Science.gov

Sample records for nm diamond nanocrystals

  1. Size tunable synthesis of solution processable diamond nanocrystals.

    PubMed

    Mandal, Manik; Haso, Fadi; Liu, Tianbo; Fei, Yingwei; Landskron, Kai

    2014-10-07

    Diamond nanocrystals were synthesized catalyst-free from nanoporous carbon at high pressure and high temperature (HPHT). The synthesized nanocrystals have tunable diameters between 50 and 200 nm. The nanocrystals are dispersible in organic solvents such as acetone and are isotropic in nature as seen by dynamic light scattering.

  2. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  3. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  4. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  5. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  6. Implantation conditions for diamond nanocrystal formation in amorphous silica

    SciTech Connect

    Buljan, Maja; Radovic, Iva Bogdanovic; Desnica, Uros V.; Ivanda, Mile; Jaksic, Milko; Saguy, Cecile; Kalish, Rafi; Djerdj, Igor; Tonejc, Andelka; Gamulin, Ozren

    2008-08-01

    We present a study of carbon ion implantation in amorphous silica, which, followed by annealing in a hydrogen-rich environment, leads to preferential formation of carbon nanocrystals with cubic diamond (c-diamond), face-centered cubic (n-diamond), or simple cubic (i-carbon) carbon crystal lattices. Two different annealing treatments were used: furnace annealing for 1 h and rapid thermal annealing for a brief period, which enables monitoring of early nucleation events. The influence of implanted dose and annealing type on carbon and hydrogen concentrations, clustering, and bonding were investigated. Rutherford backscattering, elastic recoil detection analysis, infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, ultraviolet-visible absorption measurements, and Raman spectroscopy were used to study these carbon formations. These results, combined with the results of previous investigations on similar systems, show that preferential formation of different carbon phases (diamond, n-diamond, or i-carbon) depends on implantation energy, implantation dose, and annealing conditions. Diamond nanocrystals formed at a relatively low carbon volume density are achieved by deeper implantation and/or lower implanted dose. Higher volume densities led to n-diamond and finally to i-carbon crystal formation. This observed behavior is related to damage sites induced by implantation. The optical properties of different carbon nanocrystal phases were significantly different.

  7. Ab initio large unit cell calculations of the electronic structure of diamond nanocrystals

    NASA Astrophysics Data System (ADS)

    Abdulsattar, Mudar A.

    2011-05-01

    In order to reduce computational efforts, and separate surface and core properties, diamond nanocrystals in the present model is represented by a heterojunction between the surface and the core in which the surface represents the outer most four layers and the core by the rest of the internal region of nanocrystal. Ab initio restricted Hartree-Fock (RHF) method coupled with the large unit cell method (LUC) is used to determine the electronic structure and physical properties of diamond nanocrystals core part with different sizes. The use of STO-3G basis choice is made to be able to compare to semiempirical methods using the complete neglect of differential overlap (CNDO) that uses Slater type orbitals (STO). The oxygenated (001)-(1 × 1) facet that expands with larger sizes of nanocrystals is also investigated to determine the rule of the surface in nanocrystals electronic structure. The results show that the present method agrees with semiempirical method contraction of lattice constant with increasing nanocrystal size but disagrees with energy gap variation with nanocrystal size in some regions. After nearly 1.4 nm the energy gap which is controlled by surface states begins to rise. The lowest unoccupied molecular orbital (LUMO) is attributed to surface states that largely reduce the value of energy gap. The sources of disagreement between semiempirical and ab initio results are discussed. The present method shows a maximum increment of the lattice constant by 3.3% over the calculated bulk for the smallest diamond nanocrystals. The surface states are found mostly non-degenerated because of the effect of surface discontinuity and oxygen atoms. Valance and conduction bands are wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence band width and cohesive energy of the core part of nanocrystal. These fluctuations might partially explain the controversial experimental results for diamond

  8. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    those of chemical vapor deposited ( CVD ) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings...core−hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited ( CVD ) diamond but differ significantly from...top-down” fashion from bulk chemical vapor deposited ( CVD ) diamond18 or high-pressure, high-temperature diamond (HPHT) where less is known about

  9. Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy.

    PubMed

    Sonnefraud, Yannick; Cuche, Aurélien; Faklaris, Orestis; Boudou, Jean-Paul; Sauvage, Thierry; Roch, Jean-François; Treussart, François; Huant, Serge

    2008-03-15

    Diamond nanocrystals containing highly photoluminescent color centers are attractive, nonclassical, and near-field light sources. For near-field applications, the size of the nanocrystal is crucial, since it defines the optical resolution. Nitrogen-vacancy (NV) color centers are efficiently created by proton irradiation and annealing of a nanodiamond powder. Using near-field microscopy and photon statistics measurements, we show that nanodiamonds with sizes down to 25 nm can hold a single NV color center with bright and stable photoluminescence.

  10. CVD-diamond external cavity Raman laser at 573 nm.

    PubMed

    Mildren, Richard P; Butler, James E; Rabeau, James R

    2008-11-10

    Recent progress in diamond growth via chemical vapor deposition (CVD) has enabled the manufacture of single crystal samples of sufficient size and quality for realizing Raman laser devices. Here we report an external cavity CVD-diamond Raman laser pumped by a Q-switched 532 nm laser. In the investigated configuration, the dominant output coupling was by reflection loss at the diamond's uncoated Brewster angle facets caused by the crystal's inherent birefringence. Output pulses of wavelength 573 nm with a combined energy of 0.3 mJ were obtained with a slope efficiency of conversion of up to 22%.

  11. Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers.

    PubMed

    Trusheim, Matthew E; Li, Luozhou; Laraoui, Abdelghani; Chen, Edward H; Bakhru, Hassaram; Schröder, Tim; Gaathon, Ophir; Meriles, Carlos A; Englund, Dirk

    2014-01-08

    The combination of long spin coherence time and nanoscale size has made nitrogen vacancy (NV) centers in nanodiamonds the subject of much interest for quantum information and sensing applications. However, currently available high-pressure high-temperature (HPHT) nanodiamonds have a high concentration of paramagnetic impurities that limit their spin coherence time to the order of microseconds, less than 1% of that observed in bulk diamond. In this work, we use a porous metal mask and a reactive ion etching process to fabricate nanocrystals from high-purity chemical vapor deposition (CVD) diamond. We show that NV centers in these CVD nanodiamonds exhibit record-long spin coherence times in excess of 200 μs, enabling magnetic field sensitivities of 290 nT Hz(-1/2) with the spatial resolution characteristic of a 50 nm diameter probe.

  12. Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect.

    PubMed

    Zhao, Hong-Quan; Fujiwara, Masazumi; Takeuchi, Shigeki

    2012-07-02

    Substrates effect is observed on the suppression of the phonon sideband from nitrogen vacancy (NV) centers in 50nm diamond nanocrystals at cryogenic temperatures. As a quantitative parameter of the population of phonon sidebands, the Debye-Waller factor is estimated from fluorescence spectra on glass, silicon, and silica-on-silicon substrates. Fluorescence spectra of negatively charged NV centers in nanodiamonds on silica-on-silicon substrates have average and maximum Debye-Waller factors of 12.7% (which is about six times greater than that of samples on glass substrates) and 19.3%, respectively. This effect is expected to be very important for future applications of NV centers in quantum information science and nanosensing.

  13. The hemocompatibility of oxidized diamond nanocrystals for biomedical applications.

    PubMed

    Li, Hung-Cheng; Hsieh, Feng-Jen; Chen, Ching-Pin; Chang, Ming-Yao; Hsieh, Patrick C H; Chen, Chia-Chun; Hung, Shain-Un; Wu, Che-Chih; Chang, Huan-Cheng

    2013-10-25

    Low-dimensional carbon-based nanomaterials have recently received enormous attention for biomedical applications. However, increasing evidence indicates that they are cytotoxic and can cause inflammatory responses in the body. Here, we show that monocrystalline nanodiamonds (NDs) synthesized by high-pressure-high-temperature (HPHT) methods and purified by air oxidation and strong oxidative acid treatments have excellent hemocompatibility with negligible hemolytic and thrombogenic activities. Cell viability assays with human primary endothelial cells suggested that the oxidized HPHT-NDs (dimensions of 35-500 nm) are non-cytotoxic. No significant elevation of the inflammatory cytokine levels of IL-1β and IL-6 was detected in mice after intravenous injection of the nanocrystals in vivo. Using a hindlimb-ischemia mouse model, we demonstrated that 35-nm NDs after covalent conjugation with polyarginine are useful as a drug delivery vehicle of heparin for prolonged anticoagulation treatment. The present study lays a solid foundation for further therapeutic applications of NDs in biomedicine.

  14. The hemocompatibility of oxidized diamond nanocrystals for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Hung-Cheng; Hsieh, Feng-Jen; Chen, Ching-Pin; Chang, Ming-Yao; Hsieh, Patrick C. H.; Chen, Chia-Chun; Hung, Shain-Un; Wu, Che-Chih; Chang, Huan-Cheng

    2013-10-01

    Low-dimensional carbon-based nanomaterials have recently received enormous attention for biomedical applications. However, increasing evidence indicates that they are cytotoxic and can cause inflammatory responses in the body. Here, we show that monocrystalline nanodiamonds (NDs) synthesized by high-pressure-high-temperature (HPHT) methods and purified by air oxidation and strong oxidative acid treatments have excellent hemocompatibility with negligible hemolytic and thrombogenic activities. Cell viability assays with human primary endothelial cells suggested that the oxidized HPHT-NDs (dimensions of 35-500 nm) are non-cytotoxic. No significant elevation of the inflammatory cytokine levels of IL-1β and IL-6 was detected in mice after intravenous injection of the nanocrystals in vivo. Using a hindlimb-ischemia mouse model, we demonstrated that 35-nm NDs after covalent conjugation with polyarginine are useful as a drug delivery vehicle of heparin for prolonged anticoagulation treatment. The present study lays a solid foundation for further therapeutic applications of NDs in biomedicine.

  15. Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.

    2015-03-01

    We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles

  16. Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum

    SciTech Connect

    Hsu, Jen -Feng; Ji, Peng; Lewandowski, Charles W.; D’Urso, Brian

    2016-07-22

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. Furthermore, we demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.

  17. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum.

    PubMed

    Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W; D'Urso, Brian

    2016-07-22

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.

  18. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum

    PubMed Central

    Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W.; D’Urso, Brian

    2016-01-01

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K. PMID:27444654

  19. Simulation of ultraviolet- and soft X-ray-pulse generation as a result of cooperative recombination of excitons in diamond nanocrystals embedded in a polymer film

    SciTech Connect

    Kukushkin, V. A.

    2013-11-15

    Using numerical simulation, it is shown that the recombination of free excitons photoexcited in diamond nanocrystals embedded in a polymer film can occur in the cooperative mode. It is found that this mode can be implemented despite the fact that diamond is an 'indirect' semiconductor. It is shown that the power of the generated radiation at the pulse peak during the cooperative recombination of free excitons can exceed that of the incoherent spontaneous emission of the same initial number of free excitons by more than an order of magnitude. Finally, it is shown that the process under consideration can be used to generate picosecond pulses of ultraviolet and soft X-ray electromagnetic field at a wavelength of 235 nm.

  20. Rapid Synthesis of Sub-5 nm Sized Cubic Boron Nitride Nanocrystals with High-Piezoelectric Behavior via Electrochemical Shock.

    PubMed

    Chen, Zhigang; Li, Lianhui; Cong, Shan; Xuan, Jinnan; Zhang, Dengsong; Geng, Fengxia; Zhang, Ting; Zhao, Zhigang

    2017-01-11

    A key challenge in current superhard materials research is the design of novel superhard nanocrystals (NCs) whereby new and unexpected properties may be predicted. Cubic boron nitride (c-BN) is a superhard material which ranks next to diamond; however, downsizing c-BN material below the 10 nm scale is rather challenging, and the interesting new properties of c-BN NCs remain unexplored and wide open. Herein we report an electrochemical shock method to prepare uniform c-BN NCs with a lateral size of only 3.4 ± 0.6 nm and a thickness of only 0.74 ± 0.3 nm at ambient temperature and pressure. The fabrication process is simple and fast, with c-BN NCs produced in just a few minutes. Most interestingly, the NCs exhibit excellent piezoelectric performance with a large recordable piezoelectric coefficient of 25.7 pC/N, which is almost 6 times larger than that from bulk c-BN and even competitive to conventional piezoelectric materials. The phenomenon of enhancement in the piezoelectric properties of BN NCs might arise from the nanoscale surface effect and nanoscale shape effect of BN NCs. This work paves an interesting route for exploring new properties of superhard NCs.

  1. Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum

    DOE PAGES

    Hsu, Jen -Feng; Ji, Peng; Lewandowski, Charles W.; ...

    2016-07-22

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamondmore » nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. Furthermore, we demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.« less

  2. Tuning hexagonal NaYbF4 nanocrystals down to sub-10 nm for enhanced photon upconversion.

    PubMed

    Shi, Ruikai; Ling, Xincan; Li, Xiaona; Zhang, Lu; Lu, Min; Xie, Xiaoji; Huang, Ling; Huang, Wei

    2017-09-08

    Enhancing upconversion emission is critical for small-sized lanthanide doped upconversion nanocrystals. A promising way is increasing the doping concentration of excitation energy absorbers, the Yb(3+) sensitizer. However, it is still a challenge to obtain small-sized hexagonal NaLnF4 (Ln: lanthanide) upconversion nanocrystals with a high Yb(3+) concentration due to the fast growth of NaYbF4 crystals, which hinders their applications particularly in biology. We here demonstrate a highly repeatable and controllable method for tuning the size of hexagonal NaYbF4 nanocrystals, down to ∼7 nm, without the assistance of additional impurity doping. By monitoring the reaction process, we found that ultrasmall hexagonal NaYbF4 nanocrystals were formed through an in situ transformation of their cubic counterparts. We observed an enhanced upconversion emission of NaYbF4:Tm nanocrystals when compared to that of NaYbF4:Y/Tm nanocrystals with less Yb(3+) doping. After coating a thin layer of a NaYF4 shell on NaYbF4:Tm nanocrystals, a ∼100 times upconversion emission enhancement with over 800 times stronger emission in the ultraviolet and blue ranges was observed. This versatile method, together with the strong upconversion emission of the as-prepared ultrasmall nanocrystals, should facilitate the future applications of upconversion nanocrystals.

  3. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    PubMed Central

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-01-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm−2 under near neutral conditions. PMID:25998696

  4. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm.

    PubMed

    Warrier, Aravindan M; Lin, Jipeng; Pask, Helen M; Mildren, Richard P; Coutts, David W; Spence, David J

    2014-02-10

    We present a highly efficient picosecond diamond Raman laser synchronously-pumped by a 4.8 W mode-locked laser at 1064 nm. A ring cavity was adopted for efficient operation. With a low-Q cavity for first-Stokes 1240 nm, we have achieved 2.75 W output power at 1240 nm with 59% overall conversion efficiency. The slope efficiency tended towards 76% far above the SRS threshold, approaching the SRS quantum limit for diamond. A high-Q first-Stokes cavity was employed for second-Stokes 1485 nm generation through the combined processes of four-wave mixing and single-pass stimulated Raman scattering. Up to 1.0 W of second-stokes at 1485 nm was obtained, corresponding to 21% overall conversion efficiency. The minimum output pulse duration was compressed relative to the 15 ps pump, producing pulses as short as 9 ps for 1240 nm and 6 ps for 1485 nm respectively.

  5. Photosensitivity of a diamond detector to laser radiation in the 220 - 355-nm region

    SciTech Connect

    Lipatov, E I; Panchenko, Aleksei N; Tarasenko, Viktor F; Shein, J; Krishnan, M

    2001-12-31

    The photosensitivity of detectors of laser radiation based on the natural type IIa diamond (Alameda Applied Sciences Corporation, USA) are studied at the wavelengths 222, 308, 337, and 353 nm. The limiting intensities (0.5 - 4 MW cm{sup -2}) of UV laser radiation are determined at which the detectors operate in a linear regime. (laser applications and other topics in quantum electronics)

  6. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  7. Nanocrystal structures

    DOEpatents

    Eisler, Hans J [Stoneham, MA; Sundar, Vikram C [Stoneham, MA; Walsh, Michael E [Everett, MA; Klimov, Victor I [Los Alamos, NM; Bawendi, Moungi G [Cambridge, MA; Smith, Henry I [Sudbury, MA

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  8. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals

    PubMed Central

    Liu, Deming; Xu, Xiaoxue; Du, Yi; Qin, Xian; Zhang, Yuhai; Ma, Chenshuo; Wen, Shihui; Ren, Wei; Goldys, Ewa M.; Piper, James A.; Dou, Shixue; Liu, Xiaogang; Jin, Dayong

    2016-01-01

    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA−) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA− to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom–up scalable approach. PMID:26743184

  9. Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering

    SciTech Connect

    Liu Yongchun; Xiao Yunfeng; Li Beibei; Jiang Xuefeng; Li Yan; Gong Qihuang

    2011-07-15

    We study the Rayleigh scattering induced by a diamond nanocrystal in a whispering-gallery-microcavity-waveguide coupling system and find that it plays a significant role in the photon transportation. On the one hand, this study provides insight into future solid-state cavity quantum electrodynamics aimed at understanding strong-coupling physics. On the other hand, benefitting from this Rayleigh scattering, effects such as dipole-induced transparency and strong photon antibunching can occur simultaneously. As a potential application, this system can function as a high-efficiency photon turnstile. In contrast to B. Dayan et al. [Science 319, 1062 (2008)], the photon turnstiles proposed here are almost immune to the nanocrystal's azimuthal position.

  10. Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study

    PubMed Central

    2013-01-01

    Summary Infrared spectra of hydrogenated diamond nanocrystals of one nanometer length are calculated by ab initio methods. Positions of atoms are optimized via density functional theory at the level of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) using 3-21G basis states. The frequencies in the vibrational spectrum are analyzed against reduced masses, force constants and intensities of vibration. The spectrum can be divided into two regions depending on the properties of the vibrations or the gap separating them. In the first region, results show good matching to several experimentally obtained lines. The 500 cm−1 broad-peak acoustical branch region is characterized by pure C–C vibrations. The optical branch is centered at 1185 cm−1. Calculations show that several C–C vibrations are mixed with some C–H vibrations in the first region. In the second region the matching also extends to C–H vibration frequencies that include different modes such as symmetric, asymmetric, wagging, scissor, rocking and twisting modes. In order to complete the picture of the size dependence of the vibrational spectra, we analyzed the spectra of ethane and adamantane. The present analysis shows that acoustical and optical branches in diamond nanocrystals approach each other and collapse at 963 cm−1 in ethane. Variation of the highest reduced-mass-mode C–C vibrations from 1332 cm−1 of bulk diamond to 963 cm−1 for ethane (red shift) is shown. The analysis also shows the variation of the radial breathing mode from 0 cm−1 of bulk diamond to 963 cm−1 for ethane (blue shift). These variations compare well with experiment. Experimentally, the above-mentioned modes appear shifted from their exact positions due to overlap with neighboring modes. PMID:23766948

  11. Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study.

    PubMed

    Abdulsattar, Mudar A

    2013-01-01

    Infrared spectra of hydrogenated diamond nanocrystals of one nanometer length are calculated by ab initio methods. Positions of atoms are optimized via density functional theory at the level of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) using 3-21G basis states. The frequencies in the vibrational spectrum are analyzed against reduced masses, force constants and intensities of vibration. The spectrum can be divided into two regions depending on the properties of the vibrations or the gap separating them. In the first region, results show good matching to several experimentally obtained lines. The 500 cm(-1) broad-peak acoustical branch region is characterized by pure C-C vibrations. The optical branch is centered at 1185 cm(-1). Calculations show that several C-C vibrations are mixed with some C-H vibrations in the first region. In the second region the matching also extends to C-H vibration frequencies that include different modes such as symmetric, asymmetric, wagging, scissor, rocking and twisting modes. In order to complete the picture of the size dependence of the vibrational spectra, we analyzed the spectra of ethane and adamantane. The present analysis shows that acoustical and optical branches in diamond nanocrystals approach each other and collapse at 963 cm(-1) in ethane. Variation of the highest reduced-mass-mode C-C vibrations from 1332 cm(-1) of bulk diamond to 963 cm(-1) for ethane (red shift) is shown. The analysis also shows the variation of the radial breathing mode from 0 cm(-1) of bulk diamond to 963 cm(-1) for ethane (blue shift). These variations compare well with experiment. Experimentally, the above-mentioned modes appear shifted from their exact positions due to overlap with neighboring modes.

  12. Structural Evolution of Sub-10 nm Octahedral Platinum$-$Nickel Bimetallic Nanocrystals

    DOE PAGES

    Chang, Qiaowan; Xu, Yuan; Duan, Zhiyuan; ...

    2017-05-11

    Octahedral Pt alloy nanocrystals (NCs) have shown excellent activities as electrocatalysts toward oxygen reduction reaction (ORR). As the activity and stability of NCs are highly dependent on their structure and the elemental distribution, it is of great importance to understand the formation mechanism of octahedral NCs and to rationally synthesize shape-controlled alloy catalysts with optimized ORR activity and stability. However, the factors controlling the structural and compositional evolution during the synthesis have not been well understood yet. Here in this paper, we systematically investigated the structure and composition evolution pathways of Pt–Ni octahedra synthesized with the assistance of W(CO)6 andmore » revealed a unique core–shell structure consisting of a Pt core and a Pt–Ni alloy shell. Below 140 °C, sphere-like pure Pt NCs with the diameter of 3–4 nm first nucleated, followed by the isotropic growth of Pt–Ni alloy on the seeds at temperatures between 170 and 230 °C forming Pt@Pt–Ni core–shell octahedra with {111} facets. Owing to its unique structure, the Pt@Pt–Ni octahedra show an unparalleled stability during potential cycling, that is, no activity drop after 10 000 cycles between 0.6 and 1.0 V. This work proposes the Pt@Pt–Ni octahedra as a high profile electrocatalyst for ORR and reveals the structural and composition evolution pathways of Pt-based bimetallic NCs.« less

  13. Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals.

    PubMed

    Cai, Y; Peng, W P; Kuo, S J; Lee, Y T; Chang, H C

    2002-01-01

    High-resolution mass spectra of single submicrometer-sized particles are obtained using an electrospray ionization source in combination with an audio frequency quadrupole ion-trap mass spectrometer. Distinct from conventional methods, light scattering from a continuous Ar-ion laser is detected for particles ejected out of the ion trap. Typically, 10 particles are being trapped and interrogated in each measurement. With the audio frequency ion trap operated in a mass-selective instability mode, analysis of the particles reveals that they all differ in mass-to-charge ratio (m/z), and the individual peak in the observed mass spectrum is essentially derived from one single particle. A histogram of the spectra acquired in 10(2) repetitions of the experiment is equivalent to the single spectrum that would be observed when an ion ensemble of 10(3) particles is analyzed simultaneously using the single-particle mass spectrometer (SPMS). To calibrate such single-particle mass spectra, secular frequencies of the oscillatory motions of the individual particle within the trap are measured, and the trap parameter qz at the point of ejection is determined. A mass resolution exceeding 10(4) can readily be achieved in the absence of ion ensemble effect. We demonstrate in this work that the SPMS not only allows investigations of monodisperse polystyrene microspheres, but also is capable of detecting diamond nanoparticles with a nominal diameter of 100 nm, as well.

  14. Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Chun; Xiao, Yun-Feng; Li, Bei-Bei; Jiang, Xue-Feng; Li, Yan; Gong, Qihuang

    2011-07-01

    We study the Rayleigh scattering induced by a diamond nanocrystal in a whispering-gallery-microcavity-waveguide coupling system and find that it plays a significant role in the photon transportation. On the one hand, this study provides insight into future solid-state cavity quantum electrodynamics aimed at understanding strong-coupling physics. On the other hand, benefitting from this Rayleigh scattering, effects such as dipole-induced transparency and strong photon antibunching can occur simultaneously. As a potential application, this system can function as a high-efficiency photon turnstile. In contrast to B. Dayan [ScienceSCIEAS0036-807510.1126/science.1152261 319, 1062 (2008)], the photon turnstiles proposed here are almost immune to the nanocrystal’s azimuthal position.

  15. External-cavity diamond Raman laser performance at 1240 nm and 1485 nm wavelengths with high pulse energy

    NASA Astrophysics Data System (ADS)

    Pashinin, V. P.; Ralchenko, V. G.; Bolshakov, A. P.; Ashkinazi, E. E.; Gorbashova, M. A.; Yurov, V. Yu; Konov, V. I.

    2016-06-01

    We report on an external-cavity diamond Raman laser (DRL) pumped with a Q-switched Nd:YAG and generating at 1st and 2nd Stokes (1240 nm and 1485 nm) with enhanced output energy. The slope efficiency of 54% and output energy as high as 1.2 mJ in single pulse at 1240 nm have been achieved with optimized cavity, while the pulse energy of 0.70 mJ was obtained in the eye-safe spectral region at 1485 nm. Calculations of thermal lensing effect indicate it as a possible reason for the observed decrease in conversion efficiency at the highest pump energies.

  16. Transparency of the strong shock-compressed diamond for 532 nm laser light

    SciTech Connect

    Zhang, Zhiyu; Zhao, Yang; Yang, Jiamin

    2016-04-15

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probe laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.

  17. Seedless Polyol Synthesis and CO Oxidation Activity of Monodisperse (111) and (100)-Oriented Rhodium Nanocrystals in Sub-10 nm Sizes

    SciTech Connect

    Zhang, Yawen; Grass, Michael E.; Huang, Wenyu; Somorjai, Gabor A.

    2010-03-15

    Monodisperse sub-10 nm (6.5 nm) sized Rh nanocrystals with (111) and (100) surface structures were synthesized by a seedless polyol reduction in ethylene glycol, with poly(vinylpyrrolidone) as a capping ligand. When using [Rh(Ac){sub 2}]{sub 2} as the metal precursor, (111)-oriented Rh nanopolyhedra containing 76% (111)-twined hexagons (in 2D projection) were obtained; whereas, when employing RhCl{sub 3} as the metal precursor in the presence of alkylammonium bromide, such as tetramethylammonium bromide and trimethyl(tetradecyl)ammonium bromide, (100)-oriented Rh nanocubes were obtained with 85% selectivity. The {l_brace}100{r_brace} faces of the Rh nanocrystals are stabilized by chemically adsorbed Br{sup -} ions from alkylammonium bromides, which led to (100)-oriented nanocubes. Monolayer films of the (111)-oriented Rh nanopolyhedra and (100)-oriented Rh nanocubes were deposited on silicon wafers in a Langmuir-Blodgett trough to make model 2D nanoarray catalysts. These nanocatalysts were active for CO oxidation by O{sub 2}, and the turnover frequency was independent of nanoparticle shape, consistent with that previously observed for Rh(111) and Rh(100) single crystals.

  18. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    SciTech Connect

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

    2009-03-02

    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  19. Sub-6 nm monodisperse hexagonal core/shell NaGdF4 nanocrystals with enhanced upconversion photoluminescence.

    PubMed

    Liu, Jing; Chen, Guanying; Hao, Shuwei; Yang, Chunhui

    2017-01-07

    The ability to fabricate lanthanide-doped upconversion nanocrystals (UCNCs) with tailored size and emission profile has fuelled their uses in a broad spectrum of biological applications. Yet, limited success has been met in the preparation of sub-6 nm UCNCs with efficient upconversion photoluminescence (UCPL), which enable high contrast optical bioimaging with minimized adverse biological effects entailed by size-induced rapid clearance from the body. Here, we present a simple and reproducible approach to synthesize a set of monodispersed hexagonal-phase core NaGdF4:Yb/Ln (Ln = Er, Ho, Tm) of ∼3-4 nm and core/shell NaGdF4:Yb/Ln@NaGdF4 (Ln = Er, Ho, Tm) UCNCs of ∼5-6 nm. We show that the core/shell UCNCs can be up to ∼1000 times more efficient than the corresponding core UCNCs due to the effective suppression of surface-related quenching effects for the core. The observation of prolonged PL lifetime for the core/shell than that for the core UCNCs demonstrates the role of the inert shell layer for the protection of the core. The achievement of sub-6 nm NaGdF4 UCNCs with significantly improved luminescence efficiency constitutes a solid step towards high contrast UCPL optical imaging with secured biological safety.

  20. Method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries

    DOEpatents

    Carlisle, John A.; Auciello, Orlando; Birrell, James

    2006-10-31

    An ultrananocrystalline diamond (UNCD) having an average grain size between 3 and 5 nanometers (nm) with not more than about 8% by volume diamond having an average grain size larger than 10 nm. A method of manufacturing UNCD film is also disclosed in which a vapor of acetylene and hydrogen in an inert gas other than He wherein the volume ratio of acetylene to hydrogen is greater than 0.35 and less than 0.85, with the balance being an inert gas, is subjected to a suitable amount of energy to fragment at least some of the acetylene to form a UNCD film having an average grain size of 3 to 5 nm with not more than about 8% by volume diamond having an average grain size larger than 10 nm.

  1. Photonic Modulation Using Bi-Directional Diamond Shaped Ring Lasers at 1550 NM

    DTIC Science & Technology

    2007-04-01

    Infotonics Technology Center worked collaboratively to characterize and eventually package diode-based, diamond-shaped cavity, ring lasers that operate at...laser modes provide a direct means for realizing the Sagnac effect, which has been well established in gyro technology with gas and fiber lasers...Injection Wavelength Investigation……………………………………...15 4.1.2 Injection Frequency Investigation……………………………………….19 4.1.3 Gain Quenching Investigations

  2. Realization of Red Plasmon Shifts up to ∼900 nm by AgPd-Tipping Elongated Au Nanocrystals.

    PubMed

    Zhu, Xingzhong; Yip, Hang Kuen; Zhuo, Xiaolu; Jiang, Ruibin; Chen, Jianli; Zhu, Xiao-Ming; Yang, Zhi; Wang, Jianfang

    2017-10-04

    The synthesis of metal nanostructures with plasmon wavelengths beyond ∼1000 nm is strongly desired, especially for those with small sizes. Herein we report on a AgPd-tipping process on Au nanobipyramids with the resultant red plasmon shifts reaching up to ∼900 nm. The large red plasmon shifts are ascribed to the deposition of the metal at the tips of Au nanobipyramids, which is verified by electrodynamic simulations. The method has been successfully applied to Au nanobipyramids and nanorods with different longitudinal dipolar plasmon wavelengths, demonstrating that the plasmon wavelengths of these Au nanocrystals can be extended to the entire near-infrared region. Pt can also induce the tipping on Au nanobipyramids and nanorods to realize red plasmon shifts, suggesting the generality of our approach. We have further shown that the metal-tipped Au nanobipyramids possess a high photothermal conversion efficiency and good photothermal therapy performance. This study opens up a route to the construction of Au nanostructures with plasmon resonance in a broad spectral region for plasmon-enabled technological applications.

  3. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.

    PubMed

    Arroyo-Camejo, Silvia; Adam, Marie-Pierre; Besbes, Mondher; Hugonin, Jean-Paul; Jacques, Vincent; Greffet, Jean-Jacques; Roch, Jean-François; Hell, Stefan W; Treussart, François

    2013-12-23

    Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted to fail in nanodiamonds. Here we show that, contrary to these predictions, STED can resolve single NV centers in 40-250 nm sized nanodiamonds with a resolution of ≈10 nm. Even multiple adjacent NVs located in single nanodiamonds can be imaged individually down to relative distances of ≈15 nm. Far-field optical super-resolution of NVs inside nanodiamonds is highly relevant for bioimaging applications of these fluorescent nanolabels. The targeted addressing and readout of individual NV(-) spins inside nanodiamonds by STED should also be of high significance for quantum sensing and information applications.

  4. Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm

    PubMed Central

    Chen, Guanying; Ohulchanskyy, Tymish Y.; Kachynski, Aliaksandr; Ågren, Hans; Prasad, Paras N.

    2012-01-01

    We report intense upconversion photoluminescence (PL) in colloidal LiYF4:Er3+ nanocrystals under excitation with telecom-wavelength at 1490 nm. The intensities of two- and three-photon anti-Stokes upconversion PL bands are higher than or comparable to that of the Stokes emission under excitation with low power density in the range of 5–120 W/cm2. The quantum yield of the upconversion PL was measured to be as high as ~1.2±0.1%, which is almost 4 times higher than the highest upconversion PL quantum yield reported up to date for lanthanide-doped nanocrystals in 100 nm sized hexagonal NaYF4:Yb3+20%, Er3+2% using excitation at ~980 nm. Power dependence study revealed that the intensities of all PL bands have linear dependence on the excitation power density, which was explained by saturation effects in the intermediate energy states. PMID:21557587

  5. Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals.

    PubMed

    Uddin, Imran; Adyanthaya, Suguna; Syed, Asad; Selvaraj, K; Ahmad, Absar; Poddar, Pankaj

    2008-08-01

    After the advent of novel chemical and microbial techniques, providing control over grain size and shape of the nanomaterials, several binary-oxide materials have been explored in size less than 10 nm for their tunable physical properties. Bi2O3 nanoparticles have also redrawn attention due to their excellent properties, mostly as optoelectronic material. Here, we report the room-temperature biosynthesis of Bi2O3 nanoparticles in a size range of 5-8 nm by extra-cellularly challenging the plant pathogenic fungus--Fusarium oxysporum with the bismuth nitrate as precursor. The as-synthesized particle-surfaces are inherently functionalized by a robust layer of proteins which provides them very good stability in the aqueous medium. Structural investigation using selected area electron diffraction, high resolution transmission electron microscopy and powder XRD shows that particles are almost perfectly single crystalline and primarily crystallize in alpha-phase with monoclinic structure.

  6. Sub-10 nm lanthanide doped BaLuF{sub 5} nanocrystals: Shape controllable synthesis, tunable multicolor emission and enhanced near-infrared upconversion luminescence

    SciTech Connect

    Rao, Ling; Lu, Wei; Wang, Haibo; Yi, Zhigao; Zeng, Songjun; Li, Zheng

    2015-04-15

    Highlights: • Sub-10 nm cubic phase BaLuF{sub 5} nanocrystals were synthesized by a hydrothermal method for the first time. • Tunable multicolor from yellow to yellow-green was achieved by controlling Gd{sup 3+} content in BaLuF{sub 5}:Yb/Er system. • Intense near-infrared upconversion luminescence in BaLuF{sub 5}:Gd/Yb/Tm nanocrystal. • The enhancement near-infrared luminescence can be realized by adjusting the content of Gd{sup 3+} in BaLuF{sub 5}:Gd/Yb/Tm system. - Abstract: In this study, sub-10 nm BaLuF{sub 5} nanocrystals with cubic phase structure were synthesized by a solvothermal method using oleic acid as the stabilizing agent. The as-prepared BaLuF{sub 5} nanocrystals were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and analyzed by the upconversion (UC) spectra. The TEM results reveal that these samples present high uniformity. Compared with Gd-free samples, the size of BaLuF{sub 5}:Yb/Er doped with 10% Gd{sup 3+} decreased to 5.6 nm. In addition, BaLuF{sub 5}:Yb/Tm/Gd upconversion nanoparticles (UCNPs) presented efficient near-infrared (NIR)-NIR UC luminescence. Therefore, it is expected that these ultra-small BaLuF{sub 5} nanocrystals with well-controlled shape, size, and UC emission have potential applications in biomedical imaging fields.

  7. The Upconversion Luminescence of Er3+/Yb3+/Nd3+ Triply-Doped β-NaYF4 Nanocrystals under 808-nm Excitation

    PubMed Central

    Tian, Lijiao; Xu, Zheng; Zhao, Suling; Cui, Yue; Liang, Zhiqin; Zhang, Junjie; Xu, Xurong

    2014-01-01

    In this paper, Nd3+–Yb3+–Er3+-doped β-NaYF4 nanocrystals with different Nd3+ concentrations are synthesized, and the luminescence properties of the upconversion nanoparticles (UCNPs) have been studied under 808-nm excitation for sensitive biological applications. The upconversion luminescence spectra of NaYF4 nanoparticles with different dopants under 808-nm excitation proves that the Nd3+ ion can absorb the photons effectively, and the Yb3+ ion can play the role of an energy-transfer bridging ion between the Nd3+ ion and Er3+ ion. To investigate the effect of the Nd3+ ion, the decay curves of the 4S3/2 → 4I15/2 transition at 540 nm are measured and analyzed. The NaYF4: 20% Yb3+, 2% Er3+, 0.5% Nd3+ nanocrystals have the highest emission intensity among all samples under 808-nm excitation. The UC (upconversion) mechanism under 808-nm excitation is discussed in terms of the experimental results. PMID:28788246

  8. Sensitivity of Raman spectra excited at 325 nm to surface treatments of undoped polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Ghodbane, S.; Deneuville, A.; Tromson, D.; Bergonzo, P.; Bustarret, E.; Ballutaud, D.

    2006-08-01

    About 20 m thick films were deposited in the same run by MPCVD at 900 °C on Si substrates and then hydrogenated in situ during 30 min with a hydrogen plasma at the same temperature. Their surfaces were kept as prepared or more or less strongly oxidized by annealing at 600 °C under ambient atmosphere or by sulphochromic acid or aqua regia treatments. Raman spectra were excited at 325 and 632.8 nm. Spectra of the as-prepared sample exhibit structures around 2835 and 2895 cm-1 from monohydride carbon-hydrogen ascribed to the atomically flat (111) and (100) areas, respectively, on the facets of the sample surface crystallites. The decrease of these structures in the normalized spectra after the various oxidation treatments confirms these assignments. The decrease is smaller for the aqua regia treatment than for the two other treatments which give similar effects. Other Raman signals from sp2 C around 1589 cm-1 and CHx bonds around 2930, 2952, 3025 and 3050 cm-1 originate from species at the surface and within the films. Their variation with the oxidizing treatments indicates a significant contribution from the surface species.

  9. Diamond nanophotonics.

    PubMed

    Beha, Katja; Fedder, Helmut; Wolfer, Marco; Becker, Merle C; Siyushev, Petr; Jamali, Mohammad; Batalov, Anton; Hinz, Christopher; Hees, Jakob; Kirste, Lutz; Obloh, Harald; Gheeraert, Etienne; Naydenov, Boris; Jakobi, Ingmar; Dolde, Florian; Pezzagna, Sébastien; Twittchen, Daniel; Markham, Matthew; Dregely, Daniel; Giessen, Harald; Meijer, Jan; Jelezko, Fedor; Nebel, Christoph E; Bratschitsch, Rudolf; Leitenstorfer, Alfred; Wrachtrup, Jörg

    2012-01-01

    We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen-vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon-vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

  10. Diamond nanophotonics

    PubMed Central

    Beha, Katja; Wolfer, Marco; Becker, Merle C; Siyushev, Petr; Jamali, Mohammad; Batalov, Anton; Hinz, Christopher; Hees, Jakob; Kirste, Lutz; Obloh, Harald; Gheeraert, Etienne; Naydenov, Boris; Jakobi, Ingmar; Dolde, Florian; Pezzagna, Sébastien; Twittchen, Daniel; Markham, Matthew; Dregely, Daniel; Giessen, Harald; Meijer, Jan; Jelezko, Fedor; Nebel, Christoph E; Bratschitsch, Rudolf; Leitenstorfer, Alfred; Wrachtrup, Jörg

    2012-01-01

    Summary We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition. PMID:23365803

  11. Highly stable sub-5 nm Sn₆O₄(OH)₄ nanocrystals with ultrahigh activity as advanced photocatalytic materials for photodegradation of methyl orange.

    PubMed

    Xiao, J; Wu, Q L; Liu, P; Liang, Y; Li, H B; Wu, M M; Yang, G W

    2014-04-04

    Among numerous active photocatalytic materials, Sn-based oxide nanomaterials are promising photocatalytic materials in environmental protection measures such as water remediation due to their excellent physicochemical property. Research on photocatalytic nanomaterials for photodegradation of methyl orange (MO) so far has focused on TiO₂-based nanostructures; e.g., TiO₂-P25 is recognized to be the best commercial photocatalyst to date, rather than Sn-based oxide nanomaterials, in spite of their impressive acid- and alkali-resistant properties and high stability. Here, we demonstrate very high photocatalytic activity of highly stable sub-5 nm hydromarchite (Sn₆O₄(OH)₄) nanocrystals synthesized by a simple and environmentally friendly laser-based technique. These Sn₆O₄(OH)₄ nanocrystals exhibit ultrahigh photocatalytic performance for photodegradation of MO and their degradation efficiency is far superior to that of TiO₂-P25. The detailed investigations demonstrated that the great photocatalytic activity results from the ultrafine size and unique surface activity induced by the laser-based technique. Mass production of reactive species of hydroxyl radicals was detected in the experiments due to the appropriate bandgap of Sn₆O₄(OH)₄ nanocrystals. These findings actually open a door to applications of Sn-based oxide nanomaterials as advanced photocatalytic materials.

  12. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure

    SciTech Connect

    Ren, X. D. Yang, H. M.; Zheng, L. M.; Tang, S. X.; Ren, N. F.; Xu, S. D.; Yuan, S. Q.

    2014-07-14

    The synthesis mechanism of ultrananocrystalline diamond via laser shock processing of graphite suspension was presented at room temperature and normal pressure, which yielded the ultrananocrystalline diamond in size of about 5 nm. X-ray diffraction, high-resolution transmission electron microscopy, and laser Raman spectroscopy were used to characterize the nano-crystals. The transformation model and growth restriction mechanism of high power density with short-pulsed laser shocking of graphite particles in liquid was put forward.

  13. Structural Order in Ultrathin Films of the Monolayer Protected Clusters Based Upon 4-nm Gold Nanocrystals: An Experimental and Theoretical Study

    PubMed Central

    Bhattarai, Nabraj; Khanal, Subarna; Bahena, Daniel; Olmos-Asar, Jimena A.; Ponce, Arturo; Whetten, Robert L.; Mariscal, Marcelo M.; Jose-Yacaman, Miguel

    2014-01-01

    The structural order in ultrathin films of monolayer protected clusters (MPCs) is important in a number of application areas but can be difficult to demonstrate by conventional methods, particularly when the metallic core dimension, d, is in the intermediate size-range, 1.5 < d < 5.0 nm. Here, improved techniques for the synthesis of monodisperse thiolate-protected gold nanoparticles have made possible the production of dodecane-thiolate saturated ~ 4 ± 0.5 nm Au clusters with single-crystal core structure and morphology. An ultrathin ordered film or superlattice of these nanocrystal-core MPCs is prepared and investigated using aberration corrected scanning/transmission electron microscopy (STEM) which allowed imaging of long-range hexagonally ordered superlattices of the nanocrystals, separated by the thiolate groups. The lattice constants determined by direct imaging are in good agreement with those determined by small-angle electron diffraction. The STEM image revealed the characteristic grain boundary (GB) with sigma (Σ) 13 in the interface between two crystals. The formation and structures found are interpreted on the basis of theoretical calculations employing molecular dynamics (MD) simulations and coarse-grained (CG) approach. PMID:24875295

  14. Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond.

    PubMed

    Ikuta, Rikizo; Kobayashi, Toshiki; Yasui, Shuto; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Fujiwara, Mikio; Yamamoto, Takashi; Koashi, Masato; Sasaki, Masahide; Wang, Zhen; Imoto, Nobuyuki

    2014-05-05

    We demonstrate a low-noise frequency down-conversion of photons at 637 nm to the telecommunication band at 1587 nm by the difference frequency generation in a periodically-poled lithium niobate. An internal conversion efficiency of the converter is estimated to be 0.44 at the maximum which is achieved by a pump power of 0.43 W, whereas a rate of internal background photons caused by the strong cw pump laser is estimated to be 9 kHz/mW within a bandwidth of about 1 nm. By using the experimental values related to the intrinsic property of the converter, and using the intensity correlation and the average photon number of a 637 nm input light pulse, we derive the intensity correlation of a converted telecom light pulse. Then we discuss feasibility of a single-photon frequency conversion to the telecommunication band for a long-distance quantum communication based on NV centers in diamond.

  15. Nano-manipulation of diamond-based single photon sources.

    PubMed

    Ampem-Lassen, E; Simpson, D A; Gibson, B C; Trpkovski, S; Hossain, F M; Huntington, S T; Ganesan, K; Hollenberg, L C L; Prawer, S

    2009-07-06

    The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a approximately 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.

  16. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2015-10-01

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2-6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  17. Light emission from silicon with tin-containing nanocrystals

    SciTech Connect

    Roesgaard, Søren; Chevallier, Jacques; Hansen, John Lundsgaard; Jensen, Pia Bomholt; Larsen, Arne Nylandsted; Balling, Peter; Julsgaard, Brian; Gaiduk, Peter I.; Svane, Axel

    2015-07-15

    Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of Si{sub 1−x−y}Sn{sub x}C{sub y}, where x = 1.6 % and y = 0.04 % on a silicon substrate, followed by annealing at various temperatures ranging from 650 {sup ∘}C to 900 {sup ∘}C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ≈10{sup 17} cm{sup −3} and ≈5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 {sup ∘}C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.

  18. Grain boundaries and mechanical properties of nanocrystalline diamond films.

    SciTech Connect

    Busmann, H.-G.; Pageler, A.; Gruen, D. M.

    1999-08-06

    Phase-pure nanocrystalline diamond thin films grown from plasmas of a hydrogen-poor carbon argon gas mixture have been analyzed regarding their hardness and elastic moduli by means of a microindentor and a scanning acoustic microscope.The films are superhard and the moduli rival single crystal diamond. In addition, Raman spectroscopy with an excitation wavelength of 1064 nm shows a peak at 1438 l/cm and no peak above 1500 l/cm, and X-ray photoelectron spectroscopy a shake-up loss at 4.2 eV. This gives strong evidence for the existence of solitary double bonds in the films. The hardness and elasticity of the films then are explained by the assumption, that the solitary double bonds interconnect the nanocrystals in the films, leading to an intergrain boundary adhesion of similar strength as the intragrain diamond cohesion. The results are in good agreement with recent simulations of high-energy grain boundaries.

  19. Pulsed photoconductivity in diamond upon quasi-continuous laser excitation at 222 nm at the formation of an electron-hole liquid

    NASA Astrophysics Data System (ADS)

    Lipatov, E. I.; Genin, D. E.; Tarasenko, V. F.

    2016-06-01

    An order-of-magnitude enhancement of the pulsed photocurrent in a polycrystalline diamond sample synthesized by chemical vapor deposition is observed under the conditions of formation of an electron-hole liquid. Nonequilibrium charge carriers are excited by laser pulses at a wavelength of 222 nm with FWHM pulse duration of 18 ns and peak intensity above 2.5 MW/cm2 upon cooling the sample to 90 K. For peak intensities of laser excitation lower than 1 MW/cm2, sample cooling from 300 to 90 K leads to a decrease in pulsed photocurrent by about a factor of 5. The observed increase in pulsed photocurrent is attributed to the formation of the electron-hole liquid.

  20. Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO2 Film for Emission at 614 nm

    PubMed Central

    Pita, Kantisara

    2017-01-01

    In this work, we study the energy transfer mechanism from ZnO nanocrystals (ZnO-nc) to Eu3+ ions by fabricating thin-film samples of ZnO-nc and Eu3+ ions embedded in a SiO2 matrix using the low-cost sol-gel technique. The time-resolved photoluminescence (TRPL) measurements from the samples were analyzed to understand the contribution of energy transfer from the various ZnO-nc emission centers to Eu3+ ions. The decay time obtained from the TRPL measurements was used to calculate the energy transfer efficiencies from the ZnO-nc emission centers, and these results were compared with the energy transfer efficiencies calculated from steady-state photoluminescence emission results. The results in this work show that high transfer efficiencies from the excitonic and Zn defect emission centers is mostly due to the energy transfer from ZnO-nc to Eu3+ ions which results in the radiative emission from the Eu3+ ions at 614 nm, while the energy transfer from the oxygen defect emissions is most probably due to the energy transfer from ZnO-nc to the new defects created due to the incorporation of the Eu3+ ions. PMID:28796195

  1. Energy Transfer Efficiency from ZnO-Nanocrystals to Eu(3+) Ions Embedded in SiO₂ Film for Emission at 614 nm.

    PubMed

    Mangalam, Vivek; Pita, Kantisara

    2017-08-10

    In this work, we study the energy transfer mechanism from ZnO nanocrystals (ZnO-nc) to Eu(3+) ions by fabricating thin-film samples of ZnO-nc and Eu(3+) ions embedded in a SiO₂ matrix using the low-cost sol-gel technique. The time-resolved photoluminescence (TRPL) measurements from the samples were analyzed to understand the contribution of energy transfer from the various ZnO-nc emission centers to Eu(3+) ions. The decay time obtained from the TRPL measurements was used to calculate the energy transfer efficiencies from the ZnO-nc emission centers, and these results were compared with the energy transfer efficiencies calculated from steady-state photoluminescence emission results. The results in this work show that high transfer efficiencies from the excitonic and Zn defect emission centers is mostly due to the energy transfer from ZnO-nc to Eu(3+) ions which results in the radiative emission from the Eu(3+) ions at 614 nm, while the energy transfer from the oxygen defect emissions is most probably due to the energy transfer from ZnO-nc to the new defects created due to the incorporation of the Eu(3+) ions.

