropogenic sources, such as Diesel cars or natural sources such as dessert dust. Secondary aerosol particles are formed via condensation of low volatile gas phase compounds. First, small clusters consisting of a few gas molecules only are formed, which can then grow to bigger aerosol particles. These then form seeds for cloud droplets. The chemical composition of the cloud particles determines whether the cloud absorbs or scatters sunlight more. Intensive experimental and theoretical work has been put into understanding the details of the initial processes leading to the natural formation of these secondary aerosol particles. According to modelling studies, aerosol particles formed via the nucleation process are responsible for about 50% of the global cloud condensation nuclei concentration. With currently used methods, the chemical composition of small molecular clusters (up to 2nm in diameter) can be resolved. Also standard methods to determine aerosol particle composition at sizes >10 nm are available. Within this project, the aerosol particle composition in the 2-4 nm size range will be investigated experimentally. The setup will consist of a combination of an electrical method that allows determine the electrical mobility of the particles which then can be converted to a diameter. By letting the charged particles travel through a changing electrical field, they travel at different speeds according to their mobility. That allows to particles with certain mobilities, which then can be converted to a diameter. After the size selection, the particles are counted by means of optical detection. Condensation particle counters (CPCs) grow the particles internally, after which they are detected optically. By changing the condensing liquid, depending on the aerosol particle composition, they are activated differently. By combining the electrical size selection with CPCs with different liquids, information about particle composition can be determined. The project includes laboratory studies and field measurements in different locations (one rural site and two urban sites). I wish to acknowledge the Austrian Science Fund (FWF; Grant No J3951 - N36).
Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores.
Kersey, Farrell R; Merkel, Timothy J; Perry, Jillian L; Napier, Mary E; DeSimone, Joseph M
2012-06-12
We describe the fabrication of filamentous hydrogel nanoparticles using a unique soft lithography based particle molding process referred to as PRINT (particle replication in nonwetting templates). The nanoparticles possess a constant width of 80 nm, and we varied their lengths ranging from 180 to 5000 nm. In addition to varying the aspect ratio of the particles, the deformability of the particles was tuned by varying the cross-link density within the particle matrix. Size characteristics such as hydrodynamic diameter and persistence length of the particles were analyzed using dynamic light scattering and electron microscopy techniques, respectively, while particle deformability was assessed by atomic force microscopy. Additionally, the ability of the particles to pass through membranes containing 0.2 μm pores was assessed by means of a simple filtration technique, and particle recovery was determined using fluorescence spectroscopy. The results show that particle recovery is mostly independent of aspect ratio at all cross-linker concentrations utilized, with the exception of 96 wt % PEG diacrylate 80 × 5000 nm particles, which showed the lowest percent recovery.
Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin
2014-06-17
Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..
Ultraviolet Spectroscopy of Matrix-isolated Amorphous Carbon Particles
NASA Astrophysics Data System (ADS)
Schnaiter, M.; Mutschke, H.; Henning, Th.; Lindackers, D.; Strecker, M.; Roth, P.
1996-06-01
In view of the interstellar 217.5 nm and the circumstellar 230--250 nm extinction features, the UV extinction behavior of small matrix-isolated amorphous carbon grains is investigated experimentally. The particles were produced in a flame by burning acetylene with oxygen at low pressure. To prevent coagulation, the condensing primary soot grains (average diameter ~6 nm) were extracted by a molecular beam technique into a high-vacuum chamber. There they were deposited into a layer of solid argon, isolated from each other. The particle mass and size were controlled using a particle mass spectrometer. The measured UV extinction of the matrix-isolated particles is compared with measurements on samples produced in the conventional way by collecting carbon smoke on substrate as well as with scattering calculations for small spheres and ellipsoides. The laboratory data give a good representation of the circumstellar extinction feature observed in the spectrum of V348 Sgr.
Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.
Wang, Ruili; Habib, Eric; Zhu, X X
2017-10-01
The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eurov, Daniil A.; Kurdyukov, Dmitry A.; Kirilenko, Demid A.; Kukushkina, Julia A.; Nashchekin, Alexei V.; Smirnov, Alexander N.; Golubev, Valery G.
2015-02-01
Core-shell nanoparticles with diameters in the range 100-500 nm have been synthesized as monodisperse spherical mesoporous (pore diameter 3 nm) silica particles with size deviation of less than 4 %, filled with gadolinium and europium oxides and coated with a mesoporous silica shell. It is shown that the melt technique developed for filling with gadolinium and europium oxides provides a nearly maximum filling of mesopores in a single-run impregnation, with gadolinium and europium uniformly distributed within the particles and forming no bulk oxides on their surface. The coating with a shell does not impair the monodispersity and causes no coagulation. The coating technique enables controlled variation of the shell thickness within the range 5-100 % relative to the core diameter. The thus produced nanoparticles are easily dispersed in water, have large specific surface area (300 m2 g-1) and pore volume (0.3 cm3 g-1), and are bright solid phosphor with superior stability in aqueous media. The core-shell structured particles can be potentially used for cancer treatment as a therapeutic agent (gadolinium neutron-capture therapy and drug delivery system) and, simultaneously, as a multimodal diagnostic tool (fluorescence and magnetic resonance imaging), thereby serving as a multifunctional theranostic agent.
Transition from fractional to classical Stokes-Einstein behaviour in simple fluids.
Coglitore, Diego; Edwardson, Stuart P; Macko, Peter; Patterson, Eann A; Whelan, Maurice
2017-12-01
An optical technique for tracking single particles has been used to evaluate the particle diameter at which diffusion transitions from molecular behaviour described by the fractional Stokes-Einstein relationship to particle behaviour described by the classical Stokes-Einstein relationship. The results confirm a prior prediction from molecular dynamic simulations that there is a particle size at which transition occurs and show it is inversely dependent on concentration and viscosity but independent of particle density. For concentrations in the range 5 × 10 -3 to 5 × 10 -6 mg ml -1 and viscosities from 0.8 to 150 mPa s, the transition was found to occur in the diameter range 150-300 nm.
Corrosion Experiments Using Spherical Uranium Powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G. L.; Siekhaus, W. J.; Teslich, N. E.
2017-02-01
Corrosion experiments using spherical U powders are continuing with scanning electron microscopy (SEM) showing that the particles are highly textured, 5 m to 25 m diameters with 4% larger particles that are fused smaller particles. This U has a high specific surface area with no corners or back-sides, is well annealed with no machining work, and coated with a coherent oxide film, 30 nm to 300 nm thick. Exposure of this powder to low vapor pressure H 2O in the absence of O 2, i.e., a vacuum desiccator, resulted in a coherent oxide film growth of ~1 m/y, ~ 10Xmore » the growth rate in ambient air, displaying fracture along the growth plane at ~300 nm.« less
A novel method for size uniform 200nm particles: multimetallic particles and in vitro gene delivery
NASA Astrophysics Data System (ADS)
Mair, Lamar; Ford, Kris; Superfine, Richard
2008-10-01
We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts. Metal particles evaporated on cylindrical structures 0.20μm in diameter and 0.33μm tall are released via photoresist dissolution, resulting in freely suspended, shape defined particles. These Post-Particles have highly tunable composition, as demonstrated by our deposition of five different multimetallic particle blends. We calculate the susceptibility and magnetization of 200nm Fe particles in an applied 0.081T magnetic field. In order to evaluate their usefulness as magnetofection agents an antisense oligonucleotide designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA was successfully attached to Fe Post-Particles via a polyethyleneimine linker and transfected into a modified HeLa cell line.
Vo, Minh D; Papavassiliou, Dimitrios V
2016-04-15
Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased.
Acute glandular fever-like illness in a patient with HTLV-III antibody.
McCaul, T F; Tovey, G; Farthing, C F; Gazzard, B; Zuckerman, A J
1985-10-01
A lymph node biopsy obtained from a patient with human T-cell lymphocytotropic virus III/lymphadenopathy-associated virus (HTLV-III/LAV) antibody, presenting with an acute glandular fever-like illness, was examined by electron microscopy. Numerous pathological changes were present in the biopsy, including hypertrophy of smooth endoplasmic reticulum, intracytoplasmic rod-like inclusions within the cisternae of endoplasmic reticulum, multivesicular bodies, test-tube and ring-shaped forms, and tubulo-reticular structures. Intranuclear and intracytoplasmic viral-like particles measuring 105-120 nm in diameter and small cytoplasmic particles measuring 50-70 nm in diameter were found in some degenerating lymph node cells. These pathological findings may reflect a host cell response to various pathological and viral stimuli resulting from immune deficiency owing to infection with HTLV-III/LAV.
NASA Astrophysics Data System (ADS)
Chen, Haihan; Hodshire, Anna L.; Ortega, John; Greenberg, James; McMurry, Peter H.; Carlton, Annmarie G.; Pierce, Jeffrey R.; Hanson, Dave R.; Smith, James N.
2018-01-01
Most prior field studies of new particle formation (NPF) have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11-16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11-16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH) and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1) ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2) nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3) increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.
Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance
Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P
2013-01-01
A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021
Lingard, Justin J N; Agus, Emily L; Young, David T; Andrews, Gordon E; Tomlin, Alison S
2006-12-01
A summertime study of the number concentration and the size distribution of combustion derived nanometre sized particles (termed nanoparticles) from diesel and spark-ignition (SI) engine emissions were made under rush-hour and free-flow traffic conditions at an urban roadside location in Leeds, UK in July 2003. The measured total particle number concentrations (N(TOTAL)) were of the order 1.8 x 10(4) to 3.4 x 10(4) cm(-3), and tended to follow the diurnal traffic flow patterns. The N(TOTAL) was dominated by particles < or =100 nm in diameter which accounted for between 89-93% of the measured particle number. By use of a log-normal fitting procedure, the modal parameters of the number based particle size distribution of urban airborne particulates were derived from the roadside measurements. Four component modes were identified. Two nucleation modes were found, with a smaller, more minor, mode composed principally of sub-11 nm particles, believed to be derived from particles formed from the nucleation of gaseous species in the atmosphere. A second mode, much larger in terms of number, was composed of particles within the size range of 10-20 nm. This second mode was believed to be principally derived from the condensation of the unburned fuel and lube oil (the solvent organic fraction or SOF) as it cooled on leaving the engine exhaust. Third and fourth modes were noted within the size ranges of 28-65 nm and 100-160 nm, respectively. The third mode was believed to be representative of internally mixed Aitken mode particles composed of a soot/ash core with an adsorbed layer of readily volatilisable material. The fourth mode was believed to be composed of chemically aged, secondary particles. The larger nucleation and Aitken modes accounted for between 80-90% of the measured N(TOTAL), and the particles in these modes were believed to be derived from SI and diesel engine emissions. The overall size distribution, particularly in modes II-IV, was observed to be strongly related to the number of primary particle emissions, with larger count median diameters observed under conditions where low numbers of primary soot based particles were present.
Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
Daurer, Benedikt J.; Okamoto, Kenta; Bielecki, Johan; ...
2017-04-07
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. AerosolizedOmono River virusparticles of ~40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to amore » wider than expected size distribution (from ~35 to ~300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 10 12photons per µm 2per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. Finally, the results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.« less
Association of particulate air pollution and acute mortality: involvement of ultrafine particles?
NASA Technical Reports Server (NTRS)
Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)
1995-01-01
Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our studies was less than 60 micrograms/m3, a very low value to cause mortality in healthy rats. Aging of the fumes with concomitant aggregation of the ultrafine particles significantly decreases their toxicity. Since ultrafine particles are always present in the urban atmosphere, we suggest that they play a role in causing acute lung injury in sensitive parts of the population.
Oxidation property of SiO2-supported small nickel particle prepared by the sol-gel method
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Yamashita, S.; Afiza, N.; Katayama, M.; Inada, Y.
2016-05-01
The oxidation property of SiO2-supported small Ni particle has been studied by means of the in-situ XAFS method. The Ni particle with the average diameter of 4 nm supported on SiO2 was prepared by the sol-gel method. The XANES spectrum of the small metallic Ni particle was clearly different from that of bulk Ni. The exposure of diluted O2 gas at room temperature promoted the surface oxidation of Ni(0) particle. During the temperature programmed oxidation process, the supported Ni(0) particle was quantitatively oxidized to NiO, and the oxidation temperature was lower by ca. 200 °C than that of the SiO2-supported Ni particle with the larger particle radius of 17 nm prepared by the impregnation method.
Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
Okamoto, Kenta; Bielecki, Johan; Maia, Filipe R. N. C.; Mühlig, Kerstin; Seibert, M. Marvin; Hantke, Max F.; Benner, W. Henry; Svenda, Martin; Ekeberg, Tomas; Loh, N. Duane; Pietrini, Alberto; Zani, Alessandro; Rath, Asawari D.; Westphal, Daniel; Kirian, Richard A.; Awel, Salah; Wiedorn, Max O.; van der Schot, Gijs; Carlsson, Gunilla H.; Hasse, Dirk; Sellberg, Jonas A.; Barty, Anton; Andreasson, Jakob; Boutet, Sébastien; Williams, Garth; Koglin, Jason; Hajdu, Janos; Larsson, Daniel S. D.
2017-01-01
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers. PMID:28512572
Characteristics of nanolite crystallization in volcanic pyroclasts
NASA Astrophysics Data System (ADS)
Mujin, M.; Nakamura, M.; Miyake, A.
2017-12-01
Crystal nucleation and initial growth in silicate melt may control the number density and later stage growth of crystals, such as twinning and morphology, and are therefore fundamental but still poorly understood processes in magma crystallization. Petrographic and experimental studies on groundmass microlites shed light on their importance for understanding eruption dynamics, but most studies did not focus on nanometer scale crystals. Recently, we reported "nanolites (30 nm-1 µm in width)" and "ultrananolites (< 30 nm in diameter)", which are nanoscale crystals with extremely high number density, in the interstices of microlites in pyroclasts. In this presentation, we summarize their mineralogical and petrological characteristics in pyroclasts of the 2011 eruption of Shinmoedake (Kirishima volcano group)1. By covering a wide size-range of crystals (down to 1 nm in diameter) based on scanning electron microscopy with tungsten filament (W-SEM), field emission (FE)-SEM, and transmission electron microscopy (TEM), we found a clear size gap (hiatus) in the size distribution and presence of minimum crystal size. In a dense juvenile fragment, crystals were absent or their number densities were too low to measure the sizes of pyroxene with a diameter of < 20 nm and a width of 30-100 nm, plagioclase with a width of < 100 nm, and Fe-Ti oxide with a diameter of 2-10 nm and a width of 20-100 nm. In pumice clasts, crystals smaller than 100 nm were not found. These observations show that nucleation of nanoscale crystals almost paused (froze) in the late stage of crystallization, possibly due to a decrease in undercooling, increase in interfacial free energy, and decrease in diffusivity in a dehydrated melt, whereas crystal growth was mostly continuous. Ultrananolites were found in pyroxene and Fe-Ti oxide; notably, these were spherical, whereas nanolites and microlites were rectangular. The observed ultrananolite-sized particles might partly include "subcritical clusters", which are particles smaller than the critical nucleation size assumed in the transient nucleation models. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614, and Mujin et al, in revision, Am. Min.
Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.
Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G
2015-03-07
The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.
Electron microscopy of two viruses of deadly nightshade (Atropa belladonna L.).
Fránová, J
2000-02-01
Deadly nightshade plants showing severe necrotic lesions on leaves were observed in southern Bohemia. In negatively stained preparations of spontaneously infected deadly nightshade, artificially inoculated host plants and purified preparations two types of virus particles, isometric ones of about 26 nm in diameter and flexuous ones with length of 765 nm were seen by electron microscopy. The virus with isometric particles was identified as belladonna mottle virus (BMV), indistinguishable serologically from the Hungarian isolate of this virus. Identification of the virus with flexuous particles is discussed. Observations of the ultrastructure revealed the presence of filamentous virus particle aggregates and chloroplasts with peripheral vesicles bounded by double membranes, a feature typical for tymoviruses.
Structural phase transitions in SrTiO 3 nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Han; Liu, Sizhan; Scofield, Megan E.
2017-07-31
Pressure dependent structural measurements on monodispersed nanoscale SrTiO3 samples with average diameters of 10 to ~80 nm were conducted to enhance the understanding of the structural phase diagram of nanoscale SrTiO3. A robust pressure independent polar structure was found in the 10 nm sample for pressures up to 13 GPa, while a size dependent cubic to tetragonal transition occurs (at P = Pc) for larger particle sizes. The results suggest that the growth of ~10 nm STO particles on substrates with significant lattice mismatch may maintain a polar state for a large range of strain values, possibly enabling device use.
Magneto-plasmonic Au-Coated Co nanoparticles synthesized via hot-injection method
NASA Astrophysics Data System (ADS)
Souza, João B., Jr.; Varanda, Laudemir C.
2018-02-01
A synthetic procedure is described for the obtaining of superparamagnetic Co nanoparticles (NPs) via hot-injection method in the presence of sodium borohydride. The Co NPs obtained have an average diameter of 5.3 nm and saturation magnetization of 115 emu g-1. A modified Langevin equation is fitted to the magnetization curves using a log-normal distribution for the particle diameter and an effective field to account for dipolar interactions. The calculated magnetic diameter of the Co NPs is 0.6 nm smaller than TEM-derived values, implying a magnetic dead layer of 0.3 nm. The magnetic core is coated with Au to prevent oxidation, resulting in water-stable magneto-plasmonic Co/Au core/shell NPs with saturation of 71.6 emu g-1. The coating adds a localized surface plasmon resonance property with absorbance in the so-called ‘therapeutic window’ (690-900 nm), suitable for biomedical applications. It is suggested that these multifunctional NPs are distinguished as a potential platform for applied and fundamental research.
NASA Astrophysics Data System (ADS)
Mishchenko, I.; Chuev, M.; Kubrin, S.; Lastovina, T.; Polyakov, V.; Soldatov, A.
2018-05-01
Alternative explanation to the effect of disappearance of the Morin transition on hematite nanoparticles with their size decreasing is proposed basing on an idea of the predominant role of the shape anisotropy for nanosize particles. Three types of the magnetic structure of hematite nanoparticles with various sizes are found by Mössbauer spectroscopy: coexistence of the well-pronounced antiferromagnetic and weakly ferromagnetic phases for particles with average diameters of about 55 nm, non-uniform distribution of the magnetization axes which concentrate on the vicinity of the basal plane (111) for prolonged particles with cross sections of about 20 nm, and uniform distribution of the easy axes in regard to the crystalline directions for 3-nm particles. Description of the temperature evolution of experimental data within novel model of the magnetic dynamics for antiferromagnetic particles which accounts the exchange, relativistic, and anisotropy interactions is provided, and the structural as well as energy characteristics of the studied systems are reconstructed.
Onodera, Akira; Yayama, Katsutoshi; Morosawa, Hideto; Ishii, Yukina; Tsutsumi, Yasuo; Kawai, Yuichi
2017-03-01
Several studies have reported that amorphous nano-silica particles (nano-SPs) modulate calcium flux, although the mechanism remains incompletely understood. We thus analyzed the relationship between calcium flux and particle surface properties and determined the calcium flux route. Treatment of Balb/c 3T3 fibroblasts with nano-SPs with a diameter of 70 nm (nSP70) increased cytosolic calcium concentration, but that with SPs with a diameter of 300 or 1000 nm did not. Surface modification of nSP70 with a carboxy group also did not modulate calcium flux. Pretreatment with a general calcium entry blocker almost completely suppressed calcium flux by nSP70. Preconditioning by emptying the endoplasmic reticulum (ER) calcium stores slightly suppressed calcium flux by nSP70. These results indicate that nSP70 mainly modulates calcium flux across plasma membrane calcium channels, with subsequent activation of the ER calcium pump, and that the potential of calcium flux by nano-SPs is determined by the particle surface charge.
Photoemission Experiments for Charge Characteristics of Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)
2001-01-01
Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.
Detection of virus-like particles in the liver of black and white ruffed lemurs with hepatitis.
Worley, Michael B; Stalis, Ilse H
2002-04-01
Two young black and white ruffed lemurs (Varecia variegata variegata) died at the San Diego Zoo (San Diego, California, USA) with extensive liver lesions suggestive of acute viral infection. Immunoassays performed to detect hepatitis B virus (HBV) markers were negative. Polymerase chain reaction (PCR) primers overlapping the HBV core gene produced an amplicon of approximately 411 base pairs (bp) from serum DNA of a HBV-positive western lowland gorilla (Gorilla gorilla gorilla) but not from serum DNA of either lemur. Cesium chloride gradient fractions of liver homogenates from both lemurs contained a peak protein fraction with a density of 1.18 g/cm3. Electron microscopic analysis of fraction contents, concentrated by ultracentrifulgation, revealed numerous pleomorphic, spherical particles varying in diameter from 16-25 nm. In one of the lemurs, this peak fraction also contained a double-shelled virus-like particle 47-50 nm in diameter. The size, morphology, and density of these particles suggest they are members of the Hepadnaviridae, a group of hepatotropic DNA-genome viruses for which HBV is the prototype.
Controllable Fabrication of Non-Close-Packed Colloidal Nanoparticle Arrays by Ion Beam Etching
NASA Astrophysics Data System (ADS)
Yang, Jie; Zhang, Mingling; Lan, Xu; Weng, Xiaokang; Shu, Qijiang; Wang, Rongfei; Qiu, Feng; Wang, Chong; Yang, Yu
2018-06-01
Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.2 nm/min, is obtained for the nanospheres with the diameter of 100 nm. The rate does not maintain constant with increasing the etching time. This may result from the thermal energy accumulated gradually in a long-time bombardment of ion beam. The etching rate increases nonlinearly with the increase of beam current, while it increases firstly then reach its saturation with the increase of beam voltage. The diameter of PS nanoparticles can be controlled in the range from 34 to 88 nm. Based on the non-close-packed arrays of PS nanoparticles, the ordered silicon (Si) nanopillars with their average diameter of 54 nm are fabricated by employing metal-assisted chemical etching technique. Our results pave an effective way to fabricate the ordered nanostructures with the size less than 100 nm.
2, 4, 6-Trithiol-1, 3, 5-Triazine-Modified Gold Nanoparticles and Its Potential as Formalin Detector
NASA Astrophysics Data System (ADS)
Yulizar, Y.; Ariyanta, H. A.; Rakhmania, L.; Hafizah, M. A. E.
2018-04-01
Stabilized gold nanoparticles (AuNP) have been successfully prepared by a modification of ligand 2, 4, 6-trithiol-1, 3, 5-triazine (TT). TT has three thiol groups and nitrogen atoms on the aromatic ring that can interact and stabilize AuNP. TT modified AuNP (AuNP/TT) was characterized using UV-Vis spectrophotometer, particle size analyzer (PSA) and transmission electron microscopy (TEM). The characterization showed that AuNP/TT stable at a maximum wavelength (λmaks) of 537 nm with the particle diameter of 9.41 nm. The increased acidity (pH) causes the protonated thiol groups of TT marked with a visual change of colloidal AuNP/TT from purple to blue, causing AuNP and TT bonds weakened. In this study, the AuNP/TT was reacted with formalin. This interaction shows that AuNP/TT has a potential as an efficient detector of formalin, marked by changes in the diameter of the particle, colloidal color, and maximum wavelength shift.
NASA Astrophysics Data System (ADS)
Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.
2007-08-01
A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic vapour of 1012 molecules cm-3 was shown to be in a disagreement with the measured particle size evolution, while the modelling runs with the concentration of condensable organic vapour of 109-1010 molecules cm-3 resulted in particle sizes that were closest to the measured values.
Dendrimer-assisted patch-clamp sizing of nuclear pores
Bustamante, J.O.; Michelette, E.R.F.; Geibel, J.P.; Hanover, J.A.; McDonnell, T.J.; Dean, D.A.
2015-01-01
Macromolecular translocation (MMT) across the nuclear envelope (NE) occurs exclusively through the nuclear pore complex (NPC). Therefore, the diameter of the NPC aqueous/electrolytic channel (NPCC) is important for cellular structure and function. The NPCC diameter was previously determined to be ≅10 nm with electron microscopy (EM) using the translocation of colloidal gold particles. Here we present patch-clamp and fluorescence microscopy data from adult cardiomyocyte nuclei that demonstrate the use of patch-clamp for assessing NPCC diameter. Fluorescence microscopy with B-phycoerythrin (BPE, 240 kDa) conjugated to a nuclear localization signal (NLS) demonstrated that these nuclei were competent for NPC-mediated MMT (NPC-MMT). Furthermore, when exposed to an appropriate cell lysate, the nuclei expressed enhanced green fluorescence protein (EGFP) after 5–10 h of incubation with the plasmid for this protein (pEGFP, 3.1 MDa). Nucleus-attached patch-clamp showed that colloidal gold particles were not useful probes; they modified NPCC gating. As a result of this finding, we searched for an inert class of particles that could be used without irreversibly affecting NPCC gating and found that fluorescently labeled Star-burst dendrimers, a distinct class of polymers, were useful. Our patch-clamp and fluorescence microscopy data with calibrated dendrimers indicate that the cardiomyocyte NPCC diameter varies between 8 and 9 nm. These studies open a new direction in the investigation of live, continuous NPC dynamics under physiological conditions. PMID:10784359
NASA Astrophysics Data System (ADS)
Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.
2011-06-01
A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.
Robin, J; Berthiaume, L
1981-12-01
Lymphocystis disease virus was highly purified from host cells by precipitation with PEG-6000 and isopycnic centrifugation in a metrizamide gradient. Metrizamide gradient centrifugation produce two distinct bands at equilibrium. As calculated from reconstruction experiments, only 4 and 0.3% respectively of the host DNA and the host proteins were recovered at the position of the bands. The final recovery of infectivity was about 41%. Electron microscopy of the bands showed two types of particles: small and dense particles measuring 100-150 nm and lymphocystis virions that measured about 300-350 nm in diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Shun; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083; Lin Yuanhua
Nanostructured BiFeO{sub 3} particles have been synthesized by a hydrothermal method, and the effects of particle size on photocatalytic activity and magnetic property of BiFeO{sub 3} were investigated. The optical absorption spectra indicate that the band-gap energy increases with decreasing crystalline size due to the quantum-size effect. The enhancement of room-temperature weak ferromagnetism can be observed in nanoscale BiFeO{sub 3} particles, which should be attributed to the size-confinement effect on the magnetic ordering. In addition, BiFeO{sub 3} nanoparticles with diameter about 5 nm show good photocatalytic performance by photodegradation of Congo red under visible-light ({lambda}>400 nm) irradiation.
Evaluations of the Method to Measure Black Carbon Particles Suspended in Rainwater and Snow Samples
NASA Astrophysics Data System (ADS)
Ohata, S.; Moteki, N.; Schwarz, J. P.; Fahey, D. W.; Kondo, Y.
2012-12-01
The mass concentrations and size distributions of black carbon (BC) particles in rainwater and snow are important parameters for improved understanding of the wet deposition of BC, is a key process in quantifying the impacts of BC on climate. In this study, we have evaluated a new method to measure these parameters. The approach consists of an ultrasonic nebulizer (USN) used in conjunction with a Single Particle Soot Photometer (SP2). The USN converts sample water into micron-size droplets at a constant rate and then extracts airborne BC particles by dehydrating the water droplets. The mass of individual BC particles is measured by the SP2, based on the laser-induced incandescence technique. The combination of the USN and SP2 enabled the measurement of BC particles using only small amount of sample water, typically 10 ml (Ohata et al., 2011). However, the loss of BC during the extraction process depends on their size. We determined the size-dependent extraction efficiency using polystyrene latex spheres (PSLs) with twelve different diameters between 100-1050 nm. The PSL concentrations in water were determined by the light extinction of at 532nm. The extraction efficiency of the USN showed broad maximum in the diameter range of 200-500nm, and decreased substantially at larger sizes. The extraction efficiency determined using the PSL standards agreed to within ±40% with that determined using laboratory-generated BC concentration standards. We applied this method to the analysis of rainwater collected in Tokyo and Okinawa over the East China Sea. Measured BC size distributions in all rainwater samples showed negligible contribution of the BC particles larger than 600nm to the total BC amounts. However, for BC particles in surface snow collected in Greenland and Antarctica, size distributions were sometimes shifted to much larger size ranges.
Spatial redistribution of nano-particles using electrokinetic micro-focuser
NASA Astrophysics Data System (ADS)
Garcia, Daniel E.; Silva, Aleidy; Ho, Chih-Ming
2007-09-01
Current microfabrication technologies rely on top-down, photolithographic techniques that are ultimately limited by the wavelength of light. While systems for nanofabrication do exist, they frequently suffer from high costs and slow processing times, creating a need for a new manufacturing paradigm. The combination of top-down and bottom-up fabrication approaches in device construction creates a new paradigm in micro- and nano-manufacturing. The pre-requisite for the realization of the manufacturing paradigm relies on the manipulation of molecules in a deterministic and controlled manner. The use of AC electrokinetic forces, such as dielectrophoresis (DEP) and AC electroosmosis, is a promising technology for manipulating nano-sized particle in a parallel fashion. A three-electrode micro-focusing system was designed to expoit this forces in order to control the spatial distribution of nano-particles in different frequency ranges. Thus far, we have demonstrated the ability to concentrate 40 nm and 300 nm diameter particles using a 50 μm diameter focusing system. AC electroosmotic motion of the nano-particles was observed while using low frequencies (in a range of 30 Hz - 1 KHz). By using different frequencies and changing the ground location, we have manipulated the nano-particles into circular band structures with different width, and focused the nanoparticles into circular spots with different diameters. Currently, we are in the progress of optimizing the operation parameters (e.g. frequency and AC voltages) by using the technique of particle image velocimetry (PIV). In the future, design of different electrode geometries and the numerical simulation of electric field distribution will be carried out to manipulate the nano-particles into a variety of geometries.
Material-specific detection and classification of single nanoparticles
Person, Steven; Deutsch, Bradley; Mitra, Anirban; Novotny, Lukas
2010-01-01
Detection and classification of nanoparticles is important for environmental monitoring, contamination mitigation, biological label tracking, and bio-defense. Detection techniques involve a trade-off between sensitivity, discrimination, and speed. This paper presents a material-specific dual-color common-path interferometric detection system. Two wavelengths are simultaneously used to discriminate between 60 nm silver and 80 nm diameter gold particles in solution with a detection time of τ ≈ 1 ms. The detection technique is applicable to situations where both particle size and material are of interest. PMID:21142033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, T.; Mori, K.; Hachisu, M.
2015-05-07
Mn-Zn ferrite, Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles encapsulated in amorphous SiO{sub 2} were prepared using our original wet chemical method. X-ray diffraction patterns confirmed that the diameters of these particles were within 7–30 nm. Magnetization measurements for various sample compositions revealed that the saturation magnetization (M{sub s}) of 7 nm particles was maximum for the x = 0.2 sample. AC magnetic susceptibility measurements were performed for Mn{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x = 0.2) samples with 13–30 nm particles. The peak of the imaginary part of the magnetic susceptibility χ″ shifted to higher temperatures as the particle size increased. An AC field was found to causemore » the increase in temperature, with the 18 nm particles exhibiting the highest temperature increase, as expected. In addition, in vitro experiments were carried out to study the hyperthermia effects of Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x = 0.2, 18 nm) particles on human cancer cells.« less
Bioaerosol detection and classification using dual excitation wavelength laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Jonsson, Per; Wästerby, Pär.; Gradmark, Per-Åke; Hedborg, Julia; Larsson, Anders; Landström, Lars
2015-05-01
We present results obtained by a detection system designed to measure laser-induced fluorescence from individual aerosol particles using dual excitation wavelengths. The aerosol is sampled from ambient air and via a 1 mm diameter nozzle, surrounded by a sheath air flow, confined into a particle beam. A continuous wave blue laser at 404 nm is focused on the aerosol beam and two photomultiplier tubes monitor the presence of individual particles by simultaneous measuring the scattered light and any induced fluorescence. When a particle is present in the detection volume, a laser pulse is triggered from an ultraviolet laser at 263 nm and the corresponding fluorescence spectrum is acquired with a spectrometer based on a diffraction grating and a 32 channel photomultiplier tube array with single-photon sensitivity. The spectrometer measures the fluorescence spectra in the wavelength region from 250 to 800 nm. In the present report, data were measured on different monodisperse reference aerosols, simulants of biological warfare agents, and different interference aerosol particles, e.g. pollen. In the analysis of the experimental data, i.e., the time-resolved scattered and fluorescence signals from 404 nm c.w. light excitation and the fluorescence spectra obtained by a pulsed 263 nm laser source, we use multivariate data analysis methods to classify each individual aerosol particle.
Fouad, Anthony; Pfefer, T. Joshua; Chen, Chao-Wei; Gong, Wei; Agrawal, Anant; Tomlins, Peter H.; Woolliams, Peter D.; Drezek, Rebekah A.; Chen, Yu
2014-01-01
Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity. PMID:25071949
Optical properties of soot particles: measurement - model comparison
NASA Astrophysics Data System (ADS)
Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.
2013-12-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.
How temperature determines formation of maghemite nanoparticles
NASA Astrophysics Data System (ADS)
Girod, Matthias; Vogel, Stefanie; Szczerba, Wojciech; Thünemann, Andreas F.
2015-04-01
We report on the formation of polymer-stabilized superparamagnetic single-core and multi-core maghemite nanoparticles. The particle formation was carried out by coprecipitation of Fe(II) and Fe(III) sulfate in a continuous aqueous process using a micromixer system. Aggregates containing 50 primary particles with sizes of 2 nm were formed at a reaction temperature of 30 °C. These particles aggregated further with time and were not stable. In contrast, stable single-core particles with a diameter of 7 nm were formed at 80 °C as revealed by small-angle X-ray scattering (SAXS) coupled in-line with the micromixer for particle characterization. X-ray diffraction and TEM confirmed the SAXS results. X-ray absorption near-edge structure spectroscopy (XANES) identified the iron oxide phase as maghemite.
NASA Astrophysics Data System (ADS)
Sato, Taketomo; Kaneshiro, Chinami; HiroshiOkada, HiroshiOkada; Hasegawa, Hideki
1999-04-01
Attempts were made to form regular arrays of size- andposition-controlled Pt-dots on GaAs and InP by combining an insitu electrochemical process with the electron beam (EB)lithography. This utilizes the precipitation of Pt nano-particles atthe initial stage of electrodeposition. First, electrochemicalconditions were optimized in the mode of self-assembled dot arrayformation on unpatterned substrates. Minimum in-plane dot diameters of22 nm and 26 nm on GaAs and InP, respectively, were obtained underthe optimal pulsed mode. Then, Pt dots were selectively formed onpatterned substrates with open circular windows formed by EBlithography, thereby realizing dot-position control. The Pt dot wasfound to have been deposited at the center of each open window, andthe in-plane diameter of the dot could be controlled by the number,width and period of the pulse-waveform applied to substrates. Aminimum diameter of 20 nm was realized in windows with a diameter of100 nm, using a single pulse. Current-voltage (I-V)measurements using an atomic force microscopy (AFM) system with aconductive probe indicated that each Pt dot/n-GaAs contact possessed ahigh Schottky barrier height of about 1 eV.
NASA Astrophysics Data System (ADS)
Tritscher, Torsten; Koched, Amine; Han, Hee-Siew; Filimundi, Eric; Johnson, Tim; Elzey, Sherrie; Avenido, Aaron; Kykal, Carsten; Bischof, Oliver F.