  2. Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm.

    PubMed

    Yang, Jun; Zhang, Cuimiao; Peng, Chong; Li, Chunxia; Wang, Lili; Chai, Ruitao; Lin, Jun

    2009-01-01

    Light fantastic! Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals with controllable red, green, blue (RGB) and bright white upconversion luminescence by a single laser excitation of 980 nm have been successfully synthesized (see picture). Due to abundant UC PL colors, it can potentially be used as fluorophores in the field of color displays, back light, UC lasers, photonics, and biomedicine.Lu(2)O(3):Yb(3+)/Er(3+)/Tm(3+) nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu(2)O(3):Yb(3+), Tm(3+) nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-->(3)H(6) transition of Tm(3+). The bright green UC emissions of Lu(2)O(3):Er(3+) nanocrystals appeared near 540 and 565 nm were observed and assigned to the (2)H(11/2)-->(4)I(15/2) and (4)S(3/2)-->(4)I(15/2) transitions, respectively, of Er(3+). The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb(3+) in Lu(2)O(3):Er(3+) nanocrystals. In sufficient quantities of Yb(3+) with resprct to Er(3+), the bright red UC emission of Lu(2)O(3):Yb(3+)/Er(3+) centered at 662 nm was predominant, due to the (4)F(9/2)-->(4)I(15/2) transition of Er(3+). Based on the generation of red, green, and blue emissions in the different doped Lu(2)O(3):RE(3+) nanocrystals, it is possible to produce the luminescence with a wide spectrum of colors, including white, by the appropriate doping of Yb(3+), Tm(3+), and Er(3+) in the present Lu(2)O(3) nanocrystals. Namely, Lu(2)O(3):3 %Yb(3+)/0.2 %Tm(3+)/0.4 %Er(3+) nanocrystals show suitable intensities of blue, green, and red (RGB) emission, resulting in the production of perfect and bright white light

  3. Nanocrystal-Powered Nanomotor

    SciTech Connect

    Regan, B.C.; Aloni, S.; Jensen, K.; Ritchie, R.O.; Zettl, A.

    2005-07-05

    We have constructed and operated a nanoscale linear motorpowered by a single metal nanocrystal ram sandwiched between mechanicallever arms. Low-level electrical voltages applied to the carbon nanotubelever arms cause the nanocrystal to grow or shrink in a controlledmanner. The length of the ram is adjustable from 0 to more than 150 nm,with extension speeds exceeding 1900 nm/s. The thermodynamic principlesgoverning motor operation resemble those driving frost heave, a naturalsolid-state linear motor.

  4. Natural occurrence of pure nano-polycrystalline diamond from impact crater.

    PubMed

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P; Pokhilenko, Nikolai P

    2015-10-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.

  5. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    PubMed Central

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-01-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384

  6. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    NASA Astrophysics Data System (ADS)

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-10-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.

  7. Silicon Nanocrystal Laser

    SciTech Connect

    Yu, J

    2005-03-09

    The purpose of this feasibility study project was to attempt to demonstrate the silicon-nanocrystal-based laser. Such a silicon laser (made using conventional silicon-manufacturing technologies) would provide the crucial missing link that would enable a completely-silicon-based photonic system. We prepared thin layers of silicon nanocrystal material by ion-implanting Si in fused silica substrates, followed by a high temperature anneal process. These Si nanocrystals produced intense photoluminescence when optically pumped with ultraviolet light. Laser structures based on Fabry-Perot cavity and distributed feedback (DFB) designs were fabricated using the Si nanocrystals as the ''lasing'' medium. We optically pumped the samples with CW lasers at 413nm wavelength to quickly assess the feasibility of making lasers out of the Nanocrystal Si material and to verify the gain coefficients reported by other research groups.

  8. Germanium–Tin/Cadmium Sulfide Core/Shell Nanocrystals with Enhanced Near-Infrared Photoluminescence

    DOE PAGES

    Boote, Brett W.; Men, Long; Andaraarachchi, Himashi P.; ...

    2017-06-27

    Ge1–xSnx alloy nanocrystals and Ge1–xSnx/CdS core/shell nanocrystals were prepared via solution phase synthesis, and their size, composition, and optical properties were characterized. We found that the diameter of the nanocrystal samples ranged from 6 to 13 nm. Furthermore, the crystal structure of the Ge1–xSnx materials was consistent with a cubic diamond phase, while the CdS shell was consistent with the zinc blende polytype. Inclusion of Sn alone does not result in enhanced photoluminescence intensity; however, adding an epitaxial CdS shell onto the Ge1–xSnx nanocrystals does enhance the photoluminescence up to 15-fold versus that of Ge/CdS nanocrystals with a pure Gemore » core. There is more effective passivation of surface defects, and a consequent decrease in the level of surface oxidation, by the CdS shell as a result of improved epitaxy (smaller lattice mismatch) is the most likely explanation for the increased photoluminescence observed for the Ge1–xSnx/CdS materials. With enhanced photoluminescence in the near-infrared region, Ge1–xSnx core/shell nanocrystals might be useful alternatives to other materials for energy capture and conversion applications and as imaging probes.« less

  9. On Ultrasmall Nanocrystals

    PubMed Central

    McBride, James R.; Dukes, Albert D.; Schreuder, Michael A.; Rosenthal, Sandra J.

    2010-01-01

    Ultrasmall nanocrystals are a growing sub-class of traditional nanocrystals that exhibit new properties at diameters typically below 2 nm. In this review, we define what constitutes an ultrasmall nanoparticle while distinguishing between ultrasmall and magic-size nanoparticles. After a brief overview of ultrasmall nanoparticles, including ultrasmall gold clusters, our recent work is presented covering the optical properties, structure, and application of ultrasmall CdSe nanocrystals. This unique material has potential application in solid state lighting due to its balanced white emission. This section is followed by a discussion on the blurring boundary between what can be considered a nanoparticle and a molecule. PMID:21132106

  10. Solution Sythesis Of Geranium Nanocrystals: Success And Open Challenges

    SciTech Connect

    Casula, M; Galli, G; Saw, C; Zaitseva, N; Gerion, D; van Buuren, T; Fakra, S

    2003-12-15

    We present a two-steps synthesis route that yields nanometer size crystalline germanium in the form of a black powder. It relies on high temperature decomposition of tetraethylgermane (TEG) in organic solvents. The presence of pure germanium with diamond structure is unambiguously attested by powder XRD measurements. Low resolution TEM indicates that the particles are between {approx}5 to 30 nm in size depending on the synthesis conditions. The as-synthesized Ge powders can be stored in air for months and no oxidation occurs. The Ge powders are sparingly soluble in conventional solvents because Ge nanocrystals are likely embedded in a matrix, composed mainly of C=C, C-C, and C-H bonds. The presence of residual organic by-products impedes probing of the optical properties of the dots. Also, we discuss drawbacks and open challenges in high temperature solution synthesis of Ge nanocrystals that could also be faced in the synthesis of Si nanocrystals. Overall, our results call for a cautious interpretation of reported optical properties of Ge and Si nanocrystals obtained by high temperature solution methods.

  11. Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

    PubMed Central

    Witte, Ralf; Knapp, Michael; Bauer, Sondes; Baumbach, Tilo

    2016-01-01

    Summary Magnetic nanocrystals with a narrow size distribution hold promise for many applications in different areas ranging from biomedicine to electronics and energy storage. Herein, the microwave-assisted sol–gel synthesis and thorough characterization of size-monodisperse zinc ferrite nanoparticles of spherical shape is reported. X-ray diffraction, 57Fe Mössbauer spectroscopy and X-ray photoelectron spectroscopy all show that the material is both chemically and phase-pure and adopts a partially inverted spinel structure with Fe3+ ions residing on tetrahedral and octahedral sites according to (Zn0.32Fe0.68)tet[Zn0.68Fe1.32]octO4±δ. Electron microscopy and direct-current magnetometry confirm the size uniformity of the nanocrystals, while frequency-dependent alternating-current magnetic susceptibility measurements indicate the presence of a superspin glass state with a freezing temperature of about 22 K. Furthermore, as demonstrated by galvanostatic charge–discharge tests and ex situ X-ray absorption near edge structure spectroscopy, the as-prepared zinc ferrite nanocrystals can be used as a high-capacity anode material for Li-ion batteries, showing little capacity fade – after activation – over hundreds of cycles. Overall, in addition to the good material characteristics, it is remarkable that the microwave-based synthetic route is simple, easily reproducible and scalable. PMID:27826509

  12. Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics.

    PubMed

    Suchomski, Christian; Breitung, Ben; Witte, Ralf; Knapp, Michael; Bauer, Sondes; Baumbach, Tilo; Reitz, Christian; Brezesinski, Torsten

    2016-01-01

    Magnetic nanocrystals with a narrow size distribution hold promise for many applications in different areas ranging from biomedicine to electronics and energy storage. Herein, the microwave-assisted sol-gel synthesis and thorough characterization of size-monodisperse zinc ferrite nanoparticles of spherical shape is reported. X-ray diffraction, (57)Fe Mössbauer spectroscopy and X-ray photoelectron spectroscopy all show that the material is both chemically and phase-pure and adopts a partially inverted spinel structure with Fe(3+) ions residing on tetrahedral and octahedral sites according to (Zn0.32Fe0.68)(tet)[Zn0.68Fe1.32](oct)O4±δ. Electron microscopy and direct-current magnetometry confirm the size uniformity of the nanocrystals, while frequency-dependent alternating-current magnetic susceptibility measurements indicate the presence of a superspin glass state with a freezing temperature of about 22 K. Furthermore, as demonstrated by galvanostatic charge-discharge tests and ex situ X-ray absorption near edge structure spectroscopy, the as-prepared zinc ferrite nanocrystals can be used as a high-capacity anode material for Li-ion batteries, showing little capacity fade - after activation - over hundreds of cycles. Overall, in addition to the good material characteristics, it is remarkable that the microwave-based synthetic route is simple, easily reproducible and scalable.

  13. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  14. Sorting fluorescent nanocrystals with DNA

    SciTech Connect

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  15. Cellulose nanocrystal submonolayers by spin coating.

    PubMed

    Kontturi, Eero; Johansson, Leena-Sisko; Kontturi, Katri S; Ahonen, Päivi; Thüne, Peter C; Laine, Janne

    2007-09-11

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images, anionic cellulose nanocrystals formed small aggregates on the anionic silica substrate, whereas a uniform two-dimensional distribution of nanocrystals was achieved on the cationic titania substrate. The uniform distribution of cellulose nanocrystal submonolayers on titania is an important factor when dimensional analysis of the nanocrystals is desired. Furthermore, the amount of nanocrystals deposited on titania was multifold in comparison to the amounts on silica, as revealed by AFM image analysis and X-ray photoelectron spectroscopy. Amorphous cellulose, the third substrate, resulted in a somewhat homogeneous distribution of the nanocrystal submonolayers, but the amounts were as low as those on the silica substrate. These differences in the cellulose nanocrystal deposition were attributed to electrostatic effects: anionic cellulose nanocrystals are adsorbed on cationic titania in addition to the normal spin coating deposition. The anionic silica surface, on the other hand, causes aggregation of the weakly anionic cellulose nanocrystals which are forced on the repulsive substrate by spin coating. The electrostatically driven adsorption also influences the film thickness of continuous ultrathin films of cellulose nanocrystals. The thicker films of charged nanocrystals on a substrate of opposite charge means that the film thickness is not independent of the substrate when spin coating cellulose nanocrystals in the ultrathin regime (<100 nm).

  16. Investigation of the Surface Stress in SiC and Diamond Nanocrystals by In-situ High Pressure Powder Diffraction Technique

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.

    2003-01-01

    The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.

  17. Investigation of the Surface Stress in SiC and Diamond Nanocrystals by In-situ High Pressure Powder Diffraction Technique

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.

    2003-01-01

    The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.

  18. Transient photoresponse of nitrogen-doped ultrananocrystalline diamond electrodes in saline solution

    NASA Astrophysics Data System (ADS)

    Ahnood, Arman; Simonov, Alexandr N.; Laird, Jamie S.; Maturana, Matias I.; Ganesan, Kumaravelu; Stacey, Alastair; Ibbotson, Michael R.; Spiccia, Leone; Prawer, Steven

    2016-03-01

    Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamond nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm-2, charge injection capacity of 0.01 mC cm-2 is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.

  19. Catalyst-free synthesis of transparent, mesoporous diamond monoliths from periodic mesoporous carbon CMK-8

    SciTech Connect

    Zhang, Li; Mohanty, Paritosh; Coombs, Neil; Fei, Yingwei; Mao, Ho-kwang; Landskrom, Kai

    2010-07-19

    We report on the synthesis of optically transparent, mesoporous, monolithic diamond from periodic mesoporous carbon CMK-8 at a pressure of 21 GPa. The phase transformation is already complete at a mild synthesis temperature of 1,300 °C without the need of a catalyst. Surprisingly, the diamond is obtained as a mesoporous material despite the extreme pressure. X-ray diffraction, SEM, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, and Z-contrast experiments suggest that the mesoporous diamond is composed of interconnected diamond nanocrystals having diameters around 5–10 nm. The Brunauer Emmett Teller surface area was determined to be 33 m2 g-1 according Kr sorption data. The mesostructure is diminished yet still detectable when the diamond is produced from CMK-8 at 1,600 °C and 21 GPa. The temperature dependence of the porosity indicates that the mesoporous diamond exists metastable and withstands transformation into a dense form at a significant rate due to its high kinetic inertness at the mild synthesis temperature. The findings point toward ultrahard porous materials with potential as mechanically highly stable membranes.

  20. Microstructural evolution of diamond growth during HFCVD

    NASA Technical Reports Server (NTRS)

    Singh, J.

    1994-01-01

    High resolution transmission electron microscopy (HRTEM) was used to study the nucleation and growth mechanism of diamond by hot filament chemical vapor deposition (HFCVD) process. A novel technique has shown a direct evidence for the formation of the diamond-like carbon layer 8-14 nm thick in which small diamond micro-crystallites were embedded. These diamond micro-crystallites were formed as a result of transformation of diamond-like carbon into diamond. The diamond micro-crystallites present in the amorphous diamond-like carbon layer provided nucleation sites for diamond growth. Large diamond crystallites were observed to grow from these micro-crystallites. The mechanism of diamond growth will be presented based on experimental findings.

  1. Diamonds in detonation soot

    NASA Technical Reports Server (NTRS)

    Greiner, N. Roy; Phillips, Dave; Johnson, J. D.; Volk, Fred

    1990-01-01

    Diamonds 4 to 7 nm in diameter have been identified and partially isolated from soot formed in detonations of carbon-forming composite explosives. The morphology of the soot has been examined by transmission electron microscopy (TEM), and the identity of the diamond has been established by the electron diffraction pattern of the TEM samples and by the X-ray diffraction (XRD) pattern of the isolated solid. Graphite is also present in the form of ribbons of turbostatic structure with a thickness of 2 to 4 nm. A fraction, about 25 percent of the soot by weight, was recovered from the crude soot after oxidation of the graphite with fuming perchloric acid. This fraction showed a distinct XRD pattern of diamond and the diffuse band of amorphous carbon. The IR spectrum of these diamonds closely matches that of diamonds recovered from meteorites (Lewis et al., 1987), perhaps indicating similar surface properties after the oxidation. If these diamonds are produced in the detonation itself or during the initial expansion, they exhibit a phenomenal crystal growth rate (5 nm/0.00001 s equal 1.8 m/hr) in a medium with a very low hydrogen/carbon ratio. Because the diamonds will be carried along with the expanding gases, they will be accelerated to velocities approaching 8 km/s.

  2. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  3. Pinned emission from ultrasmall cadmium selenide nanocrystals.

    PubMed

    Dukes, Albert D; Schreuder, Michael A; Sammons, Jessica A; McBride, James R; Smith, Nathanael J; Rosenthal, Sandra J

    2008-09-28

    We report pinning of the emission spectrum in ultrasmall CdSe nanocrystals with a diameter of 1.7 nm and smaller. It was observed that the first emission feature ceased to blueshift once the band edge absorption reached 420 nm, though the band edge absorption continued to blueshift with decreasing nanocrystal diameter.

  4. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  5. Supersaturation-controlled surface structure evolution of Pd@Pt core-shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale.

    PubMed

    Qi, Kun; Zheng, Weitao; Cui, Xiaoqiang

    2016-01-21

    Here, we designed and implemented a facile strategy for controlling the surface evolution of Pd@Pt core-shell nanostructures by simply adjusting the volume of OH(-) to control the reducing ability of ascorbic acid and finally manipulating the supersaturation in the reaction system. The surface structure of the obtained Pd@Pt bimetallic nanocrystals transformed from a Pt {111} facet-exposed island shell to a conformal Pt {100} facet-exposed shell by increasing the pH value. The as-prepared well aligned Pd@Pt core-island shell nanocubes present both significantly enhanced electrocatalytic activity and favorable long-term stability toward the oxygen reduction reaction in alkaline media.

  6. Sub-10 nm Sr2LuF7:Yb/Er@Sr2GdF7@SrF2 Up-Conversion Nanocrystals for Up-Conversion Luminescence-Magnetic Resonance-Computed Tomography Trimodal Bioimaging.

    PubMed

    Chen, Cailing; Liu, Jianhua; Chen, Ying; Li, Chunguang; Liu, Xiaomin; Huang, He; Liang, Chen; Lou, Yue; Shi, Zhan; Feng, Shouhua

    2017-02-22

    Herein, sub-10 nm core-shell nanocrystals (NCs), which select Sr2LuF7:Yb/Er as core, Sr2GdF7 as middle shell, and SrF2 as an outermost shell, were synthesized by a seed-mediated growth process. The NCs possess good crystallinity, morphology, and up-conversion luminescent properties. After modification by polyethylenimine branched (PEI), in vitro cell up-conversion imaging with low autofluorescence was realized. Due to the presence of Gd(3+) ions, in vivo magnetic resonance (MR) imaging was also achieved with these designed NCs. More significantly, these special core-shell NCs exhibited high contrast in in vivo X-ray computed tomography (CT) imaging because of their good X-ray absorption ability. These results indicate that the core-shell up-conversion NCs can serve as promising contrast agents for up-conversion luminescence-MR-CT trimodal bioimaging.

  7. Strain broadening of the 1042-nm zero phonon line of the NV- center in diamond: A promising spectroscopic tool for defect tomography

    NASA Astrophysics Data System (ADS)

    Biktagirov, T. B.; Smirnov, A. N.; Davydov, V. Yu.; Doherty, M. W.; Alkauskas, A.; Gibson, B. C.; Soltamov, V. A.

    2017-08-01

    The negatively charged nitrogen-vacancy (NV-) center in diamond is a promising candidate for many quantum applications. Here, we examine the splitting and broadening of the center's infrared (IR) zero-phonon line (ZPL). We develop a model for these effects that accounts for the strain induced by photodependent microscopic distributions of defects. We apply this model to interpret observed variations of the IR ZPL shape with temperature and photoexcitation conditions. We identify an anomalous temperature-dependent broadening mechanism and that defects other than the substitutional nitrogen center significantly contribute to strain broadening. The former conclusion suggests the presence of a strong Jahn-Teller effect in the center's singlet levels and the latter indicates that major sources of broadening are yet to be identified. These conclusions have important implications for the understanding of the center and the engineering of diamond quantum devices. Finally, we propose that, once the major sources of broadening are identified, the IR ZPL has the potential to be a sensitive spectroscopic tool for probing microscopic strain fields and performing defect tomography.

  8. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    SciTech Connect

    Ren, X. D. Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  9. Applications Of Diamond In Optics

    NASA Astrophysics Data System (ADS)

    Seal, M.; van Enckevort, W. J. P.

    1989-01-01

    This paper reviews existing and new applications of single crystal diamond, both natural and synthetic, in optical science. The traditional application is as transmissive components, making use of the very wide spectral transmission range, high thermal conductivity, and chemical inertness of diamond. Diamond windows for corrosive environments are well known; diamond surgical endoscope components are under development; and the use of sharpened diamonds as combined surgical cutting instruments and light pipes for internal illumination of the edge is commercial reality. The superb ability of diamond to conduct heat, combined with its very low thermal expansion coefficient makes it suitable for the transmission of high power laser energy, though there is a problem currently being addressed of a high surface reflection coefficient. It is very probable that CVD diamond-like films will form good anti-reflection coatings for diamond. In new applications, the technology of making diamond lenses is being developed. The use of diamond as a detector of ionising radiation is well known, but recent work shows its possibilities in thermoluminescent as well as conduction and pulse counting modes. There are further possibilities of using diamond for the detection and measurement of optical radiation. Examples are low, medium, and high intensity far ultraviolet (< 225 nm) and very high intensity near ultraviolet and visible light from excimer, dye, or argon lasers. Diamond is very radiation resistant! Sensitivities, response times and impurity trap levels have been measured and appropriate diamonds can be synthesised. The use of diamond as fast opto-electronic switches has been reported in the literature and the mechanical and thermal design of diamond "heat sink" substrates for semiconductor laser diodes is advancing rapidly.

  10. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  11. Copper selenide nanocrystals for photothermal therapy.

    PubMed

    Hessel, Colin M; Pattani, Varun P; Rasch, Michael; Panthani, Matthew G; Koo, Bonil; Tunnell, James W; Korgel, Brian A

    2011-06-08

    Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980 nm. When excited with 800 nm light, the Cu(2-x)Se nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu(2-x)Se nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 min of laser irradiation at 33 W/cm(2), demonstrating the viabilitiy of Cu(2-x)Se nanocrystals for photothermal therapy applications.

  12. Fabrication of diamond shells

    DOEpatents

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  13. Hollow nanocrystals and method of making

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  14. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Estimated 2011 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2011, natural industrial diamonds were produced in more than 20 countries, and synthetic industrial diamond was produced in at least 13 countries. About 98 percent of the combined natural and synthetic global output was produced in China, Ireland, Japan, Russia, South Africa and the United States. China is the world's leading producer of synthetic industrial diamond followed by Russia and the United States.

  15. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  16. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Estimated world production of natural and synthetic industrial diamond was about 4.44 billion carats in 2010. Natural industrial diamond deposits have been found in more than 35 countries, and synthetic industrial diamond is produced in at least 15 countries.

  17. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, estimated world production of natural and synthetic industrial diamond was 630 million carats. Natural industrial diamond deposits were found in more than 35 countries. Synthetic industrial diamond is produced in at least 15 countries. More than 81% of the combined natural and synthetic global output was produced in Ireland, Japan, Russia, South Africa and the United States.

  18. Nanocrystal synthesis

    SciTech Connect

    Tisdale, William; Prins, Ferry; Weidman, Mark; Beck, Megan

    2016-11-01

    A method of preparing monodisperse MX semiconductor nanocrystals can include contacting an M-containing precursor with an X donor to form a mixture, where the molar ratio between the M containing precursor and the X donor is large. Alternatively, if additional X donor is added during the reaction, a smaller ratio between the M containing precursor and the X donor can be used to prepare monodisperse MX semiconductor nanocrystals.

  19. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. A review of the state of the global industrial diamond industry in 1999 is presented. World consumption of industrial diamond has increased annually in recent years, with an estimated 500 million carats valued between $650 million and $800 million consumed in 1999. In 1999, the U.S. was the world's largest market for industrial diamond and was also one of the world's main producers; the others were Ireland, Russia, and South Africa. Uses of industrial diamonds are discussed, and prices of natural and synthetic industrial diamond are reported.

  20. Optical Properties of CdSe/ZnS Nanocrystals

    PubMed Central

    Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong

    2014-01-01

    Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047

  1. A solvothermal route to CdS nanocrystals

    NASA Astrophysics Data System (ADS)

    Gautam, Ujjal K.; Seshadri, Ram; Rao, C. N. R.

    2003-07-01

    A novel solvothermal route for the preparation of organic soluble CdS nanocrystals, involving the reaction of cadmium stearate with sulfur in the presence of tetralin has been described. Tetralin in the presence of S gives H 2S, getting aromatized to naphthalene. By using trioctylphosphineoxide as the capping agent, nanocrystals of 4 nm are obtained. Use of dodecanethiol cap results in 5 nm as well as 10 nm nanocrystals which can be separated readily. The nanocrystals have the cubic zinc blende structure and exhibit blue shifts of the absorption maximum.

  2. Size quantization in Cu2Se nanocrystals

    NASA Astrophysics Data System (ADS)

    Govindraju, S.; Kalenga, M. P.; Airo, M.; Moloto, M. J.; Sikhwivhilu, L. M.; Moloto, N.

    2014-12-01

    Herein we report on the synthesis of size quantized copper selenide nanocrystals via the colloidal method. Different colours of the sample were obtained at different time intervals indicative of the sizes of the nanocrystals. The absorption band edges were blue-shifted from bulk indicative of quantum confinement. This was corroborated by the TEM results that showed very small particles ranging from 2 nm to 7 nm. This work therefore shows a phenomenon readily observed in cadmium chalcogenide nanocrystals but has never been reported for copper based chalcogenides.

  3. Photoluminescence and Raman spectroscopy studies of Eu3+-doped rutile TiO2 nanocrystals at high pressures

    NASA Astrophysics Data System (ADS)

    Zeng, Q. G.; Ding, Z. J.; Lei, B. F.; Sheng, Y. Q.; Zhang, Z. M.

    2012-09-01

    Nanocrystal samples (particle size about 90 nm) of Eu3+-doped rutile titanium dioxide (TiO2) nanocrystals (rutile Eu3+/TiO2 nanocrystals) were synthesized by the sol-gel method with hydrothermal treatment. The pressure effect on photoluminescence (PL) and Raman spectra of the rutile Eu3+/TiO2 nanocrystals was investigated with a diamond anvil cell under hydrostatic pressure condition. Raman spectra of the samples at high pressures indicated that the critical pressure for the transition from the rutile phase to a new baddeleyite-type phase was between 10 and 14.2 GPa. The position of Raman bands shifted to high wavenumbers and the PL intensity of 5D 0→7F 2 transition of Eu3+ decreased down to zero with the increase of pressure before the phase transition occurred. After releasing the pressure, the rutile phase was not recovered and a α-PbO2-type phase was observed at ambient pressure.

  4. Silicon and germanium nanocrystals: properties and characterization

    PubMed Central

    Carvalho, Alexandra; Coutinho, José

    2014-01-01

    Summary Group-IV nanocrystals have emerged as a promising group of materials that extends the realm of application of bulk diamond, silicon, germanium and related materials beyond their traditional boundaries. Over the last two decades of research, their potential for application in areas such as optoelectronic applications and memory devices has been progressively unraveled. Nevertheless, new challenges with no parallel in the respective bulk material counterparts have arisen. In this review, we consider what has been achieved and what are the current limitations with regard to growth, characterization and modeling of silicon and germanium nanocrystals and related materials. PMID:25383290

  5. Transient photoresponse of nitrogen-doped ultrananocrystalline diamond electrodes in saline solution

    SciTech Connect

    Ahnood, Arman Ganesan, Kumaravelu; Stacey, Alastair; Prawer, Steven; Simonov, Alexandr N.; Spiccia, Leone; Laird, Jamie S.; Maturana, Matias I.; Ibbotson, Michael R.

    2016-03-07

    Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamond nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm{sup −2}, charge injection capacity of 0.01 mC cm{sup −2} is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.

  6. Tailorable, Visible Light Emission From Silicon Nanocrystals

    SciTech Connect

    Samara, G.A.; Wilcoxon, J.P.

    1999-07-20

    J. P. Wilcoxon and G. A. Samara Crystalline, size-selected Si nanocrystals in the size range 1.8-10 nm grown in inverse micellar cages exhibit highly structured optical absorption and photoluminescence (PL) across the visible range of the spectrum. The most intense PL for the smallest nanocrystals produced This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. to induce a useful level of visible photoluminescence (PL) from silicon (Si). The approaches understood. Visible PL has been observed from Si nanocrystals, or quantum dots, produced by a variety of techniques including aerosols,2 colloids,3 and ion implantation.4 However, all of The optical absorption spectra of our nanocrystals are much richer in spectral features spectrum of bulk Si where the spectral features reflect the details of the band structure shown in nanocrystals estimated to have a Si core diameter of 1-2 nm. These measured quantum those in the spectrum of bulk Si in Fig. 1 are striking indicating that nanocrystals of this size 8-Room temperature PL results on an HPLC size-selected, purified 2 nm nanocrystals but blue shifted by -0.4 eV due to quantum confinement. Excitation at 245 nm yields

  7. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals.

    PubMed

    Joo, Jin; Na, Hyon Bin; Yu, Taekyung; Yu, Jung Ho; Kim, Young Woon; Wu, Fanxin; Zhang, Jin Z; Hyeon, Taeghwan

    2003-09-10

    We report on the synthesis of semiconductor nanocrystals of PbS, ZnS, CdS, and MnS through a facile and inexpensive synthetic process. Metal-oleylamine complexes, which were obtained from the reaction of metal chloride and oleylamine, were mixed with sulfur. The reaction mixture was heated under appropriate experimental conditions to produce metal sulfide nanocrystals. Uniform cube-shaped PbS nanocrystals with particle sizes of 6, 8, 9, and 13 nm were synthesized. The particle size was controlled by changing the relative amount of PbCl(2) and sulfur. Uniform 11 nm sized spherical ZnS nanocrystals were synthesized from the reaction of zinc chloride and sulfur, followed by one cycle of size-selective precipitation. CdS nanocrystals that consist of rods, bipods, and tripods were synthesized from a reaction mixture containing a 1:6 molar ratio of cadmium to sulfur. Spherical CdS nanocrystals (5.1 nm sized) were obtained from a reaction mixture with a cadmium to sulfur molar ratio of 2:1. MnS nanocrystals with various sizes and shapes were synthesized from the reaction of MnCl(2) and sulfur in oleylamine. Rod-shaped MnS nanocrystals with an average size of 20 nm (thickness) x 37 nm (length) were synthesized from a 1:1 molar ratio of MnCl(2) and sulfur at 240 degrees C. Novel bullet-shaped MnS nanocrystals with an average size of 17 nm (thickness) x 44 nm (length) were synthesized from the reaction of 4 mmol of MnCl(2) and 2 mmol of sulfur at 280 degrees C for 2 h. Shorter bullet-shaped MnS nanocrystals were synthesized from a 3:1 molar ratio of MnCl(2) and sulfur. Hexagon-shaped MnS nanocrystals were also obtained. All of the synthesized nanocrystals were highly crystalline.

  8. Diamond nanocrystals for photonics and sensing

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor

    2014-01-01

    Fluorescent nanodiamonds (FNDs) are becoming a pivotal material in a variety of applications spanning sensing, bio-labeling and nanophotonics. The unique feature of these nanoparticles is their ability to host bright, optically active, photostable defects (color centers) that emit across the entire spectral range. In conjunction with their chemical stability and the relatively known carbon chemistry, nanodiamonds are becoming a key player in modern technologies. This brief review will highlight some of the recent advances of FNDs with an emphasis on nanophotonics.

  9. Study of nanocrystals in the dynamic slip zone

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Kireenkova, S. M.; Morozov, Yu. A.; Smul'skaya, A. I.; Vettegren, V. I.; Kulik, V. B.; Mamalimov, R. I.

    2012-09-01

    Mineral composition is studied and a search to detect nanocrystals is conducted in the surface layers of slickensides formed due to dynamic slip in arkose sandstone. The infrared and Raman spectroscopy show that the slickensided layer is composed of nanocrystals of montmorillonite and anatase measuring ≈15 nm and 3 nm, respectively. The crystalline lattice of the nanocrystals of montmorillonite is stretched by ≈2.5% while the lattice of the nanocrystals of anatase is compressed by ≈0.12%. Deeper than 3 mm below the slickenside surface, the sandstone contains nanocrystals of montmorillonite, beidellite and nontronite, quartz, plagioclase, and anatase. The nanocrystals of anatase have a linear size of ≈8 nm. Their crystalline lattice is compressed by ≈0.03%. It is supposed that montmorillonite in the slickensides was formed due to hydrolytic decomposition of silicates under friction of the fault planes sliding past each other.

  10. Diamond Electronic Devices

    NASA Astrophysics Data System (ADS)

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  11. Observation of Diamond Nitrogen-Vacancy Center Photoluminescence under High Vacuum in a Magneto-Gravitational Trap

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Hsu, Jen-Feng; Lewandowski, Charles W.; Dutt, M. V. Gurudev; D'Urso, Brian

    2016-05-01

    We report the observation of photoluminescence from nitrogen-vacancy (NV) centers in diamond nanocrystals levitated in a magneto-gravitational trap. The trap utilizes a combination of strong magnetic field gradients and gravity to confine diamagnetic particles in three dimensions. The well-characterized NV centers in trapped diamond nanocrystals provide an ideal built-in sensor to measure the trap magnetic field and the temperature of the trapped diamond nanocrystal. In the future, the NV center spin state could be coupled to the mechanical motion through magnetic field gradients, enabling in an ideal quantum interface between NV center spin and the mechanical motion. National Science Foundation, Grant No. 1540879.

  12. Analysis of Short and Long Range Atomic Order in Nanocrystalline Diamonds with Application of Powder Diffractometry

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.

  13. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

    PubMed

    Sakellari, D; Brintakis, K; Kostopoulou, A; Myrovali, E; Simeonidis, K; Lappas, A; Angelakeris, M

    2016-01-01

    Colloidal nanocrystal assemblies (nanoclusters), consisting of 13 nm iron oxide nanocrystals, were synthesized in various sizes (45-98 nm), and were investigated as heating mediators for magnetic particle hyperthermia. The colloidal nanocrystal clusters show enhanced heating efficiency in comparison with their constituent primary iron oxide nanocrystals due to collective magnetic features. The fine tuning of intra-cluster magnetic interactions results to the domination of the hysteresis losses mechanism over the relaxation loss heating contributions and eventually to a versatile magnetic particle hyperthermia mediator. Copyright © 2015. Published by Elsevier B.V.

  14. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  15. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  16. Laser damage threshold of diamond films

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Cropper, Andre D.; Watkins, Linwood C.; Byvik, Charles E.; Buoncristiani, A. Martin

    1989-01-01

    The possibility that diamond films may inhibit laser-induced damage to optical components in laser systems films was investigated by measuring laser damage thresholds of free-standing diamond film windows, diamond films deposited on silicon substrates, and bare silicon substrate. Polycrystalline diamond films were deposited using a dc plasma-enhanced CVD process. It was found that free-standing diamond films had the highest laser damage threshold at 1064 nm. For a diamond film of 630 nm, the damage threshold was found to be 7 J/sq cm, as compared to a damage threshold of 4.5 J/sq cm for bare silicon, and a low value of 1.5 J/sq cm for the film/substrate combination. The damage mechanism is considered to involve melting or dielectric breakdown induced by laser radiation. The low value of the film/substrate combination is attributed to film stress and conditions of film deposition.

  17. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of natural and synthetic industrial diamond was about 648 million carats in 2006, with 79 percent of the production coming from Ireland, Japan, Russia, South Africa, and the U.S. U.S. consumption was was an estimated 602 million carats, imports were over 391 million carats, and exports were about 83 million carats. About 87 percent of the industrial diamonds market uses synthetic diamonds, which are expected to become less expensive as technology improves and competition from low-cost producers increases.

  18. Photochemical functionalization of diamond surfaces

    NASA Astrophysics Data System (ADS)

    Nichols, Beth Marie

    Diamond surfaces are excellent substrates for potential applications in fields such as biotechnology, molecular sensing, and molecular electronics. In order to develop new diamond-based technologies, it is important to develop a fundamental understanding of diamond surface chemistry. Previous work in the Hamers group has demonstrated covalent functionalization of hydrogen-terminated diamond surfaces with molecules bearing a terminal vinyl group via a photochemical process using sub-bandgap light at 254 nm. While the reaction was shown to occur reproducibly with self-terminating monolayer surface coverage, the mechanism was never fully understood. This thesis investigates the photochemical modification of hydrogen-terminated surfaces of diamond. The results show that this reaction is a surface-mediated radical process initiated by the UV-assisted photoejection of electrons from the diamond surfaces into the liquid phase. To develop a better understanding of the photochemical mechanism, an electrical bias was applied to the diamond samples during the photochemical reaction. Applying a 1 volt potential between two diamond electrodes significantly increases the rate of functionalization of the negative electrode. Cyclic voltammetry and electrochemical impedance measurements show that the applied potential induces downward band-bending within the negative diamond film electrode. At higher voltages a Faradaic current is observed, with no further acceleration of the functionalization rate. The bias-dependent changes in rate are attributed to a field effect; the applied potential induces a downward band-bending on the negative electrode and facilitates electron ejection into the adjacent organic fluid. The ability to directly organically photopattern the surface on length scales of <25 microns has also been demonstrated using simple photomasking techniques. Techniques for the functionalization of diamond may be applied to other 'unreactive' surfaces. The activation of a

  19. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2004-01-01

    Part of the 2003 industrial minerals review. Supply and demand data for industrial diamond are provided. Topics discussed are consumption, prices, imports and exports, government stockpiles, and the outlook for 2004.

  20. Patterning nanocrystals using DNA

    SciTech Connect

    Williams, Shara Carol

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices to a length greater than

  1. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    PubMed

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  2. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  3. Nanotwinned diamond with unprecedented hardness and stability.

    PubMed

    Huang, Quan; Yu, Dongli; Xu, Bo; Hu, Wentao; Ma, Yanming; Wang, Yanbin; Zhao, Zhisheng; Wen, Bin; He, Julong; Liu, Zhongyuan; Tian, Yongjun

    2014-06-12

    Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ∼3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ∼5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ∼200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

  4. Nanotwinned diamond with unprecedented hardness and stability

    NASA Astrophysics Data System (ADS)

    Huang, Quan; Yu, Dongli; Xu, Bo; Hu, Wentao; Ma, Yanming; Wang, Yanbin; Zhao, Zhisheng; Wen, Bin; He, Julong; Liu, Zhongyuan; Tian, Yongjun

    2014-06-01

    Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ~3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ~5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ~200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

  5. Advanced Diamond Anvil Techniques (Customized Diamond Anvils)

    SciTech Connect

    Weir, S

    2009-02-11

    A complete set of diamond-based fabrication tools now exists for making a wide range of different types of diamond anvils which are tailored for various high-P applications. Current tools include: CVD diamond deposition (making diamond); Diamond polishing, laser drilling, plasma etching (removal of diamond); and Lithography, 3D laser pantography (patterning features onto diamond); - Metal deposition (putting electrical circuits and metal masks onto diamond). Current applications include the following: Electrical Conductivity; Magnetic Susceptibility; and High-P/High-T. Future applications may include: NMR; Hall Effect; de Haas - Shubnikov (Fermi surface topology); Calorimetry; and thermal conductivity.

  6. High temperature diamond film deposition on a natural diamond anvil

    SciTech Connect

    McCauley, T.S.; Vohra, Y.K.

    1995-12-31

    We report on the growth and characterization of a 100 {mu}m thick by 350 {mu}m diameter diamond layer on the culet of a type Ia brilliant cut natural diamond anvil by microwave plasma-assisted CVD (MPCVD). While our previous work [1] on diamond anvils resulted in homoepitaxial film growth at a rate of approximately 20 {mu}m/hr, the present 100 {mu}m thick diamond layer grew in less than 2 hours. This unprecedented growth rate of {approximately} 50 {mu}m/hr is believed to be the result of the extremely high substrate temperature (1800{degrees}-2100{degrees}C) during deposition. The translucent diamond layer was characterized by micro-Raman, low temperature photoluminescence (PL) and PL excitation spectroscopy, as well as atomic force microscopy (AFM). Raman analysis shows the deposit to be of high quality. The PL spectra show numerous features, including prominent emission bands at 575 nm (2.16 eV), 636 nm (1.95 eV), 735 nm (1.68 eV) and 777 run, (1.60 eV).

  7. Low temperature boron doped diamond

    NASA Astrophysics Data System (ADS)

    Zeng, Hongjun; Arumugam, Prabhu U.; Siddiqui, Shabnam; Carlisle, John A.

    2013-06-01

    Low temperature boron doped diamond (LT-BDD) film deposited under 600 °C (460 °C minimum) has been reported. Study reveals that the deposition temperature and boron dopant cause nanocrystalline diamond (NCD) instead of ultrananocrystalline diamond (UNCD®). Unlike conventional NCD, LT-BDD has faster renucleation rate, which ensures a low surface roughness (approximately 10 nm at 0.6 μm thickness). The overall characteristics of LT-BDD are mixed with the characteristics of conventional NCD and UNCD. Raman spectrum and electrochemical characterization prove that the quality of LT-BDD is similar to those grown under 650-900 °C. LT-BDD enables diamond applications on microelectromechanical systems, bio- and optical technologies.

  8. Nanostructure TEM analysis of diamond cold cathode field emitters

    SciTech Connect

    Wade, Travis S.; Ghosh, Nikkon; Wittig, James Edward; Kang, Weng; Allard Jr, Lawrence Frederick; Unocic, Kinga A; Davidson, James; Tolk, Norman H.

    2012-01-01

    Diamond cold cathode devices have demonstrated significant potential as electron field emitters. Ultra-sharp diamond pyramidal tips (~5nm tip radius) have been fabricated and show improvement in emission when compared to conventional field emitters. However, the emission mechanisms in these complex diamond nanostructures are not well understood. Transmission electron microscopy performed in this study provides new insight into tip structure and composition with implications for field emission and diamond growth.

  9. Structural and optical manipulation of colloidal Ge1-xSnx nanocrystals with experimentally synthesized sizes: Atomistic tight-binding theory

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2017-02-01

    Nontoxic, maintainable and cost-effective group IV semiconductors are gorgeous for an expansive range of electronic and optoelectronic applications, even though the presence of the indirect band gap obstructs the optical performance. However, band structures can be modified from indirect to direct band gaps by constructing the nanostructures or by alloying with tin (Sn) material. In the study presented here, I investigate the impact of ion-centred types, Sn compositions and dimensions on the electronic structures and optical properties in Ge1-xSnx diamond cubic nanocrystals of the experimentally synthesized Sn contents and diameters using the atomistic tight-binding theory (TB) in the conjunction with the configuration interaction description (CI). The analysis of the mechanism suggests that the physical properties are mainly sensitive with ion-centred types (anion (a) and cation (c)), Sn compositions and dimensions of Ge1-xSnx diamond cubic nanocrystals. The reduction of optical band gaps is reported with the increasing diameters and Sn alloying contents. The visible spectral range is obtained allowing for the applications in bio imaging and chemical sensing. The optical band gaps based on tight-binding calculations are in close agreement with the experimental data for Ge1-xSnx nanocrystals with diameter of 2.1 nm, while for Ge1-xSnx nanocrystals with diameter of 2.7 nm there is a discrepancy of 0.4 eV with experimental results and first-principles calculations. An improvement in the luminescence properties of such Ge1-xSnx nanocrystals becomes possible in the presence of the Sn contents. The electron-hole coulomb interaction is reduced with the increasing Sn components, while the electron-hole exchange interaction is increased with the increasing Sn contents. In addition, I have to point out an astonishing phenomenon, stokes shift and fine structure splitting, with the aim for the realization of the entangled source. The stokes shift and fine structure splitting

  10. Solar induced growth of silver nanocrystals

    NASA Astrophysics Data System (ADS)

    Thøgersen, Annett; Muntingh, Georg

    2013-04-01

    The effect of solar irradiation on plasmonic silver nanocrystals has been investigated using transmission electron microscopy and size distribution analysis, in the context of solar cell applications for light harvesting. Starting from an initial collection of spherical nanocrystals on a carbon film whose sizes are log-normally distributed, solar irradiation causes the nanocrystals to grow, with one particle reaching a diameter of 638 nm after four hours of irradiation. In addition some of the larger particles lose their spherical shape. The average nanocrystal diameter was found to grow as predicted by the Ostwald ripening model, taking into account the range of area fractions of the samples. The size distribution stays approximately log-normal and does not reach one of the steady-state size distributions predicted by the Ostwald ripening model. This might be explained by the system being in a transient state.

  11. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  12. Exciton polarizability in semiconductor nanocrystals.

    PubMed

    Wang, Feng; Shan, Jie; Islam, Mohammad A; Herman, Irving P; Bonn, Mischa; Heinz, Tony F

    2006-11-01

    The response of charge to externally applied electric fields is an important basic property of any material system, as well as one critical for many applications. Here, we examine the behaviour and dynamics of charges fully confined on the nanometre length scale. This is accomplished using CdSe nanocrystals of controlled radius (1-2.5 nm) as prototype quantum systems. Individual electron-hole pairs are created at room temperature within these structures by photoexcitation and are probed by terahertz (THz) electromagnetic pulses. The electronic response is found to be instantaneous even for THz frequencies, in contrast to the behaviour reported in related measurements for larger nanocrystals and nanocrystal assemblies. The measured polarizability of an electron-hole pair (exciton) amounts to approximately 10(4) A(3) and scales approximately as the fourth power of the nanocrystal radius. This size dependence and the instantaneous response reflect the presence of well-separated electronic energy levels induced in the system by strong quantum-confinement effects.

  13. Mechanism of the electrophoretic assembly of cadmium selenide nanocrystal films and their mechanical properties

    NASA Astrophysics Data System (ADS)

    Jia, Shengguo

    This thesis consists of two closely related experimental studies of electrophoretically deposited CdSe nanocrystal films. In the first part of this thesis, the charging of CdSe nanocrystal in non-aqueous solvent and the mechanism of electrophoretic deposition (EPD) are discussed from the point of view of the influence of the nanocrystal surface. Our experiments show that the charge of these nanocrystals originates from the surface defects of the nanocrystal. EPD leads to equally thick films of CdSe nanocrystals on both positive and negative electrodes due to the deposition of equal numbers of negatively and positively charged nanocrystals, even though their concentrations are not equal in solution. The deposition stops when the charged nanocrystals with lower concentration are depleted. The second part of this thesis focuses on the mechanical and optical properties of these electrophoretically deposited CdSe nanocrystal films. Approaches to measure and analyze the mechanical parameters and fracture properties of electrophoretically deposited CdSe nanocrystal films are described in this part. The values of the elastic modulus of electrophoretically deposited CdSe nanocrystal films composed of 3.2 nm diameter nanocrystals measured by Raman microprobe scattering (˜9.7 GPa) and nanoindentation (˜10 GPa) match each other. The mechanical response of nanocrystal films suggests polymeric features that are attributable to the organic ligand on the nanocrystal cores. After nanocrystal cross-linking and partial ligand removal, the nanocrystal films exhibit more features of granularity. The fracture, strain, and stress of electrophoretically deposited CdSe nanocrystal films are studied as a function of the film thickness, nanocrystal size, and drying method. In addition to Raman microprobe scattering, optical methods such as photoluminescence, high-spatial resolution infrared spectroscopy, and ellipsometry are used to investigate the properties of these electrophoretically

  14. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites

    NASA Astrophysics Data System (ADS)

    Ma, Songdi; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2017-04-01

    Mo2C submicron layer coated diamond particles prepared by a molten salts route with Mo powder as the starting material were used as the filler in Cu- and Al- matrix composites. The microstructure and thermal property of the composites prepared by a vacuum pressure infiltration method were investigated. When introducing a 500 nm thick Mo2C layer, the thermal conductivity of the composites with different matrix presented different performance. A high thermal conductivity (657 W m-1 K-1) was obtained in diamond/Cu composites owing to the improved interfacial bonding and lower interfacial thermal resistance, while the thermal conductivity of diamond/Al composites decreased from 553 W m-1 K-1 to 218 W m-1 K-1 when introducing the Mo2C layer, which can be attributed to the formation of harmful granule-phase (Al12Mo) at the interface of diamond and aluminum. This work provides a promising approach to improve performance of diamond reinforced metal matrix composites by selecting carbide as an interface modifier.

  15. Colloidal synthesis of biocompatible iron disulphide nanocrystals.

    PubMed

    Santos-Cruz, J; Nuñez-Anita, R E; Mayén-Hernández, S A; Martínez-Alvarez, O; Acosta-Torres, L S; de la Fuente-Hernández, J; Campos-González, E; Vega-González, M; Arenas-Arrocena, M C

    2017-08-06

    The aim of this research was to synthesis biocompatible iron disulphide nanocrystals at different reaction temperatures using the colloidal synthesis methodology. Synthesis was conducted at the 220-240 °C range of reaction temperatures at intervals of 5 °C in an inert argon atmosphere. The toxicity of iron disulphide nanocrystals was evaluated in vitro using mouse fibroblast cell line. Two complementary assays were conducted: the first to evaluate cell viability of the fibroblast via an MTT assay and the second to determine the preservation of fibroblast nuclei integrity through DAPI staining, which labels nuclear DNA in fluorescence microscopes. Through TEM and HRTEM, we observed a cubic morphology of pyrite iron disulphide nanocrystals ranging in sizes 25-50 nm (225 °C), 50-70 nm (230 °C) and >70 nm (235 °C). Through X-ray diffraction, we observed a mixture of pyrite and pyrrohotite in the samples synthesized at 225 °C and 240 °C, showing the best photocatalytic activity at 80% and 65%, respectively, for the degradation of methylene blue after 120 minutes. In all experimental groups, iron disulphide nanocrystals were biocompatible, i.e. no statistically significant differences were observed between experimental groups as shown in a one-way ANOVA and Tukey's test. Based on all of these results, we recommend non-cytotoxic semiconductor iron sulphide nanocrystals for biomedical applications.

  16. Growth of platinum nanocrystals

    SciTech Connect

    2009-01-01

    Movie showing the growth of platinum nanocrystals in a liquid cell observed in situ using the JEOL 3010 TEM at the National Center for Electron Microscopy. This is the first ever-real time movie showing nucleation and growth by monomer attachment or by smaller nanocrystals coalescing to form larger nanocrystals. All the nanocrystals end up being roughly the same shape and size. http://newscenter.lbl.gov/feature-stories/2009/08/04/growth-spurts/

  17. Synthesis of stishovite nanocrystals from periodic mesoporous silica.

    PubMed

    Mohanty, Paritosh; Li, Dong; Liu, Tianbo; Fei, Yingwei; Landskron, Kai

    2009-03-04

    Faceted stishovite nanocrystals with sizes of 200-400 nm were synthesized at a pressure of 12 GPa and a temperature of 400 degrees C in a multianvil apparatus using mesoporous silica SBA-16 as the precursor.

  18. Optical properties of cadmium sulfide nanocrystals obtained by the sol-gel method in gelatin

    NASA Astrophysics Data System (ADS)

    Skobeeva, V. M.; Smyntyna, V. A.; Sviridova, O. I.; Struts, D. A.; Tyurin, A. V.

    2008-07-01

    Based on analysis of optical absorption data for CdS nanocrystals obtained by sol-gel technology in gelatin, we have studied the effect of technological factors (reagent concentrations, gelatin concentration) on the growth process and size distribution of the synthesized nanocrystals. Depending on the reagent concentration, we synthesized CdS nanocrystals with mean radii in the range bar r = 1.9 - 2.4 nm . We have shown that for a low gelatin content (1%), nanocrystals of different sizes are formed (1.7 nm and 2.6 nm). With an increase in the gelatin concentration, the size dispersion decreases and nanocrystals of a single mean radius (2.3 nm) are formed. We have established a correlation between the size dispersion and the shape of the photoluminescence spectrum of the CdS nanocrystals.

  19. Characteristics of Impact Diamonds

    NASA Astrophysics Data System (ADS)

    Skala, R.; Bouska, V. J.

    1992-07-01

    Having studied two Czech diamonds in UV light (lambda=366 nm) they appeared to be an extraordinary dirty orange color [1], the same as in the case of Popigai and ureilites impact diamonds (ID) [2]. SEM images show evidence of a thatch-like surface that is very similar to that of the Abee chondrite [3]. Commonly, the ID contain microscopic black plates which are formed by graphite or a carbon matter with indefinite structure, and they are always associated with hexagonal moissanite [2,4]. One unexplained fact is connected with a fabric of the ID aggregates, i.e. both Czech diamonds are single crystals, otherwise other ID form polycrystalline strongly textured aggregates. [1] Bouska V.J. and Skala R.M. (1992) Abstracts for International Conference on Large Meteorite Impacts and Planetary Evolution, in press. [2] Masaitis V.L., Shafranovskii G.I., Ezerskii V.A., and Reshetnyak N.B. (1990) Meteoritica 49, 180-196. [3] Russell S.S. and Pillinger C.T. (1991) Abstracts 54th Ann. Meet. Meteor. Soc. 200. [4] Bauer J., Fiala J., and Hrichova R. (1963) Amer. Mineral. 48, 620-634.

  20. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  1. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  2. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple

  3. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple

  4. Diamond Tours

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 24, a group traveling with Diamond Tours visited StenniSphere, the visitor center at NASA John C. Stennis Space Center in South Mississippi. The trip marked Diamond Tours' return to StenniSphere since Hurricane Katrina struck the Gulf Coast on Aug. 29, 2005. About 25 business professionals from Georgia enjoyed the day's tour of America's largest rocket engine test complex, along with the many displays and exhibits at the museum. Before Hurricane Katrina, the nationwide company brought more than 1,000 visitors to StenniSphere each month. That contributed to more than 100,000 visitors from around the world touring the space center each year. In past years StenniSphere's visitor relations specialists booked Diamond Tours two or three times a week, averaging 40 to 50 people per visit. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars. For more information or to book a tour, visit http://www.nasa.gov/centers/stennis/home/index.html and click on the StenniSphere logo; or call 800-237-1821 or 228-688-2370.

  5. Diamond Tours

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 24, a group traveling with Diamond Tours visited StenniSphere, the visitor center at NASA John C. Stennis Space Center in South Mississippi. The trip marked Diamond Tours' return to StenniSphere since Hurricane Katrina struck the Gulf Coast on Aug. 29, 2005. About 25 business professionals from Georgia enjoyed the day's tour of America's largest rocket engine test complex, along with the many displays and exhibits at the museum. Before Hurricane Katrina, the nationwide company brought more than 1,000 visitors to StenniSphere each month. That contributed to more than 100,000 visitors from around the world touring the space center each year. In past years StenniSphere's visitor relations specialists booked Diamond Tours two or three times a week, averaging 40 to 50 people per visit. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars. For more information or to book a tour, visit http://www.nasa.gov/centers/stennis/home/index.html and click on the StenniSphere logo; or call 800-237-1821 or 228-688-2370.

  6. Diamond Tours

    NASA Image and Video Library

    2007-04-27

    On April 24, a group traveling with Diamond Tours visited StenniSphere, the visitor center at NASA John C. Stennis Space Center in South Mississippi. The trip marked Diamond Tours' return to StenniSphere since Hurricane Katrina struck the Gulf Coast on Aug. 29, 2005. About 25 business professionals from Georgia enjoyed the day's tour of America's largest rocket engine test complex, along with the many displays and exhibits at the museum. Before Hurricane Katrina, the nationwide company brought more than 1,000 visitors to StenniSphere each month. That contributed to more than 100,000 visitors from around the world touring the space center each year. In past years StenniSphere's visitor relations specialists booked Diamond Tours two or three times a week, averaging 40 to 50 people per visit. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars. For more information or to book a tour, visit http://www.nasa.gov/centers/stennis/home/index.html and click on the StenniSphere logo; or call 800-237-1821 or 228-688-2370.

  7. Surface chemical modification of nanocrystals

    DOEpatents

    Helms, Brett Anthony; Milliron, Delia Jane; Rosen, Evelyn Louise; Buonsanti, Raffaella; Llordes, Anna

    2017-03-14

    Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.

  8. Thick-shell nanocrystal quantum dots

    SciTech Connect

    Hollingsworth, Jennifer A; Chen, Yongfen; Klimov, Victor I; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  9. Charge transport in semiconductor nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Mentzel, Tamar Shoshana

    In this thesis, we study charge transport in arrays of semiconductor nanocrystal quantum dots. Nanocrystals are synthesized in solution, and an organic ligand on the surface of the nanocrystal creates a potential barrier that confines charges in the nanocrystal. Optical absorption measurements reveal discrete electronic energy levels in the nanocrystals resulting from quantum confinement. When nanocrystals are deposited on a surface, they self-assemble into a close-packed array forming a nanocrystal solid. We report electrical transport measurements of a PbSe nanocrystal solid that serves as the channel of an inverted field-effect transistor. We measure the conductance as a function of temperature, source-drain bias and. gate voltage. The data indicates that holes are the majority carriers; the Fermi energy lies in impurity states in the bandgap of the nanocrystal; and charges hop between the highest occupied valence state in the nanocrystals (the 1S h states). At low source-drain voltages, the activation energy for hopping is given by the energy required to generate holes in the 1Sh state plus activation over barriers resulting from site disorder. The barriers from site disorder are eliminated with a sufficiently high source-drain bias. From the gate effect, we extract the Thomas-Fermi screening length and a density of states that is consistent with the estimated value. We consider variable-range hopping as an alternative model, and find no self-consistent evidence for it. Next, we employ charge sensing as an alternative to current measurements for studying transport in materials with localized sites. A narrow-channel MOSFET serves as a charge sensor because its conductance is sensitive to potential fluctuations in the nearby environment caused by the motion of charge. In particular, it is sensitive to the fluctuation of single electrons at the silicon-oxide interface within the MOSFET. We pattern a strip of amorphous germanium within 100 nm of the transistor. The

  10. Size control and quantum confinement in Cu2ZnSnS4 nanocrystals.

    PubMed

    Khare, Ankur; Wills, Andrew W; Ammerman, Lauren M; Norris, David J; Aydil, Eray S

    2011-11-14

    Starting with metal dithiocarbamate complexes, we synthesize colloidal Cu(2)ZnSnS(4) (CZTS) nanocrystals with diameters ranging from 2 to 7 nm. Structural and Raman scattering data confirm that CZTS is obtained rather than other possible material phases. The optical absorption spectra of nanocrystals with diameters less than 3 nm show a shift to higher energy due to quantum confinement.

  11. Research of fluorescent spectra of oleic acid-stabilized ZnSe nanocrystals based on UV light modification

    NASA Astrophysics Data System (ADS)

    Hao, Licai; Bai, Zhongchen; Huang, Zhaoliang; Liao, Sha; Zhang, Zhengping

    2016-11-01

    The non-aqueous synthesized and post-preparative treatment of oleic acid (OA)-stabilized ZnSe nanocrystals were studied systematically. ZnSe nanocrystals were successfully synthesized via paraffin liquid and oleic acid system by using OA as stabilizer. Synthesized nanocrystals were characterized by means of absorption and fluorescent spectra, Fourier transform infrared spectrometer, transmission electron microscopy and selected area electron diffraction. Furthermore, solutions of ZnSe nanocrystals were illuminated with UV light. The experimental results showed that the fluorescent peak was red-shifted from 445 to 510 nm. The results suggested that, when the solution under illumination, OA was removed from the surface of ZnSe nanocrystals and the surface of ZnSe nanocrystals was oxidized to ZnO nanocrystals. ZnSe/ZnO core/shell nanocrystals were formed when the solution of ZnSe nanocrystals illuminated with UV light.

  12. Diamond nucleation under bias conditions

    SciTech Connect

    Stoeckel, R.; Stammler, M.; Janischowsky, K.; Ley, L.; Albrecht, M.; Strunk, H.P.

    1998-01-01

    The so-called bias pretreatment allows the growth of heteroepitaxial diamond films by plasma chemical vapor deposition on silicon (100) surfaces. We present plan-view and cross-sectional transmission electron micrographs of the substrate surface at different phases of the bias pretreatment. These observations are augmented by measurements of the etch rates of Si, SiC, and different carbon modifications under plasma conditions and the size distribution of oriented diamond crystals grown after bias pretreatment. Based on these results a new model for diamond nucleation under bias conditions is proposed. First, a closed layer of nearly epitaxially oriented cubic SiC with a thickness of about 10 nm is formed. Subplantation of carbon into this SiC layer causes a supersaturation with carbon and results in the subcutaneous formation of epitaxially oriented nucleation centers in the SiC layer. Etching of the SiC during the bias pretreatment as well as during diamond growth brings these nucleation centers to the sample surface and causes the growth of diamonds epitaxially oriented on the Si/SiC substrate. {copyright} {ital 1998 American Institute of Physics.}

  13. Surface-Driven Magnetotransport in Perovskite Nanocrystals.

    PubMed

    Thi N'Goc, Ha Le; Mouafo, Louis Donald Notemgnou; Etrillard, Céline; Torres-Pardo, Almudena; Dayen, Jean-François; Rano, Simon; Rousse, Gwenaëlle; Laberty-Robert, Christel; Calbet, Jose Gonzales; Drillon, Marc; Sanchez, Clément; Doudin, Bernard; Portehault, David

    2017-03-01

    Unique insights into magnetotransport in 20 nm ligand-free La0.67 Sr0.33 MnO3 perovskite nanocrystals of nearly perfect crystalline quality reveal a chemically altered 0.8 nm thick surface layer that triggers exceptionally large magnetoresistance at low temperature, independently of the spin polarization of the ferromagnetic core. This discovery shows how the nanoscale impacts magnetotransport in a material widely spread as electrode in hybrid spintronic devices.

  14. Diamonds in an Archean greenstone belt: Diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada)

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Ryder, John

    2010-05-01

    population. Diamonds from the conglomerate have nitrogen contents below 400 ppm N, with 47% of the suite being Type IaA stones. Approximately one third of the conglomerate and breccia diamonds belongs to Type II having no measurable N. The two suites of Wawa diamonds, according to the morphology and nitrogen studies, are deemed to be different. The conglomerate diamonds are significantly less resorbed and contain less aggregated N. The diamonds that occur in the Wawa breccia and conglomerate have different primary volcanic sources. We suggest that the primary volcanic rock of the conglomerate diamonds may be a kimberlite, as kimberlitic indicator minerals are found in the matrix of the conglomerate. These indicator minerals garnet, Cr diopside and ilmenite are absent from the diamoniferous lamprophyric breccias. The hypothetical kimberlites may have occured in proximity to the conglomerates as suggested by low mechanical abrasion of the conglomerate diamonds and indicator minerals, and the preservation of garnet kelyphitic rims and Cr-diopside. Our study infers an episode of the Archean, pre-2.7 Ga kimberlite magmatism in MGB, which also experienced multiple emplacement episodes of the 2.7 Ga syn-orogenic diamondiferous calc-alkaline lamprophyres. Despite the distinct origins of the breccia and conglomerate diamonds, they all have similar red-orange-green cathodoluminescence colours controlled by the CL emission mainly at 520 nm. This contrasts with the prevalent CL emission at 415-440 nm commonly observed in kimberlitic and detrital diamonds. We ascribe the red-orange-green CL colours of the two diamond suites of Wawa to the late imprint of metamorphism.

  15. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  16. [Manufacture of diamond blades via microsystem technology].

    PubMed

    Spraul, Christoph W; Ertl, Stephan; Strobel, Stefan; Gretzschel, Ralph; Schirmer, Enrico; Rösch, Rudolf; Lingenfelder, Christian; Lang, Gerhard K

    2003-04-01

    The application of diamond knives has steadily increased in ophthalmic surgery. However, the geometry of the blade, its thickness and the sharpness of the cutting edge are limited by the abrasive diamond polishing process, e. g. the crystalline morphology of the bulk material and the grinding powder used. A new generation of diamond blades is presented herewith allowing free choice of blade shape and thickness and possessing excellent sharpness due to a new polishing process. The new production method is based on a high-quality CVD (chemical vapour deposition) diamond film of some tenths of microns thickness, deposited on a silicon wafer as microchip technology. The mechanical properties of this synthetic diamond film are almost equal to those of a natural diamond and the surface of this film is mirror-like after deposition without requiring post-polishing. The shape of the blade can be freely defined and is transferred into the diamond film by a plasma polishing process adopted from microsystem technology. The new production method results in highly reproducible diamond blades. Concave blades and round shapes can now be realised without the restrictions of the conventional production process. The force-free fabrication method even allows realisation of miniaturized blades (e. g. width < 0.125 mm, thickness < 50 microm) far beyond the possibilities of conventional diamond blade production. Plasma polishing by means of gas atoms results in extreme sharpness with the cutting edge radius in the range of approx. 3 nm. Utilising microsystem technology we were able to manufacture reproducible artificial diamond blades. The new process offers for the first time surgeons a possibility of designing blades with a geometry close to their personal needs. Furthermore, the potential of facet-free ergonomically shaped diamond blades may stimulate further improvements towards novel surgical techniques.

  17. Modified Raman confinement model for Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Faraci, Giuseppe; Gibilisco, Santo; Russo, Paola; Pennisi, Agata R.; La Rosa, Salvo

    2006-01-01

    A modified one-phonon confinement model is developed for the calculation of micro-Raman spectra in Si nanocrystals, permitting the simultaneous determination of the Raman frequency, intensity, and linewidth. Using a specific spatial correlation function and the Si phonon dispersion relations, the Raman spectra are calculated under the limitations imposed on the wave vector by the spatial confinement. Results are obtained as a function of the Si nanocrystal size in the range 1.2 100 nm . The frequency shift and line broadening of the Raman spectra are compared with experimental results reported in the literature.

  18. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  19. The Use of Cellulose Nanocrystals for Potential Application in Topical Delivery of Hydroquinone.

    PubMed

    Taheri, Azade; Mohammadi, Mina

    2015-07-01

    Nanotechnology-based drug delivery systems can enhance drug permeation through the skin and improve the drug stability. The biodegradability and biocompatibility of cellulose nanocrystals have made these nanoparticles good candidates to use in biomedical applications. The hyperpigmentation is a common skin disorder that could be caused by number of reasons such as sun exposure and pregnancy. Hydroquinone could inhibit the production of melanin and eliminate the discolorations of skin. This study is aimed at introducing cellulose nanocrystals as suitable carriers for drug delivery to skin. Prepared cellulose nanocrystals were characterized by dynamic light scattering and atomic force microscopy. The size of cellulose nanocrystals determined using dynamic light scattering was 301 ± 10 nm. Hydroquinone-cellulose nanocrystal complex was prepared by incubating of hydroquinone solution in cellulose nanocrystals suspension. The size of hydroquinone-cellulose nanocrystal complex determined using dynamic light scattering was 310 ± 10 nm. The hydroquinone content of the hydroquinone-cellulose complex was determined using UV/vis spectroscopy. Hydroquinone was bound to cellulose nanocrystals representing 79.3 ± 2% maximum binding efficiency when 1.1 mg hydroquinone was added to 1 mL of cellulose nanocrystals suspension (2 mg cellulose nanocrystal). The hydroquinone-cellulose nanocrystal complex showed an approximately sustained release profile of hydroquinone. Approximately, 80% of bound hydroquinone released in 4 h. © 2014 John Wiley & Sons A/S.

  20. Quantum Optics in Diamond Nanophotonic Chips

    DTIC Science & Technology

    2014-07-01

    Lu, Ophir Gaathon, Jr. Richard Osgood, and Dirk Englund. Reactive ion etching : optimized diamond thin- membrane fabrication for transmission electron...fabricated by first thinning 10-um thick diamond membranes (produced by mechanical polishing by Element 6) and then thinned using Cl and oxygen reactive ion... etching chemistries to ∼ 200 nm. We employ a one-dimensional ladder PhC cavity design for maximal emitter enhance- ment and increased collection

  1. UV Raman studies on CVD diamond: New information and development of in situ monitor for diamond growth

    SciTech Connect

    Asher, S.A.; Bormett, R.; Witkowski, R.; Pettit, F.; Worthington, J.

    1995-12-31

    We have for the first time excited the Raman spectrum of diamond and chemical vapor deposition (CVD) diamond films in the UV within the diamond bandgap at 228.9 nm. The lack of fluorescence in the UV excited Raman spectrum of diamond and CVD diamond films allows Raman spectroscopy for the first time to monitor the carbon-hydrogen (C-H) stretching vibrations of the non-diamond components of the CVD film as well as the third order phonon bands of diamond. The relative intensity of the C-H stretching bands at ca. 2930 cm{sup -1} to the diamond first order phone band at 1332 cm{sup -1} is proportional to the atomic fraction of covalently bound hydrogen in the CVD diamond film. The third order phonon band intensity and frequency maxima are very sensitive to the size of the diamond crystallite, its intensity decreases and the maximum shifts to lower frequency as the size of the diamond crystallite decreases. We show here that UV Raman diamond measurements have significantly greater information content than visible Raman measurements.

  2. Doped semiconductor nanocrystal based fluorescent cellular imaging probes

    NASA Astrophysics Data System (ADS)

    Maity, Amit Ranjan; Palmal, Sharbari; Basiruddin, Sk; Karan, Niladri Sekhar; Sarkar, Suresh; Pradhan, Narayan; Jana, Nikhil R.

    2013-05-01

    Doped semiconductor nanocrystals such as Mn doped ZnS, Mn doped ZnSe and Cu doped InZnS, are considered as new classes of fluorescent biological probes with low toxicity. Although the synthesis in high quality of such nanomaterials is now well established, transforming them into functional fluorescent probes remains a challenge. Here we report a fluorescent cellular imaging probe made of high quality doped semiconductor nanocrystals. We have identified two different coating approaches suitable for transforming the as synthesized hydrophobic doped semiconductor nanocrystals into water-soluble functional nanoparticles. Following these approaches we have synthesized TAT-peptide- and folate-functionalized nanoparticles of 10-80 nm hydrodynamic diameter and used them as a fluorescent cell label. The results shows that doped semiconductor nanocrystals can be an attractive alternative for conventional cadmium based quantum dots with low toxicity.Doped semiconductor nanocrystals such as Mn doped ZnS, Mn doped ZnSe and Cu doped InZnS, are considered as new classes of fluorescent biological probes with low toxicity. Although the synthesis in high quality of such nanomaterials is now well established, transforming them into functional fluorescent probes remains a challenge. Here we report a fluorescent cellular imaging probe made of high quality doped semiconductor nanocrystals. We have identified two different coating approaches suitable for transforming the as synthesized hydrophobic doped semiconductor nanocrystals into water-soluble functional nanoparticles. Following these approaches we have synthesized TAT-peptide- and folate-functionalized nanoparticles of 10-80 nm hydrodynamic diameter and used them as a fluorescent cell label. The results shows that doped semiconductor nanocrystals can be an attractive alternative for conventional cadmium based quantum dots with low toxicity. Electronic supplementary information available: Characterization details of coating and

  3. Germanium nanocrystals: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Gerung, Henry

    The aim of this work was to demonstrate a simple synthesis route of Ge nanostructures (nanoparticles and nanowires), to characterize the physical and optical properties of Ge nanocrystal, and to demonstrate their biological and optoelectronics applications. The appropriate organometallic Ge 2+ precursors for the synthesis of Ge nanocrystals were identified. These precursors were used to develop a simple route that produced high quality Ge nanocrystals in high yield under mild conditions without using potentially contaminating catalysts and forming byproducts. The particle size was varied from 1 to 10 nm, depending on the reaction parameters. The relatively low-temperature, low-pressure nanocrystal synthesis condition allowed the use of organic solvents and surfactants. We also demonstrated morphological control over Ge nanocrystals via Ge2+ precursor reactivity modification. During synthesis, the surfactants passivate the nanocrystal surface and minimize surface oxidation. This synthesis method allowed optical characterization of Ge nanocrystals decoupled from contamination and oxidation. When excited with photons, Ge nanoparticles exhibit quantum confinement effect in both infrared and ultraviolet regions, as well as optical nonlinearity by the presence of two-photon absorption. These free-standing Ge nanocrystals could be further become integral elements in various optoelectronic devices. Herein, the production of water-soluble Ge nanoparticles was demonstrated as a proof of the effectiveness of our synthesis method. Addition of secondary layer surfactants such as cationic cetyltrimethylammonium bromide (CTAB) or functionalized polyethylene glycol (PEG), transforms the Ge nanoparticles to become water-soluble. The biocompatible, functionalized, water-soluble Ge nanoparticles were bound to extracellular receptors and also incorporated into the cells as a proof-of-concept demonstration for potential biomarker applications. In expectation of forming a 3-D

  4. White-light emission from magic-sized cadmium selenide nanocrystals.

    PubMed

    Bowers, Michael J; McBride, James R; Rosenthal, Sandra J

    2005-11-09

    Magic-sized cadmium selenide (CdSe) nanocrystals have been pyrolytically synthesized. These ultra-small nanocrystals exhibit broadband emission (420-710 nm) that covers most of the visible spectrum while not suffering from self absorption. This behavior is a direct result of the extremely narrow size distribution and unusually large Stokes shift (40-50 nm). The intrinsic properties of these ultra-small nanocrystals make them an ideal material for applications in solid state lighting and also the perfect platform to study the molecule-to-nanocrystal transition.

  5. Self-Organized Ultrathin Oxide Nanocrystals

    SciTech Connect

    Huo, Ziyang; Tsung, Chia-kuang; Huang, Wenyu; Fardy, Melissa; Yan, Ruoxue; Li, Yadong; Yang, Piedong; Zhang, Xiaofeng

    2009-01-08

    Sub-2-nm (down to one-unit cell) uniform oxide nanocrystals and highly ordered superstructures were obtained in one step using oleylamine and oleic acid as capping and structure directing agents. The cooperative nature of the nanocrystal growth and assembly resulted in mesoscopic one-dimensional ribbon-like superstructures made of these ultrathin nanocrystals. The process reported here is general and can be readily extended to the production of many other transition metal (TiO2, ZnO, Nb2O5) and rare earth oxide (Eu2O3, Sm2O3, Er2O3, Y2O3, Tb2O3, and Yb2O3) systems.

  6. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating.

    PubMed

    Lee, Seung Soo; Song, Wensi; Cho, Minjung; Puppala, Hema L; Nguyen, Phuc; Zhu, Huiguang; Segatori, Laura; Colvin, Vicki L

    2013-11-26

    This work examines the effect of nanocrystal diameter and surface coating on the reactivity of cerium oxide nanocrystals with H2O2 both in chemical solutions and in cells. Monodisperse nanocrystals were formed in organic solvents from the decomposition of cerium precursors, and subsequently phase transferred into water using amphiphiles as nanoparticle coatings. Quantitative analysis of the antioxidant capacity of CeO2-x using gas chromatography and a luminol test revealed that 2 mol of H2O2 reacted with every mole of cerium(III), suggesting that the reaction proceeds via a Fenton-type mechanism. Smaller diameter nanocrystals containing more cerium(III) were found to be more reactive toward H2O2. Additionally, the presence of a surface coating did not preclude the reaction between the nanocrystal surface cerium(III) and hydrogen peroxide. Taken together, the most reactive nanoparticles were the smallest (e.g., 3.8 nm diameter) with the thinnest surface coating (e.g., oleic acid). Moreover, a benchmark test of their antioxidant capacity revealed these materials were 9 times more reactive than commercial antioxidants such as Trolox. A unique feature of these antioxidant nanocrystals is that they can be applied multiple times: over weeks, cerium(IV) rich particles slowly return to their starting cerium(III) content. In nearly all cases, the particles remain colloidally stable (e.g., nonaggregated) and could be applied multiple times as antioxidants. These chemical properties were also observed in cell culture, where the materials were able to reduce oxidative stress in human dermal fibroblasts exposed to H2O2 with efficiency comparable to their solution phase reactivity. These data suggest that organic coatings on cerium oxide nanocrystals do not limit the antioxidant behavior of the nanocrystals, and that their redox cycling behavior can be preserved even when stabilized.

  7. Twinning of cubic diamond explains reported nanodiamond polymorphs

    NASA Astrophysics Data System (ADS)

    Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.

    2015-12-01

    The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<11> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.

  8. Twinning of cubic diamond explains reported nanodiamond polymorphs

    PubMed Central

    Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.

    2015-01-01

    The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<11> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications. PMID:26671288

  9. Comparison of the synthesis of Ge nanocrystals in hafnium aluminum oxide and silicon oxide matrices.

    PubMed

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Fitzgerald, E A; Foo, Y L

    2009-02-01

    Growth of germanium (Ge) nanocrystals in silicon (Si) oxide and hafnium aluminum oxide (HfAlO) is examined. In Si oxide, nanocrystals were able to form at annealing temperatures of 800 degrees C to 1000 degrees C. Nanocrystals formed at 800 degrees C were round and approximately 8 nm in diameter, at 900 degrees C they become facetted and at 1000 degrees C they become spherical again. In HfAlO, at 800 degrees C nanocrystals formed are relatively smaller (approximately 3 nm in diameter) and lower in density. While at 900 degrees C and 1000 degrees C, nanocrystals did not form due to out-diffusion of Ge. Different nanocrystal formation characteristics in the matrices are attributed to differences in their crystallization temperatures.

  10. Biomineralization: Nanocrystals by design

    NASA Astrophysics Data System (ADS)

    Shang, Li; Nienhaus, Gerd Ulrich

    2015-10-01

    Nanocrystals with precisely defined structures offer promise as components of advanced materials yet they are challenging to create. Now, a nanocrystal made up of seven cadmium and twelve chloride ions has been synthesized via a biotemplating approach that uses a de novo designed protein.

  11. Diamond MEMS: wafer scale processing, devices, and technology insertion

    NASA Astrophysics Data System (ADS)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  12. Sol-gel derived precursors to Group 14 semiconductor nanocrystals - Convenient materials for enabling nanocrystal-based applications

    NASA Astrophysics Data System (ADS)

    Veinot, Jonathan G. C.; Henderson, Eric J.; Hessel, Colin M.

    2009-11-01

    Semiconductor nanocrystals are intriguing because of their electronic, optical, and chemical characteristics. Silicon nanocrystals (Si-NCs) of sub-5 nm dimension are of particular interest due to their intense photoluminescent response and the promise of linking silicon photonics and electronics. Other related nanomaterials of technological importance include SiC and Ge. The following contribution describes key experimental findings pertaining to synthetic methodology, investigation of nanodomain formation and growth, as determined by X-ray powder diffraction (XRD) and photoluminescence (PL) spectroscopy for a series of sol-gel derived prepolymers suitable for preparing Group 14 based nanocrystal containing composites.

  13. Microinclusions in polycrystalline diamonds: insights into processes of diamond formation

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wirth, R.; Enzmann, F.; Schwarz, J. O.; Kronz, A.

    2009-04-01

    Polycrystalline diamond aggregates (framesites) contain silicates of eclogitic and peridotitic affinity (e.g. Kurat and Dobosi, 2000). The minerals occur mostly in interstices and are intimately intergrown with the diamonds, indicating contemporaneous crystallization within the diamond stability field in the Earth's mantle. In addition to silicates, rarer phases such as Fe-carbide can sometimes be found in framesites that record unusually low local oxygen fugacity at the time of their formation (Jacob et al., 2004). Furthermore, while most gem-sized diamonds have old, often Archaean formation ages, some polycrystalline diamond aggregates have been shown to form directly preceding the kimberlite eruption (Jacob et al., 2000). Thus, these samples may provide a unique source of information on the nature and timing of small scale processes that lead to diamond formation and complement evidence from gem-sized diamonds. Here, we present a study of micro- and nano-inclusions in diamonds from a polycrystalline diamond aggregate (framesite) from the Orapa Mine (Botswana) and combine results from TEM/FIB analyses with high-resolution computerized micro-tomography (HR-µCT) and electron microprobe analyses to further constrain the formation of diamond in the Earth's mantle. Results In total, 14 microinclusions from fifteen FIB foils were investigated. Micro- and nano-inclusions identified by TEM were smaller than 1µm down to ca. 50nm in size, and are both monomineralic and multi-phase. The cavities are often lath-shaped and oriented parallel to each other; many show lattice dislocations in the surrounding diamond. In addition, inclusions are found along open cracks within the diamond single crystals. Mineral phases in the microinclusions comprise rutile, omphacite and a FeS phase (pyrrhotite). The multiphase inclusions most often consist of cavities that are only partly occupied (less than 50% of the total space), suggesting that the empty space was originally filled by a

  14. Diamond nanowire--a challenge from extremes.

    PubMed

    Hsu, Chih-Hsun; Xu, Jimmy

    2012-09-07

    Crystalline diamond nanowires have been grown in a chemical vapor deposition (CVD) process under 900 °C and atmospheric pressure--an extraordinary find in diamond growth. These diamond nanowires are straight, thin and long, and uniform in diameter (60-90 nm) over their entire lengths of tens of microns. Extensive characterizations including electron microscopy and Raman spectroscopy were performed to confirm that the diamond nanowire has highly crystalline cubic diamond structure encased inside a graphitic or carbonaceous shell. Such a core-shell structure suggests a potential formation mechanism in the framework of an effectively lowered Gibbs free energy due to nano-capillary and surface charge pressure. The capillary pressure (inversely proportional to the wire radius) can be sufficiently high to allow the diamond phase to be thermodynamically favorable in the inner core while the outer shell takes on the graphitic phase. The properties of diamond can manifest themselves differently in the nanowire morphology. Examples include single-photon emission of nitrogen-vacancy and electron field-emission. Whereas the former has received much attention in the literature, the latter turned out to be just as impressive and is show-cased here for the first time.

  15. Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning

    NASA Astrophysics Data System (ADS)

    Biswal, Bishnu P.; Shinde, Dhanraj B.; Pillai, Vijayamohanan K.; Banerjee, Rahul

    2013-10-01

    Luminescent graphene quantum dots (GQDs) are encapsulated and stabilized in Zeolitic Imidazolate Framework (ZIF-8) nanocrystals. The GQDs are well confined due to the adsorption on the growing face of the ZIF-8 nanocrystals and have a profound effect on the shape of the nanocrystals from rhombic dodecahedron to spherical. Stabilizing GQDs inside the ZIF-8 nanocrystals results in tailoring of the photoluminescence emission (ca. 32 nm, bathochromic shift) of the GQD@ZIF-8 nanocrystal composite even after 3 months of aging under normal laboratory conditions. Also the water adsorption (at STP) capacity increased for the GQD@ZIF-8 composite as compared to the pristine ZIF-8.Luminescent graphene quantum dots (GQDs) are encapsulated and stabilized in Zeolitic Imidazolate Framework (ZIF-8) nanocrystals. The GQDs are well confined due to the adsorption on the growing face of the ZIF-8 nanocrystals and have a profound effect on the shape of the nanocrystals from rhombic dodecahedron to spherical. Stabilizing GQDs inside the ZIF-8 nanocrystals results in tailoring of the photoluminescence emission (ca. 32 nm, bathochromic shift) of the GQD@ZIF-8 nanocrystal composite even after 3 months of aging under normal laboratory conditions. Also the water adsorption (at STP) capacity increased for the GQD@ZIF-8 composite as compared to the pristine ZIF-8. Electronic supplementary information (ESI) available: Experimental procedures and additional supporting data. See DOI: 10.1039/c3nr03511e

  16. Saturation of CVD Diamond Detectors

    SciTech Connect

    Lucile S. Dauffy; Richard A. Lerche; Greg J. Schmid; Jeffrey A. Koch; Christopher Silbernagel

    2005-01-01

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  17. Diamond Sheet: A new diamond tool material

    NASA Technical Reports Server (NTRS)

    Mackey, C. R.

    1982-01-01

    Diamond sheet is termed a diamond tool material because it is not a cutting tool, but rather a new material from which a variety of different tools may be fabricated. In appearance and properties, it resembles a sheet of copper alloy with diamond abrasive dispersed throughout it. It is capable of being cut, formed, and joined by conventional methods, and subsequently used for cutting as a metal bonded diamond tool. Diamond sheet is normally made with industrial diamond as the abrasive material. The metal matrix in diamond sheet is a medium hard copper alloy which has performed well in most applications. This alloy has the capability of being made harder or softer if specific cutting conditions require it. Other alloys have also been used including a precipitation hardened aluminum alloy with very free cutting characteristics. The material is suitable for use in a variety of cutting, surfacing, and ring type tools, as well as in such mundane items as files and sandpaper. It can also be used as a bearing surface (diamond to diamond) and in wear resistant surfaces.

  18. High average power diamond Raman laser.

    PubMed

    Feve, Jean-Philippe M; Shortoff, Kevin E; Bohn, Matthew J; Brasseur, Jason K

    2011-01-17

    We report a pulsed Raman laser at 1193 nm based on synthetic diamond crystals with a record output power of 24.5 W and a slope efficiency of 57%. We compared the performance of an anti-reflection coated crystal at normal incidence with a Brewster cut sample. Raman oscillation was achieved at both room temperature and under cryogenic operation at 77 K. Modeling of these experiments allowed us to confirm the value of Raman gain coefficient of diamond, which was found to be 13.5 ± 2.0 cm/GW for a pump wavelength of 1030 nm.

  19. Formation of noble metal nanocrystals in the presence of biomolecules

    NASA Astrophysics Data System (ADS)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  20. Size dependence of the pressure-induced gamma to alpha structuraltransition in iron oxide nanocrystals

    SciTech Connect

    Clark, S.M.; Prilliman, S.G.; Erdonmez, C.K.; Rockenberger, J.; Zaziski, D.J.; Kwong, J.; Alivisatos, A.P.

    2005-09-01

    The size trend for the pressure-induced gamma-Fe2O3(maghemite) to alpha-Fe2O3 (hematite) structural phase transition in nanocrystals has been observed. The transition pressure was found to increase with decreasing nanocrystal size: 7 nm nanocrystals transformed at 272GPa, 5 nm at 343GPa and 3 nm at 372GPa. Annealing of a bulk sample of gamma-Fe2O3 was found to reduce the transition pressure from 352 to242GPa. The bulk modulus was determined to be 2626GPa for 7 nm nanocrystals of gamma-Fe2O3, which is significantly higher than for the value of 1906 GPa that we measured for bulk samples. For alpha-Fe2O3, the bulk moduli for 7 nm nanocrystals (3365) and bulk (30030) were found to be almost the same within error. The bulk modulus for the gamma phase was found to decrease with decreasing particle size between 10 and 3.2 nm particle size. Values for the ambient pressure molar volume were found within 1 percent to be: 33.0 cm3/mol for bulk gamma-Fe2O3, 32.8 cm3/mol for 7 nm diameter gamma-Fe2O3 nanocrystals, 30.7 cm3/mol for bulk alpha-Fe2O3 and 30.6 cm3/mol for alpha-Fe2O3 nanocrystals.

  1. The nature and origin of interstellar diamond.

    PubMed

    Blake, D F; Freund, F; Krishnan, K F; Echer, C J; Shipp, R; Bunch, T E; Tielens, A G; Lipari, R J; Hetherington, C J; Chang, S

    1988-04-14

    Microscopic diamond was recently discovered in oxidized acid residues from several carbonaceous chondrite meteorites (for example, the C delta component of the Allende meteorite). Some of the reported properties of C delta seem in conflict with those expected of diamond. Here we present high spatial resolution analytical data which may help to explain such results. The C delta diamond is an extremely fine-grained (0.5-10 nm) single-phase material, but surface and interfacial carbon atoms, which may comprise as much as 25% of the total, impart an 'amorphous' character to some spectral data. These data support the proposed high-pressure conversion of amorphous carbon and graphite into diamonds due to grain-grain collisions in the interstellar medium although a low-pressure mechanism of formation cannot be ruled out.

  2. Diamond coated silicon field emitter array

    SciTech Connect

    S. Albin; W. Fu; A. Varghese; A. C. Lavarias; G. R. Myneni

    1999-07-01

    Diamond coated silicon tip arrays, with and without a self-aligned gate, were fabricated, and current-voltage characteristics of 400 tips were measured. Diamond films were grown uniformly on Si tips using microwave plasma after nucleation with 10 nm diamond suspension and substrate bias. An emission current of 57 ?A was obtained at 5 V from the ungated array tips separated from an anode at 2 ?m. In the case of the gated arrays with 1.5 ?m aperture, an emission current of 3.4 ?A was measured at a gate voltage of 80 V for an anode separation of 200 ?m. The turn-on voltages for these two types of devices were 0.2 and 40 V, respectively. Diamond coated Si tip arrays have potential applications in field emission based low voltage vacuum electronic devices and microsensors.

  3. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    PubMed

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  4. Diamond Field Emission Source using Transfer Mold Technique Prepared by Diamond Powder Seeding

    NASA Astrophysics Data System (ADS)

    Tezuka, Sachiaki; Matsuba, Yohei; Takahashi, Kohro

    Diamond thin films fabricated by MPCVD (microwave plasma chemical vapor deposition) are available for use as a field emitter material, because of its high mechanical quality, thermal conductivity, chemical stability, environmental tolerance, and NEA (negative electron affinity). Diode and triode emitter arrays using P-doped polycrystalline diamond were manufactured on a SiO2/Si(100) substrate with reverse pyramids formed by the transfer mold technique. As the diamond nucleation process, spin-coat seeding with pure diamond powder dispersed in isoamyl acetate has been introduced in place of the bias method. SEM (scanning electron microscopy) images and Raman spectroscopy indicate that the crystal quality of the diamond thin film fabricated by spin-coat seeding is superior to that fabricated by the bias method. The diamond crystal completely grew on top of the diode emitter by the US (ultrasonic) treatment in a diamond powder solution before spin-coat seeding. The tip radius was smaller than 50 nm. The beginning voltage of the emission of the diode emitter is 3 V after the DC glow discharge treatment in H2, which is lower than that of an emitter array fabricated by the bias method, 40 V. On the other hand, the emission of the diamond triode emitter starts at a gate voltage of only 0.5 V, and the emission current of 50∼60 mA is obtained at a gate voltage of 2 V.

  5. Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution

    SciTech Connect

    Dogan, Ilker; Kramer, Nicolaas J.; Westermann, Rene H. J.; Verheijen, Marcel A.; Dohnalova, Katerina; Gregorkiewicz, Tom; Smets, Arno H. M.; Sanden, Mauritius C. M. van de

    2013-04-07

    We demonstrate a method for synthesizing free standing silicon nanocrystals in an argon/silane gas mixture by using a remote expanding thermal plasma. Transmission electron microscopy and Raman spectroscopy measurements reveal that the distribution has a bimodal shape consisting of two distinct groups of small and large silicon nanocrystals with sizes in the range 2-10 nm and 50-120 nm, respectively. We also observe that both size distributions are lognormal which is linked with the growth time and transport of nanocrystals in the plasma. Average size control is achieved by tuning the silane flow injected into the vessel. Analyses on morphological features show that nanocrystals are monocrystalline and spherically shaped. These results imply that formation of silicon nanocrystals is based on nucleation, i.e., these large nanocrystals are not the result of coalescence of small nanocrystals. Photoluminescence measurements show that silicon nanocrystals exhibit a broad emission in the visible region peaked at 725 nm. Nanocrystals are produced with ultrahigh throughput of about 100 mg/min and have state of the art properties, such as controlled size distribution, easy handling, and room temperature visible photoluminescence.

  6. Radiation-Induced Nucleation of Diamond from Amorphous Carbon: Effect of Hydrogen.

    PubMed

    Sun, Yanqiu; Kvashnin, Alexander G; Sorokin, Pavel B; Yakobson, Boris I; Billups, W E

    2014-06-05

    Electron irradiation of anthracite functionalized by dodecyl groups leads to recrystallization of the carbon network into diamonds. The diamonds range in size from ∼2 to ∼10 nm and exhibit {111} spacing of 2.1 Å. A bulk process consistent with bias-enhanced nucleation is proposed in which the dodecyl group provides hydrogen during electron irradiation. Recrystallization into diamond occurs in the hydrogenated graphitic subsurface layers. Unfunctionalized anthracite could not be converted into diamond during electron irradiation. The dependence of the phase transition pressure on cluster size was estimated, and it was found that diamond particles with a radius up to 20 nm could be formed.

  7. Nanocrystal diffusion doping.

    PubMed

    Vlaskin, Vladimir A; Barrows, Charles J; Erickson, Christian S; Gamelin, Daniel R

    2013-09-25

    A diffusion-based synthesis of doped colloidal semiconductor nanocrystals is demonstrated. This approach involves thermodynamically controlled addition of both impurity cations and host anions to preformed seed nanocrystals under equilibrium conditions, rather than kinetically controlled doping during growth. This chemistry allows thermodynamic crystal compositions to be prepared without sacrificing other kinetically trapped properties such as shape, size, or crystallographic phase. This doping chemistry thus shares some similarities with cation-exchange reactions, but proceeds without the loss of host cations and excels at the introduction of relatively unreactive impurity ions that have not been previously accessible using cation exchange. Specifically, we demonstrate the preparation of Cd(1-x)Mn(x)Se (0 ≤ x ≤ ∼0.2) nanocrystals with narrow size distribution, unprecedentedly high Mn(2+) content, and very large magneto-optical effects by diffusion of Mn(2+) into seed CdSe nanocrystals grown by hot injection. Controlling the solution and lattice chemical potentials of Cd(2+) and Mn(2+) allows Mn(2+) diffusion into the internal volumes of the CdSe nanocrystals with negligible Ostwald ripening, while retaining the crystallographic phase (wurtzite or zinc blende), shape anisotropy, and ensemble size uniformity of the seed nanocrystals. Experimental results for diffusion doping of other nanocrystals with other cations are also presented that indicate this method may be generalized, providing access to a variety of new doped semiconductor nanostructures not previously attainable by kinetic routes or cation exchange.

  8. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  9. Preparation and characterization of ZnS:Fe/MX (M = Cd, Zn; X = S, Se) core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Xie, Ruishi; Gu, Yongjun; Huang, Jinliang; Zhu, Jianguo

    2012-06-01

    ZnS:Fe/MX (M = Cd, Zn; X = S, Se) nanocrystals were synthesized by chemical precipitation method. Compared to ZnS:Fe nanocrystals, the diffraction peaks intensity of ZnS:Fe/ZnS nanocrystals reduced and the diffraction peaks of ZnS:Fe/ZnSe nanocrystals moved to lower angles. TEM photos show that ZnS:Fe and ZnS:Fe/ZnSe nanocrystals are spheroidal and the average particles size is about 2-4 nm. The selected-area electron diffraction pattern of ZnS:Fe/ZnSe nanocrystals shows the diffraction rings, indicating the ZnS:Fe/ZnSe nanocrystals have a polycrystalline structure. XPS shows that the divalent and trivalent of Fe ion are coexisted in ZnS:Fe nanocrystals. The emission peaks of ZnS:Fe nanocrystals were from S and Zn ions vacancy defects and surface defects for the range of 200-900 nm. The use of ZnS (CdS, ZnSe) as surface modifying reagent inhibited the luminescent intensity of ZnS:Fe nanocrystallines at 420 nm. The PL spectra of ZnS:Fe/CdS nanocrystals show a new peak at 554 nm.

  10. Investigating the role of hydrogen in ultra-nanocrystalline diamond thin film growth

    NASA Astrophysics Data System (ADS)

    Birrell, James; Gerbi, J. E.; Auciello, O. A.; Carlisle, J. A.

    2006-08-01

    Hydrogen has long been known to be critical for the growth of high-quality microcrystalline diamond thin films as well as homoepitaxial single-crystal diamond. A hydrogen-poor growth process that results in ultra-nanocrystalline diamond thin films has also been developed, and it has been theorized that diamond growth with this gas chemistry can occur in the absence of hydrogen. This study investigates the role of hydrogen in the growth of ultra-nanocrystalline diamond thin films in two different regimes. First, we add hydrogen to the gas phase during growth, and observe that there seems to be a competitive growth process occurring between microcrystalline diamond and ultra-nanocrystalline diamond, rather than a simple increase in the grain size of ultra-nanocrystalline diamond. Second, we remove hydrogen from the plasma by changing the hydrocarbon precursor from methane to acetylene and observe that there does seem to be some sort of lower limit to the amount of hydrogen that can sustain ultra-nanocrystalline diamond growth. We speculate that this is due to the amount of hydrogen needed to stabilize the surface of the growing diamond nanocrystals.