2015-05-01
Electrical mobility classification (EC) followed by Condensation Particle Counter (CPC) detection is the technique combined in Scanning Mobility Particle Sizers(SMPS) to retrieve nanoparticle size distributions in the range from 2.5 nm to 1 μm. The detectable size range of SMPS systems can be extended by the addition of an Optical Particle Sizer(OPS) that covers larger sizes from 300 nm to 10 μm. This optical sizing method reports an optical equivalent diameter, which is often different from the electrical mobility diameter measured by the standard SMPS technique. Multi-Instrument Manager (MIMTM) software developed by TSI incorporates algorithms that facilitate merging SMPS data sets with data based on optical equivalent diameter to compile single, wide-range size distributions. Here we present MIM 2.0, the next-generation of the data merging tool that offers many advanced features for data merging and post-processing. MIM 2.0 allows direct data acquisition with OPS and NanoScan SMPS instruments to retrieve real-time particle size distributions from 10 nm to 10 μm, which we show in a case study at a fireplace. The merged data can be adjusted using one of the merging options, which automatically determines an overall aerosol effective refractive index. As a result an indirect and average characterization of aerosol optical and shape properties is possible. The merging tool allows several pre-settings, data averaging and adjustments, as well as the export of data sets and fitted graphs. MIM 2.0 also features several post-processing options for SMPS data and differences can be visualized in a multi-peak sample over a narrow size range.
Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.
Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold
2016-01-01
Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.
Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe
2015-09-01
Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.
Optical Epitaxial Growth of Gold Nanoparticle Arrays.
Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L
2015-09-09
We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.
A Comprehensive Program for Measurements of Military Aircraft Emissions
2009-11-30
gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated...emission measurement. Furthermore, ultrafine particles (defined as the diameter less than or equal to 100 nm or 0.1 µm) are the dominant...instruments that are capable of real-time or continuous measurement of various properties of ultrafine particles in laboratory and field conditions. Some of
Synthesis and spectroscopic study of CdS nanoparticles using hydrothermal method
NASA Astrophysics Data System (ADS)
AL-Mamoori, Mohammed H. K.; Mahdi, Dunia K.; Al-Shrefi, Saif M.
2018-05-01
In this work, cadmium sulfide nanoparticles (powder) with diameter 50.8 nm was prepared using hydrothermal method. The structural and optical properties of CdS nanoparticles was studied by X-ray diffraction, FESEM, EDS, FTIR, UV-Diffuse Reflectance spectroscopy and Photoluminance spectrum. X-ray diffraction reveal the formation the purity of prepared phase of CdS particles with hexagonal wurtzite structure with particle size 31.8nm by using sheerer equation. The energy dispersion scattering (EDS) examination explains that the sample is composed of a large amount of Cd and S which are exactly CdS nanoparticles and there is a very small trace of (Zn) and (O) element observed because of there is a small pollutions in the measurement place of samples. FESEM shows the spherical shape of nanoparticles with around 50.8 nm diameter. The optical absorption spectral study identified the red shift of the sample in comparison to bulk ZnO in three dimensions. Photoluminance spectrum (PL) at room temperature showed that there are two luminescence peaks at 433.14 nm and 518.21nm. Samples demonstrate a sharp emission band at around 433.18 nm, which is attributed to the typical exciton luminescence. The broad band at 518.21nm which were attributed to the trapped luminescence. The green emission band at 518.21 nm was associated with the emission due to electronic transition from the conduction band to an accepter level due to interstitial sulphur ion.
High Pressure Structure and Electrical Resistance Measurements on Cadmium Sulfide Nanoparticles
NASA Astrophysics Data System (ADS)
Montgomery, J. M.; Stemshorn, A. K.; Stanishevsky, A.; Vohra, Y. K.; Weir, S. T.
2010-03-01
Room-temperature four-probe electrical resistance and synchrotron x-ray diffraction measurements have been performed on dried and aqueous suspensions of CdS nanoparticles (25 nm in diameter) to 35 GPa. Nanoparticles used in these experiments were synthesized using the reaction between a cadmium salt and thiourea under hydrothermal conditions without using any surfactants. While the x-ray structure data confirms the irreversible wurtzite -> rocksalt transition seen at 2.5 GPa in bulk CdS, the corresponding resistance drop was not observed in the measured range, indicating that the nanoparticle boundaries may prevent electronic communication between particles. Further studies on dry and aqueous 10 nm nano-spheres and 9 nm diameter nano-rods are planned, and the results of these experiments will be presented.
Nanodiamonds do not provide unique evidence for a Younger Dryas impact
Tian, H.; Schryvers, D.; Claeys, Ph.
2011-01-01
Microstructural, δ13C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer. PMID:21173270
Functionalizing large nanoparticles for small gaps in dimer nanoantennas
NASA Astrophysics Data System (ADS)
Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P.; Tinnefeld, Philip
2016-04-01
The process of functionalizing gold nanoparticles with DNA commonly competes with nanoparticle aggregation, especially for larger particles of more than 80 nm diameter. Longer DNA strands reduce the tendency for aggregation but commonly lead to larger gaps when applied in certain geometrical arrangements such as gap nanoantennas. Here, we demonstrate that reversing the polarization of one of the strands for hybridization (yielding a zipper-like geometry) is sterically possible with uncompromised yields. Using the single dye molecule’s fluorescence lifetime as an indicator of the proximity of the nanoparticle in combination with electrodynamic simulations, we determine the distance between the nanoparticle and the dye placed in a DNA origami pillar. Importantly, compared to the common shear geometry smaller distances between the connected structures are obtained which are independent of the length of the DNA connector. Using the zipper geometry, we then arranged nanoparticles of 100 and 150 nm diameter on DNA origami and formed gap nanoantennas. We find that the previously reported trend of increased fluorescence enhancement of ATTO647N with increasing particle size for 20-100 nm nanoparticles is stopped. Gap nanoantennas built with 150 nm nanoparticles exhibit smaller enhancement than those with 100 nm nanoparticles. These results are discussed with the aid of electrodynamic simulations.
Extracellular micro and nanostructures forming the velvet worm solidified adhesive secretion
NASA Astrophysics Data System (ADS)
Corrales-Ureña, Yendry Regina; Sanchez, Angie; Pereira, Reinaldo; Rischka, Klaus; Kowalik, Thomas; Vega-Baudrit, José
2017-12-01
The onychophoran Epiperipatus hilkae secrets a sticky slime that solidifies almost immediately upon contact with air and under high humidy environmental condition forming a glassy like material. The general adhesive biochemical composition, the releasing and hardening mechanism have been partially described in literature. In this study, the structural characterization of the extracellular microstructures and nanostructures forming the solid adhesive of the secretion from Epiperipatus hilkae velvet worm is presented. The adhesive secretion is formed by macro-threads, which, in their solid state, are composed of globular particles approximately 700 nm in diameter that are distributed homogeneously throughout the matrix surface, and nanoparticles approximately 70 nm in diameter that and 6 nm in height self-assemble forming fiber-like structures. Nanoparticules with approximately 2 nm heights and others with non roundish forms are also observed. These 70 nm nano particles could be associated to proteins that form high density coverage films with low roughness; suggesting the formation of 2D ordered films. A crystalline and an amorphous phase composes the solidified secretion. The glassy or viscoelastic properties depend on the time in contact with air before being adhered to a solid surface and/or the mechanical stimulus; suggesting a key role of the drying on the hardening process.
Fujitani, Yuji; Hirano, Seishiro
2008-05-01
The mass concentrations of airborne particles in the atmospheric, indoor, and industrial environments are regulated by air quality standards. Epidemiological studies show that there are significant positive correlations between particle mass concentrations and adverse health effects. In this context nanoparticles in the air, which are defined as particles with a diameter (Dp) of less than 50 nm or 100 nm for engineered ones, are gaining increasing attention despite a small contribution to the mass of total airborn particles. Contrary to the mass concentration the number concentrations of atmospheric nanoparticles are quite high in most cases. Moreover there is limited toxicological information on nanoparticles, although the deposition rate of nanoparticles in the respiratory region is known to be relatively high. Accordingly there are a lot of debates about what metric is best to depict the size distribution of nanoparticles, number, surface area, or mass. In this paper, we report methods for measurement of nanoparticles on the basis of those metrics. We also report sources of nanoparticle in the environment and occupational settings. The high number concentration of nanoparticles of 20-30 nm modal diameters have been documented at roadsides. Diesel-powered vehicles are major sources of those nanoparticles in the urban atmosphere. Engineered nanoparticles generate in some occupational settings in the handling processes such as bagging and cleaning with vacuum cleaners.
Formation of metal clusters in halloysite clay nanotubes
NASA Astrophysics Data System (ADS)
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.
2017-12-01
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.
Formation of metal clusters in halloysite clay nanotubes.
Vinokurov, Vladimir A; Stavitskaya, Anna V; Chudakov, Yaroslav A; Ivanov, Evgenii V; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A; Lvov, Yuri M
2017-01-01
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c .50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.
High Ultraviolet Absorption in Colloidal Gallium Nanoparticles Prepared from Thermal Evaporation
Bravo, Iria; Catalan-Gomez, Sergio; Vázquez, Luis; Lorenzo, Encarnación; Pau, Jose Luis
2017-01-01
New methods for the production of colloidal Ga nanoparticles (GaNPs) are introduced based on the evaporation of gallium on expendable aluminum zinc oxide (AZO) layer. The nanoparticles can be prepared in aqueous or organic solvents such as tetrahydrofuran in order to be used in different sensing applications. The particles had a quasi mono-modal distribution with diameters ranging from 10 nm to 80 nm, and their aggregation status depended on the solvent nature. Compared to common chemical synthesis, our method assures higher yield with the possibility of tailoring particles size by adjusting the deposition time. The GaNPs have been studied by spectrophotometry to obtain the absorption spectra. The colloidal solutions exhibit strong plasmonic absorption in the ultra violet (UV) region around 280 nm, whose width and intensity mainly depend on the nanoparticles dimensions and their aggregation state. With regard to the colloidal GaNPs flocculate behavior, the water solvent case has been investigated for different pH values, showing UV-visible absorption because of the formation of NPs clusters. Using discrete dipole approximation (DDA) method simulations, a close connection between the UV absorption and NPs with a diameter smaller than ~40 nm was observed. PMID:28684687
NASA Astrophysics Data System (ADS)
Srinivasa Rao, K.; Ranga Nayakulu, S. V.; Chaitanya Varma, M.; Choudary, G. S. V. R. K.; Rao, K. H.
2018-04-01
The present investigation describes the development of cobalt ferrite nanoparticles having size less than 10 nm, by a sol-gel method using polyvinyl alcohol as chelating agent. X-ray results show all the samples, annealed above 700 °C have spinel structure. The information about phase evolution with reaction temperatures was obtained by subjecting the as-prepared powder for DSC/TGA study. High saturation magnetization of 84.63 emu/g has been observed for a particle size of 8.1 nm, a rare event reported till date. The dM/dH versus H curves suggest that the transition from single domain state to multi-domain state occurs with increasing annealing temperature and the critical size for the single domain nature of CoFe2O4 is around 6.5 nm. The estimated critical diameter for single domain particle (6.7 nm) is in good agreement with that (6.5 nm) obtained from Transmission Electron Micrographs. The highest coercivity (1645 Oe) has been found for a particle of size 6.5 nm.
Structural phase transitions in SrTiO 3 nanoparticles
Zhang, Han; Liu, Sizhan; Scofield, Megan E.; ...
2017-08-04
We present that pressure dependent structural measurements on monodispersed nanoscale SrTiO 3 samples with average diameters of 10 to ~80 nm were conducted to enhance the understanding of the structural phase diagram of nanoscale SrTiO 3. A robust pressure independent polar structure was found in the 10 nm sample for pressures up to 13 GPa, while a size dependent cubic to tetragonal transition occurs (at P = P c) for larger particle sizes. In conclusion, the results suggest that the growth of ~10 nm STO particles on substrates with significant lattice mismatch may maintain a polar state for a largemore » range of strain values, possibly enabling device use.« less
Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles
NASA Astrophysics Data System (ADS)
Belomoin, Gennadiy; Therrien, Joel; Nayfeh, Munir
2000-08-01
We dispersed electrochemical etched silicon into a colloid of ultrasmall ultrabright Si nanoparticles. Direct imaging using transmission electron microscopy shows particles of ˜1 nm in diameter, and infrared and electron photospectroscopy show that they are passivated with hydrogen. Under 350 nm excitation, the luminescence is dominated by an extremely strong blue band at 390 nm. We replace hydrogen by a high-quality ultrathin surface oxide cap by self-limiting oxidation in H2O2. Upon capping, the excitation efficiency drops, but only by a factor of 2, to an efficiency still two-fold larger than that of fluorescein. Although of slightly lower brightness, capped Si particles have superior biocompatability, an important property for biosensing applications.
[Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].
Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang
2014-08-01
Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.
Extraction chromatographic separation of Am(III) and Eu(III) by TPEN-immobilized gel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeshita, K.; Ogata, T.; Oaki, H.
2013-07-01
A TPEN derivative with 4 vinyl groups, N,N,N',N' -tetrakis-(4-propenyloxy-2-pyridylmethyl)ethylenediamine (TPPEN) was synthesized for the separation of trivalent minor actinides (Am(III)) and lanthanides (Eu(III)). A co-polymer gel with TPPEN and N-isopropylacrylamide (NIPA) showed a high separation factor of Am(III) over Eu(III) (SF[Am/Eu]), which was evaluated to be 26 at pH=5. Thin film of NIPA-TPPEN gel (average thickness: 2-40 nm) was immobilized on the pore surface in porous silica particles (particle diameter : 50 μm, average pore diameter : 50 and 300 nm) and a chromatographic column (diameter: 6 mm, height: 11 mm) packed with the gel-coated particles was prepared. A smallmore » amount of weakly acidic solution (pH=4) containing Am(III) and Eu(III) was supplied in the column and the elution tests of Am(III) and Eu(III) were carried out. Eu(III) was recovered separately by a weakly acidic eluent (pH=4) at 313 K and Am(III) by a highly acidic eluent (pH=2) at 298 K. These results suggest that the contentious separation of minor actinides and lanthanides is attainable by a new extraction chromatographic process with two columns adjusted to 298 K and 313 K. (authors)« less
Mass transport through vertically aligned large diameter MWCNT embedded in parylene
Krishnakumar, P; Tiwari, P B; Staples, S; Luo, T; Darici, Y; He, J; Lindsay, SM
2013-01-01
We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotube (MWCNT, about 7nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4×104 V/m, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomer and gold nanoparticle under a modest pressure (<294 Pa). PMID:23064678
Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy
NASA Astrophysics Data System (ADS)
Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.
2016-03-01
In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.
Number size distribution of particulate emissions of heavy-duty engines in real world test cycles
NASA Astrophysics Data System (ADS)
Lehmann, Urs; Mohr, Martin; Schweizer, Thomas; Rütter, Josef
Five in-service engines in heavy-duty trucks complying with Euro II emission standards were measured on a dynamic engine test bench at EMPA. The particulate matter (PM) emissions of these engines were investigated by number and mass measurements. The mass of the total PM was evaluated using the standard gravimetric measurement method, the total number concentration and the number size distribution were measured by a Condensation Particle Counter (lower particle size cut-off: 7 nm) and an Electrical Low Pressure Impactor (lower particle size: 32 nm), respectively. The transient test cycles used represent either driving behaviour on the road (real-world test cycles) or a type approval procedure. They are characterised by the cycle power, the average cycle power and by a parameter for the cycle dynamics. In addition, the particle number size distribution was determined at two steady-state operating modes of the engine using a Scanning Mobility Particle Sizer. For quality control, each measurement was repeated at least three times under controlled conditions. It was found that the number size distributions as well as the total number concentration of emitted particles could be measured with a good repeatability. Total number concentration was between 9×10 11 and 1×10 13 particles/s (3×10 13-7×10 14 p/kWh) and mass concentration was between 0.09 and 0.48 g/kWh. For all transient cycles, the number mean diameter of the distributions lay typically at about 120 nm for aerodynamic particle diameter and did not vary significantly. In general, the various particle measurement devices used reveal the same trends in particle emissions. We looked at the correlation between specific gravimetric mass emission (PM) and total particle number concentration. The correlation tends to be influenced more by the different engines than by the test cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahl, R. J.; Trott, W. M.; Snedigar, S.
A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{mu}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{mu}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visiblemore » induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaneda, Jaime N.; Pahl, Robert J.; Snedigar, Shane
A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{micro}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{micro}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visiblemore » induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.« less
Krasa, Andrzej; Rogula-Kozłowska, Wioletta; Błaszczak, Barbara
2013-01-01
This work presents results from the long-term measurements of particle number carried out at an urban background station in Zabrze, Poland. Ambient particles with aerodynamic diameters of between 28 nm and 10 μm were investigated by means of a DEKATI thirteen-stage electrical low pressure impactor (ELPI). The particle number-size distribution was bimodal, whilst its density function had the local maxima in the aerodynamic diameter intervals 0.056–0.095 μm and 0.157–0.263 μm. The average particle number in winter was nearly twice as high as in summer. The greatest number concentrations in winter were those of the particles with diameters of between 0.617 and 2.41 μm, that is, the anthropogenic particles from fossil fuel combustion. Approximately 99% of the particles observed in Zabrze had aerodynamic diameters ≤1 μm—they may have originated from the combustion of biomass, liquid, and gaseous fuels in domestic stoves or in car engines. The daily variation of particle number was similar for both seasons—the highest values were observed in the morning (traffic rush hour) and in the afternoon/late evening (traffic and house heating emissions). An additional maximum (0.028–0.056 μm) observed in the early afternoon in summer was due to the intensive formation of new PM particles from gas precursors. PMID:24288492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thuy, Nguyen Thanh, E-mail: ngtthuy02@yahoo.com; Huy, Tran Quang, E-mail: huytq@nihe.org.vn; Nga, Phan Thi
We describe the ultrastructure of the NamDinh virus (NDiV), a new member of the order Nidovirales grown in the C6/36 mosquito cell line. Uninfected and NDiV-infected cells were investigated by electron microscopy 24–48 h after infection. The results show that the viral nucleocapsid-like particles form clusters concentrated in the vacuoles, the endoplasmic reticulum, and are scattered in the cytoplasm. Mature virions of NDiV were released as budding particles on the cell surface where viral components appear to lie beneath and along the plasma membrane. Free homogeneous virus particles were obtained by ultracentrifugation on sucrose gradients of culture fluids. The sizemore » of the round-shaped particles with a complete internal structure was 80 nm in diameter. This is the first study to provide information on the morphogenesis and ultrastructure of the first insect nidovirus NDiV, a missing evolutionary link in the emergence of the viruses with the largest RNA genomes. - Highlights: • NamDinh virus (NDiV), a new member of the order Nidovirales was tested in cultured cell line. • The morphogenesis and ultrastructure of NDiV were investigated by electron microscopy. • The viral nucleocapsid-like particles clustered and scattered in the cytoplasm. • NDiVs were released as budding particles on the cell surface. • The size of the viral particles with a complete internal structure was 80 nm in diameter.« less
NASA Astrophysics Data System (ADS)
Starost, K.; Frijns, E.; Laer, J. V.; Faisal, N.; Egizabal, A.; Elizextea, C.; Nelissen, I.; Blazquez, M.; Njuguna, J.
2017-05-01
In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.
Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation
2010-01-01
Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. Conclusion Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity. PMID:21126342
Soot superaggregates from flaming wildfires and their direct radiative forcing.
Chakrabarty, Rajan K; Beres, Nicholas D; Moosmüller, Hans; China, Swarup; Mazzoleni, Claudio; Dubey, Manvendra K; Liu, Li; Mishchenko, Michael I
2014-07-01
Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension Df ≈ 1.8 mobility diameter Dm ≤ 1 μm, and aerodynamic diameter Da ≤ 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic Df ≈ 2.6, Dm > 1 μm, and Da ≤ 300 nm that form via the cluster-dense aggregation mechanism. We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. At 550 nm wavelength, [corrected] we estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (D(f) ≈ 1.8) [corrected] aggregates, and ≈90% more warming than the volume-equivalent spherical soot particles simulated in climate models.
Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi
2013-04-01
Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.
NASA Astrophysics Data System (ADS)
Beránek, J.; Vaden, T.; Imre, D. G.; Zelenyuk, A.
2010-12-01
A central objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) was to characterize unequivocally all aspects related to organics in aerosols. To this end, a range of instruments measured loadings, size distributions, compositions, densities, CCN activities, and optical properties of aerosol sampled in Sacramento, CA over the month of June 2010. We present the results of measurements conducted by our single particle mass spectrometer, SPLAT. SPLAT was used to measure the size, composition, and density of individual particles with diameters between 50 to 2000 nm. SPLAT measured the vacuum aerodynamic diameters (dva) of more than 2 million particles and the compositions of ~350,000 particles, each day. In addition, SPLAT was used in combination with a differential mobility analyzer to measure the density, or effective density of individual particles. These measurements were typically conducted twice per day: in the morning, and mid-afternoon. Preliminary analysis of the data shows that under most conditions, the particles were relatively small (below 200 nm), and the vast majority of them were composed of oxygenated organics mixed with various amounts of sulfates. Analysis of the mass spectra shows that the oxygenated organics in these particles are the oxidized products of biogenic volatile organic precursors. In addition to particles composed of SOA mixed with sulfates, we detected and characterized fresh and processed soot particles, biomass burning aerosol, organic amines, sea salt - fresh and processed - and a small number of dust and other inorganic particles, commonly found in urban environment. SOA mixed with sulfates were the vast majority of particles at all times, while the other particle types exhibited episodic behavior. The data shows a reproducible diurnal pattern in SOA size distributions, number concentrations, and compositions. Early in the morning the particle number concentrations are relatively low, and the particle size distributions peak at ~70 nm. Smaller particles (80 nm) have a density of 1.3 g cm<-3/sup>, while the density of larger particles (200 nm) is 1.6 g cm<-3/sup>. The mass spectra show that the smaller particles are composed of organics mixed with ~10% of sulfates and larger ones contain mostly sulfate with a small amount of organics. As biogenic emissions are processed, nucleation events lead to a large increase in the concentrations of very small particles. As the day progresses particle number concentrations increase and particles grow. By mid-afternoon, these particles are sufficiently large to be characterized by SPLAT. At this point, the density of 80 to 200 nm particles is ~1.3 g cm<-3/sup>. These particles are composed of oxygenated organics mixed with a ~10% sulfate. A detailed analysis of the mass spectra shows that there are two types of SOA particles, which we labeled Type 43 and Type 44, to indicate which of the two peaks caries more intensity in the individual particle mass spectra. Interestingly, we find evidence to suggest that in both particle types a large fraction of the intensity in peaks 44 and 73 is related to surface compound.
Nicolini, Ariana M; Fronczek, Christopher F; Yoon, Jeong-Yeol
2015-05-15
We have developed a rapid, sensitive, and specific droplet-based immunoassay for the detection of Escherichia coli and Salmonella within a single-pipetted sample. Polycaprolactone (PCL) electrospun fibers on indium-tin-oxide (ITO) glass provide a sufficient surface to render a non-slip droplet condition, and while the PCL fibers lend a local hydrophilicity (contact angle θ=74°) for sufficient sub-micron particle adhesion, air pockets within the fibers lend an apparent hydrophobicity. Overall, the contact angle of water on this electrospun surface is 119°, and the air pockets cause the droplet to be completely immobile and resistant to movement, protecting it from external vibration. By using both anti-E. coli conjugated, 510 nm diameter green fluorescent particles (480 nm excitation and 520 nm emission) and anti-Salmonella conjugated, 400 nm diameter red fluorescent particles (640 nm excitation and 690 nm emission), we can detect multiple targets in a single droplet. Using appropriate light sources guided by fiber optics, we determined a detection limit of 10(2) CFU mL(-1). Immunoagglutination can be observed under a fluorescence microscope. Fluorescence detection (at the emission wavelength) of immunoagglutination was maximum at 90° from the incident light, while light scattering (at the excitation wavelength) was still present and behaved similarly, indicating the ability of double detection, greatly improving credibility and reproducibility of the assay. A power function (light intensity) simulation of elastic Mie scatter confirmed that both fluorescence and light scattering were present. Due to the size of the fluorescent particles relative to their incident excitation wavelengths, Mie scatter conditions were observed, and fluorescence signals show a similar trend to light scattering signals. Smartphone detection was included for true portable detection, in which the high contact angle pinning of the droplet makes this format re-usable and re-configurable. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin
2015-11-01
This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.
NASA Astrophysics Data System (ADS)
Japuntich, Daniel A.; Franklin, Luke M.; Pui, David Y.; Kuehn, Thomas H.; Kim, Seong Chan; Viner, Andrew S.
2007-01-01
Two different air filter test methodologies are discussed and compared for challenges in the nano-sized particle range of 10-400 nm. Included in the discussion are test procedure development, factors affecting variability and comparisons between results from the tests. One test system which gives a discrete penetration for a given particle size is the TSI 8160 Automated Filter tester (updated and commercially available now as the TSI 3160) manufactured by the TSI, Inc., Shoreview, MN. Another filter test system was developed utilizing a Scanning Mobility Particle Sizer (SMPS) to sample the particle size distributions downstream and upstream of an air filter to obtain a continuous percent filter penetration versus particle size curve. Filtration test results are shown for fiberglass filter paper of intermediate filtration efficiency. Test variables affecting the results of the TSI 8160 for NaCl and dioctyl phthalate (DOP) particles are discussed, including condensation particle counter stability and the sizing of the selected particle challenges. Filter testing using a TSI 3936 SMPS sampling upstream and downstream of a filter is also shown with a discussion of test variables and the need for proper SMPS volume purging and filter penetration correction procedure. For both tests, the penetration versus particle size curves for the filter media studied follow the theoretical Brownian capture model of decreasing penetration with decreasing particle diameter down to 10 nm with no deviation. From these findings, the authors can say with reasonable confidence that there is no evidence of particle thermal rebound in the size range.
Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles
Han, Luyang; Biskupek, Johannes; Kaiser, Ute; Ziemann, Paul
2010-01-01
Summary Monatomic (Fe, Co) and bimetallic (FePt and CoPt) nanoparticles were prepared by exploiting the self-organization of precursor loaded reverse micelles. Achievements and limitations of the preparation approach are critically discussed. We show that self-assembled metallic nanoparticles can be prepared with diameters d = 2–12 nm and interparticle distances D = 20–140 nm on various substrates. Structural, electronic and magnetic properties of the particle arrays were characterized by several techniques to give a comprehensive view of the high quality of the method. For Co nanoparticles, it is demonstrated that magnetostatic interactions can be neglected for distances which are at least 6 times larger than the particle diameter. Focus is placed on FePt alloy nanoparticles which show a huge magnetic anisotropy in the L10 phase, however, this is still less by a factor of 3–4 when compared to the anisotropy of the bulk counterpart. A similar observation was also found for CoPt nanoparticles (NPs). These results are related to imperfect crystal structures as revealed by HRTEM as well as to compositional distributions of the prepared particles. Interestingly, the results demonstrate that the averaged effective magnetic anisotropy of FePt nanoparticles does not strongly depend on size. Consequently, magnetization stability should scale linearly with the volume of the NPs and give rise to a critical value for stability at ambient temperature. Indeed, for diameters above 6 nm such stability is observed for the current FePt and CoPt NPs. Finally, the long-term conservation of nanoparticles by Au photoseeding is presented. PMID:21977392
NASA Astrophysics Data System (ADS)
Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.
2009-12-01
Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm2. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.
Properties of Smoke from Overheated Materials in Low-Gravity
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary A.; Sheredy, William; Cleary, Thomas; Yang, Jiann; Mulholland, George; Yuan, Zeng-Guang
2009-01-01
Smoke particle size measurements were obtained under low-gravity conditions by overheating several materials typical of those found in spacecraft. The measurements included integral measurements of the smoke particles and physical sample of the particles for Transmission Electron Microscope analysis. The integral moments were combined to obtain geometric mean particle sizes and geometric standard deviations. These results are presented with the details of the instrument calibrations. The experimental results show that, for the materials tested, a substantial portion of the smoke particles are below 500 nm in diameter.
Synthesis of metal and semiconductor nanoparticles in a flow of immiscible liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyushkin, L. B., E-mail: leva.matyushkin@gmail.com; Ryzhov, O. A.; Aleksandrova, O. A.
Nanoparticles of silver and cadmium selenide are obtained by the method of synthesis in a flow of immiscible liquids (water/toluene, water/dodecane); these nanoparticles manifest, respectively, the effects of plasmon resonance and the spatial confinement of charge carriers. The reactor used is a polytetrafluoroethylene capillary with temperature-controlled sections for particle nucleation and growth with the supply of precursors using micropumps. The diameters of the particles are determined from absorbance spectra and are found to be 40 nm for Ag nanoparticles and 1–2 nm for CdSe nanoparticles (depending on the growth duration).
Band gap variations in ferritin-templated nanocrystals
NASA Astrophysics Data System (ADS)
Colton, John; Erickson, Stephen; Smith, Trevor; Watt, Richard
2014-03-01
Ferritin is a 12 nm diameter protein shell with an 8 nm ``cage'' inside that can be used as a template for nanoparticle formation. The native particle is an iron oxide, ferrihydrite, but can be altered or replaced. We have used optical absorption spectroscopy to study the band gap of the ferrihydrite nanoparticles as they age (and become more crystalline), and as they respond to surface interactions with ions in solution. We will also present results of particle composition variations due to incorporation of oxo-anions into the interior of the nanoparticles and substitution of iron with other metals such as cobalt and manganese.
Nanostructured and layered lithium manganese oxide and method of manufacturing the same
NASA Technical Reports Server (NTRS)
Singhal, Amit (Inventor); Skandan, Ganesh (Inventor)
2005-01-01
Nanostructured and layered lithium manganese oxide powders and methods of producing same. The powders are represented by the chemical formula, LixMn1-yMyO2, where 0.5
Stratification during evaporative assembly of multicomponent nanoparticle films
Liu, Xiao; Liu, Weiping; Carr, Amanda J.; ...
2018-01-03
Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. In this paper, we present AFM on the surfacemore » composition of films comprising poly(styrene) nanoparticles (diameter 25–90 nm) and silica nanoparticles (diameter 8–14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120–460), while we utilize Pe ~ 0.3–4, enabling us to test theories that have been developed for different regimes of Pe. We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Finally, our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification.« less
Stratification during evaporative assembly of multicomponent nanoparticle films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao; Liu, Weiping; Carr, Amanda J.
Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. In this paper, we present AFM on the surfacemore » composition of films comprising poly(styrene) nanoparticles (diameter 25–90 nm) and silica nanoparticles (diameter 8–14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120–460), while we utilize Pe ~ 0.3–4, enabling us to test theories that have been developed for different regimes of Pe. We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Finally, our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification.« less
Virtual Impactor for Sub-micron Aerosol Particles
NASA Astrophysics Data System (ADS)
Bolshakov, A. A.; Strawa, A. W.; Hallar, A. G.
2005-12-01
The objective of a virtual impactor is to separate out the larger particles in a flow from the smaller particles in such a way that both sizes of particles are available for sampling. A jet of particle-laden air is accelerated toward a collection probe so that a small gap exists between the acceleration nozzle and the probe. A vacuum is applied to deflect a major portion of the airstream away form the collection probe. Particles larger than a certain size have sufficient momentum so that they cross the deflected streamlines and enter the collection probe, whereas smaller particles follow the deflected streamlines. The result is that the collection probe will contain a higher concentration of larger particles than is in the initial airstream. Typically, virtual impactors are high-flow devices used to separate out particles greater than several microns in diameter. We have developed a special virtual impactor to concentrate aerosol particles of diameters between 0.5 to 1 micron for the purpose of calibrating the optical cavity ring-down instrument [1]. No similar virtual impactors are commercially available. In our design, we have exploited considerations described earlier [2-4]. Performance of our virtual impactor was evaluated in an experimental set-up using TSI 3076 nebulizer and TSI 3936 scanning mobility particle size spectrometer. Under experimental conditions optimized for the best performance of the virtual impactor, we were able to concentrate the 700-nm polystyrene particles no less than 15-fold. However, under experimental conditions optimized for calibrating our cavity ring-down instrument, a concentration factor attainable was from 4 to 5. During calibration experiments, maximum realized particle number densities were 190, 300 and 1600 cm-3 for the 900-nm, 700-nm and 500-nm spheres, respectively. This paper discusses the design of the impactor and laboratory studies verifying its performance. References: 1. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer, B.A. Paldus, J. Atm. Ocean. Technol., 20, 454-465 (2003). 2. V.A. Marple, K.L. Rubow, B.A. Olson, Aerosol Sci. Technol., 22, 140-150 (1995). 3. B.T. Chen, H.C. Yeh, Y.S. Cheng, J. Aerosol Sci., 16, 343-354 (1985). 4. V.A. Marple, C.M. Chien, Environ. Sci. Technol., 14, 976-985 (1980).
Piletska, Elena V; Piletsky, Sergey A
2010-03-16
The correlation between the size of biotinylated nanoparticles and their affinity in relation to interactions with the solid surface was investigated. The silica particles with a diameter of 50-200 nm containing amino groups on the surface were labeled with different quantities of biotin. The affinity properties of biotinylated nanoparticles were studied using a Biacore 3000 instrument equipped with a streptavidin-coated sensor chip (SA chip). It was shown that the increase in the particle size from 50 to 200 nm reduced the affinity (K(D)) of biotin-streptavidin interactions from 1.2 x 10(-12) to 1.2 x 10(-10) M. It was found that the particles with higher concentrations of immobilized biotin on particle surfaces demonstrated stronger binding with streptavidin.
2013-09-10
reduced density larger than unity indicates densification of polymer nanocomposites. Fullerene (C60) has a 0.76 nm diameter, which is hypothesized to be...found a definite particle size dependent density and tensile modulus. The effect is subtle, yet, quite robust as various systems, inorganic or
Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya
2017-03-01
Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.
NASA Astrophysics Data System (ADS)
Zhou, Honglei; Liu, Ping; Chen, Xiaohong; Bi, Liming; Zhang, Ke; Liu, Xinkuan; Li, Wei; Ma, Fengcang
2018-02-01
Given that the conventional catalyst is easily soluble in the matrix to result in the poor performance of the CNTs/Cu composite materials, the Cr nano-particles precipitated on the surface of Cu-Cr particles are first used as catalysts to prepare the CNTs/Cu composite powders by means of water-assisted chemical vapor deposition in situ synthesis. The results show that the morphological difference of the precipitated Cr nano-particle is obvious with the change of solution and aging treatment, and the morphology, length and diameter of the synthetic CNTs are also different. The catalyst of Cr nano-particle has the best morphology and the synthesized CNTs had a good wettability with Cu particles when the Cu-Cr composite powders was solution-treated at 1023 K for 60 min and then was aged at 723 K for 120 min. The length, diameter, yield and purity of the synthesized CNTs can be also affected by the moisture content in the reaction gas. It is the most suitable for the growth of CNTs when the moisture content is 0.4%, and the high purity and defect-free CNTs with the smooth pipe wall, a diameter of 20 ˜ 30 nm and a length of up to 1800 nm can be obtained. The yield of CNTs with the moisture content of 0.4% reached to 138%, which was increased by 119% to compare with that without moisture. In this paper, a feasible technology was offered for the preparation of high performance CNTs/Cu composites.