  11. Solution based synthesis of simple fcc Si nano-crystals under ambient conditions.

    PubMed

    Balcı, Mustafa H; Sæterli, Ragnhild; Maria, Jerome; Lindgren, Mikael; Holmestad, Randi; Grande, Tor; Einarsrud, Mari-Ann

    2013-02-28

    We demonstrate for the first time that simple face-centered cubic (fcc) silicon nano-crystals can be produced by a solution based bottom-up synthesis route under ambient conditions. Simple fcc Si nano-crystals (2-7 nm) were prepared at room temperature by using sodium cyclopentadienide as a reducing agent for silicon tetrachloride. Photoluminescence emission at 550 nm was observed for the fcc silicon nano-crystals upon excitation at 340 nm, indicating that fcc Si nano-crystals were exhibiting direct bandgap like semiconductor properties with very fast radiative recombination rates. The new synthesis route makes possible the production and study of simple fcc polymorphs of Si nano-crystals with an easy alteration of surface termination groups.

  12. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg [East Lansing, MI; Fischer, Anne [Arlington, VA; Bennett, Jason [Lansing, MI; Lowe, Michael [Holt, MI

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  13. Fabrication of monolithic diamond probes for scanning probe microscopy applications

    NASA Astrophysics Data System (ADS)

    Scholz, Wenzel; Albert, D.; Malave, A.; Werner, Stephfan; Mihalcea, Christopher; Kulisch, Wilhelm; Oesterschulze, Egbert

    1997-04-01

    A process relying on the molding technique for the fabrication of diamond cantilevers with diamond tips integrated on silicon wafers for scanning probe microscopy applications is described. Either hot filament or microwave CVD diamond deposition and standard techniques of silicon micro-machining are employed. The deposition of well- developed tips depends critically on the pretreatment applied to enhance nucleation density; abrasive treatment with diamond powder as well as the bias-enhanced nucleation turned out to be successful. With optimized processes, well- shaped tips with a radius of curvature in the order of 30 nm can be obtained. They consist of high quality diamond according to micro-Raman spectroscopy. The definition of the cantilever area is another critical step which can be solved by proper process design. The fabrication of conductive tips/cantilevers is possible by boron doping. Finally, first performance tests of the diamond tips and cantilevers are presented.

  14. Diamond Nucleation from Amorphous Carbon and Graphite with COH Fluids: an in Situ High Pressure and Temperature Laser-Heated Diamond Anvil Cell Experimental Study

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Prakapenka, V.; Kubo, A.; Kavner, A.; Green, H. W.; Dobrzhinetskaya, L. F.

    2007-12-01

    Microdiamonds from orogenic belts contain nanometer size fluid inclusions suggesting diamond formation from supercritical COH fluids. Previous studies have shown that diamonds synthesized from high pressure and temperature experiments with supercritical COH fluids are characterized by skeletal morphology and solid oxide inclusions. However, mechanism and kinetics of graphite/carbon-to-diamond transformation promoted by COH fluids at high pressure and high temperature conditions are not well understood. Here we report in situ observations of diamond nucleation from COH fluids in laser-heated diamond anvil cell. Our experimental starting materials were amorphous carbon (impurity < 2ppm) and graphite (99.9% pure). Oxalic acid dihydrate (COOH)2·2H2O) was added to amorphous carbon and glucose (C6H12O6) was added to both amorphous carbon and graphite. The organic compounds (3 wt.%) provide CO2- and CH4-rich fluid environments respectively during their breakdown at high pressure and temperature. The mixtures were kept at temperature of 1400-1700 °C and pressure of 8-10 GPa for 10-30 minutes. Experiments show that only nanocrystals of diamond were nucleated from amorphous carbon in CO2-rich fluid environment. The fastest rate of diamond nucleation and growth of ~15 micron size crystals was found in the mixture of amorphous carbon with glucose (CH4-rich environment), whereas only nanocrystalline nuclei were produced in the mixture of graphite with glucose. We have also established that under anhydrous conditions, no diamond nucleation occurred in pure graphite, and only nanocrystals of diamond were observed in the amorphous carbon starting material at temperatures 1700-1900 °C. Our results revealed that the kinetics of diamond nucleation depend on the ¡°precursor¡±: diamond nucleates and grows faster from amorphous carbon than from graphite in the presence of COH fluid; in our anhydrous experiments diamond nucleates only from amorphous carbon. These results

  15. Preferentially grown ultranano c-diamond and n-diamond grains on silicon nanoneedles from energetic species with enhanced field-emission properties.

    PubMed

    Thomas, Joseph P; Chen, Huang-Chin; Tseng, Shih-Hao; Wu, Hung-Chi; Lee, Chi-Young; Cheng, Hsiu Fung; Tai, Nyan-Hwa; Lin, I-Nan

    2012-10-24

    The design and fabrication of well-defined nanostructures have great importance in nanoelectronics. Here we report the precise growth of sub-2 nm (c-diamond) and above 5 nm (n-diamond) size diamond grains from energetic species (chemical vapor deposition process) at low growth temperature of about 460 °C. We demonstrate that a pre-nucleation induced interface can be accounted for the growth of c-diamond or n-diamond grains on Si-nanoneedles (Si-NN). These preferentially grown allotropic forms of diamond on Si-NN have shown high electron field-emission properties and signify their high potential towards diamond-based electronic applications.

  16. Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals

    DOEpatents

    Cohen, Bruce E.; Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Schuck, P. James; Milliron, Delia J.

    2017-01-31

    Certain nanocrystals possess exceptional optical properties that may make them valuable probes for biological imaging, but rendering these nanoparticles biocompatible requires that they be small enough not to perturb cellular systems. This invention describes a phosphorescent upconverting sub-10 nm nanoparticle comprising a lanthanide-doped hexagonal .beta.-phase NaYF.sub.4 nanocrystal and methods for making the same.

  17. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  18. Optical properties of femtosecond laser-treated diamond

    NASA Astrophysics Data System (ADS)

    Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Lettino, A.; Trucchi, D. M.

    2014-10-01

    A laser-induced periodic surface structure (LIPSS) has been fabricated on polycrystalline diamond by an ultrashort Ti:Sapphire pulsed laser source ( λ = 800 nm, P = 3 mJ, 100 fs) in a high vacuum chamber (<10-7 mbar) in order to increase diamond absorption in the visible and infrared wavelength ranges. A horizontally polarized laser beam had been focussed perpendicularly to the diamond surface and diamond target had been moved by an automated X- Y translational stage along the two directions orthogonal to the optical axis. Scanning electron microscopy of samples reveals an LIPSS with a ripple period of about 170 nm, shorter than the laser wavelength. Raman spectra of processed sample do not point out any evident sp 2 content, and diamond peak presents a right shift, indicating a compressive stress. The investigation of optical properties of fs-laser surface textured diamond is reported. Spectral photometry in the range 200/2,000 nm wavelength shows a significant increase of visible and infrared absorption (more than 80 %) compared to untreated specimens (less than 40 %). The analysis of optical characterization data highlights a close relationship between fabricated LIPSS and absorption properties, confirming the optical effectiveness of such a treatment as a light-trapping structure for diamond: these properties, reported for the first time, open the path for new applications of CVD diamond.

  19. Cathodoluminescence of diamond as an indicator of its metamorphic history

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Longo, Micaela; Ryder, John; Dobrzhinetskaya, Larissa

    2010-05-01

    Diamond displays a supreme resistance to chemical and mechanical weathering, ensuring its survival through complex and prolonged crustal processes, including metamorphism and exhumation. For these reasons, volcanic sources and secondary and tertiary collectors for detrital placer diamonds, like Ural or Bingara diamonds, may be difficult to determine. If metamorphic processes leave their marks on diamond, they can be used to reconstruct crustal geologic processes and ages of primary diamondiferous volcanics. Four diamond suites extracted from metamorphic rocks have been characterized using optical CL, infrared and CL spectroscopy, and photoluminescence at the liquid nitrogen temperature. The studied diamonds are from the ~2.7 Ga sedimentary conglomerate and lamprophyric breccia metamorphosed in the greenschist facies (Wawa, Northern Ontario, Canada) during the 2.67 Ga Kenoran orogeny, and from the ultra-high pressure (UHP) terranes of Kokchetav (Kazakhstan) and Erzgebirge (Germany) exhumated in the Paleozoic. Wawa diamonds (Type IaAB and Type II) displayed green, yellow, orange, and red CL colours controlled by the CL emittance at 520, 576 nm, and between 586 and 664 nm. The UHP terranes diamonds show much weaker CL; few luminescent stones display CL peaks at 395, 498, 528 nm and a broad band at 580-668 nm. In contrast, most common diamonds found in unmetamorphosed rocks, i.e. octahedrally grown Type IaAB stones, luminescence blue emitting light at ~415-440 nm and 480-490 nm. There is a noticeable difference between cathodoluminescence of these diamonds and diamonds in metamorphic rocks. The studied diamonds that experienced metamorphism show a shift of CL emission to longer wavelengths (above 520 nm) and to green, yellow and red CL colours. Photoluminescence has the high resolution necessary to assign luminescence to specific optical centers of diamond. Diamonds in metamorphic rocks contain H3 (pairs of substitutional nitrogen atoms separated by a vacancy) and NVo

  20. Polishing of polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Harker, Alan B.; Flintoff, John F.; DeNatale, Jeffrey F.

    1990-12-01

    Optically smooth surfaces can be produced on initially rough polycrystalline diamond film through the combined use of reactive ion etching and high temperature lapping on Fe metai Protective thin film barriers are first applied to the diamond surface to restrict the reactiv oxygen or hydrogen ion etching process to regions of greatest roughness. When the overaJ surface roughness has been reduced sufficiently by etching mechanical lapping of the surfac on an Fe plate at temperatures of 730C-900C in the presence of hydrogen can be used t produce surface roughnesses of less than 10 nm as measured by profilimetry. The tw techniques are complementary for flat surfaces while the reactive etching process alone can b used with shaped substrates to produce a surface finish suitable for LWIR optical applications. 1.

  1. Diamond heteroepitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Tang, Yung-Hsiu

    This dissertation describes improvements in the growth of single crystal diamond by microwave plasma-assisted chemical vapor deposition (CVD). Heteroepitaxial (001) diamond was grown on 1 cm. 2 a-plane sapphiresubstrates using an epitaxial (001) Ir thin-film as a buffer layer. Low-energy ion bombardment of the Ir layer, a process known as bias-enhanced nucleation, is a key step in achieving a high density of diamond nuclei. Bias conditions were optimized to form uniformly-high nucleation densities across the substrates, which led to well-coalesced diamond thin films after short growth times. Epitaxial lateral overgrowth (ELO) was used as a means of decreasing diamond internal stress by impeding the propagation of threading dislocations into the growing material. Its use in diamond growth requires adaptation to the aggressive chemical and thermal environment of the hydrogen plasma in a CVD reactor. Three ELO variants were developed. The most successful utilized a gold (Au) mask prepared by vacuum evaporation onto the surface of a thin heteroepitaxial diamond layer. The Au mask pattern, a series of parallel stripes on the micrometer scale, was produced by standard lift-off photolithography. When diamond overgrows the mask, dislocations are largely confined to the substrate. Differing degrees of confinement were studied by varying the stripe geometry and orientation. Significant improvement in diamond quality was found in the overgrown regions, as evidenced by reduction of the Raman scattering linewidth. The Au layer was found to remain intact during diamond overgrowth and did not chemically bond with the diamond surface. Besides impeding the propagation of threading dislocations, it was discovered that the thermally-induced stress in the CVD diamond was significantly reduced as a result of the ductile Au layer. Cracking and delamination of the diamond from the substrate was mostly eliminated. When diamond was grown to thicknesses above 0.1 mm it was found that

  2. Diamond bio electronics.

    PubMed

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  3. Nanostructured diamond layers enhance the infrared spectroscopy of biomolecules.

    PubMed

    Kozak, Halyna; Babchenko, Oleg; Artemenko, Anna; Ukraintsev, Egor; Remes, Zdenek; Rezek, Bohuslav; Kromka, Alexander

    2014-03-04

    We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.

  4. Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Moore, Samuel L.; Velisavljevic, Nenad; Tsoi, Georgiy M.; Baker, Paul A.; Vohra, Yogesh K.

    2016-09-01

    By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μ m in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. These CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvil cell.

  5. Diamond heteroepitaxial lateral overgrowth

    SciTech Connect

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  6. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  7. Diamond heteroepitaxial lateral overgrowth

    DOE PAGES

    Tang, Y. -H.; Bi, B.; Golding, B.

    2015-02-24

    A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.

  8. Diamond Synthesis Employing Nanoparticle Seeds

    NASA Technical Reports Server (NTRS)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  9. [A study of preparation and infrared absorbency of La2O3 nanocrystals].

    PubMed

    Wang, Chun-Xiu; Li, Fu-Li

    2006-05-01

    Nanocrystals were prepared by stearic acid gel method. The structure and morphology of nanocrystals were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM) and infrared spectra. Experimental results show that the absorption peaks of La2O3 extendwith their blue shift or red shift. The absorption of La2O3 nanocrystals is good in the wavelength range of 1 000 to 1 700 nm, where La2O3 nanocrystals may serve as a kind of absorbent of laser camouflage material.

  10. Dependence of the stimulated luminescence threshold in ZnO nanocrystals on their geometric shape

    SciTech Connect

    Gruzintsev, A. N. Redkin, A. N.; Barthou, C.

    2010-05-15

    The effect of the shape and dimensions of zinc oxide nanocrystals on the spontaneous luminescence decay times and the thresholds of stimulated luminescence in the ultraviolet spectral region is studied. It is shown that the columnar nanocrystals with hexagonal faceting exhibit the lowest threshold power of optical excitation for the diameters of the nanocavities are 100-200 nm, comparable to the absorption length for the excitation light. Different mechanisms of lasing are established for nanocrystals shaped as prisms and pyramids with a hexagonal base. Variations in the decay times and lasing thresholds can be attributed to different local densities of photon states in regularly shaped nanocrystals.

  11. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  12. Nanocrystals for electronics.

    PubMed

    Panthani, Matthew G; Korgel, Brian A

    2012-01-01

    Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.

  13. Radiative decay rates of impurity states in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-01

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  14. Controlled crystalline structure and surface stability of cobalt nanocrystals.

    PubMed

    Bao, Yuping; Beerman, Michael; Pakhomov, Alexandre B; Krishnan, Kannan M

    2005-04-21

    The synthesis of monodispersed 10 nm cobalt nanocrystals with controlled crystal morphology and investigation of the surface stability of these nanocrystals are described. Depending on the surfactants used, single crystalline or multiple grain nanocrystals can be reproducibly produced. The relative surface stability of these nanocrystals is analyzed using the temperature dependences of the dc magnetic susceptibility. The novel method, which allows sensitive monitoring of the surface stability, is based on the observation that, with particle oxidation, an anomalous peak appears at 8 K in zero-field-cooled magnetization measurements. It is found that the surfactant protective layer is more important for long-term stability at room temperature, while the high-temperature oxidation rate is controlled by the crystal morphology of the nanoparticles.

  15. Radiative decay rates of impurity states in semiconductor nanocrystals

    SciTech Connect

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  16. Doped semiconductor nanocrystal based fluorescent cellular imaging probes.

    PubMed

    Maity, Amit Ranjan; Palmal, Sharbari; Basiruddin, S K; Karan, Niladri Sekhar; Sarkar, Suresh; Pradhan, Narayan; Jana, Nikhil R

    2013-06-21

    Doped semiconductor nanocrystals such as Mn doped ZnS, Mn doped ZnSe and Cu doped InZnS, are considered as new classes of fluorescent biological probes with low toxicity. Although the synthesis in high quality of such nanomaterials is now well established, transforming them into functional fluorescent probes remains a challenge. Here we report a fluorescent cellular imaging probe made of high quality doped semiconductor nanocrystals. We have identified two different coating approaches suitable for transforming the as synthesized hydrophobic doped semiconductor nanocrystals into water-soluble functional nanoparticles. Following these approaches we have synthesized TAT-peptide- and folate-functionalized nanoparticles of 10-80 nm hydrodynamic diameter and used them as a fluorescent cell label. The results shows that doped semiconductor nanocrystals can be an attractive alternative for conventional cadmium based quantum dots with low toxicity.

  17. The Nature of Diamonds

    NASA Astrophysics Data System (ADS)

    Harlow, George E.

    1997-10-01

    The paragon of physical perfection and a sparkling example of Earth's forces at work, the diamond has fascinated all realms of society, from starlets to scientists. The Nature of Diamonds is a comprehensive look at nature's most coveted gem. A handsome, large-format book, The Nature of Diamonds is an authoritative and richly-illustrated tribute to the diamond. Leading geologists, gemologists, physicists, and cultural observers cover every facet of the stone, from its formation in the depths of the Earth, its ascent to the surface, and its economic, regal, social, and technological roles. Cutting-edge research takes the reader to the frontiers of diamond exploration and exploitation, from the Arctic wastes to the laboratories where diamonds are created for massive road shredders that rip up and then re-create superhighways. Here also is an overview of cutting, from the rough stones in Roman rings to the highly-faceted stones we see today, and a glimpse into the business of diamonds. Finally, The Nature of Diamonds chronicles scientific and cultural history and explores the diamond as both a sacred and a social symbol, including a picture history of betrothal rings. Wide-ranging illustrations explain the geology of diamonds, chart the history of mining from its origins in India and Brazil through the diamond rush in South Africa and today's high-tech enterprises, and capture the brilliance and beauty of this extraordinary gem. _

  18. Thermally stable diamond brazing

    DOEpatents

    Radtke, Robert P.

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  19. n-type conductivity in high-fluence Si-implanted diamond

    NASA Astrophysics Data System (ADS)

    Weishart, H.; Heera, V.; Skorupa, W.

    2005-05-01

    Epitaxial SiC nanocrystals are fabricated by high-fluence Si implantation into natural diamond at elevated temperatures between 760 and 1100 °C. Fluences under investigation range from 4.5 to 6.2×1017Sicm-2. This implantation scheme yields a buried layer rich of epitaxially aligned SiC nanocrystals within slightly damaged diamond. The generation of a small fraction of graphitic sp2 bonds of up to 15% in the diamond host matrix cannot be avoided. Unintentional coimplantation with nitrogen results in a very high doping level of more than 1021cm-3. Resistivity and Hall measurements in van der Pauw geometry reveal a high, thermally stable n-type conductivity with electron concentrations exceeding 1020cm-3 and mobilities higher than 2cm2/Vs. It is supposed that both the SiC regions as well as the diamond matrix exhibit n-type conductivity and that the electron transport occurs across the low-resistivity SiC nanograins. In the SiC nanocrystals the electrons originate from nitrogen donors whereas in diamond defects are responsible for the electron conductivity. The formation of disordered graphite, which leads to low electron mobility, is substantially reduced by the SiC formation.

  20. Multiexciton fluorescence from semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Fisher, Brent; Caruge, Jean-Michel; Chan, Yin-Thai; Halpert, Jonathan; Bawendi, Moungi G.

    2005-11-01

    We use transient photoluminescence to spectrally resolve the emission from 1, 2, and 3 electron-hole pairs states in CdSe colloidal nanocrystals with radii ranging between 2.3 and 5.2 nm. Temporally and spectrally resolved multiexciton emission from single NCs is also observed. The observation of multiexciton emission enables new experiments and potential applications at both the single NC level and using ensembles of NCs. First we discuss the use of single CdSe(CdZnS) core(shell) colloidal NCs (spheres and rods) to generate triggered photon pair emission at room temperature, with specific ordering of the pair's constituent photons. Second, we incorporate CdSe/ZnS core-shell nanocrystals into a TiO 2 host matrix and observe simultaneous two-state amplified spontaneous emission and lasing from both multiexcitonic transitions (1S 3/2-1S e and 1P 3/2-1P e) in a surface-emitting distributed feedback CdSe NC laser. From our data we deduce radiative lifetimes, quantum yields, stimulated emission gain, and power dependencies for the multiexciton transitions.

  1. Organization of 'nanocrystal molecules' using DNA

    NASA Astrophysics Data System (ADS)

    Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang; Wilson, Troy E.; Loweth, Colin J.; Bruchez, Marcel P.; Schultz, Peter G.

    1996-08-01

    PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2-4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1-10 nm in size6-10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.

  2. Diamond stabilization of ice multilayers at human body temperature.

    PubMed

    Wissner-Gross, Alexander D; Kaxiras, Efthimios

    2007-08-01

    Diamond is a promising material for wear-resistant medical coatings. Here we report a remarkable increase in the melting point of ice resting on a diamond (111) surface modified with a submonolayer of Na+. Our molecular dynamics simulations show that the interfacial ice bilayer melts at a temperature 130 K higher than in free ice, and relatively thick ice films (2.6 nm at 298 K and 2.2 nm at 310 K ) are stabilized by dipole interactions with the substrate. This unique physical effect may enable biocompatibility-enhancing ice overcoatings for diamond at human body temperature.

  3. Super-stable ultrafine beta-tungsten nanocrystals with metastable phase and related magnetism.

    PubMed

    Xiao, J; Liu, P; Liang, Y; Li, H B; Yang, G W

    2013-02-07

    Ultrafine tungsten nanocrystals (average size of 3 nm) with a metastable phase (beta-tungsten with A15 structure, β-W) have been prepared by laser ablation of tungsten in liquid nitrogen. The as-prepared metastable nanocrystals exhibited super-stablity, and can keep the same metastable structure over a period of 6 months at room temperature. This super-stability is attributed to the nanosized confinement effect of ultrafine nanocrystals. The magnetism measurements showed that the β-W nanocrystals have weak ferromagnetic properties at 2 K, which may arise from surface defects and unpaired electrons on the surface of the ultrafine nanocrystals. These findings provided useful information for the application of ultrafine β-W nanocrystals in microelectronics and spintronics.

  4. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    SciTech Connect

    Salini, K.; Mathew, Vincent; Mathew, Thomas

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantly alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.

  5. Chains, Sheets and Droplets: Assemblies of Hydrophobic Gold Nanocrystals with Saturated Phosphatidylcholine Lipid and Squalene

    PubMed Central

    Rasch, Michael R.; Bosoy, Christian; Yu, Yixuan; Korgel, Brian A.

    2012-01-01

    Assemblies of saturated 1,2-diacyl-phosphatidylcholine lipid and hydrophobic dodecanethiol-capped 1.8 nm diameter gold nanocrystals were studied as a function of lipid chain length and the addition of the naturally-occurring oil, squalene. The gold nanocrystals formed various lipid-stabilized agglomerates, sometimes fusing with lipid vesicle bilayers. The nanocrystal assembly structure depended on the hydrocarbon chain length of the lipid fatty acids. Lipid with the shortest fatty acid length studied, dilauroyl-phosphatidylcholine, created extended chains of gold nanocrystals. Lipid with slightly longer fatty acid chains created planar sheets of nanocrystals. Further increases of the fatty acid chain length led to spherical agglomerates. The inclusion of squalene led to lipid- and nanocrystal-coated oil droplets. PMID:23033891

  6. Size-dependent structural transition from multiple-twinned particles to epitaxial fcc nanocrystals and nanocrystal decay

    SciTech Connect

    Sato, K.; Huang, W. J.; Bohra, F.; Sivaramakrishnan, S.; Tedjasaputra, A. P.; Zuo, J. M.

    2007-10-01

    The size dependence of structural transition from multiple-twinned particles (MTP) to epitaxial face centered cubic nanocrystals was investigated for Ag nanoparticles formed on Si(001) surfaces by in situ reflection high-energy electron diffraction and ex situ transmission electron microscopy. The transition from MTP to nanocrystals was promoted by postdeposition annealing. Clear particle size dependence is found in the epitaxial formation temperatures (T{sub E}), which is about 2/3 of the calculated, size-dependent, melting temperature (T{sub M}) using the value of surface energy {gamma}{sub S}=1.2 J/m{sup 2} for larger particles (>2 nm). Once nanocrystals are formed, they decay and disappear in a narrow temperature range between 795 and 850 K. No evidence of nanocrystal melting was detected from the reflection high-energy electron diffraction observations.

  7. Size-dependent structural transition from multiple-twinned particles to epitaxial fcc nanocrystals and nanocrystal decay

    NASA Astrophysics Data System (ADS)

    Sato, K.; Huang, W. J.; Bohra, F.; Sivaramakrishnan, S.; Tedjasaputra, A. P.; Zuo, J. M.

    2007-10-01

    The size dependence of structural transition from multiple-twinned particles (MTP) to epitaxial face centered cubic nanocrystals was investigated for Ag nanoparticles formed on Si(001) surfaces by in situ reflection high-energy electron diffraction and ex situ transmission electron microscopy. The transition from MTP to nanocrystals was promoted by postdeposition annealing. Clear particle size dependence is found in the epitaxial formation temperatures (TE) , which is about 2/3 of the calculated, size-dependent, melting temperature (TM) using the value of surface energy γS=1.2J/m2 for larger particles (>2nm) . Once nanocrystals are formed, they decay and disappear in a narrow temperature range between 795 and 850K . No evidence of nanocrystal melting was detected from the reflection high-energy electron diffraction observations.

  8. Frequency upconverted lasing of nanocrystal quantum dots in microbeads

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfeng; Zhang, Fan; Cheng, An; Kimball, Brian; Wang, Andrew Y.; Xu, Jian

    2009-11-01

    Stable, frequency upconverted lasing of semiconductor nanocrystal quantum dots was demonstrated in silica microbeads under two-photon pumping conditions. Upon infrared excitation, the stimulated emission of the nanocrystal-doped microbeads exhibits sharp peaks at λ ˜610 nm with narrow line widths of ≤1 nm. The lasing action has been attributed to the biexciton gain coupled to the whispering gallery modes in spherical cavities, as confirmed by time-resolved photoluminescence spectra. The lasing lifetime characterized in term of pulse numbers (˜106 pulses) was two orders of magnitude longer than that of the dye salt-based two-photon lasers.

  9. Effect of diamond nucleation process on propagation losses of AlN/diamond SAW filter.

    PubMed

    Elmazria, Omar; El Hakiki, Mohamed; Mortet, Vincent; Assouar, Badreddine M; Nesládek, Milos; Vanecek, Milan; Bergonzo, Philippe; Alnot, Patrick

    2004-12-01

    In this work, the effect of a diamond nucleation process on freestanding aluminium nitride (AlN)/diamond surface acoustic wave (SAW) device performances was studied. Before diamond deposition, silicon (Si) substrates have been mechanically nucleated, using an ultrasonic vibration table with submicron diamond slurry, and bias-enhanced nucleated (BEN). Freestanding diamond layers obtained on mechanically scratched Si substrates exhibit a surface roughness of R(MS) = 13 nm, whereas very low surface roughness (as low as R(MS) < or = 1 nm) can be achieved on a freestanding BEN diamond layer. Propagation losses have been measured as a function of the operating frequency for the two nucleation techniques. Dispersion curves of phase velocities and electromechanical coupling coefficient (K2) were determined experimentally and by calculation as a function of normalized thickness AlN film (kh(AlN) = 2pi h(AlN)/lambda). Experimental results show that the propagation losses strongly depend on the nucleation technique, and that these losses are weakly increased with frequency when the BEN technique is used.

  10. Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching.

    PubMed

    Terashima, Chiaki; Arihara, Kazuki; Okazaki, Sohei; Shichi, Tetsuya; Tryk, Donald A; Shirafuji, Tatsuru; Saito, Nagahiro; Takai, Osamu; Fujishima, Akira

    2011-02-01

    Conductive diamond whiskers were fabricated by maskless oxygen plasma etching on highly boron-doped diamond substrates. The effects of the etching conditions and the boron concentration in diamond on the whisker morphology and overall substrate coverage were investigated. High boron-doping levels (greater than 8.4 × 10(20) cm(-3)) are crucial for the formation of the nanosized, densely packed whiskers with diameter of ca. 20 nm, length of ca. 200 nm, and density of ca. 3.8 × 10(10) cm(-2) under optimal oxygen plasma etching conditions (10 min at a chamber pressure of 20 Pa). Confocal Raman mapping and scanning electron microscopy illustrate that the boron distribution in the diamond surface region is consistent with the distribution of whisker sites. The boron dopant atoms in the diamond appear to lead to the initial fine column formation. This simple method could provide a facile, cost-effective means for the preparation of conductive nanostructured diamond materials for electrochemical applications as well as electron emission devices.

  11. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOEpatents

    Gruen, Dieter M.; Busmann, Hans-Gerd; Meyer, Eva-Maria; Auciello, Orlando; Krauss, Alan R.; Krauss, Julie R.

    2004-11-02

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  12. Nano-inclusions in diamond: Evidence of diamond genesis

    NASA Astrophysics Data System (ADS)

    Wirth, R.

    2015-12-01

    The use of Focused Ion Beam technology (FIB) for TEM sample preparation introduced approximately 15 years ago revolutionized the application of TEM in Geosciences. For the first time, FIB enabled cutting samples for TEM use from exactly the location we are interested in. Applied to diamond investigation, this technique revealed the presence of nanometre-sized inclusions in diamond that have been simply unknown before. Nanoinclusions in diamond from different location and origin such as diamonds from the Lower and Upper Mantle, metamorphic diamonds (Kazakhstan, Erzgebirge, Bohemia), diamonds from ophiolites (Tibet, Mongolia, Xinjiang, Ural Mountains), diamonds from igneous rocks (Hawaii, Kamchatka) and impact diamonds (Popigai Crater, Siberia) have been investigated during the last 15 years. The major conclusion of all these TEM studies is, that the nanoinclusions, their phases and phase composition together with the micro- and nanostructure evidence the origin of diamond and genesis of diamond. We can discriminate Five different mechanisms of diamond genesis in nature are observed: Diamond crystallized from a high-density fluid (Upper mantle and metamorphic diamond). Diamond crystallized from carbonatitic melt (Lower mantle diamond). Diamond precipitates from a metal alloy melt (Diamond from ophiolites). Diamond crystallized by gas phase condensation or chemical vapour condensation (CVD) (Lavas from Kamchatka, xenoliths in Hawaiian lavas). Direct transformation of graphite into diamond.

  13. The Dawn of New Quantum Dots: Synthesis and Characterization of Ge1-xSnx Nanocrystals for Tunable Bandgaps

    NASA Astrophysics Data System (ADS)

    Esteves, Richard J. Alan

    Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies ( 14%) in lattice constants. Moreover, little is known about the chemical factors that govern the growth of Ge1-xSnx nanoalloys and the effects of quantum confinement on structure and optical properties. A synthesis has been developed to produce phase pure Ge1-xSnx nanoalloys which provides control over both size and composition. Three sets of Ge 1-xSnx nanocrystals have been studied, 15-23 nm, 3.4-4.6 nm and 1.5-2.5 nm with Sn compositions from x = 0.000-0.279. Synthetic parameters were explored to control the nucleation and growth as well as the factors that have led to the elimination of undesired metallic impurities. The structural analysis of all nanocrystals suggests the diamond cubic structure typically reported for Ge1-xSnx thin films and nanocrystalline alloys. As-synthesized Ge1-xSnx nanoalloys exhibit high thermal stability and moderate resistance against sintering up to 400-500 °C and are devoid of crystalline and amorphous elemental Sn impurities. The largest set of nanocrystals (15-23 nm) were useful in determining the compositional dependence on lattice parameters as studied using powder X-ray diffraction and Raman spectroscopy. Systematic expansion of the cubic Ge lattice with increasing Sn composition was confirmed suggesting homogenous distribution of Sn and Ge in the nanocrystals. High resolution scanning transmission electron

  14. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging.

    PubMed

    Monteforte, Marianne; Estandarte, Ana K; Chen, Bo; Harder, Ross; Huang, Michael H; Robinson, Ian K

    2016-07-01

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100 nm size regimes - a size routinely achievable by chemical synthesis - despite the spatial resolution of the BCDI technique being 20-30 nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20 nm and AuPd nanocrystals in the size range 60-65 nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.

  15. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging

    SciTech Connect

    Monteforte, Marianne; Estandarte, Ana K.; Chen, Bo; Harder, Ross; Huang, Michael H.; Robinson, Ian K.

    2016-06-23

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100?nm size regimes ? a size routinely achievable by chemical synthesis ? despite the spatial resolution of the BCDI technique being 20?30?nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20?nm and AuPd nanocrystals in the size range 60?65?nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.

  16. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  17. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  18. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  19. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  20. Solution-processable white-light-emitting germanium nanocrystals

    SciTech Connect

    Shirahata, Naoto

    2014-06-01

    This paper describes an efficient chemical route for the synthesis of visible light emitting nanocrystals of germanium (ncGe). The synthesis started by heating Ge(II) iodide at 300 °C in argon atmosphere. Spectroscopic characterizations confirmed the formation of diamond cubic lattice structures of ncGe. By grafting hydrophobic chains on the ncGe surface, the dispersions in nonpolar solvents of the ncGe became very stable. The as-synthesized ncGe showed the bluish white photoluminescence (PL) feature, but it was found that the PL spectrum is composed of many different emission spectra. Therefore, the color-tuning of white light emission is demonstrated through the witting removal of extra ncGe with unfavorable emission feature by making full use of column chromatographic techniques. - Highlights: • Visible light emitting nanocrystals of germanium was synthesized by chemical reduction of germanium iodide. • White light emission was achieved by control over size distribution of germanium nanocrystals. • Tuning the color of white light was achieved by separation of nanocrystals by emission.

  1. Chemical Vapor Deposited Diamond

    DTIC Science & Technology

    1991-09-27

    forming substrates such as silicon or molybdenum. Diamond can also be grown on other substrates such as silicon carbide, silicon nitride , mullite...thermal expansion of diamond with several substrate materials. Silicon nitride has a good z 0.010 alumina -,- - 0.006Cm Si, -diamond LJ 0.002 , 0...The authors checked the accuracy of their measurements by performing the measurements on specimens of copper, silver, aluminum, and aluminum nitride

  2. A wear simulation study of nanostructured CVD diamond-on-diamond articulation involving concave/convex mating surfaces.

    PubMed

    Baker, Paul A; Thompson, Raymond G; Catledge, Shane A

    2016-03-01

    Using microwave-plasma Chemical Vapor Deposition (CVD), a 3-micron thick nanostructured-diamond (NSD) layer was deposited onto polished, convex and concave components that were machined from Ti-6Al-4V alloy. These components had the same radius of curvature, 25.4mm. Wear testing of the surfaces was performed by rotating articulation of the diamond-deposited surfaces (diamond-on-diamond) with a load of 225N for a total of 5 million cycles in bovine serum resulting in polishing of the diamond surface and formation of very shallow, linear wear grooves of less than 50nm depth. The two diamond surfaces remained adhered to the components and polished each other to an average surface roughness that was reduced by as much as a factor of 80 for the most polished region located at the center of the condyle. Imaging of the surfaces showed that the initial wearing-in phase of diamond was only beginning at the end of the 5 million cycles. Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and surface profilometry were used to characterize the surfaces and verify that the diamond remained intact and uniform over the surface, thereby protecting the underlying metal. These wear simulation results show that diamond deposition on Ti alloy has potential application for joint replacement devices with improved longevity over existing devices made of cobalt chrome and ultra-high molecular weight polyethylene (UHMWPE).

  3. A wear simulation study of nanostructured CVD diamond-on-diamond articulation involving concave/convex mating surfaces

    PubMed Central

    Baker, Paul A.; Thompson, Raymond G.; Catledge, Shane A.

    2015-01-01

    Using microwave-plasma Chemical Vapor Deposition (CVD), a 3-micron thick nanostructured-diamond (NSD) layer was deposited onto polished, convex and concave components that were machined from Ti-6Al-4V alloy. These components had the same radius of curvature, 25.4mm. Wear testing of the surfaces was performed by rotating articulation of the diamond-deposited surfaces (diamond-on-diamond) with a load of 225N for a total of 5 million cycles in bovine serum resulting in polishing of the diamond surface and formation of very shallow, linear wear grooves of less than 50nm depth. The two diamond surfaces remained adhered to the components and polished each other to an average surface roughness that was reduced by as much as a factor of 80 for the most polished region located at the center of the condyle. Imaging of the surfaces showed that the initial wearing-in phase of diamond was only beginning at the end of the 5 million cycles. Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, and surface profilometry were used to characterize the surfaces and verify that the diamond remained intact and uniform over the surface, thereby protecting the underlying metal. These wear simulation results show that diamond deposition on Ti alloy has potential application for joint replacement devices with improved longevity over existing devices made of cobalt chrome and ultra-high molecular weight polyethylene (UHMWPE). PMID:26989457

  4. Diamond anvil technology

    NASA Astrophysics Data System (ADS)

    Seal, Michael

    This paper is largely a review of the techniques used in making diamond anvils and the constraints these put on the shapes of anvil. Techniques available for shaping diamonds include cleaving, sawing, polishing, laser cutting, and bruting. At present the shapes most commonly used for anvils are a modification of the brilliant cut derived from the gem industry, and a design based on an octagonal prism with truncated pyramidal top and base, known as the "Drukker standard design". Diamond orientation and material selection are considered as are future possibilities for the attainment of still higher pressures through modifications of the diamond anvil material or design.

  5. Infrared photoluminescence from GeSi nanocrystals embedded in a germanium–silicate matrix

    SciTech Connect

    Volodin, V. A. Gambaryan, M. P.; Cherkov, A. G.; Vdovin, V. I.; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2015-12-15

    We investigate the structural and optical properties of GeO/SiO{sub 2} multilayers obtained by evaporation of GeO{sub 2} and SiO{sub 2} powders under ultrahigh vacuum conditions on Si(001) substrates. Both Raman and infrared absorption spectroscopy measurements indicate the formation of GeSi nanocrystals after postgrowth annealing at 800°C. High-resolution transmission electron microscopy characterizations show that the average size of the nanocrystals is about 5 nm. For samples containing GeSi nanocrystals, photoluminescence is observed at 14 K in the spectral range 1500–1600 nm. The temperature dependence of the photoluminescence is studied.

  6. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2015-06-01

    As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.

  7. Growth of gold nanocrystals on BSA thin films

    NASA Astrophysics Data System (ADS)

    Bhowal, Ashim Chandra; Kundu, Sarathi

    2017-05-01

    Biomacromolecules like proteins have got much attention due to their ability to synthesize nanomaterials. A very simple and one step method of growing nanocrystals on BSA protein thin films is explored by using UV-Vis and photoluminescence spectroscopy, X-ray diffraction (XRD) and atomic force microscopy (AFM). It is observed that if different interaction times are provided between BSA thin films and HAuCl4 aqueous solutions of mM concentration, then different nanocrystals form on BSA thin films, however, they are poly dispersed in nature. The formation of gold nanocrystals is confirmed by the presence of UV-Vis absorption peak at ≈ 525 nm and the corresponding plasmonic emission is also observed. XRD analysis shows the formation of gold nanocrystals having fcc structure with preferred growth in (111) crystal plane direction. Surface morphologies of the prepared thin films are investigated through AFM and it is observed that more nanocrystals are formed where more interaction time is provided between BSA and HAuCl4 aqueous solution. Langmuir-like exponential growth behavior is identified for such nanocrystals formation.

  8. Ultra thin CVD diamond film deposition by electrostatic self-assembly seeding process with nano-diamond particles.

    PubMed

    Kim, J H; Lee, S K; Kwon, O M; Lim, D S

    2009-07-01

    Ultra thin and smooth nano crystalline diamond films were fabricated with electrostatic self-assembly seeding of explosively synthesized nano-diamond particles. Hard aggregates of nano-diamond particles were crushed by high revolution attrition milling at 1000 RPM to regulate the particle size. Through this process, cationic nano-diamond particles were coated with anionic PSS (poly sodium 4-styrene sulfonate) electrolytes. Anionic Si(100) substrate was coated with cationic PDDA (poly diallyldimethyl ammonium chloride) solution. Si(100)/PDDA/PSS/ND (nano-diamond) layer-by-layer structure was formed as a seeding layer by the simple dipping and rinsing of positively charged substrate into anionic PSS/nano-diamond solution. Throughout the seeding process, neither mechanical damage nor chemical attack was observed on the substrate. Every stage of this preparation was carried out at room temperature and pressure. The effect of attrition milling was determined by changing the milling time from 1 hr to 5 hrs. Through the attritional milling and monolayer formation of the nano-diamond, nucleation density was increased up to 3 x 10(11)/cm2. Typical hot filament chemical vapor deposition system was used to coat the diamond film on the ESA (electrostatic self-assembly) seeded Si(100) substrate. Although typical diamond deposition conditions (90 torr/1% CH4 in H2/800 degrees C) were maintained, ultra thin (< 100 nm) and continuous nano crystalline diamond films were deposited. Regardless of metallic or ceramic substrate, ESND (ESA Seeding of nano-diamond) process is applicable if the substrate has any charge. This simple nano technology based process ensures high thickness uniformity of diamond coating without visible edge effect.

  9. Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kalita, Amarjyoti; Kalita, Manos P. C.

    2017-08-01

    We apply Williamson-Hall (WH) method of X-ray diffraction (XRD) line profile analysis for lattice strain estimation of small sized ZnO nanocrystals (crystallite size≈4 nm). The ZnO nanocrystals are synthesized by room temperature chemical co-precipitation followed by heating at 40 °C. Zinc acetate, sodium hydroxide and 2-mercaptoethanol (ME) are used for the synthesis of the nanocrystals. {100}, {002}, {101} and {200}, {112}, {201} line profiles in the XRD pattern are significantly merged, therefore determination of the full width at half maximum values and peak positions of the line profiles required for WH analysis has been carried out by executing Rietveld refinement of the XRD pattern. Lattice strain of the 4 nm sized ZnO nanocrystals is found to be 5.8×10-3 which is significantly higher as compared to the literature reported values for larger ones (crystallite size≈17-47 nm). Role of ME as capping agent is confirmed by Fourier transform infrared spectroscopy. The band gap of the nanocrystals is determined from the UV-Visible absorption spectrum and is found to be 3.68 eV. The photoluminescence spectrum exhibits emissions in the visible (408 nm-violet, 467 nm-blue and 538 nm-green) regions showing presence of zinc interstitial and oxygen vacancy in the ZnO nanocrystals.

  10. Fabrication and optical properties of water soluble CdSeS nanocrystals using glycerin as stabilizing agent.

    PubMed

    Jiang, Fengrui; Tan, Guolong

    2013-01-01

    Herein we present an unusual phosphine-free method to fabricate water soluble CdSeS nanocrystals in cubic structure. In this method, glycerin was used as a stabilizing agent replacing tri-n-octylphosphine oxide (TOPO). Water solution of Na2SeO3 in polyethylene glycol was utilized as Se source. 3-Mercaptopropionic acid (MPA) provides S source. The phosphine-free Se and S sources were found to be highly reactive and suitable for the synthesis of CdSeS nanocrystals. XRD and HRTEM images confirm the formation of CdSeS nanocrystals in zinc blende structure. The absorption peaks on UV-vis spectra of as-prepared CdSeS nanocrystals are tunable from 330 nm to 440 nm, which blue shifts to shorter wavelength side in comparison with that of pure CdSe nanocrystals. The cubic CdSeS nanocrystals demonstrate narrow PL emissions spectra between 464 and 615 nm. Transmission electron microscopy images show the uniformity for the size distribution of the ternary QDs. Series water soluble CdSe(1-x)S(x) (x = 0:1) nanocrystals have also been synthesized using Na2SeO3 and Na2S solution as the Se-S co-sources. Tunable band gap energies of CdSe(1-x)S(x) (x = 0:1) nanocrystals upon chemical composition x have been achieved, the gap ranges from 290 nm to 558 nm.

  11. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity.

    PubMed

    Patra, Astam K; Kundu, Sudipta K; Bhaumik, Asim; Kim, Dukjoon

    2016-01-07

    We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe(3+) ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.

  12. Are diamond nanoparticles cytotoxic?

    PubMed

    Schrand, Amanda M; Huang, Houjin; Carlson, Cataleya; Schlager, John J; Omacr Sawa, Eiji; Hussain, Saber M; Dai, Liming

    2007-01-11

    Finely divided carbon particles, including charcoal, lampblack, and diamond particles, have been used for ornamental and official tattoos since ancient times. With the recent development in nanoscience and nanotechnology, carbon-based nanomaterials (e.g., fullerenes, nanotubes, nanodiamonds) attract a great deal of interest. Owing to their low chemical reactivity and unique physical properties, nanodiamonds could be useful in a variety of biological applications such as carriers for drugs, genes, or proteins; novel imaging techniques; coatings for implantable materials; and biosensors and biomedical nanorobots. Therefore, it is essential to ascertain the possible hazards of nanodiamonds to humans and other biological systems. We have, for the first time, assessed the cytotoxicity of nanodiamonds ranging in size from 2 to 10 nm. Assays of cell viability such as mitochondrial function (MTT) and luminescent ATP production showed that nanodiamonds were not toxic to a variety of cell types. Furthermore, nanodiamonds did not produce significant reactive oxygen species. Cells can grow on nanodiamond-coated substrates without morphological changes compared to controls. These results suggest that nanodiamonds could be ideal for many biological applications in a diverse range of cell types.

  13. Superhard Diamond/tungsten Carbide Nanocomposites

    SciTech Connect

    Z Lin; J Zhang; B Li; L Wang; H Mao; R Hemley; Y Zhao

    2011-12-31

    We investigated the processing conditions of diamond/tungsten carbide (WC) composites using in situ synchrotron x-ray diffraction (XRD) and reactive sintering techniques at high pressure and high temperatures. The as-synthesized composites were characterized by synchrotron XRD, scanning electron microscopy, high-resolution transmission electron microscopy, and indentation hardness measurements. Through tuning of the reaction temperature and time, we produced fully reacted, well-sintered, and nanostructured diamond composites with Vickers hardness of about 55 GPa and the grain size of WC binding matrix smaller than 50 nm. A specific set of orientation relationships between WC and tungsten is identified to gain microstructural insight into the reaction mechanism between diamond and tungsten.

  14. Diamond photonics platform enabled by femtosecond laser writing

    PubMed Central

    Sotillo, Belén; Bharadwaj, Vibhav; Hadden, J. P.; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E.; Eaton, Shane Michael

    2016-01-01

    Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV’s states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip. PMID:27748428

  15. Diamond photonics platform enabled by femtosecond laser writing.

    PubMed

    Sotillo, Belén; Bharadwaj, Vibhav; Hadden, J P; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E; Eaton, Shane Michael

    2016-10-17

    Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip.

  16. Electronic structure studies of nanocrystalline diamond grain boundaries

    SciTech Connect

    Zapol, P.; Sternberg, M.; Frauenheim, T.; Gruen, D. M.; Curtiss, L. A.

    1999-11-29

    Diamond growth from hydrogen-poor plasmas results in diamond structures that are profoundly different from conventionally CVD-grown diamond. High concentration of carbon dimers in the microwave plasma results in a high rate of heterogeneous renucleation leading to formation of nanocrystalline diamond with a typical grain size of 3--10 nm. Therefore, up to 10% of carbon atoms are located in the grain boundaries. In this paper the authors report on density-functional based tight-binding molecular dynamics calculations of the structure of a {Sigma}13 twist (100) grain boundary in diamond. Beginning with a coincidence site lattice model, simulated annealing of the initial structure was performed at 1,500 K followed by relaxation toward lower temperatures. About one-half of the carbons in the grain boundary are found to be three-coordinated. Coordination numbers, bond length and bond angle distributions are analyzed and compared to those obtained in previous studies.

  17. Diamond photonics platform enabled by femtosecond laser writing

    NASA Astrophysics Data System (ADS)

    Sotillo, Belén; Bharadwaj, Vibhav; Hadden, J. P.; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E.; Eaton, Shane Michael

    2016-10-01

    Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV’s states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip.

  18. An attempt to cast light into starch nanocrystals preparation and cross-linking.

    PubMed

    Jivan, Mehdi Jalali; Madadlou, Ashkan; Yarmand, Mohamadsaeed

    2013-12-01

    Potato starch was hydrolyzed with 2.2 or 3.7 M hydrochloric acid in order to obtain the nanocrystals which afterwards were chemically cross-linked with sodium hexametaphosphate. The stronger acidity resulted in smaller nanocrystals with mean size of 48 nm in a shorter time. X-ray diffraction confirmed the dominant crystalline nature of particles and Fourier transform infrared spectroscopy suggested the presence of lower number of free hydroxyl groups in nanocrystals after cross-linking. Starch nanocrystals showed two distinctive differential scaning colorimetry endotherms at 26 and 125 °C, attributed to destruction of nanocrystals lattice and moblizing of each nanocrystal's structure, respectively. Cross-linking resulted in a tenacious spatial arrangement of nanocrystals, strengthening the crystals lattice against phase transitions induced by heating. Scanning electron microscopy images confirmed the particle size measured for nanocrystals by light scattering. Atomic force microscopy topographic images suggested that starch nanocrystals were originated from small amylopectin blocklets in granular assembly of starch.