Hwang, Sung Hoon; Shahsavari, Rouzbeh
2018-01-10
Scaffolded porous submicron particles with well-defined diameter, shape, and pore size have profound impacts on drug delivery, bone-tissue replacement, catalysis, sensors, photonic crystals, and self-healing materials. However, understanding the interplay between pore size, particle size, and mechanical properties of such ultrafine particles, especially at the level of individual particles and their ensemble states, is a challenge. Herein, we focus on porous calcium-silicate submicron particles with various diameters-as a model system-and perform extensive 900+ nanoindentations to completely map out their mechanical properties at three distinct structural forms from individual submicron particles to self-assembled ensembles to pressure-induced assembled arrays. Our results demonstrate a notable "intrinsic size effect" for individual porous submicron particles around ∼200-500 nm, induced by the ratio of particle characteristic diameter to pore characteristic size distribution. Increasing this ratio results in a brittle-to-ductile transition where the toughness of the submicron particles increases by 120%. This size effect becomes negligible as the porous particles form superstructures. Nevertheless, the self-assembled arrays collectively exhibit increasing elastic modulus as a function of applied forces, while pressure-induced compacted arrays exhibit no size effect. This study will impact tuning properties of individual scaffolded porous particles and can have implications on self-assembled superstructures exploiting porosity and particle size to impart new functionalities.
Formation of metal clusters in halloysite clay nanotubes
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; ...
2017-02-16
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less
Formation of metal clusters in halloysite clay nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.
We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less
Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe.
Wood, Nicholas R; Wolsiefer, Amanda I; Cohn, Robert W; Williams, Stuart J
2013-07-01
A high aspect ratio 3D electrokinetic nanoprobe is used to trap polystyrene particles (200 nm), gold nanoshells (120 nm), and gold nanoparticles (mean diameter 35 nm) at low voltages (<1 V(rms)). The nanoprobe is fabricated using room temperature self-assembly methods, without the need for nanoresolution lithography. The nanoprobe (150-500 nm in diameter, 2-150 μm in length) is mounted on the end of a glass micropipette, enabling user-specified positioning. The nanoprobe is one electrode within a point-and-plate configuration, with an indium-tin oxide cover slip serving as the planar electrode. The 3D structure of the nanoprobe enhances dielectrophoretic capture; further, electro-hydrodynamic flow enhances trapping, increasing the effective trapping region. Numerical simulations show low heating (1 K), even in biological media of moderate conductivity (1 S/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation of metal clusters in halloysite clay nanotubes
Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.
2017-01-01
Abstract We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3–5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10–12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions. PMID:28458738
NASA Astrophysics Data System (ADS)
Allagui, Anis; Alami, Abdul Hai; Baranova, Elena A.; Wüthrich, Rolf
2014-09-01
NiO nanoparticles of 70, 91 and 107 nm average diameter are synthesized by cathodic contact glow discharge electrolysis at 30, 36 and 42 VDC respectively, in 2 M H2SO4 + 0.5 M ethanol + 2.5 mg ml-1 of PVP, and are investigated for electrochemical energy storage. From the cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M KOH, it was found that a maximum specific capacitance of 218 F g-1 is achieved with the 70 nm NiO nanoparticles at 2.7 A g-1. Larger nanoparticles of 91 and 107 nm diameter exhibit specific capacitances of 106 and 63 F g-1, respectively, suggesting a size-dependent capacitive performance enhanced with decreasing particles size.
Nandiyanto, Asep Bayu Dani; Ogi, Takashi; Okuyama, Kikuo
2014-03-26
Control of the shell structural properties [i.e., thickness (8-25 nm) and morphology (dense and raspberry)] and cavity diameter (100-350 nm) of hollow particles was investigated experimentally, and the results were qualitatively explained based on the available theory. We found that the selective deposition size and formation of the shell component on the surface of a core template played important roles in controlling the structure of the resulting shell. To achieve the selective deposition size and formation of the shell component, various process parameters (i.e., reaction temperature and charge, size, and composition of the core template and shell components) were tested. Magnesium fluoride (MgF2) and polystyrene spheres were used as models for shell and core components, respectively. MgF2 was selected because, to the best of our knowledge, the current reported approaches to date were limited to synthesis of MgF2 in film and particle forms only. Therefore, understanding how to control the formation of MgF2 with various structures (both the thickness and morphology) is a prospective for advanced lens synthesis and applications.
NASA Astrophysics Data System (ADS)
Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi
2016-02-01
Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.
NASA Astrophysics Data System (ADS)
Takahama, S.; Russell, L. M.; Shores, C. A.; Marr, L. C.; Zheng, J.; Levy, M.; Zhang, R.; Castillo, E.; Rodriguez-Ventura, J. G.; Quintana, P. J. E.; Subramanian, R.; Zavala, M.; Molina, L. T.
2014-05-01
Black carbon (BC) was characterized by three complementary techniques - incandescence (single particle soot photometer, SP2, at Parque Morelos), light absorption (cavity ringdown spectrometer with integrating nephelometer, CRDS-Neph, at Parque Morelos and Aethalometers at seven locations), and volatility (volatility tandem differential mobility analyzer, V-TDMA) during the Cal-Mex 2010 campaign. SP2, CRDS-Neph, and Aethalometer measurements characterized the BC mass, and SP2 and V-TDMA measurements also quantified BC-containing particle number, from which mass-mean BC diameters were calculated. On average, the mass concentrations measured in Tijuana (1.8 ± 2.6 μg m-3 at Parque Morelos and 2.6 μg m-3 in other regions of Tijuana) were higher than in San Diego or the international border crossing (0.5 ± 0.6 μg m-3). The observed BC mass concentrations were attributable to nighttime urban burning activities and diesel vehicles, both from the local (Baja California) and transported (Southern California) diesel vehicle fleets. Comparisons of the SP2 and co-located Aethalometers indicated that the two methods measured similar variations in BC mass concentrations (correlation coefficients greater than 0.85), and the mass concentrations were similar for the BC particles identified from nighttime urban burning sources. When the BC source changed to diesel vehicle emissions, the SP2 mass concentrations were lower than the Aethalometer mass concentrations by about 50%, likely indicating a change in the mass absorption efficiency and quantification by the Aethalometers. At Parque Morelos there were up to three different-sized modes of BC mass in particles: one mode below 100 nm, one near 100 nm, and another between 200 and 300 nm. The mode between 200 and 300 nm was associated with urban burning activities that influenced the site during evening hours. When backtrajectories indicated that airmasses came from the south to the Parque Morelos site, BC mass in particles was also larger (mass median diameter of 170 nm rather than 155 nm), consistent with the higher fraction of older diesel vehicles in the Tijuana fleet compared to the vehicles found in southern California.
Nermut, M V; Hockley, D J; Jowett, J B; Jones, I M; Garreau, M; Thomas, D
1994-01-01
Virus-like particles produced by a recombinant baculovirus containing the HIV gag gene were examined by negative staining after delipidization. This technique demonstrated that the gag-protein shell consisted of radially arranged short rods which formed a network of ring-like structures. Similar structures were observed at the plasma membrane of infected cells which had been opened by wet-cleaving. Occasionally five or six subunits were observed forming a ring. These findings suggest that the gag-encoded precursor (pr55) is a rod-like molecule about 34 A in diameter and 85 A in length. A protein cylinder of such dimensions would have a molecular weight of 56K. The center-to-center distance of two neighboring rings formed by the rods was 66 +/- 8 A (N = 200) by direct measurements and 65 A as obtained from averaged images. This morphology and these dimensions indicate that the virus-like particles contain the gag precursor in the form of a near-spherical "fullerene-like" icosahedral shell. Our data indicate that the triangulation number of the rings equals 63. However, since one rod of pr55 is shared by two rings, the number of copies of the precursor will be 1890 as opposed to 2522 if the molecules were closely packed. The particle diameter of 102 nm deduced from the proposed model was close to the diameter obtained from thin sections of low-temperature-embedded specimens (103-108 nm).
Besford, Quinn Alexander; Zeng, Xiao-Yi; Ye, Ji-Ming; Gray-Weale, Angus
2016-02-01
Glycogen is a vital highly branched polymer of glucose that is essential for blood glucose homeostasis. In this article, the structure of liver glycogen from mice is investigated with respect to size distributions, degradation kinetics, and branching structure, complemented by a comparison of normal and diabetic liver glycogen. This is done to screen for differences that may result from disease. Glycogen α-particle (diameter ∼ 150 nm) and β-particle (diameter ∼ 25 nm) size distributions are reported, along with in vitro γ-amylase degradation experiments, and a small angle X-ray scattering analysis of mouse β-particles. Type 2 diabetic liver glycogen upon extraction was found to be present as large loosely bound, aggregates, not present in normal livers. Liver glycogen was found to aggregate in vitro over a period of 20 h, and particle size is shown to be related to rate of glucose release, allowing a structure-function relationship to be inferred for the tissue specific distribution of particle types. Application of branching theories to small angle X-ray scattering data for mouse β-particles revealed these particles to be randomly branched polymers, not fractal polymers. Together, this article shows that type 2 diabetic liver glycogen is present as large aggregates in mice, which may contribute to the inflexibility of interconversion between glucose and glycogen in type 2 diabetes, and further that glycogen particles are randomly branched with a size that is related to the rate of glucose release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomoin, Gennadiy; Therrien, Joel; Nayfeh, Munir
We dispersed electrochemical etched silicon into a colloid of ultrasmall ultrabright Si nanoparticles. Direct imaging using transmission electron microscopy shows particles of {approx}1 nm in diameter, and infrared and electron photospectroscopy show that they are passivated with hydrogen. Under 350 nm excitation, the luminescence is dominated by an extremely strong blue band at 390 nm. We replace hydrogen by a high-quality ultrathin surface oxide cap by self-limiting oxidation in H{sub 2}O{sub 2}. Upon capping, the excitation efficiency drops, but only by a factor of 2, to an efficiency still two-fold larger than that of fluorescein. Although of slightly lower brightness,more » capped Si particles have superior biocompatability, an important property for biosensing applications. (c) 2000 American Institute of Physics.« less
A DMA-train for precision measurement of sub-10 nm aerosol dynamics
NASA Astrophysics Data System (ADS)
Stolzenburg, Dominik; Steiner, Gerhard; Winkler, Paul M.
2017-05-01
Measurements of aerosol dynamics in the sub-10 nm size range are crucially important for quantifying the impact of new particle formation onto the global budget of cloud condensation nuclei. Here we present the development and characterization of a differential mobility analyzer train (DMA-train), operating six DMAs in parallel for high-time-resolution particle-size-distribution measurements below 10 nm. The DMAs are operated at six different but fixed voltages and hence sizes, together with six state-of-the-art condensation particle counters (CPCs). Two Airmodus A10 particle size magnifiers (PSM) are used for channels below 2.5 nm while sizes above 2.5 nm are detected by TSI 3776 butanol-based or TSI 3788 water-based CPCs. We report the transfer functions and characteristics of six identical Grimm S-DMAs as well as the calibration of a butanol-based TSI model 3776 CPC, a water-based TSI model 3788 CPC and an Airmodus A10 PSM. We find cutoff diameters similar to those reported in the literature. The performance of the DMA-train is tested with a rapidly changing aerosol of a tungsten oxide particle generator during warmup. Additionally we report a measurement of new particle formation taken during a nucleation event in the CLOUD chamber experiment at CERN. We find that the DMA-train is able to bridge the gap between currently well-established measurement techniques in the cluster-particle transition regime, providing high time resolution and accurate size information of neutral and charged particles even at atmospheric particle concentrations.
SIMS depth profiling of working environment nanoparticles
NASA Astrophysics Data System (ADS)
Konarski, P.; Iwanejko, I.; Mierzejewska, A.
2003-01-01
Morphology of working environment nanoparticles was analyzed using sample rotation technique in secondary ion mass spectrometry (SIMS). The particles were collected with nine-stage vacuum impactor during gas tungsten arc welding (GTAW) process of stainless steel and shielded metal arc welding (SMAW) of mild steel. Ion erosion of 300-400 nm diameter nanoparticles attached to indium substrate was performed with 2 keV, 100 μm diameter, Ar + ion beam at 45° ion incidence and 1 rpm sample rotation. The results show that both types of particles have core-shell morphology. A layer of fluorine, chlorine and carbon containing compounds covers stainless steel welding fume particles. The cores of these particles are enriched in iron, manganese and chromium. Outer shell of mild steel welding fume particles is enriched in carbon, potassium, chlorine and fluorine, while the deeper layers of these nanoparticles are richer in main steel components.
Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.
De Jong, Wim H; Hagens, Werner I; Krystek, Petra; Burger, Marina C; Sips, Adriënne J A M; Geertsma, Robert E
2008-04-01
A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the presence of gold is feasible with no background levels in the body in the normal situation. Rats were intravenously injected in the tail vein with gold nanoparticles with a diameter of 10, 50, 100 and 250 nm, respectively. After 24 h, the rats were sacrificed and blood and various organs were collected for gold determination. The presence of gold was measured quantitatively with inductively coupled plasma mass spectrometry (ICP-MS). For all gold nanoparticle sizes the majority of the gold was demonstrated to be present in liver and spleen. A clear difference was observed between the distribution of the 10 nm particles and the larger particles. The 10 nm particles were present in various organ systems including blood, liver, spleen, kidney, testis, thymus, heart, lung and brain, whereas the larger particles were only detected in blood, liver and spleen. The results demonstrate that tissue distribution of gold nanoparticles is size-dependent with the smallest 10nm nanoparticles showing the most widespread organ distribution.
NASA Technical Reports Server (NTRS)
Germani, M. S.; Bradley, J. P.; Brownlee, D. E.
1990-01-01
A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.
Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; ...
2016-04-05
Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (d me), enabling application for microphysical studies. However, the removal of particles ≤100 nm d me is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less
A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles.
Zhang, Chao; Zhu, Rong; Yang, Wenming
2016-03-18
Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm³. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 10⁴ /cm³ and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.
A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles
Zhang, Chao; Zhu, Rong; Yang, Wenming
2016-01-01
Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices. PMID:26999156
NASA Astrophysics Data System (ADS)
Zhu, Yujiao; Yan, Caiqing; Zhang, Renyi; Wang, Zifa; Zheng, Mei; Gao, Huiwang; Gao, Yang; Yao, Xiaohong
2017-08-01
This study is the first to use two identical Fast Mobility Particle Sizers for simultaneous measurement of particle number size distributions (PNSDs) at a street site and a rooftop site within 500 m distance in wintertime and springtime to investigate new particle formation (NPF) in Beijing. The collected datasets at 1 s time resolution allow deduction of the freshly emitted traffic particle signal from the measurements at the street site and thereby enable the evaluation of the effects on NPF in an urban atmosphere through a site-by-site comparison. The number concentrations of 8 to 20 nm newly formed particles and the apparent formation rate (FR) in the springtime were smaller at the street site than at the rooftop site. In contrast, NPF was enhanced in the wintertime at the street site with FR increased by a factor of 3 to 5, characterized by a shorter NPF time and higher new particle yields than at the rooftop site. Our results imply that the street canyon likely exerts distinct effects on NPF under warm or cold ambient temperature conditions because of on-road vehicle emissions, i.e., stronger condensation sinks that may be responsible for the reduced NPF in the springtime but efficient nucleation and partitioning of gaseous species that contribute to the enhanced NPF in the wintertime. The occurrence or absence of apparent growth for new particles with mobility diameters larger than 10 nm was also analyzed. The oxidization of biogenic organics in the presence of strong photochemical reactions is suggested to play an important role in growing new particles with diameters larger than 10 nm, but sulfuric acid is unlikely to be the main species for the apparent growth. However, the number of datasets used in this study is relatively small, and larger datasets are essential to draw a general conclusion.
NASA Astrophysics Data System (ADS)
Ridier, Karl; Gillon, Béatrice; Chaboussant, Grégory; Catala, Laure; Mazérat, Sandra; Rivière, Eric; Mallah, Talal
2017-02-01
Prussian blue analogues (PBA) ferromagnetic nanoparticles CsIxNiII[CrIII(CN)6 ]z·3(H2O) embedded in CTA+ (cetyltrimethylammonium) matrix have been investigated by magnetometry and magnetic small-angle neutron scattering (SANS). Choosing particle sizes (diameter D = 4.8 and 8.6 nm) well below the single-domain radius and comparable volume fraction of particle, we show that the expected superparamagnetic regime for weakly anisotropic isolated magnetic particles is drastically affected due to the interplay of surface/volume anisotropies and dipolar interactions. For the smallest particles (D = 4.8 nm), magnetocrystalline anisotropy is enhanced by surface spins and drives the system into a regime of ferromagnetically correlated clusters characterized by a temperature-dependent magnetic correlation length Lmag which is experimentally accessible using magnetic SANS. For D = 8.6 nm particles, a superparamagnetic regime is recovered in a wide temperature range. We propose a model of interacting single-domain particles with axial anisotropy that accounts quantitatively for the observed behaviors in both magnetic regimes. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70534-9
SURFACE CHEMICAL EFFECTS ON COLLOID STABILITY AND TRANSPORT THROUGH NATURAL POROUS MEDIA
Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was ...
NASA Astrophysics Data System (ADS)
Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.
2013-08-01
A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 μm diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.
NASA Astrophysics Data System (ADS)
Kangasluoma, Juha; Hering, Susanne; Picard, David; Lewis, Gregory; Enroth, Joonas; Korhonen, Frans; Kulmala, Markku; Sellegri, Karine; Attoui, Michel; Petäjä, Tuukka
2017-06-01
In this study we characterized the performance of three new particle counters able to detect particles smaller than 3 nm during the Helsinki condensation particle counter (CPC) workshop in summer 2016: the Aerosol Dynamics Inc. (ADI; Berkeley, USA) versatile water condensation particle counter (vWCPC), TSI 3777 nano enhancer (TSI Inc., Shoreview, USA) and modified and boosted TSI 3010-type CPC from Université Blaise Pascal called a B3010. The performance of all CPCs was first measured with charged tungsten oxide test particles at temperature settings which resulted in supersaturation low enough to not detect any ions produced by a radioactive source. Due to similar measured detection efficiencies, additional comparison between the 3777 and vWCPC were conducted using electrically neutral tungsten oxide test particles and with positively charged tetradodecylammonium bromide. Furthermore, the detection efficiencies of the 3777 and vWCPC were measured with boosted temperature settings yielding supersaturation which was at the onset of homogeneous nucleation for the 3777 or confined within the range of liquid water for the ADI vWCPC. Finally, CPC-specific tests were conducted to probe the response of the 3777 to various inlet flow relative humidities, of the B3010 to various inlet flow rates and of the vWCPC to various particle concentrations. For the 3777 and vWCPC the measured 50 % detection diameters (d50s) were in the range of 1.3-2.4 nm for the tungsten oxide particles, depending on the particle charging state and CPC temperature settings, between 2.5 and 3.3 nm for the organic test aerosol, and in the range of 3.2-3.4 nm for tungsten oxide for the B3010.
Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo
Xu, Qingguo; Boylan, Nicholas J.; Suk, Jung Soo; Wang, Ying-Ying; Nance, Elizabeth; Yang, Jeh-Chang; McDonnell, Peter; Cone, Richard; Duh, Elia J.; Hanes, Justin
2013-01-01
Intravitreal injection of biodegradable nanoparticles (NP) holds promise for gene therapy and drug delivery to the back of the eye. In some cases, including gene therapy, NP need to diffuse rapidly from the site of injection in order to reach targeted cell types in the back of the eye, whereas in other cases it may be preferred for the particles to remain at the injection site and slowly release drugs that may then diffuse to the site of action. We studied the movements of polystyrene (PS) nanoparticles of various sizes and surface chemistries in fresh bovine vitreous. PS NP as large as 510 nm rapidly penetrated the vitreous gel when coated with polyethylene glycol (PEG), whereas the movements of NP 1190 nm in diameter or larger were highly restricted regardless of surface chemistry owing to steric obstruction. PS NP coated with primary amine groups (–NH2) possessed positively charged surfaces at the pH of bovine vitreous (pH = 7.2), and were immobilized within the vitreous gel. In comparison, PS NP coated with –COOH (possessing negatively charged surfaces) in the size range of 100–200 nm and at particle concentrations below 0.0025% (w/v) readily diffused through the vitreous meshwork; at higher concentrations (~0.1% w/v), these nanoparticles aggregated within vitreous. Based on the mobility of different sized PS-PEG NP, we estimated the average mesh size of fresh bovine vitreous to be ~550 ± 50 nm. The bovine vitreous behaved as an impermeable elastic barrier to objects sized 1190 nm and larger, but as a highly permeable viscoelastic liquid to non-adhesive objects smaller than 510 nm in diameter. Guided by these studies, we next sought to examine the transport of drug- and DNA-loaded nanoparticles in bovine vitreous. Biodegradable NP with diameter of 227 nm, composed of a poly(lactic-co-glycolic acid) (PLGA)-based core coated with poly(vinyl alcohol) rapidly penetrated vitreous. Rod-shaped, highly-compacted CK30PEG10k/DNA with PEG coating (neutral surface charge; diameter ~60 nm) diffused rapidly within vitreous. These findings will help guide the development of nanoparticle-based therapeutics for the treatment of vision-threatening ocular diseases. PMID:23369761
Ekeberg, Tomas
2015-05-26
This dataset contains the diffraction patterns that were used for the first three-dimensional reconstruction of a virus using FEL data. The sample was the giant mimivirus particle, which is one of the largest known viruses with a diameter of 450 nm. The dataset consists of the 198 diffraction patterns that were used in the analysis.
NASA Astrophysics Data System (ADS)
Razani, Marjan; Zam, Azhar; Arezza, Nico J. J.; Wang, Yan J.; Kolios, Michael C.
2016-03-01
In this study, we present a technique to image the enhanced particle displacement generated using an acoustic radiation force (ARF) excitation source. A swept-source OCT (SS-OCT) system with a center wavelength of 1310nm, a bandwidth of ~100nm, and an A-scan rate of 100 kHz (MEMS-VCSEL OCT Thorlabs) was used to detect gold nanoparticle (70nm in diameter) displacement .ARF was applied after the nanoparticles passed through a porous membrane and diffused into a collagen (6% collagen) matrix. B-mode, M-B mode, 3D and Speckle Variance (SV) images were acquired before and after the ARF beam was on. Differential OCT speckle variance images with and without the ARF were used to measure the particle displacement. The images were used to detect the microscopic enhancement of nanoparticle displacement generated by the ARF. Using this OCT imaging technique, the extravasation of particles though a porous membrane and characterization of the enhanced particle displacement in a collagen gel after using an ARF excitation was achieved.
Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyang, E-mail: chunyangliu@126.com; Sui, Xin; Yang, Fang
2014-03-15
A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of themore » microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.« less
Murphy, Shane M; Agrawal, Harshit; Sorooshian, Armin; Padró, Luz T; Gates, Harmony; Hersey, Scott; Welch, W A; Lung, H; Miller, J W; Cocker, David R; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H
2009-07-01
We report the first joint shipboard and airborne study focused on the chemical composition and water-uptake behavior of particulate ship emissions. The study focuses on emissions from the main propulsion engine of a Post-Panamax class container ship cruising off the central coast of California and burning heavy fuel oil. Shipboard sampling included micro-orifice uniform deposit impactors (MOUDI) with subsequent off-line analysis, whereas airborne measurements involved a number of real-time analyzers to characterize the plume aerosol, aged from a few seconds to over an hour. The mass ratio of particulate organic carbon to sulfate at the base of the ship stack was 0.23 +/- 0.03, and increased to 0.30 +/- 0.01 in the airborne exhaust plume, with the additional organic mass in the airborne plume being concentrated largely in particles below 100 nm in diameter. The organic to sulfate mass ratio in the exhaust aerosol remained constant during the first hour of plume dilution into the marine boundary layer. The mass spectrum of the organic fraction of the exhaust aerosol strongly resembles that of emissions from other diesel sources and appears to be predominantly hydrocarbon-like organic (HOA) material. Background aerosol which, based on air mass back trajectories, probably consisted of aged ship emissions and marine aerosol, contained a lower organic mass fraction than the fresh plume and had a much more oxidized organic component. A volume-weighted mixing rule is able to accurately predict hygroscopic growth factors in the background aerosol but measured and calculated growth factors do not agree for aerosols in the ship exhaust plume. Calculated CCN concentrations, at supersaturations ranging from 0.1 to 0.33%, agree well with measurements in the ship-exhaust plume. Using size-resolved chemical composition instead of bulk submicrometer composition has little effect on the predicted CCN concentrations because the cutoff diameter for CCN activation is larger than the diameter where the mass fraction of organic aerosol begins to increase significantly. The particle number emission factor estimated from this study is 1.3 x 10(16) (kg fuel)(-1), with less than 1/10 of the particles having diameters above 100 nm; 24% of particles (>10 nm in diameter) activate into cloud droplets at 0.3% supersaturation.
Light Emission Intensities of Luminescent Y2O3:Eu and Gd2O3:Eu Particles of Various Sizes
Adam, Jens; Metzger, Wilhelm; Koch, Marcus; Rogin, Peter; Coenen, Toon; Atchison, Jennifer S.; König, Peter
2017-01-01
There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature. PMID:28336860
NASA Astrophysics Data System (ADS)
Nyeki, S.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Hitzenberger, R.; Petzold, A.; Wilson, C. W.
2004-09-01
Size distributions (d > 15 nm) and volatile properties of combustion particles were measured during test-rig experiments on a jet engine, consisting of a combustor and three simulated turbine stages (HES). The combustor was operated to simulate legacy (inlet temperature 300°C) and contemporary (500°C) cruise conditions, using kerosene with three different fuel sulfur contents (FSC; 50, 400 and 1300 μg g-1). Measurements found that contemporary cruise conditions resulted in lower number emission indices (EIN15) and higher geometric mean particle diameter (dG) than for legacy conditions. Increasing FSC resulted in an overall increase in EIN15 and decrease in dG. The HES stages or fuel additive (APA101) had little influence on EIN15 or dG, however, this is uncertain due to the measurement variability. EIN15 for non-volatile particles was largely independent of all examined conditions.
Efficient transportation of nano-sized particles along slotted photonic crystal waveguide.
Lin, Pin-Tso; Lee, Po-Tsung
2012-01-30
We design a slotted photonic crystal waveguide (S-PhCW) and numerically propose that it can efficiently transport polystyrene particle with diameter as small as 50 nm in a 100 nm slot. Excellent optical confinement and slow light effect provided by the photonic crystal structure greatly enhance the optical force exerted on the particle. The S-PhCW can thus transport the particle with optical propulsion force as strong as 5.3 pN/W, which is over 10 times stronger than that generated by the slotted strip waveguide (S-SW). In addition, the vertical optical attraction force induced in the S-PhCW is over 2 times stronger than that of the S-SW. Therefore, the S-PhCW transports particles not only efficiently but also stably. We anticipate this waveguide structure will be beneficial for the future lab-on-chip development.
Addressing of LnCaP Cell Using Magnetic Particles Assisted Impedimetric Microelectrode.
Nguyen, Dung Thi Xuan; Tran, Trong Binh; Nguyen, Phuong-Diem; Min, Junhong
2016-03-01
In this study, we provide a facile, effective technique for a simple isolation and enrichment of low metastatic prostate tumor cell LNCaP using biocompatible, magnetic particles asissted impedimetric sensing system. Hydrophobic cell membrane anchors (BAM) were generated onto magnetic particles which diameters vary from 50 nm to 5 μm and were used to capture LNCaP cells from the suspension. Finally, magnetic particle-LNCaP complex were addressed onto the surface of the interdigitated microelectrode (IDM). Cell viability was monitored by our laboratory developed-technique Electrical Cell Substrate Impedance Sensing (ECIS). The results reavealed that 50 nm-magnetic particles showed best performance in terms of cell separation and cell viability. This technique provides a simple and efficient method for the direct addressing of LNCaP cell on the surface and enhances better understanding of cell behavior for cancer management in the near future.
NASA Astrophysics Data System (ADS)
Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori
2014-05-01
Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.
Theoretical deposition of carcinogenic particle aggregates in the upper respiratory tract.
Sturm, Robert
2013-10-01
Numerous particles suspended in the atmosphere are composed of smaller particular components that form aggregates with highly irregular shape. Such aggregates, among which dusts and soot are the most prominent examples, may be taken up into the respiratory tract and, in the worst case, initiate a malignant transformation of lung cells. Particle aggregates were theoretically modelled by using small spheres with equal diameters (1 nm) and arranging them randomly. This procedure resulted in the generation of various aggregate shapes (chain-like, loose, compact), for which essential parameters such as dynamic shape factors, χ, and aerodynamic diameters, dae , were computed. Deposition of aggregates consisting of 10, 50, 100, and 1,000 nano-spheres was simulated for the uppermost parts of the human respiratory system (extrathoracic region and airway generation 0 to 4), thereby distinguishing between sitting and light-work breathing as well as between nasal and oral inhalation. Based upon the modelling results, aggregate deposition in the human respiratory system can be described as a function of (I) aerodynamic diameter; (II) inhaled particle position within the airway system; and (III) breathing conditions. Therefore, highest deposition values were obtained for nano-scale aggregates (<10 nm), whereas larger aggregates exhibited slightly to significantly reduced deposition probabilities. Extrathoracic regions and uppermost bronchi (generations 0 to 1) were marked by most effective particle capture. Any increase of inhaled air volumes and reduction of breathing times resulted in an enhancement of deposition probabilities of larger particles. Based on the results derived from this study it may be concluded that small particle aggregates are accumulated in the uppermost compartments of the human respiratory tract, where they may unfold their unwholesome potential. In the case of carcinogenic particles being stored in epithelial cells for a longer time span, malignant transformations starting with the formation of cancerous cells and ending with the growth of a tumour have to be assumed.
Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking
NASA Astrophysics Data System (ADS)
Lim, Jitkang
The design, synthesis, and characterization of iron oxide core, gold shell nanoparticles are studied in this thesis. Firstly, nanoparticles with 18 +/- 1.7 nm diameter iron oxide cores with ˜5 nm thick gold shells were synthesized via a new seed-mediated electroless deposition method. The nanoparticles were superparamagnetic at room temperature and could be reversibly collected by a permanent magnet. These nanoparticles displayed a sharp localized surface plasmon resonance peak at 605 nm, as predicted by scattering theory, and their large scattering cross-section allowed them to be individually resolved in darkfield optical microscopy while undergoing Brownian motion in aqueous suspension. Later, commercially available 38 +/- 3.8 nm diameter spherical iron oxide nanoparticles (from Ocean Nanotech, Inc) were employed to make core-shell particles. These particles were decorated with cationic poly(diallyldimethylammonium chloride) (PDDA) which further promotes the attachment of small gold clusters. After gold seeding, the average hydrodynamic diameter of the core-shell particles is 172 +/- 65.9 nm. The magnetophoretic motion of these particles was guided by a piece of magnetized mu-metal. Individual particle trajectories were observed by darkfield optical microscopy. The typical magnetophoretic velocity achieved was within the range of 1--10 mum/sec. Random walk analysis performed on these particles while undergoing Brownian motion confirmed that individual particles were indeed being imaged. The particle size variation within the observed sample obtained through random walk analysis was within the size distribution obtained by dynamic light scattering. When the current to the solenoid used to magnetize the mu-metal was turned off, all the collected core-shell particles were readily redispersed by diffusion back into the surrounding environment. A Peclet number analysis was performed to probe the convective motion of nanospheres and nanorods under the influence of magnetophoresis and diffusion. Under most circumstances, magnetophoretic behavior dominates diffusion for nanorods, as the magnetic field lines tend to align the magnetic moment along the rod axis. The synthesis and dispersion of fluorophore-tagged nanorods are described. Fluorescence microscopy was employed to image the nanorod motion in a magnetic field gradient. The preliminary experimental data are consistent with the Peclet number analysis. Lastly, the colloidal stability of iron oxide core, gold shell nanoparticles in high ionic strength media was investigated. Such particles are sufficiently charged to be stable against flocculation without modification in low ionic strength media, but they require surface modification to be stably dispersed in elevated ionic strength media that are appropriate for biotechnological applications. Dynamic light scattering and ultraviolet-visible spectrophotometry were used to monitor the colloidal stability of core-shell particles in pH 7.4, 150 mM ionic strength phosphate buffered saline (PBS). While uncoated particles flocculated immediately upon being introduced into PBS, core-shell particles with adsorbed layers of bovine serum albumin or the amphiphilic triblock copolymers Pluronic F127 and Pluronic F68 resist flocculation after more than five days in PBS. Adsorbed dextran allowed flocculation that was limited to the formation of small clusters, while poly(ethylene glycol) homopolymers ranging in molecular weight from 6,000 to 100,000 were ineffective steric stabilizers. The effectiveness of adsorbed Pluronic copolymers as steric stabilizers was interpreted in terms of the measured adsorbed layer thickness and extended DLVO theory predictions of the interparticle interactions.
Surveying colloid sedimentation by coplanar waveguides
NASA Astrophysics Data System (ADS)
Duţu, C. A.; Vlad, A.; Roda-Neve, C.; Avram, I.; Sandu, G.; Raskin, J.-P.; Melinte, S.
2016-06-01
By using coplanar waveguides, direct access to the dielectric properties of aqueous solutions of polystyrene beads with different diameters from 330 nm to 10 μm is provided. The relative variation of the transmission parameter with respect to water is monitored, ranging from ˜ {3}% obtained for a 9.5% solution with 330 nm diameter beads to ˜22% for 10 μm diameter particles at the same concentration. To highlight its applicability in biosensing, the technique was further employed to survey the clustering between biotin and streptavidin-coated beads. The transmission parameter displays a ˜50% increase for mixtures containing nine volumes of biotin and one volume of streptavidin-modified beads (4.5 ng μl-1 of streptavidin) and reaches ˜400% higher values when equal volumes of biotin and streptavidin-coated beads (22.5 ng μl-1 of streptavidin) were mixed.
Modeling particle nucleation and growth over northern California during the 2010 CARES campaign
NASA Astrophysics Data System (ADS)
Lupascu, A.; Easter, R.; Zaveri, R.; Shrivastava, M.; Pekour, M.; Tomlinson, J.; Yang, Q.; Matsui, H.; Hodzic, A.; Zhang, Q.; Fast, J. D.