  19. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

    PubMed

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

    2011-05-24

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

  20. Effect of location of Si or Ge nanocrystals on the memory behavior of MNOS structures

    NASA Astrophysics Data System (ADS)

    Horváth, Zs. J.; Basa, P.; Molnár, K. Z.; Molnár, Gy.; Jászi, T.; Pap, A. E.

    2013-06-01

    Charge injection and retention behaviors of metal-nitride-oxide-silicon (MNOS) memory structures with Si or Ge nanocrystals embedded at a depth of 3 nm in the nitride layer were studied. The effect of Si nanocrystals on these properties was opposite in comparison with that of Ge nanocrystals. To understand the origin of these opposite effects, the influence of the oxide thickness and of the depth, size and location of semiconductor nanocrystals has been studied on the charging behavior of MNOS non-volatile memory structures by the calculation of electron and hole tunneling probabilities, and by the simulation of memory window, memory hysteresis and retention behavior. For MNOS structures it is obtained that the presence of nanocrystals enhances the charge injection resulting in better performance, but only for structures with thin tunnel oxide layer (below 3 nm), and if the nanocrystals are located close to the oxide/nitride interface. In the case of very high tunneling probability, i.e., of high tunneling currents the system approaches equilibrium and the memory behavior collapses. There is a narrow range of oxide thickness or depth of nanocrystals, where the charging properties change very fast. Retention exhibits a very sharp dependence on the oxide thickness and on depth of nanocrystals as well. Most part of the experimental results can be explained on the basis of the results of simulations.

  1. Active Electrochemical Plasmonic Switching on Polyaniline-Coated Gold Nanocrystals.

    PubMed

    Lu, Wenzheng; Jiang, Nina; Wang, Jianfang

    2017-02-01

    High-performance electrochemical plasmonic switching is realized on both single-particle and ensemble levels by coating polyaniline on colloidal gold nanocrystals through surfactant-assisted oxidative polymerization. Under small applied potentials, the core@shell nanostructures exhibit reversible plasmon shifts as large as 150 nm, a switching time of less than 10 ms, and a high switching stability.

  2. Nanopatterning of ultrananocrystalline diamond nanowires.

    PubMed

    Wang, Xinpeng; Ocola, Leonidas E; Divan, Ralu S; Sumant, Anirudha V

    2012-02-24

    We report the fabrication of horizontally aligned ultrananocrystalline diamond (UNCD) nanowires (NWs) via two different approaches. First, with the top-down approach by using electron beam lithography (EBL) and reactive ion etching (RIE) with a photo resist layer as an etch mask. Using this approach, we demonstrate fabrication of 50 µm long UNCD NWs with widths as narrow as 40 nm. We further present an alternative approach to grow UNCD NWs at pre-defined positions through a selective seeding process. No RIE was needed either to etch the NWs or to remove the mask. In this case, we achieved UNCD NWs with lengths of 50 µm and smallest width of 90 nm respectively. Characterization of these nanowires by using scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that the UNCD NWs are well defined and fully released, with no indication of residual stress. Characterization using visible and ultraviolet (UV) Raman spectroscopy indicates that in both fabrication approaches, UNCD NWs maintain their intrinsic diamond structure.

  3. Diamond films: Historical perspective

    SciTech Connect

    Messier, R.

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  4. Superconductivity in diamond.

    PubMed

    Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M

    2004-04-01

    Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

  5. Diamond Nucleation Using Polyethene

    NASA Technical Reports Server (NTRS)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  6. Diamond nucleation using polyethene

    SciTech Connect

    Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

    2013-07-23

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  7. Synthesis of nanocrystals and nanocrystal self-assembly

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (<20 nm in diameter) in diameter. Essential to our approach is an understanding of the nanoparticle as a building block, combined with an ability to integrate them into thin films that have uniform and characteristic electrical properties. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO 3 nanocrystalline films with grain sizes in the range of 10--30 nm. Dielectric measurements of the films show dielectic constants in the range of 85--90 over the 1 kHz--100 kHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit uniform nanostructured morphologies and grain sizes. In the second part of this chapter, a nonhydrolytic alcoholysis route to study the preparation of well-crystallized size-tunable BaTiO3

  8. Structural and Kinetic Analysis of BaCl 2 Nanocrystals in Fluorochlorozirconate Glass-Ceramics

    SciTech Connect

    Alvarez, Carlos J.; Leonard, Russell L.; Gray, Sharon K.; Johnson, Jacqueline A.; Petford-Long, Amanda K.; Lucas, P.

    2014-12-31

    The presence of BaCl2 nanocrystals and the crystallographic phase that they adopt controls the optical behavior of fluorochlorozirconate glass-ceramics. We have used in situ X-ray diffraction heating experiments and ex situ transmission electron microscopy to follow the BaCl2 nanocrystal nucleation and growth processes as a function of heating rate and isothermal hold temperature. The BaCl2 nanocrystals nucleate with the hexagonal crystal structure and grow as spherical particles to a size of similar to 10 to 20nm. They then undergo a structural transformation to the orthorhombic phase and their shape changes to rounded disks, with diameters ranging from 150 to 250nm, and thicknesses ranging from 80 to 120nm. The change in size results from Ostwald ripening of the hexagonal BaCl2 nanocrystals to form the orthorhombic BaCl2 nanocrystals.

  9. Laser structuring of the diamond surface in the nanoablation regime

    NASA Astrophysics Data System (ADS)

    Gololobov, V. M.; Kononenko, V. V.; Konov, V. I.

    2016-12-01

    The possibility of using nanoablation (graphitisation-free photoinduced etching) for precise micro- and nanostructuring of the surface of a diamond single crystal has been experimentally investigated. The processing has been performed by femtosecond third-harmonic pulses of a Ti : sapphire laser (λ = 266 {\\text{nm}}). The specific features of the formation of a surface nanorelief (regularity of the newly formed structures and reduced nanoablation rate near craters) are discussed. The possibility of fabricating a diamond phase diffraction grating with a relief depth of ∼ 130 {\\text{nm}} is demonstrated and the diffraction pattern recorded at λ = 532 {\\text{nm}} is compared with the results of theoretical analysis.

  10. Color Centers in Silic On-Doped Diamond Films

    NASA Astrophysics Data System (ADS)

    Sedov, V. S.; Krivobok, V. S.; Khomich, A. V.; Ralchenko, V. G.; Khomich, A. A.; Martyanov, A. K.; Nikolaev, S. N.; Poklonskaya, O. N.; Konov, V. I.

    2016-05-01

    Silicon-doped microcrystalline diamond films of 1 μm thickness were grown by chemical vapor deposition in microwave plasma from mixtures of methane-hydrogen-silane on substrates of aluminum nitride, tungsten, and silicon. The diamond films were found to contain optically active silicon vacancy (SiV) centers giving rise to the 737-nm band in the photoluminescence spectra. The spectral features of a newly discovered narrow band of comparable intensity at 720-722 nm were studied. It is shown that the band at 720-722 nm occurs in the photoluminescence spectra only in the presence of silica in the diamond, regardless of the substrate material. The temperature dynamics of the photoluminescence spectra in the range of 5-294 K were investigated. The possible nature and mechanisms of formation of the color centers responsible for the 720-722 nm band are discussed.

  11. Substitutional doping in nanocrystal superlattices

    NASA Astrophysics Data System (ADS)

    Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.; Wong, Eric; Datta, Bianca; Damodhar, Divij; Doan-Nguyen, Vicky V. T.; Herzing, Andrew A.; Kagan, Cherie R.; Murray, Christopher B.

    2015-08-01

    Doping is a process in which atomic impurities are intentionally added to a host material to modify its properties. It has had a revolutionary impact in altering or introducing electronic, magnetic, luminescent, and catalytic properties for several applications, for example in semiconductors. Here we explore and demonstrate the extension of the concept of substitutional atomic doping to nanometre-scale crystal doping, in which one nanocrystal is used to replace another to form doped self-assembled superlattices. Towards this goal, we show that gold nanocrystals act as substitutional dopants in superlattices of cadmium selenide or lead selenide nanocrystals when the size of the gold nanocrystal is very close to that of the host. The gold nanocrystals occupy random positions in the superlattice and their density is readily and widely controllable, analogous to the case of atomic doping, but here through nanocrystal self-assembly. We also show that the electronic properties of the superlattices are highly tunable and strongly affected by the presence and density of the gold nanocrystal dopants. The conductivity of lead selenide films, for example, can be manipulated over at least six orders of magnitude by the addition of gold nanocrystals and is explained by a percolation model. As this process relies on the self-assembly of uniform nanocrystals, it can be generally applied to assemble a wide variety of nanocrystal-doped structures for electronic, optical, magnetic, and catalytic materials.

  12. Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging.

    PubMed

    Hessel, Colin M; Rasch, Michael R; Hueso, Jose L; Goodfellow, Brian W; Akhavan, Vahid A; Puvanakrishnan, Priyaveena; Tunnel, James W; Korgel, Brian A

    2010-09-20

    A method to produce biocompatible polymer-coated silicon nanocrystals for medical imaging is shown. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 nm ± 0.6 nm and photoluminesce with a peak emission wavelength of 650 nm, which lies within the transmission window of 650-900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with the pH ranging between 7 and 10 and an ionic strength between 30 mM and 2 M, while maintaining a bright and stable photoluminescence and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in biological tissue is demonstrated, showing the potential for in vivo imaging.

  13. Nanocrystal superlattices: No need to wait

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Kumacheva, Eugenia

    2017-09-01

    In contrast with protocols reporting self-assembly of nanocrystals after synthesis, Pd nanocrystals rapidly form 3D micrometre-size superlattices during growth. The nanocrystals keep growing after assembly, tuning the size of the lattice.

  14. Oxide Nanocrystal Model Catalysts.

    PubMed

    Huang, Weixin

    2016-03-15

    Model catalysts with uniform and well-defined surface structures have been extensively employed to explore structure-property relationships of powder catalysts. Traditional oxide model catalysts are based on oxide single crystals and single crystal thin films, and the surface chemistry and catalysis are studied under ultrahigh-vacuum conditions. However, the acquired fundamental understandings often suffer from the "materials gap" and "pressure gap" when they are extended to the real world of powder catalysts working at atmospheric or higher pressures. Recent advances in colloidal synthesis have realized controlled synthesis of catalytic oxide nanocrystals with uniform and well-defined morphologies. These oxide nanocrystals consist of a novel type of oxide model catalyst whose surface chemistry and catalysis can be studied under the same conditions as working oxide catalysts. In this Account, the emerging concept of oxide nanocrystal model catalysts is demonstrated using our investigations of surface chemistry and catalysis of uniform and well-defined cuprous oxide nanocrystals and ceria nanocrystals. Cu2O cubes enclosed with the {100} crystal planes, Cu2O octahedra enclosed with the {111} crystal planes, and Cu2O rhombic dodecahedra enclosed with the {110} crystal planes exhibit distinct morphology-dependent surface reactivities and catalytic properties that can be well correlated with the surface compositions and structures of exposed crystal planes. Among these types of Cu2O nanocrystals, the octahedra are most reactive and catalytically active due to the presence of coordination-unsaturated (1-fold-coordinated) Cu on the exposed {111} crystal planes. The crystal-plane-controlled surface restructuring and catalytic activity of Cu2O nanocrystals were observed in CO oxidation with excess oxygen. In the propylene oxidation reaction with O2, 1-fold-coordinated Cu on Cu2O(111), 3-fold-coordinated O on Cu2O(110), and 2-fold-coordinated O on Cu2O(100) were identified

  15. Controllable Synthesis of Monodisperse Er3+-Doped Lanthanide Oxyfluorides Nanocrystals with Intense Mid-Infrared Emission

    PubMed Central

    He, Huilin; Liu, Qiang; Yang, Dandan; Pan, Qiwen; Qiu, Jianrong; Dong, Guoping

    2016-01-01

    Monodisperse lanthanide oxyfluorides LnOF (Ln = Gd, Y) with mid-infrared emissions were controllably synthesized via a mild co-precipitation route and a subsequent heat-treatment. The detailed composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that monodisperse GdOF:Er3+ were nano-riced shape with length about 350 nm and width about 120 nm, while the quasi-spherical YOF:Er3+ were uniform nanocrystals with an average size around 100 nm. The influence of calcination temperature on the size and phase transition of LnOF nanocrystals was also investigated. The photoluminescence (PL) spectra indicated that the 2.7 μm emission of Er3+ had achieved in both GdOF and YOF nanocrystals, which were calcined at different temperatures. In addition, the decay time of both 4I13/2 and 4I13/2 energy levels corresponding to Er3+ in YOF nanocrystals were also studied in detail. The results suggested that both rice-shaped GdOF nanocrystals and YOF nanocrystals could provide suitable candidate materials for nanocrystals-glass composites, which could be a step forward to the realization of mid-infrared laser materials. PMID:27748411

  16. Controllable Synthesis of Monodisperse Er3+-Doped Lanthanide Oxyfluorides Nanocrystals with Intense Mid-Infrared Emission

    NASA Astrophysics Data System (ADS)

    He, Huilin; Liu, Qiang; Yang, Dandan; Pan, Qiwen; Qiu, Jianrong; Dong, Guoping

    2016-10-01

    Monodisperse lanthanide oxyfluorides LnOF (Ln = Gd, Y) with mid-infrared emissions were controllably synthesized via a mild co-precipitation route and a subsequent heat-treatment. The detailed composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that monodisperse GdOF:Er3+ were nano-riced shape with length about 350 nm and width about 120 nm, while the quasi-spherical YOF:Er3+ were uniform nanocrystals with an average size around 100 nm. The influence of calcination temperature on the size and phase transition of LnOF nanocrystals was also investigated. The photoluminescence (PL) spectra indicated that the 2.7 μm emission of Er3+ had achieved in both GdOF and YOF nanocrystals, which were calcined at different temperatures. In addition, the decay time of both 4I13/2 and 4I13/2 energy levels corresponding to Er3+ in YOF nanocrystals were also studied in detail. The results suggested that both rice-shaped GdOF nanocrystals and YOF nanocrystals could provide suitable candidate materials for nanocrystals-glass composites, which could be a step forward to the realization of mid-infrared laser materials.

  17. Ion-Implanted Diamond Films and Their Tribological Properties

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Miyoshi, Kazuhisa; Korenyi-Both, Andras L.; Garscadden, Alan; Barnes, Paul N.

    1993-01-01

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 microns) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C(+) (m/e = 12) at an ion energy of 160 eV and a fluence of 6.72 x 10(exp 17) ions/sq cm. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10(exp -7)Pa), dry nitrogen and humid air (40% RH) environments. The effects of C(+) ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments.

  18. Nanofocusing optics for synchrotron radiation made from polycrystalline diamond.

    PubMed

    Fox, O J L; Alianelli, L; Malik, A M; Pape, I; May, P W; Sawhney, K J S

    2014-04-07

    Diamond possesses many extreme properties that make it an ideal material for fabricating nanofocusing x-ray optics. Refractive lenses made from diamond are able to focus x-ray radiation with high efficiency but without compromising the brilliance of the beam. Electron-beam lithography and deep reactive-ion etching of silicon substrates have been used in a transfer-molding technique to fabricate diamond optics with vertical and smooth sidewalls. Latest generation compound refractive lenses have seen an improvement in the quality and uniformity of the optical structures, resulting in an increase in their focusing ability. Synchrotron beamline tests of two recent lens arrays, corresponding to two different diamond morphologies, are described. Focal line-widths down to 210 nm, using a nanocrystalline diamond lens array and a beam energy of E = 11 keV, and 230 nm, using a microcrystalline diamond lens at E = 15 keV, have been measured using the Diamond Light Source Ltd. B16 beamline. This focusing prowess is combined with relatively high transmission through the lenses compared with silicon refractive designs and other diffractive optics.

  19. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry

  20. Analyzing the performance of diamond-coated micro end mills.

    SciTech Connect

    Torres, C. D.; Heaney, P. J.; Sumant, A. V.; Hamilton, M. A.; Carpick, R. W.; Pfefferkorn, F. E.; Univ. of Wisconsin at Madison; Univ. of Pennsylvania

    2009-06-01

    A method is presented to improve the tool life and cutting performance of 300 {micro}m diameter tungsten carbide (WC) micro end mills by applying thin (<300 nm) fine-grained diamond (FGD) and nanocrystalline diamond (NCD) coatings using the hot-filament chemical vapor deposition (HF-CVD) process. The performance of the diamond-coated tools has been evaluated by comparing their performance in dry slot milling of 6061-T6 aluminum against uncoated WC micro end mills. Tool wear, coating integrity, and chip morphology were characterized using SEM and white light interferometry. The initial test results show a dramatic improvement in the tool integrity (i.e., corners not breaking off), a lower wear rate, no observable adhesion of aluminum to the diamond-coated tool, and a significant reduction in the cutting forces (>50%). Reduction of the cutting forces is attributed to the low friction and adhesion of the diamond coating. However, approximately 80% of the tools coated with the larger FGD coatings failed during testing due to delamination. Additional machining benefits were attained for the NCD films, which was obtained by using a higher nucleation density seeding process for diamond growth. This process allowed for thinner, smaller grained diamond coatings to be deposited on the micro end mills, and enabled continued operation of the tool even after the integrity of the diamond coating had been compromised. As opposed to the FGD-coated end mills, only 40% of the NCD-tools experienced delamination issues.

  1. Multi-functional laser fabrication of diamond (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salter, Patrick S.; Booth, Martin J.

    2017-03-01

    Ultrafast laser fabrication enables micro-structuring of diamond in 3D with a range of functionality. An ultrashort pulsed beam focused beneath the diamond surface induces structural modifications which are highly localised in three dimensions. At high pulse energy, the laser breaks down the diamond lattice at focus to form a graphitic phase. We demonstrate high resolution analysis of the structural changes revealing the graphitic phase to be formed of small clusters ( 100 nm in size) of amorphous sp2 bonded carbon accompanied by localised cracking of the diamond. When the laser focus is traced through the diamond, continuous graphitic wires are created which are electrically conductive. We have used such wires to fabricate large-area 3D radiation sensors which have been employed for the detection of high energy protons. Such graphitic wires have an associated stress field and a related localised modulation of the refractive index. We have recently written combinations of graphitic tracks in diamond to engineer stress fields to give a desired refractive index distribution and form an optical waveguide. Type III waveguides are demonstrated that allow guiding of both polarization states. We also show that by reducing the laser pulse energy, it is possible to avoid complete breakdown of the diamond lattice and simply introduce an ensemble of vacancies within the focal volume. This can be used to create single coherent NV centres in diamond isolated in 3D. All these processes are improved by processing at high numerical aperture (NA), for which adaptive optics aberration correction is essential.

  2. Single-color centers implanted in diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Hausmann, Birgit J. M.; Babinec, Thomas M.; Choy, Jennifer T.; Hodges, Jonathan S.; Hong, Sungkun; Bulu, Irfan; Yacoby, Amir; Lukin, Mikhail D.; Lončar, Marko

    2011-04-01

    The development of material-processing techniques that can be used to generate optical diamond nanostructures containing a single-color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (~20 nm) to generate nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal prior to device fabrication. Individual NV centers are then mechanically isolated by etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' (~1 μm) implantation of individual NV centers into diamond nanowires as a post-processing step. The high single-photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allowed us to observe sustained photon anti-bunching even at high pump powers.

  3. Photochemical versus Thermal Synthesis of Cobalt Oxyhydroxide Nanocrystals

    SciTech Connect

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.; Bakac, Andreja; Vela, Javier

    2012-04-18

    Photochemical methods facilitate the generation, isolation, and study of metastable nanomaterials having unusual size, composition, and morphology. These harder-to-isolate and highly reactive phases, inaccessible using conventional high-temperature pyrolysis, are likely to possess enhanced and unprecedented chemical, electromagnetic, and catalytic properties. We report a fast, low-temperature and scalable photochemical route to synthesize very small (3 nm) monodisperse cobalt oxyhydroxide (Co(O)OH) nanocrystals. This method uses readily and commercially available pentaamminechlorocobalt(III) chloride, [Co(NH3)5Cl]Cl2, under acidic or neutral pH and proceeds under either near-UV (350 nm) or Vis (575 nm) illumination. Control experiments showed that the reaction proceeds at competent rates only in the presence of light, does not involve a free radical mechanism, is insensitive to O2, and proceeds in two steps: (1) Aquation of [Co(NH3)5Cl]2+ to yield [Co(NH3)5(H2O)]3+, followed by (2) slow photoinduced release of NH3 from the aqua complex. This reaction is slow enough for Co(O)OH to form but fast enough so that nanocrystals are small (ca. 3 nm). The alternative dark thermal reaction proceeds much more slowly and produces much larger (250 nm) polydisperse Co(O)OH aggregates. UV–Vis absorption measurements and ab initio calculations yield a Co(O)OH band gap of 1.7 eV. Fast thermal annealing of Co(O)OH nanocrystals leads to Co3O4 nanocrystals with overall retention of nanoparticle size and morphology. Thermogravimetric analysis shows that oxyhydroxide to mixed-oxide phase transition occurs at significantly lower temperatures (up to ΔT = 64 °C) for small nanocrystals compared with the bulk.

  4. Laser nanoablation of diamond surface at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Gololobov, V. M.; Pashinin, V. P.; Konov, V. I.

    2016-10-01

    The chemical etching of the surface of a natural diamond single crystal irradiated by subpicosecond laser pulses with a high repetition rate (f ≤slant 500 {\\text{kHz}}) in air is experimentally investigated. The irradiation has been performed by the second-harmonic (515 {\\text{nm}}) radiation of a disk Yb : YAG laser. Dependences of the diamond surface etch rate on the laser energy density and pulse repetition rate are obtained.

  5. Brown diamonds from an eclogite xenolith from Udachnaya kimberlite, Yakutia, Russia.

    PubMed

    Stepanov, Aleksandr S; Korsakov, Andrey V; Yuryeva, Olga P; Nadolinniy, Vladimir A; Perraki, Maria; De Gussem, Kris; Vandenabeele, Peter

    2011-10-01

    We have performed petrographic and spectroscopic studies of brown diamonds from an eclogite xenolith from the Udachnaya pipe (Yakutia, Russia). Brown diamonds are randomly intermixed with colorless ones in the rock and often located at the grain boundaries of clinopyroxene and garnet. Brown diamonds can be characterized by a set of defects (H4, N2D and a line at 490.7 nm) which are absent in colorless diamonds. This set of defects is typical for plastically deformed diamonds and indicates that diamonds were likely annealed for a relatively short period after deformation had occurred. Excitation of brown colored zones with a 632.8 nm He-Ne laser produced the typical diamond band plus two additional bands at 1730 cm(-1) and 3350 cm(-1). These spectral features are not genuine Raman bands, and can be attributed to photoluminescence at ∼710 nm (1.75 eV) and ∼802 nm (1.54 eV). No Raman peak corresponding to graphite was observed in regions of brown coloration. Comparison with previous reports of brown diamonds from eclogites showed our eclogitic sample to have a typical structure without signs of apparent deformation. Two mechanisms with regard to diamond deformation are proposed: deformation of eclogite by external forces followed by subsequent recrystallization of silicates or, alternatively, deformation by local stress arising due to decompression and expansion of silicates during ascent of the xenolith to surface conditions.

  6. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Nishida, Kohji

    2012-08-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death `apoptosis' is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer's disease and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter.

  7. Emergence of intrinsic half-metallicity in MoS2 nano-crystals : A first principles study

    NASA Astrophysics Data System (ADS)

    Mandal, S. C.; Chatterjee, S.; Taraphder, A.

    2017-05-01

    Using first principles density functional theory we investigate the electronic structure of MoS2 nano-crystals of diameter 1nm. Our calculations suggest that MoS2 nano-crystals are inherently half-metallic, the half-metallicity being robust with respect to the constitution as well as the morphology of the surface and also with respect to the length of the nano-crystal. Thus, MoS2 nano-crystals, may turn out to be very important for application in spintronics based solid state devices.

  8. High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites

    DOE PAGES

    Yao, En -Ping; Yang, Zhanlue; Meng, Lei; ...

    2017-04-10

    Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈ 470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Forster or Dexter energy transfer ismore » analyzed through time resolved photoluminescence. In conclusion, by tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).« less

  9. Growth and stability of oxidation resistant Si nanocrystals formed by decomposition of alkyl silanes

    SciTech Connect

    Zaitseva, N; Hamel, S; Dai, Z R; Saw, C; Williamson, A J; Galli, G

    2007-01-12

    The synthesis and characterization of 1-10 nm Si nanocrystals highly resistant to oxidation is described. The nanocrystals were prepared by thermal decomposition of tetramethylsilane at 680 C, or in a gold- induced catalytic process at lower temperatures down to 400-450 C using trioctylamine as an initial solvent. Transmission electron microscopic analysis of samples obtained in the presence of gold show that the nanocrystals form via solid-phase epitaxial attachment of Si to the gold crystal lattice. The results of computational modeling performed using first principles density functional theory (DFT) calculations predict that the enhanced stability of nanocrystals to oxidation is due to the presence of N or N-containing groups on the surface of nanocrystals.

  10. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals.

    PubMed

    Siqueira, Gilberto; Bras, Julien; Follain, Nadège; Belbekhouche, Sabrina; Marais, Stéphane; Dufresne, Alain

    2013-01-16

    Cellulose nanocrystals have been prepared by acid hydrolysis of Luffa cylindrica fibers. The acid-resistant residue consisted of rod-like nanoparticles with an average length an diameter around 242 and 5.2nm, respectively (aspect ratio around 46). These cellulose nanocrystals have been used as a reinforcing phase for the processing of bio-nanocomposites using polycaprolactone (PCL) as matrix. To promote interfacial filler/matrix interactions the surface of cellulose nanocrystals was chemically modified with n-octadecyl isocyanate (C(18)H(37)NCO). Evidence of the grafting was supported by infrared spectroscopy and elemental analysis. X-ray diffraction analysis was used to confirm the integrity of cellulose nanocrystals after chemical modification. Both unmodified and chemically modified nanocrystals were used to prepare nanocomposites. The thermal properties of these materials were determined from differential scanning calorimetry and their mechanical behavior was evaluated in both the linear and non-linear range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Fabrication of multilayered Ge nanocrystals embedded in SiO xGeN y films

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang, Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-09-01

    Multilayered Ge nanocrystals embedded in SiO xGeN y films have been fabricated on Si substrate by a (Ge + SiO 2)/SiO xGeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction.

  12. High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites.

    PubMed

    Yao, En-Ping; Yang, Zhanlue; Meng, Lei; Sun, Pengyu; Dong, Shiqi; Yang, Ye; Yang, Yang

    2017-04-10

    Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Förster or Dexter energy transfer is analyzed through time resolved photoluminescence. By tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).

  13. Effective optical Faraday rotations of semiconductor EuS nanocrystals with paramagnetic transition-metal ions.

    PubMed

    Hasegawa, Yasuchika; Maeda, Masashi; Nakanishi, Takayuki; Doi, Yoshihiro; Hinatsu, Yukio; Fujita, Koji; Tanaka, Katsuhisa; Koizumi, Hitoshi; Fushimi, Koji

    2013-02-20

    Novel EuS nanocrystals containing paramagnetic Mn(II), Co(II), or Fe(II) ions have been reported as advanced semiconductor materials with effective optical rotation under a magnetic field, Faraday rotation. EuS nanocrystals with transition-metal ions, EuS:M nanocrystals, were prepared by the reduction of the Eu(III) dithiocarbamate complex tetraphenylphosphonium tetrakis(diethyldithiocarbamate)europium(III) with transition-metal complexes at 300 °C. The EuS:M nanocrystals thus prepared were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroanalysis (ICP-AES), and a superconducting quantum interference device (SQUID) magnetometer. Enhanced Faraday rotations of the EuS:M nanocrystals were observed around 550 nm, and their enhanced spin polarization was estimated using electron paramagnetic resonance (EPR) measurements. In this report, the magneto-optical relationship between the Faraday rotation efficiency and spin polarization is discussed.

  14. Ion beam synthesis and optical properties of semiconductor nanocrystals and quantum dots

    SciTech Connect

    Zhu, J.G.; White, C.W.; Withrow, S.P.

    1996-11-01

    Nanocrystals of semiconductor materials have been fabricated in SiO{sub 2} by ion implantation and subsequent thermal annealing. Strong red photoluminescence (PL) peaked around 750 nm has been observed in samples containing Si nanocrystals in SiO{sub 2}. The Si nanocrystals in the samples with optimized PL intensities are a few nanometers in diameter. Difference in the absorption bandgap energies and the PL peak energies are discussed. Significant influence of implantation sequence on the formation of compound semiconductor nanocrystals are demonstrated with the GaAs in the SiO{sub 2} system. Optical absorption measurements show that Ga particles have already formed in the as-implanted stage if Ga is implanted first. A single surface phonon mode has been observed in the infrared reflectance measurement from samples containing GaAs nanocrystals.

  15. Orapa Diamond Mine, Botswana

    NASA Image and Video Library

    2015-11-16

    This image from NASA Terra spacecraft shows the Orapa diamond mine, the world largest diamond mine by area. The mine is located in Botswana. It is the oldest of four mines operated by the same company, having begun operations in 1971. Orapa is an open pit style of mine, located on two kimberlite pipes. Currently, the Orapa mine annually produces approximately 11 million carats (2200 kg) of diamonds. The Letlhakane diamond mine is also an open pit construction. In 2003, the Letlhakane mine produced 1.06 million carats of diamonds. The Damtshaa diamond mine is the newest of four mines, located on top of four distinct kimberlite pipes of varying ore grade. The mine is forecast to produce about 5 million carats of diamond over the projected 31 year life of the mine. The image was acquired October 5, 2014, covers an area of 28 by 45 km, and is located at 21.3 degrees south, 25.4 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA20104

  16. Magnetization Reversal in Europium Sulfide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Dickerson, James; Redigolo, Marcela; Koktysh, Dmitry; Rosenthal, Sandra; Gai, Zheng; Gao, Lan; Shen, Jian

    2007-03-01

    We report the observation of the reversal in the magnetization hysteresis curve of europium sulfide nanocrystals. This phenomenon was investigated through the temperature-dependent magnetization of two classes of nanomaterials, nanocrystalline (2.0 nm <= dNCs <= 100 nm), and quantum-confined (dNCs <= 2.0 nm), where dNCs is the diameter of the nanomaterial. The effect of the size of the nanomaterial on the magnetization is attributed to the competition between the magnetic properties of strained surface atoms and unstrained core atoms. Superconducting quantum interference device (SQUID) probed the magnetic response. Electron microscopy and X-ray diffraction spectroscopy revealed the crystallinity and monodispersivity of the nanomaterials.

  17. Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters.

    PubMed

    Bodnarchuk, Maryna I; Erni, Rolf; Krumeich, Frank; Kovalenko, Maksym V

    2013-04-10

    We report a new kind of long-range ordered binary superlattices comprising atomically defined inorganic clusters and colloidally synthesized nanocrystals. In a model system, we combined surfactant-encapsulated, nearly spherical giant polyoxometalate clusters containing 2.9 nm polyoxomolybdate or 2.5 nm polyoxovanadomolybdate cores with monodisperse colloidal semiconductor nanocrystals (PbS, CdSe, PbS/CdS; 4-11 nm). The results are rationalized on the basis of dense packing principles of sterically stabilized particles with predominantly hard-spherelike interparticle interactions. By varying the size-ratios and relative concentrations of constituents, we obtained known thermodynamically stable binary packings of hard-spheres such as NaCl, AlB2, and NaZn13 lattices and also CaCu5-type lattice and aperiodic quasicrystals with 12-fold symmetry. These results suggest that other kinds of cluster materials such as fullerenes and magic-sized metallic and semiconductor clusters can also be integrated into supramolecular assemblies with nanocrystals. Furthermore, synergistic effects are expected from the combination of redox and catalytic properties of polyoxometalates with excitonic and plasmonic properties of inorganic nanocrystals.

  18. Multicolor electroluminescent devices using doped ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Manzoor, K.; Vadera, S. R.; Kumar, N.; Kutty, T. R. N.

    2004-01-01

    Alternate-current electroluminescent (ac EL) devices based on doped ZnS nanocrystals emitting blue, green, and orange-red colors are reported. ZnS nanocrystals doped with Cu+-Al3+ and Cu+-Al3+-Mn2+ combinations were synthesized by wet chemical method at room temperature. The ZnS:Cu+, Al3+ nanocrystals show blue (462 nm) and green (530 nm) EL emissions depending upon the presence and absence of sulphur vacancies, respectively. The orange EL emission (590 nm) is realized from ZnS:Cu+, Al3+, Mn2+ nanoparticles by way of nonradiative energy transfer from AlZn-CuZn pairs to MnZn. The EL devices show low turn-on voltage of ˜10 V ac @100 Hz. The mechanism of ac EL in ZnS nanocrystals has been explained wherein the excitation is attributed to the electric-field-assisted injection of electron-hole pairs from the surface regions into the interiors and their subsequent recombination therein causes emission.

  19. Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Qiu, Yulong; Chen, Yuanzhi; Zhang, Qinfu; Liu, Xiang; Peng, Dong-Liang

    2017-04-01

    Magnetic metal-semiconductor hybrid nanocrystals containing ferromagnetic Ni and semiconductor ZnO have been prepared via a hot-injection route. The Ni-ZnO hybrid nanocrystals have a flower-like morphology that consists of Ni inner cores and ZnO petal shells. In spite of their large lattice mismatch, ZnO nanocrystals can still grow on faceted Ni nanocrystals to form stable interfaces. The composition of Ni-ZnO hybrid nanocrystals is readily controlled, and the average size of Ni core is tunable from 25 to 50 nm. Room temperature ferromagnetic properties are observed in these hybrid nanocrystals, and tunable magnetic properties also can be achieved by varying the size of Ni core. The as-prepared Ni-ZnO hybrid nanocrystals exhibit enhanced photocatalytic performance under ultraviolet light illumination as compared to pure ZnO nanocrystals. Furthermore, the superior reusability of hybrid nanocrystals for photocatalytic application is achieved by virtue of their magnetic properties. The facile and efficient seed-mediate strategy is particularly attractive to construct hybrid magnetic-semiconducting heterostructures. The as-obtained Ni-ZnO hybrid nanocrystals offer great potential for various applications due to their combined magnetic and semiconducting properties and low-cost earth-abundant availability.

  20. Electronic states in spherical GaN nanocrystals embedded in various dielectric matrices: The k ⋅ p-calculations

    SciTech Connect

    Konakov, A. A. Filatov, D. O.; Korolev, D. S.; Belov, A. I.; Mikhaylov, A. N.; Tetelbaum, D. I.; Kumar, Mahesh

    2016-01-15

    Using the envelope-function approximation, the single-particle states of electrons and holes in spherical GaN nanocrystals embedded in different amorphous dielectric matrices (SiO{sub 2}, Al{sub 2}O{sub 3}, HfO{sub 2} and Si{sub 3}N{sub 4}) have been calculated. Ground state energies of electrons and holes in GaN nanocrystals are determined using the isotropic approximation of the k ⋅ p -Hamiltonian. All the ground state energies are found to increase with lowering the nanocrystal size and are proportional to the R{sup −n}, where R is the nanocrystal radius, n =1.5-1.9 for electrons and 1.7-2.0 for holes. The optical gap of GaN nanocrystals changes from 3.8 to 5 eV for the nanocrystal radius ranging from 3 to 1 nm.

  1. Chemical design of nanocrystal solids.

    PubMed

    Kovalenko, Maksym V

    2013-01-01

    This account highlights our recent and present activities dedicated to chemical synthesis and applications of inorganic nanostructures. In particular, we discuss the potential of metal amides as precursors in the synthesis of metallic and semiconductor nanocrystals. We show the importance of surface chemical functionalization for the emergence of collective electronic properties in nanocrystal solids. We also demonstrate a new kind of long-range ordered, crystalline matter comprising colloidal nanocrystals and atomically defined inorganic clusters. Finally, we point the reader's attention to the high potential benefits of size- and shape-tunability of nanocrystals for achieving higher performance of rechargeable Li-ion battery electrodes.

  2. Synthesis and characterisation of magnetic iron sulfide nanocrystals

    SciTech Connect

    Beal, John H.L.; Etchegoin, Pablo G.; Tilley, Richard D.

    2012-05-15

    Fe{sub 1-x}S and Fe{sub 3}S{sub 4} nanocrystals with a variety of morphologies and average sizes were synthesised by the reaction of iron(II) acetylacetonate (Fe(acac){sub 2}) and elemental sulfur in oleylamine. Reaction at 200 Degree-Sign C for 240 min produced extremely thin Fe{sub 3}S{sub 4} sheets, which displayed low coercivities (14 kA m{sup -1}) suggestive of pseudosingle-domain or multidomain particles. Reaction temperatures {>=}300 Degree-Sign C for 30 min produced 70 nm Fe{sub 1-x}S nanocrystals with hexagonal plate and hexagonal prism morphologies, which displayed high magnetic coercivities (110 kA m{sup -1}) characteristic of single magnetic domain particles. Rapid injection of sulfur solution at 280 Degree-Sign C followed by immediate cooling produced a mixture of Fe{sub 1-x}S nanocrystals and spherical, polydisperse {approx}5 nm Fe{sub 3}S{sub 4} nanocrystals, which displayed superparamagnetism above an average blocking temperature of 55 K. - Graphical abstract: Reaction of Fe(acac){sub 2} and sulfur in oleylamine produces Fe{sub 3}S{sub 4} nanocrystals at 200 Degree-Sign C and Fe{sub 1-x}S nanocrystals at 310 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Synthesis of Fe{sub 1-x}S and Fe{sub 3}S{sub 4} nanocrystals from Fe(acac){sub 2} and sulfur. Black-Right-Pointing-Pointer Fe{sub 3}S{sub 4} sheets formed after 4 h at 200 Degree-Sign C. Black-Right-Pointing-Pointer Fe{sub 1-x}S nanocrystals formed above 200 Degree-Sign C. Black-Right-Pointing-Pointer Five nanometre Fe{sub 3}S{sub 4} formed by rapid injection. Black-Right-Pointing-Pointer Five nanometre Fe{sub 3}S{sub 4} nanocrystals superparamagnetic above blocking temperature of 55 K.

  3. Controlled assembly and electronics in semiconductor nanocrystal-based devices

    NASA Astrophysics Data System (ADS)

    Drndic, Marija

    2006-03-01

    I will discuss the assembly of semiconductor nanocrystals (CdSe and PbSe) into electronic devices and the basic mechanisms of charge transport in nanocrystal arrays [1-4]. Spherical CdSe nanocrystals show robust memory effects that can be exploited for memory applications [1]. Nanocrystal memory can be erased electrically or optically and is rewritable. In PbSe nanocrystal arrays, as the interdot coupling is increased, the system evolves from an insulating regime dominated by Coulomb blockade to a semiconducting regime, where hopping conduction is the dominant transport mechanism [2]. Two-dimensional CdSe nanorod arrays show striking and anomalous transport properties, including strong and reproducible non-linearities and current oscillations with dc-voltage [4]. I will also discuss imaging of the charge transport in nanocrystal-based electronic devices. Nanocrystal arrays were investigated using electrostatic force microscopy (EFM) and transmission electron microscopy (TEM) [3]. Changes in lattice and transport properties upon annealing in vacuum were revealed. Local charge transport was directly imaged by EFM and correlated to nanopatterns observed with TEM. This work shows how charge transport in complex nanocrystal networks can be identified with nm resolution [3]. This work was supported by the ONR grant N000140410489, the NSF grants DMR-0449553 and MRSEC DMR00-79909, and the ACS PRF grant 41256-G10. References:1) Fischbein M. D. and Drndic M., ``CdSe nanocrystal quantum-dot memory,'' Applied Physics Letters, 86 (19), 193106, 2005.2) H. E. Romero and Drndic M., ``Coulomb blockade and hopping conduction in PbSe quantum dots,'' Physical Review Letters 95, 156801, 2005.3) Hu Z., Fischbein M. D. and Drndic M., ``Local charge transport in two-dimensional PbSe nanocrystal arrays studied by electrostatic force microscopy",'' Nano Letters 5 (7), 1463, 2005.4) Romero H.E., Calusine G. and Drndic M., ``Current oscillations, switching and hysteresis in CdSe nanorod

  4. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    SciTech Connect

    Balitskii, O.A.; Demchenko, P.Yu.; Mijowska, E.; Cendrowski, K.

    2013-02-15

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuning their spectral characteristics to higher energy solar photons.

  5. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    PubMed

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  6. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  7. Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria.

    PubMed

    Prozorov, Tanya; Palo, Pierre; Wang, Lijun; Nilsen-Hamilton, Marit; Jones, DeAnna; Orr, Daniel; Mallapragada, Surya K; Narasimhan, Balaji; Canfield, Paul C; Prozorov, Ruslan

    2007-10-01

    Magnetotactic bacteria produce exquisitely ordered chains of uniform magnetite (Fe(3)O(4)) nanocrystals, and the use of the bacterial mms6 protein allows for the shape-selective synthesis of Fe(3)O(4) nanocrystals. Cobalt ferrite (CoFe(2)O(4)) nanoparticles, on the other hand, are not known to occur in living organisms. Here we report on the use of the recombinant mms6 protein in a templated synthesis of CoFe(2)O(4) nanocrystals in vitro. We have covalently attached the full-length mms6 protein and a synthetic C-terminal domain of mms6 protein to self-assembling polymers in order to template hierarchical CoFe(2)O(4) nanostructures. This new synthesis pathway enables facile room-temperature shape-specific synthesis of complex magnetic crystalline nanomaterials with particle sizes in the range of 40-100 nm that are difficult to produce using conventional techniques.

  8. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  9. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  10. Diamond Ranch High School.

    ERIC Educational Resources Information Center

    Betsky, Aaron

    2000-01-01

    Highlights award-winning Diamond Ranch High School (California) that was designed and built on a steep site around Los Angeles considered unsatisfactory for building due to its unstable soils. Building organization is discussed, and photos are provided. (GR)

  11. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  12. California: Diamond Valley

    Atmospheric Science Data Center

    2014-05-15

    ... water storage capacity. In addition to routine water management, Diamond Valley Lake is designed to provide protection against ... to stand out prominently by taking advantage of the strong change in brightness between the two view angles and the contrasting angular ...

  13. Diamond Ranch High School.

    ERIC Educational Resources Information Center

    Betsky, Aaron

    2000-01-01

    Highlights award-winning Diamond Ranch High School (California) that was designed and built on a steep site around Los Angeles considered unsatisfactory for building due to its unstable soils. Building organization is discussed, and photos are provided. (GR)

  14. Quantum engineering: Diamond envy

    NASA Astrophysics Data System (ADS)

    Nunn, Joshua

    2013-03-01

    Nitrogen atoms trapped tens of nanometres apart in diamond can now be linked by quantum entanglement. This ability to produce and control entanglement in solid systems could enable powerful quantum computers.

  15. PROCESS FOR COLORING DIAMONDS

    DOEpatents

    Dugdale, R.A.

    1960-07-19

    A process is given for coloring substantially colorless diamonds in the blue to blue-green range and comprises the steps of irradiating the colorless diamonds with electrons having an energy within the range 0.5 to 2 Mev to obtain an integrated electron flux of between 1 and 2 x 10/sup 18/ thc diamonds may be irradiated 1 hr when they take on a blue color with a slight green tint: After being heated at about 500 deg C for half an hour they become pure blue. Electrons within this energy range contam sufficient energy to displace the diamond atoms from their normal lattice sites into interstitial sites, thereby causing the color changes.

  16. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    PubMed Central

    Liu, Minglu; Wang, Robert Y.

    2015-01-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146

  17. Synthesis of discrete aluminophosphate -CLO nanocrystals in a eutectic mixture.

    PubMed

    Tao, Shuo; Xu, Renshun; Li, Xiaolei; Li, Dawei; Ma, Huaijun; Wang, Donge; Xu, Yunpeng; Tian, Zhijian

    2015-08-01

    Extra-large-pore aluminophosphate -CLO (i.e., DNL-1) nanocrystals were synthesized in a eutectic mixture composed of diethylamine hydrochloride (DEAC) and ethylene glycol (EG) with 1-methylimidazole (1-MIm) as an additional amine using both conventional and microwave heating. The effects of the synthesis parameters, such as the amount of 1-MIm and the P/Al ratio, on the formation of DNL-1 nanocrystals were studied. The products were characterized using a variety of techniques. XRD, DLS, SEM and TEM results indicate that the as-synthesized DNL-1 nanocrystals have good crystallinity and narrow particle size distributions, and their average particle size was controlled in the 100-220nm range by simply adjusting the amount of 1-MIm. TG-DSC and N2 adsorption analyses reveal that the as-synthesized DNL-1 nanocrystals exhibit good thermal stability and the calcined samples possess high BET surface areas and large pore volumes. In addition, the cooperative structure-directing effects of 1-MIm and the eutectic mixture cation (DEA(+)) in the formation of DNL-1 nanocrystals were discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Atomically precise gold nanocrystal molecules with surface plasmon resonance.

    PubMed

    Qian, Huifeng; Zhu, Yan; Jin, Rongchao

    2012-01-17

    Since Faraday's pioneering work on gold colloids, tremendous scientific research on plasmonic gold nanoparticles has been carried out, but no atomically precise Au nanocrystals have been achieved. This work reports the first example of gold nanocrystal molecules. Mass spectrometry analysis has determined its formula to be Au(333)(SR)(79) (R = CH(2)CH(2)Ph). This magic sized nanocrystal molecule exhibits fcc-crystallinity and surface plasmon resonance at approximately 520 nm, hence, a metallic nanomolecule. Simulations have revealed that atomic shell closing largely contributes to the particular robustness of Au(333)(SR)(79), albeit the number of free electrons (i.e., 333 - 79 = 254) is also consistent with electron shell closing based on calculations using a confined free electron model. Guided by the atomic shell closing growth mode, we have also found the next larger size of extraordinarily stability to be Au(~530)(SR)(~100) after a size-focusing selection--which selects the robust size available in the starting polydisperse nanoparticles. This work clearly demonstrates that atomically precise nanocrystal molecules are achievable and that the factor of atomic shell closing contributes to their extraordinary stability compared to other sizes. Overall, this work opens up new opportunities for investigating many fundamental issues of nanocrystals, such as the formation of metallic state, and will have potential impact on condensed matter physics, nanochemistry, and catalysis as well.

  19. Fabrication of multilayered Ge nanocrystals by magnetron sputtering and annealing.

    PubMed

    Gao, Fei; Green, Martin A; Conibeer, Gavin; Cho, Eun-Chel; Huang, Yidan; Pere-Wurfl, Ivan; Flynn, Chris

    2008-11-12

    Multilayered Ge nanocrystals embedded in Si and Ge oxide films have been fabricated on Si substrate by a (SiO(2)+Ge)/(SiO(2)+GeO(2)) superlattice approach, using an rf magnetron sputtering technique with a Ge+SiO(2) composite target and subsequent thermal annealing in N(2) ambient at 750 °C for 5 min. X-ray diffraction (XRD) measurements indicated the formation of Ge nanocrystals with an average size estimated to be 9.8 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode shifted downwards to 298.8 cm(-1), which was caused by quantum confinement of phonons in the Ge nanocrystals. X-ray photoemission spectroscopy (XPS) analysis demonstrated that the Ge chemical state is mainly Ge(0) in the (SiO(2)+Ge) layer and Ge(4+) in the (SiO(2)+GeO(2)) layer in the superlattice structure. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (SiO(2)+Ge) layers, and had good crystallinity. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction compared with the conventional Ge-ncs fabrication method using a single and thick SiO(2) matrix film.

  20. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste.

    PubMed

    Chen, D; Lawton, D; Thompson, M R; Liu, Q

    2012-09-01

    This study investigated the effectiveness of cellulose nanocrystals derived from potato peel waste as a reinforcement and vapor barrier additive. The nanocrystals were derived from cellulosic material in the potato peel by alkali treatment and subsequently acid hydrolysis. TEM images revealed the average fiber length of the nanocrystals was 410 nm with an aspect ratio of 41; its aspect ratio being considerably larger than cotton-derived nanocrystals prepared using similar reaction conditions. Cellulose nanocrystals (CNC)-filled polyvinyl alcohol (PVA) and thermoplastic starch (TPS) films were prepared by solution casting method to maintain uniform dispersion of the 1-2% (w/w) filler content. An increase of 19% and 33% (starch composite) and 38% and 49% (PVA composite) in tensile modulus was observed for the 1% and 2% CNC-reinforced composites, respectively. Water vapor transmission measurements showed a marginal reduction of water permeability for the PVA composite, whereas no effect was observed for the thermoplastic starch composite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Strongly bound citrate stabilizes the apatite nanocrystals in bone

    SciTech Connect

    Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K.