2015-11-01
Accurate representation of the aerosol lifecycle requires adequate modeling of the particle number concentration and size distribution in addition to their mass, which is often the focus of aerosol modeling studies. This paper compares particle number concentrations and size distributions as predicted by three empirical nucleation parameterizations in the Weather Research and Forecast coupled with chemistry (WRF-Chem) regional model using 20 discrete size bins ranging from 1 nm to 10 μm. Two of the parameterizations are based on H2SO4, while one is based on both H2SO4 and organic vapors. Budget diagnostic terms for transport, dry deposition, emissions, condensational growth, nucleation, and coagulation of aerosol particles have been added to the model and are used to analyze the differences in how the new particle formation parameterizations influence the evolving aerosol size distribution. The simulations are evaluated using measurements collected at surface sites and from a research aircraft during the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted in the vicinity of Sacramento, California. While all three parameterizations captured the temporal variation of the size distribution during observed nucleation events as well as the spatial variability in aerosol number, all overestimated by up to a factor of 2.5 the total particle number concentration for particle diameters greater than 10 nm. Using the budget diagnostic terms, we demonstrate that the combined H2SO4 and low-volatility organic vapor parameterization leads to a different diurnal variability of new particle formation and growth to larger sizes compared to the parameterizations based on only H2SO4. At the CARES urban ground site, peak nucleation rates are predicted to occur around 12:00 Pacific (local) standard time (PST) for the H2SO4 parameterizations, whereas the highest rates were predicted at 08:00 and 16:00 PST when low-volatility organic gases are included in the parameterization. This can be explained by higher anthropogenic emissions of organic vapors at these times as well as lower boundary-layer heights that reduce vertical mixing. The higher nucleation rates in the H2SO4-organic parameterization at these times were largely offset by losses due to coagulation. Despite the different budget terms for ultrafine particles, the 10-40 nm diameter particle number concentrations from all three parameterizations increased from 10:00 to 14:00 PST and then decreased later in the afternoon, consistent with changes in the observed size and number distribution. We found that newly formed particles could explain up to 20-30 % of predicted cloud condensation nuclei at 0.5 % supersaturation, depending on location and the specific nucleation parameterization. A sensitivity simulation using 12 discrete size bins ranging from 1 nm to 10 μm diameter gave a reasonable estimate of particle number and size distribution compared to the 20 size bin simulation, while reducing the associated computational cost by ~ 36 %.
Ultrafine particle and fiber production in micro-gravity
NASA Technical Reports Server (NTRS)
Webb, George W.
1987-01-01
The technique of evaporation and condensation of material in an inert gas is investigated for the purpose of preparing ultrafine particles (of order 10 nm in diameter) with a narrow distribution of sizes. Gravity-driven convection increases the rate of coalescence of the particles, leading to larger sizes and a broader distribution. Analysis and experimental efforts to investigate coalescence of particles are presented. The possibility of reducing coalescence in microgravity is discussed. An experimental test in reduced gravity to be performed in a KC135 aircraft is described briefly.
NASA Technical Reports Server (NTRS)
Heinemann, K.
1987-01-01
The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.
NASA Astrophysics Data System (ADS)
Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier
2017-04-01
Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.
Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei
2011-08-01
A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.
A scattering methodology for droplet sizing of e-cigarette aerosols.
Pratte, Pascal; Cosandey, Stéphane; Goujon-Ginglinger, Catherine
2016-10-01
Knowledge of the droplet size distribution of inhalable aerosols is important to predict aerosol deposition yield at various respiratory tract locations in human. Optical methodologies are usually preferred over the multi-stage cascade impactor for high-throughput measurements of aerosol particle/droplet size distributions. Evaluate the Laser Aerosol Spectrometer technology based on Polystyrene Sphere Latex (PSL) calibration curve applied for the experimental determination of droplet size distributions in the diameter range typical of commercial e-cigarette aerosols (147-1361 nm). This calibration procedure was tested for a TSI Laser Aerosol Spectrometer (LAS) operating at a wavelength of 633 nm and assessed against model di-ethyl-hexyl-sebacat (DEHS) droplets and e-cigarette aerosols. The PSL size response was measured, and intra- and between-day standard deviations calculated. DEHS droplet sizes were underestimated by 15-20% by the LAS when the PSL calibration curve was used; however, the intra- and between-day relative standard deviations were < 3%. This bias is attributed to the fact that the index of refraction of PSL calibrated particles is different in comparison to test aerosols. This 15-20% does not include the droplet evaporation component, which may reduce droplet size prior a measurement is performed. Aerosol concentration was measured accurately with a maximum uncertainty of 20%. Count median diameters and mass median aerodynamic diameters of selected e-cigarette aerosols ranged from 130-191 nm to 225-293 nm, respectively, similar to published values. The LAS instrument can be used to measure e-cigarette aerosol droplet size distributions with a bias underestimating the expected value by 15-20% when using a precise PSL calibration curve. Controlled variability of DEHS size measurements can be achieved with the LAS system; however, this method can only be applied to test aerosols having a refractive index close to that of PSL particles used for calibration.
NASA Astrophysics Data System (ADS)
Pinnick, Ronald G.; Hill, Steven C.; Pan, Yong-Le; Chang, Richard K.
We measured laser-induced fluorescence spectra from individual supermicron-sized atmospheric particles drawn into our laboratory at Adelphi, MD, an urban site in the Washington, DC metroplex. A virtural impactor concentrator is used along with an aerodynamic-focusing-nozzle which forms, within an optical chamber, a focused aerosol jet where single aerosol particles can be interrogated on-the-fly with a pulsed 266-nm-wavelength laser. Sample rates are a few liter per minute, and are size dependent. Crossed-diode laser beams indicate when a particle is traversing the sample region and are used to trigger the UV laser to fire and the gated intensified CCD to record the fluorescence spectrum. Our breadboard fluorescence particle spectrometer measures particles in the 3-10 μm diameter size range. Typical trigger rates are a few per second. The usable spectral range is from about 295 to 605 nm. The majority of the particles have very weak fluorescence (on average 8 percent of particles have fluorescence signals above noise). The spectra were grouped using a heirarchical cluster analysis, with parameters chosen so that spectra typically cluster into 4-12 main categories. From the set of all cluster spectra we chose 8 template spectra for reanalyzing all the data. On average, 92 percent (81-94 percent) of the spectra were similar to these templates (using the same thresholds used for the cluster analysis). The major emission bands of the most commonly occurring spectra have peaks: near 460 nm (28 percent of fluorescent particles on average), a very broad hump, and may be humic acids or humic like substances; near 317 nm (on average 24 percent of fluorescent particles); near 321 and 460 nm (a double hump, 12 percent of fluorescent particles); and near 341 nm (8 percent of fluorescent particles). Some of the fluorescence in spectra peaking in the 317-341 nm range is probably from dicyclic aromatics and heterocyclics, including the amino acid tryptophan in biological particles such as bacteria and spores.
Wintertime hygroscopicity and volatility of ambient urban aerosol particles
NASA Astrophysics Data System (ADS)
Enroth, Joonas; Mikkilä, Jyri; Németh, Zoltán; Kulmala, Markku; Salma, Imre
2018-04-01
Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a volatility-hygroscopicity tandem differential mobility analyser (VH-TDMA) system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014-2015. The probability density function of the hygroscopic growth factor (HGF) showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033) independently of the particle size and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF) also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The hygroscopic particles were ordinarily volatile. They could be composed of moderately transformed aged combustion particles consisting of partly oxygenated organics, inorganic salts and soot. The larger particles contained internally mixed non-volatile chemical species as a refractory residual in 20-25 % of the aerosol material (by volume).
Magnetic and structural properties of nanoparticles of nickel oxide
NASA Astrophysics Data System (ADS)
Shim, Hyunja (Jenny)
In this dissertation, magnetic properties of NiO nanoparticles (NP) prepared by the sol-gel method in the size range D = 5 nm to 20 nm, with and without oleic acid (OA) coating, are reported. Transmission electron microscopy (TEM) studies show the morphology of the smaller particles to be primarily rod-like, changing over to nearly spherical shapes for D >10 nm. Average sizes D of NP determined by x-ray diffraction (XRD) are compared with the results from TEM. From the analysis of the XRD line intensities, the particle size dependence of the Debye-Waller factors for Ni and O atoms are derived. It is found that the Debye-Waller factors of nickel and oxygen atoms in smaller particles are larger than those in bulk NiO. For the coated and uncoated NiO nanorods of 5 nm diameter, variations of the magnetization M with temperature T (5 K to 370 K) and temperature variations of the EMR (electron magnetic resonance) spectra were measured to determine the respective blocking temperatures TB(m) and TB(EMR). The following differences are noted: (1) TB(m) is reduced from 230 K (uncoated) to 85 K(coated) for H = 25 Oe; (2) Decrease of TB(m) with H is weaker and the ratio TB(EMR)/T B(m) is smaller for the uncoated particles. These differences are due to stronger interparticle interaction present in the uncoated particles. Temperature variation (5 K-300 K) of the AC magnetic susceptibilities (chi' and chi") at various frequencies f (0.1-10,000 Hz) are reported for the coated and uncoated 5 nm diameter nanorods of NiO. Using the peak in chi' as the blocking temperature TB, it is observed that TB increases with increasing f. The data for the two samples fit the Vogel-Fulcher law: f = f0exp[-Ea/k(TB-T0)] with f 0 = 9.2 x 1011 Hz, Ea/k = 1085 K and T0 = 162 K (0 K) for the uncoated (coated) particles. This shows that T0 provides a good measure of the effects of interparticle interactions on magnetic relaxation and that these interactions are essentially eliminated with the OA coating. For all the particles, measurements of M versus T (5 K-370 K) in the zero-field cooled (ZFC) and field-cooled (FC) modes are used to determine the average blocking temperature TP. For the OA coated particles, TP increases with increase in size D as expected for superparamagnetic particles. However for the uncoated NP, TP decreases initially with increase in size for D < 10 nm; but for D > 10 nm, TP follows the same trend as for the coated NP. These differences are interpreted in terms of significant interparticle interaction. The data of M vs. the applied field H for T > TP are fit to the modified Langevin function: M = M0 L (muPH/kBT) + chiaH, to determine the magnetic moment muP per particle as a function of size D. The variation of muP with size D is interpreted in terms of the fraction of spins on the surface layer of the particles which contribute to mu P. It is observed that this fraction varies as 1/D reaching nearly 100 % for the 5 nm particles. From the temperature dependence of M0 and extrapolating to M0 → 0, the Neel temperatures TN for various sizes are determined. TN for NiO nanoparticles is found to decreases rapidly with decrease in size for D < 10 nm.
Navarrette, Chelsea R; Sisson, Joseph H; Nance, Elizabeth; Allen-Gipson, Diane; Hanes, Justin; Wyatt, Todd A
2012-06-01
The lung's ability to trap and clear foreign particles via the mucociliary elevator is an important mechanism for protecting the lung against respirable irritants and microorganisms. Although cigarette smoke (CS) exposure and particulate inhalation are known to alter mucociliary clearance, little is known about how CS and nanoparticles (NPs) modify cilia beating at the cytoskeletal infrastructure, or axonemal, level. We used a cell-free model to introduce cigarette smoke extract (CSE) and NPs with variant size and surface chemistry to isolated axonemes and measured changes in ciliary motility. We hypothesized that CSE would alter cilia beating and that alterations in ciliary beat frequency (CBF) due to particulate matter would be size- and surface chemistry-dependent. Demembranated axonemes were isolated from ciliated bovine tracheas and exposed to adenosine triphosphate (ATP) to initiate motility. CBF was measured in response to 5% CSE, CSE filtrate, and carboxyl-modified (COOH), sulphate (SO(4))-modified (sulfonated), or PEG-coated polystyrene (PS) latex NPs ranging in size from 40 nm to 500 nm. CSE concentrations as low as 5% resulted in rapid, significant stimulation of CBF (p<0.05 vs. baseline control). Filtering CSE through a 0.2-μm filter attenuated this effect. Introduction of sulphate-modified PS beads ~300 nm in diameter resulted in a similar increase in CBF above baseline ATP levels. Uncharged, PEG-coated beads had no effect on CBF regardless of size. Similarly, COOH-coated particles less than 200 nm in diameter did not alter ciliary motility. However, COOH-coated PS particles larger than 300 nm increased CBF significantly and increased the number of motile points. These data show that NPs, including those found in CSE, mechanically stimulate axonemes in a size- and surface chemistry-dependent manner. Alterations in ciliary motility due to physicochemical properties of NPs may be important for inhalational lung injury and efficient drug delivery of respirable particles.
NASA Astrophysics Data System (ADS)
Lee, Eon S.; Ranasinghe, Dilhara R.; Ahangar, Faraz Enayati; Amini, Seyedmorteza; Mara, Steven; Choi, Wonsik; Paulson, Suzanne; Zhu, Yifang
2018-02-01
Traffic-related air pollutants are a significant public health concern, particularly near freeways. Previous studies have suggested either soundwall or vegetation barriers might reduce the near-freeway air pollution. This study aims to investigate the effectiveness of a combination of both soundwall and vegetation barrier for reducing ultrafine particles (UFPs, diameter ≤ 100 nm) and PM2.5 (diameter ≤ 2.5 μm) concentrations. Concurrent data collection was carried out at both upwind and downwind fixed locations approximately 10-15 m away from the edge of two major freeways in California. This study observed that the reduction of UFP and PM2.5 was generally greater with the combination barrier than with either soundwall or vegetation alone. Since there were no non-barrier sites at the study locations, the reductions reported here are all in relative terms. The soundwall barrier was more effective for reducing PM2.5 (25-53%) than UFPs (0-5%), and was most effective (51-53% for PM2.5) when the wind speed ranged between 1 and 2 m/s. Under the same range of wind speed, the vegetation barrier had little effect (0-5%) on reducing PM2.5; but was effective at reducing UFP (up to 50%). For both types of roadside barrier, decreasing wind speed resulted in greater net reduction of UFPs (i.e., total number particle concentrations; inversely proportional). This trend was observed, however, only within specific particle size ranges (i.e., diameter < 20 nm for the soundwall barrier and 12-60 nm for the vegetation barrier). Out of these size ranges, the reduction of UFP concentration was proportional to increasing wind speed. Overall findings of this study support positive effects of soundwall and vegetation barriers for near-freeway air pollution mitigation.
Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range.
Tanaka, Shunsuke; Nogami, Daisuke; Tsuda, Natsuki; Miyake, Yoshikazu
2009-06-15
Monodisperse titania spheres with particle diameters in the range 380-960 nm were successfully synthesized by hydrolysis and condensation of titanium tetraisopropoxide. The preparation was performed using ammonia or dodecylamine (DDA) as a catalyst in methanol/acetonitrile co-solvent at room temperature. The samples were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and nitrogen sorption measurement. The use of DDA was effective for the synthesis of monodisperse titania spheres with low coefficient of variation. When the titania spherical particles with coefficient of variation less than 4% were obtained, the colloidal crystallization easily occurred simply by centrifugation. The monodispersity was maintained even after crystallization of the particles by high temperature annealing. The titania particles prepared using DDA had mesopores near the surface of the spheres, providing high pore accessibility to the sphere from the surface-air interface. The particle size uniformity and photocatalytic reactivity of the titania prepared using DDA were higher than those of the titania prepared using ammonia.
NASA Astrophysics Data System (ADS)
Adachi, Kouji; Zaizen, Yuji; Kajino, Mizuo; Igarashi, Yasuhito
2014-05-01
Soot particles influence the global climate through interactions with sunlight. A coating on soot particles increases their light absorption by increasing their absorption cross section and cloud condensation nuclei activity when mixed with other hygroscopic aerosol components. Therefore, it is important to understand how soot internally mixes with other materials to accurately simulate its effects in climate models. In this study, we used a transmission electron microscope (TEM) with an auto particle analysis system, which enables more particles to be analyzed than a conventional TEM. Using the TEM, soot particle size and shape (shape factor) were determined with and without coating from samples collected at a remote mountain site in Japan. The results indicate that ~10% of aerosol particles between 60 and 350 nm in aerodynamic diameters contain or consist of soot particles and ~75% of soot particles were internally mixed with nonvolatile ammonium sulfate or other materials. In contrast to an assumption that coatings change soot shape, both internally and externally mixed soot particles had similar shape and size distributions. Larger aerosol particles had higher soot mixing ratios, i.e., more than 40% of aerosol particles with diameters >1 µm had soot inclusions, whereas <20% of aerosol particles with diameters <1 µm included soot. Our results suggest that climate models may use the same size distributions and shapes for both internally and externally mixed soot; however, changing the soot mixing ratios in the different aerosol size bins is necessary.
Dasch, Jean; D'Arcy, James
2008-07-01
Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles <100 nm. About half the mass of aluminum welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels.
Fine and ultrafine particle doses in the respiratory tract from digital printing operations.
Voliotis, Aristeidis; Karali, Irene; Kouras, Athanasios; Samara, Constantini
2017-01-01
In this study, we report for the first time particle number doses in different parts of the human respiratory tract and real-time deposition rates for particles in the 10 nm to 10 μm size range emitted by digital printing operations. Particle number concentrations (PNCs) and size distribution were measured in a typical small-sized printing house using a NanoScan scanning mobility particle sizer and an optical particle sizer. Particle doses in human lung were estimated applying a multiple-path particle dosimetry model under two different breathing scenarios. PNC was dominated by the ultrafine particle fractions (UFPs, i.e., particles smaller than 100 nm) exhibiting almost nine times higher levels in comparison to the background values. The average deposition rate fοr each scenario in the whole lung was estimated at 2.0 and 2.9 × 10 7 particles min -1 , while the respective highest particle dose in the tracheobronchial tree (2.0 and 2.9 × 10 9 particles) was found for diameter of 50 nm. The majority of particles appeared to deposit in the acinar region and most of them were in the UFP size range. For both scenarios, the maximum deposition density (9.5 × 10 7 and 1.5 × 10 8 particles cm -2 ) was observed at the lobar bronchi. Overall, the differences in the estimated particle doses between the two scenarios were 30-40% for both size ranges.
Application of close-packed structures in dental resin composites.
Wang, Ruili; Habib, Eric; Zhu, X X
2017-03-01
The inorganic filler particles in dental resin composites serve to improve their mechanical properties and reduce polymerization shrinkage during their use. Efforts have been made in academia and industry to increase the filler particle content, but, few studies examine the theoretical basis for the maximum particle loading. This work evaluates the packing of spherical particles in a close-packed state for highly loaded composites. Calculations show that for low dispersity particles, the maximum amount of particles is 74.05vol%, regardless of the particle size. This can be further improved by using a mix of large and small particles or by the use of non-spherical particles. For representative spherical particles with a diameter of 1000nm, two types of secondary particles with respective sizes of 414nm (d I ) and 225nm (d II ) are selected. The results show that after embedding secondary particles I & II into primary spherical particles, the packing factor is increased to 81.19% for the close-packed structures, which shows an improvement of 9.64%, compared to the 74.05% obtained only with primary spherical particles. This packing factor is also higher than either structure with the embedded secondary particles I or II. Examples of these mixtures with different spherical particle sizes are shown as a theoretical estimation, serving as a guideline for the design and formulation of new dental resin composites with better properties and improved performance. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Toward Reconciliation of STEM and SAXS Data from Ionomers by Investigating Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Benetatos, Nicholas; Smith, Brian; Heiney, Paul; Winey, Karen
2005-03-01
We have recently pioneered the use of scanning transmission electron microscopy (STEM) for direct, model independent imaging of the nano-scale morphology of ionomers. To date, the sizes of ionic aggregates determined in STEM experiments are inconsistent with SAXS data interpreted by the Yarusso-Cooper model. To address this discrepancy we have investigated a pair of model nanoparticles (11 and 55 atom Au clusters) with both STEM and SAXS. Using this model system we have improved our method of measuring nanometer scale objects and evaluated the importance of STEM probe size and specimen thickness. While the size of the STEM probe was inconsequential, specimen thicker than 50 nm showed significant depreciation of image quality, which limits our ability to accurately measure particle size. SAXS was performed on dilute suspensions of nanoparticles and fit using a monodisperse, hard-sphere form factor model. For Au11, STEM finds a diameter of 1.3 nm + .14 and SAXS finds a diameter of 1.4 nm. Similarly, both STEM and SAXS determine a diameter of 1.7 nm for Au55. Analysis of these model systems have allowed us to evaluate several factors of potential importance in reconciling STEM and SAXS data from ionomers.
Effect of ultrasonic treatment and temperature on nanocrystalline TiO 2
NASA Astrophysics Data System (ADS)
Kim, D. H.; Ryu, H. W.; Moon, J. H.; Kim, J.
Nanocrystalline TiO 2 particles were precipitated from the ethanol solution of titanium isopropoxide (Ti(O- iPr) 4) and H 2O 2 by refluxing at 80 °C for 48 h. The obtained particles were filtered and dried at 100 °C for 12 h. The dried powder itself, the sample with heating at 400 °C, and the sample with ultrasonically treating were prepared to investigate the effects of post treatments on materials characteristics and electrochemical properties of nanocrystalline TiO 2. The X-ray diffraction patterns of all of the samples were fitted well to the anatase phase. The field emission-TEM image of as-prepared sample shows a uniform spherical morphology with 5 nm particle size and the sample heated at 400 °C shows slightly increased particle size of about 10 nm while maintaining spherical shape. The sample treated with ultrasonic for 5 h or more at room temperature shows high aspect ratio particle shape with an average diameter of 5 nm and a length of 20 nm. According to the results of the electrochemical testing, as-prepared sample, the sample heated at 400 °C for 3 h, and the sample treated with ultrasonic show initial capacities of 270, 310 and 340 mAh g -1, respectively.
Traffic emission factors of ultrafine particles: effects from ambient air.
Janhäll, Sara; Molnar, Peter; Hallquist, Mattias
2012-09-01
Ultrafine particles have a significant detrimental effect on both human health and climate. In order to abate this problem, it is necessary to identify the sources of ultrafine particles. A parameterisation method is presented for estimating the levels of traffic-emitted ultrafine particles in terms of variables describing the ambient conditions. The method is versatile and could easily be applied to similar datasets in other environments. The data used were collected during a four-week period in February 2005, in Gothenburg, as part of the Göte-2005 campaign. The specific variables tested were temperature (T), relative humidity (RH), carbon monoxide concentration (CO), and the concentration of particles up to 10 μm diameter (PM(10)); all indicators are of importance for aerosol processes such as coagulation and gas-particle partitioning. These variables were selected because of their direct effect on aerosol processes (T and RH) or as proxies for aerosol surface area (CO and PM(10)) and because of their availability in local monitoring programmes, increasing the usability of the parameterization. Emission factors are presented for 10-100 nm particles (ultrafine particles; EF(ufp)), for 10-40 nm particles (EF(10-40)), and for 40-100 nm particles (EF(40-100)). For EF(40-100) no effect of ambient conditions was found. The emission factor equations are calculated based on an emission factor for NO(x) of 1 g km(-1), thus the particle emission factors are easily expressed in units of particles per gram of NO(x) emitted. For 10-100 nm particles the emission factor is EF(ufp) = 1.8 × 10(15) × (1 - 0.095 × CO - 3.2 × 10(-3) × T) particles km(-1). Alternative equations for the EFs in terms of T and PM(10) concentration are also presented.
Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.
Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand
2005-07-19
Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.
A thermal desorption mass spectrometer for freshly nucleated secondary aerosol particles
NASA Astrophysics Data System (ADS)
Held, A.; Gonser, S. G.
2012-04-01
Secondary aerosol formation in the atmosphere is observed in a large variety of locations worldwide, introducing new particles to the atmosphere which can grow to sizes relevant for health and climate effects of aerosols. The chemical reactions leading to atmospheric secondary aerosol formation are not yet fully understood. At the same time, analyzing the chemical composition of freshly nucleated particles is still a challenging task. We are currently finishing the development of a field portable aerosol mass spectrometer for nucleation particles with diameters smaller than 30 nm. This instrument consists of a custom-built aerosol sizing and collection unit coupled to a time-of-flight mass spectrometer (TOF-MS). The aerosol sizing and collection unit is composed of three major parts: (1) a unipolar corona aerosol charger, (2) a radial differential mobility analyzer (rDMA) for aerosol size separation, and (3) an electrostatic precipitator for aerosol collection. After collection, the aerosol sample is thermally desorbed, and the resulting gas sample is transferred to the TOF-MS for chemical analysis. The unipolar charger is based on corona discharge from carbon fibres (e.g. Han et al., 2008). This design allows efficient charging at voltages below 2 kV, thus eliminating the potential for ozone production which would interfere with the collected aerosol. With the current configuration the extrinsic charging efficiency for 20 nm particles is 32 %. The compact radial DMA similar to the design of Zhang et al. (1995) is optimized for a diameter range from 1 nm to 100 nm. Preliminary tests show that monodisperse aerosol samples (geometric standard deviation of 1.09) at 10 nm, 20 nm, and 30 nm can easily be separated from the ambient polydisperse aerosol population. Finally, the size-segregated aerosol sample is collected on a high-voltage biased metal filament. The collected sample is protected from contamination using a He sheath counterflow. Resistive heating of the filament allows temperature-controlled desorption of compounds of different volatility. We will present preliminary characterization experiments of the aerosol sizing and collection unit coupled to the mass spectrometer. Funding by the German Research Foundation (DFG) under grant DFG HE5214/3-1 is gratefully acknowledged. Han, B., Kim, H.J., Kim, Y.J., and Sioutas, C. (2008) Unipolar charging of ultrafine particles using carbon fiber ionizers. Aerosol Sci. Technol, 42, 793-800. Zhang, S.-H., Akutsu, Y., Russell, L.M., Flagan, R.C., and Seinfeld, J.H. (1995) Radial Differential Mobility Analyzer. Aerosol Sci. Technol, 23, 357-372.
Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.
Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L
2014-10-11
Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.
NASA Astrophysics Data System (ADS)
Jolhe, P. D.; Bhanvase, B. A.; Patil, V. S.; Sonawane, S. H.
The present work deals with the investigation of the greener route for the production of silver nanoparticles using Raphanus sativus (R. sativus) bioextract in a continuous flow tubular microreactor. The parameters affecting the particle size and distribution were investigated. From the results obtained it can be inferred that the ascorbic acid (reducing agent) present in the R. sativus bioextract is responsible for the reduction of silver ions. At optimum condition, the particle size distribution of nanoparticles is found between 18nm and 39nm. The absorbance value was found to be decreased with an increase in the diameter of the microreactor. It indicates that a number of nuclei are formed in the micrometer sized (diameter) reactor because of the better solute transfer rate leading to the formation of large number of silver nanoparticles. The study of antibacterial activity of green synthesized silver nanoparticles shows effective inhibitory activity against waterborne pathogens, Shegella and Listeria bacteria.
NASA Astrophysics Data System (ADS)
Karatay, Ahmet; Küçüköz, Betül; Pekdemir, Sami; Onses, Mustafa Serdar; Elmali, Ayhan
2017-11-01
We have investigated the plasmonic properties of heterostructures that consist of gold nanosphere (NSs) with average diameters of 60 nm, 40 nm and 20 nm on poly (ethylene glycol) (PEG) brushes by using ultrafast pump-probe spectroscopy experiments. Gold NSs start to behave like gold nanorods with increasing number of immobilization cycles due to the close proximity. Gold NSs immobilized by 3 and 5 deposition cycles show longitudinal modes of plasmon bands at long wavelengths which are characteristic behaviors for gold nanorods. Increasing the number of immobilization cycle also increase relaxation times of samples due to the close proximity. Linear absorption spectra and scanning electron microscopy images show that there are close packing assemblies for heterostructures containing 20 nm gold NSs as the small particle. Ultrafast electron transfer (<100 fs) occurs between transverse and longitudinal modes by exciting the samples at both 520 nm and 650 nm. Further, experimental results indicate that, heterostructures with the small particles have faster relaxation times than other heterostructures due to closed packing of 20 nm gold NSs.
Evaluation of Aluminum Participation in the Development of Reactive Waves in Shock Compressed HMX
NASA Astrophysics Data System (ADS)
Pahl, R. J.; Trott, W. M.; Snedigar, S.; Castañeda, J. N.
2006-07-01
A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300μm) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-μm and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visible induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.
Deposition of ultrafine (nano) particles in the human lung.
Asgharian, Bahman; Price, Owen T
2007-10-01
Increased production of industrial devices constructed with nanostructured materials raises the possibility of environmental and occupational human exposure with consequent adverse health effects. Ultrafine (nano) particles are suspected of having increased toxicity due to their size characteristics that serve as carrier transports. For this reason, it is critical to refine and improve existing deposition models in the nano-size range. A mathematical model of nanoparticle transport by airflow convection, axial diffusion, and convective mixing (dispersion) was developed in realistic stochastically generated asymmetric human lung geometries. The cross-sectional averaged convective-diffusion equation was solved analytically to find closed-form solutions for particle concentration and losses per lung airway. Airway losses were combined to find lobar, regional, and total lung deposition. Axial transport by diffusion and dispersion was found to have an effect on particle deposition. The primary impact was in the pulmonary region of the lung for particles larger than 10 nm in diameter. Particles below 10 nm in diameter were effectively removed from the inhaled air in the tracheobronchial region with little or no penetration into the pulmonary region. Significant variation in deposition was observed when different asymmetric lung geometries were used. Lobar deposition was found to be highest in the left lower lobe. Good agreement was found between predicted depositions of ultrafine (nano) particles with measurements in the literature. The approach used in the proposed model is recommended for more realistic assessment of regional deposition of diffusion-dominated particles in the lung, as it provides a means to more accurately relate exposure and dose to lung injury and other biological responses.
Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Rui; Levard, Clément; Marinakos, Stella M.
2012-04-02
The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure asmore » a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.« less
Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm
NASA Astrophysics Data System (ADS)
Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew
2016-04-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.
NASA Astrophysics Data System (ADS)
Hejkrlík, Libor; Plachá, Helena
2017-04-01
Number concentrations of fine particles had been measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of one hour since June 2012 to December 2015 at a background urban site in Northern Bohemia. At nearly the same place hourly means of three meteorological elements were available (air temperature Th, relative air humidity Hh and global radiation Rh) and as a complementary index of atmospheric pollution the mass concentrations of PM1-BC (black carbon). The whole period of observations covered 1309 days, periodically involving all of the seasons of the year. Th varied between 11,2 ˚ C and 36,1 ˚ C, for Hh it was between 21% and 100% and Rh reached its extremes between 0,2 and 940,5 W/m2 (night hours were excluded). Resulting number of analyzed rows of 11 variables was approximately 14 000. The nearly-continuous combinations of meteorological data were transformed into three-dimensional matrix where Th,Hh and Rh were assigned only few discrete values (48, 13 and 13 respectively). In the cells of the 3D matrix mean concentrations of different modes of fine particles and of PM1-BC were calculated. The results were displayed in the form of XYZ bubble graph, diameters of the spheres being the fourth dimension. The results offer insight into relation between sub-micron particles concentrations and meteorological conditions on parallel time basis. The nucleation mode of nanoparticles (10-30 nm) demonstrate strong proliferation (N˜104/cm3/hour) under extreme both temperature and solar radiation while air moisture remains moderate. The effect is less obvious for Aitken mode (30-70 nm) and fades gradually away for fine particles (100-800 nm, N˜103/cm3/hour). Particles PM1-BC (≤ 1000 nm, Cm ˜1 μg/m3/hour), measured by MAAP, show considerable affinity to low visibility and high humidity but the overall picture persists, what may serve as a proof of equivalence of the measuring procedures.
NASA Astrophysics Data System (ADS)
Rodríguez, S.; van Dingenen, R.; Putaud, J.-P.; Dell'Acqua, A.; Pey, J.; Querol, X.; Alastuey, A.; Chenery, S.; Ho, K.-F.; Harrison, R. M.; Tardivo, R.; Scarnato, B.; Gianelle, V.
2007-01-01
A physicochemical characterization of the urban fine aerosol (aerosol number size distribution, chemical composition and mass concentrations) in Milan, Barcelona and London is presented in this article. The objective is to obtain a comprehensive picture on the involvement of the microphysical processes of the aerosol dynamic in the: 1) regular evolution of the urban aerosol (daily, weekly and seasonal basis) and in the day-to-day variations (from clean-air to pollution-events), and 2) link between "aerosol chemistry and mass concentrations" with the "number size distribution". The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with the number concentration of particles >100 nm (which only accounts for <20% of the total number concentration N of fine aerosols) and do not correlate with the number of particles <100 nm ("ultrafine particles", which accounts for >80% of fine particles). Organic matter (OM) and black-carbon (BC) are the only aerosol components showing a significant correlation with ultrafine particles (attributed to vehicles emissions), whereas ammonium-nitrate, ammonium-sulphate and also OM and BC correlate with N>100(nm) (attributed to gas-to-particle transformation mechanisms and some primary emissions). Time series of the aerosol DpN diameter (dN/dlogD mode), mass PM2.5 concentrations and number N>100(nm) concentrations, exhibit correlated day-to-day variations which point to a significant involvement of condensation of semi-volatile compounds during urban pollution events. This agrees with the fact that ammonium-nitrate is the component exhibiting the highest increases from mid-to-high pollution episodes, when the highest DpN increases are observed. The results indicates that "fine PM2.5 particles urban pollution events" tend to occur when condensation processes have made particles grow enough to produce significant concentrations of N>100(nm). In contrast, because the low contribution of ultrafine particles to the fine aerosol mass concentrations, high "ultrafine particles N<100(nm) events" frequently occurs under low PM2.5 conditions. The data of this study point that vehicles emissions are strongly involved in this ultrafine particles aerosol pollution (for example, the "morning-rush-hours to nocturnal-background" concentrations ratio is 1.5-2.5 for "particles 10-100 nm" and <1.5 for both "particle >100 nm and PM2.5").
Kumar, Santosh; Ravikumar, Chettiannan; Bandyopadhyaya, Rajdip
2010-12-07
Monte Carlo simulation results predicting the state of dispersion (single, dimer, trimer, and so on) of coated superparamagnetic iron oxide (Fe(3)O(4)) nanoparticles in an aqueous medium are compared with our experimental data for the same. Measured values of the volume percentage of particles in the dispersion, core particle diameter, coating-shell thickness, grafting density of the coating agent, saturation magnetization, and zeta potential for the citric acid-coated and poly(acrylic acid) [PAA]-coated particles have been used in our simulation. The simulation was performed by calculating the total interaction potential between two nanoparticles as a function of their interparticle distance and applying a criterion for the two particles to aggregate, with the criterion being that the minimum depth of the secondary minima in the total interaction potential must be at least equal to k(B)T. Simulation results successfully predicted both experimental trends-aggregates for citric acid-coated particles and an individual isolated state for PAA-coated particles. We have also investigated how this state changes for both kind of coating agents by varying the particle volume percentage from 0.01 to 25%, the particle diameter from 2 to 19 nm, the shell thickness from 1 to 14 nm, and grafting density from 10(15) to 10(22) molecules/m(2). We find that the use of a lower shell thickness and a higher particle volume percentage leads to the formation of larger aggregates. The possible range of values of these four variables, which can be used experimentally to prepare a stable aqueous dispersion of isolated particles, is recommended on the basis of predictions from our simulation.
Mössbauer spectra of iron (III) sulfide particles
NASA Astrophysics Data System (ADS)
Kubono, I.; Nishida, N.; Kobayashi, Y.; Yamada, Y.
2017-11-01
Trivalent iron sulfide (Fe2 S 3) particles were synthesized using a modified polyol method. These particles exhibited a needle-like shape (diameter = 10-50 nm, length = 350-1000 nm) and generated a clear XRD pattern. Mössbauer spectra of the product showed a paramagnetic doublet at room temperature and distributed hyperfine magnetic splitting at low temperature. The Curie temperature of this material was determined to be approximately 60 K. The data suggest that the Fe2 S 3 had a structure similar to that of maghemite ( γ-Fe2 O 3) with a lattice constant of a = 10.6 Å. The XRD pattern calculated from this structure was in agreement with the experimental pattern and the calculated hyperfine magnetic field was also equivalent to that observed in the experimental Mössbauer spectrum.
Particle size distribution control of Pt particles used for particle gun
NASA Astrophysics Data System (ADS)
Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.
2017-07-01
The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.
Synthesis of praseodymium-ion-doped perovskite nanophosphor in supercritical water
NASA Astrophysics Data System (ADS)
Hakuta, Yukiya; Sue, Kiwamu; Takashima, Hiroshi
2018-05-01
We report the synthesis of praseodymium-doped calcium strontium titanate nanoparticles, (Ca0.6Sr0.4)0.997Pr0.002TiO3 (PCSTO), using hydrothermal synthesis under supercritical water conditions and the production of red luminescence. Starting solutions were prepared by dissolving calcium nitrate, strontium nitrate, titanium hydroxide sols, and praseodymium nitrate in distilled water. We investigated the effect of the reaction temperature, concentration, and pH of the starting solution on the luminescence properties. Synthesis was conducted at temperatures of 200 °C–400 °C, a reaction pressure of 30 MPa, and for reaction times of 4–20 s. The Pr concentration was set to 0.2 mol% relative to the (Ca0.6Sr0.4) ions. We also investigated the effect of high temperature annealing on the luminescence properties of the PCSTO nanoparticles. Particle characteristics were evaluated using x-ray diffraction, a scanning transmission electron microscope (STEM) equipped with an energy-dispersive x-ray spectrometer, and a fluorometer. Single-phase perovskite particles were obtained at hydrothermal reaction temperatures of over 300 °C even for a reaction time of several seconds. STEM images showed that the particles had cubic-like shapes with diameters of 8–13 nm and that they were chemically homogeneous. The PCSTO nanoparticles exhibited sharp red luminescence at 612 nm corresponding to the f–f transition of Pr3+ ions. Moreover, annealing at 1000 °C led to particle growth, achieving diameters of 40 nm and an increase in the quantum efficiency to around 12.0%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, D.S.; Moloto, M.J., E-mail: makwenam@vut.ac.za; Moloto, N.
Highlights: • Ag{sub 2}Se nanoparticles produced spherical particles with sizes 12 nm (180 °C) and 27 nm (200 °C). • Higher temperature produced increased particle size (∼75 nm) and changed in shape. • Ag{sub 2}Se nanoparticles (0.2–0.6%) added into PVP (35–45%) to yield reduced fiber beading. • Polymer nanofibers electrospun at 11–20 kV produced fiber diameters of 425–461 nm. • Optical properties in the fibers were observed due to the Ag{sub 2}Se nanoparticles loaded. - Abstract: Electrospinning is the most common technique for fabricating polymer fibers as well as nanoparticles embedded polymer fibers. Silver selenide nanoparticles were synthesized using tri-n-octylphosphinemore » (TOP) as solvent and tri-n-octylphosphine oxide (TOPO) as capping environment. Silver selenide was prepared by reacting silver nitrate and selenium with tri-n-octylphosphine (TOP) to form TOP–Ag and TOP–Se solutions. Both absorption and emission spectra signify the formation of nanoparticles as well as the TEM which revealed spherical particles with an average particle size of 22 nm. The polymer, PVP used was prepared at concentrations ranging from (35 to 45 wt%) and the TOPO-capped silver selenide nanoparticles (0.2 and 0.6 wt%) were incorporated into them and electrospun by varying the voltage from 11 to 20 kV. The SEM images of the Ag{sub 2}Se/PVP composite fibers revealed the fibers of diameters with average values of 425 and 461 nm. The X-ray diffraction results show peaks which were identified due to α-Ag{sub 2}Se body centered cubic compound. The sharp peak observed for all the samples at 2θ = 44.5 suggest the presence of Ag in the face centered cubic which can be attributed to higher concentration of silver nitrate used with molar ratio of selenium to silver and the abundance of silver in the silver selenide crystal. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible spectroscopy were used to characterize the structure of the PVP/Ag{sub 2}Se composite fibers.« less
Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes
NASA Astrophysics Data System (ADS)
Liu, Chao; Yu, Meihua; Li, Yang; Li, Jiansheng; Wang, Jing; Yu, Chengzhong; Wang, Lianjun
2015-07-01
Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and small particle sizes may have excellent potential in drug/gene delivery.Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and small particle sizes may have excellent potential in drug/gene delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02389k
Size dependent compressibility of nano-ceria: Minimum near 33 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua
2015-04-20
We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less
GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM
NASA Astrophysics Data System (ADS)
Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac
2016-05-01
Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.
Nanoparticle Distributions in Cancer and other Cells from Light Transmission Spectroscopy
NASA Astrophysics Data System (ADS)
Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Tanner, Carol; Ruggiero, Steven
We have measured the optical properties of whole cells and lysates using light transmission spectroscopy (LTS). LTS provides both the optical extinction coefficient in the wavelength range from 220 to 1100 nm and (by spectral inversion using a Mie model) the particle distribution density in the size range from 1 to 3000 nm. Our current work involves whole cells and lysates of cultured human oral cells and other plant and animal cells. We have found systematic differences in the optical extinction between cancer and normal whole cells and lysates, which translate to different particle size distributions (PSDs) for these materials. We have also found specific power-law dependences of particle density with particle diameter for cell lysates. This suggests a universality of the packing distribution in cells that can be compared to ideal Apollonian packing, with the cell modeled as a fractal body comprised of spheres on all size scales.
Subcellular Nanoparticle Distribution from Light Transmission Spectroscopy
NASA Astrophysics Data System (ADS)
Deatsch, Alison; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven
We have measured the particle-size distribution (PSD) of subcellular structures in plant and animal cells. We have employed a new technique developed by our group, Light Transmission Spectroscopy-combined with cell fractionation-to accurately measure PSDs over a wide size range: from 10 nm to 3000nm, which includes objects from the size of individual proteins to organelles. To date our experiments have included cultured human oral cells and spinach cells. These results show a power-law dependence of particle density with particle diameter, implying a universality of the packing distribution. We discuss modeling the cell as a self-similar (fractal) body comprised of spheres on all size scales. This goal of this work is to obtain a better understanding of the fundamental nature of particle packing within cells in order to enrich our knowledge of the structure, function, and interactions of sub-cellular nanostructures across cell types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, P T; McJimpsey, E L; Coffee, K R
2006-03-16
The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fullymore » analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.« less
Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi
2017-05-01
The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p < 0.05). The in silico multi-scale model established in this study demonstrates that the Young's moduli, Poisson's ratios, and compressive strengths of CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.
NASA Astrophysics Data System (ADS)
Palmgren, Finn; Wåhlin, Peter; Kildesø, Jan; Afshari, Alireza; Fogh, Christian L.
The population is mainly exposed to high air pollution concentrations in the urban environment, where motor vehicle emissions constitute the main source of fine and ultrafine particles. These particles can penetrate deep into the respiratory system, and studies indicate that the smaller the particle, the larger the health impacts. The chemical composition, surface reactivity and physical properties are also important. However, the knowledge about chemical and physical properties of particles and the temporal and spatial variability of the smallest particles is still very limited. The present study summarises the first results of a larger project with the aims to improve the knowledge. The concentration and the emissions of ultrafine particles from petrol and diesel vehicles, respectively, have been quantified using Scanning Mobility Particle Sizer of ultrafine particles in the size range 6-700 nm and routine monitoring data from urban streets and urban background in Denmark. The quantification was carried out using receptor modelling. The number size distributions of petrol and diesel emissions showed a maximum at 20-30 nm and non-traffic at ≈100 nm. The contribution of ultrafine particles from diesel vehicles is dominating in streets. The same technique has been applied on PM 10, and ≈50% contribution from non-traffic. The technique has also been introduced in relation to elemental and organic carbon, and the first data showed strong correlation between traffic pollution and elemental carbon. The outdoor air quality has a significant effect on indoor pollution levels, and we spend most of the time indoors. Knowledge about the influence of ambient air pollution on the concentrations in the indoor environment is therefore crucial for assessment of human health effects of traffic pollution. The results of our studies will be included in air quality models for calculation of human exposure. Preliminary results from our first campaign showed, that the deposition rate of particles in the apartment is negligible in the particle size range 100-500 nm. In the size range below 100 nm the deposition rate increases with decreasing particle diameter to a value of approximately 1 h -1 at 10 nm. The penetration efficiency shows a maximum of 60% at 100 nm. More detailed studies of exchange of particles in outdoor/indoor air and the transformation are planned to take place during three next campaigns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less
Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; ...
2016-11-03
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models,more » which predict a higher dimethylaminium fraction when NH 3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO 2 to sulfate. Furthermore, these results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm.« less
New particle formation in the Svalbard region 2006-2015
NASA Astrophysics Data System (ADS)
Heintzenberg, Jost; Tunved, Peter; Galí, Martí; Leck, Caroline
2017-05-01
Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical banana type
of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multi-size growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard. Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.
Glass Frit Filters for Collecting Metal Oxide Nanoparticles
NASA Technical Reports Server (NTRS)
Ackerman, John; Buttry, Dan; Irvine, Geoffrey; Pope, John
2005-01-01
Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.
Effect of particle size on ferroelectric and magnetic properties of BiFeO₃ nanopowders.
Escobar Castillo, M; Shvartsman, V V; Gobeljic, D; Gao, Y; Landers, J; Wende, H; Lupascu, D C
2013-09-06
The ferroelectric and magnetic behaviour of multiferroic BiFeO₃ nanoparticles has been studied using piezoresponse force microscopy (PFM), Mössbauer spectroscopy and SQUID magnetometry. The results of the PFM studies indicate a decay of the spontaneous polarization with decreasing particle size. Nevertheless, particles with diameter ∼50 nm still manifest ferroelectric behaviour. At the same time these particles are weakly ferromagnetic. The Mössbauer spectroscopy studies prove that the weak ferromagnetic state is due to non-compensated surface spins rather than distortions of the cycloidal spin structure characteristic for bulk BiFeO₃.
Lolla, Dinesh; Lolla, Manideep; Abutaleb, Ahmed; Shin, Hyeon U.; Reneker, Darrell H.; Chase, George G.
2016-01-01
Electrospun polyvinylidene fluoride (PVDF) fiber mats with average fiber diameters (≈200 nm, ≈2000 nm) were fabricated by controlled electrospinning conditions. These fiber mats were polarized using a custom-made device to enhance the formation of the electret β-phase ferroelectric property of the fibers by simultaneous uniaxial stretching of the fiber mat and heating the mat to the Curie temperature of the PVDF polymer in a strong electric field of 2.5 kV/cm. Scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and Brunauer-Emmett-Teller (BET) surface area analyses were performed to characterize both the internal and external morphologies of the fiber mat samples to study polarization-associated changes. MATLAB simulations revealed the changes in the paths of the electric fields and the magnetic flux inside the polarization field with inclusion of the ferroelectric fiber mats. Both polarized and unpolarized fiber mats were challenged as filters against NaCl particles with average particle diameters of about 150 nm using a TSI 8130 to study capture efficiencies and relative pressure drops. Twelve filter experiments were conducted on each sample at one month time intervals between experiments to evaluate the reduction of the polarization enhancement over time. The results showed negligible polarization loss for the 200-nm fiber sample. The polarized mats had the highest filter efficiencies and lowest pressure drops. PMID:28773798
NASA Astrophysics Data System (ADS)
Li, Shengli; Long, Beihong; Wang, Zichen; Tian, Yumei; Zheng, Yunhui; Zhang, Qian
2010-04-01
Zinc borate (2ZnO·3B 2O 3·3.5H 2O) has relatively high dehydration on-set temperature which property permits processing in a wide range of polymer system. But zinc borate particles are hardly dispersed in a polymer matrix so that they prevent their using in industry. To address this problem, we synthesized hydrophobic zinc borate (2ZnO·3B 2O 3·3.5H 2O) nanoflakes by employing solid-liquid reaction of zinc oxide (ZnO) and boric acid (H 3BO 3) in the presence of oleic acid. This method does not bring pollution. By conducting morphological and microscopic analyses, we found that this compound displayed nanoflake morphology with particle size of around 100-200 nm, thickness less than 100 nm and there were uniform mesopores with the diameter about 10 nm within the particles. Furthermore, our products had an effect on flame retardant of polyethylene, especially when the zinc borate was modified by oleic acid.
Study of preparation of TiB{sub 2} by TiC in Al melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding Haimin; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061; Liu Xiangfa, E-mail: xfliu@sdu.edu.cn
2012-01-15
TiB{sub 2} particles are prepared by TiC in Al melts and the characteristics of them are studied. It is found that TiC particles are unstable when boron exists in Al melts with high temperature and will transform to TiB{sub 2} and Al{sub 4}C{sub 3}. Most of the synthesized TiB{sub 2} particles are regular hexagonal prisms with submicron size. The diameter of the undersurfaces of these prisms is ranging from 200 nm to 1 {mu}m and the height is ranging from 100 nm to 300 nm. It is considered that controlling the transformation from TiC to TiB{sub 2} is an effectivemore » method to prepare small and uniform TiB{sub 2} particles. - Highlights: Black-Right-Pointing-Pointer TiC can easily transform into TiB{sub 2} in Al melts. Black-Right-Pointing-Pointer TiB{sub 2} formed by TiC will grow into regular hexagonal prisms with submicron size. Black-Right-Pointing-Pointer Controlling the transformation from TiC to TiB{sub 2} is an effective method to prepare small and uniform TiB{sub 2} particles.« less
NASA Astrophysics Data System (ADS)
Rangel-Alvarado, Rodrigo Benjamin; Nazarenko, Yevgen; Ariya, Parisa A.
2015-11-01
Physicochemical processes of nucleation constitute a major uncertainty in understanding aerosol-cloud interactions. To improve the knowledge of the ice nucleation process, we characterized physical, chemical, and biological properties of fresh snow using a suite of state-of-the-art techniques based on mass spectrometry, electron microscopy, chromatography, and optical particle sizing. Samples were collected at two North American Arctic sites, as part of international campaigns (2006 and 2009), and in the city of Montreal, Canada, over the last decade. Particle size distribution analyses, in the range of 3 nm to 10 µm, showed that nanosized particles are the most numerous (38-71%) in fresh snow, with a significant portion (11 to 19%) less than 100 nm in size. Particles with diameters less than 200 nm consistently exhibited relatively high ice-nucleating properties (on average ranged from -19.6 ± 2.4 to -8.1 ± 2.6°C). Chemical analysis of the nanosized fraction suggests that they contain bioorganic materials, such as amino acids, as well as inorganic compounds with similar characteristics to mineral dust. The implication of nanoparticle ubiquity and abundance in diverse snow ecosystems are discussed in the context of their importance in understanding atmospheric nucleation processes.
Leonard, Bobby E
2004-01-01
Prior work studying radon progeny in a small enclosed chamber found that at high (222)Rn concentrations an enhanced surface deposition was observed. Subsequent measurements for unfiltered air showed minimal charged particle mobility influence. Progeny particle size measurements reported here, performed at the US Department of Energy Environmental Measurement Laboratory (now with Home Security Department), using the EML graded screen array (GSA) system show in unfiltered air that the high (222)Rn levels causes a reduction in the attached (218)Po progeny airborne particulates and formation of additional normal sized unattached ( approximately 0.80 nm) and also even smaller (218)Po below 0.50 nm. At a (222)Rn level of 51 kBq m(-3), 73% of all (218)Po are of a mean particle diameter of about 0.40 +/- 0.02 nm. At this (222)Rn level, the ratio of (218)Po to (222)Rn airborne concentrations is reduced significantly from the concentration ratio at low (222)Rn levels. Similar reductions and size reformations were observed for the (214)Pb and (214)Bi/Po progeny. The particle size changes are further confirmed using the plateout rates and corresponding deposition velocities. The Crump and Seinfeld deposition theory provides the corresponding particle diffusion coefficients. With the diffusion coefficient to ultrafine clustered particle diameter correlation of Ramamurthi and Hopke, good agreement is obtained between EML GSA and deposition velocity data down to 0.40 nm. Strong evidence is presented that the progeny size reduction is due to, as a result of air ionization, the increased neutralization rate (primarily from electron scavenging of OH molecules) of the initially charged progeny. This is shown to increase with the (1/2) power of (222)Rn concentration and relative humidity as well as increased air change rate in the chamber. These results imply that at (222)Rn levels above 50 kBq m(-3), at relative humidity of 52%, a considerable reduction in lung dose could occur from preferential deposition of the progeny in the nasal and oral passages.
Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi
2009-02-01
We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.
Method to obtain carbon nano-onions by pyrolisys of propane
NASA Astrophysics Data System (ADS)
Garcia-Martin, Tomas; Rincon-Arevalo, Pedro; Campos-Martin, Gemma
2013-11-01
We present a new and simple method for carbon nano-onions (CNOs) production which is based on the pyrolysis of Propane. CNOs are originated in a laminar premixed Propane/Oxygen flame of approximately 1.8 of stoichiometric coefficient. The stream of gasses resulting from the combustion drives the carbon particles towards the aluminium surface on which nano-onions are deposited and collected. The structure and size of the deposited carbon onion on the metal wall are characterized by High Resolution Transmission Electron Microscopy technique (HRTEM). The experimental images show the presence of two different types of CNOs. The first particles have diameters in the range of 18-25 nm and the second ones around 10 nm.
Kocbach, Anette; Li, Yanjun; Yttri, Karl E; Cassee, Flemming R; Schwarze, Per E; Namork, Ellen
2006-01-01
Background Exposure to ambient particulate matter has been associated with a number of adverse health effects. Particle characteristics such as size, surface area and chemistry seem to influence the negative effects of particles. In this study, combustion particles from vehicle exhaust and wood smoke, currently used in biological experiments, were analysed with respect to microstructure and chemistry. Methods Vehicle exhaust particles were collected in a road tunnel during two seasons, with and without use of studded tires, whereas wood smoke was collected from a stove with single-stage combustion. Additionally, a reference diesel sample (SRM 2975) was analysed. The samples were characterised using transmission electron microscopy techniques (TEM/HRTEM, EELS and SAED). Furthermore, the elemental and organic carbon fractions were quantified using thermal optical transmission analysis and the content of selected PAHs was determined by gas chromatography-mass spectrometry. Results Carbon aggregates, consisting of tens to thousands of spherical primary particles, were the only combustion particles identified in all samples using TEM. The tunnel samples also contained mineral particles originating from road abrasion. The geometric diameters of primary carbon particles from vehicle exhaust were found to be significantly smaller (24 ± 6 nm) than for wood smoke (31 ± 7 nm). Furthermore, HRTEM showed that primary particles from both sources exhibited a turbostratic microstructure, consisting of concentric carbon layers surrounding several nuclei in vehicle exhaust or a single nucleus in wood smoke. However, no differences were detected in the graphitic character of primary particles from the two sources using SAED and EELS. The total PAH content was higher for combustion particles from wood smoke as compared to vehicle exhaust, whereas no source difference was found for the ratio of organic to total carbon. Conclusion Combustion particles from vehicle exhaust and residential wood smoke differ in primary particle diameter, microstructure, and PAH content. Furthermore, the analysed samples seem suitable for assessing the influence of physicochemical characteristics of particles on biological responses. PMID:16390554
Traffic-laden roadways are major contributors to poor air quality in developed areas, elevating pollutants such as particulate matter (PM) and ozone. Among the numerous air pollutants emitted by vehicles, ultrafine particles (UFPs, diameter <100 nm) are of interest as a potentia...
Continuous Near-Road Monitoring of Ultrafine Particles from 2010-2015 in Toronto, Canada
NASA Astrophysics Data System (ADS)
Su, Y.; Sofowote, U.; Debosz, J.; Munoz, T.
2015-12-01
Ultrafine particles (UFPs) have an aerodynamic diameter less than 100 nanometre (nm). Their large surface areas per unit mass favor absorption of toxic chemicals in air. UFPs could penetrate deep into the respiratory or cardiovascular systems and pose adverse health effects. Recent studies showed the association between children exposure to UFPs and their systolic blood pressure. In urban environments, primary sources of UFPs are from road traffic emissions and account for most of the total particle numbers. Controls on UPFs rely on better understanding of their emission sources and environmental behaviour. Ontario Ministry of the Environment and Climate Change have monitored UFPs since 2010 at two near-road stations in Toronto by using TSI 3031 UFP monitors. One station is located in mixed residential and industrial area and 16 meters from a major road with over 20,000 vehicles per day. The other station is surrounded by mixed residential and commercial buildings and 20 meters from a major road with over 20,000 vehicles per day. UFPs concentrations were monitored using six size channels: 20-30nm, 30-50nm, 50-70nm, 70-100nm, 100-200nm, and 200-450nm. The TSI 3031 monitors generally performed well for long-term UFP monitoring. Multi-year measurements of UFPs at the two stations show no apparent inter-annual variation or seasonality. Smaller particles (i.e., 20-50 nm) were found to be composed of over 50% of the measured particles. The observations are generally consistent with the theoretical understanding of particle nuclei mode and accumulation mode. When air mass originated from road traffic, UFPs were elevated in morning traffic hours and to a less extent in the late afternoon. The elevated UFPs number concentrations coincided with other traffic-related air pollutants like nitrogen oxides and black carbon. Moreover, higher number concentrations were found on weekdays than weekends. The observations suggest that UFPs are mostly from vehicle emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manaf, A., E-mail: azwar@ui.ac.id; Fahmi, Agam Aidil; Yustanti, Erlina
This paper describes the particle size characterization of mechanically alloyed Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} prepared with the aid of a high-power ultrasonic destruction. Analytical-grade BaCO{sub 3}, TiO{sub 2} and SrCO{sub 3} with a purity greater than 99 wt.% were used as precursors for Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3}. The mechanically powders were respectively sintered at 1200 °C for 3 hours to form crystalline powders. This work is aimed at studying the effect of diameter ratio between reactor and transducer of a high power sonicator on the Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} andmore » Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} nanoparticles formation. The presence of a single phase of the two materials was confirmed by X-Ray Diffraction (XRD). The concentration of the particles in demineralized water was 3.0 g / 100 mL which become the object of 3 hours ultrasonic destruction subjected to the application of transducer in which the ratio between the diameter of the reactor and the transducer (D/d) was fixed at 1.4, 1.6 and 1.8 respectively. It was found that the mean particle size before the ultrasonic destruction was 538 nm for Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and 480 nm for Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3}. With D/d of 1.8, the mean particle size of the two materials was found to decrease drastically to 38 nm and 24 nm, respectively. These mean particle sizes were respectively comparable with that of the crystallite size of the particles derived using the Whole Powder Pattern Modelling (WPPM) from which the mean crystallite size of 22 nm for Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and 14 nm for Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} were obtained. It is then confirmed single nanocrystallite Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} particles were already achieved. We can conclude that the ultrasonic destruction to mechanically milled crystalline particles would be one of an effective way to produce nanoparticles.« less
Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin
2018-02-08
Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.
NASA Astrophysics Data System (ADS)
Rocha-Lima, Adriana; Vanderlei Martins, J.; Remer, Lorraine A.; Todd, Martin; Marsham, John H.; Engelstaedter, Sebastian; Ryder, Claire L.; Cavazos-Guerra, Carolina; Artaxo, Paulo; Colarco, Peter; Washington, Richard
2018-01-01
Millions of tons of mineral dust are lifted by the wind from arid surfaces and transported around the globe every year. The physical and chemical properties of the mineral dust are needed to better constrain remote sensing observations and are of fundamental importance for the understanding of dust atmospheric processes. Ground-based in situ measurements and in situ filter collection of Saharan dust were obtained during the Fennec campaign in the central Sahara in 2011. This paper presents results of the absorption and scattering coefficients, and hence single scattering albedo (SSA), of the Saharan dust measured in real time during the last period of the campaign and subsequent laboratory analysis of the dust samples collected in two supersites, SS1 and SS2, in Algeria and in Mauritania, respectively. The samples were taken to the laboratory, where their size and aspect ratio distributions, mean chemical composition, spectral mass absorption efficiency, and spectral imaginary refractive index were obtained from the ultraviolet (UV) to the near-infrared (NIR) wavelengths. At SS1 in Algeria, the time series of the scattering coefficients during the period of the campaign show dust events exceeding 3500 Mm-1, and a relatively high mean SSA of 0.995 at 670 nm was observed at this site. The laboratory results show for the fine particle size distributions (particles diameter < 5µm and mode diameter at 2-3 µm) in both sites a spectral dependence of the imaginary part of the refractive index Im(m) with a bow-like shape, with increased absorption in UV as well as in the shortwave infrared. The same signature was not observed, however, in the mixed particle size distribution (particle diameter < 10 µm and mode diameter at 4 µm) in Algeria. Im(m) was found to range from 0.011 to 0.001i for dust collected in Algeria and 0.008 to 0.002i for dust collected in Mauritania over the wavelength range of 350-2500 nm. Differences in the mean elemental composition of the dust collected in the supersites in Algeria and in Mauritania and between fine and mixed particle size distributions were observed from EDXRF measurements, although those differences cannot be used to explain the optical properties variability between the samples. Finally, particles with low-density typically larger than 10 µm in diameter were found in some of the samples collected at the supersite in Mauritania, but these low-density particles were not observed in Algeria.
NASA Astrophysics Data System (ADS)
Rodríguez, S.; van Dingenen, R.; Putaud, J.-P.; Dell'Acqua, A.; Pey, J.; Querol, X.; Alastuey, A.; Chenery, S.; Ho, K.-F.; Harrison, R.; Tardivo, R.; Scarnato, B.; Gemelli, V.
2007-05-01
A physicochemical characterization, including aerosol number size distribution, chemical composition and mass concentrations, of the urban fine aerosol captured in MILAN, BARCELONA and LONDON is presented in this article. The objective is to obtain a comprehensive picture of the microphysical processes involved in aerosol dynamics during the: 1) regular evolution of the urban aerosol (daily, weekly and seasonal basis) and in the day-to-day variations (from clean-air to pollution-events), and 2) the link between "aerosol chemistry and mass concentrations" with the "number size distribution". The mass concentrations of the fine PM2.5 aerosol exhibit a high correlation with the number concentration of >100 nm particles N>100 (nm) ("accumulation mode particles") which only account for <20% of the total number concentration N of fine aerosols; but do not correlate with the number of <100 nm particles ("ultrafine particles"), which accounts for >80% of fine particles number concentration. Organic matter and black-carbon are the only aerosol components showing a significant correlation with the ultrafine particles, attributed to vehicles exhausts emissions; whereas ammonium-nitrate, ammonium-sulphate and also organic matter and black-carbon correlate with N>100 (nm) and attributed to condensation mechanisms, other particle growth processes and some primary emissions. Time series of the aerosol DpN diameter (dN/dlogD mode), mass PM2.5 concentrations and number N>100 (nm) concentrations exhibit correlated day-to-day variations, which point to a significant involvement of condensation of semi-volatile compounds during urban pollution events. This agrees with the observation that ammonium-nitrate is the component exhibiting the highest increases from mid-to-high pollution episodes, when the highest DpN increases are observed. The results indicates that "fine PM2.5 particles urban pollution events" tend to occur when condensation processes have made particles grow large enough to produce significant number concentrations of N>100 (nm) ("accumulation mode particles"). In contrast, because the low contribution of ultrafine particles to the fine aerosol mass concentrations, high "ultrafine particles N<100(nm) events" frequently occurs under low PM2.5 conditions. The results of this study demonstrate that vehicles exhausts emissions are strongly involved in this ultrafine particles aerosol pollution.
A study of ambient fine particles at Tianjin International Airport, China.
Ren, Jianlin; Liu, Junjie; Li, Fei; Cao, Xiaodong; Ren, Shengxiong; Xu, Bin; Zhu, Yifang
2016-06-15
The total count number concentration of particles from 10 to 1000nm, particle size distribution, and PM2.5 (aerodynamic diameter≤2.5μm) mass concentration were measured on a parking apron next to the runway at Tianjin International Airport in China. The data were collected 250, 270, 300, 350, and 400m from the runway. Wind direction and wind speed played important roles in determining the characteristics of the atmospheric particles. An inverted U-shaped relationship was observed between the measured particle number concentration and wind speed, with an average peak concentration of 2.2×10(5)particles/cm(3) at wind speeds of approximately 4-5m/s. The atmospheric particle number concentration was affected mainly by aircraft takeoffs and landings, and the PM2.5 mass concentration was affected mainly by the relative humidity (RH) of the atmosphere. Ultrafine particles (UFPs, diameter<100nm), with the highest number concentration at a particle size of approximately 16nm, dominated the measured particle size distributions. The calculated particle emission index values for aircraft takeoff and landing were nearly the same, with mean values of 7.5×10(15)particles/(kg fuel) and 7.6×10(15)particles/(kg fuel), respectively. The particle emission rate for one aircraft during takeoff is two orders of magnitude higher than for all gasoline-powered passenger vehicles in Tianjin combined. The particle number concentrations remained much higher than the background concentrations even beyond 400m from the runway. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krämer, Florian; Gratz, Micha; Tschöpe, Andreas
2016-07-01
The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.
NASA Astrophysics Data System (ADS)
Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.
2012-10-01
Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical increase in moment with temperature. The second model predicts low-temperature spectra that differ significantly from the observed spectra. The anisotropy energy density K1, determined by fitting the temperature-dependent linewidths, was ˜50 kJ/m3, which is considerably larger than that of bulk maghemite. The work presented here indicates that the magnetic properties of these size-constrained nanoparticles and more generally metal oxide nanoparticles with diameters d < 5 nm are complex and that currently existing models are not sufficient for determining their magnetic resonance signatures.
NASA Astrophysics Data System (ADS)
Yonezawa, Tetsu; Takeoka, Shinsuke; Kishi, Hiroshi; Ida, Kiyonobu; Tomonari, Masanori
2008-04-01
Well size-controlled copper fine particles (diameter: 100-300 nm) were used as the inner electrode material of multilayered ceramic capacitors (MLCCs). The particles were dispersed in terpineol to form a printing paste with 50 wt% copper particles. The MLCC precursor modules prepared by the layer-by-layer printing of copper and BaTiO3 particles were cosintered. Detailed observation of the particles, paste, and MLCCs before and after sintering was carried out by electron microscopy. The sintering temperature of Cu-MLCC was as low as 960 °C. The permittivity of these MLCCs was successfully measured with the copper inner layers.
Happonen, Matti; Mylläri, Fanni; Karjalainen, Panu; Frey, Anna; Saarikoski, Sanna; Carbone, Samara; Hillamo, Risto; Pirjola, Liisa; Häyrinen, Anna; Kytömäki, Jorma; Niemi, Jarkko V; Keskinen, Jorma; Rönkkö, Topi
2013-12-17
Heavy fuel oil (HFO) is a commonly used fuel in industrial heating and power generation and for large marine vessels. In this study, the fine particle emissions of a 47 MW oil-fired boiler were studied at 30 MW power and with three different fuels. The studied fuels were HFO, water emulsion of HFO, and water emulsion of HFO mixed with light fuel oil (LFO). With all the fuels, the boiler emitted considerable amounts of particles smaller than 200 nm in diameter. Further, these small particles were quite hygroscopic even as fresh and, in the case of HFO+LFO emulsion, the hygroscopic growth of the particles was dependent on particle size. The use of emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42 nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and air quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, H.; Koike, Makoto; Kondo, Yutaka
New particle formation (NPF) is one of the most important processes in controlling the concentrations of aerosol number (condensation nuclei, CN) and cloud condensation nuclei (CCN) in the atmosphere. In this study, we introduced a new aerosol model representation with 20 size bins between 1 nm and 10 {mu}m and activation-type and kinetic nucleation parameterizations into the WRF-chem model (called NPF-explicit WRF-chem). Model calculations were conducted in the Beijing region in China for the periods during the CARE-Beijing 2006 campaign conducted in August and September 2006. Model calculations successfully reproduced the timing of NPF and no-NPF days in the measurementsmore » (21 of 26 days). Model calculations also reproduced the subsequent rapid growth of new particles with a time scale of half a day. These results suggest that once a reasonable nucleation rate at a diameter of 1 nm is given, explicit calculations of condensation and coagulation processes can reproduce the clear contrast between NPF and no-NPF days as well as further growth up to several tens nanometers. With this reasonable representation of the NPF process, we show that NPF contributed 20-30% of CN concentrations (> 10 nm in diameter) in and around Beijing on average. We also show that NPF increases CCN concentrations at higher supersaturations (S > 0.2%), while it decreases them at lower supersaturations (S < 0.1%). This is likely because NPF suppresses the increases in both the size and hygroscopicity of pre-existing particles through the competition of condensable gases between new particles and pre-existing particles. Sensitivity calculations show that a reduction of primary aerosol emissions, such as black carbon (BC), would not necessarily decrease CCN concentrations because of an increase in NPF. Sensitivity calculations also suggest that the reduction ratio of primary aerosol and SO2 emissions will be key in enhancing or damping the BC mitigation effect.« less
NASA Astrophysics Data System (ADS)
Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Wiedensohler, A.; Fast, J. D.; Zaveri, R. A.
2011-10-01
New particle formation (NPF) is one of the most important processes in controlling the concentrations of aerosols (condensation nuclei, CN) and cloud condensation nuclei (CCN) in the atmosphere. In this study, we introduce a new aerosol model representation with 20 size bins between 1 nm and 10 μm and activation-type and kinetic nucleation parameterizations into the WRF-chem model (called NPF-explicit WRF-chem). Model calculations were conducted in the Beijing region in China for the periods during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CARE-Beijing 2006) campaign conducted in August and September 2006. Model calculations successfully reproduced the timing of NPF and no-NPF days in the measurements (21 of 26 days). Model calculations also reproduced the subsequent rapid growth of new particles with a time scale of half a day. These results suggest that once a reasonable nucleation rate at a diameter of 1 nm is given, explicit calculations of condensation and coagulation processes can reproduce the clear contrast between NPF and no-NPF days as well as further growth up to several tens of nanometers. With this reasonable representation of the NPF process, we show that NPF contributed 20%-30% of the CN concentrations (>10 nm in diameter) in and around Beijing on average. We also show that NPF increases CCN concentrations at higher supersaturations (S > 0.2%), while it decreases them at lower supersaturations (S < 0.1%). This is likely because NPF suppresses the increases in both the size and hygroscopicity of preexisting particles through the competition of condensable gases between new particles and preexisting particles. Sensitivity calculations show that a reduction of primary aerosol emissions, such as black carbon (BC), would not necessarily decrease CCN concentrations because of an increase in NPF. Sensitivity calculations also suggest that the reduction ratio of primary aerosol and SO2 emissions will be key in enhancing or damping the BC mitigation effect.
Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.
Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko
2015-02-01
Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.
Le, Tuan-Anh; Zhang, Xingming; Hoshiar, Ali Kafash; Yoon, Jungwon
2017-09-07
Magnetic nanoparticles (MNPs) are effective drug carriers. By using electromagnetic actuated systems, MNPs can be controlled noninvasively in a vascular network for targeted drug delivery (TDD). Although drugs can reach their target location through capturing schemes of MNPs by permanent magnets, drugs delivered to non-target regions can affect healthy tissues and cause undesirable side effects. Real-time monitoring of MNPs can improve the targeting efficiency of TDD systems. In this paper, a two-dimensional (2D) real-time monitoring scheme has been developed for an MNP guidance system. Resovist particles 45 to 65 nm in diameter (5 nm core) can be monitored in real-time (update rate = 2 Hz) in 2D. The proposed 2D monitoring system allows dynamic tracking of MNPs during TDD and renders magnetic particle imaging-based navigation more feasible.