    2010-10-12

    Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm){sup 2}, with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone

  2. Heteroepitaxial Diamond Growth

    DTIC Science & Technology

    1992-11-01

    that will allow their subcontractual work to impact the goals of the RTI prime contract in a timely fashion. As part of this process , new work statements...extremely low temperature diamond growth (250 - 300’C). Another example of where low temperature processing would be indispensable would be for...a low temperature process to preserve the cubic carbide and propagate the diamond. It is now clearly evident that water plays a pivotal role in low

  3. Diamond Technology Initiative

    DTIC Science & Technology

    1994-05-01

    thermal stresses of 10 million Watts per meter, 1,000 times better than Zerodur *. This property is also important for many thermal management...products UTD has coated to date include: • Optical windows, lenses, and mirrors . Zinc sulfide infrared windows coated with a 2.5 micron-thick...implants 16, 49 microwave plasma-enhanced CVD 2 mirrors , diamond-coated 49 models of diamond growth 10, 25, 33, 34, 39 moderators 10

  4. Nanocrystals of medium soluble actives--novel concept for improved dermal delivery and production strategy.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-08-15

    After use in oral pharmaceutical products, nanocrystals are meanwhile applied to improve the dermal penetration of cosmetic actives (e.g. rutin, hesperidin) and of drugs. By now, nanocrystals are only dermally applied made from poorly soluble actives. The novel concept is to formulate nanocrystals also from medium soluble actives, and to apply a dermal formulation containing additionally nanocrystals. The nanocrystals should act as fast dissolving depot, increase saturation solubility and especially accumulate in the hair follicles, to further increase skin penetration. Caffeine was used as model compound with relevance to market products, and a particular process was developed for the production of caffeine nanocrystals to overcome the supersaturation related effect of crystal growth and fiber formation - typical with medium soluble compounds. It is based on low energy milling (pearl milling) in combination with low dielectric constant dispersion media (water-ethanol or ethanol-propylene glycol mixtures) and optimal stabilizers. Most successful was Carbopol(®) 981 (e.g. 20% caffeine in ethanol-propylene glycol 3:7 with 2% Carbopol, w/w). Nanocrystals with varied sizes can now be produced in a controlled process e.g. 660 nm (optimal for hair follicle accumulation) to 250 nm (optimal for fast dissolution). The short term test proved stability over 2 months of the present formulation being sufficient to perform in vivo testing of the novel concept.

  5. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    PubMed

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH3NH3PbI3 and CH3NH3PbBr3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH3NH3PbI3 red/near-infrared LEDs and CH3NH3PbBr3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  6. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  7. Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas.

    PubMed

    Askari, Sadegh; Ul Haq, Atta; Macias-Montero, Manuel; Levchenko, Igor; Yu, Fengjiao; Zhou, Wuzong; Ostrikov, Kostya Ken; Maguire, Paul; Svrcek, Vladimir; Mariotti, Davide

    2016-10-06

    Highly size-controllable synthesis of free-standing perfectly crystalline silicon carbide nanocrystals has been achieved for the first time through a plasma-based bottom-up process. This low-cost, scalable, ligand-free atmospheric pressure technique allows fabrication of ultra-small (down to 1.5 nm) nanocrystals with very low level of surface contamination, leading to fundamental insights into optical properties of the nanocrystals. This is also confirmed by their exceptional photoluminescence emission yield enhanced by more than 5 times by reducing the nanocrystals sizes in the range of 1-5 nm, which is attributed to quantum confinement in ultra-small nanocrystals. This method is potentially scalable and readily extendable to a wide range of other classes of materials. Moreover, this ligand-free process can produce colloidal nanocrystals by direct deposition into liquid, onto biological materials or onto the substrate of choice to form nanocrystal films. Our simple but efficient approach based on non-equilibrium plasma environment is a response to the need of most efficient bottom-up processes in nanosynthesis and nanotechnology.

  8. High-mobility diamond

    NASA Astrophysics Data System (ADS)

    Landstrass, Maurice I.

    1994-04-01

    Recent improvements in the CVD diamond deposition process have made possible the fabrication of diamond photoconductive diodes with carrier mobility and lifetime exceeding the values typical of natural gemstones. One of the more surprising recent results is that the best room-temperature carrier properties have been measured on polycrystalline diamond films. The combined electron- hole mobility, as measured by transient photoconductivity at low carrier densities, is 4000 square centimeters per volt per second at electric field of 200 volts per centimeter and is comparable to that of the best single-crystal IIa natural diamonds. Carrier lifetimes measured under the same conditions are 150 picoseconds for the CVD diamond films. The collection distance within the diamond films, at the highest applied fields, is comparable to the average film grain size, indicative of little or no carrier scattering at grain boundaries. A comparison of SIMS measurements with electrical results suggest that impurity incorporation in the near grain boundary regions are responsible for controlling the carrier mobility.

  9. Multifunctional Sn- and Fe-Codoped In2O3 Colloidal Nanocrystals: Plasmonics and Magnetism.

    PubMed

    Tandon, Bharat; Shanker, G Shiva; Nag, Angshuman

    2014-07-03

    We prepared Fe- and Sn-codoped colloidal In2O3 nanocrystals (∼6 nm). Sn doping provides free electrons in the conduction band, originating localized surface plasmon resonance (LSPR) and electrical conductivity. The LSPR band can be tuned between 2000 and >3000 nm, depending on the extent and kind of dopant ions. Fe doping, on the other hand, provides unpaired electrons, resulting in weak ferromagnetism at room temperature. Fe doping shifts the LSPR band of 10% Sn-doped In2O3 nanocrystals to a longer wavelength along with a reduction in intensity, suggesting trapping of charge carriers around the dopant centers, whereas Sn doping increases the magnetization of 10% Fe-doped In2O3 nanocrystals, probably because of the free electron mediated interactions between distant magnetic ions. The combination of plasmonics and magnetism, in addition to electronic conductivity and visible-light transparency, is a unique feature of our colloidal codoped nanocrystals.

  10. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  11. High-Density Near-Field Readout Using Diamond Solid Immersion Lens

    NASA Astrophysics Data System (ADS)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Yamamoto, Masanobu; Schaich, Thomas J.; van Oerle, Bart M.; Godfried, Herman P.; Kriele, Paul A. C.; Houwman, Evert P.; Nelissen, Wim H. M.; Pels, Gert J.; Spaaij, Paul G. M.

    2006-02-01

    We investigated high-density near-field readout using a diamond solid immersion lens (SIL). A synthetic single-crystal chemical vapor deposition diamond provides a high refractive index and a high transmission for a wide wavelength range. Since the refractive index at a wavelength of 405 nm is 2.458, we could design a solid immersion lens with an effective numerical aperture of 2.34. Using the diamond SIL, we observed the eye pattern of a 150-GB-capacity (104.3 Gbit/in.2) disk with a track pitch of 130 nm and a bit length of 47.6 nm.

  12. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays.

    SciTech Connect

    Eah, S.-K.; Jaeger, H. M.; Scherer, N. F.; Lin, X.-M.; Weiderrecht, G. P.; Univ. of Chicago

    2004-03-11

    Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.

  13. Magnetic and optical properties of monosized Eu-doped ZnO nanocrystals from nanoemulsion

    NASA Astrophysics Data System (ADS)

    Yoon, Hayoung; Hua Wu, Jun; Hyun Min, Ji; Sung Lee, Ji; Ju, Jae-Seon; Keun Kim, Young

    2012-04-01

    We report the synthesis and characterization of monosized Eu-doped ZnO nanocrystals via a nanoemulsion process as a function of the doping ratio. The structure, optical, and magnetic properties of the nanocrystals are investigated by XRD, TEM, PL spectrometry, and physical property measurement system. The nanocrystals as prepared show high crystallinity and tight particle size distributions with the diameters of ˜ 10 nm. The doped samples clearly exhibit the 5D0→7FJ transition emission due to the presence of the Eu3+ ions. Meanwhile, the magnetic responses demonstrate the temperature dependence and change with dopant concentration.

  14. Synthesis and size differentiation of Ge nanocrystals in amorphous SiO2

    NASA Astrophysics Data System (ADS)

    Ağan, S.; Çelik-Aktaş, A.; Zuo, J. M.; Dana, A.; Aydınlı, A.

    2006-04-01

    Germanosilicate layers were grown on Si substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed at different temperatures ranging from 700 1010 °C for durations of 5 to 60 min. Transmission electron microscopy (TEM) was used to investigate Ge nanocrystal formation in SiO2:Ge films. High-resolution cross section TEM images, electron energy-loss spectroscopy and energy dispersive X-ray analysis (EDX) data indicate that Ge nanocrystals are present in the amorphous silicon dioxide films. These nanocrystals are formed in two spatially separated layers with average sizes of 15 and 50 nm, respectively. EDX analysis indicates that Ge also diffuses into the Si substrate.

  15. Triphasic Tooling with Small Oriented Diamond Tip for Turning and Smoothing Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Voronov, O. A.; Tompa, G. S.; Kear, B. H.; Veress, V.

    2004-01-01

    We are developing a new method for the growth of small diamond crystals at very high temperatures and pressures directly from a carbon melt. A prototype "Supercell" has been developed for this purpose. This system is capable of high rate crystal growth in relatively large working volumes. The resulting high quality diamond crystals will be incorporated into a triphasic diamond/titanium carbide/titanium composite tool, with an oriented diamond crystal at its tip. High pressure is needed to prevent degradation of diamond at high temperature, and to ensure the formation of a crack & composite structure. After grinding and polishing, the composite material will be joined to a steel holder, thus forming a diamond-tipped tool for turning and smoothing of a mirror surface. A properly oriented single-crystal diamond cuts and smoothes much better than a conventional polycrystalline diamond crystal. This is because the hardness depends on crystallographic orientation-the difference corresponds to 60-100 GPa on the Knoop scale. Our goal is to achieve surface roughness of about 1 nm, which will be accomplished by precision cutting and smoothing. The hardness of the functionally-graded diamond/titanium carbide/titanium composite tool varies from 100 GPa at its tip to 15 GPa at its base. Previous work has shown that the mass of machined material using an oriented-diamond tool is much larger than that for a standard diamond-metal composite tool.

  16. Triphasic Tooling with Small Oriented Diamond Tip for Turning and Smoothing Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Voronov, O. A.; Tompa, G. S.; Kear, B. H.; Veress, V.

    2004-01-01

    We are developing a new method for the growth of small diamond crystals at very high temperatures and pressures directly from a carbon melt. A prototype "Supercell" has been developed for this purpose. This system is capable of high rate crystal growth in relatively large working volumes. The resulting high quality diamond crystals will be incorporated into a triphasic diamond/titanium carbide/titanium composite tool, with an oriented diamond crystal at its tip. High pressure is needed to prevent degradation of diamond at high temperature, and to ensure the formation of a crack & composite structure. After grinding and polishing, the composite material will be joined to a steel holder, thus forming a diamond-tipped tool for turning and smoothing of a mirror surface. A properly oriented single-crystal diamond cuts and smoothes much better than a conventional polycrystalline diamond crystal. This is because the hardness depends on crystallographic orientation-the difference corresponds to 60-100 GPa on the Knoop scale. Our goal is to achieve surface roughness of about 1 nm, which will be accomplished by precision cutting and smoothing. The hardness of the functionally-graded diamond/titanium carbide/titanium composite tool varies from 100 GPa at its tip to 15 GPa at its base. Previous work has shown that the mass of machined material using an oriented-diamond tool is much larger than that for a standard diamond-metal composite tool.

  17. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    PubMed

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag(2+) nanocrystals and Red-Br-Nos-Ag(2+) nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag(2+) nanocrystals and Red-Br-Nos-Ag(2+) nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag(2+) nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag(2+) nanocrystals. Furthermore, zeta-potential of Nos-Ag(2+) nanocrystals was determined to be -25.3±3.11mV significantly (P<0.05) different from -15.2±3.33mV of Red-Br-Nos-Ag(2+) nanocrystals. The shape of tailored nanocrystals was slightly spherical and or irregular in shape. The architecture of Nos-Ag(2+) nanocrystals and Red-Br-Nos-Ag(2+) nanocrystals was crystalline in nature. FT-IR spectroscopy evinced the successful interaction of Ag(2+) nanocrystals with Nos and Red-Br-Nos, respectively. The superior therapeutic efficacy of tailored nanocrystals was measured in terms of enhanced cytotoxicity, apoptosis and cellular uptake. The Nos-Ag(2+) nanocrystals and Red-Br-Nos-Ag(2+) nanocrystals exhibited an IC50 of 16.6μM and 6.5μM, significantly (P<0.05) lower than 38.5μM of Nos and 10.3μM of Red-Br-Nos, respectively. Finally, cellular morphological alterations in B16F1 cells upon internalization of Nos-Ag(2+) nanocrystals and Red-Br-Nos-Ag(2+) nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated

  18. White light generation using CdSe/ZnS core shell nanocrystals hybridized with InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Nizamoglu, S.; Ozel, T.; Sari, E.; Demir, H. V.

    2007-02-01

    We introduce white light generation using CdSe/ZnS core-shell nanocrystals of single, dual, triple and quadruple combinations hybridized with InGaN/GaN LEDs. Such hybridization of different nanocrystal combinations provides the ability to conveniently adjust white light parameters including the tristimulus coordinates (x,y), correlated colour temperature (Tc) and colour rending index (Ra). We present the design, growth, fabrication and characterization of our white hybrid nanocrystal-LEDs that incorporate combinations of (1) yellow nanocrystals (λPL = 580 nm) on a blue LED (λEL = 440 nm) with (x,y) = (0.37,0.25), Tc = 2692 K and Ra = 14.69; (2) cyan and red nanocrystals (λPL = 500 and 620 nm) on a blue LED (λEL = 440 nm) with (x,y) = (0.37,0.28), Tc = 3246 K and Ra = 19.65; (3) green, yellow and red nanocrystals (λPL = 540, 580 and 620 nm) on a blue LED (λEL = 452 nm) with (x,y) = (0.30,0.28), Tc = 7521 K and Ra = 40.95; and (4) cyan, green, yellow and red nanocrystals (λPL = 500, 540, 580 and 620 nm) on a blue LED (λEL = 452 nm) with (x,y) = (0.24,0.33), Tc = 11 171 K and Ra = 71.07. These hybrid white light sources hold promise for future lighting and display applications with their highly adjustable properties.

  19. Silicon Nanocrystal Synthesis in Microplasma Reactor

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  20. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation via three-body collision. The particle synthesis in high-density plasma media is beneficial for promoting nucleation process. In addition, further growth of silicon nuclei was able to be favorably terminated in a short-residence time reactor. Micro Raman scattering spectrum showed that as-deposited particles were mostly amorphous silicon with small fraction of silicon nanocrystals. Transmission electron micrograph confirmed individual silicon nanocrystals of 3-15 nm size. Although those particles were not mono-dispersed, they were

  1. Photoemission studies of semiconductor nanocrystals

    SciTech Connect

    Hamad, K. S.; Roth, R.; Alivisatos, A. P.

    1997-04-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface.

  2. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  3. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  4. Electronic spectra of semiconductor nanocrystals

    SciTech Connect

    Alivisatos, A.P.

    1993-12-31

    Semiconductor nanocrystals smaller than the bulk exciton show substantial quantum confinement effects. Recent experiments including Stark effect, resonance Raman, valence band photoemission, and near edge X-ray adsorption will be used to put together a picture of the nanocrystal electronic states.

  5. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  6. Convenient Molecular Approach of Size and Shape Controlled ZnSe and ZnTe Nanocrystals

    DTIC Science & Technology

    2001-01-01

    Materials Research Society Symposium Proceedings Volume 635. Anisotropic Nanoparticles - Synthesis , Characterization and Applications To order the...diffraction patterns were measured on a Rigaku Miniflex instrument (0.5 kW) operating with a Cu K,(X, 0.1541 nm) X-ray source. ZnSc Nanocrystals. Zn ...one-pot synthesis of size and shape controlled zinc chalcogenide nanocrystals using a monomeric molecular precursor, [ Zn (EPh)2][TMEDA]. By varying

  7. The investigation of boron-doped diamond absorbance spectrum

    NASA Astrophysics Data System (ADS)

    Aksenova, A. S.; Altuhov, A. A.; Ryabeva, E. V.; Samosadnyi, V. T.; Feshchenko, V. S.; Chernyaev, A. P.; Shepelev, V. A.

    2017-01-01

    The trend of using of radiation with shorter wave length in leading high technological processes demands the detected search of materials for the solid-state electronics equipment and optical systems of an ultra violet and vacuum ultra violet spectral range. Diamond photodetectors of ultra violet radiation have the advantage of their opponents due to their unique properties, such as high sensitivity at the range of 190–250 nm and low sensitivity to the solar irradiation. The modification of semiconductive diamond material properties by the doping to get photodetectors with the different width of photosensitivity range is of a great interest. Due to this fact the spectroscopic investigation of artificial diamonds doped with boron took place for the definition of their applicability to produce the wide-spectral photosensitive equipment. The samples of thin diamond films were cut out in a crystallography plane (001). Sample transmission spectra were measured by vacuum infrared Fourier transform spectrometer at the range of 400–7000 cm-1. As a result it was explored that diamond based detectors doped with boron could be applied for the detection of infrared irradiation at the average infrared spectral range, however it is necessary to optimize the doping level of diamond materials to reach the compromise between the sensitivity and the speed capability of produced diamond photodetectors.

  8. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    PubMed Central

    Varney, Michael W.; Aslam, Dean M.; Janoudi, Abed; Chan, Ho-Yin; Wang, Donna H.

    2011-01-01

    Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM). The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA), due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors. PMID:25586924

  9. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays.

    PubMed

    Varney, Michael W; Aslam, Dean M; Janoudi, Abed; Chan, Ho-Yin; Wang, Donna H

    2011-08-15

    Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM). The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA), due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  10. Localized Synthesis of Silicon Nanocrystals in Silicon-rich SiO2 by CO2 Laser Annealing

    DTIC Science & Technology

    2007-05-01

    film rapid-thermal-annealed (RTA) by CO2 laser are primarily investigated. The micro -photoluminescence (μ-PL) and HRTEM analysis indicate that the...Si nanocrystals exhibits a largest diameter of 8 nm and a highest density of 4.5×1016 cm-3, which emits strong PL at 790-825 nm. The micro ...SiOx film. Index Terms— CO2 Laser annealing, Si nanocrystal, SiOx, Nanotechnology, micro -photoluminescence. I. Introduction CO2 laser based zone

  11. How Plasmonic excitation influences the LIPSS formation on diamond during multipulse femtosecond laser irradiation ?

    NASA Astrophysics Data System (ADS)

    Abdelmalek, Ahmed; Bedrane, Zeyneb; Amara, El-Hachemi; Eaton, Shane M.; Ramponi, Roberta

    2017-03-01

    A generalized plasmonic model is proposed to calculate the nanostructure period induced by multipulse laser femtosecond on diamond at 800 nm wavelengths. We follow the evolution of LIPSS formation by changing diamond optical parameters in function of electron plasma excitation during laser irradiation. Our calculations shows that the ordered nanostructures can be observed only in the range of surface plasmon polariton excitation.

  12. Ultrasound effects on the tribological properties of synthesized diamond films

    SciTech Connect

    Snikta, V.; Trava-Airoldi, V.J.; Baranauskas, V.

    1995-09-01

    The friction and wear behavior of chemical vapor deposition grown diamond films has been investigated under strong ultrasound conditions at the friction interface. Experiments were performed on an alternating {open_quotes}pin-on-plate{close_quotes} tribometer constructed as an ultrasonic motor with excited bimodal mechanical vibrations at the frequency of 20 kHz. Ultrasound sliding of the films was done against alumina ceramics and with the diamond film itself. We have shown that chemical vapor deposition diamond films can be fast polished mechanically without significant graphitization by ultrasonic treatment. The initial film roughness was reduced from an average R{sub a} {approximately}3000 nm to R{sub a} {approximately}10 nm. The polishing decreased the static coefficient of friction of the diamond film from about 0.53 to about 0.12. The operative mechanism for the polishing in the case of initially rough diamond samples appears to be asperity fracture. For smooth diamond samples it is suggested that tribochemical oxidation is also a polishing mechanism. 17 refs., 8 figs.

  13. Mechanical Properties of Nanocrystal Supercrystals

    SciTech Connect

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  14. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  15. Silica based polishing of {100} and {111} single crystal diamond

    PubMed Central

    Thomas, Evan L H; Mandal, Soumen; Brousseau, Emmanuel B; Williams, Oliver A

    2014-01-01

    Diamond is one of the hardest and most difficult to polish materials. In this paper, the polishing of {111} and {100} single crystal diamond surfaces by standard chemical mechanical polishing, as used in the silicon industry, is demonstrated. A Logitech Tribo Chemical Mechanical Polishing system with Logitech SF1 Syton and a polyurethane/polyester polishing pad was used. A reduction in roughness from 0.92 to 0.23 nm root mean square and 0.31 to 0.09 nm rms for {100} and {111} samples respectively was observed. PMID:27877689

  16. In situ growth of Au nanocrystals on graphene oxide sheets

    NASA Astrophysics Data System (ADS)

    Qin, Yong; Li, Juan; Kong, Yong; Li, Xiazhang; Tao, Yongxin; Li, Shan; Wang, Yuan

    2014-01-01

    Au nanocrystals (AuNCs) with a size of 10-20 nm decorated on graphene oxide (GO) were fabricated successfully through a hydrothermal reduction and crystallization route without any extra reductants and capping agents. The hydrophobic areas of GO benefit the formation of nanocrystals (NCs) with {111} facets totally exposed; however, the hydrophilic areas are detrimental to the crystallization. The morphology of AuNCs could be tailored by the degree of oxidation on the GO surface. The shape-controllable and reducing properties of GO are in favor of ``clean'' synthesis of noble metal NCs decorated on graphene.Au nanocrystals (AuNCs) with a size of 10-20 nm decorated on graphene oxide (GO) were fabricated successfully through a hydrothermal reduction and crystallization route without any extra reductants and capping agents. The hydrophobic areas of GO benefit the formation of nanocrystals (NCs) with {111} facets totally exposed; however, the hydrophilic areas are detrimental to the crystallization. The morphology of AuNCs could be tailored by the degree of oxidation on the GO surface. The shape-controllable and reducing properties of GO are in favor of ``clean'' synthesis of noble metal NCs decorated on graphene. Electronic supplementary information (ESI) available: Fig. S1-S4. See DOI: 10.1039/c3nr04714h

  17. Development of cationic nanocrystals for ocular delivery.

    PubMed

    Romero, Gregori B; Keck, Cornelia M; Müller, Rainer H; Bou-Chacra, Nadia A

    2016-10-01

    A cationic nanocrystal formulation containing dexamethasone acetate nanocrystals (0.05%) and polymyxin B (0.10%) for ophthalmic application was produced using a self-developed small scale method for wet bead milling. The formulation developed offers the advantage of increased saturation solubility of the drug (due to the nano-size of the crystals) and increased residence time in the eye (due to small size and increased mucoadhesion by the cationic charge) resulting ultimately in potential increased bioavailability. Characterization of the nanosuspensions by photon correlation spectroscopy (PCS) and transmission electron microscopy showed that the production method was successful in achieving dexamethasone crystals in the range of about 200-250nm. The physical stabilization of the nanocrystals and generation of the positive charge were realized by using cetylpyridinium chloride (CPC) and benzalkonium chloride (BAC) at the concentration of 0.01%. In contrast to other cationic excipients, they are regulatorily accepted due to their use as preservatives. The drug polymyxin B also contributed to the positive charge. Positive zeta potentials in the range +20 to +30mV were achieved. Isotonicity was adjusted using NaCl and non-ionic excipients (glycerol, sorbitol, dextrose). Physical and chemical stabilities were monitored for a period of 6months at room temperature, 5°C and 40°C. Particle size of the bulk population assessed by PCS remained practically unchanged over 6months of storage for the various formulations without isotonicity agents, and for the CPC-containing formulations with non-ionic isotonicity excipients. The chemical content also proved stable after 6months for all 3 temperatures evaluated. In vitro investigation of mucoadhesion was tested using mucin solutions at different concentrations, and the generated negative zeta potential was used as a measure of the interaction. The zeta potential reversed to about -15mV, indicating distinct interaction. The

  18. Cryotribology of diamond and graphite

    SciTech Connect

    Iwasa, Yukikazu; Ashaboglu, A.F.; Rabinowicz, E.R.

    1996-12-31

    An experimental study was carried out on the tribological behavior of materials of interest in cryogenic applications, focusing on diamond and graphite. Both natural diamond (referred in the text as diamond) and chemical-vapor-deposition (CVD) diamond (CVD-diamond) were used. The experiment was carried out using a pin-on-disk tribometer capable of operating at cryogenic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were used: (1) frictional coefficient ({mu}) vs velocity (v) characteristics at constant temperatures; (2) {mu} vs temperature (T) behavior at fixed sliding speeds. For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-diamond pairs, {mu}`s are virtually velocity independent. For each of diamond/graphite, alumina/graphite, and graphite/graphite pairs, the {partial_derivative}{mu}/{partial_derivative}v characteristic is favorable, i.e., positive. For diamond/CVD-diamond and graphite/CVD-diamond pairs, {mu}`s are nearly temperature independent between in the range 77 - 293 K. Each {mu} vs T plot for pin materials sliding on graphite disks has a peak at a temperature in the range 100 - 200 K.

  19. Size- and shape-dependent growth of fluorescent ZnS nanorods and nanowires using Ag nanocrystals as seeds

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Shang, Hangying; Niu, Jinzhong; Xu, Weiwei; Wang, Hongzhe; Li, Lin Song

    2012-09-01

    High-quality, monodisperse, and size-controlled Ag-ZnS nanorods or nanowires have been synthesized successfully using Ag nanocrystals as seeds. Such one-dimensional colloidal Ag-ZnS nanorods or nanowires having a purposefully controlled diameter in the range of 5-9 nm and a length of 18-600 nm were obtained by altering the reaction conditions, such as concentration, reaction time, reaction temperature, and diameter of Ag nanocrystals. The conjunction interface of Ag-ZnS nanorods or nanowires consists of the (200) plane of Ag nanocrystal and (101) plane of ZnS rod or wire, the <101> directions of ZnS nanorods grow preferentially. Based on the photoluminescence and lifetime of Ag-ZnS nanorods, it was found that Ag nanocrystals enhanced the radiative rate eventually, the fluorescence intensity of Ag-ZnS nanorods can be tuned by changing the size of the Ag seeds. The Ag-ZnS nanorods or nanowires showed greatly improved optical properties as compared to ZnS nanocrystals, the maximum emission was around 402 nm and the photoluminescence quantum yield was up to 30% when 5 nm Ag nanocrystals were used as seeds.High-quality, monodisperse, and size-controlled Ag-ZnS nanorods or nanowires have been synthesized successfully using Ag nanocrystals as seeds. Such one-dimensional colloidal Ag-ZnS nanorods or nanowires having a purposefully controlled diameter in the range of 5-9 nm and a length of 18-600 nm were obtained by altering the reaction conditions, such as concentration, reaction time, reaction temperature, and diameter of Ag nanocrystals. The conjunction interface of Ag-ZnS nanorods or nanowires consists of the (200) plane of Ag nanocrystal and (101) plane of ZnS rod or wire, the <101> directions of ZnS nanorods grow preferentially. Based on the photoluminescence and lifetime of Ag-ZnS nanorods, it was found that Ag nanocrystals enhanced the radiative rate eventually, the fluorescence intensity of Ag-ZnS nanorods can be tuned by changing the size of the Ag seeds. The Ag

  20. Nonaqueous synthesis and magnetic properties of ZnFe2O4 nanocrystals with narrow size distributions

    NASA Astrophysics Data System (ADS)

    Jeong, Jaeho; Min, Ji Hyun; Song, Ah-Young; Lee, Ji Sung; Ju, Jae-Seon; Wu, Jun Hua; Kim, Young Keun

    2011-04-01

    We report the nonaqueous synthesis and magnetic properties of narrowly size distributed ZnFe2O4 nanocrystals of two different particle sizes by nanoemulsion, of which structure and properties were investigated by transmission electron microscopy, x-ray diffraction, vibrating sample magnetometry, and physical property measurement system. The morphological and structural characterization show the high crystallinity and excellent particle size distribution of the ZnFe2O4 nanocrystals in the diameters of 5.37 ± 0.68 nm and 6.44 ± 0.95 nm, separately. Meantime, the corresponding magnetic measurements reveal the strong size dependence and well-defined nanomagnetism of the nanocrystals.

  1. Loosening quantum confinement: observation of real conductivity caused by hole polarons in semiconductor nanocrystals smaller than the Bohr radius.

    PubMed

    Ulbricht, Ronald; Pijpers, Joep J H; Groeneveld, Esther; Koole, Rolf; Donega, Celso de Mello; Vanmaekelbergh, Daniel; Delerue, Christophe; Allan, Guy; Bonn, Mischa

    2012-09-12

    We report on the gradual evolution of the conductivity of spherical CdTe nanocrystals of increasing size from the regime of strong quantum confinement with truly discrete energy levels to the regime of weak confinement with closely spaced hole states. We use the high-frequency (terahertz) real and imaginary conductivities of optically injected carriers in the nanocrystals to report on the degree of quantum confinement. For the smaller CdTe nanocrystals (3 nm < radius < 5 nm), the complex terahertz conductivity is purely imaginary. For nanocrystals with radii exceeding 5 nm, we observe the onset of real conductivity, which is attributed to the increasingly smaller separation between the hole states. Remarkably, this onset occurs for a nanocrystal radius significantly smaller than the bulk exciton Bohr radius a(B) ∼ 7 nm and cannot be explained by purely electronic transitions between hole states, as evidenced by tight-binding calculations. The real-valued conductivity observed in the larger nanocrystals can be explained by the emergence of mixed carrier-phonon, that is, polaron, states due to hole transitions that become resonant with, and couple strongly to, optical phonon modes for larger QDs. These polaron states possess larger oscillator strengths and broader absorption, and thereby give rise to enhanced real conductivity within the nanocrystals despite the confinement.

  2. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    SciTech Connect

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, III, Harry M.; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji -Won

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  3. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    DOE PAGES

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; ...

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  4. Fabrication of planarised conductively patterned diamond for bio-applications.

    PubMed

    Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion.

  5. Temperature enhancement of secondary electron emission from hydrogenated diamond films

    SciTech Connect

    Stacey, A.; Prawer, S.; Rubanov, S.; Akhvlediani, R.; Michaelson, Sh.; Hoffman, A.

    2009-09-15

    The effect of temperature on the stability of the secondary electron emission (SEE) yield from approx100-nm-thick continuous diamond films is reported. At room temperature, the SEE yield was found to decay as a function of electron irradiation dose. The SEE yield is observed to increase significantly upon heating of the diamond surface. Furthermore, by employing moderate temperatures, the decay of the SEE yield observed at room temperature is inhibited, showing a nearly constant yield with electron dose at 200 deg. C. The results are explained in terms of the temperature dependence of the electron beam-induced hydrogen desorption from the diamond surface and surface band bending. These findings demonstrate that the longevity of diamond films in practical applications of SEE can be increased by moderate heating.

  6. Diamond turning of aspheric steel molds for optics replication

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Dambon, O.; Bulla, B.

    2010-02-01

    Diamond turning of steel parts is conventionally not possible due to the high tool wear. However this process would enable several different application with high economical innovative potential. One technology that enables the direct manufacturing of steel components with monocrystalline diamond is the ultrasonic assisted diamond turning process. This technology has been investigated over years within the Fraunhofer IPT and has proven its potential. Surface roughness in the range of Ra = 5 nm are reached and the diamond wear is reduced by a factor 100 or higher. Up to now this process has been investigated in lab conditions manufacturing only plane surfaces. In order to prove its industrial suitability, two relevant aspherical shapes, convex and concave respectively, have been defined and manufactured. The reached form accuracies and surface roughness values will be described in this paper.

  7. Atomic-scale modeling of cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiawa

    Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to

  8. Silicon nanocrystal inks, films, and methods

    DOEpatents

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  9. Magnetization reversal in europium sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Redígolo, Marcela L.; Koktysh, Dmitry S.; Rosenthal, Sandra J.; Dickerson, James H.; Gai, Zheng; Gao, Lan; Shen, Jian

    2006-11-01

    The authors report the observation of the reversal in the magnetization hysteresis curve of europium sulfide nanocrystals. This phenomenon was investigated through the temperature-dependent magnetization of two classes of nanomaterials, nanocrystalline (2.0nm⩽dNCs⩽100nm) and quantum confined (dNCs⩽2.0nm), where dNCs is the diameter of the nanomaterial. The effect of the size of the nanomaterial on the magnetization is attributed to the competition between the magnetic properties of strained surface atoms and unstrained core atoms. Superconducting quantum interference device probed the magnetic response. Electron microscopy and X-ray diffraction spectroscopy revealed the crystallinity and monodispersivity of the nanomaterials.

  10. Color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals.

    PubMed

    Tian, Zhi-Quan; Zhang, Zhi-Ling; Gao, Jinhao; Huang, Bi-Hai; Xie, Hai-Yan; Xie, Min; Abruña, Héctor D; Pang, Dai-Wen

    2009-07-21

    We have developed a convenient strategy for preparing color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals, which exhibit excellent photoluminescence (PL) properties (fluorescing tunably from 550 nm to 630 nm by modifying the shell thickness) and ferromagnetic material properties (a magnetization of 4.4 emu g(-1) and a coercivity of 95 Oe).

  11. Growth of Au nanocrystals on CdS nanorods

    NASA Astrophysics Data System (ADS)

    Yang, Heesun

    2006-08-01

    Nanorods of S2- rich CdS were synthesized by a reaction of excess S versus Cd precursors in the presence of ethylene diamine. The photoluminescence (PL) emission from the S2- rich CdS nanorods was broad with a peak at ˜710 nm, which was 40 nm longer in wavelength than the PL peak from Cd2+ rich CdS (˜670 nm) nanorods. The influence of surface electron or hole trap states on the luminescent pathway of CdS nanorods will be discussed to explain these shifts in wavelength. Nanocrystals of Au ˜2 nm in size were grown on S2- rich surfaces of CdS nanorods. Significant luminescence quenching was observed from the Au nanocrystals on the CdS nanorods due to interfacial charge separation. Change separation by the Au nanocrystals on the CdS resulted in enhanced photocatalytic degradation of Procion red mix-5B (PRB) dye in an aqueous solution under UV light irradiation.

  12. Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals.

    PubMed

    Gao, Lei; Gan, Hui; Meng, Zhiyun; Gu, Ruolan; Wu, Zhuona; Zhu, Xiaoxia; Sun, Wenzhong; Li, Jian; Zheng, Ying; Sun, Tao; Dou, Guifang

    2016-12-01

    In the present study genipin crosslinked chitosan (CHI) hydrogels, which had been constructed and reported in our previous studies (Gao et al., 2014 [22]), were further evaluated for their advantage as a carrier for silver sulfadiazine (AgSD) nanocrystal systems. Firstly, AgSD nanocrystals with a mean particle size of 289nm were prepared by wet milling method and encapsulated into genipin crosslinked CHI hydrogels. AgSD nanocrystals displayed a uniform distribution and very good physical stability in the hydrogel network. Swelling-dependent release pattern was found for AgSD nanocrystals from hydrogels and the release profile could be well fitted with Peppas equation. When AgSD nanocrystals were encapsulated in hydrogels their fibroblast cytotoxicity decreased markedly, and their antibacterial effects against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were still comparable to unencapsulated AgSD nanocrystals. In vivo evaluation in excision and burn cutaneous wound models in mice showed that AgSD nanocrystal hydrogels markedly decreased the expression of inflammatory cytokine IL-6, but increased the levels of growth factors VEGF-A and TGF-β1. Histopathologically, the wounds treated by hydrogels containing AgSD nanocrystals showed the best healing state compared with commercial AgSD cream, hydrogels containing AgSD bulk powders and blank hydrogels. The wounds treated by AgSD nanocrystal hydrogels were dominated by marked fibroblast proliferation, new blood vessels and thick regenerated epithelial layer. Sirius Red staining assay indicated that AgSD nanocrystal hydrogels resulted in more collagen deposition characterized by a large proportion of type I fibers. Our study suggested that genipin-crosslinked CHI hydrogel was a potential carrier for local antibacterial nanomedicines. Copyright © 2016. Published by Elsevier B.V.

  13. The Diamond Makers

    NASA Astrophysics Data System (ADS)

    Hazen, Robert M.

    1999-08-01

    Since time immemorial, we have treasured diamonds for their exquisite beauty and unrivaled hardness. Yet, most of the earth's diamonds lie deep underground and totally unaccessible to us--if only we knew how to fabricate them! In The Diamond Makers Robert Hazen vividly recounts the very human desire to exceed nature and create a synthetic diamond. Spanning centuries of ground-breaking science, instances of bitter rivalry, cases of outright fraud and self-delusion, Hazen blends drama and science to reveal the extraordinary technological advances and devastating failures of the diamond industry. Along the way, readers will be introduced to the brilliant, often eccentric and controversial, pioneers of high-pressure research who have harnessed crushing pressures and scorching temperatures to transform almost any carbon-rich material, from road tar to peanut butter, into the most prized of all gems. Robert M. Hazen is the author of fifteen books, including the bestseller, Science Matters: Achieving Scientific Literacy, which he wrote with James Trefil. Dr. Hazen has won numerous awards for his research and scientific writing.

  14. Heteroepitaxial diamond growth

    NASA Astrophysics Data System (ADS)

    Markunas, R. J.; Rudder, R. A.; Posthill, J. B.; Thomas, R. E.; Hudson, G.

    1994-02-01

    Technical highlights from 1993 include the following: Growth Chemistries: A clear correlation was observed between ionization potential of feedstock gasses and critical power necessary for inductive coupling of the plasma and consequent diamond growth. Substrate preparation and epitaxial film quality: Ion-implantation of C and O has been coupled with either electrochemical etching or acid cleaning for surface preparation prior to homoepitaxial growth. Reactor modifications: Key improvements were made to the RF reactor to allow for long growths to consolidate substrates. Liquid mass flow controllers were added to precisely meter both the water and selected alcohol. Ion-implantation and lift off: Lift off of diamond platelets has been achieved with two processes. Ion-implantation of either C or O followed by annealing and implantation of either C or O followed by water based electrolysis. Diamond characterization: Development of novel detect characterization techniques: (1) Etch delineation of defects by exposure to propane torch flame. (2) Hydrogen plasma exposure to enhance secondary electron emission and provide non-topographical defect contrast. Acetylene will react at room temperature with sites created by partial desorption of oxygen from the (100) diamond surface. Thermal desorption measurements give an apparent activation energy for CO desorption from diamond (100) of 45 kcal/mol. Quantum chemical calculations indicate an activation energy of 38 kcal/mol for CO desorption. Ab initio calculations on (100) surfaces indicates that oxygen adsorbed at one dimer site has an effect on the dimerization of an adjacent site.

  15. Growth and characterization of cubic and non-cubic Ge nanocrystals

    SciTech Connect

    Mukherjee, S.; Pradhan, A.; Bhunia, S.; Mukherjee, S.; Maitra, T.; Nayak, A.

    2016-05-06

    Germanium nanocrystals with tetragonal (ST-12) and diamond like cubic (Ge-I) phases have been selectively grown by controlling the ionization and electrostatic potential of Ge clusters in an ion cluster beam deposition system. Predominantly tetragonal nanocrystals were obtained when grown using neutral clusters. The percentage of cubic phase increased when grown by ionizing the clusters and accelerating them towards substrates by applying electrostatic bias in the range of 1.5 –2.5 kV. Raman spectroscopic measurement showed strong peak at 275 cm{sup −1} and 300 cm{sup −1} for tetragonal and cubic Ge nanocrystals, respectively. TEM measurements showed crystalline lattice fringes of both type of the nanocrystals. The selected area electron diffraction patterns showed (111) and (210) as the dominating lattice planes for tetragonal nanocrystals while the cubic phases had (111), (311) and (331) as the prominent lattice planes. The optical absorption edge redshifted from 1.75 to 1.55 eV as the percentage of the cubic phases increased in the NC composition in the composite film.

  16. [Studies on nano-diamond prepared by explosive detonation by Raman and infrared spectroscopy].

    PubMed

    Wen, Chao; Jin, Zhi-Hao; Liu, Xiao-Xin; Li, Xun; Guan, Jin-Qing; Sun, De-Yu; Lin, Ying-Rui; Tang, Shi-Ying; Zhou, Gang; Lin, Jun-De

    2005-05-01

    Nano-diamond was synthesized by TNT/RDX explosives detonation in a steel chamber and characterized by X-ray diffraction (XRD), laser Raman spectroscopy, and infrared spectroscopy. XRD results indicate that nano-diamond has cubic diamond structure. The parameter of unit cell of nano-diamond is 0.359 23 nm and is 0.72% larger than that of the bulk diamond. The high-density defects and other impurity atoms in the nano-diamond structure may lead to the large lattice constant. The examination results of Raman spectra show that the Raman band is broader and shifts to l ow frequency by 3 cm(-1), because the size of nano-diamond reaches nanometer order. There is little graphite in the nano-diamond. There are two peaks in FTIR of the nano-diamond, which are characteristic peaks of diamond at 1 262 and 1 134 cm(-1). Besides these two peaks, there are six peaks at 3 422, 1 643, 2 971, 2 930, 2 857 and 1 788 cm(-1) respectively. The FTIR bands at 2 930 and 2 857 cm(-1) are the antisymmetrical and symmetrical stretch vibration absorption spectra of CH2 respectively. The 3 422 cm(-1) is the stretch vibration absorption peak of O-H. The 1 634 cm(-1) confirms that there are H2O in the nano-diamond. The 2 971 cm(-1) is the antisymmetrical stretch vibration absorption peak of CH3. The 1 788 cm(-1) is the stretch vibration absorption peak of C=O. These indicate that there are H and O elements in the nano-diamond. From the mechanism of the nano-diamond, the authors discuss the reason for the vibration absorption peaks of O-H, CH2, CH3, and C=O, existing in the FTIR of the nano-diamond.

  17. Wear-Resistant, Self-Lubricating Surfaces of Diamond Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1995-01-01

    In humid air and dry nitrogen, as-deposited, fine-grain diamond films and polished, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m). In an ultrahigh vacuum (10(exp -7) Pa), however, they have high steady-state coefficients of friction (greater than 0.6) and high wear rates (greater than or equal to 10(exp -4) mm(exp 3)/N-m). Therefore, the use of as-deposited, fine-grain and polished, coarse-grain diamond films as wear-resistant, self-lubricating coatings must be limited to normal air or gaseous environments such as dry nitrogen. On the other hand, carbon-ion-implanted, fine-grain diamond films and nitrogen-ion-implanted, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m) in all three environments. These films can be effectively used as wear-resistant, self-lubricating coatings in an ultrahigh vacuum as well as in normal air and dry nitrogen.

  18. Preparation of zwitterionically charged nanocrystals by surface TEMPO-mediated oxidation and partial deacetylation of α-chitin.

    PubMed

    Ifuku, Shinsuke; Hori, Taishi; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki

    2015-05-20

    Zwitterionic nanocrystals were prepared by TEMPO-mediated oxidation, partial deacetylation, and subsequent mechanical disintegration of α-chitin. The pH dependence of the morphology, transparency, and viscosity of the nanocrystals were evaluated. After those reactions, the carboxylate and amino group contents of the chitin derivative were 0.45 and 1.26 mmol/g, respectively. After mechanical treatment, the water dispersion consisted of nanocrystals approximately 250 nm long and 10nm thick. Under acidic and basic conditions, the water dispersions were highly transparent. On the other hand, under neutral conditions, the dispersion was turbid due to the ionic interaction between the cationic and anionic groups on the nanocrystal surface. Although the surface zwitterionic nanocrystals collected from acidic and basic dispersion were randomly oriented due to electrostatic repulsions, nanocrystals formed aggregates in neutral water due to the cationic and anionic interaction between them. Nanocrystals in neutral water had higher viscosity than those in acidic and basic water, since ionic interaction caused nanocrystal networks to form in water.

  19. Diamond collecting in northern Colorado.

    USGS Publications Warehouse

    Collins, D.S.

    1982-01-01

    The discovery of numerous diamond-bearing kimberlite diatremes in the N Front Range of Colorado and Wyoming is of both scientific and economic interest. Species recovered from heavy-mineral concentrates include Cr-diopside, spinel, Mg-ilmenite, pyrope and diamond. A nodule tentatively identified as a graphite-diamond eclogite was also found. -G.W.R.

  20. Making Diamond in the Laboratory

    ERIC Educational Resources Information Center

    Strong, Herbert

    1975-01-01

    Discusses the graphite to diamond transformation and a phase diagram for carbon. Describes high temperature-higher pressure experimental apparatus and growth of diamonds from seed crystals. Reviews properties of the diamond which suggest uses for the synthetic product. Illustrations with text. (GH)

  1. Making Diamond in the Laboratory

    ERIC Educational Resources Information Center

    Strong, Herbert

    1975-01-01

    Discusses the graphite to diamond transformation and a phase diagram for carbon. Describes high temperature-higher pressure experimental apparatus and growth of diamonds from seed crystals. Reviews properties of the diamond which suggest uses for the synthetic product. Illustrations with text. (GH)

  2. Nanofabrication of sharp diamond tips by e-beam lithography and inductively coupled plasma reactive ion etching.

    SciTech Connect

    Moldovan, N.; Divan, R.; Zeng, H.; Carlisle, J. A.; Advanced Diamond Tech.

    2009-12-07

    Ultrasharp diamond tips make excellent atomic force microscopy probes, field emitters, and abrasive articles due to diamond's outstanding physical properties, i.e., hardness, low friction coefficient, low work function, and toughness. Sharp diamond tips are currently fabricated as individual tips or arrays by three principal methods: (1) focused ion beam milling and gluing onto a cantilever of individual diamond tips, (2) coating silicon tips with diamond films, or (3) molding diamond into grooves etched in a sacrificial substrate, bonding the sacrificial substrate to another substrate or electrodepositing of a handling chip, followed by dissolution of the sacrificial substrate. The first method is tedious and serial in nature but does produce very sharp tips, the second method results in tips whose radius is limited by the thickness of the diamond coating, while the third method involves a costly bonding and release process and difficulties in thoroughly filling the high aspect ratio apex of molding grooves with diamond at the nanoscale. To overcome the difficulties with these existing methods, this article reports on the feasibility of the fabrication of sharp diamond tips by direct etching of ultrananocrystalline diamond (UNCD{reg_sign}) as a starting and structural material. The UNCD is reactive ion etched using a cap-precursor-mask scheme. An optimized etching recipe demonstrates the formation of ultrasharp diamond tips ({approx} 10 nm tip radius) with etch rates of 650 nm/min.

  3. Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties.

    PubMed

    Cao, Xuebo; Gu, Li

    2005-02-01

    In this paper we describe the preparation of homogeneously needle-shaped cobalt ferrite (CoFe(2)O(4)) nanocrystals on a large scale through the smooth decomposition of urea and the resulting co-precipitation of Co(2+) and Fe(3+) in oleic acid micelles. Furthermore, we found that other ferrite nanocrystals with a needle-like shape, such as zinc ferrite (ZnFe(2)O(4)) and nickel ferrite (NiFe(2)O(4)), can be prepared by the same process. Needle-shaped CoFe(2)O(4) nanocrystals dispersed in an aqueous solution containing oleic acid exhibit excellent stability and the formed colloid does not produce any precipitations after two months, which is of prime importance if these materials are applied in magnetic fluids. X-ray diffraction (XRD) measurements were used to characterize the phase and component of the co-precipitation products, and demonstrate that they are spinel ferrite with a cubic symmetry. Transmission electron microscopy (TEM) observation showed that all the nanocrystals present a needle-like shape with a 22 nm short axis and an aspect ratio of around 6. Varying the concentration of oleic acid did not bring about any obvious influence on the size distribution and shapes of CoFe(2)O(4). The magnetic properties of the needle-shaped CoFe(2)O(4) nanocrystals were evaluated by using a vibrating sample magnetometer (VSM), electron paramagnetic resonance (EPR), and a Mössbauer spectrometer, and the results all demonstrated that CoFe(2)O(4) nanocrystals were superparamagnetic at room temperature.

  4. Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals.

    PubMed

    van der Stam, Ward; Gudjonsdottir, Solrun; Evers, Wiel H; Houtepen, Arjan J

    2017-09-20

    Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from >10(22) cm(-3) to intrinsic) in copper sulfide nanocrystals by electrochemical methods. We can control the type of charge injection, i.e., capacitive charging or ion intercalation, via the choice of the charge compensating cation (e.g., ammonium salts vs Li(+)). Further, the type of intercalating ion determines whether the charge injection is fully reversible (for Li(+)) or leads to permanent changes in doping density (for Cu(+)). Using fully reversible lithium intercalation allows us to switch between thin films of covellite CuS NCs (Eg = 2.0 eV, hole density 10(22) cm(-3), strong localized surface plasmon resonance) and low-chalcocite CuLiS NCs (Eg = 1.2 eV, intrinsic, no localized surface plasmon resonance), and back. Electrochemical Cu(+) ion intercalation leads to a permanent phase transition to intrinsic low-chalcocite Cu2S nanocrystals that display air stable fluorescence, centered around 1050 nm (fwhm ∼145 meV, PLQY ca. 1.8%), which is the first observation of narrow near-infrared fluorescence for copper sulfide nanocrystals. The dynamic control over the hole doping density and fluorescence of copper sulfide nanocrystals presented in this work and the ability to switch between plasmonic and fluorescent semiconductor nanocrystals might lead to their successful implementation into photovoltaic devices, NIR optical switches and smart windows.

  5. Photografting and patterning of oligonucleotides on benzophenone-modified boron-doped diamond.

    PubMed

    Szunerits, Sabine; Shirahata, Naoto; Actis, Paolo; Nakanishi, Jun; Boukherroub, Rabah

    2007-07-19

    Irradiation of a patterned benzophenone-terminated boron-doped diamond (BDD) surface with UV light (lambda = 350 nm) in the presence of a 15(mer) oligonucleotide resulted in the covalent linking of the DNA strand to the BDD interface.

  6. Unusual Cathodoluminescence in Diamonds: Evidence for Metamorphism or a Source Characteristic

    NASA Astrophysics Data System (ADS)

    Bruce, L. F.; Longo, M.; Kopylova, M.; Ryder, J.

    2009-05-01

    Cathodoluminescence (CL) is a useful means of diamond "fingerprinting". CL-active cratonic macrodiamonds usually cathodoluminesce blue or yellow, and always exhibit prominent wide CL emittance peaks at 430-450 nm and 480-490 nm. Exceptions to this norm are diamond suites recently discovered in the Archean rocks metamorphosed in the greenschist facies. These macrodiamonds cathodoluminesce red, orange and yellow, and invariably exhibit the most prominent CL peak at 520 nm. The diamond suites with the unusual CL are derived from two different locations within the Michipicoten Greenstone Belt (Southern Superior craton), near the town of Wawa (Ontario). One suite is extracted from the 2.68-2.74 Ga polymict volcanic breccias and lamprophyres and the other suite - from the 2.68 Ga sedimentary conglomerates grading into overlying sandstones of the Dore assemblage. The diamondiferous conglomerates are found in an area 8 km south of the breccias and 12 km northeast of Wawa. CL emittance of macrodiamonds (> 0.5 mm) extracted from the breccias consists of a broad band at 520 nm, a sharp peak at 575.5 nm, and several lines at 550-670 nm. The conglomerate macrodiamonds mostly show a dominant peak at 520 nm, whereas corresponding microdiamonds exhibit two peaks at about 576 and 600 nm. None of the diamonds show a maximum peak at 420 nm. Polycrystalline stones from conglomerates show distinct CL spectra and colours for all intergrown crystals in the same diamond. The relative abundances of the CL colors of the conglomerate diamonds are orange-red (46%), yellow (28%), orange-green (10%), green (6%), and non-uniform colors (10%). These colours are more diverse than mostly orange CL colours in the breccia diamonds; this results from a larger variety of positions and intensity of CL peaks in the conglomerate diamonds. We propose two models for explaining the presence of the 520 nm CL peak in the breccia and conglomerate diamonds in Wawa. The first model suggests metamorphism as the

  7. Silicon nanocrystals as handy biomarkers

    NASA Astrophysics Data System (ADS)

    Fujioka, Kouki; Hoshino, Akiyoshi; Manabe, Noriyoshi; Futamura, Yasuhiro; Tilley, Richard; Yamamoto, Kenji

    2007-02-01

    Quantum dots (QDs) have brighter and longer fluorescence than organic dyes. Therefore, QDs can be applied to biotechnology, and have capability to be applied to medical technology. Currently, among the several types of QDs, CdSe with a ZnS shell is one of the most popular QDs to be used in biological experiments. However, when the CdSe QDs were applied to clinical technology, potential toxicological problems due to CdSe core should be considered. To eliminate the problem, silicon nanocrystals, which have the potential of biocompatibility, could be a candidate of alternate probes. Silicon nanocrystals have been synthesized using several techniques such as aerosol, electrochemical etching, laser pyrolysis, plasma deposition, and colloids. Recently, the silicon nanocrystals were reported to be synthesized in inverse micelles and also stabilized with 1-heptene or allylamine capping. Blue fluorescence of the nanocrystals was observed when excited with a UV light. The nanocrystals covered with 1-heptene are hydrophobic, whereas the ones covered with allylamine are hydrophilic. To test the stability in cytosol, the water-soluble nanocrystals covered with allylamine were examined with a Hela cell incorporation experiment. Bright blue fluorescence of the nanocrystals was detected in the cytosol when excited with a UV light, implying that the nanocrystals were able to be applied to biological imaging. In order to expand the application range, we synthesized and compared a series of silicon nanocrystals, which have variable surface modification, such as alkyl group, alcohol group, and odorant molecules. This study will provide a wider range of optoelectronic applications and bioimaging technology.

  8. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  9. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals.

    PubMed

    Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C

    2017-01-27

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm(-2) to values over 100 μm(-2).

  10. Effect of argon implantation on solid-state dewetting: control of size and surface density of silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Almadori, Y.; Borowik, Ł.; Chevalier, N.; Barbé, J.-C.

    2017-01-01

    Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm-2 to values over 100 μm-2.

  11. Heteroepitaxial Diamond Growth

    DTIC Science & Technology

    1993-01-12

    of CH3 and C6 H6 adsorbed on nickel. Calculated chemisorption energies of pyramidal CH3 on Ni(l 11) are 38 for the clean surface and 50 , 47, and 17... results from early experiments on the diamond (100) surface . In Figure 3.1 we can easily distinguish features associated with the conversion of the...those 5 reports were for fairly thin (< 2 gm) epitaxial layers. The results reported there for homoepitaxy on the diamond (100) surface were quite

  12. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  13. Process for making diamonds

    NASA Technical Reports Server (NTRS)

    Rasquin, J. R.; Estes, M. F. (Inventor)

    1973-01-01

    A description is given of a device and process for making industrial diamonds. The device is composed of an exponential horn tapering from a large end to a small end, with a copper plate against the large end. A magnetic hammer abuts the copper plate. The copper plate and magnetic hammer function together to create a shock wave at the large end of the horn. As the wave propagates to the small end, the extreme pressure and temperature caused by the wave transforms the graphite, present in an anvil pocket at the small end, into diamonds.

  14. Carbon onions as nanoscopic pressure cells for diamond formation

    NASA Astrophysics Data System (ADS)

    Banhart, F.; Ajayan, P. M.

    1996-08-01

    SPHERICAL particles of carbon consisting of concentric graphite-like shells ('carbon onions') can be formed by electron irradiation of graphitic carbon materials1,2. Here we report that, when such particles are heated to ~700 °C and irradiated with electrons, their cores can be transformed to diamond. Under these conditions the spacing between layers in the carbon onions decreases from 0.31 in the outer shells (slightly less than the 0.34-nm layer spacing of graphite) to about 0.22 nm in the core, indicating considerable compression towards the particle centres. We find that this compression allows diamond to nucleate-in effect the carbon onions act as nanoscopic pressure cells for diamond formation.

  15. Using Si-doped diamond plate of sandwich type for spatial profiling of laser beam

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Sedov, V. S.; Kudryavtsev, O. S.; Ralchenko, V. G.; Nozhkina, A. V.; Vlasov, I. I.; Konov, V. I.

    2017-02-01

    We demonstrated a laser beam profiling method based on imaging of the laser induced photoluminescence of a transparent single-crystal diamond plate. The luminescence at 738 nm is caused by silicon-vacancy color centers formed in the epitaxial diamond film by its doping with Si during CVD growth of the film. The on-line beam monitor was tested for a cw laser emitting at 660 nm wavelength.

  16. Transmission-mode diamond white-beam position monitor at NSLS

    PubMed Central

    Muller, Erik M.; Smedley, John; Bohon, Jen; Yang, Xi; Gaowei, Mengjia; Skinner, John; De Geronimo, Gianluigi; Sullivan, Michael; Allaire, Marc; Keister, Jeffrey W.; Berman, Lonny; Héroux, Annie

    2012-01-01

    Two transmission-mode diamond X-ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic-grade (p.p.b. nitrogen impurity) single-crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X-ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm × 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam. PMID:22514173

  17. Transmission-mode diamond white-beam position monitor at NSLS.

    PubMed

    Muller, Erik M; Smedley, John; Bohon, Jen; Yang, Xi; Gaowei, Mengjia; Skinner, John; De Geronimo, Gianluigi; Sullivan, Michael; Allaire, Marc; Keister, Jeffrey W; Berman, Lonny; Héroux, Annie

    2012-05-01

    Two transmission-mode diamond X-ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic-grade (p.p.b. nitrogen impurity) single-crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X-ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm × 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam.

  18. Transmission-mode diamond white-beam position monitor at NSLS

    SciTech Connect

    Muller E. M.; Heroux A.; Smedley, J.; Bohon, J.; Yang, X.; Gaowei, M.; Skinner, J.; De Geronimo, G.; Sullivan, M.; Allaire, M.; Keister, J. W.; Berman, L.

    2012-05-01

    Two transmission-mode diamond X-ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic-grade (p.p.b. nitrogen impurity) single-crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X-ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm x 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam.

  19. Nanodisco Balls: Control over Surface versus Core Loading of Diagnostically Active Nanocrystals into Polymer Nanoparticles

    PubMed Central

    2015-01-01

    Nanoparticles of complex architectures can have unique properties. Self-assembly of spherical nanocrystals is a high yielding route to such systems. In this study, we report the self-assembly of a polymer and nanocrystals into aggregates, where the location of the nanocrystals can be controlled to be either at the surface or in the core. These nanospheres, when surface decorated with nanocrystals, resemble disco balls, thus the term nanodisco balls. We studied the mechanism of this surface loading phenomenon and found it to be Ca2+ dependent. We also investigated whether excess phospholipids could prevent nanocrystal adherence. We found surface loading to occur with a variety of nanocrystal types including iron oxide nanoparticles, quantum dots, and nanophosphors, as well as sizes (10–30 nm) and shapes. Additionally, surface loading occurred over a range of polymer molecular weights (∼30–3000 kDa) and phospholipid carbon tail length. We also show that nanocrystals remain diagnostically active after loading onto the polymer nanospheres, i.e., providing contrast in the case of magnetic resonance imaging for iron oxide nanoparticles and fluorescence for quantum dots. Last, we demonstrated that a fluorescently labeled protein model drug can be delivered by surface loaded nanospheres. We present a platform for contrast media delivery, with the unusual feature that the payload can be controllably localized to the core or the surface. PMID:25188401

  20. Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals.

    PubMed

    Wang, Yue; Li, Xiaoming; Zhao, Xin; Xiao, Lian; Zeng, Haibo; Sun, Handong

    2016-01-13

    Halide perovskite materials have attracted intense research interest due to the striking performance in photoharvesting photovoltaics as well as photoemitting applications. Very recently, the emerging CsPbX3 (X = Cl, Br, I) perovskite nanocrystals have been demonstrated to be efficient emitters with photoluminescence quantum yield as high as ∼90%, room temperature single photon sources, and favorable lasing materials. Herein, the nonlinear optical properties, in particular, the multiphoton absorption and resultant photoluminescence of the CsPbBr3 nanocrystals, were investigated. Notably, a large two-photon absorption cross-section of up to ∼1.2 × 10(5) GM is determined for 9 nm sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin film of close-packed CsPbBr3 nanocrystals. The stimulated emission is found to be photostable and wavelength-tunable. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal nanocrystals for the first time. Our results reveal the strong nonlinear absorption in the emerging CsPbX3 perovskite nanocrystals and suggest these nanocrystals as attractive multiphoton pumped optical gain media, which would offer new opportunities in nonlinear photonics and revive the nonlinear optical devices.

  1. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery.

    PubMed

    Chen, Chen; Wang, Lisha; Cao, Fangrui; Miao, Xiaoqing; Chen, Tongkai; Chang, Qi; Zheng, Ying

    2016-01-30

    The aim of this study was to fabricate 20(S)-protopanaxadiol (PPD) nanocrystals to improve PPD's oral bioavailability and brain delivery. PPD nanocrystals were fabricated using an anti-solvent precipitation approach where d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was optimized as the stabilizer. The fabricated nanocrystals were nearly spherical with a particle size and drug loading of 90.44 ± 1.45 nm and 76.92%, respectively. They are in the crystalline state and stable at 4°C for at least 1 month. More than 90% of the PPD could be rapidly released from the nanocrystals, which was much faster than the physical mixture and PPD powder. PPD nanocrystals demonstrated comparable permeability to solution at 2.52 ± 0.44×10(-5)cm/s on MDCK monolayers. After oral administration of PPD nanocrystals to rats, PPD was absorbed quickly into the plasma and brain with significantly higher Cmax and AUC0-t compared to those of the physical mixture. However, no brain targeting was observed, as the ratios of the plasma AUC0-t to brain AUC0-t for the two groups were similar. In summary, PPD nanocrystals are a potential oral delivery system to improve PPD's poor bioavailability and its delivery into the brain for neurodegenerative disease and intracranial tumor therapies in the future.

  2. Simultaneously targeted imaging cytoplasm and nucleus in living cell by biomolecules capped ultra-small GdOF nanocrystals.

    PubMed

    Yan, Jin; He, Wangxiao; Li, Na; Yu, Meng; Du, Yaping; Lei, Bo; Ma, Peter X

    2015-08-01

    Simultaneously targeted imaging cytoplasm and nucleus in living cell by just one photoluminescent nanocrystals has been a giant challenge in nanobiotechnology and nanomedicine. Herein we report a novel Arg-Gly-Asp peptide (RGD) or cysteine (Cys) functionalized ultra-small GdOF nanocrystals for simultaneously targeted imaging cell cytoplasm and nucleus. As-prepared RGD@GdOF and Cys@GdOF nanocrystals possessed high water dispersibility, ultra-small size (about 5 nm) and double emissions (545 nm and 587 nm) with high quantum yield. Such functionalized nanocrystals presented high cellular biocompatibility and were successfully used to label living cells with very high signal to noise ratio. The living cells cytoplasm and nucleus (cancer cells and stem cells) could be imaged simultaneously through the mergence of green and red emission of nanocrystals, based on mechanism of fluorescent intensity difference. These functionalized nanocrystals also exhibited significantly higher photostability and brightness as compared to dyes. Such the ultra-small size, high photostability and intensity, double emissions, excellent biocompatibility and targeted ability, make as-prepared functionalized nanocrystals particularly promising for cellular and molecular-level bioimaging applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Light Sensitivity of Diamond Monocrystals

    NASA Astrophysics Data System (ADS)

    Bentele, Benjamin; Cumalat, John; Stenson, Kevin; Wagner, Steve

    2010-10-01

    We are investigating the use of diamonds as a low density, radiation-hard sensor for nuclear and particle research. Using a radioactive source, we have studied the response of minimum ionizing particles as a function of voltage, polarity, and time stability. While it is well known that polycrystalline diamond is light-sensitive, little is known about the light sensitivity of single crystal diamond. We will report on our studies of the diamond's electronic response to light and the diamond's internal ``polarization'' effect. We also describe our future plans.

  4. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  5. Singlet Oxygen Generation Mediated By Silicon Nanocrystal Assemblies

    DTIC Science & Technology

    2011-01-01

    network. Structural investigations have confirmed that PSi layers consist of Si nanocrystals having sizes dependent mainly on the doping level of...porosified Si grains consist from almost ideal nanosilicon spheres with mean size ~ 5 nm (see Fig. 4 a). For this range of sizes quantum confinement...Therefore, to obtain reliable luminescence data, solvents consisting of poor quenchers have been chosen. Fig. 15 demonstrates spectroscopic

  6. Low temperature thin films formed from nanocrystal precursors

    DOEpatents

    Alivisatos, A.P.; Goldstein, A.N.

    1993-11-16

    Nanocrystals of semiconductor compounds are produced. When they are applied as a contiguous layer onto a substrate and heated they fuse into a continuous layer at temperatures as much as 250, 500, 750 or even 1000 K below their bulk melting point. This allows continuous semiconductor films in the 0.25 to 25 nm thickness range to be formed with minimal thermal exposure. 9 figures.

  7. Low temperature thin films formed from nanocrystal precursors

    DOEpatents

    Alivisatos, A. Paul; Goldstein, Avery N.

    1993-01-01

    Nanocrystals of semiconductor compounds are produced. When they are applied as a contiguous layer onto a substrate and heated they fuse into a continuous layer at temperatures as much as 250, 500, 750 or even 1000.degree. K below their bulk melting point. This allows continuous semiconductor films in the 0.25 to 25 nm thickness range to be formed with minimal thermal exposure.

  8. Autofluorescence-free in vivo multicolor imaging using upconversion fluoride nanocrystals.

    PubMed

    Tian, Zhen; Chen, Guanying; Li, Xiang; Liang, Huijuan; Li, Yuanshi; Zhang, Zhiguo; Tian, Ye

    2010-07-01

    Non-invasive fluorescence imaging is an important technique in biology. However, detection of traditional biomarker emissions is accompanied by a high background signal. In this study we examined whether upconversion sodium yttrium fluoride (NaYF(4)) nanocrystals were suitable for autofluorescence-free multicolor fluorescence imaging in a living animal. Tissue autofluorescence was induced with a 405 nm light source, then rats were subjected to injection of fluorescein isothiocyanate (FITC), cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots (QDs), or NaYF(4):ytterbium/thulium (Yb(3+)/Tm(3+)), NaYF(4):Yb(3+)/holmium (Ho(3+)), and NaYF(4):Yb(3+)/Ho(3+)/cerium (Ce(3+)) nanocrystals. Imaging with NaYF(4) nanocrystals (974 nm laser) completely removed the high tissue autofluorescence, in marked contrast to imaging with FITC and QDs (405 nm light). Optical imaging experiments demonstrated that multiple biological targets and organs could be imaged at the same time using multicolor NaYF(4) upconversion nanocrystals under a single excitation wavelength (974 nm). These data demonstrated the proof-of-principle that autofluorescence-free multicolor imaging using near-infrared to visible upconversion of NaYF(4) nanocrystals excited by laser can be performed in a living animal.

  9. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  10. Photoluminescence and electroluminescence from copper doped zinc sulphide nanocrystals/polymer composite

    NASA Astrophysics Data System (ADS)

    Que, Wenxiu; Zhou, Y.; Lam, Y. L.; Chan, Y. C.; Kam, C. H.; Liu, B.; Gan, L. M.; Chew, C. H.; Xu, G. Q.; Chua, S. J.; Xu, S. J.; Mendis, F. V. C.

    1998-11-01

    Cu-doped ZnS nanocrystals were prepared in an inverse microemulsion at room temperature as well as under a hydrothermal condition. X-ray diffraction analysis showed that the diameter of the Cu-doped ZnS nanocrystals particles was about 9 nm. These particles showed a strong photoluminescence intensity and a broad emission band from 490 to 530 nm. The half-width of emission was about 60 nm. Cu-doped ZnS nanocrystals/polymethylmethacrylate composite as a light-emitting layer was used to fabricate a single layer structure electroluminescent device which had low turn on voltage (less than 5 V). The green light of electroluminescence was observed at room temperature. The electroluminescence and photoluminescence spectra were nearly identical at room temperature.

  11. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  12. Deposition and characterization of diamond thin films by HF-CVD method

    SciTech Connect

    Mishra, S. C. Choudhary, R. K.; Mishra, P.; Abraham, G. J.

    2015-06-24

    Effect of reactor pressure and methane gas concentration on the growth of diamond films on Si (100) substrate by hot filament chemical vapor deposition (HFCVD) method has been studied in this work. Raman spectroscopy measurements of the obtained film confirmed the formation of a mixture of micro and nanocrystalline diamond by showing peaks at 1140 and 1334 cm{sup −1} wave shifts. Scanning electron microscopy results showed formation of well defined faceted diamond grains of 100–500 nm size. Average roughness of the films measured by a surface profilometer was in the range of 40–60 nm.

  13. Novel bio-antifelting agent based on waterborne polyurethane and cellulose nanocrystals.

    PubMed

    Zhao, Qun; Sun, Gang; Yan, Kelu; Zhou, Aojia; Chen, Yixiu

    2013-01-02

    Novel nanocomposites made from cellulose nanocrystals and waterborne polyurethane were employed as wool antifelting agents. The cellulose nanocrystals, prepared by acid hydrolysis of cellulose microcrystalline, are in rod form with lengths of 70-150 nm and diameters of 10-20 nm in aqueous suspension, respectively. After the two aqueous suspensions were mixed homogeneously, cellulose nanocrystal reinforced polyurethane composite (nanocomposite) films were prepared and evaluated by means of transmission electron microscopy, scanning electron microscopy and dynamic mechanical analysis. Then the nanocrystal films were applied onto surfaces of wools by a pad-dry-cure process with nanocomposites containing different cellulose nanocrystal contents. The results indicated that with increasing cellulose nanocrystal content from 0 to 1.0 wt%, the area-shrinking rate of the treated wool fabrics was decreased from 5.24% to 0.70%, and the tensile strength of the fabric was increased by 14.95% and decreased about 44% use of waterborne polyurethane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    PubMed Central

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia

    2015-01-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices. PMID:27877842

  15. A Novel Thermal Electrochemical Synthesis Method for Production of Stable Colloids of "Naked" Metal (Ag) Nanocrystals

    SciTech Connect

    Hu, Michael Z.; Easterly, Clay E

    2009-01-01

    Solution synthesis of nanocrystal silver is reviewed. This paper reports a novel thermal electrochemical synthesis (TECS) for producing metal Ag nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25-100oC), low voltage (1-50 V DC) on Ag electrodes, and simple water or aqueous solutions as reaction medium. Furthermore, a tubular dialysis membrane surround electrodes proves favorable to produce nanosized (<10 nm) Ag nanocrystals. Different from those nanocrystals reported in literature, our nanocrystals have several unique features: (1) small nanometer size, (2) nakedness , i.e., surfaces of metal nanocrystals are free of organic ligands or capping molecules and no need of dispersant in synthesis solutions, and (3) colloidally stable in water solutions. It was discovered that Ag nanoparticles with initially large size distribution can be homogenized into near-monodispersed system by a low power (< 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, stable, and uniform sized. In the presence of stabilizing agent (also as supporting electrolyte) such as polyvinyl alcohol (PVA), large yield of silver nanoparticles (<100nm) in the form of thick milky sols are produced.

  16. CVD diamond - fundamental phenomena

    SciTech Connect

    Yarbrough, W.A.

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  17. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  18. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  19. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  20. Diamond in 3-D

    NASA Image and Video Library

    2004-08-20

    This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.

  1. ELECTRON AMPLIFICATION IN DIAMOND.

    SciTech Connect

    SMEDLEY, J.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RAO, T.; SEGALOV, Z.; WU, Q.

    2006-07-10

    We report on recent progress toward development of secondary emission ''amplifiers'' for photocathodes. Secondary emission gain of over 300 has been achieved in transmission mode and emission mode for a variety of diamond samples. Techniques of sample preparation, including hydrogenation to achieve negative electron affinity (NEA), have been adapted to this application.

  2. Diamond growth in mantle fluids

    NASA Astrophysics Data System (ADS)

    Bureau, Hélène; Frost, Daniel J.; Bolfan-Casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick

    2016-11-01

    In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C-O-H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds containing syngenetic inclusions were synthesized in multi-anvil presses employing starting mixtures of carbonates, and silicate compositions in the presence of pure water and saline fluids (H2O-NaCl). Experiments were performed at conditions compatible with the Earth's geotherm (7 GPa, 1300-1400 °C). Results show that within the timescale of the experiments (6 to 30 h) diamond growth occurs if water and carbonates are present in the fluid phase. Water promotes faster diamond growth (up to 14 mm/year at 1400 °C, 7 GPa, 10 g/l NaCl), which is favorable to the inclusion trapping process. At 7 GPa, temperature and fluid composition are the main factors controlling diamond growth. In these experiments, diamonds grew in the presence of two fluids: an aqueous fluid and a hydrous silicate melt. The carbon source for diamond growth must be carbonate (CO32) dissolved in the melt or carbon dioxide species in the aqueous fluid (CO2aq). The presence of NaCl affects the growth kinetics but is not a prerequisite for inclusion-bearing diamond formation. The presence of small discrete or isolated volumes of water-rich fluids is necessary to grow inclusion-bearing peridotitic, eclogitic, fibrous, cloudy and coated diamonds, and may also be involved in the growth of ultradeep, ultrahigh-pressure metamorphic diamonds.

  3. Early stage of nanocrystal growth

    SciTech Connect

    2012-01-01

    Berkeley Lab researchers at the Molecular Foundry have elucidated important mechanisms behind oriented attachment, the phenomenon that drives biomineralization and the growth of nanocrystals. This electron microscopy movie shows the early stage of nanocrystal growth. Nanoparticles make transient contact at many points and orientations until their lattices are perfectly matched. The particles then make a sudden jump-to-contact to form attached aggregates. (Movie courtesy of Jim DeYoreo)

  4. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  5. Preparation of ternary Cd1- x Zn x S nanocrystals with tunable ultraviolet absorption by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Huihui; Liu, Limin; Li, Shaohua; Murowchick, James B.; Wisner, Clarissa; Leventis, Nickolas; Peng, Zhonghua; Tan, Guolong

    2015-03-01

    Composition-tunable ternary Cd1- x Zn x S nanocrystals are among the most extensively studied alloyed semiconductor nanocrystals. However, they are almost exclusively prepared by wet chemical routes, which lead to surface-capped nanoparticles. Herein, we present a simple mechanical alloying process to prepare uncapped Zn1- x Cd x S nanocrystals throughout the entire composition range. The resulting nanocrystals have average sizes smaller than 9 nm, are chemically homogenous, and exhibit linear lattice parameter-composition and close-to-linear band-gap-composition relationships. Continuous lattice contraction of the Cd1- x Zn x S nanocrystals with the atomic Zn concentration results in a successional enlargement of their band gap energies expanding from the visible region to the ultraviolet (UV) region, demonstrating the ability for precise control of band gap engineering through composition tuning and mechanical alloying. [Figure not available: see fulltext.

  6. The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly(L-lactide)-polyethyleneimine magnetic particles.

    PubMed

    Stojanović, Zoran; Otoničar, Mojca; Lee, Jongwook; Stevanović, Magdalena M; Hwang, Mintai P; Lee, Kwan Hyi; Choi, Jonghoon; Uskoković, Dragan

    2013-09-01

    We report a simple and green procedure for the preparation of magnetic iron oxide nanocrystals via solvothermal synthesis. The nanocrystal synthesis was carried out under mild conditions in the water-ethanol-oleic acid solvent system with the use of the oleate anion as a surface modifier of nanocrystals and glucose as a reducing agent. Specific conditions for homogenous precipitation achieved in such a reaction system lead to the formation of uniform high-quality nanocrystals down to 5 nm in diameter. The obtained hydrophobic nanocrystals can easily be converted to hydrophilic magnetic nanoparticles by being immobilized in a poly(L-lactide)-polyethyleneimine polymeric matrix. These hybrid nano-constructs may find various biomedical applications, such as magnetic separation, gene transfection and/or magnetic resonance imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Tuning the formation and functionalities of ultrafine CoFe2O4 nanocrystals via interfacial coherent strain.

    PubMed

    Hsieh, Ying-Hui; Kuo, Ho-Hung; Liao, Sheng-Chieh; Liu, Heng-Jui; Chen, Ying-Jiun; Lin, Hong-Ji; Chen, Chien-Te; Lai, Chih-Huang; Zhan, Qian; Chueh, Yu-Lun; Chu, Ying-Hao

    2013-07-21

    Complex oxide nanocrystals with a spinel structure show their remarkable optical, electronic, mechanical, thermal, and magnetic properties. In this study, we present a simple yet versatile strategy to grow self-assembled epitaxial CoFe2O4 nanocrystals with well-controlled size (less than 10 nm) and single orientation. CoFe2O4 nanocrystals were fabricated via phase separation in a BiFeO3-CoF2O4 ultrathin film by pulsed laser deposition. The coherent strain at the BiFeO3-CoF2O4 interface suppressed the growth of the nanocrystals regardless of substrate temperatures. This strain also resulted in the ferromagnetic anisotropy and interesting conducting behaviors of ultrafine CFO nanocrystals.

  8. TEM studies of Ge nanocrystal formation in PECVD grown SiO2:Ge/SiO2 multilayers

    NASA Astrophysics Data System (ADS)

    Agan, S.; Dana, A.; Aydinli, A.

    2006-06-01

    We investigate the effect of annealing on the Ge nanocrystal formation in multilayered germanosilicate-oxide films grown on Si substrates by plasma enhanced chemical vapour deposition (PECVD). The multilayered samples were annealed at temperatures ranging from 750 to 900 °C for 5 min under nitrogen atmosphere. The onset of formation of Ge nanocrystals, at 750 °C, can be observed via high resolution TEM micrographs. The diameters of Ge nanocrystals were observed to be between 5 and 14 nm. As the annealing temperature is raised to 850 °C, a second layer of Ge nanocrystals forms next to the original precipitation band, positioning itself closer to the substrate SiO2 interface. High resolution cross section TEM images, electron diffraction and electron energy-loss spectroscopy as well as energy-dispersive x-ray analysis (EDAX) data all indicate that Ge nanocrystals are present in each layer.

  9. Synthesis and characterization of Sm and Pr-doped CaWO4 nano-crystals

    NASA Astrophysics Data System (ADS)

    Suneetha, P.; Rajesh, Ch; Ramana, M. V.

    2017-04-01

    In this paper, we report a simple method to dope rare-earth ions, such as samarium (Sm) and praseodymium (Pr), in calcium tungstate (CaWO4) nano-crystals. To estimate the size as well as incorporation of rare-earth ions in the host lattice, several techniques are used. The x-ray diffraction method was used to identify the phase of the nano-crystals, and scanning electron microscopy was used to calculate the size of the nano-crystals. The incorporation of rare-earth ions was confirmed using energy dispersive analysis x-ray studies. These studies reveal that nano-crystals of calcium tungstate doped with Sm3+ and Pr3+ with a size around 60 nm could be synthesized using this method.

  10. White light emission and optical gains from a Si nanocrystal thin film.

    PubMed

    Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming

    2015-11-27

    We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting.

  11. Low Temperature Synthesis of Rutile TiO2 Nanocrystals and Their Photovoltaic and Photocatalytic Properties.

    PubMed

    Roy, Subhasis; Han, Gill Sang; Shin, Hyunjung; Lee, Jin Wook; Mun, Jinsoo; Shin, Hyunho; Jung, Hyun Suk

    2015-06-01

    We report a novel method of synthesizing rutile TiO2 nanocrystals at low temperature (200 degrees C) via a butanol rinsing process followed by heat treatment in an O2 atmosphere. The rutile nanocrystals show uniform size distribution of approximately 20 nm and good crystallinity confirmed by X-ray diffraction and transmission electron microscopy. A mechanism for the low temperature synthesis of rutile nanocrystals is rationalized in terms of an explosive thermal decomposition reaction of butoxy groups on TiO2 powders with O2 gas. Characterizations of the photovoltaic and photocatalytic properties of rutile nanocrystals exhibited higher photoactivity than large-sized conventional rutile powder, which demonstrates that this novel synthesis technology could expand applications of rutile powders to various photoactive devices beyond solar cells and photocatalysts.

  12. Synthesis of highly luminescent mercaptosuccinic acid-coated CdSe nanocrystals under atmospheric conditions.

    PubMed

    Dong, Meiting; Xu, Jingyi; Liu, Shuxian; Zhou, Ying; Huang, Chaobiao

    2014-11-01

    Here we report a facile one-pot method for the preparation of high-quality CdSe nanocrystals (NCs) in aqueous solution under an air atmosphere. Compared with the traditional use of NaHSe or H2 Se, the more stable sodium selenite is utilized as the Se source for preparing highly luminescent CdSe nanocrystals. By using mercaptosuccinic acid (MSA) as the capping agent and borate-citrate acid as the buffering solution, CdSe nanocrystals with high quantum yield (up to 70%) have been synthesized conveniently. The influence of different experimental parameters, such as the pH of the precursor solution, the molar ratio of Cd(2+) to Na2 SeO3 and Cd(2+) to MSA on the CdSe nanocrystals, has been systematically investigated. The prepared CdSe NCs were spherical with a size of ~ 5 nm.

  13. White light emission and optical gains from a Si nanocrystal thin film

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming

    2015-11-01

    We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting.

  14. Enzyme mediated synthesis of phytochelatin-capped CdS nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Kang, Seung Hyun; Lee, Young-In; Choa, Yong-ho; Mulchandani, Ashok; Myung, Nosang V.; Chen, Wilfred

    2010-09-01

    We reported the enzyme mediated synthesis of CdS nanocrystals by immobilized phytochelatin synthase, which converts glutathione into the metal-binding peptide phytochelatin (PC). Formation of CdS nanocrystals were observed upon the addition of CdCl2 and Na2S with PC as the capping agent. By varying the reaction times, different compositions of PCs (form PC2 to PC3) can be synthesized, resulting in the formation of highly stable nanocrystals with tunable sizes (from 2.0 to 1.6 nm diameter). This approach may be generalized to guide the in vitro self assembly of a wide range of nanocrystals with different compositions and sizes.

  15. Preparation of ZnSe Nanocrystals Using Water-in-Oil Microemulsions

    NASA Astrophysics Data System (ADS)

    Hyun Soo Kim,; Jong Sung Kim,; Sang Joon Park,

    2010-06-01

    ZnSe nanocrystals were prepared using a safe and simple synthetic method by employing a sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water/oil microemulsion system with aqueous ZnSO4 and Se2- solutions, and characterized by X-ray diffraction (XRD) analysis, photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM). To control the diameter of nanocrystals in the quantum confinement region, the synthesis was performed with different oil phases (heptane and cyclohexane) and various water-to-surfactant ratios, W ([H2O]/[surfactant]). Cubic zinc blende ZnSe nanocrystals were synthesized and their size was controlled in the range from 2.5 to 17 nm. The maximum PL efficiency was 14% for the smallest ZnSe nanocrystal.

  16. 14N NQR lineshape in nanocrystals: An ab initio investigation of urea

    NASA Astrophysics Data System (ADS)

    Gregorovič, Alan

    2017-05-01

    14N nuclear quadrupole resonance (NQR) lineshapes mostly contain information of low interest, although in nanocrystals they may display some unexpected behaviour. In this work, we present an ab initio computational study of the 14N NQR lineshapes in urea nanocrystals as a function of the nanocrystal size and geometry, focusing on the surface induced broadening of the lineshapes. The lineshapes were obtained through a calculation of the electric field gradient for each nitrogen site in the nanocrystal separately, taking into account the individual crystal field by embedding the molecule of interest in a suitable lattice of point multipoles representing other urea molecules in the nanocrystal. The small influence of distant molecules is found with a series expansion, using the in-crystal Sternheimer shieldings which we also calculated ab initio. We have considered nanocrystals with two geometries: a sphere and a cube, with characteristic sizes between 5 and 100 nm. Our calculations suggest that there is a dramatic difference between the linewidths for the two geometries. For spheres, we find a steep drop in linewidths at ˜10 nm; at 5 nm the linewidth is ˜11 kHz, whereas for sizes above 20 nm the linewidth is practically negligible (<100 Hz). For cubes, on the other hand, we find a steady 1/size decrease, from 12 kHz at 10 nm to 1.2 kHz at 100 nm. This analysis is important for 14N NQR spectroscopy of crystalline pharmaceuticals, where nanoparticles are increasingly more often embedded in some sort of matrix. Although this is only a theoretical analysis, we believe that this work can serve as a guidance for the forthcoming experimental analysis.

  17. (14)N NQR lineshape in nanocrystals: An ab initio investigation of urea.

    PubMed

    Gregorovič, Alan

    2017-05-21

    (14)N nuclear quadrupole resonance (NQR) lineshapes mostly contain information of low interest, although in nanocrystals they may display some unexpected behaviour. In this work, we present an ab initio computational study of the (14)N NQR lineshapes in urea nanocrystals as a function of the nanocrystal size and geometry, focusing on the surface induced broadening of the lineshapes. The lineshapes were obtained through a calculation of the electric field gradient for each nitrogen site in the nanocrystal separately, taking into account the individual crystal field by embedding the molecule of interest in a suitable lattice of point multipoles representing other urea molecules in the nanocrystal. The small influence of distant molecules is found with a series expansion, using the in-crystal Sternheimer shieldings which we also calculated ab initio. We have considered nanocrystals with two geometries: a sphere and a cube, with characteristic sizes between 5 and 100 nm. Our calculations suggest that there is a dramatic difference between the linewidths for the two geometries. For spheres, we find a steep drop in linewidths at ∼10 nm; at 5 nm the linewidth is ∼11 kHz, whereas for sizes above 20 nm the linewidth is practically negligible (<100 Hz). For cubes, on the other hand, we find a steady 1/size decrease, from 12 kHz at 10 nm to 1.2 kHz at 100 nm. This analysis is important for (14)N NQR spectroscopy of crystalline pharmaceuticals, where nanoparticles are increasingly more often embedded in some sort of matrix. Although this is only a theoretical analysis, we believe that this work can serve as a guidance for the forthcoming experimental analysis.

  18. Structural peculiarities of single crystal diamond needles of nanometer thickness

    NASA Astrophysics Data System (ADS)

    Orekhov, Andrey S.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Loginov, Artem B.; Chuvilin, Andrey L.; Obraztsov, Alexander N.

    2016-11-01

    Diamond is attractive for various applications due to its unique mechanical and optical properties. In particular, single crystal diamond needles with high aspect ratios and sharp apexes of nanometer size are demanded for different types of optical sensors including optically sensing tip probes for scanning microscopy. This paper reports on electron microscopy and Raman spectroscopy characterization of the diamond needles having geometrically perfect pyramidal shapes with rectangular atomically flat bases with (001) crystallography orientation, 2-200 nm sharp apexes, and with lengths from about 10-160 μm. The needles were produced by selective oxidation of (001) textured polycrystalline diamond films grown by chemical vapor deposition. Here we study the types and distribution of defects inside and on the surface of the single crystal diamond needles. We show that sp3 type point defects are incorporated into the volume of the diamond crystal during growth, while the surface of the lateral facets is enriched by multiple extended defects. Nitrogen addition to the reaction mixture results in increase of the growth rate on {001} facets correlated with the rise in the concentration of sp3 type defects.

  19. Diamond film deposition using microwave plasmas under low pressures

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Rich, D. H.

    1991-01-01

    Microwave plasma depositions of diamond films have been investigated under low pressures of 10 mTorr to 10 Torr, at low substrate temperatures of 400 to 750 C, using high methane concentrations of 5 to 15 percent and oxygen concentrations of 5 to 10 percent in hydrogen plasmas. The deposition system consists of a microwave plasma chamber, a downstream deposition chamber, and a RF induction-heated sample stage. The deposition system can be operated in either high-pressure microwave or electron cyclotron resonance (ECR) modes by varying the sample stage position. Cathodoluminescence (CL) studies on diamond films deposited at 10 Torr pressure show that CL emissions at 430, 480, 510, 530, 560, 570 and 740 nm can be employed to characterize the quality of diamond films. High-quality, well-faceted diamond films have been deposited at 10 Torr and 600 C using 5 percent CH4 and 5 percent O2 in H2 plasmas; CL measurements on these films show very low N impurities and no detectable Si impurities. Diamond nucleation on SiC has been demonstrated by depositing well-faceted diamond crystallites on SiC-coated Si substrates.

  20. Diamond film deposition using microwave plasmas under low pressures

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Rich, D. H.

    1991-01-01

    Microwave plasma depositions of diamond films have been investigated under low pressures of 10 mTorr to 10 Torr, at low substrate temperatures of 400 to 750 C, using high methane concentrations of 5 to 15 percent and oxygen concentrations of 5 to 10 percent in hydrogen plasmas. The deposition system consists of a microwave plasma chamber, a downstream deposition chamber, and a RF induction-heated sample stage. The deposition system can be operated in either high-pressure microwave or electron cyclotron resonance (ECR) modes by varying the sample stage position. Cathodoluminescence (CL) studies on diamond films deposited at 10 Torr pressure show that CL emissions at 430, 480, 510, 530, 560, 570 and 740 nm can be employed to characterize the quality of diamond films. High-quality, well-faceted diamond films have been deposited at 10 Torr and 600 C using 5 percent CH4 and 5 percent O2 in H2 plasmas; CL measurements on these films show very low N impurities and no detectable Si impurities. Diamond nucleation on SiC has been demonstrated by depositing well-faceted diamond crystallites on SiC-coated Si substrates.

  1. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity

    NASA Astrophysics Data System (ADS)

    Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon

    2015-12-01

    We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of

  2. Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals.

    PubMed

    Owen, Jonathan S; Chan, Emory M; Liu, Haitao; Alivisatos, A Paul

    2010-12-29

    The kinetics of cadmium selenide (CdSe) nanocrystal formation was studied using UV-visible absorption spectroscopy integrated with an automated, high-throughput synthesis platform. Reaction of anhydrous cadmium octadecylphosphonate (Cd-ODPA) with alkylphosphine selenides (1, tri-n-octylphosphine selenide; 2, di-n-butylphenylphosphine selenide; 3, n-butyldiphenylphosphine selenide) in recrystallized tri-n-octylphosphine oxide was monitored by following the absorbance of CdSe at λ = 350 nm, where the extinction coefficient is independent of size, and the disappearance of the selenium precursor using {(1)H}(31)P NMR spectroscopy. Our results indicate that precursor conversion limits the rate of nanocrystal nucleation and growth. The initial precursor conversion rate (Q(o)) depends linearly on [1] (Q(o)(1) = 3.0-36 μM/s) and decreases as the number of aryl groups bound to phosphorus increases (1 > 2 > 3). Changes to Q(o) influence the final number of nanocrystals and thus control particle size. Using similar methods, we show that changing [ODPA] has a negligible influence on precursor reactivity while increasing the growth rate of nuclei, thereby decreasing the final number of nanocrystals. These results are interpreted in light of a mechanism where the precursors react in an irreversible step that supplies the reaction medium with a solute form of the semiconductor.

  3. Luminescence mechanisms in 6H-SiC nanocrystals

    NASA Astrophysics Data System (ADS)

    Botsoa, J.; Bluet, J. M.; Lysenko, V.; Sfaxi, L.; Zakharko, Y.; Marty, O.; Guillot, G.

    2009-10-01

    Experimental conditions allowing consequent selection of a dominating photoluminescence mechanism in 6H-SiC nanocrystals at room temperature are reported. Electrostatic screening of surface states involved in radiative transitions can be efficiently achieved by polar ethanol molecules. This leads to a preponderant radiative channel between the electronic levels corresponding to the impurity atoms (N and Al). This radiative channel is deactivated by centrifugation-induced selection of the smallest colloidal 6H-SiC nanocrystals in which the probability to have both donor and acceptor atoms is negligible. Consequently, for these smallest 6H-SiC nanocrystals with switched off transitions between surface states and impurity levels, quantum-confinement effect can be clearly observed. The formation of energy subbands in the 6H-SiC nanocrystals is then evidenced from photoluminescence excitation and absorption measurements performed on the centrifuged colloidal nanosuspension. A most probable mean diameter of 1.9 nm for these particles is deduced from calculation of energy levels in the effective-mass approximation.

  4. Lower pressure synthesis of diamond material

    DOEpatents

    Lueking, Angela; Gutierrez, Humberto; Narayanan, Deepa; Burgess Clifford, Caroline E.; Jain, Puja

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  5. Assemblies of Cellulose Nanocrystals

    NASA Astrophysics Data System (ADS)

    Kumacheva, Eugenia

    The entropically driven coassembly of nanorods (cellulose nanocrystals, CNCs) and different types of nanoparticles (NPs), including dye-labeled latex NPs, carbon dots and plasmonic NPs was experimentally studied in aqueous suspensions and in solid films. In mixed CNC-NP suspensions, phase separation into an isotropic NP-rich and a chiral nematic CNC-rich phase took place; the latter contained a significant amount of NPs. Drying the mixed suspension resulted in CNC-NP films with planar disordered layers of NPs, which alternated with chiral nematic CNC-rich regions. In addition, NPs were embedded in the chiral nematic domains. The stratified morphology of the films, together with a random distribution of NPs in the anisotropic phase, led to the films having close-to-uniform fluorescence, birefringence, and circular dichroism properties.

  6. A facile arrested precipitation method for synthesis of pure wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals using thiourea as a sulfur source

    SciTech Connect

    Li, Chunya; Ha, Enna; Wong, Wing-Leung; Li, Cuiling; Ho, Kam-Piu; Wong, Kwok-Yin

    2012-11-15

    Graphical abstract: High-resolution TEM image of wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals. Highlights: ► Wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals were synthesized by arrested precipitation method. ► XRD, EDX, TEM demonstrate that the CZTS nanocrystals are purely wurtzite structure. ► The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. ► The estimated direct bandgap energy is 1.56 eV for wurtzite CZTS nanocrystals. ► The electrical resistivity of the wurtzite CZTS nanocrystals is low. -- Abstract: A facile route for the synthesis of wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals was developed by an arrested precipitation method at 240 °C under simple reaction conditions with diethanolamine as the solvent and thiourea as sulfur source. The structure and morphology of the CZTS nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. Control experiments demonstrated that CZTS nanocrystals which are purely wurtzite structure are readily obtained. The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. The estimated direct bandgap energy is 1.56 eV, which indicates that the CZTS nanocrystals produced by this method possess promising applications in photovoltaic devices.

  7. Are aragonite nanocrystals in modern microbialites biogenic?

    NASA Astrophysics Data System (ADS)

    Benzerara, K.; Menguy, N.; Lopez-Garcia, P.; Kazmierczack, J.; Guyot, F.; Brown, G. E.

    2006-12-01

    Microbialites are sedimentary deposits associated with microbial mat communities, and are thought to be evidence of some of the oldest life on Earth. Despite extensive studies of such deposits, little is known about the role of microorganisms in their formation. In addition, unambiguous criteria proving their biogenicity have yet to be established. We focused on modern microbialites formed in the alkaline Lake Van, Turkey. Lake Van microbialites have a fine-grained micritic texture similar to most carbonate microbialites, and consist of nanometer-sized aragonite crystals, which display unusal clustered spherical morphologies in the 30-100 nm size range nm. In order to better document the relationships between microbes, organics and aragonite nanocrystals, we combined X-ray and electron microscopies at the nm scale. We describe a simple way to locate microorganisms and organics entombed in calcium carbonate precipitates. We observed that nanometer-sized aragonite crystals, which comprise the largest part of the microbialites, are surrounded by a 10-nm thick amorphous calcium carbonate layer containing organic molecules and are embedded in an organic matrix, likely consisting of polysaccharides, which, based on experimental results from the literature, helps explain the unusual sizes and shapes of these crystals. This study illustrates a methodological approach that brings valuable information on interaction between organics and minerals at the submicron scale. The results question existing models of the role of microorganisms in carbonate precipitation and provide new biosignatures for these deposits.

  8. Nanocrystals for dermal penetration enhancement - Effect of concentration and underlying mechanisms using curcumin as model.