Le, Tuan-Anh; Zhang, Xingming; Hoshiar, Ali Kafash; Yoon, Jungwon
2017-01-01
Magnetic nanoparticles (MNPs) are effective drug carriers. By using electromagnetic actuated systems, MNPs can be controlled noninvasively in a vascular network for targeted drug delivery (TDD). Although drugs can reach their target location through capturing schemes of MNPs by permanent magnets, drugs delivered to non-target regions can affect healthy tissues and cause undesirable side effects. Real-time monitoring of MNPs can improve the targeting efficiency of TDD systems. In this paper, a two-dimensional (2D) real-time monitoring scheme has been developed for an MNP guidance system. Resovist particles 45 to 65 nm in diameter (5 nm core) can be monitored in real-time (update rate = 2 Hz) in 2D. The proposed 2D monitoring system allows dynamic tracking of MNPs during TDD and renders magnetic particle imaging-based navigation more feasible. PMID:28880220
NASA Astrophysics Data System (ADS)
Koivisto, Antti J.; Aromaa, Mikko; Koponen, Ismo K.; Fransman, Wouter; Jensen, Keld A.; Mäkelä, Jyrki M.; Hämeri, Kaarle J.
2015-04-01
Nanoparticle (particles with diameter ≤100 nm) exposure is recognized as a potentially harmful size fraction for pulmonary particle exposure. During nanoparticle synthesis, the number concentrations in the process room may exceed 10 × 106 cm-3. During such conditions, it is essential that the occupants in the room wear highly reliable high-performance respirators to prevent inhalation exposure. Here we have studied the in-use program protection factor (PPF) of loose-fitting powered air purifying respirators, while workers were coating components with TiO2 or Cu x O y nanoparticles under a hood using a liquid flame spray process. The PPF was measured using condensation particle counters, an electrical low pressure impactor, and diffusion chargers. The room particle concentrations varied from 4 × 106 to 40 × 106 cm-3, and the count median aerodynamic diameter ranged from 32 to 180 nm. Concentrations inside the respirator varied from 0.7 to 7.2 cm-3. However, on average, tidal breathing was assumed to increase the respirator concentration by 2.3 cm-3. The derived PPF exceeded 1.1 × 106, which is more than 40 × 103 times the respirator assigned protection factor. We were unable to measure clear differences in the PPF of respirators with old and new filters, among two male and one female user, or assess most penetrating particle size. This study shows that the loose-fitting powered air purifying respirator provides very efficient protection against nanoparticle inhalation exposure if used properly.
Topical application of nanoparticles: prospects and safety aspects (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lademann, Jürgen M.; Richter, Heike; Jung, Sora; Meinke, Martina C.; Rühl, Eckart; Alexiev, Ulrike; Calderon, Marcelo; Patzelt, Alexa
2016-03-01
The requirements on nanoparticles for cosmetic and medical applications are very different. While nanoparticles applied in sunscreens shall remain on the skin surface or in the upper cell layers of the stratum corneum, nanoparticles for medical drug delivery shall penetrate through the skin barrier to the target structures in the living cells. Under the Collaborative Research Project 1112 various methods are used at the CCP to investigate the cutaneous penetration and storage of nanoparticles, hair follicles being in the focus of attention. Human hair follicles are ideal target structures for drug delivery. Hosting both the stem and dendritic cells, they are surrounded by a dense network of blood vessels. Investigating nanoparticles of different size and materials, particles of approximately 600 nm in diameter were found to penetrate best into the hair follicles, where they can be stored for maximally 10 days. Their retention time in the hair follicles exceeds that in the stratum corneum by almost one order of magnitude. Particles penetrate more efficiently into the hair follicles than non-particulate substances. For particles from 40 nm-1 µm in diameter, however, no follicular penetration has been detectable if the skin barrier was intact. This is plausible as the hair follicle has its own barrier. It will be demonstrated that the best way for drug delivery is the application of drug-loaded particulate carrier systems. In the hair follicles the particles may either dissolve and release the drug, or an external signal must trigger the drug release from the particle.
Light-assisted, templated self-assembly using a photonic-crystal slab.
Jaquay, Eric; Martínez, Luis Javier; Mejia, Camilo A; Povinelli, Michelle L
2013-05-08
We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS). We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. We demonstrate assembly of a square lattice of 520 nm diameter polystyrene particles spaced by 860 nm. Our results demonstrate how LATS can be used to fabricate reconfigurable structures with symmetries different from traditional colloidal self-assembly, which is limited by free energetic constraints.
Spacecraft Fire Detection: Smoke Properties and Transport in Low-Gravity
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary A.; Brooker, John E.; Cleary, Thomas; Yang, Jiann; Mulholland, George; Yuan, Zeng-guang
2007-01-01
Results from a recent smoke particle size measurement experiment conducted on the International Space Station (ISS) are presented along with the results from a model of the transport of smoke in the ISS. The experimental results show that, for the materials tested, a substantial portion of the smoke particles are below 500 nm in diameter. The smoke transport model demonstrated that mixing dominates the smoke transport and that consequently detection times are longer than in normal gravity.
NASA Astrophysics Data System (ADS)
Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.
2011-05-01
Atmospheric particles were sampled at T1 supersite (19°43' N latitude, 98°58' W longitude, and 2340 m above sea level) during MILAGRO campaign. T1 was located at the north of Mexico City Metropolitan Area (MCMA). Aerosol sampling was done by placing transmission electron microscope (TEM) copper grids on the last 5 stages of an 8-stage MOUDI cascade impactor (d50 = 1.8, 1.0, 0.56, 0.32, and 0.18 μm). Samples were obtained at morning (06:00-09:00), noon (11:00-14:00), afternoon (16:00-19:00) and evening (21:00-24:00) local time. Absorption and scattering coefficients, and particles concentration (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PASP absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm) and a CNI particle counter. TEM images of particles were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension. Particles sampled under Mexico City pollution influence showed not much variability, suggesting the presence of more compact particles in smaller sizes (d50 = 1.8 μm) at the site. The presence of higher numbers of compact particles can be attributed to aerosol aging and secondary aerosol formation, among others. Under early morning conditions, smaller particles (d50 = 0.18 μm) had more irregular features resulting in a higher average fractal dimension. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50 = 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, Fe, K, and Co. This may indicate an impact from industrial and vehicle's emissions on atmospheric particles.
Virus templated metallic nanoparticles
NASA Astrophysics Data System (ADS)
Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.
2010-12-01
Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h
NASA Astrophysics Data System (ADS)
Zhang, Kun; Wang, Dongfang; Bian, Qinggen; Duan, Yusen; Zhao, Mengfei; Fei, Dongnian; Xiu, Guangli; Fu, Qingyan
2017-04-01
A tethered balloon-based measurement campaign of particle number concentration (PNC) and particle number size distribution (PNSD) in the size range of 15.7-661.2 nm was conducted within the lower troposphere of 1000 m in Shanghai, a Chinese megacity, during December of 2015. The meteorological conditions, PNC, and PNSD were synchronously measured at the ground-based station as well as by the tethered balloon. On ground level, the 88.2 nm particles were found to have the highest PNC. The Pearson correlation analysis based on the ground level data showed NO2 had a strong correlation with PNC. The synchronous measurement of PNC and PNSD at the ground station and on the tethered balloon showed that the 15.7-200 nm particles had higher PNC on ground level, but the PNC of 200-661.2 nm particles was higher at 400 m. One haze event (Dec 22nd-Dec 23rd) was selected for detailed discussion on the variation of vertical profiles of PNSD and PNC. The vertical distribution of characteristics of PNC and PNSD were observed and compared. Results indicated that the highest MaxDm (the diameter with the highest PNC) during those three launches all appeared at a high altitude, usually above 300 m. Compared to the clean days, the relatively bigger MaxDm at each height in the haze days also indicated regional transport of pollutants might contribute to more to that haze event.
Xin, Baoping; Huang, Qun; Chen, Shi; Tang, Xuemei
2008-01-01
High-purity nanoparticles ZnS has been successfully synthesized using a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA referred to as the CRBRCP-EDTA process. This research investigated the optimum conditions of the transformation of SO(4) (2-) into S(2-) by SRB, and the production of ZnS in the CRBRCP-EDTA process. The results showed that the molar ratio of Zn(2+) to EDTA = 1:1 was crucial for SRB growth and ZnS synthesis. At the ratio(n) (Zn2+)/n) (EDTA) = 1:1, lower Zn(2+) concentration enhanced both the growth of SRB and the reduction of SO(4) (2-), leading to higher ZnS production. Although increase in Na(2)SO(4) concentration resulted in decrease in both SRB growth and SO(4) (2-) reduction, it improved the S(2-) and ZnS production. Under the optimum conditions (0.05 mol L(-1) ZnCl(2), 0.05 mol L(-1) EDTA, and 0.1 mol L(-1) Na(2)SO(4)), the synthesized ZnS was characterized by X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that the obtained ZnS were high-purity and well-distributed solid spheres with diameters of about 15 nm for primary particles and around 400 nm for secondary particles. When polyacrylamide (PAM) was incorporated in the CRBRCP-EDTA process, the secondary particle's diameters were reduced to less than 100 nm. The photoluminescence (PL) spectra of produced ZnS centered at 396 nm, the spectrum with PAM added showed the gradual increase in absorption and stronger intensity in PL property. The present simple, low-cost, and safe method may be extended to prepare other metal-sulfide nanocomposites.
Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin
2013-01-01
Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224
Panpipat, Worawan; Dong, Mingdong; Xu, Xuebing; Guo, Zheng
2013-10-01
The efficiency (dose response) of cholesterol-lowering effect of phytosterols in humans depends on their chemical forms (derived or non-derived) and formulation methods in a delivery system. With a series of synthesized β-sitosteryl fatty acid esters (C2:0-C18:0 and C18:1-C18:3), this work examined their thermal properties and applications in preparation of nanodispersion with β-sitosterol as a comparison. Inspection of the melting point (Tm) and the heat of fusion (ΔH) of β-sitosteryl fatty acid esters and the chain length and unsaturation degree of fatty acyl moiety revealed a pronounced structure-property relationship. The nanodispersions prepared with β-sitosterol and β-sitosteryl saturated fatty acid (SFA) esters displayed different particle size distribution patterns (polymodal vs bimodal), mean diameter (115 nm vs less than 100 nm), and polydispersity index (PDI) (0.50 vs 0.23-0.38). β-sitosteryl unsaturated fatty acid (USFA) esters showed a distinctly different dispersion behavior to form nanoemulsions, rather than nanodispersions, with more homogeneous particle size distribution (monomodal, mean diameter 27-63 nm and PDI 0.18-0.25). The nanodispersion of β-sitosteryl medium chain SFA ester (C14:0) demonstrated a best storage stability. Copyright © 2013 Elsevier Inc. All rights reserved.
Bittame, Amina; Effantin, Grégory; Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia; Schoehn, Guy; Weissenhorn, Winfried; Cesbron-Delauw, Marie-France; Gagnon, Jean; Mercier, Corinne
2015-03-27
The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6-8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8-15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
The gene transfer agent-like particle of the marine phototrophic bacterium Rhodovulum sulfidophilum.
Nagao, Nobuyoshi; Yamamoto, Junya; Komatsu, Hiroyuki; Suzuki, Hiromichi; Hirose, Yuu; Umekage, So; Ohyama, Takashi; Kikuchi, Yo
2015-12-01
Gene transfer agents (GTAs) are shaped like bacteriophage particles but have many properties that distinguish them from bacteriophages. GTAs play a role in horizontal gene transfer in nature and thus affect the evolution of prokaryotic genomes. In the course of studies on the extracellular production of designed RNAs using the marine bacterium Rhodovulum sulfidophilum , we found that this bacterium produces a GTA-like particle. The particle contains DNA fragments of 4.5 kb, which consist of randomly fragmented genomic DNA from the bacterium. This 4.5-kb DNA production was prevented while quorum sensing was inhibited. Direct observation of the particle by transmission electron microscopy revealed that the particle resembles a tailed phage and has a head diameter of about 40 nm and a tail length of about 60 nm. We also identified the structural genes for the GTA in the genome. Translated amino acid sequences and gene positions are closely related to those of the genes that encode the Rhodobacter capsulatus GTA. This is the first report of a GTA-like particle from the genus Rhodovulum . However, gene transfer activity of this particle has not yet been confirmed. The differences between this particle and other GTAs are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang
Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental resultsmore » with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.« less
NASA Astrophysics Data System (ADS)
Gao, Weihong; Rigout, Muriel; Owens, Huw
2016-12-01
In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation.
"Sniffer"—a novel tool for chasing vehicles and measuring traffic pollutants
NASA Astrophysics Data System (ADS)
Pirjola, L.; Parviainen, H.; Hussein, T.; Valli, A.; Hämeri, K.; Aaalto, P.; Virtanen, A.; Keskinen, J.; Pakkanen, T. A.; Mäkelä, T.; Hillamo, R. E.
To measure traffic pollutants with high temporal and spatial resolution under real conditions a mobile laboratory was designed and built in Helsinki Polytechnic in close co-operation with the University of Helsinki. The equipment of the van provides gas phase measurements of CO and NO x, number size distribution measurements of fine and ultrafine particles by an electrical low pressure impactor, an ultrafine condensation particle counter and a scanning mobility particle sizer. Two inlet systems, one above the windshield and the other above the bumper, enable chasing of different type of vehicles. Also, meteorological and geographical parameters are recorded. This paper introduces the construction and technical details of the van, and presents data from the measurements performed during an LIPIKA campaign on the highway in Helsinki. Approximately 90% of the total particle number concentration was due to particles smaller than 50 nm on the highway in Helsinki. The peak concentrations exceeded often 200,000 particles cm -3 and reached sometimes a value of 10 6 cm -3. Typical size distribution of fine particles possessed bimodal structure with the modal mean diameters of 15-20 nm and ˜150 nm. Atmospheric dispersion of traffic pollutions were measured by moving away from the highway along the wind direction. At a distance of 120-140 m from the source the concentrations were diluted to one-tenth from the values at 9 m from the source.
Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment
NASA Astrophysics Data System (ADS)
Sanderson, P.; Su, S. S.; Chang, I. T. H.; Delgado Saborit, J. M.; Kepaptsoglou, D. M.; Weber, R. J. M.; Harrison, Roy M.
2016-09-01
Human exposure to ambient metallic nanoparticles is an area of great interest owing to their potential health impacts. Ambient metallic nanoparticles found in the roadside environment are contributed by combustion engines and wear of brakes, tyres and road surfaces. Submicrometre atmospheric particles collected at two UK urban sites have been subject to detailed characterisation. It is found that many metallic nanoparticles collected from roadside sampling sites are rich in iron. The Fe-rich nanoparticles can be classified into (1) high Fe content (ca 90 wt%) with each alloying element less than 1 wt%; and (2) moderate Fe content (<75 wt%) with high manganese and silicon content. Both clusters contain a variable mix of minor constituents, Mn, S and Si being most important in the high-Fe group. The moderate Fe group also contains Zn, Cu, Ba, Al and Ca. The Fe-rich nanoparticles exhibit primary particle sizes ranging between 20 and 30 nm, although some much larger particles up to around 100 nm can also be observed, along with some very small particles of 10 nm or less. These tend to agglomerate forming clusters ranging from ∼200 nm to 1 μm in diameter. The iron-rich particles observed are oxides, taking the form of spheres or multifaceted regular polyhedra. Analysis by EELS shows that both high- and moderate-Fe groups include particles of FeO, Fe3O4, α-Fe2O3 and γ-Fe2O3 of which γ-Fe2O3 is the most prominent. Internal mixing of different Fe-oxides is not observed.
NASA Astrophysics Data System (ADS)
de Oliveira, J. F.; Alves, O. C.; Esquivel, D. M. S.; Wajnberg, E.
2008-03-01
The temperature dependence of Ferromagnetic Resonance spectra, from 5 K to 280 K, was used to study the magnetic material present in Neocapritermes opacus termite, the only prey of the Pachycondyla marginata ant. The analysis of the resonant field and peak-to-peak linewidth allowed estimating the particle diameters and the effective anisotropy energy density, KEFF, as a sum of the bulk and surface contributions. It allowed to magnetically distinguish the particles of termites as collected in field from those of termites after 3 days under a cellulose diet, introduced to eliminate ingested/digested material. The data also, suggest the presence of oriented magnetite nanoparticles with diameters of 11.6 ± 0.3 nm in termites as collected in field and (14.0 ± 0.4 nm) in that under a cellulose diet. Differences between their KEFF and its components are also observed. Two transitions are revealed in the resonant field temperature dependence, one at about 50 K that was associated to surface effects and the other at about 100 K attributed to the Verwey transition.
Intracellular Virus-Specific Structures and RNAs in Oncornavirus-Producing Human Cells
Bukrinskaya, A. G.; Miller, G. G.; Lebedeva, E. N.; Zhdanov, V. M.
1974-01-01
Two kinds of virus-specific structures were isolated from the cytoplasm of Detroit-6 and human amnion cells producing oncornavirus-like particles. These structures represented A particles with the diameter of 70 to 80 nm and aggregated strands of nucleocapsids with the diameter of 3 and 6 nm. The structures were separated from cellular contaminants by isopycnic banding in linear sucrose gradients and subsequently further purified by sedimentation in velocity sucrose gradients. Their sedimentation coefficient was 250 and 150S, respectively. Both structures contain 60, 45, and 35S RNA species, and 150S structures also contained 20S RNA. The 35 and 20S RNA from the 150S structure formed hybrids with DNA enzymatically synthesized on extracellular virions. The structures displayed endogeneous polymerase activity, DNA product of the reaction being predominantly associated with 60S RNA. No 70S RNA was found in the cell structures of various densities. Also, the virions purified from tissue culture fluid contained 70S RNA. These findings are consistent with those on extracellular maturation of oncornavirus RNA. Images PMID:4810779
Soot superaggregates from flaming wildfires and their direct radiative forcing
Chakrabarty, Rajan K.; Beres, Nicholas D.; Moosmüller, Hans; China, Swarup; Mazzoleni, Claudio; Dubey, Manvendra K.; Liu, Li; Mishchenko, Michael I.
2014-01-01
Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension Df ≈ 1.8 mobility diameter Dm ≤ 1 μm, and aerodynamic diameter Da ≤ 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic Df ≈ 2.6, Dm > 1 μm, and Da ≤ 300 nm that form via the cluster-dense aggregation mechanism. We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. We estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (Df ≈ 1.8) aggregates, and ≈90% more warming than the volume-equivalent spherical soot particles simulated in climate models. PMID:24981204
NASA Astrophysics Data System (ADS)
Kallinger, Peter; Szymanski, Wladyslaw W.
2015-04-01
Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based 241Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5-40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6-5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.
NASA Astrophysics Data System (ADS)
Zbib, Mohamad B.; Sahaym, Uttara; Bahr, David F.
2014-01-01
Enhancing the light trapping using nonwoven arrays of fibers has the potential to improve the photocurrent of silicon solar cells. In this work, amorphous and crystalline Si nanopowders (30-300 nm) were embedded in carbon fibers and fixed in place with electrodeposited nickel. Scanning and transmission electron microscopy techniques have been used to study the morphology of the Si particles and their interactions with the coatings. Two types of nanoparticles are identified, homogeneous nucleated particles (amorphous particles with some crystalline regions) and attrition particles (mostly crystalline products formed from fracture of particles as they grow in a fluidized bed reactor). Using the Brunauer-Emmett-Teller (BET) technique, the surface area and the pore diameter of these agglomerated Si nanoparticles were calculated to be 6.4 m2/g and 9.8 nm, respectively. After embedding the Si particles into the carbon matrix with the metal coatings, the electrical resistivity decreases, suggesting it is possible to enhance the light extraction of silicon solar cells using Si nanoparticles.
Quantum confinement effects on superconducting properties of Lead nanocrystals
NASA Astrophysics Data System (ADS)
Aubin, Herve; Moreira, Helena; Mahler, Benoit; Dubertret, Benoit
2008-03-01
We developed a new chemical synthesis method for producing large quantities of monodispersed lead (Pb) nanocrystals. They are obtained from the alcohol reduction of a mixture of two lead carboxylates with alkyl chains of different lengths, dissolved in a high temperature solvent. The nanocrystals obtained are protected from oxydation and aggregation by long chain fatty acids and their diameter can be tuned to reach values as low as 10 nm. Our results suggest that monodispersed particules are obtained when nucleation and growth occur at distincts temperatures, possibly as a consequence of different reactivities of the two lead carboxylates used in the solution. Owing to the large quantities of monodispersed particles produced, thermodynamics studies as function of particles diameter become possible. In particular, we will present a study of the effect of quantum confinement on superconducting properties of these Pb particles through SQUID magnetometry measurements.
NASA Technical Reports Server (NTRS)
1978-01-01
The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.
Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies
NASA Astrophysics Data System (ADS)
Majetich, Sara
2009-03-01
Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry
2011-02-01
The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser-nanoparticle interactions depending on laser intensity and wavelength. In particular, implantation of ions departing from the nanoparticles towards the substrate is predicted.
Aerosol size distribution and new particle formation events in the suburb of Xi'an, northwest China
NASA Astrophysics Data System (ADS)
Peng, Yan; Liu, Xiaodong; Dai, Jin; Wang, Zhao; Dong, Zipeng; Dong, Yan; Chen, Chuang; Li, Xingmin; Zhao, Na; Fan, Chao
2017-03-01
Particle number concentration and size distribution are important for better understanding the characteristics of aerosols. However, their measurements are scarce in western China. Based on the first measurement of particle number size distribution (10-487 nm) in the suburb of Xi'an, northwest China from November 2013 to December 2014, the seasonal, monthly and diurnal average particle number concentrations were investigated, and the characteristics of new particle formation (NPF) events and their dependencies on meteorological parameters also discussed. The results showed that the annual average particle number concentrations in the nucleation (NNUC), Aitken (NAIT), and Accumulation (NACC) size ranges were 960 cm-3, 4457 cm-3, 3548 cm-3, respectively. The mean total particle number concentration (NTOT) was 8965 cm-3 and largely dominated by particles in Aitken mode. The number concentration was dominated by particles around 67.3 nm in spring, summer and fall, while about 89.8 nm in winter. The percentage of the ultrafine size range (UFP, particles of diameter below 100 nm) to total particle number concentration was 63.2%, 69.6%, 62.2% and 58.1% in four seasons. The diurnal variation of the nucleation mode particles was mainly influenced by NPF events in summer, while by both traffic densities and NPF events in spring, fall and winter. The diurnal variation of the number concentration of Aitken mode particles correlated with the traffic emission in spring, fall and winter, while in summer it more correlated with contribution of the growth of the nucleation mode particles. The burst of nucleation mode particles typically started in the daytime (08:15-16:05, LST). The growth rates of nucleated particles ranged from 2.8 to 10.7 nm h-1 with an average of 5.0 ± 1.9 nm h-1. Among observed 66 NPF events from 347 effective measurement days, 85 percent of their air masses came from north or northwest China, resulting in a low concentration of pre-existing particles, and only 15 percent came southerly from Qingling Mountains. Based on their growth rate, 64 and 36 percent of their subsequent particles, corresponding to types 1 and 2 NPF events, grew and seldom grew after the burst of nucleation mode particles. For type 1 NPF event, the nucleated particles could grow up to 40 nm or larger when surface winds shifted from westerly to easterly or southeasterly (from village areas). For type 2 NPF events, the particles kept almost unchanged when the winds stayed westerly. This implied that the surface wind direction with different emissions might play an important role in new particle growth in suburb of Xi'an.
Carbon Nanotubes in the Human Respiratory Tract-Clearance Modeling.
Sturm, Robert
2017-03-01
Clearance of single-wall carbon nanotubes (SWCNT, diameter: 5 nm) and multi-wall carbon nanotubes (MWCNT, diameter: 50 nm) in the respiratory tract was predicted for various age groups (infants, children, adolescents, and adults). The model was founded on the assumption that lung clearance takes place in three distinct phases: (i) fast mucociliary clearance, (ii) slow bronchial clearance, and (iii) alveolar clearance. To each of these phases a specific fraction of deposited particles was attributed, the amount of which depended on particles' geometry and particles' deposition sites in the respiratory system. Clearance velocities were expressed by respective clearance half-times ranging from several hours in the case of fast clearance to tens of days in the case of slow clearance. Results of the simulations clearly demonstrate that for the specific deposition scenario (sitting, nasal breathing) considered here fast clearance fraction exhibits a slight decrease with increasing age, but total clearance times (i.e. time spans, within which 100% of the deposited particulate mass are removed) are rather constant among the age groups. Nanotubes deposited in the respiratory bronchioles and alveoli are usually subject to a long-term storage in these structures and, thus, may trigger malignant transformations in adjacent cells and tissues. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic
Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D
2011-01-01
Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473
Choi, Kwang-Min; Kim, Jin-Ho; Park, Ju-Hyun; Kim, Kwan-Sick; Bae, Gwi-Nam
2015-01-01
This study aims to elucidate the exposure properties of nanoparticles (NPs; <100 nm in diameter) in semiconductor manufacturing processes. The measurements of airborne NPs were mainly performed around process equipment during fabrication processes and during maintenance. The number concentrations of NPs were measured using a water-based condensation particle counter having a size range of 10-3,000 nm. The chemical composition, size, and shape of NPs were determined by scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were <100 nm in those areas. On the other hand, particle size exceeded 100 nm in diffusion, metallization, ion implantation, and wet cleaning/etching process. The results show that the SiO2 and TiO2 are the major NPs present in semiconductor cleanroom environments.
A Year-round Observation of Size Distribution of Aerosol Particles at the Cape Ochiishi, Japan
NASA Astrophysics Data System (ADS)
Miura, K.; Mukai, H.; Hashimoto, S.; Uematsu, M.
2010-12-01
New particle formation by nucleation of gas-phase compounds emitted from marine biogenic sources is very important for climate change. To clarify the mechanism of the formation, size distributions of submicron aerosols have been measured at the Cape Ochiishi, facing the North Western Pacific Ocean where primary productivity is high. A test observation was done from 22nd May to 18th June 2008 and a year-round observation has been performed from 16th October 2009 to 7th September 2010. The size distribution from 10 nm to 487 nm in diameter was measured with a scanning mobility particle sizer (SMPS, TSI 3034). Sample air was dried to lower than 40%. Transport of sulfate, organic carbon (OC), and black carbon (BC) was estimated with Chemical weather FORecasting System (CFORS), developed by Prof. Uno, Kyushu University, Japan. Existence of inversion layer was estimated with temperature profile measured at surface, 10m, 30m, and 50m in altitude. The burst of the particles smaller than 20nm in diameter continuing longer than 3 hrs was observed ten times until 3rd November 2009. Two were observed in early summer and the other was in autumn. Banana shape was faintly observed five times. Transport of sulfate, OC, and BC was observed 3, 8, 9 times, respectively. Source of air mass was estimated with these elements, weather map, and wind direction. Five air masses were estimated to continental. Clearly nucleation related to marine sources was not observed. The size distribution of burst evens of maritime and continental air mass showed the shift of mode to larger diameter. Strong inversion of temperature was observed once. The value of size distribution did not show high. Minimum value of size distribution was observed in the strong rain on 27th October. Acknowledgments This study was partly supported by the Grant-in-Aids for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan (18067005). The observation was performed at the monitoring station of the National Institute for Environmental Studies.
Dynamic light scattering as an efficient tool to study glyconanoparticle-lectin interactions.
Wang, Xin; Ramström, Olof; Yan, Mingdi
2011-10-21
Glyconanomaterials, an emerging class of bio-functional nanomaterials, have shown promise in detecting, imaging and targeting proteins, bacteria, and cells. In this article, we report that dynamic light scattering (DLS) can be used as an efficient tool to study glyconanoparticle (GNP)--lectin interactions. Silica and Au nanoparticles (NPs) conjugated with D-mannose (Man) and D-galactose (Gal) were treated with the lectins Concanavalin A (Con A) and Ricinus communis agglutinin (RCA(120)), and the hydrodynamic volumes of the resulting aggregates were measured by DLS. The results showed that the particle size grew with increasing lectin concentration. The limit of detection (LOD) was determined to be 2.9 nM for Con A with Man-conjugated and 6.6 nM for RCA(120) with Gal-conjugated silica NPs (35 nm), respectively. The binding affinity was also determined by DLS and the results showed 3-4 orders of magnitude higher affinity of GNPs than the free ligands with lectins. The assay sensitivity and affinity were particle size dependent and decreased with increasing particle diameter. Because the method relies on the particle size growth, it is therefore general and can be applied to nanomaterials of different compositions.
Surgical smoke and ultrafine particles
Brüske-Hohlfeld, Irene; Preissler, Gerhard; Jauch, Karl-Walter; Pitz, Mike; Nowak, Dennis; Peters, Annette; Wichmann, H-Erich
2008-01-01
Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine (<100 nm) and accumulation mode particles (< 1 μm). Epidemiological and toxicological studies have shown that exposure to particulate air pollution is associated with adverse cardiovascular and respiratory health effects. Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc.) was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3) of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure. PMID:19055750
A Forest of Sub-1.5-nm-wide Single-Walled Carbon Nanotubes over an Engineered Alumina Support
NASA Astrophysics Data System (ADS)
Yang, Ning; Li, Meng; Patscheider, Jörg; Youn, Seul Ki; Park, Hyung Gyu
2017-04-01
A precise control of the dimension of carbon nanotubes (CNTs) in their vertical array could enable many promising applications in various fields. Here, we demonstrate the growth of vertically aligned, single-walled CNTs (VA-SWCNTs) with diameters in the sub-1.5-nm range (0.98 ± 0.24 nm), by engineering a catalyst support layer of alumina via thermal annealing followed by ion beam treatment. We find out that the ion beam bombardment on the alumina allows the growth of ultra-narrow nanotubes, whereas the thermal annealing promotes the vertical alignment at the expense of enlarged diameters; in an optimal combination, these two effects can cooperate to produce the ultra-narrow VA-SWCNTs. According to micro- and spectroscopic characterizations, ion beam bombardment amorphizes the alumina surface to increase the porosity, defects, and oxygen-laden functional groups on it to inhibit Ostwald ripening of catalytic Fe nanoparticles effectively, while thermal annealing can densify bulk alumina to prevent subsurface diffusion of the catalyst particles. Our findings contribute to the current efforts of precise diameter control of VA-SWCNTs, essential for applications such as membranes and energy storage devices.
Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.
Gineste, J-M; Macko, P; Patterson, E A; Whelan, M P
2011-08-01
The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Synthesis and characterization of diverse Pt nanostructures in Nafion.
Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D
2014-02-25
With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.
Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin
2016-01-01
Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries. PMID:27517948
NASA Astrophysics Data System (ADS)
Shiau, Bo-Wen; Lin, Chien-Hung; Liao, Ying-Yen; Lee, Ya-Rong; Liu, Shih-Hao; Ding, Wei-Cheng; Lee, Jia-Ren
2018-05-01
In this work, the optical properties of Au nanoparticles processed by centrifugation techniques are studied. Most of the literature related to the control of nanoparticle size has focused on different preparation parameters; however, the wide size distribution is commonly an issue for follow-up investigations and further applications. Therefore, we developed a method in which specific-diameter particles can be effectively separated using different centrifugal procedures. The initial nanoparticle solution with a primary absorption peak at 534 nm is separated into discernible resonance wavelengths from 526 to 537 nm, with corresponding particle sizes from 30 to 55 nm. For the atomic force microscopy analysis of nanoparticle size, a dry cetyltrimethylammonium bromide (CTAB) film often covers the particles and interferes with the measurement; thus, CTAB has to be removed. However, if too much CTAB is removed, the surface of the Au nanoparticle becomes unstable, and the particles aggregate. Accordingly, we used UV spectroscopy to monitor the CTAB content; properly adjust the rotational speed and the number of centrifugation stages; and design a method that can effectively remove impurities, avoid clustering, and enable particle size measurement. The usually complicated procedures and high cost of preparation of specific-size Au nanoparticles are greatly simplified and reduced by the convenient extraction process proposed in this work, which would benefit related research and applications.
Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin
2017-12-21
Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yin, Long-Wei; Bando, Yoshio; Li, Mu-Sen; Golberg, Dmitri
2005-11-01
An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects.
Preparation and Characterization of Nano-CL-20 Explosive
NASA Astrophysics Data System (ADS)
Bayat, Yadollah; Zeynali, Vida
2011-10-01
Nano-CL-20 was prepared via precipitative crystallization by spraying a solution of CL-20 in a solvent (ethyl acetate) into a nonsolvent (isooctane). Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) were used to characterize the appearance and the size of the particles. The results revealed that nano-CL-20 particles have the shape of spheres or ellipsoids with an average size of 95 nm. Due to their small diameter and high surface energy, the particles tended to agglomerate. Impact sensitivity of nanosize CL-20 was decreased in comparison to micrometer-size CL-20.
Laser synthesis and spectroscopy of acetonitrile/silver nanoparticles
NASA Astrophysics Data System (ADS)
Akin, S. T.; Liu, X.; Duncan, M. A.
2015-11-01
Silver nanoparticles with acetonitrile ligands are produced in a laser ablation flow reactor. Excimer laser ablation produces gas phase metal clusters which are thermalized with helium or argon collisions in the flowtube, and reactions with acetonitrile vapor coordinate this ligand to the particle surface. The gaseous mixture is captured in a cryogenic trap; warming produces a solution of excess ligand and coated particles. TEM images reveal particle sizes of 10-30 nm diameter. UV-vis absorption and fluorescence spectra are compared to those of standard silver nanoparticles with surfactant coatings. Deep-UV ligand absorption is strongly enhanced by nanoparticle adsorption.
Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation.
Song, Jieun; Kim, Dukhan; Lee, Dongil
2011-11-15
We report a facile synthetic route for size-controlled preparation of gold nanoparticles. Nearly monodisperse gold nanoparticles with core diameters of 1-6 nm were obtained by reducing AuP(Phenyl)(3)Cl with tert-butylamine borane in the presence of dodecanethiol in the solvent mixture of benzene and CHCl(3). Mechanism studies have shown that the size control is achieved by the solvent-controlled nucleation in which the nuclei concentration increases with increasing the fraction of CHCl(3), leading to smaller particles. It was also found that, following the solvent-controlled nucleation, particle growth occurs via ligand replacement of PPh(3) on the nuclei by Au(I)thiolate generated by the digestive etching of small particles. This synthetic strategy was successfully demonstrated with other alkanethiols of different chain length with which size-controlled, monodisperse gold nanoparticles were prepared in remarkable yield without requiring any postsynthesis treatments.
On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate
NASA Astrophysics Data System (ADS)
Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew
2014-04-01
The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.