    PubMed

    Vidlářová, Lucie; Romero, Gregori B; Hanuš, Jaroslav; Štěpánek, František; Müller, Rainer H

    2016-07-01

    Nanocrystals have received considerable attention in dermal application due to their ability to enhance delivery to the skin and overcome bioavailability issues caused by poor water and oil drug solubility. The objective of this study was to investigate the effect of nanocrystals on the mechanism of penetration behavior of curcumin as a model drug. Curcumin nanocrystals were produced by the smartCrystals® process, i.e. bead milling followed by high pressure homogenization. The mean particle size of the curcumin crystals was about 200nm. Stabilization was performed with alkyl polyglycoside surfactants. The distribution of curcumin within the skin was determined in vitro on cross-sections of porcine skin and visualized by fluorescent microscopy. The skin penetration profile was analyzed for the curcumin nanosuspension with decreasing concentrations (2%, 0.2%, 0.02% and 0.002% by weight) and compared to nanocrystals in a viscous hydroxypropylcellulose (HPC) gel. This study demonstrated there was minor difference between low viscous nanosuspension and the gel, but low viscosity seemed to favor skin penetration. Localization of curcumin was observed in the hair follicles, also contributing to skin uptake. Looking at the penetration of curcumin from formulations with decreasing nanocrystal concentration, formulations with 2%, 0.2% and 0.02% showed a similar penetration profile, whereas a significantly weaker fluorescence was observed in the case of a formulation containing 0.002% of curcumin nanocrystals. In this study we have shown that curcumin nanocrystals prepared by the smartCrystal® process are promising carriers in dermal application and furthermore, we identified the ideal concentration of 0.02% nanocrystals in dermal formulations. The comprehensive study of decreasing curcumin concentration in formulations revealed that the saturation solubility (Cs) is not the only determining factor for the penetration. A new mechanism based also on the concentration of the

  9. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals.

    PubMed

    Querner, Claudia; Reiss, Peter; Sadki, Said; Zagorska, Malgorzata; Pron, Adam

    2005-09-07

    The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size range (from 3 to 6.5 nm) with the goal to amplify the influence of the quantum confinement effect on the electrochemical response. The determined HOMO and LUMO levels have been found in good agreement with the ones obtained from photoluminescence studies and those predicted theoretically. Ligand exchange with aniline tetramer significantly influences the voltammetric peaks associated with the HOMO oxidation and the LUMO reduction of the quantum dots, which are shifted to higher and lower potentials, respectively. These shifts are interpreted in terms of the positive ligand charging which precedes the oxidation of the nanocrystals and the insulating nature of the ligand in the case of the nanocrystal reduction. The ligand-nanocrystal interactions have also been studied by UV-Vis-NIR and Raman spectroelectrochemistry in comparison with a specially prepared model compound which, apart from the anchoring function is identical to the grafted oligoaniline ligand. Both spectroelectrochemical techniques clearly indicate the same nature of the oxidation/reduction pathway for both the model compound and the grafted ligand. The influence of the grafting is manifested by a shift in the onset of the ligand oxidation as compared to the case of the "free" model compound. Since both components (ligands and nanocrystals) mutually influence their electrochemical and spectroelectrochemical properties, the newly developed system can be considered as a true molecular hybrid. Such hybrids are of interest because the potential zone of the ligand electroactivity is well separated from that of the nanocrystals and, as a result, the organic part can be electrochemically switched between the

  10. Elucidating the in vivo fate of nanocrystals using a physiologically based pharmacokinetic model: a case study with the anticancer agent SNX-2112

    PubMed Central

    Dong, Dong; Wang, Xiao; Wang, Huailing; Zhang, Xingwang; Wang, Yifei; Wu, Baojian

    2015-01-01

    Introduction SNX-2112 is a promising anticancer agent but has poor solubility in both water and oil. In the study reported here, we aimed to develop a nanocrystal formulation for SNX-2112 and to determine the pharmacokinetic behaviors of the prepared nanocrystals. Methods Nanocrystals of SNX-2112 were prepared using the wet-media milling technique and characterized by particle size, differential scanning calorimetry, drug release, etc. Physiologically based pharmacokinetic (PBPK) modeling was undertaken to evaluate the drug’s disposition in rats following administration of drug cosolvent or nanocrystals. Results The optimized SNX-2112 nanocrystals (with poloxamer 188 as the stabilizer) were 203 nm in size with a zeta potential of −11.6 mV. In addition, the nanocrystals showed a comparable release profile to the control (drug cosolvent). Further, the rat PBPK model incorporating the parameters of particulate uptake (into the liver and spleen) and of in vivo drug release was well fitted to the experimental data following administration of the drug nanocrystals. The results reveal that the nanocrystals rapidly released drug molecules in vivo, accounting for their cosolvent-like pharmacokinetic behaviors. Due to particulate uptake, drug accumulation in the liver and spleen was significant at the initial time points (within 1 hour). Conclusion The nanocrystals should be a good choice for the systemic delivery of the poorly soluble drug SNX-2112. Also, our study contributes to an improved understanding of the in vivo fate of nanocrystals. PMID:25848269

  11. Syringe pump-assisted synthesis of water-soluble cubic structure Ag2Se nanocrystals by a cation-exchange reaction.

    PubMed

    Wang, Shang-Bing; Hu, Bo; Liu, Chang-Chang; Yu, Shu-Hong

    2008-09-15

    Water-soluble cubic structure Ag(2)Se (alpha-Ag(2)Se) nanocrystals smaller than 5 nm can be obtained by cation-exchange reaction at room temperature, using water-dispersed ZnSe nanocrystals as precursors, which is achieved by controlling the injection speed of AgNO(3) solutions via a syringe pump in the presence of the stabilizer of trisodium citrate. Meanwhile, the thermal stability of the product Ag(2)Se nanocrystals is studied. The results show that the mean sizes and shapes of the precursor ZnSe and product Ag(2)Se nanocrystals are similar, and Se anion sublattices between them are topotaxial. In addition, no phase transition is observed for the product Ag(2)Se (cubic structure) nanocrystals below 180 degrees C. The present synthetic method based on cation-exchange reactions can also be applied to the syntheses of PbSe and CuSe nanocrystals.

  12. Highly efficient (infra)red conversion of InGaN light emitting diodes by nanocrystals, enhanced by colour selective mirrors.

    PubMed

    Roither, Jürgen; Kovalenko, Maksym V; Heiss, Wolfgang

    2008-09-03

    Colloidal nanocrystal layers deposited onto the enclosure of InGaN light emitting diodes are demonstrated to operate as nano-phosphors for colour conversion with high colour stability. Depending on the choice of the nanocrystal material (either CdSe/ZnS or PbS nanocrystals are applied), the diode emission at 470 nm is converted to red or to infrared light, with similar quantum efficiencies. The colour conversion is further improved by dielectric mirrors with high reflectivity at the emission band of the nanocrystals, resulting in an almost doubling of the nanocrystal light extraction from the devices, which increases the nanocrystal device efficiency up to 19.1%.

  13. 25.5 fs dissipative soliton diamond Raman laser.

    PubMed

    Lin, Jipeng; Spence, David J

    2016-04-15

    We have demonstrated a dissipative soliton diamond Raman laser that generates 25.5 fs pulses. Synchronously pumped by a 128 fs Ti:sapphire laser, the Raman cavity employed a pair of chirped mirrors to optimize the group delay dispersion, resulting in a Stokes field with 125 nm of spectral bandwidth from 840 to 965 nm. The Stokes pulse formation can be described as a dissipative soliton balancing self-phase modulation, normal dispersion, and gain due to stimulated Raman scattering (SRS).

  14. Superconductivity in planarised nanocrystalline diamond films.

    PubMed

    Klemencic, Georgina M; Mandal, Soumen; Werrell, Jessica M; Giblin, Sean R; Williams, Oliver A

    2017-01-01

    Chemical vapour deposition (CVD) grown boron-doped nanocrystalline diamond (B-NCD) is an attractive material for the fabrication of high frequency superconducting nanoelectromechanical systems (NEMS) due to its high Young's modulus. The as-grown films have a surface roughness that increases with film thickness due to the columnar growth mechanism. To reduce intrinsic losses in B-NCD NEMS it is crucial to correct for this surface roughness by polishing. In this paper, in contrast to conventional polishing, it is demonstrated that the root-mean-square (RMS) roughness of a 520 nm thick B-NCD film can be reduced by chemical mechanical polishing (CMP) from 44.0 nm to 1.5 nm in 14 hours without damaging the sample or introducing significant changes to the superconducting transition temperature, [Formula: see text], thus enabling the use of B-NCD films in the fabrication of high quality superconducting NEMS.

  15. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  16. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  17. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  18. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  19. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Rough diamond. 592.310 Section 592... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply...

  20. Synthesis and thermal stability of W-doped VO{sub 2} nanocrystals

    SciTech Connect

    Kong, F.Y.; Li, M.; Pan, S.S.; Zhang, Y.X.; Li, G.H.

    2011-11-15

    Highlights: {yields} The VO{sub 2} nanocrystals with a nearly spherical morphology with size ranging from 50 to 100 nm were synthesized by using V{sub 2}O{sub 5} and oxalic acid as precursors via a thermolysis method. {yields} The W dopant is in the W{sup 6+} form, and there is a small amount of V{sup 3+} in the VO{sub 2} nanocrystals. VO{sub 2} (R) nanocrystals with phase transition temperature at room temperature were obtained with 2.5 at% W-doing. {yields} A high stability upon heating-cooling cycles was observed with respect to MIT temperature, peak temperature and latent heat of the phase transition due to both the size effect and the existence of V{sup 3+} in the VO{sub 2} nanocrystals. -- Abstract: Pure and W-doped vanadium dioxide nanocrystals have been synthesized by using V{sub 2}O{sub 5} and oxalic acid as precursors via a thermolysis method. The VO{sub 2} nanocrystals have a nearly spherical morphology with size ranging from 50 to 100 nm. The metal-insulator transition (MIT) temperature of the nanocrystals decreases with increasing W-doping content. The successive heat-induced fatigue character of the MIT in W-doped VO{sub 2} nanocrystals was investigated by DSC analysis together with structural study, and a high stability upon heating-cooling cycles was found with respect to MIT temperature, peak temperature and latent heat of the phase transition.

  1. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals

    DOE PAGES

    Freppon, Daniel J.; Men, Long; Burkhow, Sadie J.; ...

    2016-11-25

    Here we present the time-correlated luminescence of isolated nanocrystals of five methylammonium lead mixed-halide perovskite compositions (CH3NH3PbBr3$-$xIx) that were synthesized with varying iodide and bromide anion loading. All analyzed nanocrystals had a spherical morphology with diameters in the range of 2 to 32 nm. The luminescence maxima of CH3NH3PbBr3$-$xIx nanocrystals were tuned to wavelengths ranging between 498 and 740 nm by varying the halide loading. Both CH3NH3PbI3 and CH3NH3PbBr3 nanocrystals exhibited no luminescence intermittency for more than 90% of the 250 s analysis time, as defined by a luminescence intensity three standard deviations above the background. The mixed halide CH3NH3PbBr0.75I0.25,more » CH3NH3PbBr0.50I0.50, and CH3NH3PbBr0.25I0.75 nanocrystals exhibited luminescence intermittency in 18%, 4% and 26% of the nanocrystals, respectively. Irrespective of luminescence intermittency, luminescence intensities were classified for each nanocrystal as: (a) constant, (b) multimodal, (c) photobrightening, and (d) photobleaching. Finally, based on their photophysics, the CH3NH3PbBr3$-$xIx nanocrystals can be expected to be useful in a wide-range of applications where low and non-intermittent luminescence is desirable, for example as imaging probes and in films for energy conversion devices.« less

  2. Optically induced dynamic nuclear spin polarisation in diamond

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  3. Fluid/melt inclusions in alluvial Northeast Siberian diamonds: new approach on diamond formation.

    NASA Astrophysics Data System (ADS)

    Logvinova, Alla M.; Wirth, Richard; Sobolev, Nikolai V.

    2010-05-01

    The origin of alluvial Northeast Siberian diamonds is still a subject of controversy. Fluid/melt inclusions in diamonds are the deepest available samples of mantle fluids and provide the unique information on the medium in which diamonds have grown. These inclusions carry high-density fluids (HDFs), the compositional variability is in the range of hydrous-silicic, carbonatitic (high-Mg and low-Mg) and saline end-members. Previous studies of the bulk composition and internal morphology of microinclusions in alluvial Northeast Siberian diamonds suggested that they contain fluids, but distribution and structure of their constitutional phases could not be determined. We investigated two populations of diamonds from Northeast Siberian Platform placers (Ebelyakh area) using TEM, FTIR, EPMA methods: (I) rounded single-crystals (dodecahedrons, octahedrons and irregular stones with a black central zone rich in microinclusions. Some of them frequently exhibit growth twinning; (II) rounded dark crystals, related to variety V according to the classification by Orlov (1977). This group of stones has their own typical features: dark color due to abundant black microinclusions and high dislocation density; mosaic-block internal structure; very light carbon isotopic composition; the high degree of nitrogen aggregation and nearly total absence of mineral inclusions. Diamonds of the first population are characterized by two types of fluid/melt nanoinclusions:1) multi-phase high- Mg assemblages, which include solid phases (magnesite, dolomite, clinohumite, Fe-spinel, graphite) and fluid bubbles; 2) oriented sulfide melt nanoinclusions in association with halides (KCl, NaCl), high-Si mica and fluid bubbles. All of them ranging between 5 and 200 nm in diameter are reflecting the diamond habit. Sulfides are homogeneous in composition. The Ni/(Ni+Fe) ratio of the inclusions is 0.037±0.04. Still closed fluid bubbles were identified in TEM studies as changing absorption contrast due to

  4. Fabrication and Optical Properties of Water Soluble CdSeS Nanocrystals Using Glycerin as Stabilizing Agent

    PubMed Central

    Jiang, Fengrui; Tan, Guolong

    2013-01-01

    Herein we present an unusual phosphine-free method to fabricate water soluble CdSeS nanocrystals in cubic structure. In this method, glycerin was used as a stabilizing agent replacing tri-n-octylphosphine oxide (TOPO). Water solution of Na2SeO3 in polyethylene glycol was utilized as Se source. 3-Mercaptopropionic acid (MPA) provides S source. The phosphine-free Se and S sources were found to be highly reactive and suitable for the synthesis of CdSeS nanocrystals. XRD and HRTEM images confirm the formation of CdSeS nanocrystals in zinc blende structure. The absorption peaks on UV-vis spectra of as-prepared CdSeS nanocrystals are tunable from 330 nm to 440 nm, which blue shifts to shorter wavelength side in comparison with that of pure CdSe nanocrystals. The cubic CdSeS nanocrystals demonstrate narrow PL emissions spectra between 464 and 615 nm. Transmission electron microscopy images show the uniformity for the size distribution of the ternary QDs. Series water soluble CdSe1–xSx (x = 0∼1) nanocrystals have also been synthesized using Na2SeO3 and Na2S solution as the Se-S co-sources. Tunable band gap energies of CdSe1–xSx (x = 0∼1) nanocrystals upon chemical composition x have been achieved, the gap ranges from 290 nm to 558 nm. PMID:24204781

  5. Raman investigation of diamond films

    SciTech Connect

    Feng, Li-Ming

    1993-12-31

    Extensive Raman investigations were conducted on a wide range of diamond films whose structures were dilineated by optical and confocal microscopy. The Raman Spectra from one extreme of this range indicates a very intense 1331 cm{sup {minus}1} line diagnostic of bulk crystalline diamond. Microscopy of the corresponding film shows the presence of many large true diamond crystallite. The 1331 cm{sup {minus}1} Raman line at the other extreme of the range, however, is virtually absent. It is replaced, at this extreme, by a very broad Raman contour whose maxima occur near 1355 cm{sup {minus}1} and 1575 cm{sup {minus}1}. Optical microscopy now reveals a complete lack of diamond crystallites. The ratio of the integrated Raman intensity of the 1331 cm{sup {minus}1} diamond line to the integral of the entire broad contour extending from {approx}1200 cm{sup {minus}1} to 1800 cm{sup {minus}1}, with maxima near 1355 cm{sup {minus}1} and 1575 cm{sup {minus}1}, was determined. This ratio rises with increasing diamond crystallite size, and it decreases as true diamond crystallites are replaced by diamond-like, but amorphous, hard carbon, which produces the broad Raman contour. The measured intensity ratio was analyzed in terms of a differential equation related to phonon coupling. The increase of the intensity ratio of the 1331 cm{sup {minus}1} diagnostic diamond peak is due to phono-phonon coupling between the diamond crystallites, as the concentration of the amorphous diamond-like carbon decreases. Confocal microscopy indicates many amorphous-like regions interspersed between diamond crystallites which account for the intensity loss, and agree with the Raman intensity measurements. These Raman measurements crystallinity versus amorphous hard-carbon character of thin diamond film.

  6. Most diamonds were created equal

    NASA Astrophysics Data System (ADS)

    Jablon, Brooke Matat; Navon, Oded

    2016-06-01

    Diamonds crystallize deep in the mantle (>150 km), leaving their carbon sources and the mechanism of their crystallization debatable. They can form from elemental carbon, by oxidation of reduced species (e.g. methane) or reduction of oxidized ones (e.g. carbonate-bearing minerals or melts), in response to decreasing carbon solubility in melts or fluids or due to changes in pH. The mechanism of formation is clear for fibrous diamonds that grew from the carbonate-bearing fluids trapped in their microinclusions. However, these diamonds look different and, based on their lower level of nitrogen aggregation, are much younger than most monocrystalline (MC) diamonds. In the first systematic search for microinclusions in MC diamonds we examined twinned crystals (macles), assuming that during their growth, microinclusions were trapped along the twinning plane. Visible mineral inclusions (>10 μm) and nitrogen aggregation levels in these clear macles are similar to other MC diamonds. We found 32 microinclusions along the twinning planes in eight out of 30 diamonds. Eight inclusions are orthopyroxene; four contain >50% K2O (probably as K2(Mg, Ca)(CO3)2); but the major element compositions of the remaining 20 are similar to those of carbonate-bearing high-density fluids (HDFs) found in fibrous diamonds. We conclude that the source of carbon for these macles and for most diamonds is carbonate-bearing HDFs similar to those found here and in fibrous diamonds. Combined with the old ages of MC diamonds (up to 3.5 Ga), our new findings suggest that carbonates have been introduced into the reduced lithospheric mantle since the Archaean and that the mechanism of diamond formation is the same for most diamonds.

  7. Low Temperature Growth of Nanostructured Diamond Films on Metals

    NASA Technical Reports Server (NTRS)

    Baker, Paul A.; Catledge, Shane A.; Vohra, Yogesh K.

    2001-01-01

    The field of nanocrystalline diamond and tetrahedral amorphous carbon films has been the focus of intense experimental activity in the last few years for applications in field emission display devices, optical windows, and tribological coatings, The choice of substrate used in most studies has typically been silicon. For metals, however, the thermal expansion mismatch between the diamond film and substrate gives rise to thermal stress that often results in delamination of the film. To avoid this problem in conventional CVD deposition low substrate temperatures (less than 700 C) have been used, often with the incorporation of oxygen or carbon monoxide to the feedgas mixture. Conventionally grown CVD diamond films are also rough and would require post-deposition polishing for most applications. Therefore, there is an obvious need to develop techniques for deposition of well-adhered, smooth nano-structured diamond films on metals for various tribological applications. In our work, nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 C) for 30 minutes using a H2/CH4/N2 gas mixture in order to grow a thin (approx. 600 nm) nanostructured diamond layer and improve film adhesion. The remainder of the deposition involves growth at low temperature (less than 600 C) in a H2/CH4/O2 gas mixture. Laser reflectance Interferometry (LRI) pattern during growth of a nanostructured diamond film on Ti-6Al-4V alloy. The first 30 minutes are at a high temperature of 820 C and the rest of the film is grown at a low temperature of 580 T. The fringe pattern is observed till the very end due to extremely low surface roughness of 40 nm. The continuation of the smooth nanostructured diamond film growth during low temperature deposition is confirmed by in-situ laser reflectance interferometry and by post-deposition micro-Raman spectroscopy and surface profilometry. Similar experiments

  8. Low Temperature Growth of Nanostructured Diamond Films on Metals

    NASA Technical Reports Server (NTRS)

    Baker, Paul A.; Catledge, Shane A.; Vohra, Yogesh K.

    2001-01-01

    The field of nanocrystalline diamond and tetrahedral amorphous carbon films has been the focus of intense experimental activity in the last few years for applications in field emission display devices, optical windows, and tribological coatings, The choice of substrate used in most studies has typically been silicon. For metals, however, the thermal expansion mismatch between the diamond film and substrate gives rise to thermal stress that often results in delamination of the film. To avoid this problem in conventional CVD deposition low substrate temperatures (less than 700 C) have been used, often with the incorporation of oxygen or carbon monoxide to the feedgas mixture. Conventionally grown CVD diamond films are also rough and would require post-deposition polishing for most applications. Therefore, there is an obvious need to develop techniques for deposition of well-adhered, smooth nano-structured diamond films on metals for various tribological applications. In our work, nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 C) for 30 minutes using a H2/CH4/N2 gas mixture in order to grow a thin (approx. 600 nm) nanostructured diamond layer and improve film adhesion. The remainder of the deposition involves growth at low temperature (less than 600 C) in a H2/CH4/O2 gas mixture. Laser reflectance Interferometry (LRI) pattern during growth of a nanostructured diamond film on Ti-6Al-4V alloy. The first 30 minutes are at a high temperature of 820 C and the rest of the film is grown at a low temperature of 580 T. The fringe pattern is observed till the very end due to extremely low surface roughness of 40 nm. The continuation of the smooth nanostructured diamond film growth during low temperature deposition is confirmed by in-situ laser reflectance interferometry and by post-deposition micro-Raman spectroscopy and surface profilometry. Similar experiments

  9. Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1994-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine

  10. Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond

    SciTech Connect

    Galář, P. Malý, P.; Čermák, J.; Kromka, A.; Rezek, B.

    2014-12-14

    Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380–700 nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150 nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200 nm deep inside the NCD film.

  11. Fabrication of Fully Solution Processed Inorganic Nanocrystal Photovoltaic Devices.

    PubMed

    Townsend, Troy K; Durastanti, Dario; Heuer, William B; Foos, Edward E; Yoon, Woojun; Tischler, Joseph G

    2016-07-08

    We demonstrate a method for the preparation of fully solution processed inorganic solar cells from a spin and spray coating deposition of nanocrystal inks. For the photoactive absorber layer, colloidal CdTe and CdSe nanocrystals (3-5 nm) are synthesized using an inert hot injection technique and cleaned with precipitations to remove excess starting reagents. Similarly, gold nanocrystals (3-5 nm) are synthesized under ambient conditions and dissolved in organic solvents. In addition, precursor solutions for transparent conductive indium tin oxide (ITO) films are prepared from solutions of indium and tin salts paired with a reactive oxidizer. Layer-by-layer, these solutions are deposited onto a glass substrate following annealing (200-400 °C) to build the nanocrystal solar cell (glass/ITO/CdSe/CdTe/Au). Pre-annealing ligand exchange is required for CdSe and CdTe nanocrystals where films are dipped in NH4Cl:methanol to replace long-chain native ligands with small inorganic Cl(-) anions. NH4Cl(s) was found to act as a catalyst for the sintering reaction (as a non-toxic alternative to the conventional CdCl2(s) treatment) leading to grain growth (136±39 nm) during heating. The thickness and roughness of the prepared films are characterized with SEM and optical profilometry. FTIR is used to determine the degree of ligand exchange prior to sintering, and XRD is used to verify the crystallinity and phase of each material. UV/Vis spectra show high visible light transmission through the ITO layer and a red shift in the absorbance of the cadmium chalcogenide nanocrystals after thermal annealing. Current-voltage curves of completed devices are measured under simulated one sun illumination. Small differences in deposition techniques and reagents employed during ligand exchange have been shown to have a profound influence on the device properties. Here, we examine the effects of chemical (sintering and ligand exchange agents) and physical treatments (solution concentration

  12. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system

    SciTech Connect

    Sinha, V.; Gengler, J. J.; Muratore, C.; Spowart, J. E.

    2015-02-21

    The characterization of Cu/diamond interface thermal conductance (h{sub c}) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ∼90 nm thick Cu layers were deposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The h{sub c} across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined using time-domain thermoreflectance. The h{sub c} is ∼2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in h{sub c}. Furthermore, h{sub c} was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study.

  13. Nanomagnetism study of highly-ordered iron oxide nanocrystal assemblies fabricated by the Langmuir-Blodgett technique.

    PubMed

    Zhang, HaiTao; Bao, NiNa; Yuan, Du; Ding, Jun

    2013-09-21

    Iron oxide nanocrystals are ideal building blocks for the construction of flexible nanodevices whose performance can be modulated by controlling the morphology of isolated particles and their organizational form. This work demonstrates the fabrication of high quality Langmuir-Blodgett (LB) nanocrystal assemblies with limited overlapping and higher coverage by systemically and combinatorially optimizing the parameters of compression pressure and quantity of spread nanocrystals. Monodispersed iron oxide nanocrystals with a diameter of 11.8 nm were synthesized by thermal decomposition of Fe(CO)5 in trioctylamine with the presence of oleic acid. Multilayer nanocrystal assemblies were obtained through a layer-by-layer (LBL) process by repeating the transfer procedure after their hydrophilicity had been improved via treatment in a UV-ozone oven. The quality of nanocrystal assemblies was investigated by UV-vis spectrometry and scanning electron microscopy. The nanomagnetism for the nanostructures of different combination manners was studied systemically by a superconducting quantum interference device (SQUID). A lower superparamagnetic blocking temperature was found in the monolayer Fe3O4 nanocrystal assembly. The superparamagnetic blocking temperature in magnetic nanocrystal assemblies could be tuned through modifying the interparticle interactions among the interlayer and intralayers by controlling the layer number of the assemblies.

  14. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability.

    PubMed

    Morakul, Boontida; Suksiriworapong, Jiraphong; Leanpolchareanchai, Jiraporn; Junyaprasert, Varaporn Buraphacheep

    2013-11-30

    Nanocrystals is one of effective technologies used to improve solubility and dissolution behavior of poorly soluble drugs. Clarithromycin is classified in BCS class II having low bioavailability due to very low dissolution behavior. The main purpose of this study was to investigate an efficiency of clarithromycin nanocrystals preparation by precipitation-lyophilization-homogenization (PLH) combination method in comparison with high pressure homogenization (HPH) method. The factors influencing particle size reduction and physical stability were assessed. The results showed that the PLH technique provided an effective and rapid reduction of particle size of nanocrystals to 460 ± 10 nm with homogeneity size distribution after only the fifth cycle of homogenization, whereas the same size was attained after 30 cycles by the HPH method. The smallest nanocrystals were achieved by using the combination of poloxamer 407 (2%, w/v) and SLS (0.1%, w/v) as stabilizers. This combination could prevent the particle aggregation over 3-month storage at 4 °C. The results from SEM showed that the clarithromycin nanocrystals were in cubic-shaped similar to its initial particle morphology. The DSC thermogram and X-ray diffraction pattern of nanocrystals were not different from the original drug except for intensity of peaks which indicated the presenting of nanocrystals in the crystalline state and/or partial amorphous form. In addition, the dissolution of the clarithromycin nanocrystals was dramatically increased as compared to the coarse clarithromycin.

  15. Charge separation in type II tunneling structures of close-packed CdTe and CdSe nanocrystals.

    PubMed

    Gross, Dieter; Susha, Andrei S; Klar, Thomas A; Da Como, Enrico; Rogach, Andrey L; Feldmann, Jochen

    2008-05-01

    We report on charge separation between type II aligned CdTe and CdSe nanocrystals. Two types of electrostatically bound nanocrystal structures have been studied: first, clusters of nanocrystals hold together by Ca(II) ions in aqueous solution and, second, thin film structures of nanocrystals created with layer-by-layer deposition in combination with polyelectrolytes. In both types of structures, short interparticle distances of less than 1 nm have been achieved, whereby the isolating organic ligands on the nanocrystal surfaces and/or the polymer monolayers act as tunneling barriers between nanocrystals. We have observed an efficient quenching of photoluminescence and a reduced emission lifetime for CdTe nanocrystals in both types of type II heterostructures. This result is explained by a spatial charge separation of the photoexcited electron-hole pairs due to tunneling of charge carriers through the thin organic layer between CdTe and CdSe nanocrystals. Type II heterostructures demonstrated here may find future applications in photovoltaics.

  16. Synthesis, characterization, shape evolution, and optical properties of copper sulfide hexagonal bifrustum nanocrystals

    NASA Astrophysics Data System (ADS)

    Jia, Baorui; Qin, Mingli; Jiang, Xuezhi; Zhang, Zili; Zhang, Lin; Liu, Ye; Qu, Xuanhui

    2013-03-01

    The hexagonal bifrustum-shaped copper sulfide (CuS) nanocrystals were selectively and facilely synthesized by a hydrothermal method for the first time at 120 °C. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence spectroscopy. The results showed that the CuS hexagonal bifrustum nanocrystal was bounded by two top hexagons with edge length of about 50-70 nm and twelve lateral trapezoids with a base of about 100 nm and that the length of each hexagonal bifrustum was about 250 nm. Tetradecylamine (TDA), as an effective capping agent, was found to be critical for this special shape. Using different amounts of TDA, two kinds of CuS hexagonal bifrustum nanocrystals were obtained: "lender hexagonal bifrustum" and "pancake hexagonal bifrustum." Furthermore, we studied the formation mechanism of hexagonal bifrustum, which is related to the intrinsic crystalline structure of CuS and Ostwald ripening. And, the results revealed that the CuS nanocrystal evolved from hexagonal plate to hexagonal bifrustum and finally to hexagonal bipyramid as the heating time increased. The UV-Vis absorption spectrum showed that these CuS hexagonal bifrustum nanocrystals exhibited strong absorption in the near-infrared region and had a potential application for photothermal therapy and photocatalysis.

  17. Fluorescence Quenching of CdTe Nanocrystals by Bound Gold Nanoparticles in Aqueous Solution

    PubMed Central

    Zhang, Jian; Badugu, Ramachandram; Lakowicz, Joseph R.

    2009-01-01

    Water-soluble gold nanoparticles with an average diameter of 5 nm were prepared with carboxylic acid terminated thiol ligands. These ligands contain zero to eight methylene moieties. CdTe nanocrystals with an average diameter of 5 nm were synthesized with aminoethanethiol capping. These nanocrystals displayed characteristic absorption and emission spectra of quantum dots. The amine terminated CdTe nanocrystals and carboxylic-acid-terminated gold nanoparticles were conjugated in aqueous solution at pH 5.0 by electrostatic interaction, and the conjugation was monitored with fluorescence spectroscopy. The CdTe nanocrystals were significantly quenched upon binding with gold nanoparticles. The quenching efficiency was affected by both the concentration of gold nanoparticles in the complex and the length of spacer between the CdTe nanocrystal and Au nanoparticle. The observed quenching was explained using Förster resonance energy transfer (FRET) mechanism, and the Förster distance was estimated to be 3.8 nm between the donor-acceptor pair. PMID:19890452

  18. Two-silicon-nanocrystal layer memory structure with improved retention characteristics.

    PubMed

    Nassiopoulou, A G; Salonidou, A

    2007-01-01

    It was demonstrated in the literature that the use of self-aligned doubly-stacked Si dots improves retention characteristics of a nanocrystal memory. In this paper, we show that a similar effect may be obtained by using two distinct layers of silicon nanocrystals within the gate dielectric of the MOS structure, if the nanocrystal density in each layer is high enough (above 10(12) dots/cm2) so as to get an average effect of at least one smaller dot underneath each larger one. The relative distance of the layers and their position from the silicon substrate and the gate metal are critical for optimum memory operation. Two different double-nanocrystal-layer structures were investigated. In the first structure the two nanocrystal layers were close together and they were composed of dots of different size (lower layer: 3 nm, upper layer: 5 nm), while in the second structure the dot layers were composed of dots of equal diameter (d = 3 nm) and their inter-distance was much larger. In both cases, the retention characteristics of the structure were improved compared with a single dot layer structure. In the second case this improvement was significantly larger than in the first case. Extrapolation of the data to ten years memory operation, showed that the charge loss after this time was only approximately 12%.

  19. Structure and properties of diamond and diamond-like films

    SciTech Connect

    Clausing, R.E.

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  20. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  1. CVD Diamond Films for Tribological Applications

    DTIC Science & Technology

    1990-03-31

    diamond film) tests. In the following discussion, coefficient of friction is abbreviated as g ; subscripts i, f, and min refer to initial, final, and...100)/(110) films exhibit significantly lower g ±i than do (111) films. The importance of film morphology in determining gi is most strongly...00.6 0 0 00 mn 0 -0.5 008 0 0 0 *c 0.4 00 80 o 0.3 G 0.2 0 0.1 X X 0 IN m 10.0 100.0 1000.0 Initial Surface Roughness (nm) Figure 16a: Coefficient of

  2. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    NASA Astrophysics Data System (ADS)

    Sajimol Augustine, M.; Anas, Abdulaziz; Das, Ani V.; Sreekanth, S.; Jayalekshmi, S.

    2015-02-01

    Highly luminescent, manganese doped, zinc sulphide (ZnS:Mn) nanocrystals biofunctionalized with chitosan and various aminoacids such as L-citrulline, L-lysine, L-arginine, L-serine, L-histidine and glycine were synthesized by chemical capping co-precipitation method at room temperature, which is a simple and cost effective technique. The synthesized nanocrystals were structurally characterized by TEM, XRD, EDXS and FT-IR spectroscopy techniques. They possess high colloidal stability with strong orange red photoluminescence emission at 598 nm. The intensity of orange red emission has been observed to be maximum in L-citrulline capped ZnS:Mn nanocrystals in which the emission at 420 nm is effectively quenched by surface passivation due to capping. Taking into consideration the prospects of these highly luminescent, bio-compatible ZnS:Mn nanocrystals in bio-imaging applications, cytotoxicity studies were conducted to identify the capping combination which would accomplish minimum toxic effects. ZnS:Mn nanocrystals biofunctionalized with chitosan, L-citrulline, glycine, L-artginine, L-serine and L-histidine showed least toxicity up to 10 nM concentrations in mouse fibroblast L929 cells, which further confirms their cytocompatibility. Also the ZnS:Mn nanocrystals biofunctionalized with L-arginine showed maximum uptake in in vitro studies carried out in human embryonic kidney cells, HEK-293T, which shows the significant role of this particular amino acid in fetoplacental nutrition. The present study highlights the suitability of aminoacid conjugated ZnS:Mn nanocrystals, as promising candidates for biomedical applications.

  3. Highly crosslinked poly(dimethylsiloxane) microbeads with uniformly dispersed quantum dot nanocrystals.

    PubMed

    Shojaei-Zadeh, Shahab; Morris, Jeffrey F; Couzis, Alex; Maldarelli, Charles

    2011-11-01

    This study demonstrates how luminescent semiconductor nanocrystals (quantum dots or QDs) can be dispersed uniformly in a poly(dimethylsiloxane) (PDMS) matrix by polymerizing a mixture of the prepolymer oligomers and the nanocrystals with a relatively large concentration of crosslinking molecules. A microfluidic device is used to fabricate PDMS microbeads embedded with the QDs by using flow focusing to first form monodisperse droplets of the prepolymer/crosslinker/nanocrystal mixture in a continuous aqueous phase. The droplets are subsequently collected, and heated to polymerize them into solid microbead composites. The degree of aggregation of the nanocrystals in the matrix is studied by measuring the nonradiative resonance energy transfer (RET) between the nanocrystals. For this purpose, two quantum dots are used with maxima in their luminescence emission spectrum at 560 nm and 620 nm. When the nanocrystals are within the Förster radius (approximately 10 nm) of each other, exciton energy cascades from the QDs which emit at the shorter wavelength to the QDs which emit at the longer wavelength. This energy transfer is quantified, for two concentration ratios of the prepolmer to the crosslinker, by measuring the deviation of the microbead luminescence spectrum from a reference spectrum obtained by dispersing the QD mixture in a solvent (toluene) in which the nanocrystals do not aggregate. For a low concentration of crosslinking molecules relative to the prepolymer (5:1 by weight prepolymer to crosslinker), strong RET is observed as the emission of the 620 nm QDs is increased and the 560 nm QDs is decreased relative to the reference. In the emission spectrum for a higher concentration of crosslinkers (2:1 by weight prepolymer to crosslinker), the resonance energy transfer is less relative to the case of the low concentration of crosslinkers, and the spectrum more closely resembles the reference. This result indicates that the increase in the crosslinker concentration

  4. Heavy-Ion Radiation-Induced Diamond Formation in Carbonaceous Materials

    NASA Astrophysics Data System (ADS)

    Daulton, T. L.; Ozima, M.

    1996-10-01

    The feasibility of a radiation-induced diamond formation (RIDF) mechanism is demonstrated by the observation of nano-diamonds in carburanium, a U-rich fine-grained, coal-like assemblage containing amorphous carbonaceous material of Precambrian age from North Karelia, Russia. This mineral deposit represents an ideal natural environment for RIDF because the carbonaceous grains present have received a high fluence of energetic particles over a geological time scale. Fragments of carburanium were subjected to acid dissolution treatments to isolate any diamond present. Transmission electron microscopy on these acid residues identified 500 nm polycrystalline diamond aggregates. This observation and estimates of formation efficiencies supports the hypothesis that diamond can form in carbonaceous material irradiated by U decay fragments. Diamond concentration in bulk carburanium is #197# 30 ppm indicating that the RIDF efficiencies might be relatively low as compared to the competing formation of graphite; the acid treatment was an essential key in the recovery of diamond in carburanium. This fact could contribute to the lack of observation of diamond in well- studied ion-implanted carbons. Experiments to synthesize nano-diamonds by heavy-ion irradiation are scheduled for late 1996 at ANL's accelerator ATLAS.

  5. Differing morphologies of textured diamond films with electrical properties made with microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lai, Wen Chi; Wu, Yu-Shiang; Chang, Hou-Cheng; Lee, Yuan-Haun

    2010-12-01

    This study investigates the orientation of textured diamond films produced through microwave plasma chemical vapor deposition (MPCVD) at 1200 W, 110 Torr, CH 4/H 2 = 1/20, with depositions times of 0.5-4.0 h. After a growth period of 2.0-4.0 h, this particular morphology revealed a rectangular structure stacked regularly on the diamond film. The orientation on {1 1 1}-textured diamond films grew a preferred orientation of {1 1 0} on the surface, as measured by XRD. The formation of the diamond epitaxial film formed textured octahedrons in ball shaped (or cauliflower-like) diamonds in the early stages (0.5 h), and the surface of the diamond film extended to pile the rectangular structure at 4.0 h. The width of the tier was approximately 200 nm at the 3.0 h point of deposition, according to TEM images. The results revealed that the textured diamond films showed two different morphological structures (typical ball shaped and rectangular diamonds), at different stages of the deposition period. The I- V characteristics of the oriented diamond films after 4.0 h of deposition time showed good conformity with the ohmic contact.

  6. Application of precision diamond machining to the manufacture of microphotonics components

    NASA Astrophysics Data System (ADS)

    Davies, Matthew A.; Evans, Christopher J.; Vohra, Rashmi R.; Bergner, Brent C.; Patterson, Steven R.

    2003-11-01

    The use of diamonds to generate precision patterns and precision surfaces on a micrometer or nanometer scale has a history that dates back centuries. Uses of diamond in semi-automated machinery can be traced to ruling machines, pantographs, and ornamental turning with "diamond turning" dating back about a century. Poor behavior in machining more common materials (e.g. ferrous alloys) has limited diamond use in traditional industrial machining. The niche of the single crystal diamond is its edge sharpness and the ability to produce near-optical finish in materials such as aluminum, copper and their alloys; however, due to machine limitations, diamond machining remained a novelty until relatively recently. A convergence of machine technologies developed for both weapons and commercial applications led to modern diamond turning. Current turnkey machines can produce contoured surfaces with surface finish in the range of 5 nm Ra and long range accuracy of micrometers or less. Macroscopic scale, three axis, diamond machining is a well-developed technology; machining of features on a micrometer and submicrometer scale is a new and rapidly developing application of single crystal diamond machining. The role of this technology in micro-optics replication has yet to be fully defined.

  7. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  8. Hydrogenated amorphous silicon based p-i-n structures with Si and Ge nanocrystals in i-layers

    NASA Astrophysics Data System (ADS)

    Volodin, V. A.; Krivyakin, G. K.; Shklyaev, A. A.; Kochubei, S. A.; Kamaev, G. N.; Dvurechendkii, A. V.; Purkrt, A.; Remes, Z.; Fajgar, R.; Stuchliková, T. H.; Stuchlik, J.

    2016-12-01

    Silicon nanocrystals and germanium nanolayers and nanocrystals were created into i-layers of p-i-n structures based on thin hydrogenated amorphous silicon films. The nanocrystals were formed using pulsed laser annealing with an excimer XeCl laser generating pulses with the wavelength of 308 nm and the duration of 15 ns. The laser fluence was varied from 100 (that is below the melting threshold) to 250 mJ/cm2 (above the threshold). The laser treatment allowed the formation of the nanoscrystals with the average size from 2 to 5 nm, depending on the laser-annealing parameters. The size of nanocrystals (in Si and Ge layers) and their Si-Ge composition (in GeSi alloy structures) was estimated through Raman spectra analysis. The structural parameters of Si, Ge and GeSi nanocrystals were also studied using electron microscopy and atomic force microscopy. Current-voltage measurements showed that the p-i-n structures exhibit diode characteristics. The diodes with Si nanocrystals produced the electroluminescence peak in the infrared range (0.9-1.0 eV), which spectral position was dependent on the laser annealing conditions. It was suggested that radiative transitions are related to the nanocrystal/amorphous silicon matrix interface states. The proposed approach can be used for producing of solar cells or light-emitting diodes on non-refractory substrates.

  9. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals.

    PubMed

    Martena, Valentina; Shegokar, Ranjita; Di Martino, Piera; Müller, Rainer H

    2014-09-01

    Nicergoline, a poorly soluble active pharmaceutical ingredient, possesses vaso-active properties which causes peripheral and central vasodilatation. In this study, nanocrystals of nicergoline were prepared in an aqueous solution of polysorbate 80 (nanosuspension) by using four different laboratory scale size reduction techniques: high pressure homogenization (HPH), bead milling (BM) and combination techniques (high pressure homogenization followed by bead milling HPH + BM, and bead milling followed by high pressure homogenization BM + HPH). Nanocrystals were investigated regarding to their mean particles size, zeta potential and particle dissolution. A short term physical stability study on nanocrystals stored at three different temperatures (4, 20 and 40 °C) was performed to evaluate the tendency to change in particle size, aggregation and zeta potential. The size reduction technique and the process parameters like milling time, number of homogenization cycles and pressure greatly affected the size of nanocrystals. Among the techniques used, the combination techniques showed superior and consistent particle size reduction compared to the other two methods, HPH + BM and BM + HPH giving nanocrystals of a mean particle size of 260 and 353 nm, respectively. The particle dissolution was increased for any nanocrystals samples, but it was particularly increased by HPH and combination techniques. Independently to the production method, nicergoline nanocrystals showed slight increase in particle size over the time, but remained below 500 nm at 20 °C and refrigeration conditions.

  10. Tailoring of crystal phase and Néel temperature of cobalt monoxides nanocrystals with synthetic approach conditions

    NASA Astrophysics Data System (ADS)

    Ravindra, A. V.; Behera, B. C.; Padhan, P.; Lebedev, O. I.; Prellier, W.

    2014-07-01

    Cobalt monoxide (CoO) nanocrystals were synthesized by thermal decomposition of cobalt oleate precursor in a high boiling point organic solvent 1-octadecene. The X-ray diffraction pattern and transmission electron microscopy studies suggest that pure face-centered-cubic (fcc) phase of CoO can be synthesized in the temperature range of 569-575 K. Thermolysis product at higher synthesis temperature 585 K is a mixture of fcc and hexagonal-closed-packed (hcp) phases. These nanocrystals are single crystals of CoO and exhibit mixture of two types of morphologies; one is nearly spherical with 5-25 nm diameter, and other one is 5-10 nm thick flake. The pure fcc-CoO nanocrystals show enhanced, and mixture of fcc- and hcp-CoO nanocrystals show reduced antiferromagnetic ordering temperature. Such results provide new opportunities for optimizing and enhancing the properties and performance of cobalt oxide nanomaterials.

  11. Smooth diamond films as low friction, long wear surfaces

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Erdemir, Ali; Bindal, Cuma; Zuiker, Christopher D.

    1999-01-01

    An article and method of manufacture of a nanocrystalline diamond film. The nanocrystalline film is prepared by forming a carbonaceous vapor, providing an inert gas containing gas stream and combining the gas stream with the carbonaceous containing vapor. A plasma of the combined vapor and gas stream is formed in a chamber and fragmented carbon species are deposited onto a substrate to form the nanocrystalline diamond film having a root mean square flatness of about 50 nm deviation from flatness in the as deposited state.

  12. Demonstration of a Coherent Electronic Spin Cluster in Diamond

    NASA Astrophysics Data System (ADS)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2016-09-01

    An obstacle for spin-based quantum sensors is magnetic noise due to proximal spins. However, a cluster of such spins can become an asset, if it can be controlled. Here, we polarize and readout a cluster of three nitrogen electron spins coupled to a single nitrogen-vacancy spin in diamond. We further achieve sub-nm localization of the cluster spins. Finally, we demonstrate coherent spin exchange between the species by simultaneous dressing of the nitrogen-vacancy and the nitrogen states. These results establish the feasibility of environment-assisted sensing and quantum simulations with diamond spins.

  13. Transforming graphite to nanoscale diamonds by a femtosecond laser pulse

    SciTech Connect

    Nueske, R.; Jurgilaitis, A.; Enquist, H.; Harb, M.; Larsson, J.; Fang, Y.; Haakanson, U.

    2012-01-23

    Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-ray powder diffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

  14. Highly fluorescent semiconductor core shell CdTe CdS nanocrystals for monitoring living yeast cells activity

    NASA Astrophysics Data System (ADS)

    de Farias, P. M. A.; Santos, B. S.; Menezes, F. D.; Brasil, A. G., Jr.; Ferreira, R.; Motta, M. A.; Castro-Neto, A. G.; Vieira, A. A. S.; Silva, D. C. N.; Fontes, A.; Cesar, C. L.

    2007-12-01

    Fluorescent semiconductor nanocrystals in quantum confinement regime (quantum dots) present several well-known features which make them very useful tools for biological labeling purposes. Low photobleaching rates, high chemical stability and active surface allowing conjugation to living cells explain the success of this labeling procedure over the commonly used fluorescent dyes. In this paper we report the results obtained with highly fluorescent core shell CdTe CdS (diameter=3 7 nm) colloidal nanocrystals synthesized in aqueous medium and conjugated to glucose molecules. The conjugated nanocrystals were incubated with living yeast cells, in order to investigate their glucose up-take activity in real time, by confocal microscopy analysis.

  15. Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit.

    PubMed

    Tilchin, Jenya; Rabouw, Freddy T; Isarov, Maya; Vaxenburg, Roman; Van Dijk-Moes, Relinde J A; Lifshitz, Efrat; Vanmaekelbergh, Daniel

    2015-08-25

    Sufficiently large semiconductor nanocrystals are a useful model system to characterize bulk-like excitons, with the electron and hole bound predominantly by Coulomb interaction. We present optical characterization of excitons in individual giant CdTe nanocrystals with diameters up to 25.5 nm at 4.2 K under varying excitation power and magnetic field strength. We determine values for the biexciton binding energy, diamagnetic shift constant, and Landé g-factor, which approach the bulk values with increasing nanocrystal size.

  16. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces

    SciTech Connect

    Moore, Samuel L.; Vohra, Yogesh K.

    2015-01-01

    Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.

  17. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces

    DOE PAGES

    Moore, Samuel L.; Vohra, Yogesh K.

    2015-01-01

    Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectronmore » Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.« less

  18. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.

  19. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  20. Ultrafast laser processing of diamond

    NASA Astrophysics Data System (ADS)

    Salter, P. S.; Booth, M. J.

    2014-03-01

    Ultrashort pulsed lasers are used to fabricate 3D structures in single crystal CVD diamond. The interaction of the laser with diamond lattice leads to a permanent structural modification, which is highly localized at the focus. Severe spherical aberrations compromise fabrication precision below the diamond surface. We implement adaptive aberration compensation to ensure optimum fabrication performance. The nature of the structural modification is analysed for both surface and subsurface laser fabrications.