Sato, Keisuke; Yokosuka, Shinobu; Takigami, Yasunori; Hirakuri, Kenji; Fujioka, Kouki; Manome, Yoshinobu; Sukegawa, Hiroaki; Iwai, Hideo; Fukata, Naoki
2011-11-23
Magnetic/fluorescent composite materials have become one of the most important tools in the imaging modality in vivo using magnetic resonance imaging (MRI) monitoring and fluorescence optical imaging. We report herein on a simplified procedure to synthesize hybrid nanoparticles (HNPs) that combine silicon and magnetic iron oxides consisting of magnetite (Fe(3)O(4)) and maghemite (γ-Fe(2)O(3)). Intriguingly, our unique synthetic approach can control magnetic and optical behaviors by reducing the particle size, demonstrating that the HNPs with the mean diameter of 3.0 nm exhibit superparamagnetic behavior and green fluorescence in an aqueous solution, ambient air, and a cellular environment, whereas the HNPs with the mean diameter more than 5.0 nm indicate ferromagnetic behavior without fluorescence. Additionally, both HNPs with different diameters possess excellent magnetic responsivity for external applied magnetic field and good biocompatibility due to the low cytotoxicity. Our biocompatible HNPs with the superparamagnetism can provide an attractive approach for diagnostic imaging system in vivo.
Particle Collection Efficiency of a Lens-Liquid Filtration System
NASA Astrophysics Data System (ADS)
Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.
2011-09-01
Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.
Effect of the size of silver nanoparticles on SERS signal enhancement
NASA Astrophysics Data System (ADS)
He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.
2017-08-01
The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.
Multifrequency scanning probe microscopy study of nanodiamond agglomerates
NASA Astrophysics Data System (ADS)
Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team
Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
The behavior of nanothermite reaction based on Bi2O3/Al
NASA Astrophysics Data System (ADS)
Wang, L.; Luss, D.; Martirosyan, K. S.
2011-10-01
We studied the impact of aluminum particle size and the thickness of surrounding alumina layer on the dynamic pressure discharge of nanothermite reactions in the Bi2O3/Al system. A pressure discharge from 9 to 13 MPa was generated using as-synthesized Bi2O3 nano-particles produced by combustion synthesis and Al nanoparticles with size from 3 μm to 100 nm. The maximum reaction temperature was measured to be ˜2700 °C. The estimated activation energy of the reaction was 45 kJ/mol. A very large (several orders of magnitude) difference existed between the rate of the pressure pulse release by nanothermite reactions and by thermite reactions with large aluminum particles. The maximum observed pressurization rate was 3200 GPa/s. The time needed to reach the peak pressure was 0.01 ms and 100 ms for aluminum particles with diameter of 100 nm and 70 microns, respectively. The discharge pressure was a monotonic decreasing function of the thickness of the surrounding alumina layer.
NASA Astrophysics Data System (ADS)
Babič, Michal; Horák, Daniel; Molčan, Matúš; Timko, Milan
2017-08-01
In this report, we show preparation of colloidally stable poly(N,N-dimethylacrylamide-co-acrylic acid) (DMA)- and D-mannose (MAN)-coated maghemite nanoparticles and their ability to generate heat in an alternating magnetic field, which could make the particles applicable for hyperthermic therapy of cancer. The particles are obtained by coprecipitation reaction and characterized by transmission electron microscopy, dynamic light scattering, and AC calorimetric measurement of heat generated by the particles. While the dry particles were ca. 10 nm in diameter, their hydrodynamic size in water was within the range of 100 nm. Heating characteristics were measured in an LC circuit with a maximum field intensity of 6.8 kA · m-1 and frequency 190 kHz. The specific absorption rates of γ-Fe2O3, PDM@γ-Fe2O3, and MAN@γ-Fe2O3 nanoparticles were extrapolated to 10 kA · m-1, reaching about 15 W · g-1.
North, S M; Jones, E R; Smith, G N; Mykhaylyk, O O; Annable, T; Armes, S P
2017-02-07
The present study focuses on the use of copolymer nanoparticles as a dispersant for a model pigment (silica). Reversible addition-fragmentation chain transfer (RAFT) alcoholic dispersion polymerization was used to synthesize sterically stabilized diblock copolymer nanoparticles. The steric stabilizer block was poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and the core-forming block was poly(benzyl methacrylate) (PBzMA). The mean degrees of polymerization for the PDMA and PBzMA blocks were 71 and 100, respectively. Transmission electron microscopy (TEM) studies confirmed a near-monodisperse spherical morphology, while dynamic light scattering (DLS) studies indicated an intensity-average diameter of 30 nm. Small-angle X-ray scattering (SAXS) reported a volume-average diameter of 29 ± 0.5 nm and a mean aggregation number of 154. Aqueous electrophoresis measurements confirmed that these PDMA 71 -PBzMA 100 nanoparticles acquired cationic character when transferred from ethanol to water as a result of protonation of the weakly basic PDMA chains. Electrostatic adsorption of these nanoparticles from aqueous solution onto 470 nm silica particles led to either flocculation at submonolayer coverage or steric stabilization at or above monolayer coverage, as judged by DLS. This technique indicated that saturation coverage was achieved on addition of approximately 465 copolymer nanoparticles per silica particle, which corresponds to a fractional surface coverage of around 0.42. These adsorption data were corroborated using thermogravimetry, UV spectroscopy and X-ray photoelectron spectroscopy. TEM studies indicated that the cationic nanoparticles remained intact on the silica surface after electrostatic adsorption, while aqueous electrophoresis confirmed that surface charge reversal occurred below pH 7. The relatively thick layer of adsorbed nanoparticles led to a significant reduction in the effective particle density of the silica particles from 1.99 g cm -3 to approximately 1.74 g cm -3 , as judged by disk centrifuge photosedimentometry (DCP). Combining the DCP and SAXS data suggests that essentially no deformation of the PBzMA cores occurs during nanoparticle adsorption onto the silica particles.
Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.; ...
2017-09-14
Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiagvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13–4 µm projected area diameter) and real-time single-particle mass spectrometry (0.2–1.5 µm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 %more » of the study), our results show that fresh sea spray aerosol contributed ~20 %, by number, of particles between 0.13 and 0.4 µm, 40–70 % between 0.4 and 1 µm, and 80–100 % between 1 and 4 µm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13–1 µm) combustion-derived particles (20–50 % organic carbon, by number; 5–10% soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 µm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm -3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.
Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiagvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13–4 µm projected area diameter) and real-time single-particle mass spectrometry (0.2–1.5 µm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 %more » of the study), our results show that fresh sea spray aerosol contributed ~20 %, by number, of particles between 0.13 and 0.4 µm, 40–70 % between 0.4 and 1 µm, and 80–100 % between 1 and 4 µm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13–1 µm) combustion-derived particles (20–50 % organic carbon, by number; 5–10% soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 µm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm -3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.« less
NASA Astrophysics Data System (ADS)
Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar
2014-08-01
Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.
The shock sensitivity of nitromethane/methanol mixtures
NASA Astrophysics Data System (ADS)
Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee
2013-06-01
The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.
Ding, Yongbo; Kan, Jianquan
2017-12-01
Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.
Growth of copper-zinc and copper-magnesium particles by gas-evaporation technique
NASA Astrophysics Data System (ADS)
Ohno, T.
1984-12-01
Fine particles of Cu-Zn and Cu-Mg systems of diameter less than 500 nm were prepared by evaporating the constituent metals simultaneously from two evaporation sources in an atmosphere of argon of 10 to 30 Torr. The composition, crystal structure and habit of the alloy particles were investigated by electron microscopy. The composition of the alloy particles varied depending on the growth zone of metal smoke and almost all phases known in Cu-Zn or Cu-Mg system were found at the same time. The particles with single phase showed generally well-defined crystal habits characteristic of their crystal structures. For the particles with two phases, a fixed lattice relation between the two phases was generally recognized. The formation process of the alloy particles is discussed through these observations.
Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles
NASA Astrophysics Data System (ADS)
Louis, Cédric; Liu, Yao; Martinet, Simon; D'Anna, Barbara; Valiente, Alvaro Martinez; Boreave, Antoinette; R'Mili, Badr; Tassel, Patrick; Perret, Pascal; André, Michel
2017-11-01
Dilution and temperature used during sampling of vehicle exhaust can modify particle number concentration and size distribution. Two experiments were performed on a chassis dynamometer to assess exhaust dilution and temperature on particle number and particle size distribution for Euro 5 and Euro 6 vehicles. In the first experiment, the effects of dilution (ratio from 8 to 4 000) and temperature (ranging from 50 °C to 150 °C) on particle quantification were investigated directly from tailpipe for a diesel and a gasoline Euro 5 vehicles. In the second experiment, particle emissions from Euro 6 diesel and gasoline vehicles directly sampled from the tailpipe were compared to the constant volume sampling (CVS) measurements under similar sampling conditions. Low primary dilutions (3-5) induced an increase in particle number concentration by a factor of 2 compared to high primary dilutions (12-20). Low dilution temperatures (50 °C) induced 1.4-3 times higher particle number concentration than high dilution temperatures (150 °C). For the Euro 6 gasoline vehicle with direct injection, constant volume sampling (CVS) particle number concentrations were higher than after the tailpipe by a factor of 6, 80 and 22 for Artemis urban, road and motorway, respectively. For the same vehicle, particle size distribution measured after the tailpipe was centred on 10 nm, and particles were smaller than the ones measured after CVS that was centred between 50 nm and 70 nm. The high particle concentration (≈106 #/cm3) and the growth of diameter, measured in the CVS, highlighted aerosol transformations, such as nucleation, condensation and coagulation occurring in the sampling system and this might have biased the particle measurements.
NASA Astrophysics Data System (ADS)
Jung, Jinsang; Kawamura, Kimitaka
2013-04-01
To investigate the hygroscopic property of ultrafine particles, hygroscopic growth factors [g(RH)] of size-segregated atmospheric particles were measured at an urban site in Sapporo, northern Japan, during the summer of 2011. Hygroscopic growth factors at 85% RH [g(85%)] of freshly formed nucleation mode particles ranged from 1.11 to 1.28 with an average of 1.16 ± 0.06. These values are similar to those of secondary organic aerosols, suggesting that low volatile organic vapors are important to the growth of nucleated clusters into quasi-stable aerosol particles larger than 3 nm. Higher g(85%) values (range: 1.21-1.31, AVG: 1.27 ± 0.04) were obtained for grown Aitken mode nucleated particles. This result may indicate that the growth of freshly formed nucleation mode particles to the Aitken mode particles at the urban site can be attributed to condensation not only of low volatility organic vapors but also of highly water-soluble inorganic compounds like sulfuric acid. Diel variations in the number concentrations of less-hygroscopic particles [g(85%) <1.05] were similar to those in NO concentrations, suggesting that less-hygroscopic particles are mainly produced by local anthropogenic emissions such as traffic. Higher g(85%) values (1.27 ± 0.05) were obtained at a dry particle diameter of 120 nm when the air masses originated from downwind areas of the Asian continent, whereas lower g(85%) values (1.19 ± 0.06) were obtained when clean marine air masses arrived in the urban site. These results indicate that the hygroscopic property of large Aitken and small accumulation mode particles (80-165 nm) are highly influenced by the long-range transport of atmospheric particles.
ERIC Educational Resources Information Center
Kumar, David Devraj; Scarola, Kimberly
2006-01-01
This paper argues in favor of Closed Captioned Video technology for incorporating nanotechnology as part of teaching science to English as a Second Language (ESL) students. Nanotechnology deals with particles with diameters 1-50 nm and provides a macro-context for science instruction. Closed Captioned Videos provide an effective tool for…
Electrohydrodynamic Printing and Manufacturing
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Saville, Dudley A. (Inventor); Chen, Chuan-hua (Inventor)
2014-01-01
An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.
Micronized Cu (µ-Cu) is used as a wood preservative, replacing toxic Chromated Copper Arsenates. Micronized Cu is Malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, many with diameters less than 100 nm, and then mixed with quat or azol biocides. I...
Micronized Cu (µ-Cu) is used as a wood preservative, replacing toxic Chromated Copper Arsenates. Micronized Cu is Malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, many with diameters less than 100 nm, and then mixed with quat or azol biocides. I...
Microstructure Analyses of NA-Nanodiamond Particles
2016-08-01
approximately 5 to 6 nm in diameter, similar to those obtained by distilled water purification . The energy dispersive analyzer from these perfectly well...NOTES 14. ABSTRACT The purification process of detonation diamond nanoparticles was perfectly accomplished using nitric acid at high...pressure nitric acid, whereas the previous detonation diamond nanoparticle was washed with distilled water and purified by oxidation
Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region.
Li, Weijun; Wang, Yan; Collett, Jeffrey L; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing
2013-05-07
Mass concentrations of soluble trace metals and size, number, and mixing properties of nanometal particles in clouds determine their toxicity to ecosystems. Cloud water was found to be acidic, with a pH of 3.52, at Mt. Lu (elevation 1,165 m) in an acid precipitation region in South China. A combination of Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) for the first time demonstrates that the soluble metal concentrations and solid metal particle number are surprisingly high in acid clouds at Mt. Lu, where daily concentrations of SO2, NO2, and PM10 are 18 μg m(-3), 7 μg m(-3), and 22 μg m(-3). The soluble metals in cloudwater with the highest concentrations were zinc (Zn, 200 μg L(-1)), iron (Fe, 88 μg L(-1)), and lead (Pb, 77 μg L(-1)). TEM reveals that 76% of cloud residues include metal particles that range from 50 nm to 1 μm diameter with a median diameter of 250 nm. Four major metal-associated particle types are Pb-rich (35%), fly ash (27%), Fe-rich (23%), and Zn-rich (15%). Elemental mapping shows that minor soluble metals are distributed within sulfates of cloud residues. Emissions of fine metal particles from large, nonferrous industries and coal-fired power plants with tall stacks were transported upward to this high elevation. Our results suggest that the abundant trace metals in clouds aggravate the impacts of acid clouds or associated precipitation on the ecosystem and human health.
NASA Astrophysics Data System (ADS)
Wildner, Wolfgang; Drummer, Dietmar
2016-12-01
This paper describes the development and function of an optical fiber temperature sensor made out of a compound of epoxy and optical glass particles. Because of the different thermo-optic coefficients of these materials, this compound exhibits a strong wavelength and temperature dependent optical transmission, and it therefore can be employed for fiber optic temperature measurements. The temperature at the sensor, which is integrated into a polymer optical fiber (POF), is evaluated by the ratio of the transmitted intensity of two different light-emitting diodes (LED) with a wavelength of 460 nm and 650 nm. The material characterization and influences of different sensor lengths and two particle sizes on the measurement result are discussed. The temperature dependency of the transmission increases with smaller particles and with increasing sensor length. With glass particles with a diameter of 43 μm and a sensor length of 9.8 mm, the intensity ratio of the two LEDs decreases by 60% within a temperature change from 10°C to 40°C.
Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite
NASA Astrophysics Data System (ADS)
Pan, Yusong; Xiong, Dangsheng
2010-10-01
Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.
NASA Astrophysics Data System (ADS)
Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.
2015-07-01
We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ˜105 cm-3 prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.
NASA Astrophysics Data System (ADS)
Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.
2017-06-01
Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.
Dielectrophoretic spectroscopy using a microscopic electrode array
NASA Astrophysics Data System (ADS)
Kirmani, Syed Abdul Mannan; Gudagunti, Fleming Dackson; Velmanickam, Logeeshan; Nawarathna, Dharmakeerthi; Lima, Ivan T.
2017-02-01
Dielectrophoresis (DEP) is a commonly used technique in biomedical engineering to manipulate biomolecules. DEP is defined as the force acting on dielectric particles when they are exposed to non-uniform electric fields. DEP effect can be divided in three categories: positive (dielectric particles are attracted to the electrodes), negative, and zero force DEP. The cross-over frequency is the frequency in which the DEP force is equal to zero. The cross-over frequency depends on the conductivity and the permittivity of the particles and of the suspended medium. The DEP cross-over frequency has been utilized in detecting/quantifying biomolecules. A manual procedure is commonly used to estimate the cross-over frequency of biomolecules. Therefore, the accuracy of this detection method is significantly limited. To address this issue, we designed and tested an automated procedure to carry out DEP spectroscopy in dielectric particles dissolved in a biological buffer solution. Our method efficiently measures the effect of the DEP force through a live video feed from the microscope camera and performs real-time image processing. It records the change in the fluorescence emission as the system automatically scans the electric frequency of the function generator over a specified time interval. We demonstrated the effectiveness of the method by extracting the crossover frequencies and the DEP spectrum of polystyrene beads with blue color dye (1000 nm diameter) and green fluorescent polystyrene beads with 500 nm diameter using this procedure. This approach can lead to the development of a biosensor with significantly higher sensitivity than existing detection methods.
Schneider, Craig S.; Xu, Qingguo; Boylan, Nicholas J.; Chisholm, Jane; Tang, Benjamin C.; Schuster, Benjamin S.; Henning, Andreas; Ensign, Laura M.; Lee, Ethan; Adstamongkonkul, Pichet; Simons, Brian W.; Wang, Sho-Yu S.; Gong, Xiaoqun; Yu, Tao; Boyle, Michael P.; Suk, Jung Soo; Hanes, Justin
2017-01-01
Mucoadhesive particles (MAP) have been widely explored for pulmonary drug delivery because of their perceived benefits in improving particle residence in the lungs. However, retention of particles adhesively trapped in airway mucus may be limited by physiologic mucus clearance mechanisms. In contrast, particles that avoid mucoadhesion and have diameters smaller than mucus mesh spacings rapidly penetrate mucus layers [mucus-penetrating particles (MPP)], which we hypothesized would provide prolonged lung retention compared to MAP. We compared in vivo behaviors of variously sized, polystyrene-based MAP and MPP in the lungs following inhalation. MAP, regardless of particle size, were aggregated and poorly distributed throughout the airways, leading to rapid clearance from the lungs. Conversely, MPP as large as 300 nm exhibited uniform distribution and markedly enhanced retention compared to size-matched MAP. On the basis of these findings, we formulated biodegradable MPP (b-MPP) with an average diameter of <300 nm and examined their behavior following inhalation relative to similarly sized biodegradable MAP (b-MAP). Although b-MPP diffused rapidly through human airway mucus ex vivo, b-MAP did not. Rapid b-MPP movements in mucus ex vivo correlated to a more uniform distribution within the airways and enhanced lung retention time as compared to b-MAP. Furthermore, inhalation of b-MPP loaded with dexamethasone sodium phosphate (DP) significantly reduced inflammation in a mouse model of acute lung inflammation compared to both carrier-free DP and DP-loaded MAP. These studies provide a careful head-to-head comparison of MAP versus MPP following inhalation and challenge a long-standing dogma that favored the use of MAP for pulmonary drug delivery. PMID:28435870
Lee, Ki-Chang; Choo, Hun-Seung
2014-11-01
Narrowly dispersed poly(BMA-co-MMA) and PBMA latices with particle diameters ranging within 216-435 nm were synthesized successfully by surfactant-free emulsion polymerization with KPS and AIBA. The average particle diameter and particle size distribution, average molecular weight and its distribution, glass transition temperature, reflectance spectra in visible wavelength, and refractive indices for the respective poly(BMA-co-MMA) latices and their photonic crystals were systematically investigated in terms of BMA/MMA ratio, BMA content, polymerization temperature, and DVB effect. The rate of polymerization increased with increasing MMA concentration in BMA/MMA ratio. The particle diameter increased with BMA concentration in BMA/MMA ratio. The molecular weight increased with BMA concentration in BMA/MMA ratio and monomer concentration. The drying of the latices offered self-assembled shiny colloidal crystal films showing the characteristic structural colors in visible wavelength. All the poly(BMA-co-MMA) latices prepared in the study were fallen within the range of photonic grade microspheres. The reflectance measurement on the colloidal photonic crystals having different particle diameters clearly exhibited narrow stopbands. The reflection maxima (λ(max)) measured in this study were well close to the λ(max) calculated, derived from the Bragg's equation. The refractive indices of poly(BMA-co-MMA) photonic crystals were found to be almost same as the theoretical values and increased proportionally from 1.50 to 1.57 with BMA content in BMA/MMA ratios. It was, thus, found that the optical reflectance properties of the poly(BMA-co-MMA) colloidal photonic crystals can be controlled easily by adjusting the reaction conditions and BMA/MMA ratio in soap-free emulsion copolymerization of BMA and MMA.
Lin, Tzu-Hsien; Chen, Chih-Chieh; Kuo, Chung-Wen
2017-01-01
This study investigates the effects of five decontamination methods on the filter quality (qf) of three commercially available electret masks—N95, Gauze and Spunlace nonwoven masks. Newly developed evaluation methods, the overall filter quality (qf,o) and the qf ratio were applied to evaluate the effectiveness of decontamination methods for respirators. A scanning mobility particle sizer is utilized to measure the concentration of polydispersed particles with diameter 14.6–594 nm. The penetration of particles and pressure drop (Δp) through the mask are used to determine qf and qf,o. Experimental results reveal that the most penetrating particle size (MPS) for the pre-decontaminated N95, Gauze and Spunlace masks were 118 nm, 461 nm and 279 nm, respectively, and the respective penetration rates were 2.6%, 23.2% and 70.0%. The Δp through the pretreated N95 masks was 9.2 mm H2O at the breathing flow rate of heavy-duty workers, exceeding the Δp values obtained through Gauze and Spunlace masks. Decontamination increased the sizes of the most penetrating particles, changing the qf values of all of the masks: qf fell as particle size increased because the penetration increased. Bleach increased the Δp of N95, but destroyed the Gauze mask. However, the use of an autoclave reduces the Δp values of both the N95 and the Gauze mask. Neither the rice cooker nor ethanol altered the Δp of the Gauze mask. Chemical decontamination methods reduced the qf,o values for the three electret masks. The value of qf,o for PM0.1 exceeded that for PM0.1–0.6, because particles smaller than 100 nm had lower penetration, resulting in a better qf for a given pressure drop. The values of qf,o, particularly for PM0.1, reveal that for the tested treatments and masks, physical decontamination methods are less destructive to the filter than chemical methods. Nevertheless, when purchasing new or reusing FFRs, penetration should be regarded as the priority. PMID:29023492
Characteristics of a Virus Isolated from a Feline Fibrosarcoma
McKissick, G. E.; Lamont, P. H.
1970-01-01
A virus was isolated from a radioresistant feline fibrosarcoma. It induced multi-nucleated giant-cell formation and lysis in a cell line derived from a canine fibro-sarcoma, which was used to characterize the virus. End-point titrations in these cells required 28 days. The virus was sensitive to ether and heat and was destroyed at pH 3. Replication was not inhibited by 5-bromodeoxyuridine. Electron microscopy revealed assembly by a budding process from the plasma membrane of infected cells. The average diameter of the virion was 106 nm. Intracisternal particles with an average diameter of 45 nm were present within infected cells. In two instances secondary monolayers of feline renal cells underwent morphological transformation after inoculation of the virus. The two strains of transformed cells are now in continuous culture and do not yield infectious virus. Images PMID:4194169
NASA Astrophysics Data System (ADS)
Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.
1995-10-01
We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various
The occurrence of ultrafine particles in the specific environment of children.
Burtscher, Heinz; Schüepp, Karen
2012-06-01
Interest in ultrafine particles (UFP) has been increasing due to their specific physico-chemical characteristics. Ultrafine particles are those with an aerodynamic diameter of <0.1 μm and are also commonly know as nanoparticles (0.1 μm = 100 nm). Due to their small size UFP contribute mostly to particle number concentrations and are therefore underestimated in actual pollution measurements, which commonly measure mass concentration. Children represent the most vulnerable group in regard to particulate exposure due to their developing status and different exposures compared to adults. This review discusses the sources of ultrafine particles as well as the specific exposures of children highlighting the importance and uniqueness of this age group. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles
Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri
2011-01-01
The thermal stability of multiwalled carbon nanotubes (CNTs) was studied in high vacuum using tungsten nanoparticles as miniaturized thermal probes. The particles were placed on CNTs inside a high-resolution transmission electron microscope equipped with a scanning tunneling microscope unit. The setup allowed manipulating individual nanoparticles and heating individual CNTs by applying current to them. CNTs were found to withstand high temperatures, up to the melting point of 60-nm-diameter W particles (∼3400 K). The dynamics of W particles on a hot CNT, including particle crystallization, quasimelting, melting, sublimation and intradiffusion, were observed in real time and recorded as a video. Graphite layers reel off CNTs when melted or premelted W particles revolve along the tube axis. PMID:27877413
The presence of silver nanoparticles (AgNPs) in aquatic environments could potentially cause adverse impacts on ecosystems and human health. However, current understanding of the environmental fate and transport of AgNPs is still limited because their properties in complex environmental samples cannot be accurately determined. In this study, the feasibility of using asymmetric flow field-flow fractionation (AF4) connected online with single particle inductively coupled plasma mass spectrometry (spICPMS) to detect and quantify AgNPs at environmentally relevant concentrations was investigated. The AF4 channel had a thickness of 350 00b5m and its accumulation wall was a 10 kDa regenerated cellulose membrane. A 0.02 % FL-70 surfactant solution was used as an AF4 carrier. With 1.2 mL/min AF4 cross flow rate, 1.5 mL/min AF4 channel flow rate, and 5 ms spICPMS dwell time, the AF4??spICPMS can detect and quantify 40 ?? 80 nm AgNPs, as well as Ag-SiO2 nanoparticles (51.0 nm diameter Ag core and 21.6 nm SiO2 shell), with good recovery within 30 min. This system was not only effective in differentiating and quantifying different types of AgNPs with similar hydrodynamic diameters, such as in mixtures containing Ag-SiO2 core-shell nanoparticles and 40 ?? 80 nm AgNPs, but also suitable for differentiating between 40 nm AgNPs and elevated dissolved Ag content. The study results indicate that AF4??spICPMS is capable of detecting and quantifying AgNPs and other engineered
Clustering of gold particles in Au implanted CrN thin films: The effect on the SPR peak position
NASA Astrophysics Data System (ADS)
Novaković, M.; Popović, M.; Schmidt, E.; Mitrić, M.; Bibić, N.; Rakočević, Z.; Ronning, C.
2017-12-01
We report on the formation of gold particles in 280 nm thin polycrystalline CrN layers caused by Au+ ion implantation. The CrN layers were deposited at 150 °C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 150 keV Au+ ions to fluences of 2 × 1016 cm-2 to 4.1 × 1016 cm-2. The implanted layers were analysed by the means of Rutherford backscattering spectrometry, X-ray diffraction, atomic force microscopy and spectroscopic ellipsometry measurements. The results revealed that the Au atoms are situated in the near-surface region of the implanted CrN layers. At the fluence of 2 × 1016 cm-2 the formation of Au particles of ∼200 nm in diameter has been observed. With increasing Au ion fluence the particles coalesce into clusters with dimensions of ∼1.7 μm. The synthesized particles show a strong absorption peak associated with the excitation of surface plasmon resonances (SPR). The position of the SPR peak shifted in the range of 426.8-690.5 nm when the Au+ ion fluence was varied from 2 × 1016 cm-2 to 4.1 × 1016 cm-2. A correlation of the shift in the peak wavelength caused by the change in the particles size and clustering has been revealed, suggesting that the interaction between Au particles dominate the surface plasmon resonance effect.
NASA Astrophysics Data System (ADS)
El-Eskandarany, M. Sherif
2017-05-01
The room-temperature reactive ball milling (RBM) approach was employed to synthesize nanostructured fcc-titanium nitride (TiN) powders, starting from milling hcp-titanium (Ti) powders under 10 bar of a nitrogen gas atmosphere, using a roller mill. During the first and intermediate stage of milling, the agglomerated Ti powders were continuously disintegrated into smaller particles with fresh surfaces. Increasing the RBM time led to an increase in the active-fresh surfaces of Ti, resulting increasing of the mole fraction of TiN against unreacted hcp-Ti. Toward the end of the RBM time (20 h), ultrafine spherical powder (with particles 0.5 μm in diameter) of the fcc-TiN phase was obtained, composed of nanocrystalline grains with an average diameter of 8 nm. The samples obtained after different stages of RBM time were consolidated under vacuum at 1600 °C into cylindrical bulk compacts of 20 mm diameter, using spark plasma sintering technique. These compacts that maintained their nanocrystalline characteristics with an average grain size of 56 nm in diameter, possessed high relative density (above 99% of the theoretical density). The Vickers hardness of the as-consolidated TiN was measured and found to be 22.9 GPa. The modulus of elasticity and shear modulus of bulk TiN were measured by a nondestructive test and found to be 384 and 189 GPa, respectively. In addition, the coefficient of friction of the end-product TiN bulk sample was measured and found to be 0.35.
Aerosol detection efficiency in inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Hubbard, Joshua A.; Zigmond, Joseph A.
2016-05-01
An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.
Preparation of silver nanoparticles in virgin coconut oil using laser ablation.
Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A
2011-01-07
Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10(-8), 1.6 × 10(-8), 2.4 × 10(-8), respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.
Preparation of silver nanoparticles in virgin coconut oil using laser ablation
Zamiri, Reza; Azmi, B Z; Sadrolhosseini, Amir Reza; Ahangar, Hossein Abbastabar; Zaidan, A W; Mahdi, M A
2011-01-01
Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10−8, 1.6 × 10−8, 2.4 × 10−8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method. PMID:21289983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Helinor J., E-mail: h.johnston@napier.ac.u; Semmler-Behnke, Manuela; Brown, David M.
2010-01-01
Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged 'live' during particle exposure or after exposure within fixed cells. Comparisons between the uptakemore » of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.« less
Imhof, David; Weingartner, Ernest; Ordónez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs
2005-11-01
Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D <50 nm). From the differences between up- and downwind concentrations (or differences between kerbside and background concentrations for the urban site), "real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.
Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea
NASA Astrophysics Data System (ADS)
Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P. P.; Zhou, J.; Norman, M.
2001-12-01
An eddy-covariance flux system was successfully applied over open sea, leads and ice floes during the Arctic Ocean Expedition in July-August 1996. Wind-driven upward aerosol number fluxes were observed over open sea and leads in the pack ice. These particles must originate from droplets ejected into the air at the bursting of small air bubbles at the water surface. The source flux F (in 106 m-2 s-1) had a strong dependency on wind speed, log>(F>)=0.20U¯-1.71 and 0.11U¯-1.93, over the open sea and leads, respectively (where U¯ is the local wind speed at about 10 m height). Over the open sea the wind-driven aerosol source flux consisted of a film drop mode centered at ˜100 nm diameter and a jet drop mode centered at ˜1 μm diameter. Over the leads in the pack ice, a jet drop mode at ˜2 μm diameter dominated. The jet drop mode consisted of sea-salt, but oxalate indicated an organic contribution, and bacterias and other biogenic particles were identified by single particle analysis. Particles with diameters less than -100 nm appear to have contributed to the flux, but their chemical composition is unknown. Whitecaps were probably the bubble source at open sea and on the leads at high wind speed, but a different bubble source is needed in the leads owing to their small fetch. Melting of ice in the leads is probably the best candidate. The flux over the open sea was of such a magnitude that it could give a significant contribution to the condensation nuclei (CCN) population. Although the flux from the leads were roughly an order of magnitude smaller and the leads cover only a small fraction of the pack ice, the local source may till be important for the CCN population in Arctic fogs. The primary marine aerosol source will increase both with increased wind speed and with decreased ice fraction and extent. The local CCN production may therefore increase and influence cloud or fog albedo and lifetime in response to greenhouse warming in the Arctic Ocean region.
Zhang, Jian; Fu, Yi; Lakowicz, Joseph R
2007-02-08
Labeled silica beads with an average diameter of 100 nm were synthesized by incorporating with 20-600 μM Ru(bpy)(3) (2+) complexes. Silver shells were deposited on the beads layer-by-layer with the shell thickness of 5-50 nm. The emission band became narrower and the intensity was enhanced depending on the shell thickness. Self-quenching of the probe was observed at high concentration. Poisson statistics were employed to analyze self-quenching of the fluorophores. The estimated quenching distance was extended from 6 to 16 nm with shell growth from 0 to 50 nm. Moreover, the silver shells were also labeled with Rhodamine 6G. Fluorescence enhancement and reduced lifetime were also observed for silver-silica shell containing R6G. We found that by adjustment of probe concentration and silver shell thickness, a Ru(bpy)(3) (2+)-labeled particle could be 600 times brighter than an isolated Ru(bpy)(3) (2+) molecule. We expect labeled metal core-shell structures can become useful probes for high sensitivity and/or single particle assay.
Crystallization and preliminary X-ray analysis of a low density lipoprotein from human plasma.
Prassl, R; Chapman, J M; Nigon, F; Sara, M; Eschenburg, S; Betzel, C; Saxena, A; Laggner, P
1996-11-15
Single crystals of human plasma low density lipoprotein (LDL), the major transport vehicle for cholesterol in blood, have been produced with a view to analysis of the three-dimensional structure by x-ray crystallography. Crystals with dimensions of approximately 200 x 100 x 50 microm have been reproducibly obtained from highly homogeneous LDL particle subspecies, isolated in the density ranges d = 1.0271-1. 0297 g/ml and d = 1.0297-1.0327 g/ml. Electron microscopic imaging of ultrathin-sectioned preparations of the crystals confirmed the existence of a regular, quasihexagonal arrangement of spherical particles of approximately 18 nm in diameter, thereby resembling the dimensions characteristic of LDL after dehydration and fixation. X-ray diffraction with synchrotron radiation under cryogenic conditions revealed the presence of well resolved diffraction spots, to a resolution of about 29 A. The diffraction patterns are indexed in terms of a triclinic lattice with unit cell dimensions of a = 16. 1 nm, b = 39.0 nm, c = 43.9 nm; alpha = 96.2 degrees, beta = 92.1 degrees, gamma = 102 degrees, and with space group P1.
Peng, Jie; Dong, Wu-Jun; Li, Ling; Xu, Jia-Ming; Jin, Du-Jia; Xia, Xue-Jun; Liu, Yu-Ling
2015-12-01
The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS) and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI) value of the emulsions were determined using the dynamic light scattering (DLS) method, and large-diameter tail assessments were performed using the light-obscuration/single particle optical sensing (LO/SPOS) method. Using 1000 bar homogenization pressure and seven recirculations, the energy input parameters related to the rotor-stator system will not have an effect on the final particle size results. When rotor-stator system energy input parameters are fixed, homogenization pressure and recirculation will affect mean particle size and large diameter droplet. Particle size will decrease with increasing homogenization pressure from 400 bar to 1300 bar when homogenization recirculation is fixed; when the homogenization pressure is fixed at 1000 bar, the particle size of both MDS and percent of fat droplets exceeding 5 μm (PFAT 5 ) will decrease with increasing homogenization recirculations, MDS dropped to 173 nm after five cycles and maintained this level, volume-weighted PFAT 5 will drop to 0.038% after three cycles, so the "plateau" of MDS will come up later than that of PFAT 5 , and the optimal particle size is produced when both of them remained at plateau. Excess homogenization recirculation such as nine times under the 1000 bar may lead to PFAT 5 increase to 0.060% rather than a decrease; therefore, the high-pressure homogenization procedure is the key factor affecting the particle size distribution of emulsions. Varying storage conditions (4-25°C) also influenced particle size, especially the PFAT 5 . Copyright © 2015. Published by Elsevier B.V.
Fluorescence/depolarization lidar for mid-range stand-off detection of biological agents
NASA Astrophysics Data System (ADS)
Mierczyk, Z.; Kopczyński, K.; Zygmunt, M.; Wojtanowski, J.; Młynczak, J.; Gawlikowski, A.; Młodzianko, A.; Piotrowski, W.; Gietka, A.; Knysak, P.; Drozd, T.; Muzal, M.; Kaszczuk, M.; Ostrowski, R.; Jakubaszek, M.
2011-06-01
LIDAR system for real-time standoff detection of bio-agents is presented and preliminary experimental results are discussed. The detection approach is based on two independent physical phenomena: (1) laser induced fluorescence (LIF), (2) depolarization resulting from elastic scattering on non-spherical particles. The device includes three laser sources, two receiving telescopes, depolarization component and spectral signature analyzing spectrograph. It was designed to provide the stand-off detection capability at ranges from 200 m up to several kilometers. The system as a whole forms a mobile platform for vehicle or building installation. Additionally, it's combined with a scanning mechanics and advanced software, which enable to conduct the semi-automatic monitoring of a specified space sector. For fluorescence excitation, 3-rd (355 nm) and 4-th (266 nm) harmonics of Nd:YAG pulsed lasers are used. They emit short (~6 ns) pulses with the repetition rate of 20 Hz. Collecting optics for fluorescence echo detection and spectral content analysis includes 25 mm diameter f/4 Newton telescope, Czerny Turner spectrograph and 32-channel PMT. Depending on the grating applied, the spectral resolution from 20 nm up to 3 nm per channel can be achieved. The system is also equipped with an eye-safe (1.5 μm) Nd:YAG OPO laser for elastic backscattering/depolarization detection. The optical echo signal is collected by Cassegrain telescope with aperture diameter of 12.5 mm. Depolarization detection component based on polarizing beam-splitter serves as the stand-off particle-shape analyzer, which is very valuable in case of non-spherical bio-aerosols sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moaseri, Ehsan; Bollinger, Jonathan A.; Changalvaie, Behzad
In this study, nanoparticle (NP) clusters with diameters ranging from 20 to 100 nm are reversibly assembled from 5 nm gold (Au) primary particles coated with glutathione (GSH) in aqueous solution as a function of pH in the range of 5.4 to 3.8. As the pH is lowered, the GSH surface ligands become partially zwitterionic and form interparticle hydrogen bonds that drive the self-limited assembly of metastable clusters in <1 min. Whereas clusters up to 20 nm in size are stable against cluster–cluster aggregation for up to 1 day, clusters up to 80 nm in size can be stabilized overmore » this period via the addition of citrate to the solution in equal molarity with GSH molecules. The cluster diameter may be cycled reversibly by tuning pH to manipulate the colloidal interactions; however, modest background cluster–cluster aggregation occurs during cycling. Cluster sizes can be stabilized for at least 1 month via the addition of PEG-thiol as a grafted steric stabilizer, where PEG-grafted clusters dissociate back to starting primary NPs at pH 7 in fewer than 3 days. Whereas the presence of excess citrate has little effect on the initial size of the metastable clusters, it is necessary for both the cycling and dissociation to mediate the GSH–GSH hydrogen bonds. In conclusion, these metastable clusters exhibit significant characteristics of equilibrium self-limited assembly between primary particles and clusters on time scales where cluster–cluster aggregation is not present.« less
Moaseri, Ehsan; Bollinger, Jonathan A.; Changalvaie, Behzad; ...
2017-10-06
In this study, nanoparticle (NP) clusters with diameters ranging from 20 to 100 nm are reversibly assembled from 5 nm gold (Au) primary particles coated with glutathione (GSH) in aqueous solution as a function of pH in the range of 5.4 to 3.8. As the pH is lowered, the GSH surface ligands become partially zwitterionic and form interparticle hydrogen bonds that drive the self-limited assembly of metastable clusters in <1 min. Whereas clusters up to 20 nm in size are stable against cluster–cluster aggregation for up to 1 day, clusters up to 80 nm in size can be stabilized overmore » this period via the addition of citrate to the solution in equal molarity with GSH molecules. The cluster diameter may be cycled reversibly by tuning pH to manipulate the colloidal interactions; however, modest background cluster–cluster aggregation occurs during cycling. Cluster sizes can be stabilized for at least 1 month via the addition of PEG-thiol as a grafted steric stabilizer, where PEG-grafted clusters dissociate back to starting primary NPs at pH 7 in fewer than 3 days. Whereas the presence of excess citrate has little effect on the initial size of the metastable clusters, it is necessary for both the cycling and dissociation to mediate the GSH–GSH hydrogen bonds. In conclusion, these metastable clusters exhibit significant characteristics of equilibrium self-limited assembly between primary particles and clusters on time scales where cluster–cluster aggregation is not present.« less
Nano-material size dependent laser-plasma thresholds
NASA Astrophysics Data System (ADS)
EL Sherbini, Ashraf M.; Parigger, Christian G.
2016-10-01
The reduction of laser fluence for initiation of plasma was measured for zinc monoxide nanoparticles of diameters in the range of 100 to 20 nm. In a previous work by EL Sherbini and Parigger [Wavelength Dependency and Threshold Measurements for Nanoparticle-enhanced Laser-induced Breakdown Spectroscopy, Spectrochim. Acta Part B 116 (2016) 8-15], the hypothesis of threshold dependence on particle size leads to the interpretation of the experiments for varying excitation wavelengths with fixed, 30 nm nanomaterial. The experimental results presented in this work were obtained with 1064 nm Nd:YAG radiation and confirm and validate the suspected reduction due to quenching of the thermal conduction length to the respective sizes of the nanoparticles.
NASA Astrophysics Data System (ADS)
Horio, Akifumi; Sakurai, Tsuneaki; Kayama, Kazuto; Lakshmi, G. B. V. S.; Kumar Avasthi, Devesh; Sugimoto, Masaki; Yamaki, Tetsuya; Chiba, Atsuya; Saito, Yuichi; Seki, Shu
2018-01-01
Irradiation of high-energy ion particles on organic films induced solid-state polymerization and crosslinking reactions of the materials along the ion trajectories, resulting in the formation of insoluble uniform nanowires with a precise diameter. The nanowires were isolated by the development process i.e. the irradiated film was immersed in organic solvents, and their morphology was visualized by atomic force microscopy. The target organic materials are 4-vinyltriphenylamine, poly(4-vinyltriphenylamine), and polystyrene derivatives with/without the partial substitutions by halogen atoms. It was found that 4-vinyltriphenylamines, in spite of their small molecular sizes, afforded nanowires more clearly than poly(4-vinyltriphenylamine)s. Moreover, the efficiency of demonstrated polymerization/crosslinking reactions obviously depends on the substituted halogen atom species. The averaged diameters of nanowires from bromo- or iodo- substituted 4-vinyltriphenylamine (9.3 and 9.4 nm, respectively) were larger than that obtained from simple 4-vinyltriphenylamine (6.8 nm). The remarkable effect of halogenation of aromatic compounds on the efficiency of the radiation-induced reactions was also observed for polystyrene derivatives. This contrast was considered to originate from the sum of the efficiency of elementary reactions including dissociative electron attachment.
Nanoporous Membranes with Chemically-Tailored Pore Walls from Triblock Terpolymer Templates
NASA Astrophysics Data System (ADS)
Mulvenna, Ryan; Weidman, Jacob; Pople, John; Boudouris, Bryan; Phillip, William
2014-03-01
Membranes generated from self-assembled block polymers have shown promise as highly permeable and selective filters; however, current syntheses of such materials lack diverse pore wall chemical functionality. Here, we report the facile synthesis of polyisoprene- b-polystyrene- b-poly(N , N -dimethylacrylamide) (PI-PS-PDMA) using a controlled reversible addition-fragmentation chain transfer (RAFT) polymerization mechanism to yield a macromolecule with an easily-tunable molecular weight and a narrow molecular weight distribution. The PI-PS-PDMA is then cast into an anisotropic membrane using the self-assembly and non-solvent induced phase separation process (SNIPS) protocol. These membranes can be used in size-selective separations for particles as small as 8 nm in diameter. Furthermore, the PDMA block can be converted to poly(acrylic acid) (PAA) readily in the solid state, and this PI-PS-PAA terpolymer membrane can separate particles as low as 2 nm in diameter while still retaining a relatively high flux. This is the smallest reported separation for a block polymer-based membrane to date. Additionally, the PAA-lined pores serve as a conversion platform to be tuned to any other pore chemistry, which allows the membrane to be of great utility in optimizing chemistry-specific separations.
Respiratory herpesvirus infection in two Indian Ringneck parakeets.
Lazic, Tatjana; Ackermann, Mark R; Drahos, Jo M; Stasko, Judith; Haynes, Joseph S
2008-03-01
A flock of Indian Ringneck parakeets (Psittacula krameri manillensis) was imported to the United States from Australia. Soon after, 1 parakeet suddenly died, and a second parakeet died after a 2-day course of illness, which consisted of anorexia, lethargy, emaciation, and dyspnea. At necropsy, the affected birds had diffuse consolidation and red discoloration of the lungs, as well as thickened, congested air sacs. The microscopic examination revealed multifocal, necrotizing bronchitis, parabronchitis, and interstitial pneumonia. The lumen of the affected airways contained numerous, large syncytial cells with up to 15 nuclei. The nuclei of these syncytial cells often contained large, eosinophilic inclusion bodies, consistent with herpesvirus. The epithelium of the trachea and air sacs was hypertrophied and contained syncytial cells with intranuclear inclusion bodies similar to the bronchi. In addition, a few intranuclear inclusion bodies were also present in the epithelial cells that line the air capillaries. On ultrastructural examination, the nuclei of degenerating epithelial cells contained clusters of viral nucleocapsid proteins and unenveloped, icosahedral, viral particles that were approximately 90 nm in diameter. In addition, some epithelial cells contained clusters of enveloped viral particles approximately 105 nm in diameter, within the cytocavitary network. These lesions are characteristic of those caused by respiratory herpesvirus of parakeets.
Stahl, Christian; Albe, Karsten
2012-01-01
Summary Nanoparticles of Pt–Rh were studied by means of lattice-based Monte Carlo simulations with respect to the stability of ordered D022- and 40-phases as a function of particle size and composition. By thermodynamic integration in the semi-grand canonical ensemble, phase diagrams for particles with a diameter of 7.8 nm, 4.3 nm and 3.1 nm were obtained. Size-dependent trends such as the lowering of the critical ordering temperature, the broadening of the compositional stability range of the ordered phases, and the narrowing of the two-phase regions were observed and discussed in the context of complete size-dependent nanoparticle phase diagrams. In addition, an ordered surface phase emerges at low temperatures and low platinum concentration. A decrease of platinum surface segregation with increasing global platinum concentration was observed, when a second, ordered phase is formed inside the core of the particle. The order–disorder transitions were analyzed in terms of the Warren–Cowley short-range order parameters. Concentration-averaged short-range order parameters were used to remove the surface segregation bias of the conventional short-range order parameters. Using this procedure, it was shown that the short-range order in the particles at high temperatures is bulk-like. PMID:22428091
Ma, Jiachen; Zhang, Luqing; Geng, Bing; Azhar, Umair; Xu, Anhou; Zhang, Shuxiang
2017-01-25
In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide- b - N -isopropylacrylamide) (PDMA- b -PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. ¹H-NMR and 19 F-NMR spectra showed that thermo-responsive diblock P(DMA- b -NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA- b -NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14-44 °C, suggesting good temperature sensitivity for these nanoparticles.
Sonochemical synthesis of silica particles and their size control
NASA Astrophysics Data System (ADS)
Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan
2016-09-01
Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.
Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana
2015-11-02
In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.
Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma
NASA Astrophysics Data System (ADS)
Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.
2008-11-01
In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)
NASA Astrophysics Data System (ADS)
Fredrickx, Peggy
2004-10-01
This dissertation addresses the application of Transmission Electron Microscopy (TEM) to historic objects, concentrating on colour-causing nanoparticles in vitreous materials and pigments with the focus on substrates in lake pigments used in thin glaze layers, and on manuscript illustrations. TEM is well suited for archaeometry: it gives chemical elemental information, imaging and diffraction information and the amount of material needed is minimal. Sample preparation techniques suitable for historic materials are discussed. Nanoparticles can be incorporated in glass through staining. Yellow coloured glass plates contain Ag particles. Baking temperatures and different Ag-salts determine the density of the nanoparticles. Dense layers cause more saturated colours. Red glass plates can be obtained by staining with Cu-salts. Metallic Cu particles have a diameter of about 24 nm. Comparison with XRF results suggests that often a combination of Cu and Ag was used for warmer colours. Red glass can be "flashed" to the substrate glass. Then, the colour is also caused by metallic Cu particles. The red layer often displays a band structure of stacked red and transparent bands. In the transparent bands, no nanoparticles have been found. In lustre-ware, Ag and metallic Cu occur. Their distribution throughout the material determines the colour of the fragment. In both there is a dense top layer with particles of sizes smaller than 15 nm. If this top layer consists of Ag particles, the resulting colour is golden. In one sample, under this top layer the amount of Cu particles increases. This underlying layer causes the colour to redden. Particles are mainly between 5 and 15 nm in diameter. Using reconstructions, it has been demonstrated that TEM can detect and identify a stacking of thin layers in parchment decorations. A pink powder sample from Pompeii consists of a basis of allophane type clay. The lake substrates consist of Al, O, S and their amorphous structure does not seem to be noticeably changed by the addition of organic colourants. Hydrocerussite crystals (i.e. the main component of lead white) have been added to some historic glaze layers. Further it was confirmed that sometimes crystalline CaSO4 particles were added to lakes.
Airflow structures and nano-particle deposition in a human upper airway model
NASA Astrophysics Data System (ADS)
Zhang, Z.; Kleinstreuer, C.
2004-07-01
Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle suspensions behave like certain (fuel) vapors which have the same diffusivities; and (vii) new correlations for particle deposition as a function of a diffusion parameter are most useful for global lung modeling.
Modified Lipoprotein-Derived Lipid Particles Accumulate in Human Stenotic Aortic Valves
Lehti, Satu; Käkelä, Reijo; Hörkkö, Sohvi; Kummu, Outi; Helske-Suihko, Satu; Kupari, Markku; Werkkala, Kalervo; Kovanen, Petri T.; Öörni, Katariina
2013-01-01
In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis. PMID:23762432
Rissler, Jenny; Gudmundsson, Anders; Nicklasson, Hanna; Swietlicki, Erik; Wollmer, Per; Löndahl, Jakob
2017-04-08
Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood. In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition. A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry). To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.
Pinkerton, Nathalie M.; Gindy, Marian E.; Calero-DdelC, Victoria L.; Wolfson, Theodore; Pagels, Robert F.; Adler, Derek; Gao, Dayuan; Li, Shike; Wang, Ruobing; Zevon, Margot; Yao, Nan; Pacheco, Carlos; Therien, Michael J.; Rinaldi, Carlos; Sinko, Patrick J.
2015-01-01
MRI and NIR-active, multi-modal Composite NanoCarriers (CNCs) are prepared using a simple, one-step process, Flash NanoPrecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 mM-1s-1 for CNCs formulated with 4 to 16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm3 non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye PZn3 into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents. PMID:25925128
Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing.
Chen, Xiaohu; Jin, Xiaoying; Tan, Junjun; Li, Wei; Chen, Minfang; Yao, Lan; Yang, Haitao
2016-04-15
Luminescent hydroxyapatite nanoparticles, which have excellent biocompatibility, excellent photostability, and strong fluorescence, have received increasing attention as bioprobes in cell imaging. However, they are also excellent candidates for use in ink-jet security printing. Successful products for related applications usually require highly crystalline, mono-dispersible hydroxyapatite nanorods with good colloidal stability and high fluorescence in aqueous media. These requirements are hard to simultaneously satisfy using most synthetic methods. In this paper, we report a simple and versatile hydrothermal method that incorporates the use of sodium citrate to prepare water-dispersible Eu(3+)-doped hydroxyapatite nanorods. The hydroxyapatite nanorods obtained using this method are highly crystalline rod-shaped particles with an average length of 50-80 nm and an average diameter of 15-30 nm. Dispersions of these hydroxyapatite nanorods, which are transparent with a slightly milky color under natural light and a bright red color when excited with 241 nm UV light, display zeta potentials of -35 mV and hydrodynamic diameters of 120 nm. These dispersions remain colloidally stable for a few months. Dispersions with these properties could be easily applied to security printing for confidential information storage and anti-counterfeiting technologies. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.
2006-12-01
Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.
NASA Astrophysics Data System (ADS)
Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.
2013-12-01
Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately 100 nm in diameter and (b) new trucks originally equipped with diesel particle filters were 5 to 6 times more likely than filter-retrofitted trucks and trucks without filters to emit particles characterized by a single mode in the range of 10 to 30 nm in diameter.
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James
2016-01-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; ...
2016-08-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James
2016-08-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
Antifouling Transparent ZnO Thin Films Fabricated by Atmospheric Pressure Cold Plasma Deposition
NASA Astrophysics Data System (ADS)
Suzaki, Yoshifumi; Du, Jinlong; Yuji, Toshifumi; Miyagawa, Hayato; Ogawa, Kazufumi
2015-09-01
One problem with outdoor-mounted solar panels is that power generation efficiency is reduced by face plate dirt; a problem with electronic touch panels is the deterioration of screen visibility caused by finger grease stains. To solve these problems, we should fabricate antifouling surfaces which have superhydrophobic and oil-repellent properties without spoiling the transparency of the transparent substrate. In this study, an antifouling surface with both superhydrophobicity and oil-repellency was fabricated on a glass substrate by forming a fractal microstructure. The fractal microstructure was constituted of transparent silica particles 100 nm in diameter and transparent zinc-oxide columns grown on silica particles through atmospheric pressure cold plasma deposition; the sample surface was coated with a chemically adsorbed monomolecular layer. Samples were obtained which had a superhydrophobic property (with a water droplet contact angle of more than 150°) and a high average transmittance of about 90% (with wavelengths ranging from 400 nm to 780 nm).
NASA Astrophysics Data System (ADS)
Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.
2017-12-01
A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm < DP < 120 nm) we boost the already excellent limits of detection of the PTR-TOF 6000 X2 system to unprecedented levels. We demonstrate that particulate organic analytes of mass concentrations down to 100 pg m-3 can be detected on-line and in single-minute time-resolutions. In addition, PTR-MS allows for a quantitative detection of almost the full range of particulate organics of intermediate to low volatility. With the high mass resolution (R > 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).
Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong
2014-01-01
Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development.
Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong
2014-01-01
Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development. PMID:24920902
2017-01-01
Core–shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO2-philicity. The successful synthesis of core–shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core–shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency. PMID:28980799
Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius
2017-11-01
Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency.
Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin
2012-02-05
Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M
2008-01-01
A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780
On-the-fly cross flow laser guided separation of aerosol particles
NASA Astrophysics Data System (ADS)
Lall, A. A.; Terray, A.; Hart, S. J.
2010-08-01
Laser separation of particles is achieved using forces resulting from the momentum exchange between particles and photons constituting the laser radiation. Particles can experience different optical forces depending on their size and/or optical properties, such as refractive index. Thus, particles can move at different speeds in the presence of an optical force, leading to spatial separations. Several studies for aqueous suspension of particles have been reported in the past. In this paper, we present extensive analysis for optical forces on non-absorbing aerosol particles. We used a loosely focused Gaussian 1064 nm laser to simultaneously hold and deflect particles entrained in flow perpendicular to their direction of travel. The gradient force is used to hold the particles against the viscous drag for a short period of time. The scattering force simultaneously pushes the particles during this period. Theoretical calculations are used to simulate particle trajectories and to determine the net deflection: a measure of the ability to separate. We invented a novel method for aerosol generation and delivery to the flow cell. Particle motion was imaged using a high speed camera working at 3000+ frames per second with a viewing area up to a few millimeters. An 8W near-infrared 1064 nm laser was used to provide the optical force to the particles. Theoretical predictions were corroborated with measurements using polystyrene latex particles of 20 micron diameter. We measured particle deflections up to about 1500 microns. Such large deflections represent a new milestone for optical chromatography in the gas phase.
Suppression of nucleation mode particles by biomass burning in an urban environment: a case study.
Agus, Emily L; Lingard, Justin J N; Tomlin, Alison S
2008-08-01
Measurements of concentrations and size distributions of particles 4.7 to 160 nm were taken using an SMPS during the bonfire and firework celebrations on Bonfire Night in Leeds, UK, 2006. These celebrations provided an opportunity to study size distributions in a unique atmospheric pollution situation during and following a significant emission event due to open biomass burning. A log-normal fitting program was used to determine the characteristics of the modal groups present within hourly averaged size distributions. Results from the modal fitting showed that on bonfire night the smallest nucleation mode, which was present before and after the bonfire event and on comparison weekends, was not detected within the size distribution. In addition, there was a significant shift in the modal diameters of the remaining modes during the peak of the pollution event. Using the concept of a coagulation sink, the atmospheric lifetimes of smaller particles were significantly reduced during the pollution event, and thus were used to explain the disappearance of the smallest nucleation mode as well as changes in particle count mean diameters. The significance for particle mixing state is discussed.
NASA Astrophysics Data System (ADS)
Lee, Eon S.; Xu, Bin; Zhu, Yifang
2012-12-01
This paper presents measurements of electrical charges on ultrafine particles (UFPs) of different electrical mobility diameters (30, 50, 80, and 100 nm) in on- and near-freeway environments. Using a tandem Differential Mobility Analyzer (DMA) system, we first examined the fraction of UFPs carrying different number of charges on two distinctive freeways: a gasoline-vehicle dominated freeway (I-405) and a heavy-duty diesel truck dominated freeway (I-710). The fractions of UFPs of a given size carrying one or more charges were significantly higher on the freeways than in the background. The background UFPs only carried up to two charges but freeway UFPs could have up to three charges. The total fraction of charged particles was higher on the I-710 than I-405 across the studied electrical mobility diameters. Near the I-405 freeway, we observed a strong decay of charged particles on the downwind side of the freeway. We also found fractional decay of the charged particles was faster than total particle number concentrations, but slower than total ion concentrations downwind from the freeway I-405. Among charged particles, the highest decay rate was observed for particles carrying three charges. Near the I-710 freeway, we found strong net positive charges on nucleation mode particles, suggesting that UFPs were not at steady-state charge equilibrium near freeways.
Burst nucleation by hot injection for size controlled synthesis of ε-cobalt nanoparticles.
Zacharaki, Eirini; Kalyva, Maria; Fjellvåg, Helmer; Sjåstad, Anja Olafsen
2016-01-01
Reproducible growth of narrow size distributed ε-Co nanoparticles with a specific size requires full understanding and identification of the role of essential synthesis parameters for the applied synthesis method. For the hot injection methodology, a significant discrepancy with respect to obtained sizes and applied reaction conditions is reported. Currently, a systematic investigation controlling key synthesis parameters as injection-temperature and time, metal to surfactant ratio and reaction holding time in terms of their impact on mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameter using dichlorobenzene (DCB), Co2(CO)8 and oleic acid (OA) as the reactant matrix is lacking. A series of solution-based ε-Co nanoparticles were synthesized using the hot injection method. Suspensions and obtained particles were analyzed by DLS, ICP-OES, (synchrotron)XRD and TEM. Rietveld refinements were used for structural analysis. Mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameters were calculated with basis in measurements of 250-500 particles for each synthesis. 95 % bias corrected confidence intervals using bootstrapping were calculated for syntheses with three or four replicas. ε-Co NPs in the size range ~4-10 nm with a narrow size distribution are obtained via the hot injection method, using OA as the sole surfactant. Typically the synthesis yield is ~75 %, and the particles form stable colloidal solutions when redispersed in hexane. Reproducibility of the adopted synthesis procedure on replicate syntheses was confirmed. We describe in detail the effects of essential synthesis parameters, such as injection-temperature and time, metal to surfactant ratio and reaction holding time in terms of their impact on mean ([Formula: see text]mean) and median ([Formula: see text]median) particle diameter. The described synthesis procedure towards ε-Co nanoparticles (NPs) is concluded to be robust when controlling key synthesis parameters, giving targeted particle diameters with a narrow size distribution. We have identified two major synthesis parameters which control particle size, i.e., the metal to surfactant molar ratio and the injection temperature of the hot OA-DCB solution into which the cobalt precursor is injected. By increasing the metal to surfactant molar ratio, the mean particle diameter of the ε-Co NPs has been found to increase. Furthermore, an increase in the injection temperature of the hot OA-DCB solution into which the cobalt precursor is injected, results in a decrease in the mean particle diameter of the ε-Co NPs, when the metal to surfactant molar ratio [Formula: see text] is fixed at ~12.9.
Ezugwu, Sabastine; Ye, Hanyang; Fanchini, Giovanni
2015-01-07
In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface. We demonstrated our technique using random arrays of copper nanoparticles (Cu-NPs) at different particle diameter and concentration. Bright regions in the 3D-SNOM images, corresponding to constructive interference of forward-scattered plasmonic waves, were obtained at heights Δz ≥ 220 nm from the surface for random arrays of Cu-NPs of ∼ 60-100 nm in diameter. These heights are too large to use Cu-NPs in contact of the active layer for light harvesting in thin organic solar cells, which are typically no thicker than 200 nm. Using a 200 nm transparent spacer between the system of Cu-NPs and the solar cell active layer, we demonstrate that forward-scattered light can be conveyed in 200 nm thin film solar cells. This architecture increases the solar cell photoconversion efficiency by a factor of 3. Our 3D-SNOM technique is general enough to be suitable for a large number of other applications in nanoplasmonics.
NASA Astrophysics Data System (ADS)
Franchin, A.; Downard, A. J.; Kangasluoma, J.; Nieminen, T.; Lehtipalo, K.; Steiner, G.; Manninen, H. E.; Petäjä, T.; Flagan, R. C.; Kulmala, M.
2015-06-01
Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all DMAs have an unfavorable potential gradient at the outlet (e.g. long column, Vienna type) or at the inlet (nano-radial DMA). This feature prevents them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in mobility equivalent diameter (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a Particle Size Magnifier (PSM) and a booster Condensation Particle Counter (CPC) as a counter. With this setup, we were able to measure size distributions of ions between 1.3 and 6 nm, corresponding to a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD 7 measurement campaign at CERN. We achieved a higher size resolution than techniques currently used in field measurements, and maintained a good transmission efficiency at moderate inlet and sheath air flows (2.5 and 30 LPM, respectively). In this paper, by measuring size distribution at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 μm.
NASA Astrophysics Data System (ADS)
Joniova, Jaroslava; Blascakova, Ludmila; Jancura, Daniel; Nadova, Zuzana; Sureau, Franck; Miskovsky, Pavol
2014-08-01
Low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are attractive natural occurring vehicles for drug delivery and targeting to cancer tissues. The capacity of both types of the lipoproteins to bind hydrophobic drugs and their functionality as drug carriers have been examined in several studies and it has been also shown that mixing of anticancer drugs with LDL or HDL before administration led to an increase of cytotoxic effects of the drugs in the comparison when the drugs were administered alone. However, a difficult isolation of the lipoproteins in large quantity from a biological organism as well as a variability of the composition and size of these molecules makes practical application of LDL and HDL as drug delivery systems quite complicated. Synthetic LDL and HDL and large unilamellar vesicles (LUV) are potentially suitable candidates to substitute the native lipoproteins for targeted and effective drug delivery. In this work, we have studied process of an association of potent photosensitizer hypericin (Hyp) with synthetic lipid-based nano-particles (sLNP) and large unilamellar vesicles (LUV) containing various amount of cholesterol. Cholesterol is one of the main components of both LDL and HDL particles and its presence in biological membranes is known to be a determining factor for membrane properties. It was found that the behavior of Hyp incorporation into sLNP particles with diameter ca ~ 90 nm is qualitatively very similar to that of Hyp incorporation into LDL (diameter ca. 22 nm) and these particles are able to enter U-87 MG cells by endocytosis. The presence of cholesterol in LUV influences the capacity of these vesicles to incorporate Hyp into their structure.
Physics of a rapid CD4 lymphocyte count with colloidal gold.
Hansen, P; Barry, D; Restell, A; Sylvia, D; Magnin, O; Dombkowski, D; Preffer, F
2012-03-01
The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ∼30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important. Copyright © 2011 International Society for Advancement of Cytometry.
Vora, Rathin; Zareba, Wojciech; Utell, Mark J; Pietropaoli, Anthony P; Chalupa, David; Little, Erika L; Oakes, David; Bausch, Jan; Wiltshire, Jelani; Frampton, Mark W
2014-07-16
Diabetes may confer an increased risk for the cardiovascular health effects of particulate air pollution, but few human clinical studies of air pollution have included people with diabetes. Ultrafine particles (UFP, ≤100 nm in diameter) have been hypothesized to be an important component of particulate air pollution with regard to cardiovascular health effects. 17 never-smoker subjects 30-60 years of age, with stable type 2 diabetes but otherwise healthy, inhaled either filtered air (0-10 particles/cm3) or elemental carbon UFP (~107 particles/cm3, ~50 ug/m3, count median diameter 32 nm) by mouthpiece, for 2 hours at rest, in a double-blind, randomized, crossover study design. A digital 12-lead electrocardiogram (ECG) was recorded continuously for 48 hours, beginning 1 hour prior to exposure. Analysis of 5-minute segments of the ECG during quiet rest showed reduced high-frequency heart rate variability with UFP relative to air exposure (p = 0.014), paralleled by non-significant reductions in time-domain heart rate variability parameters. In the analysis of longer durations of the ECG, we found that UFP exposure increased the heart rate relative to air exposure. During the 21- to 45-hour interval after exposure, the average heart rate increased approximately 8 beats per minute with UFP, compared to 5 beats per minute with air (p = 0.045). There were no UFP effects on cardiac rhythm or repolarization. Inhalation of elemental carbon ultrafine particles alters heart rate and heart rate variability in people with type 2 diabetes. Our findings suggest that effects may occur and persist hours after a single 2-hour exposure.
Srivastava, Shalini; Agrawal, Shashi Bhushan; Mondal, Monoj Kumar
2017-05-01
Lagerstroemia speciosa bark (LB) embedded magnetic nanoparticles were prepared by co-precipitation of Fe 2+ and Fe 3+ salt solution with ammonia and LB for Cr(VI) removal from aqueous solution. The native LB, magnetic nanoparticle (MNP), L. speciosa embedded magnetic nanoparticle (MNPLB) and Cr(VI) adsorbed MNPLB particles were characterized by SEM-EDX, TEM, BET-surface area, FT-IR, XRD and TGA methods. TEM analysis confirmed nearly spherical shape of MNP with an average diameter of 8.76nm and the surface modification did not result in the phase change of MNP as established by XRD analysis, while led to the formation of secondary particles of MNPLB with diameter of 18.54nm. Characterization results revealed covalent binding between the hydroxyl group of MNP and carboxyl group of LB particles and further confirmed its physico-chemical nature favorable for Cr(VI) adsorption. The Cr(VI) adsorption on to MNPLB particle as an adsorbent was tested under different contact time, initial Cr(VI) concentration, adsorbent dose, initial pH, temperature and agitation speed. The results of the equilibrium and kinetics of adsorption were well described by Langmuir isotherm and pseudo-second-order model, respectively. The thermodynamic parameters suggest spontaneous and endothermic nature of Cr(VI) adsorption onto MNPLB. The maximum adsorption capacity for MNPLB was calculated to be 434.78mg/g and these particles even after Cr(VI) adsorption were collected effortlessly from the aqueous solution by a magnet. The desorption of Cr(VI)-adsorbed MNPLB was found to be more than 93.72% with spent MNPLB depicting eleven successive adsorption-desorption cycles. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua
2017-03-01
Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.
Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.
Wang, Jun; Zhang, Kai; Zhu, Yuejin
2005-05-01
A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.
Biodegradable chitosan nanogels crosslinked with genipin.
Arteche Pujana, Maite; Pérez-Álvarez, Leyre; Cesteros Iturbe, Luis Carlos; Katime, Issa
2013-05-15
Chitosan nanoparticles crosslinked with genipin were prepared by reverse microemulsion that allowed to obtain highly monodisperse (3-20 nm by TEM) nanogels. The incorporation of genipin into chitosan was confirmed and quantitatively evaluated by UV-vis and (1)H NMR. Loosely crosslinked chitosan networks showed higher water solubility at neutral pHs than pure chitosan. The hydrodynamic diameter of the genipin-chitosan nanogels ranged from 270 to 390 nm and no remarkable differences were found when the crosslinking degree was varied. The hydrodynamic diameters of the nanoparticles increased slightly at acidic pH and the protonation of ionizable amino groups with the pH was confirmed by the zeta potential measurements. The biocompatible and biodegradable nature, as well as the colloidal and monodisperse particle size of the prepared nanogels, make them attractive candidates for a large variety of biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Novoselova, Inessa A.; Oliinyk, Nikolai F.; Voronina, Anastasiya B.; Volkov, Sergei V.
2008-08-01
An electrochemical study of mechanisms of electrodeposition of carbon solid phases from halide melts (Na,K|Cl; Na,K,Cs|Cl), saturated with carbon dioxide under an excessive pressure of up to 1.5 MPa, has been carried out in the temperature range 550 - 850 °C by cyclic voltammetry. It has been found that the cathode process occurs in three steps at sweep rates of less than 0.1 Vs-1, and its electrochemical-chemical-electrochemical (ECE) mechanism is suggested. It has furthermore been found that cathodic deposits contain nano-sized carbon particles of different forms and structure: blocks of amorphous carbon, crystalline graphite, carbon nanotubes (CNT), and nanofibres. The outer diameter of the tubes is 5 - 250 nm, and the internal diameter is 2 - 140 nm. A correlation between the product structure and yield against electrolysis conditions and regimes has been established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shiwang; Xie, Shi-Jie; Carrillo, Jan-Michael Y.
Polymer nanocomposites (PNCs) are important materials that are widely used in many current technologies and potentially have broader applications in the future due to their excellent property of tunability, light weight and low cost. But, expanding the limits in property enhancement remains a fundamental scientific challenge. We demonstrate that well-dispersed, small (diameter ~1.8 nm) nanoparticles with attractive interactions lead to unexpectedly large and qualitatively new changes in PNC structural dynamics in comparison to conventional composites based on particles of diameter ~10-50 nm. At the same time, the zero-shear viscosity at high temperatures remains comparable to that of the neat polymer,more » thereby retaining good processibility and resolving a major challenge in PNC applications. These results suggest that the nanoparticle mobility and relatively short lifetimes of nanoparticlepolymer associations open qualitatively new horizons in tunability of macroscopic properties in nanocomposites with high potential for the development of new functional materials.« less
Atmospheric-pressure plasma jet system for silicon etching without fluorocarbon gas feed
NASA Astrophysics Data System (ADS)
Ohtsu, Yasunori; Nagamatsu, Kenta
2018-01-01
We developed an atmospheric-pressure plasma jet (APPJ) system with a tungsten rod electrode coated with C2F4 particles of approximately 0.3 µm diameter for the surface treatment of a silicon wafer. The APPJ was generated by dielectric barrier discharge with a driving frequency of 22 kHz using a He gas flow. The characteristics of the APPJ were examined under various experimental conditions. The plasma jet length increased proportionally to the electric field. It was found that the treatment area of the silicon wafer was approximately 1 mm in diameter. By atomic force microscopy analysis, minute irregularities with a maximum length of about 600 nm and part of a ring-shaped trench were observed. A Si etching rate of approximately 400 nm/min was attained at a low power of 6 W and a He flow rate of 1 L/min without introducing molecular gas including F atoms.